WO2024071178A1 - アルキルシリルオキシ置換ベンジルアミン化合物の製造方法 - Google Patents

アルキルシリルオキシ置換ベンジルアミン化合物の製造方法 Download PDF

Info

Publication number
WO2024071178A1
WO2024071178A1 PCT/JP2023/035097 JP2023035097W WO2024071178A1 WO 2024071178 A1 WO2024071178 A1 WO 2024071178A1 JP 2023035097 W JP2023035097 W JP 2023035097W WO 2024071178 A1 WO2024071178 A1 WO 2024071178A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
formula
represent
hydrogen atom
Prior art date
Application number
PCT/JP2023/035097
Other languages
English (en)
French (fr)
Inventor
奨 石川
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Publication of WO2024071178A1 publication Critical patent/WO2024071178A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/10Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton
    • C07C251/16Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

Definitions

  • the present invention relates to a method for producing an alkylsilyloxy-substituted benzylamine compound.
  • a carrier for liquid-phase peptide synthesis (Tag) has been reported.
  • the carrier for liquid-phase peptide synthesis (Tag) is a highly hydrophobic compound, so by binding highly hydrophilic amino acids, peptides, or amino acid amides (hereinafter sometimes referred to as amino acids, etc.) to this carrier, the solubility in organic solvents can be greatly improved. Therefore, when a peptide elongation reaction is carried out with amino acids, etc. bound to this carrier, the amino acids, etc.
  • the liquid-phase peptide synthesis supports (Tags) shown in Patent Documents 1 to 7 and Non-Patent Document 1 have a structure in which one or more alkyloxy side chains having 1 to 16 carbon atoms and having an alkylsilyloxy group bonded thereto are bonded to a mother nucleus such as a benzyl skeleton, a diphenylmethane skeleton, or a xanthene skeleton.
  • Patent No. 6116782 Japanese Patent No. 6201076 Patent No. 6283774 Patent No. 6283775 Patent No. 6322350 Patent No. 6393857 Patent No. 6531235
  • an object of the present invention is to provide a method for industrially producing an alkylsilyloxy-substituted benzylamine compound, which can easily remove impurities and does not involve the intermediate alkylsilyloxy-substituted benzyl compound, which is unstable to acid.
  • the present inventors have found an industrial method for producing an alkylsilyloxy-substituted benzylamine compound by introducing a hydroxyalkyloxy group into a compound having a benzoyl skeleton, a diphenyl ketone skeleton (benzophenone skeleton) or a xanthone skeleton, reacting the hydroxyalkyloxy-substituted compound with a disilazane compound, and then reacting the compound with an acid or base to remove the tri-substituted silyl group on the hydroxyl group, thereby obtaining an intermediate compound in which the carbonyl group bonded to each skeleton of the hydroxyalkyloxy-substituted compound is converted into an imino group, and then converting the imino group into a 9-fluorenylmethyloxycarbonyl-protected amino group, and then introducing an alkylsilyl group into the hydroxyl group.
  • the method of the present invention it is not necessary to use Br-(CH 2 ) 11 -O-TIPS, which is a raw material that has been problematic in the conventional method due to its poor stability and difficulty in separating it from the intermediate compound.
  • the intermediate compound is a solid, the raw material or decomposition products of the raw material and other impurities generated or carried over in the system can be easily removed by filtration, crystallization, or the like.
  • the target compound can be obtained in high purity and high yield without passing through an alkylsilyloxy-substituted benzyl compound, which is an intermediate compound unstable to acid.
  • the present inventors have found that an alkylsilyloxy-substituted benzylamine compound can be industrially advantageously obtained, and have completed the present invention.
  • the term "solid" refers to both a substance having a crystalline structure and an amorphous solid.
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (2).
  • * represents the bonding site with R B.
  • the reaction is carried out by reacting a silazane compound with a benzoyl compound represented by the general formula (3), and then reacting the silazane compound with an acid or a base.
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (3). Note that * represents the bonding site with R B.
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (2).
  • * represents the bonding site with R B.
  • a silazane compound is reacted with a benzoyl compound represented by the general formula (3), and then an acid or a base is reacted therewith to obtain a compound represented by the general formula (3)
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (3).
  • * represents the bonding site with R B.
  • reacting the resulting ketimine compound with a reducing agent and an Fmoc reagent
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (4). Note that * represents the bonding site with R B.
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (2).
  • * represents the bonding site with R B.
  • a silazane compound is reacted with a benzoyl compound represented by the general formula (3), and then an acid or a base is reacted therewith to obtain a compound represented by the general formula (3)
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (3). Note that * represents the bonding site with R B.
  • the ketimine compound represented by the general formula (4) is reacted with a reducing agent and an Fmoc reagent to obtain a ketimine compound represented by the general formula (4):
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (4). Note that * represents the bonding site with R B. ) and then reacting the benzylamine compound with an alkylsilylating agent,
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyloxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R C represents the structure of this formula, R 5c may form an ether bond (-O-) together with R 5c in formula (5). Note that * represents the bonding site with R C.
  • R 1 to 5 of R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R A is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms).
  • R 5a may combine with R 5a in formula (1) to form an ether bond (-O-).
  • * indicates the bonding site with R A.
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (6).
  • * represents the bonding site with R B.
  • a compound represented by the formula: [6] General formula (4)
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (4). Note that * represents the bonding site with R B.
  • the benzylamine compound represented by the general formula (5) is reacted with an alkylsilylating agent.
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyloxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R C represents the structure of this formula, R 5c may form an ether bond (-O-) together with R 5c in formula (5).
  • * represents the bonding site with R C.
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (3). Note that * represents the bonding site with R B.
  • a ketimine compound represented by the general formula (4) is reacted to obtain a compound represented by the general formula (4):
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents a structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (4). Note that * represents the bonding site with R B. ) and then reacting the benzylamine compound with an alkylsilylating agent,
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyloxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R C represents the structure of this formula, R 5c may form an ether bond (-O-) together with R 5c in formula (5).
  • * represents the bonding site with R C.
  • the method of the present invention does not require the use of raw materials, which in conventional methods have problems with poor stability and difficulty in separating them from intermediate compounds.
  • the intermediate compounds are solid, it is easy to remove the raw materials or decomposition products of the raw materials, as well as other impurities generated or carried over within the system, by filtration, crystallization, etc.
  • R 1 to 5 of R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R A is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R A represents the structure of this formula, R 5a may form an ether bond (-O-) together with R 5a in formula (1). Note that * indicates the bonding site with R A.
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formulas (2) to (4). Note that * represents the bonding site with R B.
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted by 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R C represents the structure of this formula, R 5c may form an ether bond (-O-) together with R 5c in formula (5).
  • * represents the bonding site with R C.
  • One aspect of the present invention is a method for producing a ketimine compound represented by general formula (3), which comprises reacting a benzoyl compound represented by general formula (2) with a silazane compound and then reacting the benzoyl compound with an acid or a base.
  • Another aspect of the present invention is a method for producing a benzylamine compound represented by general formula (4), which comprises reacting a benzoyl compound represented by general formula (2) with a silazane compound, then reacting the benzoyl compound with an acid or a base to obtain a ketimine compound represented by general formula (3), and reacting the ketimine compound with a reducing agent and an Fmoc reagent.
  • Another aspect of the present invention is a method for producing an alkylsilyloxy-alkyloxybenzylamine compound represented by general formula (5), which comprises reacting a silazane compound with a benzoyl compound represented by general formula (2) and then reacting with an acid or a base to obtain a ketimine compound represented by general formula (3), reacting the ketimine compound with a reducing agent and an Fmoc reagent to obtain a benzylamine compound represented by general formula (4), and reacting the benzylamine compound thus obtained with an alkylsilylating agent.
  • alkylsilyloxy-substituted benzylamine compound is used in the specification, this structure is intended to be indicated.
  • the benzoyl compound represented by the general formula (2) is preferably obtained by reacting the hydroxybenzoyl compound represented by the general formula (1) with a halogenated alcohol.
  • Another aspect of the present invention is a method for producing an alkylsilyloxy-alkyloxybenzylamine compound represented by general formula (5), which comprises reacting a benzylamine compound represented by general formula (4) with an alkylsilylation agent.
  • Another aspect of the present invention is a method for producing an alkylsilyloxy-alkyloxybenzylamine compound represented by general formula (5), comprising reacting a ketimine compound represented by general formula (3) with a reducing agent and an Fmoc agent to obtain a benzylamine compound represented by general formula (4), and reacting the obtained benzylamine compound with an alkylsilylating agent.
  • the ketimine compound represented by the general formula (3) and the benzylamine compound represented by the general formula (4) are novel compounds. Therefore, another aspect of the present invention is a compound represented by the following general formula (6):
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms;
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (6).
  • * represents the bonding site with R B.
  • the present invention provides a compound represented by the formula:
  • R 1a to R 5a 1 to 5 represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the number of the hydroxy groups is preferably 1 to 4, more preferably 2 to 4, even more preferably 2 to 3, and even more preferably 2.
  • the remaining group may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, with a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms being preferred, and a hydrogen atom being more preferred.
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, etc.
  • alkoxy group having 1 to 4 carbon atoms examples include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, etc.
  • halogen atom examples include a chlorine atom, a bromine atom, a fluorine atom, and an iodine atom.
  • R A is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R A represents the structure of this formula, R 5a may form an ether bond (-O-) together with R 5a in formula (1). Note that * indicates the bonding site with R A.
  • the formula (I) represents a group represented by the formula (I).
  • alkoxy group having 1 to 6 carbon atoms examples include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, a tert-butyloxy group, an isobutyloxy group, an n-pentyl group, an n-hexyl group, etc.
  • an alkoxy group having 1 to 5 carbon atoms is preferred, and an alkoxy group having 1 to 4 carbon atoms is more preferred.
  • R 1a to R 5a the same groups as those mentioned above are preferred.
  • R A is preferably a group represented by the following formula:
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • * represents the bonding site with R A.
  • the formula (I) represents a group represented by the formula (I).
  • the compound of formula (1) is reacted with a halogenated alcohol (represented as Hal-alcohol in the formula) to obtain a benzoyl compound of formula (2).
  • the halogenated alcohol may be a halogenated alcohol having 1 to 16 carbon atoms, preferably a halogenated alcohol having 2 to 16 carbon atoms, more preferably a halogenated alcohol having 4 to 16 carbon atoms, even more preferably a halogenated alcohol having 6 to 16 carbon atoms, and even more preferably a halogenated alcohol having 8 to 16 carbon atoms.
  • the halogen atom may be a bromine atom, a chlorine atom, an iodine atom, or a fluorine atom, with a bromine atom, a chlorine atom, or an iodine atom being preferred.
  • the alcohol may be a linear or branched chain alcohol.
  • the reaction of the compound of formula (1) with a halogenated alcohol is preferably carried out in a solvent in the presence of a base.
  • the reaction solvent to be used include amide solvents such as dimethylformamide (hereinafter, DMF), diethylformamide, 1-methyl-2-pyrrolidone (hereinafter, NMP), and dimethylacetamide, urea solvents such as 1,3-dimethyl-2-imidazolidinone (hereinafter, DMI), halogenated solvents such as methylene chloride, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, alcohol solvents such as methanol, ethanol, isopropanol, n-propanol, and n-butanol, polar solvents such as acetonitrile, and various mixed solvents of these.
  • amide solvents such as
  • amide solvents and urea solvents are preferred, and DMF and DMI are more preferred.
  • the base include inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, and potassium hydride, as well as hydrates thereof, metal alkoxides such as lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, and potassium ethoxide, and organic bases such as 1,8-diazabicyclo[5.4.0]-7-undecene, diisopropylethylamine, triethylamine, dimethylaniline, and imidazole.
  • inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, and potassium hydride, as well as hydrates thereof, metal alkoxide
  • Preferred bases include potassium carbonate and lithium hydroxide.
  • the reaction may be carried out at a temperature of 0° C. to 200° C., preferably 50° C. to 150° C., and more preferably 70° C. to 120° C.
  • the reaction is preferably carried out for 15 minutes to 48 hours.
  • the benzoyl compound of general formula (2) obtained by this reaction can be isolated as a solid, making it easy to purify and easy to handle. Isolation and purification can be easily carried out by means commonly employed in industry, such as washing and recrystallization.
  • 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the number of the hydroxyalkyloxy groups is preferably 1 to 4, more preferably 2 to 4, even more preferably 2 to 3, and still more preferably 2.
  • the remaining group may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, with a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms being preferred, and a hydrogen atom being more preferred.
  • R B is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R B represents the structure of this formula, R 5b may form an ether bond (-O-) together with R 5b in formula (2).
  • * represents the bonding site with R B.
  • the formula (I) represents a group represented by the formula (I).
  • the group such as a hydroxyalkyloxy group having 1 to 16 carbon atoms is preferably the same as R 1b to R 5b described above.
  • R B is represented by the following formula:
  • R 1b to R 4b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • * represents the bonding site with R B.
  • the compound is a compound having a group represented by the following formula:
  • the benzoyl compound of the general formula (2) is reacted with a silazane compound, and then with an acid or base to obtain a ketimine compound of the general formula (3).
  • the compound of the general formula (2) is reacted with a silazane compound in the presence of a catalyst to obtain a compound in which a tri-substituted silyl group is bonded to the hydroxyl group of the hydroxyalkyloxy group.
  • the resulting compound is then reacted with an acid or base to eliminate the tri-substituted silyl group, thereby obtaining a ketimine compound of the general formula (3).
  • the silazane compound is a compound having a Si-NH-Si bond.
  • Examples of the chain silazane compound include di-substituted disilazanes (1,3-di-substituted disilazanes), tetra-substituted disilazanes (1,1,3,3-tetra-substituted disilazanes), and hexa-substituted disilazanes (1,1,1,3,3,3-hexa-substituted disilazanes).
  • the substituents in the silazane compound may be linear, branched, or cyclic aliphatic groups, and may be saturated or unsaturated.
  • saturated or unsaturated linear aliphatic groups having 1 to 4 carbon atoms are preferred, with tetramethyldisilazane (1,1,3,3-tetramethyldisilazane), hexamethyldisilazane (1,1,1,3,3,3-hexamethyldisilazane), 1,3-divinyl-1,1,3,3-tetramethyldisilazane and 1,3-diphenyltetramethyldisilazane being preferred, and hexamethyldisilazane (1,1,1,3,3,3-hexamethyldisilazane) being most preferred.
  • cyclic silazane compounds include 2,2,4,4,6,6-hexa-substituted cyclotrisilazane.
  • the substituent may be any of linear, branched, and cyclic aliphatic groups, and may be either saturated or unsaturated. Among these, saturated or unsaturated linear aliphatic groups having 1 to 4 carbon atoms are preferred, and examples thereof include 2,2,4,4,6,6-hexamethylcyclotrisilazane and 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane.
  • the catalyst include catalysts containing metal salts having Lewis acidity.
  • Metal salts include triflate salts, nonaflate salts, and trifluoromethanesulfonylimide salts, and more specifically, Sc(OTf) 3 , Y(OTf) 3 , Sm(OTf) 3 , Eu(OTf) 3 , Gd(OTf) 3 , Er(OTf) 3 , Yb(OTf) 3 , Fe(OTf) 3 , In(OTf) 3 , Sn(OTf) 3 , Bi(OTf) 3 , Sc(ONf) 3 , and Sc(ONf) 3.
  • Sc(NO 3 ) 3 and BiBr 3 are also included, as well as tetrabutylammonium fluoride and tetrabutylammonium dihydrogen fluoride.
  • the metal is preferably at least one selected from the group consisting of Sc, Y, Eu, Er, Yb, Fe, Sn and Bi, and the metal salt is preferably Sc(OTf) 3 .
  • This reaction can be carried out in a solvent or without a solvent at 0 to 150°C for 15 minutes to 48 hours.
  • solvents include aromatic hydrocarbon solvents such as chlorobenzene, toluene, and fluorobenzene, ether solvents such as tetrahydrofuran and 1,4-dioxane, and halogen solvents such as 1,2-dichloroethane. Chlorobenzene and toluene are particularly preferred, and toluene is the most preferred. Water, alcohol, silanol, etc. may also be added as a reaction promoter.
  • the terminal tri-substituted silyl group on the hydroxyalkyloxy group of the side chain is deprotected by reacting with an acid or a base, and converted to a terminal alcohol.
  • the acid include inorganic acids such as hydrochloric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, 10-camphorsulfonic acid, and hydrogen fluoride-pyridine.
  • the base examples include inorganic bases such as tetraalkylammonium fluoride, cesium fluoride, and potassium fluoride in the presence of an alcohol solvent, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, and potassium hydride, as well as hydrates thereof, and metal alkoxides such as lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, and potassium ethoxide.
  • an alcohol solvent such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, and potassium hydride, as well as hydrates thereof, and metal alkoxides such as lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, and potassium ethoxide.
  • a base to perform deprotection, and it is particularly preferable to act on the base with an alkali metal carbonate or an alkali metal hydrogen carbonate in the presence of a C1-4 alcohol such as methanol or ethanol.
  • a deprotection agent for the tri-substituted silyl group is added, and the reaction is carried out at 0 to 100° C. for 15 minutes to 24 hours.
  • the ketimine compound of formula (3) obtained by this reaction can be isolated as a solid, and therefore is easy to purify and has good handleability. The isolation and purification can be easily carried out by a means usually adopted in industry, such as washing and recrystallization.
  • the ketimine compound of the general formula (3) is reacted with a reducing agent and an Fmoc reagent to obtain a benzylamine compound of the general formula (4).
  • reducing agents include metal hydrides such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, lithium borohydride, lithium triethylborohydride, lithium tri(sec-butyl)borohydride, sodium bis(2-ethoxyethoxy)aluminum hydride (hereinafter, SBAH), borane complexes, diisobutylaluminum hydride, and nickel borohydride.
  • metal hydrides such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, lithium borohydride, lithium triethylborohydride, lithium tri(sec-butyl)borohydride, sodium bis(2-ethoxyethoxy)aluminum hydride (hereinafter, SBAH), borane complexes, diisobutylaluminum hydride, and nickel borohydride.
  • SBAH sodium bis(2-ethoxyethoxy
  • the reduction reaction is preferably carried out in an aromatic hydrocarbon solvent such as benzene or toluene, an ether solvent such as tetrahydrofuran, 2-methyltetrahydrofuran, or cyclopentyl methyl ether, or an alcohol solvent such as methanol, ethanol, isopropanol, n-propanol, or n-butanol, or a mixed solvent thereof, at a temperature of 0° C. to 100° C. for 15 minutes to 48 hours.
  • aromatic hydrocarbon solvent such as benzene or toluene
  • an ether solvent such as tetrahydrofuran, 2-methyltetrahydrofuran, or cyclopentyl methyl ether
  • an alcohol solvent such as methanol, ethanol, isopropanol, n-propanol, or n-butanol, or a mixed solvent thereof
  • the Fmoc reagent may be any compound capable of introducing a 9-fluorenylmethyloxycarbonyl (Fmoc) group, and may include fluorenylmethyl halogenoformate, Fmoc-OSu, 9-fluorenylmethyl carbamate, 9-fluorenylmethyl carbazate, 1-(Fmoc-oxy)benzotriazole, 9-fluorenylmethylpentafluorophenyl carbonate, or Fmoc-Amox described in Org. Process Res. Dev. 2017, 21(10), 1533-41.
  • the Fmoc reaction can be carried out immediately after the reduction reaction, and there is no need to change the reaction solvent, etc.
  • An Fmoc reagent is added and the reaction is carried out at 0 to 100° C. for 10 minutes to 3 hours.
  • the benzylamine compound of formula (4) obtained by this reaction can be isolated as a solid, and therefore can be easily purified and handled. The isolation and purification can be easily carried out by a means usually adopted in industry, such as washing and recrystallization.
  • An alkylsilyloxy-alkyloxybenzylamine compound of general formula (5) can be obtained by reacting the benzylamine compound of general formula (4) with an alkylsilylating agent.
  • the alkylsilylating agent used in this reaction is a silylating agent having 1 to 3 alkylsilyl groups, and is preferably a silylating agent having an alkylsilyl group represented by the following formulas (7) to (17), in which * indicates the bond point with the oxygen atom of the hydroxyl group.
  • R 7 , R 8 and R 9 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group which may have a substituent;
  • R 10 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and R 11 , R 12 and R 13 each represent a linear or branched alkylene group having 1 to 3 carbon atoms).
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, etc.
  • an alkyl group having 1 to 4 carbon atoms is more preferred, and a methyl group, a tert-butyl group, and an isopropyl group are even more preferred.
  • aryl group which may have a substituent examples include an aryl group having 6 to 10 carbon atoms, and specific examples thereof include a phenyl group and a naphthyl group which may be substituted with an alkyl group having 1 to 3 carbon atoms. Of these, a phenyl group is more preferred.
  • alkylsilylating agents include alkylsilyl halides, alkylsilylimidazoles, alkylsilylbenztriazoles, and alkylsilyltrifluoromethanesulfonyl.
  • halogen atoms include bromine atoms, chlorine atoms, and iodine atoms.
  • the reaction of the benzylamine compound of the general formula (4) with an alkylsilylating agent is preferably carried out in a solvent in the presence of a base.
  • the reaction solvent to be used include amide solvents such as DMF, diethylformamide, NMP, and dimethylacetamide, urea solvents such as DMI, halogenated solvents such as methylene chloride, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, polar solvents such as acetonitrile, and various mixed solvents of these.
  • amide solvents and urea solvents are preferred, and DMF, NMP, and DMI are more preferred.
  • the base include inorganic salts such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium hydride, and hydrates thereof, metal alkoxides such as lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, and potassium ethoxide, and organic bases such as 1,8-diazabicyclo[5.4.0]-7-undecene, diisopropylethylamine, triethylamine, dimethylaniline, and imidazole.
  • inorganic salts such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium hydride, and hydrates thereof
  • a preferred base is imidazole.
  • the reaction may be carried out at a temperature of 0° C. to 150° C., preferably 20° C. to 100° C., and more preferably 30° C. to 50° C. The reaction is preferably carried out for 15 minutes to 48 hours.
  • a small amount of a silyl-based compound derived from the alkylsilylation agent may be by-produced in the reaction mixture. In that case, it is preferable to remove the silyl-based compound by liquid-liquid separation.
  • the target alkylsilyloxy-substituted benzylamine compound (5) dissolves in an alkane solvent such as heptane.
  • liquid-liquid separation it is preferable to carry out liquid-liquid separation using a polar solvent such as acetonitrile, methanol, DMF, or dimethyl sulfoxide. It is preferable to use a mixed solvent of the polar solvent with water, and a combination of acetonitrile and water is particularly preferable.
  • a polar solvent such as acetonitrile, methanol, DMF, or dimethyl sulfoxide
  • 1 to 5 of R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the structure of this alkyloxy group having 1 to 29 carbon atoms substituted with an alkylsilyloxy group is represented by the following formula.
  • R E represents a straight or branched alkyl group having 1 to 16 carbon atoms
  • A represents one of the formulas (7) to (17).
  • * represents the bonding site with a carbon atom on the parent nucleus of the benzoyl skeleton, diphenyl ketone skeleton, or xanthone skeleton.
  • the number of carbon atoms of the alkyloxy group is 1 to 29, which is the total value of the number of carbon atoms in the hydroxyalkyloxy chain having 1 to 16 carbon atoms derived from the halogenated alcohol and the number of carbon atoms contained in R 10 , R 11 , R 12 and R 13 in the silylating agents represented by formulas (7) to (17).
  • the alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups preferably has 1 to 4 carbon atoms, more preferably 2 to 4 carbon atoms, even more preferably 2 to 3 carbon atoms, and even more preferably 2 carbon atoms.
  • the remaining group may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, with a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms being preferred, and a hydrogen atom being more preferred.
  • R C is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the following formula:
  • R 1b to R 5b represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or when R C represents the structure of this formula, R 5c may form an ether bond (—O—) together with R 5c in formula (5). Note that * represents the bonding site with R C.
  • the formula (I) represents a group represented by the formula (I).
  • alkyloxy group having 1 to 29 carbon atoms and substituted with 1 to 3 alkylsilyloxy groups includes the same as the alkylsilyl group described above.
  • other substituents of R 1c to R 5c are preferably the same as those of R 1b to R 5b .
  • the alkylsilyloxylation reaction gives an alkylsilyloxy-alkyloxybenzylamine compound of the general formula (5).
  • the alkylsilyloxy-alkyloxybenzylamine compound of the general formula (5) obtained by this reaction can be isolated as a solid, and therefore is easy to purify and has good handleability. The isolation and purification can be easily carried out by a means usually adopted in industry, such as washing and recrystallization.
  • the alkylsilyloxy-alkyloxybenzylamine compound of the general formula (5) is useful as a support for liquid phase peptide synthesis, as described in Patent Documents 1 to 3.
  • the benzoyl compound represented by general formula (2), the ketimine compound represented by general formula (3), the benzylamine compound represented by general formula (4), and the alkylsilyloxy-alkyloxybenzylamine compound represented by general formula (5) can all be obtained in solid form.
  • solid refers to both a substance having a crystalline structure and an amorphous-like solid, but when each compound has the following structure, it is more likely to be obtained as a solid with a structure closer to a crystalline structure, and it is more likely to function usefully as a support (Tag) for liquid-phase peptide synthesis.
  • R 1a to R 5a are hydroxyl groups and the remainder are hydrogen atoms. It is particularly preferred that R 3a is a hydroxyl group and the remainder are hydrogen atoms.
  • R A is a group represented by the following formula:
  • R 1a to R 5a are hydroxy groups and the remainder are hydrogen atoms. It is particularly preferred that R 3a is a hydroxy group and the remainder are hydrogen atoms (note that * indicates the bonding site with R A ).) It is preferable that the group is represented by the following formula:
  • R 1b to R 5b are hydroxyalkyloxy groups having 1 to 16 carbon atoms, with the remainder being hydrogen atoms.
  • R 3a is a hydroxyalkyloxy group having 1 to 16 carbon atoms, with the remainder being hydrogen atoms.
  • the number of carbon atoms in the hydroxyalkyloxy group is more preferably 4 to 16, even more preferably 8 to 16, even more preferably 10 to 16, and most preferably 11 to 16.
  • R B is a group represented by the following formula:
  • R 1b to R 5b are hydroxyalkyloxy groups having 1 to 16 carbon atoms, and the remainder are hydrogen atoms. It is particularly preferable that R 3b is a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms.
  • the number of carbon atoms in the hydroxyalkyloxy group is more preferably 4 to 16, further preferably 8 to 16, further preferably 10 to 16, and most preferably 11 to 16. Note that * indicates the bonding site with R B.
  • the group is represented by the following formula:
  • R 1c to R 5c are alkyloxy groups having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder is a hydrogen atom.
  • R 3b is an alkylsilyloxy group having 1 to 29 carbon atoms substituted with one alkylsilyloxy group, and the remainder is a hydrogen atom.
  • the alkylsilyloxy group is synthesized with an alkylsilylating agent represented by the formula (7).
  • R 7 , R 8 , and R 9 are linear or branched alkyl groups having 1 to 6 carbon atoms, or a phenyl group;
  • R C is expressed by the following formula:
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder is a hydrogen atom.
  • R 3b represents an alkylsilyloxy group having 1 to 29 carbon atoms substituted with one alkylsilyloxy group, and the remainder is a hydrogen atom.
  • the alkylsilyloxy group is synthesized with an alkylsilylating agent represented by formula (7).
  • R 7 , R 8 , and R 9 are preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or a phenyl group. Note that * indicates a bonding site with R C. ) It is preferable that the group is represented by the following formula:
  • the reaction solution was filtered, and the residue was washed with 150 mL of heptane.
  • the filtrate was separated, and 71 mL of heptane was added to the obtained heptane layer, and the mixture was washed with 71 mL of DMF.
  • TIPS2-Dpm-OH was in the form of a viscous oil.
  • Fmoc-D2-STag 1.00g (1.15mmol) of TIPS2-Dpm-OH and 0.29g (1.25mmol) of Fmoc-NH2 were dissolved in 6.5mL of toluene. 0.04g (0.32mmol) of oxalic acid dihydrate was added, and the mixture was heated to 85°C and stirred for 4 hours. 10mL of heptane and 10mL of 90% aqueous methanol were added and washed by separation. 5mL of 5% aqueous sodium bicarbonate was added to the upper layer obtained and washed by separation. 10mL of 90% aqueous methanol was added to the upper layer obtained and washed by separation three times.
  • the upper layer obtained was concentrated under reduced pressure.
  • the residue obtained was dissolved in 2mL of tetrahydrofuran, and the tetrahydrofuran solution was added dropwise to 20mL of methanol under stirring, and the mixture was stirred for 30 minutes after the addition.
  • the process liquid in which the target product had crystallized was filtered, and the residue was washed with methanol. After drying under reduced pressure, 0.94 g (yield 74.9%) of Fmoc-D2-STag was obtained.
  • the obtained Fmoc-D2-STag was a solid.
  • TIPS2-Dpm-OH was a compound that was difficult to store for a long time. Furthermore, in step (1-d), a side reaction in which the TIPS group was eliminated by an acid catalyst also occurred, and in the comparative example, 0.2% of the dealkylsilyl was generated. Both side reactions caused a decrease in the yield of Fmoc-D2-STag.
  • HO-Dpm-C O
  • HO-Dpm-C NH
  • HO-Dpm-C-NHFmoc HO-Dpm-C-NHFmoc
  • Fmoc-D2-STag refer to the structures in the formula.
  • the slurry was filtered, and the filter cake was washed once with 0.56L of water and once again with 0.56L of water. After washing, the filter cake was collected, 1.78L of methanol was added, and stirred at 60°C for 1 hour. After cooling to 30° C., the slurry was filtered, and the residue was washed once with 0.56 L of methanol and once again with 0.56 L of methanol. It was then dried under reduced pressure at 40° C. to obtain 474 g of HO-Dpm-C ⁇ O (yield: 97.6%). The obtained HO-Dpm-C ⁇ O was a solid.
  • the reaction solution was cooled to 30°C, 0.83L of methanol and 345g (2.49mol) of potassium carbonate were added, and the mixture was stirred at 30°C for 3 hours. 1.84L of water was added, and the mixture was stirred at 50°C for 1 hour.
  • the slurry was filtered, and the residue was washed once with 0.92L of water and once again with 0.92L of water. After washing, the residue was collected, and 1.84L of 50% aqueous methanol was added, and the mixture was stirred at 50°C for 1 hour. After cooling to 30°C, the slurry was filtered, and the residue was washed once with 0.92L of 50% aqueous methanol, and once again with 0.92L of 50% aqueous methanol. After washing, the residue was collected, 1.84L of acetonitrile was added, and the mixture was stirred at 50°C for 1 hour.
  • the slurry was filtered and the residue was washed once with 2.9L of 50% aqueous methanol. After washing, the residue was collected, 4.97L of 50% aqueous methanol was added, and the mixture was stirred at 40°C for 1 hour. After cooling to 30°C, the slurry was filtered, and the residue was washed once with 2.90L of 50% aqueous methanol, and once again with 2.90L of 50% aqueous methanol. After washing, the residue was collected, 4.97L of acetonitrile was added, and the mixture was stirred at 40°C for 1 hour.
  • the mixture was dried under reduced pressure at 40° C., and 4.0 L of acetonitrile was added to the resulting residue, and the mixture was stirred at 25° C. for 1 hour.
  • the slurry was filtered, and the residue was washed with 2.0 L of acetonitrile.
  • the mixture was then dried under reduced pressure at 40° C., and 521 g of Fmoc-D2-STag (yield 70.9%) was obtained.
  • the resulting Fmoc-D2-STag was a solid.
  • the content of the compound derived from 11-bromo-1-undecanol contained in Fmoc-D2-STag was 0.03 wt%. Furthermore, unlike the comparative example, all intermediates could be obtained in solid form, which made it possible to roughly purify the intermediates by solid-liquid separation, and the purity of the final target Fmoc-D2-STag could be improved.
  • the production method of the present invention was able to significantly reduce the amount of HO-(CH 2 ) 11 -OTIPS, an impurity that is difficult to separate, compared to the conventional method.
  • crude purification by solid-liquid separation became possible.
  • the production method of the present application was able to significantly reduce the amount of HO-(CH 2 ) 11 -OTIPS, making it possible to obtain alkylsilyloxy-substituted benzylamine compounds in an industrially advantageous manner. Furthermore, the production method of the present application also solved the problem of intermediates being decomposed by an acid catalyst, which was a problem in the conventional method.
  • Br--(CH 2 ) 11 --O-TIPS used in the conventional method is an unstable compound that gradually decomposes at room temperature, and the method of the present invention has the advantage of avoiding the use of an unstable raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

不純物が除去しやすく、かつ酸に対して不安定な中間体化合物であるアルキルシリルオキシ置換ベンジル化合物を経由することがない、工業的に有利なアルキルシリルオキシ置換ベンジルアミン化合物の製造方法を提供する。 本発明は、一般式(2)(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子等を示し;RBは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基等を示す) で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させることを特徴とする一般式(3)(式中、R1b~R5b及びRBは前記と同じ) で表されるケチミン化合物の製造方法に関する。

Description

アルキルシリルオキシ置換ベンジルアミン化合物の製造方法
 本発明は、アルキルシリルオキシ置換ベンジルアミン化合物の製造方法に関する。
 液相ペプチド合成において、液相ペプチド合成用担体(Tag)が報告されている。液相ペプチド合成用担体(Tag)は疎水性が高い化合物であるため、親水性の高いアミノ酸、ペプチド又はアミノ酸アミド(以下、アミノ酸等ということがある)を本担体に結合することで、有機溶媒への溶解性を大きく向上させることができる。従って、本担体にアミノ酸等を結合した状態でペプチド伸長反応を実施した場合、担体に結合したアミノ酸等を有機層に溶解させ、不要成分、たとえばペプチド伸長反応に使用した余剰の原料アミノ酸や、その分解物、原料アミノ酸の保護基を脱保護した際に副生する化合物等を水層に溶解させることで、液液分離により、担体に結合したアミノ酸等を簡便に精製できるという利点がある。
 液相ペプチド合成用担体(Tag)のなかでも、特許文献1~7及び非特許文献1に示す液相ペプチド合成用担体(Tag)は、ベンジル骨格、ジフェニルメタン骨格又はキサンテン骨格等の母核に対して、アルキルシリルオキシ基が結合した炭素数1~16のアルキルオキシ側鎖が1つ以上結合した構造である。これらの液相ペプチド合成用担体(Tag)は、アルキルシリルオキシ基が結合した側鎖構造によって、液相ペプチド合成用担体(Tag)全体の疎水性を絶妙にコントロールしており、液相ペプチド合成用担体(Tag)として特に有用である。
特許第6116782号公報 特許第6201076号公報 特許第6283774号公報 特許第6283775号公報 特許第6322350号公報 特許第6393857号公報 特許第6531235号公報
Molecules 2021, 26, 3497-3505.
 これらの液相ペプチド合成用担体(Tag)の製造方法は特許文献1~7に示されている。しかし、この従来法では、製造過程の原料の1つであるBr-(CH211-O-TIPSがオイル状であり、さらに安定性が不良で取扱いにくかった。またこの原料と中間体化合物の物性がいずれもオイル状で近似しており、液液分離が困難であった。したがって原料又は原料の分解物が目的物に不純物として混入しやすく、通常の工業的な操作のみでは液相ペプチド合成用担体(Tag)そのものの純度を向上させにくいため、カラムクロマトグラフィーによる精密精製等の煩雑な操作が必要になるという課題があった。
 さらに、先行技術文献に記載のように、アルキルシリルオキシ置換ベンジル化合物をアルキルシリルオキシ置換ベンジルアミン化合物へ変換する場合にも課題があった。中間体であるアルキルシリルオキシ置換ベンジル化合物の酸に対する安定性がやや不良であり、アルキルシリルオキシ置換ベンジル化合物の保存中、又はアミンへの変換工程において、主に2種類の副反応が進行することが、本発明者によって明らかにされた。1つ目は、ベンジル化合物の水酸基の部分が分解し、アルキルシリルオキシ置換ベンジル化合物が二量化する副反応である。この二量体は目的物であるアルキルシリルオキシ置換ベンジルアミン化合物と物性が近似しており、分離が困難であった。2つ目は、アルキルシリルオキシ基からアルキルシリル基が脱離する副反応である。脱アルキルシリル体もまた、アルキルシリルオキシ置換ベンジルアミン化合物と分離が困難であった。
 従って、本発明の課題は、不純物が除去しやすく、かつ酸に対して不安定な中間体化合物であるアルキルシリルオキシ置換ベンジル化合物を経由することがない、アルキルシリルオキシ置換ベンジルアミン化合物の工業的な製造方法を提供することにある。
 そこで、本発明者らは、ベンゾイル骨格、ジフェニルケトン骨格(ベンゾフェノン骨格)又はキサントン骨格の化合物にヒドロキシアルキルオキシ基を導入し、次いでそのヒドロキシアルキルオキシ置換体に、ジシラザン化合物を反応させ、次いで酸又は塩基を反応させてヒドロキシル基上のトリ置換シリル基を脱離させることによって、前記ヒドロキシアルキルオキシ置換体の各骨格に結合しているカルボニル基をイミノ基に変換した中間体化合物を得、次いで当該イミノ基を9-フルオレニルメチルオキシカルボニル保護アミノ基に変換した後に、ヒドロキシル基にアルキルシリル基を導入することによる、アルキルシリルオキシ置換ベンジルアミン化合物の工業的な製造方法を見出した。本発明の方法によれば、従来法で安定性不良や中間体化合物との分離難が問題となっていた原料であるBr-(CH211-O-TIPSを使用する必要がない。また、中間体化合物が固体であることから、原料又は原料の分解物、その他系内で発生あるいは持ち越された不純物をろ過や晶析操作などにより除去しやすくなる。さらに、酸に不安定な中間体化合物であるアルキルシリルオキシ置換ベンジル化合物を経由することがなく、目的物を高純度、高収率で得ることができる。以上により、本発明者らはアルキルシリルオキシ置換ベンジルアミン化合物が工業的に有利に得られることを見出し、本発明を完成した。
 なお、本発明で「固体」とは、結晶構造を有するものと、アモルファス様の固形物の双方を示すものとする。
 すなわち、本発明は、次の発明[1]~[7]を提供するものである。
[1]一般式(2)
Figure JPOXMLDOC01-appb-C000033
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
Figure JPOXMLDOC01-appb-C000034
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す)
で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させることを特徴とする一般式(3)
Figure JPOXMLDOC01-appb-C000035
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000036
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるケチミン化合物の製造方法。
[2]一般式(2)
Figure JPOXMLDOC01-appb-C000037
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
Figure JPOXMLDOC01-appb-C000038
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す)
で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)
Figure JPOXMLDOC01-appb-C000039
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000040
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるケチミン化合物を得、得られたケチミン化合物に還元剤及びFmoc化剤を反応させることを特徴とする一般式(4)
Figure JPOXMLDOC01-appb-C000041
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000042
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるベンジルアミン化合物の製造方法。
[3]一般式(2)
Figure JPOXMLDOC01-appb-C000043
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
Figure JPOXMLDOC01-appb-C000044
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す)
で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)
Figure JPOXMLDOC01-appb-C000045
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000046
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるケチミン化合物を得、得られたケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)
Figure JPOXMLDOC01-appb-C000047
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000048
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるベンジルアミン化合物を得、次いで当該ベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
Figure JPOXMLDOC01-appb-C000049
(式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000050
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す)
で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
[4]前記一般式(2)で表されるアルキルシリルオキシ置換ベンゾイル化合物が、一般式(1)
Figure JPOXMLDOC01-appb-C000051
(式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000052
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す)
で表される基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される化合物にハロゲン化アルコールを反応させて得られるものである、[1]~[3]のいずれかに記載の製造方法。
[5]一般式(6)
Figure JPOXMLDOC01-appb-C000053
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000054
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(6)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示し、
NYは、イミノ基(=NH)又はNHFmocを示す)
で表される化合物。
[6]一般式(4)
Figure JPOXMLDOC01-appb-C000055
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000056
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
Figure JPOXMLDOC01-appb-C000057
(式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000058
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す)
で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
[7]一般式(3)
Figure JPOXMLDOC01-appb-C000059
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000060
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)
Figure JPOXMLDOC01-appb-C000061
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000062
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
で表されるベンジルアミン化合物を得、次いで当該ベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
Figure JPOXMLDOC01-appb-C000063
(式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000064
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す)
で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
 本発明方法によれば、従来法で安定性不良や中間体化合物との分離難が問題となっていた原料を使用する必要がない。また、中間体化合物が固体であることから、原料または原料の分解物、その他系内で発生あるいは持ち越された不純物をろ過や晶析操作などにより除去しやすくなる。さらに酸に対して不安定な中間体化合物であるアルキルシリルオキシ置換ベンジル化合物を経由することがなくなり、工業的に有利にアルキルシリルオキシ置換ベンジルアミン化合物が得られる。
 本発明における一般式(1)の化合物から一般式(5)の化合物までの反応を反応式で示せば、以下の通りである。
Figure JPOXMLDOC01-appb-C000065
(式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000066
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される基を示し;
1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000067
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)~(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示し;
1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000068
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す。)
 本発明の一態様は、前記一般式(2)で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させることを特徴とする、一般式(3)で表されるケチミン化合物の製造方法である。
 また、本発明の別の一態様は、前記一般式(2)で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)で表されるケチミン化合物を得、当ケチミン化合物に還元剤及びFmoc化剤を反応させることを特徴とする、一般式(4)で表されるベンジルアミン化合物の製造方法である。
 また、本発明の別の一態様は、前記一般式(2)で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)で表されるケチミン化合物を得、当ケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)で表されるベンジルアミン化合物を得、得られたベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする、一般式(5)で表されるアルキルシリルオキシ―アルキルオキシベンジルアミン化合物の製造方法である。明細書中で「アルキルシリルオキシ置換ベンジルアミン化合物」と記載した場合、この構造を示すものとする。
 ここで、前記一般式(2)で表されるベンゾイル化合物は、一般式(1)で表されるヒドロキシベンゾイル化合物にハロゲン化アルコールを反応させて得るのが好ましい。
 また、本発明の別の一態様は、前記一般式(4)で表されるベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)で表されるアルキルシリルオキシ―アルキルオキシベンジルアミン化合物の製造方法である。
 また本発明の別の一態様は、前記一般式(3)で表されるケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)で表されるベンジルアミン化合物を得、得られたベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする、一般式(5)で表されるアルキルシリルオキシ-アルキルオキシベンジルアミン化合物の製造方法である。
 また、前記一般式(3)で表されるケチミン化合物と一般式(4)で表されるベンジルアミン化合物は新規化合物である。従って、本発明の別の一態様は、次の一般式(6)
Figure JPOXMLDOC01-appb-C000069
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000070
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(6)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示し、
NYは、イミノ基(=NH)又はNHFmocを示す)
で表される化合物を提供するものである。
 まず原料化合物である、一般式(1)の化合物について説明する。
 R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。
 当該ヒドロキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
 ここで、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基などが挙げられる。ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、ヨウ素原子が挙げられる。
Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000071
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される基を示す。
 炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチル基、n-ヘキシル基などが挙げられる。このうち、炭素数1~5のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましい。
 R1a~R5aで示される基としては、前記と同様の基が好ましい。
 RAは、次式で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000072
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。なお、*はRAとの結合部位を示す。)
で表される基を示す。
 一般式(1)の化合物にハロゲン化アルコール(式中ではHal-アルコールと記載)を反応させることにより、一般式(2)のベンゾイル化合物が得られる。
 ハロゲン化アルコールとしては、炭素数1~16のハロゲン化アルコールが挙げられ、好ましくは炭素数2~16のハロゲン化アルコールであり、より好ましくは炭素数4~16のハロゲン化アルコールであり、さらに好ましくは炭素数6~16のハロゲン化アルコールであり、さらに好ましくは炭素数8~16のハロゲン化アルコールである。ハロゲン原子としては、臭素原子、塩素原子、ヨウ素原子、フッ素原子が挙げられ、臭素原子、塩素原子、ヨウ素原子が好ましい。アルコールとしては、直鎖又は分岐鎖のアルコールが挙げられる。
 一般式(1)の化合物とハロゲン化アルコールの反応は、溶媒中塩基の存在下に行うのが好ましい。
 使用される反応溶媒としては、ジメチルホルムアミド(以下、DMF)、ジエチルホルムアミド、1-メチル-2-ピロリドン(以下、NMP)、ジメチルアセトアミドなどのアミド系溶媒、1,3-ジメチル-2-イミダゾリジノン(以下、DMI)などのウレア系溶媒、塩化メチレンなどのハロゲン化溶媒、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノールなどのアルコール系溶媒、アセトニトリルなどの極性溶媒、またこれら各種の混合溶媒が挙げられる。このうち、アミド系溶媒、ウレア系溶媒が好ましく、DMF、DMIがさらに好ましい。
 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、水素化カリウムなどの無機塩基、並びにそれらの水和物、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなど金属アルコキシド、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ジイソプロピルエチルアミン、トリエチルアミン、ジメチルアニリン、イミダゾールなどの有機塩基が挙げられる。好ましい塩基として、炭酸カリウム、水酸化リチウムが挙げられる。
 反応は、0℃~200℃の温度で行えばよく、50~150℃が好ましく、70~120℃がさらに好ましい。反応は、15分~48時間行うのが好ましい。
 この反応で得られる一般式(2)のベンゾイル化合物は、固体として単離することができるため、精製が容易であり、取り扱い性が良好である。なお、単離精製は、洗浄、再結晶などの通常工業的に採用できる手段により、容易に行われる。
 一般式(2)中のR1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。
 当該ヒドロキシアルキルオキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000073
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す。
 ここで、炭素数1~16のヒドロキシアルキルオキシ基などの基は、前記R1b~R5bと同様のものが好ましい。
前記一般式(2)で表される化合物のうち、RBが、次式
Figure JPOXMLDOC01-appb-C000074
(R1b~R4bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。なお、*はRBとの結合部位を示す。)
で表される基を示す化合物であることが好ましい。
 前記一般式(2)のベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させることにより、一般式(3)のケチミン化合物が得られる。具体的には、一般式(2)の化合物に、触媒存在下シラザン化合物を反応させると、前記のヒドロキシアルキルオキシ基のヒドロキシル基にトリ置換シリル基が結合した化合物が得られる。次いで、得られた化合物に酸又は塩基を反応させ、トリ置換シリル基を脱離させることにより、一般式(3)のケチミン化合物が得られる。
 シラザン化合物を用いた反応は、式(2)中のカルボニル基をイミノ基(=NH)に変換する反応であり、同時に側鎖のヒドロキシアルキルオキシ基の末端アルコールがトリ置換シリル基で保護される。
 シラザン化合物は、Si-NH-Si結合を有する化合物である。鎖状のシラザン化合物としては、ジ置換ジシラザン(1,3-ジ置換ジシラザン)、テトラ置換ジシラザン(1,1,3,3-テトラ置換ジシラザン)、ヘキサ置換ジシラザン(1,1,1,3,3,3-ヘキサ置換ジシラザン)が挙げられる。シラザン化合物中の置換基は、直鎖状、分岐状、環状のいずれの脂肪族基でもよく、飽和、不飽和のいずれであってもよい。これらの中でも、飽和又は不飽和の炭素数1~4の直鎖状脂肪族基が好ましく、テトラメチルジシラザン(1,1,3,3-テトラメチルジシラザン)、ヘキサメチルジシラザン(1,1,1,3,3,3-ヘキサメチルジシラザン)、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザンが好ましく、ヘキサメチルジシラザン(1,1,1,3,3,3-ヘキサメチルジシラザン)が最も好ましい。
 環状のシラザン化合物としては、2,2,4,4,6,6-ヘキサ置換シクロトリシラザンが挙げられる。置換基は、直鎖状、分岐状、環状のいずれの脂肪族基でもよく、飽和、不飽和のいずれであってもよい。これらの中でも、飽和又は不飽和の炭素数1~4の直鎖状脂肪族基が好ましく、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられる。
 具体的な触媒としては、ルイス酸性を有する金属塩を含む触媒が挙げられる。金属塩は、トリフラート塩、ノナフラート塩、トリフルオロメタンスルホニルイミド塩が挙げられ、具体的にはSc(OTf)3、Y(OTf)3、Sm(OTf)3、Eu(OTf)3、Gd(OTf)3、Er(OTf)3、Yb(OTf)3、Fe(OTf)3、In(OTf)3、Sn(OTf)3、Bi(OTf)3、Sc(ONf)3、Sc(ONf)3が挙げられる。Sc(NO33、BiBr3も挙げられ、テトラブチルアンモニウムフルオリド、テトラブチルアンモニウムジヒドロゲンフルオリドも挙げられる。金属は、特にSc、Y、Eu、Er、Yb、Fe、Sn及びBiから選ばれる少なくとも1種であることが好ましく、金属塩としては特にSc(OTf)3が好ましい。
 この反応は、溶媒中又は無溶媒下で0~150℃で、15分~48時間行うことができる。溶媒としては、クロロベンゼン、トルエン、フルオロベンゼンなどの芳香族炭化水素系溶媒、テトラヒドロフランや1,4-ジオキサンなどのエーテル系溶媒、1,2-ジクロロエタンなどのハロゲン系溶媒が挙げられ、特にクロロベンゼン、トルエンが好ましく、トルエンが最も好ましい。また、反応促進剤として、水、アルコール、シラノールなどを添加してもよい。
 この反応後は、酸又は塩基を反応させて、側鎖のヒドロキシアルキルオキシ基上の末端トリ置換シリル基を脱保護し、末端アルコールへと変換する。酸としては、塩酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、10-カンファースルホン酸、フッ化水素-ピリジンなどの無機酸が挙げられる。塩基としては、テトラアルキルアンモニウムフルオリド、フッ化セシウム、フッ化カリウム、またはアルコール溶媒存在下、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、水素化カリウムなどの無機塩基、並びにそれらの水和物、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなど金属アルコキシドが挙げられる。これらの中でも、塩基を用いて脱保護することが好ましく、特に、メタノール、エタノール等のC1-4アルコールの存在下、炭酸アルカリ金属又は炭酸水素アルカリ金属を作用させるのが望ましい。
 トリ置換シリル基の脱保護反応は、前記のベンゾイル基をイミノ基(=NH)に変換する反応終了後に、適宜溶媒を追加して連続して行うことができる。トリ置換シリル基の脱保護剤を添加して、0~100℃で15分~24時間反応を行えばよい。
 この反応で得られる一般式(3)のケチミン化合物は、固体として単離することができるため、精製が容易であり、取り扱い性が良好である。なお、単離精製は、洗浄、再結晶などの通常工業的に採用できる手段により、容易に行われる。
 前記一般式(3)のケチミン化合物に還元剤及びFmoc化剤を反応させることにより一般式(4)のベンジルアミン化合物が得られる。
 この反応は、式(3)のイミノ基(=NH)をフルオレニルメチルオキシカルボニルアミノ基(-NHFmoc)に変換する反応である。
 還元剤としては、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化ビス(2-エトキシエトキシ)アルミニウムナトリウム(以下、SBAH)、ボラン錯体、水素化ジイソブチルアルミニウム、水素化ホウ素ニッケルなどの金属水素化物が挙げられる。また、トリアルキルシランなどのケイ素水素化物を用いた還元や、水素ガス存在下触媒としてパラジウムー炭素を作用させる反応も挙げられる。これらのうち、水素化ホウ素リチウムが最も好ましい。
 還元反応は、ベンゼン、トルエンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテルなどのエーテル系溶媒、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノールなどのアルコール系溶媒、またはこれらの混合溶媒中で、0℃~100℃の温度で、15分~48時間行うのが好ましい。
 次にFmoc化剤を反応させる。Fmoc化剤としては、9-フルオレニルメチルオキシカルボニル(Fmoc)基を導入できる化合物であればよく、ハロゲノギ酸フルオレニルメチル、Fmoc-OSu、9-フルオレニルメチルカルバメート、9-フルオレニルメチルカルバザート、1-(Fmoc-オキシ)ベンゾトリアゾール、炭酸9-フルオレニルメチルペンタフルオロフェニルなどを用いることができるほか、Org. Process Res. Dev. 2017,21(10),1533-41記載のFmoc-Amoxを用いることができる。
 Fmoc化反応は、前記の還元反応終了後に連続して行うことができ、反応溶媒などを変更する必要がない。Fmoc化剤を添加して、0~100℃で10分~3時間反応を行えばよい。
 この反応で得られる一般式(4)のベンジルアミン化合物は、固体として単離することができるため、精製が容易であり、取り扱い性が良好である。なお、単離精製は、洗浄、再結晶などの通常工業的に採用できる手段により、容易に行われる。
 前記一般式(4)のベンジルアミン化合物にアルキルシリル化剤を反応させることにより、一般式(5)のアルキルシリルオキシ-アルキルオキシベンジルアミン化合物が得られる。
 この反応に用いられるアルキルシリル化剤としては、1~3個のアルキルシリルを有するシリル化剤であり、次の式(7)~(17)で表されるアルキルシリル基を有するシリル化剤が好ましい。なお、図中*はヒドロキシ基の酸素原子との結合点を示す。
Figure JPOXMLDOC01-appb-C000075
(ここで、R7、R8、R9は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していても良いアリール基を示し;R10は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R11、R12及びR13はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
 ここで炭素数1~6の直鎖又は分岐鎖のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。このうち、炭素数1~4のアルキル基がより好ましく、メチル基、tert-ブチル基、イソプロピル基がさらに好ましい。
 置換基を有していてもよいアリール基としては、炭素数6~10のアリール基が挙げられ、具体的には炭素数1~3のアルキル基が置換していてもよいフェニル基、ナフチル基等が挙げられる。このうち、フェニル基がさらに好ましい。
 アルキルシリル化剤としては、アルキルシリルハライド、アルキルシリルイミダゾール、アルキルシリルベンズトリアゾール、アルキルシリルトリフルオロメタンスルホニルなどが挙げられる。ここで、ハロゲン原子としては、臭素原子、塩素原子、ヨウ素原子が挙げられる。
 一般式(4)のベンジルアミン化合物とアルキルシリル化剤との反応は、溶媒中塩基の存在下に行うのが好ましい。
 使用される反応溶媒としては、DMF、ジエチルホルムアミド、NMP、ジメチルアセトアミドなどのアミド系溶媒、DMIなどのウレア系溶媒、塩化メチレンなどのハロゲン化溶媒、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、アセトニトリルなどの極性溶媒、またこれら各種の混合溶媒が挙げられる。このうち、アミド系溶媒、ウレア系溶媒が好ましく、DMF、NMP、DMIがさらに好ましい。
 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、水素化カリウムなどの無機塩、ならびにそれらの水和物、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなどの金属アルコキシド、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ジイソプロピルエチルアミン、トリエチルアミン、ジメチルアニリン、イミダゾールなどの有機塩基が挙げられる。好ましい塩基としてはイミダゾールが挙げられる。
 反応は、0℃~150℃の温度で行えばよく、20~100℃が好ましく、30~50℃がさらに好ましい。また反応は、15分~48時間行うのが好ましい。
 この反応において、反応混合液中には、アルキルシリル化剤に由来する微量のシリル系化合物が副生していることがある。その場合には、シリル系化合物を液液分離で除去するのが好ましい。目的物であるアルキルシリルオキシ置換ベンジルアミン化合物(5)は、ヘプタンなどのアルカン系溶剤に溶解する。これに対してアセトニトリル、メタノール、DMF、ジメチルスルホキシドなどの極性溶媒を用いて液液分離をするのが好ましい。極性溶媒は水との混合溶媒を用いるのが好ましく、特にアセトニトリルと水の組み合わせが好ましい。
 一般式(5)中のR1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。このアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基の構造は、次式で表される。
Figure JPOXMLDOC01-appb-C000076
(18)
(REは、炭素数1~16の直鎖または分枝鎖のアルキル基を示し、Aは式(7)~(17)を示す。なお、*は母核であるベンゾイル骨格、ジフェニルケトン骨格、キサントン骨格上の炭素原子との結合部位を示す。)
 アルキルオキシ基の炭素数1~29は、ハロゲン化アルコールに由来する炭素数1~16のヒドロキシアルキルオキシ鎖の炭素数と、式(7)~(17)に示されるシリル化剤のうち、R10、R11、R12及びR13に含まれる炭素数の合計値である。
 当該1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000077
(R1b~R5bのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す。
 ここで、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基は、前記アルキルシリル基と同じものが挙げられる。また、R1c~R5cの他の置換基は、前記R1b~R5bと同様のものが好ましい。
 前記アルキルシリルオキシ化反応により、一般式(5)のアルキルシリルオキシ-アルキルオキシベンジルアミン化合物が得られる。
 この反応で得られる一般式(5)のアルキルシリルオキシ-アルキルオキシベンジルアミン化合物は、固体として単離することができるため、精製が容易であり、取り扱い性が良好である。なお、単離精製は、洗浄、再結晶などの通常工業的に採用できる手段により、容易に行われる。
 一般式(5)のアルキルシリルオキシ-アルキルオキシベンジルアミン化合物は、特許文献1~3に記載のように、液相ペプチド合成用担体として有用である。
 本発明の方法によると、一般式(2)で表されるベンゾイル化合物、一般式(3)で表されるケチミン化合物、一般式(4)で表されるベンジルアミン化合物、一般式(5)で表されるアルキルシリルオキシ-アルキルオキシベンジルアミン化合物を、すべて固体で得ることができる。本発明で「固体」とは、結晶構造を有するものと、アモルファス様の固形物の双方を示すが、それぞれの化合物が次の構造である場合、より結晶構造に近い形の固体で得られやすく、かつ液相ペプチド合成用担体(Tag)として有用な機能を発揮しやすい。
 一般式(1)で表される化合物において、R1a~R5aのうち1~5個はヒドロキシ基であり、残余は水素原子であることが好ましい。特にR3aがヒドロキシ基であって、残余は水素原子であることが好ましい。RAは、次式
Figure JPOXMLDOC01-appb-C000078
(R1a~R5aのうち1~5個は、ヒドロキシ基であり、残余は水素原子であることが好ましい。特にR3aがヒドロキシ基であって、残余は水素原子であることが好ましい(なお、*はRAとの結合部位を示す。)
で表される基であることが好ましい。
 一般式(2)、(3)又は(4)で表される化合物において、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基であり、残余は水素原子であることが好ましい。特にR3aが炭素数1~16のヒドロキシアルキルオキシ基であって、残余は水素原子であることが好ましい。ヒドロキシアルキルオキシ基の炭素数は、4~16がより好ましく、8~16がさらに好ましく、10~16がさらに好ましく、11~16が最も好ましい。RBは、次式
Figure JPOXMLDOC01-appb-C000079
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基であり、残余は水素原子であることが好ましい。特にR3bが炭素数1~16のヒドロキシアルキルオキシ基であって、残余は水素原子であることが好ましい。ヒドロキシアルキルオキシ基の炭素数は、4~16がより好ましく、8~16がさらに好ましく、10~16がさらに好ましく、11~16が最も好ましい。なお、*はRBとの結合部位を示す。)
で表される基であることが好ましい。
 一般式(5)で表される化合物において、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基であり、残余は水素原子であることが好ましい。さらに、R3bが1個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルシリルオキシ基であり、残余は水素原子であることが好ましい。特に、アルキルシリルオキシ基は、式(7)で表されるアルキルシリル化剤で合成されたものが好ましい。式(7)のうち、R7、R8、R9は、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はフェニル基が好ましい;
Cは、次式
Figure JPOXMLDOC01-appb-C000080
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子であることが好ましい。さらに、R3bが1個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルシリルオキシ基であり、残余は水素原子であることが好ましい。特に、アルキルシリルオキシ基は、式(7)で表されるアルキルシリル化剤で合成されたものが好ましい。式(7)のうち、R7、R8、R9は、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はフェニル基が好ましい。なお、*はRCとの結合部位を示す。)
で表される基であることが好ましい。
 次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
比較例1 従来法によるFmoc-D2-STagの合成
Figure JPOXMLDOC01-appb-C000081
(以下、Br-(CH211-OTIPS、TIPS2-Dpm-C=O、TIPS2-Dpm-OH、Fmoc-D2-STagは式中の構造を示すこととする。)
(1-a)Br-(CH211-O-TIPS
 11-ブロモ-1-ウンデカノール0.90g(3.58mmol)をジクロロメタン12.8mLに溶解し、イミダゾール0.61g(8.96mmol)を加え、5℃に冷却し、トリイソプロピルシリルクロライド(以下、TIPS-Cl) 0.91mL(4.30mmol)を滴下した。5分後、室温に戻し、2時間撹拌した。反応溶液にシクロペンチルメチルエーテル51.2mLを加え、蒸留水12.8mLで1回、1M塩酸水溶液12.8mLで1回、蒸留水12.8mLで3回洗浄し、有機層を留去した。残渣をヘプタン51.2mLに溶解し、アセトニトリル25.6mLで分液洗浄した。得られたヘプタン層にヘプタン12.8mLを加え、アセトニトリル25.6mLで、分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、溶媒を留去して、Br-(CH 2 11-O-TIPS 1.45g(収率99.3%)を得た。得られたBr-(CH 2 11-O-TIPSはオイル状であった。
1H-NMR(400MHz,CDCl3)δ 1.03-1.20(m,21H),1.24-1.49(m,14H),1.54(quin.,2H),1.85(quin.,2H),3.41(t,2H),3.66(t,2H)
ESIMS MH+407.1
(1-b)TIPS2-Dpm-C=O
 Br-(CH211-OTIPS 9.81g(24.1mmol)、4,4’-ジヒドロキシベンゾフェノン2.29g(10.7mmol)、炭酸カリウム5.33g(38.5mmol)をDMF3.2mLに懸濁し、85℃に加熱し、2時間撹拌した。反応溶液を濾過し、濾物をヘプタン150mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン71mLを加え、DMF71mLで分液洗浄した。前記のへプタンとDMFによる分液洗浄を、さらに1回行った。得られたヘプタン層に、ヘプタン71mLを加え、1M塩酸水溶液71mLで1回、5%炭酸水素ナトリウム水溶液71mLで1回、蒸留水71mLで1回分液洗浄した。得られたヘプタン層にヘプタン71mLを加え、DMF71mLで1回、アセトニトリル71mLで1回分液洗浄した。ヘプタン層を減圧下で濃縮して、TIPS2-Dpm-C=O 10.7gを得た。得られたTIPS2-Dpm-C=Oは粘性のあるオイル状であった。
1H-NMR(400MHz,CDCl3)δ 1.04-1.08(m,42H),1.20-1.39(m,24H),1.41-1.49(m,4H),1.49-1.57(m,4H),1.71-1.85(m,4H),3.67(t,4H),4.03(t,4H),6.94(d,4H),7.77(d,4H)
1 3C-NMR(100MHz,CDCl3)δ 12.2(6C),18.2(12C),26.0(2C),26.2(2C),29.2-29.8(12C),33.2(2C),63.7(2C),68.4(2C),114.0(4C),130.7(2C),132.4(4C),162.6(2C),194.6
ESIMS MNa+889.8
(1-c)TIPS2-Dpm-OH
 TIPS2-Dpm-C=O 0.81g(0.93mmol)をTHF(無水)7.1mL、メタノール 0.36mLの混合溶液に溶解させ、水素化ホウ素ナトリウム 42mg(1.12mmol)を添加し、1.5時間撹拌した。反応溶液に1M塩酸水溶液0.89mLを加え反応を停止し、シクロペンチルメチルエーテルを20.3mL加え、1M塩酸水溶液6.1mLで1回、5%炭酸水素ナトリウム水溶液6.1mLで1回、蒸留水6.1mLで1回洗浄し、有機層を減圧下で濃縮した。得られた残渣をヘプタン20.0mLに溶解し、DMF10.0mLで分液洗浄した。得られたヘプタン層にヘプタン10.0mLを加え、アセトニトリル10.0mLで分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、ヘプタン層を減圧下で濃縮し、TIPS2-Dpm-OH 0.81gを得た。
 得られたTIPS2-Dpm-OHは粘性のあるオイル状であった。
1H-NMR(400MHz,Benzene-d )δ 1.12-1.16(m,42H),1.23-1.54(m,32H),1.57-1.71(m,4H),1.79(s,1H),3.68(t,8H),5.61(s,1H),6.84-6.89(m,4H),7.27-7.33(m,4H)
1 3C-NMR(100MHz,Benzene-d )δ 12.8(6C),18.7(12C),26.7(2C),26.8(2C),30.2-30.5(12C),33.9(2C),64.1(2C),68.3(2C),75.9,114.9(4C),128.6(4C),137.8(2C),159.4(2C)
 TIPS2-Dpm-OHの粗精製物に不純物として含まれるHO-(CH211-OTIPSの割合をHPLCにて分析したところ、5.1重量%含まれていた。
分析条件(HPLC)
カラム:YMC-Triart C18
(内径3.0mm、長さ100mm、粒径1.9μm)
移動相A:0.01Mギ酸アンモニウム含有、アセトニトリル:水=8:2溶液
移動相B:0.01Mギ酸アンモニウム含有、イソプロパノール:水=100:1溶液
流速:0.25mL/分
カラム温度:35℃
検出波長:200nm
グラジエント条件:0%B(0分)→0%B(5分)→100%B(22分)→100%B(27分)→0%B(29分)→0%B(31分)
(1-d)Fmoc-D2-STag
 TIPS2-Dpm-OH 1.00g(1.15mmol)、Fmoc-NH2 0.29g(1.25mmol)をトルエン6.5mLに溶解させた。シュウ酸二水和物0.04g(0.32mmol)を加えたのち、85℃に加熱し、4時間攪拌した。ヘプタン10mL、90%メタノール水 10mLを加え、分液洗浄した。得られた上層に5%重曹水5mLを加え、分液洗浄した。得られた上層に90%メタノール水 10mLを加え、分液洗浄する操作を3回行なった。得られた上層を減圧下で濃縮した。得られた残渣をテトラヒドロフラン2mLで溶解し、攪拌中のメタノール20mLにテトラヒドロフラン溶液を滴下し、滴下後30分攪拌した。目的物が晶析したプロセス液を濾過し、濾物をメタノールで洗浄した。減圧乾燥し、Fmoc-D2-STag 0.94g(収率74.9%)を得た。得られたFmoc-D2-STagは固体であった。
1H-NMR(400MHz,CDCl3)δ 0.99-1.12(m,6H),1.06(s,36H),1.18-1.38(m,24H),1.38-1.48(m,4H),1.48-1.60(m,4H),1.70-1.83(m,4H),3.66(dd,4H),3.93(dd,4H),4.21(br,1H),4.44(d,1H),5.00-5.13(br,0.18H),5.20-5.32(br d,0.82H),5.70-5.80(br,0.18H),5.82-5.92(br d,0.82H),6.84(d,4H),7.11(d,4H),7.28-7.34(m,2H),7.34-7.47(m,2H),7.55-7.65(br d,2H),7.70-7.85(br d,2H)
13C-NMR(100MHz,CDCl3)δ 12.0,18.0,25.8,26.0,29.3,29.40,29.55(4C),29.62,33.0,63.5,68.0,77.2,114.5,119.9,125.0,127.0,127.6,128.3,133.8,141.3,143.9,155.5,158.4
ESIMS MNa+1112.8
 工程(1-c)と同一条件のHPLCでFmoc-D2-STagの粗精製物に不純物として含まれるHO-(CH21 1-OTIPSの割合を分析したところ、TIPS2-Dpm-OHの粗精製物に不純物として含まれるHO-(CH21 1-OTIPSがそのまま持ち越されていた。さらに、工程(1-c)目的物であるTIPS2-Dpm-OHは、微量な酸により分解し、保存中に二量体化するという問題もあった。例えば、TIPS2-Dpm-OHを30℃で保管すると、30日後には二量化体が10.0%生じた。このため、TIPS2-Dpm-OHは長期保存が難しい化合物であった。また、工程(1-d)では、酸触媒によりTIPS基が脱離する副反応も発生し、比較例では脱アルキルシリル体が0.2%生じていた。双方の副反応は、Fmoc-D2-STagの収量低下を引き起こしていた。
 Fmoc-D2-STag、TIPS2-Dpm-OHの二量化体および脱アルキルシリル体の分析条件(HPLC)
カラム:YMC-Triart C18
(内径3.0mm、長さ100mm、粒径1.9μm)
移動相A:イソプロパノール:アセトニトリル:水=5:90:5溶液に対し、0.1% v/v ギ酸添加
移動相B:イソプロパノールに対し0.1% v/v ギ酸添加
流速:0.35mL/分
カラム温度:35℃
検出波長:254nm
グラジエント条件:40%B(0分)→40%B(3分)→100%B(28分)→100%B(40分)→40%B(41分)→40%B(51分)
実施例1 本発明の方法によるFmoc-D2-STagの合成
Figure JPOXMLDOC01-appb-C000082
(以下、HO-Dpm-C=O、HO-Dpm-C=NH、HO-Dpm-C-NHFmoc、Fmoc-D2-STagは式中の構造を示すこととする。)
(2-a)HO-Dpm-C=O
 Br-(CH211-OH 484g(1.93mol),4.4’-ジヒドロキシベンゾフェノン187g(875mmol),炭酸カリウム339g(2.45mol)をDMF1.75Lに懸濁し、90℃に加熱し、4時間攪拌した。反応液を80℃に調整し、水2.25Lを加え、同じ温度で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を0.56Lの水で1回、再度0.56Lの水で1回洗浄した。洗浄後、濾物を回収し、水2.25Lを加え、80℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を0.56Lの水で1回、再度0.56Lの水で1回洗浄した。洗浄後、濾物を回収し、メタノール1.78Lを加え、60℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を0.56Lのメタノールで1回、再度0.56Lのメタノールで1回洗浄した。その後、40℃で減圧乾燥し、HO-Dpm-C=O 474g(収率97.6%)を得た。得られたHO-Dpm-C=Oは固体であった。
1H-NMR(400MHz,Pyridine-D5)δ 1.20-1.39(m,20H),1.39-1.59(m,8H),1.70-1.84(m,8H),3.90(t,J=6.2Hz,4H),4.04(t,J=6.6Hz,4H),5.93(brs,2H),7.17(d,J=8.7Hz,4H),8.04(d,J=8.7Hz,4H)
1 3C-NMR(100MHz,Pyridine-D5)δ 26.3,26.6,29.4,29.6,29.8,29.9,30.0,33.8,62.1,68.5,114.6,131.1,132.6,163.0,194.0
ESIMS MNa+577.4
(2-b)HO-Dpm-C=NH
 HO-Dpm-C=O 461g(831mmol),トリフルオロメタンスルホン酸スカンジウム40.9g(83.1mmol)をトルエン0.83Lに懸濁し、ヘキサメチルジシラザン0.70Lを加えて90℃に加熱し、21時間攪拌した。反応液を30℃に冷却し、メタノール0.83L,炭酸カリウム345g(2.49mol)を加え、30℃で3時間攪拌した。水1.84Lを加え、50℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を0.92Lの水で1回、再度0.92Lの水で1回洗浄した。洗浄後、濾物を回収し、50%メタノール水1.84Lを加え、50℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を0.92Lの50%メタノール水で1回、再度0.92Lの50%メタノール水で1回洗浄した。洗浄後、濾物を回収し、アセトニトリル1.84Lを加え、50℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を1.84Lのアセトニトリルで1回洗浄した。その後、40℃で減圧乾燥し、HO-Dpm-C=NH 437g(収率94.9%)を得た。得られたHO-Dpm-C=NHは固体であった。
1H-NMR(400MHz,Pyridine-D5)δ 1.18-1.37(m,20H),1.37-1.45(m,4H),1.45-1.55(m,4H),1.70-1.82(m,4H),3.88(dd,4H),3.99(dd,4H),5.93(s,4H),7.12(d,4H),7.60-8.20(br,4H),10.33(br s,1H)
1 3C-NMR(100MHz,Pyridine-D5)δ 26.3,26.5,29.5,29.6,29.8(2C),29.9,30.0,33.8,62.1,68.3,114.6,130.7(br, 2C),161.3,176.2
ESIMS MNa+576.4
(2-c)HO-Dpm-C-NHFmoc
 塩化リチウム104.65g(2.47mol),水素化ホウ素ナトリウム93.40g(2.47mmol)をテトラヒドロフラン1.25Lに懸濁し、10℃以下で10分間攪拌した。メタノール3.74L,HO-Dpm-C=NH 414g(748mmol)を加え、40℃に昇温して2時間攪拌した。Fmoc-OSu 328g(973mmol)を加え、40℃で2時間攪拌した。50%メタノール水4.97Lを加え、40℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を2.9Lの50%メタノール水で1回洗浄した。洗浄後、濾物を回収し、50%メタノール水4.97Lを加え、40℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を2.90Lの50%メタノール水で1回、再度2.90Lの50%メタノール水で1回洗浄した。洗浄後、濾物を回収し、アセトニトリル4.97Lを加え、40℃で1時間攪拌した。30℃に冷却後、スラリー液を濾過し、濾物を2.90Lのアセトニトリルで1回洗浄した。その後、40℃で減圧乾燥し、HO-Dpm-C-NHFmoc549g(収率94.3%)を得た。得られたHO-Dpm-C-NHFmocは固体であった。
1H-NMR(400MHz,CDCl3)δ 1.20-1.39(m,24H),1.38-1.50(m,4H),1.50-1.60(m,4H),1.67-1.84(m,4H),3.63(ddd,4H),3.93(dd,4H),4.21(t,1H),4.44(d,1H),5.00-5.20(br,0.18H),5.33(d,0.82H),5.62-5.70(br,0.18H),5.71(d,0.82H),6.84(d,4H),7.11(d,4H),7.27-7.34(m,2H),7.34-7.46(m,2H),7.49-7.65(br d,2H),7.66-7.84(br d,2H)
1 3C-NMR(100MHz,CDCl3)δ 25.7,26.0,29.2,29.3,29.37,29.45(2C),29.49(2C),29.53,32.8,63.1,68.0,77.2,114.5,119.9,125.0,127.0,127.6,128.3,133.8,141.3,143.9,155.5,158.4
ESIMS MK+816.5
(2-d)Fmoc-D2-STag
 HO-Dpm-C=NH 524g(673mmol),イミダゾール206g(3.03mmol)をDMF1.68Lに懸濁し、トリイソプロピルシリルクロリド0.51Lを30℃下で滴下した。3時間攪拌したのち、ヘプタン5.05L,ジイソプロピルエチルアミン0.56L、水5.05Lを加え、10分間攪拌した。ヘプタン0.84Lで洗いこみ、分液洗浄した。得られた上層に50%アセトニトリル水3.37Lを加え、分液洗浄した。得られた上層に再度50%アセトニトリル水3.37Lを加え、分液洗浄した。ヘプタン0.84Lで洗いこみ、得られた上層を減圧下で濃縮した。得られた残渣にテトラヒドロフラン0.84Lを加え、再度減圧下で濃縮した。得られた残渣をテトラヒドロフラン0.42Lで溶解し、攪拌しながらイソプロパノール6.31Lを滴下し、滴下後1時間攪拌した。目的物が晶析したプロセス液を濾過し、濾物をイソプロパノール2.0Lで洗浄した。40℃で減圧乾燥し、得られた残渣にアセトニトリル4.0Lを加え、25℃で1時間攪拌した。スラリー液を濾過し、濾物をアセトニトリル2.0Lで洗浄した。その後、40℃で減圧乾燥し、Fmoc-D2-STag 521g(収率70.9%)を得た。得られたFmoc-D2-STagは固体であった。
1H-NMR(400MHz,CDCl3)δ 0.99-1.12(m,6H),1.06(s,36H),1.18-1.38(m,24H),1.38-1.48(m,4H),1.48-1.60(m,4H),1.70-1.83(m,4H),3.66(dd,4H),3.93(dd,4H),4.21(br,1H),4.44(d,1H),5.00-5.13(br,0.18H),5.20-5.32(br d,0.82H),5.70-5.80(br,0.18H),5.82-5.92(br d,0.82H),6.84(d,4H),7.11(d,4H),7.28-7.34(m,2H),7.34-7.47(m,2H),7.55-7.65(br d,2H),7.70-7.85(br d,2H)
1 3C-NMR(100MHz,CDCl3)δ 12.0,18.0,25.8,26.0,29.3,29.40,29.55(4C),29.62,33.0,63.5,68.0,77.2,114.5,119.9,125.0,127.0,127.6,128.3,133.8,141.3,143.9,155.5,158.4
ESIMS MNa+1112.8
 Fmoc-D2-STag、TIPS2-Dpm-OHの二量化体、および脱アルキルシリル体の分析条件(HPLC)
カラム:YMC-Triart C18
(内径3.0mm、長さ100mm、粒径1.9μm)
移動相A:イソプロパノール:アセトニトリル:水=5:90:5溶液に対し、0.1% v/v ギ酸添加
移動相B:イソプロパノールに対し0.1% v/v ギ酸添加
流速:0.35mL/分
カラム温度:35℃
検出波長:254nm
グラジエント条件:40%B(0分)→40%B(3分)→100%B(28分)→100%B(40分)→40%B(41分)→40%B(51分)
 HO-(CH211-OTIPSの分析条件(HPLC)
カラム:YMC-Triart C18
(内径3.0mm、長さ100mm、粒径1.9μm)
移動相A:0.01Mギ酸アンモニウム含有、アセトニトリル:水=8:2溶液
移動相B:0.01Mギ酸アンモニウム含有、イソプロパノール:水=100:1溶液
流速:0.25mL/分
カラム温度:35℃
検出波長:200nm
グラジエント条件:0%B(0分)→0%B(5分)→100%B(22分)→100%B(27分)→0%B(29分)→0%B(51分)
 比較例では、TIPS2-Dpm-OHの粗精製物に不純物として含まれるHO-(CH21 1-OTIPSがそのまま持ち越された。実施例では本成分は検出されなかった。また、比較例では、中間体であるTIPS2-Dpm-OHは、微量な酸により分解し、保存中に二量体化するという問題もあった。実施例では、TIPS2-Dpm-OHを経由しない製造方法であるため、分離困難なTIPS2-Dpm-OHの二量化体は検出されなかった。
 さらに比較例1では工程(1-d)において、酸触媒によりTIPS基が脱離する副反応も生じていた。実施例1では最終工程でTIPS化を行なっており、酸触媒を使用する条件を回避していることで、脱アルキルシリル体は検出されず、この問題が解消された。
 比較例1では、Br-(CH211-O-TIPSは、4,4’-ジヒドロキシベンゾフェノンに対して2.25当量添加されていた。余剰分である0.25当量分のBr-(CH211-O-TIPS、ならびに本化合物が分解されたHO-(CH211-O-TIPSは脂溶性であり、分液操作上は目的物であるTIPS2-Dpm-C=O、TIPS2-Dpm-OHと類似した物性を有し、分離することが困難であった。側鎖を伸長した中間体であるTIPS2-Dpm-C=O、TIPS2-Dpm-OHは共にオイル状の化合物であったため、TIPS2-Dpm-C=O、またはTIPS2-Dpm-OHを固化させてBr-(CH211-O-TIPSを特定の溶媒を用いて洗浄して除去するという操作ができなかった。このため、これらの側鎖伸長反応の原料由来の化合物は、4,4’-ジヒドロキシベンゾフェノンに対して0.25当量近くという多くの量を維持したまま、TIPS2-Dpm-OHにまで混入していた。TIPS2-Dpm-OHには、HO-(CH211-OTIPSが5.1重量%も含まれていた。さらにTIPS2-Dpm-OHをアミド化してFmoc-D2-STagへ変換した際も、HO-(CH211-O-TIPSは除去されることなく混入していた。
 これに対して実施例1では、11-ブロモ-1-ウンデカノールを用いて側鎖を伸長した中間体HO-Dpm-C=Oは、固体状物であった。このため、11-ブロモ-1-ウンデカノールの溶解力が高いメタノールのような有機溶媒でHO-Dpm-C=Oを洗浄することにより、11-ブロモ-1-ウンデカノールを容易に除去することができた。Fmoc-D2-STagに含まれる11-ブロモ-1-ウンデカノールに由来する化合物の含量は0.03重量%であった。さらに比較例と異なり、全ての中間体を固体で得ることができたことから、固液分離による中間体の粗精製が可能となり、最終目的物であるFmoc-D2-STagの純度を向上させることができた。
 また、比較例1では、中間体であるTIPS2-Dpm-OHは、微量な酸により分解し、保存中に二量体化するという問題もあった。実施例1ではTIPS2-Dpm-OHを経由しないことから、この問題が解消された。
 さらに比較例1では工程(1-d)において、酸触媒によりTIPS基が脱離する副反応も生じていた。実施例1では最終工程でTIPS化を行なっており、酸触媒を使用する条件を回避していることでこの問題が解消された。
 以上より、本発明の製造法では分離が困難である不純物であるHO-(CH211-OTIPSの混入量を、従来法と比較し大幅に低減させることができた。また、工程内の全ての中間体を固体で得ることで、固液分離による粗精製が可能となった。従来法では、HO-(CH211-OTIPSを分離する工程を始め、カラムクロマトグラフィー等で精密精製する必要があった。このため、従来法ではアルキルシリルオキシ-アルキルオキシベンジルアミン化合物を工業スケールで大量に製造することは困難であった。これに対し、本願の製造方法ではHO-(CH211-OTIPSの混入量を大幅に低減させることができ、アルキルシリルオキシ置換ベンジルアミン化合物を工業的に有利に得ることができるようになった。さらに、本願の製造方法では、従来法において問題となっていた、中間体が酸触媒により分解する問題も解消された。
 なお、従来法で使用していたBr-(CH211-O-TIPSは室温で徐々に分解するという不安定な化合物であり、本発明の方法には不安定な原料の使用を回避したという利点もある。

Claims (7)

  1. 一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
    Figure JPOXMLDOC01-appb-C000002
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示す)
    で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させることを特徴とする一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000004
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるケチミン化合物の製造方法。
  2. 一般式(2)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
    Figure JPOXMLDOC01-appb-C000006
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示す)
    で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000008
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるケチミン化合物を得、得られたケチミン化合物に還元剤及びFmoc化剤を反応させることを特徴とする一般式(4)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000010
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるベンジルアミン化合物の製造方法。
  3. 一般式(2)
    Figure JPOXMLDOC01-appb-C000011
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
    Figure JPOXMLDOC01-appb-C000012
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(2)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示す)
    で表されるベンゾイル化合物にシラザン化合物を反応させ、次いで酸又は塩基を反応させて一般式(3)
    Figure JPOXMLDOC01-appb-C000013
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000014
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるケチミン化合物を得、得られたケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)
    Figure JPOXMLDOC01-appb-C000015
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000016
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるベンジルアミン化合物を得、次いで当該ベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
    Figure JPOXMLDOC01-appb-C000017
    (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
    Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000018
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
    で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
  4. 前記一般式(2)で表されるベンゾイル化合物が、一般式(1)
    Figure JPOXMLDOC01-appb-C000019
    (式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000020
    (R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す)
    で表される基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
    で表される化合物にハロゲン化アルコールを反応させて得られるものである、請求項1~3のいずれか1項記載の製造方法。
  5. 一般式(6)
    Figure JPOXMLDOC01-appb-C000021
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000022
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(6)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示し、
    NYは、イミノ基(=NH)又はNHFmocを示す)
    表される化合物。
  6. 一般式(4)
    Figure JPOXMLDOC01-appb-C000023
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000024
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
    Figure JPOXMLDOC01-appb-C000025
    (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
    Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000026
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
    で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
  7. 一般式(3)
    Figure JPOXMLDOC01-appb-C000027
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000028
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるケチミン化合物に還元剤及びFmoc化剤を反応させて一般式(4)
    Figure JPOXMLDOC01-appb-C000029
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000030
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(4)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるベンジルアミン化合物を得、次いで当該ベンジルアミン化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
    Figure JPOXMLDOC01-appb-C000031
    (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
    Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000032
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
    で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンジルアミン化合物の製造方法。
PCT/JP2023/035097 2022-09-28 2023-09-27 アルキルシリルオキシ置換ベンジルアミン化合物の製造方法 WO2024071178A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155408 2022-09-28
JP2022-155408 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071178A1 true WO2024071178A1 (ja) 2024-04-04

Family

ID=90477826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035097 WO2024071178A1 (ja) 2022-09-28 2023-09-27 アルキルシリルオキシ置換ベンジルアミン化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2024071178A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150010469A1 (en) * 2013-07-03 2015-01-08 British Columbia Cancer Agency Branch Bisphenol ether compounds with novel bridging groups and methods for their use
JP2019501188A (ja) * 2015-09-24 2019-01-17 サイクレニウム ファーマ インコーポレーテッド ヘテロアリール含有大環状化合物のライブラリならびにその製造方法および使用方法
WO2019208043A1 (ja) * 2018-04-24 2019-10-31 国立大学法人九州大学 窒素上無保護イミン化合物の製造方法
JP7063408B1 (ja) * 2021-07-02 2022-05-09 ペプチスター株式会社 液相ペプチド製造方法
WO2023033017A1 (ja) * 2021-09-01 2023-03-09 積水メディカル株式会社 ガニレリクス又はその塩の製造法
WO2023033016A1 (ja) * 2021-09-01 2023-03-09 積水メディカル株式会社 アルギニン誘導体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150010469A1 (en) * 2013-07-03 2015-01-08 British Columbia Cancer Agency Branch Bisphenol ether compounds with novel bridging groups and methods for their use
JP2019501188A (ja) * 2015-09-24 2019-01-17 サイクレニウム ファーマ インコーポレーテッド ヘテロアリール含有大環状化合物のライブラリならびにその製造方法および使用方法
WO2019208043A1 (ja) * 2018-04-24 2019-10-31 国立大学法人九州大学 窒素上無保護イミン化合物の製造方法
JP7063408B1 (ja) * 2021-07-02 2022-05-09 ペプチスター株式会社 液相ペプチド製造方法
WO2023033017A1 (ja) * 2021-09-01 2023-03-09 積水メディカル株式会社 ガニレリクス又はその塩の製造法
WO2023033016A1 (ja) * 2021-09-01 2023-03-09 積水メディカル株式会社 アルギニン誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY ANONYMOUS : "-Benzenecarboximidic acid, 4-[(6-hydroxyhexyl)oxy]-, methyl ester (CA INDEX NAME) ", XP093151455, retrieved from STN *
DATABASE REGISTRY ANONYMOUS : "-INDEX NAME NOT YET ASSIGNED ", XP093151460, retrieved from STN *
KONDO YUTA, MORISAKI KAZUHIRO, HIRAZAWA YOSHINOBU, MORIMOTO HIROYUKI, OHSHIMA TAKASHI: "A Convenient Preparation Method for Benzophenone Imine Catalyzed by Tetrabutylammonium Fluoride", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 23, no. 8, 16 August 2019 (2019-08-16), US , pages 1718 - 1724, XP093151453, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.9b00226 *

Similar Documents

Publication Publication Date Title
US10584109B2 (en) Processes for preparing antiviral compounds
EP2594569B1 (en) Entecavir synthesis method and intermediate compound thereof
WO2021175296A1 (zh) 瑞德西韦的中间体及其制备方法
WO1999001420A1 (fr) Procede de preparation de derives d'acide 2-aminomalonique, et intermediaires utilises dans ce procede
US20210269470A1 (en) Segment for use in synthesis of oligonucleotide, method for producing the same, and method for synthesizing oligonucleotide using the same
US20210040032A1 (en) Process for the preparation of a nitric oxide donating prostaglandin analogue
EP3539968A1 (en) Novel trityl protecting agent
WO2024071178A1 (ja) アルキルシリルオキシ置換ベンジルアミン化合物の製造方法
JP6676146B2 (ja) クロマノール誘導体の新規な製造方法
EP3606907B1 (en) Racemic beta-aminosulfone compounds
CN114072386A (zh) 制备用于合成艾曲波帕或其盐的关键中间体的改进方法
TW202419441A (zh) 烷基矽烷氧取代苄胺化合物之製造方法
KR101529963B1 (ko) 에베로리무스의 제조방법 및 이의 중간체
JP7420550B2 (ja) 2-ヒドロキシ-2-(パーフルオロアルキル)マロン酸エステル誘導体の製造方法、並びに2-(トリメチルシリルオキシ)-2-(パーフルオロアルキル)マロン酸エステル誘導体及び5-ヒドロキシ-5-(パーフルオロアルキル)ピリミジン-2,4,6(1h,3h,5h)-トリオンとそれらの製造方法
JP4032861B2 (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
EP1990334B1 (en) Usage of poly-3-hydroxyalkanoates in preparation of beta-lactam compounds
JP2023179354A (ja) H-ホスホネート法を用いたモルフォリノ核酸の製造方法
CN108358780B (zh) 合成高非对映选择性的α-酰氧化环酮类化合物的方法
CN116410218A (zh) 一种单氟烯基硅的合成方法
WO2023013757A1 (ja) アルキルシリルオキシ置換ベンジル化合物の製造方法
KR101003822B1 (ko) 도세탁셀의 제조방법 및 도세탁셀의 제조를 위한 신규한중간체
CN117466796A (zh) 一种((2R,7aS)-2-氟六氢-1H-吡咯嗪-7a-基)甲醇的制备方法
JP5192807B2 (ja) シュードウリジン保護体の安定結晶
US8993788B2 (en) Chiral intermediates useful for the preparation of hydroxyphosphine ligands
JP2024510934A (ja) キラルホスホロチオエートの合成のためのキラルシントン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872400

Country of ref document: EP

Kind code of ref document: A1