WO2024069792A1 - 光ファイバのモードフィールド径を取得する装置及び方法 - Google Patents

光ファイバのモードフィールド径を取得する装置及び方法 Download PDF

Info

Publication number
WO2024069792A1
WO2024069792A1 PCT/JP2022/036132 JP2022036132W WO2024069792A1 WO 2024069792 A1 WO2024069792 A1 WO 2024069792A1 JP 2022036132 W JP2022036132 W JP 2022036132W WO 2024069792 A1 WO2024069792 A1 WO 2024069792A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
field diameter
spatial
mode field
optical fiber
Prior art date
Application number
PCT/JP2022/036132
Other languages
English (en)
French (fr)
Inventor
篤志 中村
優介 古敷谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/036132 priority Critical patent/WO2024069792A1/ja
Publication of WO2024069792A1 publication Critical patent/WO2024069792A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • This disclosure relates to an apparatus and method for obtaining the mode field diameter of an optical fiber.
  • the transmission characteristics of optical fibers are closely related to the electric field distribution of the guided mode.
  • the mode field diameter (MFD) is a parameter that indicates the spread of the electric field of the fundamental mode (LP01 mode), and since it is possible to estimate the connection loss, it is one of the important parameters in understanding the transmission characteristics of conventional single-mode fibers.
  • Non-Patent Documents 1 and 2 disclose that it is possible to estimate the connection loss for each spatial mode by using the spot size at the beam waist when the electric field distribution of a higher-order mode is approximated by a higher-order Gaussian mode (Hermite-Gaussian or Laguerre-Gaussian) as the MFD. Therefore, MFD is an important parameter even in optical fibers having a core in which multiple spatial modes can propagate, such as few-mode fibers and few-mode multicore fibers.
  • Non-Patent Documents 1 and 2 disclose a method of calculating the MFD of a higher mode from the near-field pattern, using the following definition formula, which is the same as that used to calculate the MFD of a conventional single-mode fiber.
  • MFD is the mode field diameter
  • v and ⁇ are the azimuthal and radial mode orders of the spatial mode to be acquired
  • ⁇ v ⁇ is the electric field distribution of the LP v ⁇ mode depending on the radial coordinate
  • r is the radial coordinate.
  • A. Nakamura et al. "Mathematical model for estimating splice loss in few-mode fibers from mode field diameter," in Proceedings of the 6th International Symposium on Extremely Advanced Transmission Technologies, P-02, 2021.
  • A. Nakamura et al. "Effective mode field diameter for LP11 mode and its measurement technique," IEEE Photonics Technology Letters, vol. 28, No. 22, pp. 2553-2556, 2016.
  • A. Nakamura et al. "Mode field diameter definitions for few-mode fibers based on spot size of higher-order Gaussian mode," IEEE Photonics Journal, vol. 12, no. 2. Article number 7200609, 2020. Junichi Sakai, “Numerical analysis of electromagnetic fields in optical waveguides", Morikita Publishing, 2015.
  • the electric field distribution of spatial modes in few-mode fibers and few-mode multicore fibers does not actually match a strict higher-order Gaussian mode, and as the difference between the actual electric field distribution and the strict higher-order Gaussian mode increases, the accuracy of the connection loss estimated using the MFD obtained by formula (1) deteriorates.
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide an apparatus and method capable of obtaining an MFD from a near-field pattern in order to more accurately estimate the connection loss of each spatial mode in an optical fiber having a core through which multiple spatial modes can propagate.
  • the mode field diameter acquisition device and method disclosed herein acquire the MFD from the near-field pattern using a formula based on a variational expression of the propagation constant derived from the wave equation.
  • the mode field diameter acquisition device of the present disclosure includes: An apparatus for obtaining a mode field diameter of each spatial mode of an optical fiber having a core through which a plurality of spatial modes can propagate, from a near-field pattern, comprising: a mode field diameter acquisition unit that acquires a mode field diameter of an arbitrary spatial mode by using a near-field pattern of the spatial mode and a formula based on a variational expression of a propagation constant for the spatial mode;
  • the present invention is characterized by comprising:
  • the method for obtaining the mode field diameter includes the steps of: A method for obtaining a mode field diameter of each spatial mode of an optical fiber having a core through which a plurality of spatial modes can propagate, from a near-field pattern, comprising the steps of: A mode field diameter acquisition step of acquiring a mode field diameter of an arbitrary spatial mode using a near-field pattern of the spatial mode and a formula based on a variational expression of a propagation constant for the spatial mode;
  • the present invention is characterized by carrying out the following steps.
  • the mode field diameter acquisition device of the present disclosure may further include a near-field pattern acquisition unit that acquires the near-field pattern.
  • the mode field diameter acquisition method of the present disclosure may further include a near-field pattern acquisition step that acquires the near-field pattern.
  • the mode field diameter acquisition unit may calculate the mode field diameter using formula (4) or formula (5).
  • the mode field diameter acquisition unit may calculate the connection loss using equation (7) or equation (6).
  • the program of the present disclosure is a program for causing a computer to realize each functional unit of the mode field diameter acquisition device of the present disclosure, and is a program for causing a computer to execute each procedure of the mode field diameter acquisition method executed by the mode field diameter acquisition device of the present disclosure.
  • the present invention provides an apparatus and method that can obtain the mode field diameter of each spatial mode of an optical fiber having a core through which multiple spatial modes can propagate, from the near-field pattern.
  • FIG. 2 is a diagram illustrating an example of the configuration of a mode field diameter acquisition device according to the present embodiment.
  • 4A to 4C are process diagrams illustrating a mode field diameter acquisition method according to the present embodiment.
  • FIG. 11 is a diagram illustrating the relationship between the theoretical value and the estimated value of splice loss.
  • FIG. 1 is a diagram illustrating an example of the configuration of a mode field diameter acquisition device according to this embodiment.
  • the mode field diameter acquisition device 100 of this embodiment has the following features: An apparatus for obtaining a mode field diameter of each spatial mode of an optical fiber having a core through which a plurality of spatial modes can propagate, from a near-field pattern, comprising: a near-field pattern acquisition unit 10 for acquiring a near-field pattern of an arbitrary spatial mode; a mode field diameter acquiring unit 11 that acquires a mode field diameter of the spatial mode by using the near-field pattern acquired by the near-field pattern acquiring unit 10 and a formula based on a variational expression of a propagation constant for the spatial mode;
  • the present invention is characterized by comprising:
  • the near-field pattern acquisition unit 10 is, for example, an electromagnetic field analysis simulator that calculates the electromagnetic field distribution of an arbitrary spatial mode based on a given refractive index distribution, or an electric field distribution measurement device that measures the near-field pattern from the test light output from the optical fiber under test.
  • the mode field diameter acquisition unit 11 acquires the mode field diameter of the spatial mode using the near field pattern acquired by the near field pattern acquisition unit 10 and a formula based on a variational expression of the propagation constant for the spatial mode. Details of acquiring the mode field diameter will be described later.
  • FIG. 2 is a process diagram illustrating the mode field diameter acquisition method of this embodiment.
  • a method for obtaining a mode field diameter of each spatial mode of an optical fiber having a core through which a plurality of spatial modes can propagate, from a near-field pattern comprising the steps of: A near-field pattern acquisition step S1 for acquiring a near-field pattern of an arbitrary spatial mode; a mode field diameter acquisition step S2 of acquiring a mode field diameter of the spatial mode by using the near-field pattern acquired in the near-field pattern acquisition step and a formula based on a variational expression of the propagation constant for the spatial mode;
  • the present invention is characterized by carrying out the following steps.
  • Non-Patent Document 4 which depends on the radial coordinate of a linearly polarized mode (LP ⁇ mode) with orders ⁇ and ⁇ in the azimuthal and radial directions in a core with a cylindrical symmetric structure, satisfies the following wave equation (Non-Patent Document 4):
  • k 0 is the wave number in a vacuum
  • n is the refractive index distribution depending on the radial coordinate
  • ⁇ ⁇ is the propagation constant of the LP ⁇ mode
  • r is the radial coordinate
  • the MFD of the LP ⁇ mode can be obtained as shown in either of the following equations (4) and (5).
  • Equation (4) and equation (5) differ only in the presence or absence of the coefficient ⁇ ( ⁇ +2 ⁇ -1), but this is due to the difference in the definition of MFD in a few-mode fiber, and essentially they represent the same MFD.
  • the MFD in equations (1) and (5) is a value corresponding to the spot size when the electric field distribution of the mode to be acquired is approximated by a Laguerre-Gaussian distribution.
  • the connection loss (dB) can be calculated using the following equation (6).
  • d represents the amount of axial deviation.
  • connection loss (dB) can be calculated by the following formula (7).
  • the connection loss calculated using formulas (4) and (6) is equal to the connection loss calculated using formulas (5) and (6).
  • the mode field diameter acquisition unit 11 can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided via a network.
  • Figure 3 illustrates the relationship between the theoretical and estimated values of splice loss.
  • Figures 3(a) to 3(d) show the results for LP01, LP11, LP21, and LP02 modes, respectively.
  • the horizontal axis shows the axial misalignment ( ⁇ m) between the optical fibers to be spliced.
  • the vertical axis shows the splice loss (dB) expressed on a logarithmic scale.
  • the solid line shows the theoretical value of splice loss.
  • the dashed line shows the splice loss estimated using the MFD calculated using equation (1) and equation (6).
  • the dashed line shows the splice loss estimated using the MFD calculated using equation (5) and equation (6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本開示は、複数の空間モードが伝搬可能なコアを有する光ファイバにおける各空間モードの接続損失をより正しく推定するためのMFDをニアフィールドパターンから取得できる装置および方法を提供することを目的とする。 本開示のモードフィールド径取得装置は、複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する装置であって、任意の空間モードのニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得部と、を備えることを特徴とする。

Description

光ファイバのモードフィールド径を取得する装置及び方法
 本開示は、光ファイバのモードフィールド径を取得する装置及び方法に関する。
 動画やゲームに代表される大容量コンテンツの増加やスマートフォンの普及に伴い、光ファイバネットワークにおけるトラフィック量は年々増加している。一方で、現在伝送媒体として用いられているシングルモードファイバには、伝送容量の限界が近づいている。将来的なトラフィック増大に対応するための一つの技術として、マルチコアファイバやマルチモードファイバを用いた空間多重伝送が注目されている。空間多重伝送システムでは複数のコアや複数の空間モードを伝送チャネルとして用いており、各チャネルの伝送特性を把握することが重要となる。
 光ファイバの伝送特性は導波モードの電界分布に密接に関係している。モードフィールド径(MFD)は、基本モード(LP01モード)の電界の拡がりを表すパラメータであり、これにより接続損失を推定可能であるため、従来の単一モードファイバの伝送特性を把握する上で重要なパラメータの一つとなっている。非特許文献1および非特許文献2では、高次モードの電界分布を高次のガウシアンモード(エルミート・ガウシアンまたはラゲール・ガウシアン)で近似したときのビームウェストにおけるスポットサイズをMFDとして用いることにより、空間モード毎の接続損失を推定可能であることが開示されている。したがって、数モードファイバや数モードマルチコアファイバのような複数の空間モードが伝搬可能なコアを有する光ファイバにおいても、MFDは重要なパラメータである。
 光ファイバの屈折率分布を設計する際は、有限要素法などの電磁界解析手段を用いて所望の空間モードのニアフィールドパターンを計算し、その値からMFDを計算することが一般的に行われる。非特許文献1および非特許文献2では、ニアフィールドパターンから高次モードのMFDを計算する方法として、従来の単一モードファイバのMFDを計算する場合と同様の以下の定義式を用いる方法が開示されている。
Figure JPOXMLDOC01-appb-M000005
ただし、MFDはモードフィールド径、νおよびμは取得対象の空間モードの方位角方向および半径方向のモード次数、ψνμは半径座標に依存するLPνμモードの電界分布、rは半径方向の座標を表す。
A. Nakamura et al., "Mathematical model for estimating splice loss in few-mode fibers from mode field diameter," in Proceedings of the 6th International Symposium on Extremely Advanced Transmission Technologies, P-02, 2021. A. Nakamura et al., "Effective mode field diameter for LP11 mode and its measurement technique," IEEE Photonics Technology Letters, vol. 28, no. 22, pp. 2553-2556, 2016. A. Nakamura et al., "Mode field diameter definitions for few-mode fibers based on spot size of higher-order Gaussian mode," IEEE Photonics Journal, vol. 12, no. 2, article number 7200609, 2020. 左貝潤一,"光導波路の電磁界数値解析法",森北出版,2015.
 しかし、数モードファイバや数モードマルチコアファイバにおける空間モードの電界分布は、実際には厳密な高次のガウシアンモードとは一致しておらず、実際の電界分布と厳密な高次ガウシアンモードとの差が大きくなると、式(1)により得られるMFDを用いて推定する接続損失の精度が悪くなる、という問題があった。
 つまり、実際の数モードファイバや数モードマルチコアファイバにおける接続損失をより正しく推定するためのMFDをどのようにニアフィールドパターンから取得してよいかが不明である、という課題があった。
 本開示は、上記事情を鑑みてなされてものであり、複数の空間モードが伝搬可能なコアを有する光ファイバにおける各空間モードの接続損失をより正しく推定するためのMFDをニアフィールドパターンから取得できる装置および方法を提供することを目的とする。
 上記目的を達成するために、本開示のモードフィールド径取得装置および取得方法は、波動方程式から導かれる伝搬定数の変分表現式に基づく数式を用いてニアフィールドパターンからMFDを取得することとした。
 具体的には、本開示のモードフィールド径取得装置は、
 複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する装置であって、
 任意の空間モードのニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得部、
 を備えることを特徴とする。
 本開示のモードフィールド径取得方法は、
 複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する方法であって、
 任意の空間モードのニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得手順、
 を行うことを特徴とする。
 本開示のモードフィールド径取得装置は、前記ニアフィールドパターンを取得するニアフィールドパターン取得部をさらに備えてもよい。また本開示のモードフィールド径取得方法は、前記ニアフィールドパターンを取得するニアフィールドパターン取得手順をさらに備えてもよい。
 前記モードフィールド径取得手順において、前記モードフィールド径取得部は、式(4)又は式(5)を用いてモードフィールド径を算出してもよい。
 前記モードフィールド径取得手順において、前記モードフィールド径取得部は、式(7)又は式(6)を用いて接続損失を算出してもよい。
 本開示のプログラムは、本開示に係るモードフィールド径取得装置に備わる各機能部としてコンピュータを実現させるためのプログラムであり、本開示に係るモードフィールド径取得装置が実行するモードフィールド径取得方法に備わる各手順をコンピュータに実行させるためのプログラムである。
 なお、上記各開示は、可能な限り組み合わせることができる。
 本発明は、複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得できる装置および方法を提供することができる。
本実施形態に係るモードフィールド径取得装置の構成例を説明する図である。 本実施形態のモードフィールド径取得方法を説明する工程図である。 接続損失の理論値と推定値の関係を説明する図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態)
 図1は、本実施形態に係るモードフィールド径取得装置の構成例を説明する図である。
 本実施形態のモードフィールド径取得装置100は、
 複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する装置であって、
 任意の空間モードのニアフィールドパターンを取得するニアフィールドパターン取得部10と、
 前記ニアフィールドパターン取得部10で取得したニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得部11と、
 を備えることを特徴とする。
 ニアフィールドパターン取得部10は、例えば、与えられた屈折率分布に基づき任意の空間モードの電磁界分布を計算する電磁界解析シミュレータや被試験光ファイバから出力される試験光からニアフィールドパターンを測定する電界分布測定装置である。
 モードフィールド径取得部11は、ニアフィールドパターン取得部10で取得したニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得する。モードフィールド径を取得する詳細は後述する。
 図2は、本実施形態のモードフィールド径取得方法を説明する工程図である。
 複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する方法であって、
 任意の空間モードのニアフィールドパターンを取得するニアフィールドパターン取得手順S1と、
 前記ニアフィールドパターン取得手順で取得したニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得手順S2と、
 を行うことを特徴とする。
 以下、モードフィールド径取得部11が、モードフィールド径算出手順S2において行うモードフィールド径を取得する演算処理について説明する。円筒対称構造のコアにおける方位角方向および半径方向の次数がνおよびμの直線偏光モード(LPνμモード)の半径座標に依存する電界分布ψνμは、以下の波動方程式を満たす(非特許文献4)。
Figure JPOXMLDOC01-appb-M000006
 ただし、kは真空中の波数、nは半径座標に依存する屈折率分布、βνμはLPνμモードの伝搬定数、rは半径方向の座標を表す。この波動方程式から、伝搬定数βνμに関する変分表現を次式で表すことができる(非特許文献4)。
Figure JPOXMLDOC01-appb-M000007
 この式の第二項および第三項から、LPνμモードのMFDは、以下の式(4)及び式(5)のいずれかのように求められる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式(4)と式(5)は、係数√(ν+2μ-1)の有無のみが異なっているが、これは数モードファイバにおけるMFDの定義の違いによるものであって、本質的には同一のMFDを表している。
 なお、式(1)及び式(5)のMFDは、取得対象のモードの電界分布をラゲール・ガウシアン分布で近似した場合のスポットサイズに対応する値であり、この場合、接続損失(dB)は以下の式(6)で算出することができる。
Figure JPOXMLDOC01-appb-M000010
ただし、dは軸ずれ量を表す。
 また、式(4)のMFDを用いる場合は、接続損失(dB)は以下の式(7)で算出することができる。式(4)及び式(6)を用いて算出した接続損失は、式(5)及び式(6)を用いて算出した接続損失と等しくなる。
Figure JPOXMLDOC01-appb-M000011
 なお、モードフィールド径取得部11は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 (実施例)
 式(4)または式(5)が、複数の空間モードが伝搬可能なコアを有する光ファイバの接続損失を推定するという観点で式(1)よりも有効であることを確認するために、数値計算を行った。数値計算に用いた光ファイバ(被試験光ファイバ)は、コア直径が21μm、比屈折率差が0.45%のステップ型光ファイバとした。
 図3は、接続損失の理論値と推定値の関係を説明する図である。図3(a)~図3(d)はそれぞれ、LP01モード、LP11モード、LP21モード、LP02モードに対する結果を表す。横軸は、接続する光ファイバ間の軸ずれ量(μm)を表す。縦軸は、対数スケールで表される接続損失(dB)である。実線は接続損失の理論値を表す。破線線は、式(1)で算出したMFDと式(6)とを用いて推定した接続損失である。一点鎖線は、式(5)で算出したMFDと式(6)とを用いて推定した接続損失である。
 図3より、周方向のモード次数が0であるLP01モードおよびLP02モードに対しては、数1および数5のMFDから推定した接続損失は、ともに理論値と一致していることがわかる。一方、周方向のモード次数が0でないLP11モードおよびLP21モードに対しては、式(1)のMFDから推定した接続損失よりも式(5)のMFDから推定した接続損失の方が理論値と一致していることがわかる。この結果より、本モードフィールド径取得方法によって得られたMFDは、複数の空間モードが伝搬可能なコアを有する光ファイバにおける各空間モードの接続損失の推定に有効であることがわかる。
10:ニアフィールドパターン取得部
11:モードフィールド径取得部
100:モードフィールド径取得装置

Claims (8)

  1.  複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する装置であって、
     任意の空間モードのニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得部、
     を備えることを特徴とするモードフィールド径取得装置。
  2.  前記モードフィールド径取得部は、数C1を用いてモードフィールド径を算出することを特徴とする請求項1に記載のモードフィールド径取得装置。
    Figure JPOXMLDOC01-appb-M000001
    ただし、MFDはモードフィールド径、νおよびμは取得対象の空間モードの方位角方向および半径方向のモード次数、ψνμは半径座標に依存するLPνμモードの電界分布、rは半径方向の座標を表す。
  3.  前記モードフィールド径取得部は、数C2を用いてモードフィールド径を算出することを特徴とする請求項1に記載のモードフィールド径取得装置。
    Figure JPOXMLDOC01-appb-M000002
    ただし、MFDはモードフィールド径、νおよびμは取得対象の空間モードの方位角方向および半径方向のモード次数、ψνμは半径座標に依存するLPνμモードの電界分布、rは半径方向の座標を表す。
  4.  前記モードフィールド径取得部は、数C3を用いて接続損失を算出することを特徴とする請求項2に記載のモードフィールド径取得装置。
    Figure JPOXMLDOC01-appb-M000003
    ただし、dは軸ずれ量を表す。
  5.  前記モードフィールド径取得部は、数C4を用いて接続損失を算出することを特徴とする請求項3に記載のモードフィールド径取得装置。
    Figure JPOXMLDOC01-appb-M000004
    ただし、dは軸ずれ量を表す。
  6.  前記ニアフィールドパターンを取得するニアフィールドパターン取得部をさらに備えることを特徴とする請求項1に記載のモードフィールド径取得装置。
  7.  複数の空間モードが伝搬可能なコアを有する光ファイバの各空間モードのモードフィールド径をニアフィールドパターンから取得する方法であって、
     任意の空間モードのニアフィールドパターンと、当該空間モードに対する伝搬定数の変分表現式に基づく数式と、を用いて当該空間モードのモードフィールド径を取得するモードフィールド径取得手順、
     を行うことを特徴とするモードフィールド径取得方法。
  8.  請求項1から5のいずれかに記載のモードフィールド径取得装置に備わる各機能部としてコンピュータを実現させるためのプログラム。
PCT/JP2022/036132 2022-09-28 2022-09-28 光ファイバのモードフィールド径を取得する装置及び方法 WO2024069792A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036132 WO2024069792A1 (ja) 2022-09-28 2022-09-28 光ファイバのモードフィールド径を取得する装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036132 WO2024069792A1 (ja) 2022-09-28 2022-09-28 光ファイバのモードフィールド径を取得する装置及び方法

Publications (1)

Publication Number Publication Date
WO2024069792A1 true WO2024069792A1 (ja) 2024-04-04

Family

ID=90476684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036132 WO2024069792A1 (ja) 2022-09-28 2022-09-28 光ファイバのモードフィールド径を取得する装置及び方法

Country Status (1)

Country Link
WO (1) WO2024069792A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063149A (ja) * 2016-10-12 2018-04-19 住友電気工業株式会社 光ファイバ特性評価方法および光ファイバ特性評価装置
JP2019015584A (ja) * 2017-07-06 2019-01-31 住友電気工業株式会社 光ファイバ出射ビームプロファイル測定方法および装置
CN110673337A (zh) * 2019-09-27 2020-01-10 南开大学 一种多芯波导传输特性的快速矢量分析方法
CN111404600A (zh) * 2020-03-11 2020-07-10 南开大学 一种基于干涉理论的少模光纤空间模场检测方法
JP2021135179A (ja) * 2020-02-27 2021-09-13 日本電信電話株式会社 光ファイバのモード群遅延特性評価方法および評価装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063149A (ja) * 2016-10-12 2018-04-19 住友電気工業株式会社 光ファイバ特性評価方法および光ファイバ特性評価装置
JP2019015584A (ja) * 2017-07-06 2019-01-31 住友電気工業株式会社 光ファイバ出射ビームプロファイル測定方法および装置
CN110673337A (zh) * 2019-09-27 2020-01-10 南开大学 一种多芯波导传输特性的快速矢量分析方法
JP2021135179A (ja) * 2020-02-27 2021-09-13 日本電信電話株式会社 光ファイバのモード群遅延特性評価方法および評価装置
CN111404600A (zh) * 2020-03-11 2020-07-10 南开大学 一种基于干涉理论的少模光纤空间模场检测方法

Similar Documents

Publication Publication Date Title
Kagami et al. Encircled angular flux representation of the modal power distribution and its behavior in a step index multimode fiber
JP6897373B2 (ja) 光ファイバ出射ビームプロファイル測定方法および装置
Rademacher et al. Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber
Lian et al. Discrete self-imaging in small-core optical fiber interferometers
Tu et al. An efficient core selection method for heterogeneous trench-assisted multi-core fiber
JP6673812B2 (ja) モードフィールド径測定方法
Ambran et al. Fabrication of a multimode interference device in a low-loss flat-fiber platform using physical micromachining technique
KR20140068851A (ko) 광전송로
WO2024069792A1 (ja) 光ファイバのモードフィールド径を取得する装置及び方法
Bourdine et al. Method for estimation of reflection on fiber optic connection based on ferrule end-face photo-image analysis
JP2012150002A (ja) 遮断波長測定方法および動作モード判定方法、並びにその装置
Bourdine et al. Fast and simple method for estimation of the insertion loss at the connection of singlemode optical fibers with contaminated ferrule end faces
Divari et al. Modal and coupling characteristics of low-order modes in thermally diffused expanded core fibers
Bourdine et al. Fast and simple method for calculation of the mode field diameter of arbitrary order guided mode in weakly guiding optical fibers
Fokoua et al. Analysis and comparison of intermodal coupling coefficient of standard and hollow core few moded fibres
WO2020036218A1 (ja) ラマン利得効率分布試験方法およびラマン利得効率分布試験装置
JP7435981B2 (ja) モードフィールド径測定装置および測定方法
Shao et al. Design and Fabrication of 6-Mode 7-Core Fiber Fan-in/Fan-out Device Using Multimode Fiber
Li et al. Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model
WO2023012875A1 (ja) コア間の電力結合係数を算出する装置、方法及びシステム
Kumar et al. Analysis of Crosstalk Performance and its Reduction Amount in Single-mode Homogeneous Trench-assisted Multicore Fiber
Bairagi et al. Design of a concentric triple-core based dispersion compensating fiber
Bourdine et al. Simulation and research of few-mode optical fiber DMD degradation due to geometry deviation from optimized form
Bourdine et al. Design of MDM-multiplexer channel precision spatial positioning scheme at the core end of a few-mode optical fiber with asymmetrically distorted core geometry
WO2021048919A1 (ja) モードフィールド径試験方法および試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960855

Country of ref document: EP

Kind code of ref document: A1