WO2024074047A1 - 一种电动汽车无线充电定位***及其定位方法 - Google Patents

一种电动汽车无线充电定位***及其定位方法 Download PDF

Info

Publication number
WO2024074047A1
WO2024074047A1 PCT/CN2023/096416 CN2023096416W WO2024074047A1 WO 2024074047 A1 WO2024074047 A1 WO 2024074047A1 CN 2023096416 W CN2023096416 W CN 2023096416W WO 2024074047 A1 WO2024074047 A1 WO 2024074047A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
ground
coil
transmitting coil
detection
Prior art date
Application number
PCT/CN2023/096416
Other languages
English (en)
French (fr)
Inventor
冯颖盈
姚顺
欧平
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2024074047A1 publication Critical patent/WO2024074047A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the technical field of electric vehicle wireless charging, and in particular to an electric vehicle wireless charging positioning system and a positioning method thereof.
  • Electric vehicle wireless charging technology usually installs a transmitter on the ground or underground, and installs a receiver on the chassis of the electric vehicle.
  • the transmitter generates a magnetic field, and the receiver receives the induced current, which is rectified into direct current and then charges the electric vehicle battery. Since it is a contactless charging method of magnetic induction, the relative position of the electric vehicle and the transmitter will directly affect the magnetic induction intensity, and the magnetic induction intensity will directly affect the efficiency of charging, and even cause charging failure.
  • the present invention proposes an electric vehicle wireless charging positioning system and a positioning method thereof.
  • the technical solution adopted by the present invention is to design a wireless charging positioning system for electric vehicles, including a ground-end module installed on the ground and a vehicle-end module installed under the vehicle, wherein the ground-end module includes a ground-end controller, a power transmitting coil 12, a ground-end detection coil W1 and a detection circuit, wherein the power transmitting coil transmits an electromagnetic field, the ground-end detection coil is used to magnetically sense the magnetic induction signal emitted by the vehicle-end transmitting coil in the vehicle-end module, the detection circuit is used to convert the magnetic induction signal into a detection signal, the controller calculates the position information of the electric vehicle based on the detection signal, and sends the position information to the vehicle-end module; the vehicle-end module includes a vehicle-end controller, a power receiving coil 22, and a vehicle-end transmitting coil W2, wherein the power receiving coil is used to receive the electromagnetic field emitted by the power transmitting coil, and the vehicle-end controller controls the vehicle-end transmitting coil to emit the magnetic induction signal and communicate
  • the ground end module includes a ground end chassis 11, a power transmitting coil 12, a ground end magnetic core 13, a ground end detection coil W1, and a ground end panel 14 stacked from bottom to top;
  • the vehicle end module includes a vehicle end chassis 21, a power receiving coil 22, a vehicle end magnetic core 23, and a vehicle end detection coil W2 stacked from top to bottom.
  • the ground detection coil W1 includes multiple position detection coils (W1-1, W1-2...W1-n), which are distributed on the upper surface of the ground module and are respectively connected to the ground controller; when the vehicle-end transmitting coil W2 of the vehicle-end module falls into the range of the ground detection coil in the plumb direction and emits a magnetic induction signal, the ground controller determines the position of the electric vehicle by comparing the strength of the magnetic induction signals sensed on each position detection coil.
  • the vehicle-end transmitting coil W2 includes a front left transmitting coil W2a, a front right transmitting coil W2b, a rear left transmitting coil W2c, and a rear right transmitting coil W2d, which are respectively installed on the front left, front right, rear left, and rear right corners of the vehicle-end module.
  • the present invention also designs a positioning method for an electric vehicle wireless charging positioning system.
  • the system adopts the above-mentioned electric vehicle wireless charging positioning system.
  • the positioning method includes: the front left transmitting coil W2a, the front right transmitting coil W2b, the rear left transmitting coil W2c, and the rear right transmitting coil W2d respectively transmit magnetic induction signals with frequencies of frequency f4, frequency f3, frequency f2, and frequency f1; the ground detection coil W1 confirms the position of the corresponding transmitting coil according to the magnetic induction signals of different frequencies sensed, and then calculates the position information of the electric vehicle.
  • the position information includes coordinate information and offset angle information.
  • the ground detection coil has a rear coil oscillation frequency group and a front coil oscillation frequency group, the rear coil oscillation frequency group includes frequency f2 and frequency f1, and the front coil oscillation frequency group includes frequency f4 and frequency f3; when the rear coil oscillation frequency group is used, the ground detection coil will alternately use frequency f2 and frequency f1; when the front coil oscillation frequency group is used, the ground detection coil will alternately use frequency f4 and frequency f3; the position detection coils are coupled to sense the changes in the strength of the magnetic induction signal, and then the magnetic induction signal is converted into a detection signal through the detection circuit.
  • the ground controller converts the strength of the detection signal into a corresponding vector value, establishes a complex coordinate, and obtains the coordinate information of the electric vehicle through calculation.
  • the rear left transmitting coil W2c and the rear right transmitting coil W2d of the vehicle-end module enter the top of the ground-end module, and the position detection coils couple to sense the changes in the strength of the magnetic induction signal, and then convert the magnetic induction signal into a detection signal through the detection circuit.
  • the ground-end controller calculates the coordinates of the rear left and rear right transmitting coils according to the strength of the detection signal through the orthogonal principle, and then calculates the coordinate information of the center point of the vehicle-end module based on the positional relationship between the rear left and rear right transmitting coils and the center point of the vehicle-end module, and then calculates the offset angle information of the electric vehicle based on the coordinates of the rear left and rear right transmitting coils.
  • the front left transmitting coil W2a and the front right transmitting coil W2b of the vehicle-end module enter the top of the ground-end module, and the position detection coils couple to sense the changes in the strength of the magnetic induction signal, and then convert the magnetic induction signal into a detection signal through the detection circuit.
  • the ground-end controller calculates the coordinates of the front left and front right transmitting coils according to the strength of the detection signal through the orthogonal principle, and then calculates the coordinate information of the center point of the vehicle-end module in combination with the position relationship of the center point of the vehicle-end module of the front left and front right transmitting coils, and then calculates the offset angle information of the electric vehicle according to the coordinates of the front left and front right transmitting coils.
  • the positioning method comprises the following specific steps:
  • Step 1 Start the vehicle-side module
  • Step 2 start the ground module, and the ground detection coil W1 of the ground module adopts the rear coil oscillation frequency group;
  • Step 3 the ground end module detects whether the vehicle end module issues a positioning command, if yes, go to step 4, otherwise go to step 42;
  • Step 4 turn on the vehicle-end transmitting coil W2, and the front left transmitting coil W2a, the front right transmitting coil W2b, the rear left transmitting coil W2c, and the rear right transmitting coil W2d transmit magnetic induction signals with frequencies of frequency f4, frequency f3, frequency f2, and frequency f1 respectively;
  • Step 5 The ground module detects whether the electric vehicle has entered the positioning area. If yes, go to step 6; otherwise, wait.
  • Step 6 The ground module detects the rear left transmitting coil W2c and the rear right transmitting coil W2d, and then goes to step 10;
  • ground module detects the front left transmitting coil W2a and the front right transmitting coil W2b, but fails to detect the rear left transmitting coil W2c and the rear right transmitting coil W2d, then go to step 20;
  • the ground detection coil W1 adopts the rear coil oscillation frequency group, and calculates the coordinates of the rear left and rear right transmitting coils according to the strength of the magnetic induction signals received by the position detection coils through the orthogonal principle, and then calculates the coordinate information of the center point of the vehicle-end module in combination with the position relationship between the rear left and rear right transmitting coils and the center point of the vehicle-end module, and then calculates the offset angle information of the electric vehicle according to the coordinates of the rear left and rear right transmitting coils, and then goes to step 40;
  • the ground detection coil W1 adopts the front coil oscillation frequency group, and calculates the coordinates of the front left and front right transmitting coils according to the strength of the magnetic induction signals received by the position detection coils through the orthogonal principle, and then calculates the coordinate information of the center point of the vehicle-end module in combination with the position relationship between the front left and front right transmitting coils and the center point of the vehicle-end module, and then calculates the offset angle information of the electric vehicle according to the coordinates of the front left and front right transmitting coils, and then goes to step 40;
  • Step 40 The ground-end module transmits the coordinate information and the offset angle information to the vehicle-end module;
  • Step 41 detecting whether the electric vehicle has left the positioning area, if yes, go to step 42, otherwise go to step 5;
  • Step 42 the vehicle-end module turns off the positioning instruction, turns off the vehicle-end transmitting coil W2, and turns off the ground-end module.
  • the present invention can quickly locate and provide vehicle coordinate information and offset angle information to the electric vehicle.
  • Manually driven vehicles or automatically parked vehicles can correct the vehicle coordinates and offset angles according to the above information, so that the ground end module and the vehicle end module are aligned to the maximum extent, and the wireless charging efficiency is optimized; at the same time, the present invention adopts the switching of multiple position detection coils and multiple frequency magnetic induction signals, which not only detects the angle information of the electric vehicle but also expands the detection range.
  • the ground end detection coil selects two groups of oscillation frequency groups, each group of frequencies includes two frequencies, and these two frequencies work in time-sharing, which can save the port resources of the processor responsible for frequency driving at the ground end and reduce the cost of the processor.
  • FIG1 is a schematic side sectional view of a preferred embodiment of the present invention.
  • FIG2 is a bottom view of a vehicle end of a preferred embodiment of the present invention.
  • FIG3 is a bottom view of the ground end module
  • FIG4 is a top view of the ground module
  • FIG5 is a control flow chart of a preferred embodiment of the present invention.
  • the present invention discloses a wireless charging and positioning system for electric vehicles.
  • the system includes a ground terminal module installed on the ground and a vehicle terminal module installed under the electric vehicle.
  • FIG3 and FIG4 respectively show the top view and top view of the ground terminal module.
  • the ground terminal module includes a ground terminal controller, a power transmitting coil 12, a ground terminal detection coil W1 and a detection circuit, wherein the power transmitting coil transmits an electromagnetic field, and the ground terminal detection coil is used to couple the magnetic induction signal emitted by the vehicle terminal transmitting coil in the magnetic induction vehicle terminal module, and is converted into a detection signal after identification, amplification and filtering.
  • the controller calculates the position information of the electric vehicle based on the detection signal and sends the position information to the vehicle terminal module;
  • the vehicle terminal module includes a vehicle terminal controller, a power receiving coil 22, and a vehicle terminal transmitting coil W2, wherein the power receiving coil is used to receive the electromagnetic field emitted by the power transmitting coil, and the vehicle terminal controller controls the vehicle terminal transmitting coil to transmit the magnetic induction signal and communicate with the ground terminal controller.
  • the ground-end module includes a ground-end chassis 11, a power transmitting coil 12, a ground-end magnetic core 13, a ground-end detection coil W1, and a ground-end panel 14 stacked from bottom to top;
  • the vehicle-end module includes a vehicle-end chassis 21, a power receiving coil 22, a vehicle-end magnetic core 23, and a vehicle-end detection coil W2 stacked from top to bottom.
  • the ground detection coil W1 includes multiple position detection coils (W1-1, W1-2...W1-n), which are distributed on the upper surface of the ground module and are respectively connected to the ground controller; when the vehicle-end transmitting coil W2 of the vehicle-end module falls into the range of the ground detection coil in the plumb direction and emits a magnetic induction signal, the ground controller determines the position of the electric vehicle by comparing the strength of the magnetic induction signals sensed on each position detection coil.
  • the ground-end controller transmits complex signals of different frequencies to the detection coil through data update trigger control, so as to achieve the purpose of timely receiving complex signals of different frequencies, thereby expanding the area of the ground-end positioning area; due to the use of coil frequency switching, the size of the vehicle-end positioning area is expanded; the position information of multiple coils can also be used to calculate angle information, prompt the offset direction of the car, and correct the car's travel direction; the above characteristics do not require an increase in hardware costs, reduce the number of detection coils, reduce the hardware requirements of the ground-end controller, and reduce the chip port resources that the software relies on.
  • the vehicle end module is installed at the bottom of the electric vehicle, and the vehicle end transmitting coil W2 includes a front left transmitting coil W2a, a front right transmitting coil W2b, a rear left transmitting coil W2c, and a rear right transmitting coil W2d, which are respectively installed at the front left, front right, rear left, and rear right corners of the vehicle end module.
  • the front left transmitting coil Wa, the front right transmitting coil Wb, the rear left transmitting coil Wc, and the rear right transmitting coil Wd are arranged in a square on a horizontal plane, and the center of the square overlaps with the center of the power receiving coil.
  • the present invention also discloses a positioning method for an electric vehicle wireless charging positioning system.
  • the system adopts the above-mentioned electric vehicle wireless charging positioning system.
  • the positioning method includes: the front left transmitting coil W2a, the front right transmitting coil W2b, the rear left transmitting coil W2c, and the rear right transmitting coil W2d respectively transmit magnetic induction signals with frequencies of frequency f4, frequency f3, frequency f2, and frequency f1; the ground detection coil W1 confirms the position of the corresponding transmitting coil according to the magnetic induction signals of different frequencies sensed, and then calculates the position information of the electric vehicle.
  • the position information includes coordinate information and offset angle information.
  • the ground detection coil W1 has a rear coil oscillation frequency group and a front coil oscillation frequency group, the rear coil oscillation frequency group includes frequency f2 and frequency f1, and the front coil oscillation frequency group includes frequency f4 and frequency f3; when the rear coil oscillation frequency group is used, the ground detection coil W1 will use frequency f2 and frequency f1 alternately; when the front coil oscillation frequency group is used, the ground detection coil W1 will use frequency f4 and frequency f3 alternately.
  • the position detection coils are coupled to sense the change in the strength of the magnetic induction signal, and then the magnetic induction signal is converted into a detection signal through the detection circuit.
  • the detection signal is a numerical signal, and the strength of the induction signal is converted into a numerical value.
  • the ground controller converts the size of the detection signal into a corresponding vector value, establishes a complex coordinate, and obtains the coordinate information of the electric vehicle through calculation. It should be pointed out that the ground detection coil uses two groups of oscillation frequency groups, each of which includes two frequencies. The two frequencies work in time-sharing mode, which can save the port resources of the processor responsible for frequency driving at the ground end and reduce the cost of the processor.
  • the default and common situation in the positioning detection process is that the rear end of the electric vehicle reverses into the top of the ground end module, and the rear left transmitting coil W2c and the rear right transmitting coil W2d of the vehicle end module enter the top of the ground end module, and the ground end detection coil W1 will use the frequency f2 and the frequency f1 alternately; the position detection coils are coupled to sense the changes in the strength of the magnetic induction signal, and then the magnetic induction signal is converted into a detection signal through the detection circuit.
  • the ground end controller calculates the coordinates of the rear left and rear right transmitting coils according to the strength of the detection signal through the orthogonal principle, and then combines the positional relationship between the rear left and rear right transmitting coils and the center point of the vehicle end module to calculate the coordinate information of the center point of the vehicle end module, and then calculates the offset angle information of the electric vehicle according to the coordinates of the rear left and rear right transmitting coils.
  • the ground end detection coil W1 will use the frequency f4 and the frequency f3 alternately to couple the position detection coils to sense the changes in the strength of the magnetic induction signal, and then convert the magnetic induction signal into a detection signal through the detection circuit.
  • the ground end controller calculates the coordinates of the front left and front right transmitting coils according to the strength of the detection signal through the orthogonal principle, and then calculates the coordinate information of the center point of the vehicle end module in combination with the positional relationship of the front left and front right transmitting coils. Then, the offset angle information of the electric vehicle is calculated based on the coordinates of the front left and front right transmitting coils.
  • the positioning method includes the following specific steps:
  • Step 1 start the vehicle-end module (the vehicle-end module works, but the vehicle-end transmitting coil W2 does not emit a magnetic induction signal. Except for positioning detection, the vehicle-end transmitting coil is in a shutdown state to save energy and extend the service life of the equipment);
  • Step 2 start the ground module, the ground detection coil W1 of the ground module adopts the rear coil oscillation frequency group (entering the ready detection state, the rear end of the electric vehicle reverses into the top of the ground module is the most default way, so the detection is the default oscillation frequency of frequency f2 and frequency f1.);
  • Step 3 the ground module detects whether the vehicle module issues a positioning command (the vehicle and ground controllers communicate the positioning command through communication). If yes, go to step 4 (perform positioning detection), otherwise go to step 42 (do not perform positioning detection);
  • Step 4 turn on the vehicle-end transmitting coil W2, the front left transmitting coil W2a, the front right transmitting coil W2b, the rear left transmitting coil W2c, and the rear right transmitting coil W2d transmit magnetic induction signals with frequencies of frequency f4, frequency f3, frequency f2, and frequency f1 respectively (i.e., four frequency signals, representing four transmitting coils respectively);
  • Step 5 The ground module detects whether the electric vehicle has entered the positioning area. If yes, go to step 6, otherwise wait (when the electric vehicle enters the positioning area, the ground detection coil W1 can detect the magnetic induction signal to determine whether the electric vehicle has entered the positioning area);
  • Step 6 The ground end module detects the rear left transmitting coil W2c and the rear right transmitting coil W2d, and then goes to step 10 (in this case, the rear end of the electric vehicle reverses and enters above the ground end module);
  • the ground end module detects the front left transmitting coil W2a and the front right transmitting coil W2b, but does not detect the rear left transmitting coil W2c and the rear right transmitting coil W2d, and then goes to step 20 (in this case, the vehicle reverses too far, and the two coils W2c and W2d at the rear of the electric vehicle leave the top of the ground end module);
  • Step 10 the two rear transmitting coils are located above the ground detection coil W1), the ground detection coil W1 adopts the rear coil oscillation frequency group, and the coordinates of the rear left and rear right transmitting coils are calculated by the orthogonal principle according to the strength of the magnetic induction signals received by the coupling of the position detection coils, and then the coordinate information of the center point of the vehicle-end module is calculated in combination with the position relationship between the rear left and rear right transmitting coils and the center point of the vehicle-end module, and then the offset angle information of the electric vehicle is calculated according to the coordinates of the rear left and rear right transmitting coils, and then go to step 40; it should be pointed out that in a preferred embodiment, the rear left transmitting coil W2c and the rear right transmitting coil W2d form an inverted right triangle with the center point of the vehicle-end module, and the coordinates of the center point of the vehicle-end module can be calculated according to the geometric formula of trigonometric functions.
  • Step 20 (the two front transmitting coils are located above the ground detection coil W1), the ground detection coil W1 adopts the front coil oscillation frequency group, and the coordinates of the front left and front right transmitting coils are calculated by the orthogonal principle according to the strength of the magnetic induction signals received by the coupling of the position detection coils, and then the coordinate information of the center point of the vehicle-end module is calculated in combination with the position relationship between the front left and front right transmitting coils and the center point of the vehicle-end module, and then the offset angle information of the electric vehicle is calculated according to the coordinates of the front left and front right transmitting coils, and then go to step 40; it should be pointed out that in a preferred embodiment, the front left transmitting coil W2a and the front right transmitting coil W2b form an inverted right triangle with the center point of the vehicle-end module, and the coordinates of the center point of the vehicle-end module can be calculated according to the geometric formula of trigonometric functions.
  • Step 40 The ground-end module transmits the coordinate information and the offset angle information to the vehicle-end module;
  • Step 41 detecting whether the electric vehicle has left the positioning area, if yes, go to step 42, otherwise go to step 5;
  • Step 42 the vehicle-end module turns off the positioning instruction, turns off the vehicle-end transmitting coil W2, and turns off the ground-end module.
  • This positioning method can adapt to cars of different heights without the need to change any additional circuits.
  • the ground controller will automatically switch the detection value and filter out irrelevant signals according to different signal strengths.
  • This positioning method has high real-time performance, does not require wireless communication signal transmission, and switches coils through magnetic induction, so there is no "hysteresis" in the positioning coordinates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车无线充电定位***及其定位方法,包括地端模块和车端模块,地端模块包括地端控制器和地端检测线圈(W1),地端检测线圈(W1)感应车端模块中的车端发射线圈(W2)的位置,地端控制器计算出电动汽车的位置信息,并将位置信息发送给车端模块;实现快速定位,提供坐标信息和偏移角信息,车辆可以根据上述信息修正车辆坐标和偏移角,使地端模块和车端模块最大限度的对齐,使无线充电效率达到最佳;同时采用多个位置检测线圈和多个频率磁感应信号的切换,既检测了电动汽车的角度信息又扩大了检测范围,地端检测线圈(W1)在任一时段中,只用两个频率分时工作,可以节省地端负责频率驱动的端口资源,降低了处理器的成本。

Description

一种电动汽车无线充电定位***及其定位方法 技术领域
本发明涉及电动汽车无线充电技术领域,具体涉及一种电动汽车无线充电定位***及其定位方法。
背景技术
近年来随着全球电动汽车领域的高速发展,如何实现电动汽车的安全、便捷、高效的充电意义重大。电动汽车充电的传统方案是通过充电桩从电网直接获取电能,然而电动汽车进行有线充电时,充电插座或者电缆线通常有裸露在外的部分,在大功率充电时,容易产生电火花和电弧,存在重大安全隐患;同时伴随着自动驾驶、自动泊车等新技术的应用,人们期待对电动汽车的使用过程中全程无人工干预,电动汽车的充电自动化呼声越来越高。
为解决以上问题,通常采用近距离无线输电技术来实现电动汽车无线充电。电动汽车无线充电技术,通常是在地面或地下安装发射端,在电动汽车底盘安装接收端,发射端产生磁场,接收端接收产生感应电流,经整流后变成直流电后向电动汽车电池充电。由于是磁感应的无接触式的充电,因此电动汽车停留的位置与发射端的相对位置会直接影响磁感应强度,而磁感应强度会直接影响充电的效率高低,甚至导致充电失败。
因此,如何设计一种能够快速定位,向电动车辆提供车辆坐标信息和偏移角信息的电动汽车无线充电定位***及其定位方法,是业界亟待解决的技术问题。
发明内容
为了解决现有技术中存在的上述缺陷,本发明提出一种电动汽车无线充电定位***及其定位方法。
本发明采用的技术方案是设计一种电动汽车无线充电定位***,包括安装在地上的地端模块、安装在车底的车端模块,所述地端模块包括地端控制器、功率发射线圈12、地端检测线圈W1和检测电路,其中所述功率发射线圈发射电磁场,所述地端检测线圈用于磁感车端模块中车端发射线圈发射的磁感应信号,所述检测电路用于把磁感应信号转化为检测信号,控制器根据检测信号计算出电动汽车的位置信息,并将位置信息发送给车端模块;所述车端模块包括车端控制器、功率接收线圈22、车端发射线圈W2,其中所述功率接收线圈用于接收功率发射线圈发射的电磁场,所述车端控制器控制车端发射线圈发射所述磁感应信号、并与地端控制器通讯。
所述地端模块包括由下而上叠置的地端底盘11,功率发射线圈12,地端磁芯13,地端检测线圈W1,地端面板14;所述车端模块包括由上而下叠置的车端底盘21,功率接收线圈22,车端磁芯23,车端检测线圈W2。
所述地端检测线圈W1包括多个位置检测线圈(W1-1、W1-2……W1-n),这些位置检测线圈分布在地端模块的上表层、并且分别与地端控制器连接;所述车端模块的车端发射线圈W2在铅锤方向落入地端检测线圈范围内、并且发射磁感应信号时,地端控制器通过对比各位置检测线圈上感应到的磁感应信号的强弱判断电动汽车位置。
所述车端发射线圈W2包括前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d,分别安装在车端模块前左、前右、后左、后右四个角上。
本发明还设计了一种电动汽车无线充电定位***的定位方法,所述***采用上述的电动汽车无线充电定位***,所述定位方法包括:所述前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号;地端检测线圈W1根据感应到不同频率的磁感应信号确认对应发射线圈的位置,进而计算出电动汽车的位置信息。
所述位置信息包括坐标信息和偏移角信息。
地端检测线圈具有后线圈振荡频率组和前线圈振荡频率组,后线圈振荡频率组包括频率f2和频率f1,前线圈振荡频率组包括频率f4和频率f3;采用后线圈振荡频率组时,地端检测线圈会用交替采用频率f2和频率f1;采用前线圈振荡频率组时,地端检测线圈会用交替采用频率f4和频率f3;诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱换算成对应的矢量数值,建立复坐标,并通过计算,获得电动汽车的坐标信息。
定位检测过程中所述车端模块的后左发射线圈W2c和后右发射线圈W2d进入地端模块的上方,诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息。
定位检测过程中所述车端模块的前左发射线圈W2a和前右发射线圈W2b进入地端模块的上方,诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息。
所述定位方法包括以下具体步骤:
步骤1、启动车端模块;
步骤2、启动地端模块,地端模块的地端检测线圈W1采用后线圈振荡频率组;
步骤3、地端模块检测车端模块是否发出定位指令,是则转步骤4,否则转步骤42;
步骤4、开启车端发射线圈W2,所述前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号;
步骤5、地端模块检测电动汽车是否已经驶入定位区域,是则转到步骤6,否则等待;
步骤6、地端模块检测到所述后左发射线圈W2c和后右发射线圈W2d,转步骤10;
地端模块检测到所述前左发射线圈W2a和前右发射线圈W2b,未检测到后左发射线圈W2c和后右发射线圈W2d转步骤20;
步骤10、地端检测线圈W1采用后线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;
步骤20、地端检测线圈W1采用前线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;
步骤40、地端模块将坐标信息和偏移角信息传输给车端模块;
步骤41、检测电动汽车是否已经驶离定位区域,是则转步骤42,否则转步骤5;
步骤42、车端模块关闭定位指令,关闭车端发射线圈W2,关闭地端模块。
本发明提供的技术方案的有益效果是:
本发明能够快速定位,向电动车辆提供车辆坐标信息和偏移角信息,人工驾驶车辆或自动泊车车辆可以根据上述信息修正车辆坐标和偏移角,使地端模块和车端模块最大限度的对齐,使无线充电效率达到最佳;同时本发明采用多个位置检测线圈和多个频率磁感应信号的切换,既检测了电动汽车的角度信息又扩大了检测范围,地端检测线圈选用两组振荡频率组,每组频率中又包括两个频率,这两个频率分时工作,可以节省地端负责频率驱动的处理器的端口资源,降低了处理器的成本。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图1是本发明较佳实施例整体侧剖示意图;
图2是本发明较佳实施例车端仰视示意图;
图3是地端模块仰视图;
图4是地端模块俯视图;
图5是本发明较佳实施例控制流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
本发明公开了一种电动汽车无线充电定位***,参看图1示出的整体侧剖示意图,其包括安装在地上的地端模块、安装在电动汽车车底的车端模块。图3和图4分别示出了地端模块的仰视图和俯视图。所述地端模块包括地端控制器、功率发射线圈12、地端检测线圈W1和检测电路,其中所述功率发射线圈发射电磁场,所述地端检测线圈用于磁感车端模块中车端发射线圈发射的磁感应信号耦合过来,经过识别、放大、滤波处理转化为检测信号,控制器根据检测信号计算出电动汽车的位置信息,并将位置信息发送给车端模块;所述车端模块包括车端控制器、功率接收线圈22、车端发射线圈W2,其中所述功率接收线圈用于接收功率发射线圈发射的电磁场,所述车端控制器控制车端发射线圈发射所述磁感应信号、并与地端控制器通讯。
结合图1、3、4示出的较佳实施例,所述地端模块包括由下而上叠置的地端底盘11,功率发射线圈12,地端磁芯13,地端检测线圈W1,地端面板14;所述车端模块包括由上而下叠置的车端底盘21,功率接收线圈22,车端磁芯23,车端检测线圈W2。
参看图4,所述地端检测线圈W1包括多个位置检测线圈(W1-1、W1-2……W1-n),这些位置检测线圈分布在地端模块的上表层、并且分别与地端控制器连接;所述车端模块的车端发射线圈W2在铅锤方向落入地端检测线圈范围内、并且发射磁感应信号时,地端控制器通过对比各位置检测线圈上感应到的磁感应信号的强弱判断电动汽车位置。
所述地端控制器通过数据更新触发控制方式,发射不同频率的复信号到检测线圈,以此达到及时接收不同频率复信号的目的,扩展了地端定位区域面积;由于采用线圈频率切换的方式,扩展了车端定位区域大小;通过多个线圈的位置信息还能计算出角度信息,提示汽车的偏移方向,矫正汽车行进方位;以上特性都无需增加硬件成本,减少了检测线圈数量,降低了地端控制器的硬件要求,以及软件依赖的芯片端口资源等。
参看图2示出的较佳实施例车端仰视示意图,所述车端模块安装在电动汽车底部,所述车端发射线圈W2包括前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d,分别安装在车端模块前左、前右、后左、后右四个角上。在较佳实施例中,所述前左发射线圈Wa、前右发射线圈Wb、后左发射线圈Wc、后右发射线圈Wd在水平面上排列成一个正方形,并且该正方形的中心与所述功率接收线圈的中心相重叠。
本发明还公开了一种电动汽车无线充电定位***的定位方法,所述***采用上述的电动汽车无线充电定位***,所述定位方法包括:所述前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号;地端检测线圈W1根据感应到不同频率的磁感应信号确认对应发射线圈的位置,进而计算出电动汽车的位置信息。
在较佳实施例中,所述位置信息包括坐标信息和偏移角信息。
在较佳实施例中,地端检测线圈W1具有后线圈振荡频率组和前线圈振荡频率组,后线圈振荡频率组包括频率f2和频率f1,前线圈振荡频率组包括频率f4和频率f3;采用后线圈振荡频率组时,地端检测线圈W1会用交替采用频率f2和频率f1;采用前线圈振荡频率组时,地端检测线圈W1会用交替采用频率f4和频率f3。诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,检测信号为数值信号,感应信号强弱转化为数值大小,地端控制器根据检测信号的大小换算成对应的矢量数值,建立复坐标,并通过计算,获得电动汽车的坐标信息。需要指出,地端检测线圈选用两组振荡频率组,每组频率中又包括两个频率,这两个频率分时工作,可以节省地端负责频率驱动的处理器的端口资源,降低了处理器的成本。
定位检测过程中默认的也是常见的情况是,电动汽车的尾部倒车进入地端模块上方,所述车端模块的后左发射线圈W2c和后右发射线圈W2d进入地端模块的上方,地端检测线圈W1会用交替采用频率f2和频率f1;诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息。
如果倒车倒过了头,电动汽车的尾部的两个线圈W2c和W2d驶离地端模块上方,所述车端模块的前左发射线圈W2a和前右发射线圈W2b进入地端模块的上方,地端检测线圈W1会用交替采用频率f4和频率f3诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息。
参看图5,所述定位方法包括以下具体步骤:
步骤1、启动车端模块(车端模块工作,但车端发射线圈W2未发射磁感应信号,除定位检测时,车端发射线圈是停工状态,以此节能和延长设备使用寿命);
步骤2、启动地端模块,地端模块的地端检测线圈W1采用后线圈振荡频率组(进入准备检测状态,电动汽车的尾部倒车进入地端模块上方是最默认的方式,所以检测是默认的振荡频率为频率f2、频率f1。);
步骤3、地端模块检测车端模块是否发出定位指令(车、地端控制器通过通讯传达定位指令),是则转步骤4(进行定位检测),否则转步骤42(不进行定位检测);
步骤4、开启车端发射线圈W2,所述前左发射线圈W2a、前右发射线圈W2b、后左发射线圈W2c、后右发射线圈W2d分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号(即四个频率信号,分别代表4个发射线圈);
步骤5、地端模块检测电动汽车是否已经驶入定位区域,是则转到步骤6,否则等待(电动汽车驶入定位区域时,地端检测线圈W1可以检测到磁感应信号,以此判断电动汽车是否已经驶入定位区域);
步骤6、地端模块检测到所述后左发射线圈W2c和后右发射线圈W2d,转步骤10(这种情况是,电动汽车的尾部倒车进入地端模块上方);
地端模块检测到所述前左发射线圈W2a和前右发射线圈W2b,未检测到后左发射线圈W2c和后右发射线圈W2d转步骤20(这种情况是,倒车倒过了头,电动汽车的尾部的两个线圈W2c和W2d驶离地端模块上方);
步骤10(后方两个发射线圈位于地端检测线圈W1上方)、地端检测线圈W1采用后线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;需要指出,在较佳实施例中,后左发射线圈W2c和后右发射线圈W2d与车端模块的中心点形成倒直角三角形,根据三角函数的几何公式可计算得到车端模块的中心点坐标。
步骤20(前方两个发射线圈位于地端检测线圈W1上方)、地端检测线圈W1采用前线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;需要指出,在较佳实施例中,前左发射线圈W2a和前右发射线圈W2b与车端模块的中心点形成倒直角三角形,根据三角函数的几何公式可计算得到车端模块的中心点坐标。
步骤40、地端模块将坐标信息和偏移角信息传输给车端模块;
步骤41、检测电动汽车是否已经驶离定位区域,是则转步骤42,否则转步骤5;
步骤42、车端模块关闭定位指令,关闭车端发射线圈W2,关闭地端模块。
本定位方法可以适应不同高度的汽车,不需要额外更改任何电路,地端控制器会根据不同的信号强度,自动切换检测值,过滤无关的信号。
本定位方法的实时性较高,无需无线通信的信号传输,通过磁感应方式进行线圈切换,定位坐标不存在“迟滞”等现象。
以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。

Claims (10)

  1. 一种电动汽车无线充电定位***,包括安装在地上的地端模块、安装在车底的车端模块,其特征在于,
    所述地端模块包括地端控制器、功率发射线圈(12)、地端检测线圈(W1)和检测电路,其中所述功率发射线圈发射电磁场,所述地端检测线圈用于磁感车端模块中车端发射线圈发射的磁感应信号,所述检测电路用于把磁感应信号转化为检测信号,控制器根据检测信号计算出电动汽车的位置信息,并将位置信息发送给车端模块;
    所述车端模块包括车端控制器、功率接收线圈(22)、车端发射线圈(W2),其中所述功率接收线圈用于接收功率发射线圈发射的电磁场,所述车端控制器控制车端发射线圈发射所述磁感应信号、并与地端控制器通讯。
  2. 如权利要求1所述的电动汽车无线充电定位***,其特征在于,所述地端模块包括由下而上叠置的地端底盘(11),功率发射线圈(12),地端磁芯(13),地端检测线圈(W1),地端面板(14);所述车端模块包括由上而下叠置的车端底盘(21),功率接收线圈(22),车端磁芯(23),车端检测线圈(W2)。
  3. 如权利要求1所述的电动汽车无线充电定位***,其特征在于,所述地端检测线圈(W1)包括多个位置检测线圈(W1-1、W1-2……W1-n),这些位置检测线圈分布在地端模块的上表层、并且分别与地端控制器连接;所述车端模块的车端发射线圈(W2)在铅锤方向落入地端检测线圈范围内、并且发射磁感应信号时,地端控制器通过对比各位置检测线圈上感应到的磁感应信号的强弱判断电动汽车位置。
  4. 如权利要求3所述的电动汽车无线充电定位***,其特征在于,所述车端发射线圈(W2)包括前左发射线圈(W2a)、前右发射线圈(W2b)、后左发射线圈(W2c)、后右发射线圈(W2d),分别安装在车端模块前左、前右、后左、后右四个角上。
  5. 一种电动汽车无线充电定位***的定位方法,其特征在于,所述***采用权利要求4所述的电动汽车无线充电定位***,所述定位方法包括:所述前左发射线圈(W2a)、前右发射线圈(W2b)、后左发射线圈(W2c)、后右发射线圈(W2d)分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号;地端检测线圈(W1)根据感应到不同频率的磁感应信号确认对应发射线圈的位置,进而计算出电动汽车的位置信息。
  6. 如权利要求5所述的电动汽车无线充电定位***的定位方法,其特征在于,所述位置信息包括坐标信息和偏移角信息。
  7. 如权利要求6所述的电动汽车无线充电定位***的定位方法,其特征在于,地端检测线圈(W1)具有后线圈振荡频率组和前线圈振荡频率组,后线圈振荡频率组包括频率f2和频率f1,前线圈振荡频率组包括频率f4和频率f3;采用后线圈振荡频率组时,地端检测线圈(W1)会用交替采用频率f2和频率f1;采用前线圈振荡频率组时,地端检测线圈(W1)会用交替采用频率f4和频率f3;诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱换算成对应的矢量数值,建立复坐标,并通过计算,获得电动汽车的坐标信息。
  8. 如权利要求7所述的电动汽车无线充电定位***的定位方法,其特征在于,定位检测过程中所述车端模块的后左发射线圈(W2c)和后右发射线圈(W2d)进入地端模块的上方,诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息。
  9. 如权利要求7所述的电动汽车无线充电定位***的定位方法,其特征在于,定位检测过程中所述车端模块的前左发射线圈(W2a)和前右发射线圈(W2b)进入地端模块的上方,诸位置检测线圈耦合感应到磁感应信号强弱的变化,再经过检测电路将磁感应信号转化为检测信号,地端控制器根据检测信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息。
  10. 一种电动汽车无线充电定位***的定位方法,其特征在于,所述定位方法包括以下具体步骤:
    步骤1、启动车端模块;
    步骤2、启动地端模块,地端模块的地端检测线圈(W1)采用后线圈振荡频率组;
    步骤3、地端模块检测车端模块是否发出定位指令,是则转步骤4,否则转步骤42;
    步骤4、开启车端发射线圈(W2),所述前左发射线圈(W2a)、前右发射线圈(W2b)、后左发射线圈(W2c)、后右发射线圈(W2d)分别发射频率为频率f4、频率f3、频率f2、频率f1的磁感应信号;
    步骤5、地端模块检测电动汽车是否已经驶入定位区域,是则转到步骤6,否则等待;
    步骤6、地端模块检测到所述后左发射线圈(W2c)和后右发射线圈(W2d),转步骤10;
    地端模块检测到所述前左发射线圈(W2a)和前右发射线圈(W2b),未检测到后左发射线圈(W2c)和后右发射线圈(W2d)转步骤20;
    步骤10、地端检测线圈(W1)采用后线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到后左、后右发射线圈的坐标,再结合后左、后右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据后左、后右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;
    步骤20、地端检测线圈(W1)采用前线圈振荡频率组,根据诸位置检测线圈耦合接收到的磁感应信号的强弱通过正交原理计算得到前左、前右发射线圈的坐标,再结合前左、前右发射线圈与车端模块中心点的位置关系计算得到车端模块中心点的坐标信息,再根据前左、前右发射线圈的坐标计算出电动汽车的偏移角信息,转步骤40;
    步骤40、地端模块将坐标信息和偏移角信息传输给车端模块;
    步骤41、检测电动汽车是否已经驶离定位区域,是则转步骤42,否则转步骤5;
    步骤42、车端模块关闭定位指令,关闭车端发射线圈(W2),关闭地端模块。
PCT/CN2023/096416 2022-10-08 2023-05-25 一种电动汽车无线充电定位***及其定位方法 WO2024074047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211222305.8 2022-10-08
CN202211222305.8A CN115416511A (zh) 2022-10-08 2022-10-08 一种电动汽车无线充电定位***及其定位方法

Publications (1)

Publication Number Publication Date
WO2024074047A1 true WO2024074047A1 (zh) 2024-04-11

Family

ID=84206255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096416 WO2024074047A1 (zh) 2022-10-08 2023-05-25 一种电动汽车无线充电定位***及其定位方法

Country Status (2)

Country Link
CN (1) CN115416511A (zh)
WO (1) WO2024074047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115416511A (zh) * 2022-10-08 2022-12-02 深圳威迈斯新能源股份有限公司 一种电动汽车无线充电定位***及其定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380487A1 (en) * 2015-06-23 2016-12-29 Qualcomm Incorporated Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US20180323634A1 (en) * 2015-11-06 2018-11-08 Lg Innotek Co., Ltd. Multi-coil wireless charging method and device and system therefor
US20190097471A1 (en) * 2017-09-27 2019-03-28 Utah State University Vehicle misalignment measurement and compensation in dynamic wireless charging applications
CN109733216A (zh) * 2018-11-29 2019-05-10 中海阳能源集团股份有限公司 一种基于自动泊车技术的无线充电线圈对位***
CN110293860A (zh) * 2019-08-06 2019-10-01 北京有感科技有限责任公司 电动汽车无线充电线圈引导对准装置及对准方法
CN115416511A (zh) * 2022-10-08 2022-12-02 深圳威迈斯新能源股份有限公司 一种电动汽车无线充电定位***及其定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380487A1 (en) * 2015-06-23 2016-12-29 Qualcomm Incorporated Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US20180323634A1 (en) * 2015-11-06 2018-11-08 Lg Innotek Co., Ltd. Multi-coil wireless charging method and device and system therefor
US20190097471A1 (en) * 2017-09-27 2019-03-28 Utah State University Vehicle misalignment measurement and compensation in dynamic wireless charging applications
CN109733216A (zh) * 2018-11-29 2019-05-10 中海阳能源集团股份有限公司 一种基于自动泊车技术的无线充电线圈对位***
CN110293860A (zh) * 2019-08-06 2019-10-01 北京有感科技有限责任公司 电动汽车无线充电线圈引导对准装置及对准方法
CN115416511A (zh) * 2022-10-08 2022-12-02 深圳威迈斯新能源股份有限公司 一种电动汽车无线充电定位***及其定位方法

Also Published As

Publication number Publication date
CN115416511A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US10146647B2 (en) Systems, methods, and apparatus related to wireless charging management
WO2024074047A1 (zh) 一种电动汽车无线充电定位***及其定位方法
EP3013630B1 (en) Systems, methods, and apparatus related to detecting and identifying electric vehicle and charging station
EP2717431B1 (en) Contactless electricity supply device
US9859755B2 (en) Device alignment and identification in inductive power transfer systems
US9446675B2 (en) Non-contact power supply apparatus, non-contact power supply system, and non-contact power supply method
US10320245B2 (en) Lateral positioning for wireless electric vehicle charging
US20140103871A1 (en) Contactless electricity supply device
JP2018500864A (ja) 充電コイル構造における統合された同調キャパシタのためのシステム、方法、および装置
WO2018109952A1 (ja) 無線電力伝送システムにおける送電装置の制御方法、異物検知方法、および送電装置
WO2014147819A1 (ja) 車両および非接触給電システム
JP2014054095A (ja) 送電装置、車両および非接触給電システム
CN112352367B (zh) 车辆用非接触供电***
CN108928247B (zh) 非接触电功率传输***
US10224762B2 (en) Living-object protection system antenna structure
CN218616331U (zh) 一种电动汽车无线充电位置检测电路
EP4166375A1 (en) Low frequency magnetic field-based positioning system and method, and devices
JP6428420B2 (ja) 非接触給電システム
CN214138257U (zh) 一种无线充电装置
JP2014121142A (ja) 送電機器及び非接触電力伝送装置
US20230347759A1 (en) Power supply device and power supply system
CN111873821A (zh) 一种无线充电装置以及移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874241

Country of ref document: EP

Kind code of ref document: A1