WO2024069675A1 - Safety system - Google Patents

Safety system Download PDF

Info

Publication number
WO2024069675A1
WO2024069675A1 PCT/JP2022/035614 JP2022035614W WO2024069675A1 WO 2024069675 A1 WO2024069675 A1 WO 2024069675A1 JP 2022035614 W JP2022035614 W JP 2022035614W WO 2024069675 A1 WO2024069675 A1 WO 2024069675A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
side device
person
distance
hall
Prior art date
Application number
PCT/JP2022/035614
Other languages
French (fr)
Japanese (ja)
Inventor
英揮 森田
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to PCT/JP2022/035614 priority Critical patent/WO2024069675A1/en
Publication of WO2024069675A1 publication Critical patent/WO2024069675A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • This disclosure relates to elevator safety systems.
  • Patent Document 1 discloses an elevator safety system.
  • a camera is installed inside the elevator shaft.
  • the camera captures images of workers inside the pit.
  • a monitor in a remote location monitors the safety of the worker by checking the camera's footage. For example, if the monitor determines that the worker's safety is in danger, he or she can stop the operation of the elevator.
  • Patent Document 1 requires a supervisor to monitor the inside of the pit in addition to the workers. This means that worker safety management is costly.
  • This disclosure has been made to solve the above-mentioned problems.
  • the purpose of this disclosure is to provide a safety system that can easily manage the safety of people inside a hoistway.
  • the safety system comprises a car-side device attached to an elevator car, which transmits car-side radio waves and detects the reception strength and reception angle of the received radio waves, a hall-side device attached inside the elevator shaft at the height of the lowest floor landing, which transmits hall-side radio waves and detects the reception strength and reception angle of the received radio waves, and a person-side device attached to a person inside the shaft and transmits person-side radio waves, and the car-side device or hall-side device determines whether the distance between the car and the person is shorter than a threshold distance based on the reception strength and reception angle of the person-side radio waves received by the car-side device, and the hall-side device causes the elevator control panel to stop the car if it is determined that the distance between the car and the person is shorter than the threshold distance, and does not stop the car if it is determined that the distance between the car and the person is the same as or longer than the threshold distance.
  • the car is stopped when it is determined that the distance between the car and the person is shorter than the threshold distance. This makes it easy to manage the safety of people inside the elevator shaft.
  • FIG. 1 is a diagram showing an overview of a safety system in a first embodiment.
  • FIG. 1 is a block diagram of a safety system according to a first embodiment.
  • 1 is a diagram showing an overview of a safety system in a first embodiment.
  • 1 is a diagram showing an overview of a safety system in a first embodiment.
  • 10 is a flowchart for explaining an overview of a second operation of the safety system in the first embodiment.
  • 1 is a diagram showing an overview of a safety system in a first embodiment.
  • FIG. 11 is a diagram showing an overview of a safety system in a second embodiment.
  • FIG. 11 is a flowchart showing the operation of the safety system in the second embodiment.
  • FIG. 11 is a diagram showing an overview of a safety system in a third embodiment.
  • FIG. 1 is a diagram showing an overview of a safety system according to a first embodiment.
  • the elevator shaft 2 passes through each floor of the building 3.
  • the pit 2a is the bottom of the elevator shaft 2.
  • pit equipment such as a shock absorber and a pit switch is provided in the pit 2a.
  • the multiple landings 4 are provided on each floor of the building 3. Each of the multiple landings 4 faces the elevator shaft 2.
  • Figure 1 shows a lowest floor landing 4a, which is the lowest of the multiple landings 4 on the first floor, and an upper floor landing 4b, which is the second floor landing 4.
  • the multiple landing floors 5 correspond to the multiple landings 4, respectively.
  • the landing floor 5 is the floor of the corresponding landing 4.
  • Figure 1 shows the lowest floor landing floor 5a and the upper floor landing floor 5b on the second floor.
  • the car 6 is provided inside the elevator shaft 2.
  • the car 6 can move up and down inside the elevator shaft 2.
  • the car 6 has a car bottom surface 6a.
  • the car bottom surface 6a is the surface of the outer surface of the car 6 that faces the pit 2a.
  • the car bottom surface 6a is the part of the car 6 that is located at the lowest position.
  • the control panel 7 is provided in a machine room (not shown).
  • the control panel 7 can control the entire elevator system 1. Specifically, the control panel 7 can control the entire raising and lowering operation of the car 6.
  • the safety system 10 is applied to the elevator system 1.
  • the safety system 10 is a system that ensures the safety of a person H who performs maintenance work in the pit 2a.
  • the person H performs maintenance work such as inspecting the equipment below the car 6 and investigating abnormal noises.
  • the car 6 may be moved by the person H using a lifting and lowering operation for inspection.
  • the car 6 may be manually operated by a worker other than the person H.
  • the safety system 10 includes a car-side device 20, a hall-side device 30, and a person-side device 40.
  • the safety system 10 may also include components of the elevator system 1, such as a control panel 7.
  • the car side device 20 is attached to the car 6.
  • the car side device 20 is attached to the bottom surface 6a of the car.
  • the distance to the lowest part of the car 6 is set in the car side device 20. Note that, when the car side device 20 is attached to the bottom surface 6a of the car, the distance to the lowest part of the car 6 may be set to 0 in the car side device 20, or the setting of the distance to the lowest part of the car 6 may be omitted.
  • the car side device 20 transmits and receives radio waves of a specific frequency.
  • the car side device 20 transmits car side radio waves.
  • the car side device 20 detects the reception strength of the received radio waves. Based on the reception strength of the radio waves, the car side device 20 detects the distance to the device that transmitted the radio waves. Based on the phase of the received radio waves, etc., the car side device 20 detects the direction in which the device that transmitted the radio waves is located. Based on the detected information, the car side device 20 detects the reception angle, which is the angle at which the device that transmitted the radio waves is located relative to a reference direction.
  • the landing side device 30 is attached to the inside of the elevator shaft 2.
  • the landing side device 30 is attached to the inner wall of the elevator shaft 2.
  • the landing side device 30 is attached at the same height as the landing floor 5a of the lowest floor landing 4a relative to the bottom surface of the pit 2a.
  • a vertical distance to the landing floor 5a is set for the landing side device 30. Note that, when the landing side device 30 is attached at the same height as the landing floor 5a, the distance to the landing floor 5a may be set to 0 for the landing side device 30, or the setting of the distance to the landing floor 5a may be omitted.
  • the platform side device 30 transmits and receives radio waves of a specific frequency. For example, the platform side device 30 transmits platform side radio waves.
  • the car side device 20 detects the reception strength of the received radio waves.
  • the platform side device 30 detects the distance and reception angle from the device that transmitted the radio waves based on the reception strength, phase, etc. of the received radio waves.
  • the hall side device 30 may notify the control panel 7 of a command to stop the car 6.
  • the hall side device 30 may be electrically connected to a pit switch and may cut off the safety circuit of the elevator system 1. When the safety circuit is cut off, the control panel 7 stops the car 6.
  • the hall side device 30 may be provided so as to be able to communicate with the control panel 7 by wire or wirelessly. In this case, the hall side device 30 may be capable of sending a command to the control panel 7 to stop the car 6.
  • the hall side device 30 may send a command to the control panel 7 to stop the car 6 instead of cutting off the safety circuit as an operation to stop the car 6.
  • the human-side device 40 is attached to a person H who is working in the pit 2a.
  • the human-side device 40 is attached to the top of the head of the person H.
  • the distance to the top of the head of the person to whom the human-side device 40 is attached is set. Note that when the human-side device 40 is attached to the top of the head of the person H, the distance to the top of the person's head may be set to 0 in the human-side device 40, or the setting of the distance to the top of the person's head may be omitted.
  • the human-side device 40 transmits and receives radio waves of a specific frequency.
  • the human-side device 40 transmits human-side radio waves.
  • the car 6 may rise or fall while a person H is present in the pit 2a.
  • the person-side device 40 transmits person-side radio waves at a specified cycle.
  • the car-side device 20 receives the person-side radio waves. Based on the received person-side radio waves, the car-side device 20 calculates the distance between the top of the person's head and the lowest part of the car 6. If the distance becomes smaller than a specified threshold, the hall-side device 30 stops the car 6.
  • FIG. 2 is a block diagram of the safety system according to the first embodiment.
  • the car side device 20 includes a radio wave unit 21, a detection unit 22, and a calculation unit 23.
  • the radio wave unit 21 transmits and receives radio waves as a radio wave unit on the car side.
  • the radio wave unit 21 includes one or more antennas and an antenna control device.
  • the radio wave unit 21 complies with the Bluetooth (registered trademark) standard and may transmit, receive, and control radio waves using BLE (Bluetooth Low Energy) technology.
  • the radio wave unit 21 allows the car-side device 20 to communicate with the hall-side device 30 and the person-side device 40 via radio waves.
  • the radio wave unit 21 can detect the reception strength of the received radio waves and the direction from which the radio waves were transmitted. Specifically, for example, the radio wave unit 21 detects the direction from which the radio waves were transmitted using multiple antennas based on a radio wave angle measurement method called AoA (Angle of Arrival). In this case, the radio wave unit 21 detects the direction from which the radio waves were transmitted by detecting the difference in phase of the radio waves received by each of the multiple antennas. The radio wave unit 21 detects the reception angle based on the direction.
  • AoA Angle of Arrival
  • the detection unit 22 is a sensor that detects the acceleration of the car side device 20. For example, the detection unit 22 detects that the car 6 has moved by detecting the acceleration.
  • the calculation unit 23 as the car-side calculation unit, performs calculations based on the radio waves received by the radio wave unit 21 and the measurement values of the detection unit 22.
  • the calculation unit 23 performs calculations for each determination made by the car-side device 20.
  • the calculation unit 23 is a microcomputer having a memory and a processor.
  • the calculation unit 23 stores information necessary for calculations.
  • the functions of the calculation unit 23 are realized by the processor executing a program stored in the memory.
  • the hall-side device 30 includes a radio wave unit 31, a communication unit 32, a command unit 33, and a calculation unit 34.
  • the radio wave unit 31 as the radio wave unit on the boarding side, transmits and receives radio waves.
  • the radio wave unit 31 includes one or more antennas and an antenna control device.
  • the radio wave unit 31 conforms to the Bluetooth standard and uses BLE technology to transmit and receive radio waves and control them.
  • the radio wave unit 31 can detect the reception strength of the received radio waves and the direction from which the radio waves were transmitted.
  • the radio wave unit 31 detects the direction from which the radio waves were transmitted based on the same radio wave angle measurement method as the radio wave unit 21.
  • the radio wave unit 31 detects the reception angle based on the direction.
  • the communication unit 32 is capable of communicating with the control panel 7.
  • the communication unit 32 is an interface that electrically communicates with the control panel 7.
  • the communication unit 32 is connected to a serial communication wiring that is wired to each of the multiple landings 4 (not shown in FIG. 2).
  • the serial wiring is connected to the control panel 7.
  • the command unit 33 is a device that can notify the control panel 7 of a command to stop the car 6.
  • the command unit 33 is a contact that cuts off a safety circuit (not shown).
  • the command unit 33 is electrically connected to a pit switch (not shown).
  • the command unit 33 is an interface that transmits commands to the control panel 7.
  • the functions of the command unit 33 may be included in the communication unit 32.
  • the calculation unit 34 performs calculations based on the radio waves received by the radio wave unit 31 and the information received by the communication unit 32.
  • the calculation unit 34 performs calculations for each determination made by the hall-side device 30.
  • the calculation unit 34 is a microcomputer having a memory and a processor.
  • the calculation unit 34 stores information necessary for the calculations.
  • the calculation unit 34 is capable of controlling the operation of the command unit 33.
  • the functions of the calculation unit 34 are realized when the processor executes a program stored in the memory.
  • the human-side device 40 includes a radio wave unit 41 and an alarm unit 42.
  • the radio wave unit 41 transmits and receives radio waves as the human-side radio wave unit.
  • the radio wave unit 41 includes one or more antennas and an antenna control device.
  • the radio wave unit 41 conforms to the Bluetooth (registered trademark) standard and transmits, receives, and controls radio waves using BLE technology.
  • the alarm unit 42 is capable of notifying the person of information.
  • the alarm unit 42 includes a speaker that emits sound and a speaker control device.
  • the alarm unit 42 emits sound based on the radio waves received by the radio wave unit 41.
  • radio wave unit 21, radio wave unit 31, and radio wave unit 41 may detect the direction in which a device transmitting radio waves is located based on a different radio wave angle measurement method rather than the method known as AoA. Specifically, for example, radio wave unit 21, radio wave unit 31, and radio wave unit 41 may operate based on a radio wave angle measurement technology known as AoD (Angle of Departure).
  • AoD Angle of Departure
  • the radio wave unit 41 includes multiple antennas.
  • the radio wave unit 41 transmits multiple human-side radio waves that correspond to the multiple antennas.
  • Each of the radio wave units 21 and 31 needs to include at least one antenna.
  • the radio wave unit 21 detects the phase difference between the multiple human-side radio waves, thereby detecting the direction in which the human-side device 40 is located, which is the direction from which the human-side radio waves are transmitted.
  • the radio wave unit 31 detects the direction in which the human-side device 40 is located, in the same way as the radio wave unit 21.
  • FIG. 3 is a diagram showing an outline of the safety system according to the first embodiment.
  • the car-side device 20 calculates the distance Y between the top of person H's head and the lowest part of the car 6. Thereafter, the height position of the person-side device 40 is regarded as the height position of the top of person H's head. The height position of the car-side device 20 is regarded as the height position of the lowest part of the car 6. In other words, the distance Y is the distance between the person-side device 40 and the car bottom surface 6a.
  • the car-side device 20 receives the human-side radio waves transmitted from the human-side device 40.
  • the car-side device 20 calculates the distance X between the car-side device 20 and the human-side device 40 based on the reception strength of the human-side radio waves.
  • the car-side device 20 detects the direction in which the human-side device 40 is located based on the received human-side radio waves.
  • the car-side device 20 detects the reception angle ⁇ at which the human-side device 40 is located relative to the car bottom surface 6a based on the direction in which the human-side device 40 is located.
  • the reception angle ⁇ is the angle between the line segment connecting the car-side device 20 to the human-side device 40 and the car bottom surface 6a, which is a reference plane.
  • the reception angle ⁇ is the elevation angle of the human-side device 40 when the car-side device 20 is the origin and the car bottom surface 6a is the reference plane.
  • the car side device 20 calculates the distance Y from the calculated distance X and the receiving angle ⁇ based on the following formula (1):
  • the car side device 20 determines whether the calculated distance Y is smaller than a specified threshold distance. If the car side device 20 determines that the distance Y is equal to or greater than the specified threshold distance, it determines that the safety of person H is ensured and takes no particular action. Note that the car side device 20 may notify the person side device 40 of information indicating the calculated distance Y by voice or the like.
  • the car-side device 20 determines that the distance Y is less than the specified threshold distance, it transmits a car-side radio wave indicating a command to stop the car 6.
  • the hall-side device 30 receives the car-side radio wave. In this case, the hall-side device 30 instructs the control panel 7 to stop the car 6.
  • the control panel 7 stops the car 6.
  • the person-side device 40 receives the car-side radio wave, it may issue a warning of danger by voice or the like.
  • FIGS. Fig. 4 is a diagram showing an outline of the safety system in the embodiment 1.
  • Fig. 5 is a flowchart for explaining an outline of a second operation of the safety system in the embodiment 1.
  • the car side device 20 calculates the distance X' by correcting the distance X calculated in the first operation.
  • the car side device 20 uses the distance X' instead of the distance X. That is, the car side device 20 calculates the distance Y from the distance X' and the receiving angle ⁇ based on the formula (1).
  • the correction of the distance X is performed based on one of several methods.
  • the distance X is corrected based on the measurement value of the acceleration sensor, which is the detection unit 22.
  • the car-side device 20 also uses information on the reception strength of the hall-side radio waves from the hall-side device 30.
  • the car side device 20 calculates a first distance A between the lowest part of the car 6 and the lowest landing floor 5a based on the reception strength of the landing side radio waves.
  • the first distance A is a distance based on the reception strength of the radio waves.
  • the distance between the lowest part of the car 6 and the lowest landing floor 5a can be considered to be the same value as the difference between the height position of the car side device 20 and the height position of the landing side device 30.
  • the distance between the lowest part of the car 6 and the car side device 20 may be used.
  • the distance between the landing floor 5a and the landing side device 30 may be used.
  • the detection unit 22 of the car side device 20 constantly measures the acceleration in the ascending and descending direction of the car 6.
  • the car side device 20 calculates the moving speed and moving distance of the car side device 20 by integrating the measured acceleration value over time. That is, the car side device 20 calculates the height position of the car 6.
  • the car side device 20 calculates a second distance B between the lowermost part of the car 6 and the landing floor 5a based on the moving distance.
  • the second distance B is a distance based on the acceleration. Note that the second distance B can be considered to be the same value as the difference between the height position of the car side device 20 and the height position of the landing side device 30, similar to the first distance A.
  • the car side device 20 determines that the car 6 has stopped at the lowest floor boarding point 4a when the moving speed of the car 6 is 0 and the first distance A is 0. In this case, the car side device 20 resets the second distance B based on the acceleration to 0. In the case where the moving speed of the car 6 is 0 and the first distance A is the distance from the lowest floor boarding point 4a to the upper floor boarding point 4b, the car side device 20 determines that the car 6 has stopped at the upper floor boarding point 4b. In this case, the car side device 20 resets the second distance B based on the acceleration to the distance from the lowest floor boarding point 4a to the upper floor boarding point 4b.
  • the distance from the lowest floor boarding point 4a to the upper floor boarding point 4b is set for each building and stored in the car side device 20. For example, the distance is set to 4 m.
  • the car side device 20 calculates the corrected distance X′ from the distance X, the first distance A, and the second distance B based on the following equation (2).
  • X' X*B/A (2)
  • the car side device 20 calculates the distance Y based on the distance X' and performs an operation similar to the first operation. That is, the distance Y is corrected based on the first distance A and the second distance B.
  • the flowchart shown in FIG. 5 can be started at any time.
  • the car 6 is not stopped at either the lowest floor landing 4a or the upper floor landing 4b.
  • step S001 the person-side device 40 transmits person-side radio waves.
  • the car-side device 20 receives the person-side radio waves.
  • step S002 the car side device 20 calculates the distance X based on the reception strength of the person-side radio wave.
  • the car side device 20 calculates the reception angle ⁇ .
  • step S003 the car side device 20 receives the hall side radio wave.
  • the car side device 20 calculates the first distance A based on the reception strength of the radio wave.
  • the car side device 20 calculates the second distance B based on the acceleration.
  • step S004 the car side device 20 calculates the distance X' by correcting the distance X with the first distance A and the second distance B.
  • step S005 the car side device 20 calculates the distance Y.
  • step S006 the car side device 20 determines whether the distance Y is smaller than a specified threshold distance.
  • step S006 If it is determined in step S006 that the distance Y is equal to or greater than the specified threshold distance, the operation of step S007 is performed.
  • step S007 the car-side device 20 transmits a command to notify the person-side device 40 of the value of the distance Y.
  • the person-side device 40 notifies the person H of the value of the distance Y by voice.
  • step S006 If it is determined in step S006 that the distance Y is less than the specified threshold distance, the operation of step S008 is performed.
  • step S008 the car-side device 20 transmits a car-side radio wave indicating a command to stop the car 6.
  • the hall-side device 30 performs an operation to stop the car 6 based on the car-side radio wave.
  • the person-side device 40 issues a warning of a danger based on the car-side radio wave.
  • the car 6 is restarted by a worker such as person H.
  • steps S003 and S004 in the flowchart of FIG. 5 are omitted, and the operation of step S005 is performed after step S002.
  • the safety system 10 includes a car-side device 20, a hall-side device 30, and a person-side device 40.
  • the car-side device 20 calculates the distance between the car 6 and the person H. If it is determined that the distance between the car 6 and the person H is shorter than the threshold distance, the hall-side device 30 causes the control panel 7 to stop the car 6. At this time, there is no need for monitoring by a monitor or the like other than the person H. This makes it easy to manage the safety of the person H inside the elevator 2.
  • the calculation and judgment processes performed by the car side device 20 may be performed by the hall side device 30 instead.
  • the car side device 20 may transmit car side radio waves indicating information on the reception strength and phase difference of the person side radio waves to the hall side device 30.
  • the car side device 20 may perform calculations up to the distance X and reception angle ⁇ , and transmit car side radio waves indicating the values of the distance X and reception angle ⁇ to the hall side device 30.
  • the hall side device 30 may perform the necessary calculations and judgments based on the received car side radio waves.
  • the car side device 20 also measures acceleration.
  • the distance X between the car 6 and the person H is corrected to distance X' based on the height position of the car 6 calculated based on the measured acceleration value and the reception strength of the hall side radio wave received by the car side device 20.
  • the distance X is corrected to distance X' based on the ratio of the first distance A to the second distance B.
  • the distance Y is corrected based on the first distance A to the second distance B.
  • the human-side device 40 also notifies the person H of the distance between the car 6 and the person H. This allows the person H to perform safety management according to the notified distance.
  • the car-side device 20 is attached to the bottom surface 6a of the car.
  • the platform-side device 30 is attached at the same height as the lowest floor platform floor 5a.
  • the person-side device 40 is attached to the top of the head of the person H.
  • the position from which the car-side radio waves are transmitted from the car-side device 20 corresponds to the position of the lowest part of the car 6.
  • the position from which the platform-side device 30 receives radio waves and the position from which the platform-side radio waves are transmitted correspond to the height position of the platform floor 5a.
  • the position from which the person-side device 40 transmits the person-side radio waves corresponds to the position of the highest part of the person H.
  • the position of the lowest part of the car 6, the height position of the platform floor 5a, and the position of the highest part of the person H can be accurately grasped without performing additional calculations. As a result, the safety of the person H can be further improved.
  • each operation is carried out by radio waves transmitted and received by the car-side device 20, hall-side device 30, and person-side device 40.
  • the safety system 10 can be retrofitted to existing equipment. As a result, it can be applied to a wide variety and types of elevators.
  • the safety system 10 may also be applied to an elevator system 1 that does not have a machine room and in which the control panel 7 is located at the bottom or top of the elevator shaft 2.
  • the calculation processing performed by the car side device 20 may be calculated by the hall side device 30. Also, the calculation processing performed by the hall side device 30 may be calculated by the car side device 20. In either case, the car side device 20 and the hall side device 30 provide information to each other by transmitting or receiving radio waves indicating the necessary information.
  • FIG. 6 is a diagram showing an outline of the safety system according to the first embodiment.
  • a third distance B' based on the operation information of car 6 is used to correct distance X, instead of the second distance B in the first example.
  • the operation information of car 6 is generated by control panel 7 based on a signal from a governor encoder or the like (not shown).
  • the hall side device 30 acquires information on the height position of the car 6 from the control panel 7.
  • the hall side device 30 transmits hall side radio waves indicating the information on the height position of the car 6 to the car side device 20.
  • the car side device 20 calculates a third distance B' between the lowermost part of the car 6 and the lowest landing floor 5a based on the height position of the car 6 indicated in the hall side radio waves.
  • the car side device 20 calculates the distance X' by correcting the distance X using the third distance B' instead of the second distance B. Therefore, the distance Y is corrected based on the third distance B'.
  • the hall-side device 30 acquires information on the height position of the car 6 from the control panel 7.
  • the distance X between the car 6 and the person H is corrected to distance X' based on the height position of the car 6 acquired from the control panel 7 and the reception strength of the hall-side radio wave received by the car-side device 20. This makes it possible to more accurately calculate the distance between the car 6 and the person H.
  • Fig. 7 is a diagram showing an overview of the safety system in the embodiment 2.
  • Fig. 8 is a diagram showing a flowchart of the operation of the safety system in the embodiment 2. Note that the same reference numerals are used to designate parts that are the same as or equivalent to those in the embodiment 1. Explanation of these parts will be omitted.
  • the hall-side device 30 calculates the reception angle ⁇ as the direction in which the human-side device 40 is located based on the human-side radio wave.
  • the hall-side device 30 determines whether the human-side device 40 is located at a position lower than the lowest hall floor 5a based on the reception angle ⁇ .
  • the hall-side device 30 calculates the reception angle ⁇ , which is the elevation angle of the human-side device 40 when a plane including the hall-side device 30 and perpendicular to the horizontal direction is used as a reference plane based on the direction in which the human-side device 40 is located.
  • the reception angle ⁇ can also be defined as the angle formed by a line segment connecting the hall-side device 30 and the human-side device 40 with a reference axis that faces vertically and passes through the hall-side device 30.
  • the landing-side device 30 judges whether the receiving angle ⁇ is smaller than 90°. If the landing-side device 30 judges that the receiving angle ⁇ is smaller than 90°, it judges that the position of person H, which is the position of the person-side device 40, is lower than itself, i.e., lower than the landing floor 5a of the lowest floor. If the landing-side device 30 judges that the receiving angle ⁇ is 90° or more, it judges that the position of person H, which is the position of person-side device 40, is at the same height as the landing floor 5a of the lowest floor or higher than the landing floor 5a.
  • the landing-side device 30 may consider the position of the person-side device 40 to be the height position of the top of person H's head. Alternatively, the landing-side device 30 may calculate the height position of the top of person H's head from the position of the person-side device 40.
  • the hall-side device 30 determines that the reception angle ⁇ is 90° or greater, it sends a command to the control panel 7 to operate the vehicle at a speed slower than the normal operating speed.
  • the landing side device 30 determines that the receiving angle ⁇ is less than 90°, it sends a command to the control panel 7 to operate at the normal operating speed.
  • the car 6 is controlled to stop once it reaches the lowest landing floor 5a while descending. Therefore, if the person-side device 40 is located at a position lower than the lowest landing floor 5a, the safety of people H present in the pit 2a can be ensured even if the car 6 operates at the normal operating speed.
  • the flowchart shown in FIG. 8 can be started at any time.
  • step S101 the person-side device 40 transmits person-side radio waves.
  • the hall-side device 30 receives the person-side radio waves.
  • step S102 the hall-side device 30 calculates the reception angle ⁇ .
  • step S103 the hall-side device 30 determines whether the reception angle ⁇ is less than 90°.
  • step S104 the hall-side device 30 transmits a command to the control panel 7 to operate at the normal operating speed. Note that in step S104, the hall-side device 30 may end the process without transmitting the command.
  • step S105 the hall-side device 30 sends a command to the control panel 7 to operate at a speed slower than the normal operating speed.
  • the hall-side device 30 transmits a command to the control panel 7 regarding the operating speed of the car 6 according to the receiving angle of the person-side radio waves.
  • the car 6 operated at a speed slower than the normal operating speed.
  • safety is ensured and the car 6 can operate at the normal operating speed. This makes it possible to prevent a decrease in the efficiency of maintenance work.
  • the safety system 10 the safety of the person H can be ensured without deteriorating the ease of maintenance work.
  • the hall-side device 30 may determine whether the human-side device 40 is located lower than the hall-side device 30 based on a reception angle ⁇ ', which is an elevation angle of the human-side device 40 with respect to a horizontal plane including the hall-side device 30 as a reference plane, instead of the reception angle ⁇ .
  • a reception angle ⁇ ' an elevation angle of the human-side device 40 with respect to a horizontal plane including the hall-side device 30 as a reference plane, instead of the reception angle ⁇ .
  • the relationship of the following formula (3) is established between the reception angle ⁇ ' and the reception angle ⁇ .
  • ⁇ ' 90° - ⁇ (3)
  • Embodiment 3. 9 is a diagram showing an outline of a safety system in embodiment 3. Note that the same reference numerals are used to designate parts that are the same as or correspond to parts in embodiment 1 or embodiment 2. Description of these parts will be omitted.
  • the hall-side device 30 receives radio waves indicating the value of the receiving angle ⁇ from the car-side device 20.
  • the hall-side device 30 calculates the height position of the person-side device 40 using the receiving angle ⁇ and the receiving angle ⁇ . As shown in FIG. 9, based on the receiving angle ⁇ and the receiving angle ⁇ , the height position of the person-side device 40 can be uniquely calculated from the geometric relationship.
  • the hall-side device 30 acquires operation information from the control panel 7, including the direction of ascent and descent of the car 6, the height position of the car 6, and the ascent and descent speed of the car 6. Based on the operation information and the information on the height position of the person-side device 40, the hall-side device 30 calculates the grace period until the car 6 comes into contact with the person H if the car 6 continues to move. Specifically, the hall-side device 30 calculates the distance between the car bottom 6a and the person H from the height position of the car 6 and the height position of the person-side device 40. The hall-side device 30 calculates the grace period until the car 6 comes into contact with the person H by dividing the distance between the car bottom 6a and the person H by the ascent and descent speed of the car 6. Note that in this calculation, it may be assumed that the ascent and descent speed of the car 6 is a constant value.
  • the hall-side device 30 transmits hall-side radio waves indicating the grace period.
  • the person-side device 40 receives hall-side radio waves indicating the grace period.
  • the person-side device 40 alerts the person H of the grace period by audio based on the hall-side radio waves.
  • the hall side device 30 may also perform an operation to stop the car 6 if the grace period is shorter than a specified threshold period.
  • the car side device 20 may perform the same calculation instead of the hall side device 30.
  • the car side device 20 receives radio waves indicating the value of the reception angle ⁇ from the hall side device 30.
  • the car-side device 20 or the hall-side device 30 calculates the height position at which person H is present based on the reception angle ⁇ and the reception angle ⁇ . At this time, there is no need to use information on the reception strength of the person-side radio waves. Therefore, depending on the conditions under which the car-side device 20 and the hall-side device 30 receive the radio waves, the height position at which person H is present can be calculated more accurately.
  • the car-side device 20 or the hall-side device 30 calculates the grace period.
  • the person-side device 40 notifies the person H of the grace period. This makes it possible to alert the person H to the risk of contact with the car 6. As a result, safety can be improved.
  • the safety system disclosed herein can be used in elevator systems.
  • Elevator system 2. Hoistway, 2a. Pit, 3. Building, 4. Landing, 4a. Lowest floor landing, 4b. Upper floor landing, 5. Landing floor, 5a. Lowest floor landing floor, 5b. Second floor landing floor, 6. Cage, 6a. Cage bottom, 7. Control panel, 10. Safety system, 20. Cage side device, 21. Radio wave unit, 22. Detection unit, 23. Calculation unit, 30. Landing side device, 31. Radio wave unit, 32. Communication unit, 33. Command unit, 34. Calculation unit, 40. Person side device, 41. Radio wave unit, 42. Notification unit, H. Person

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Provided is a safety system capable of easily managing the safety of a person present inside a hoistway. The safety system comprises: a car-side device which is attached to the car of an elevator, emits a car-side radio wave, and detects the reception intensity and reception angle of a received radio wave; a hall-side device which is attached at the height position of the lowest floor hall inside the hoistway, emits a hall-side radio wave, and detects the reception intensity and reception angle of a received radio wave; and a person-side device which is attached to a person present inside the hoistway, and emits a person-side radio wave. The car-side device or the hall-side device determines whether the distance between the car and the person is shorter than a threshold distance on the basis of the reception intensity of the person-side radio wave received by the car-side device and the reception angle of the person-side radio wave. The hall-side device causes a control board of the elevator to stop the car if it is determined that the distance between the car and the person is shorter than the threshold distance, and does not cause the control board to stop the car if it is determined that the distance between the car and the person is equal to or longer than the threshold distance.

Description

安全システムSafety Systems
 本開示は、エレベーターの安全システムに関する。 This disclosure relates to elevator safety systems.
 特許文献1は、エレベーターの安全システムを開示する。当該安全システムにおいて、昇降路の内部にカメラが設けられる。カメラは、ピットの内部に存在する作業員を撮影する。遠隔地に存在する監視員は、カメラの映像を確認することで、当該作業員の安全を監視する。例えば、監視員は、当該作業員の安全が損なわれる状態にあると判断した場合、当該エレベーターの運転を停止させ得る。 Patent Document 1 discloses an elevator safety system. In this safety system, a camera is installed inside the elevator shaft. The camera captures images of workers inside the pit. A monitor in a remote location monitors the safety of the worker by checking the camera's footage. For example, if the monitor determines that the worker's safety is in danger, he or she can stop the operation of the elevator.
日本特開2015-074521号公報Japanese Patent Publication No. 2015-074521
 しかしながら、特許文献1に記載の安全システムにおいて、作業員の他に、監視員がピット内を監視する必要がある。このため、作業員の安全管理にコストがかかる。 However, the safety system described in Patent Document 1 requires a supervisor to monitor the inside of the pit in addition to the workers. This means that worker safety management is costly.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、昇降路の内部に存在する人の安全を容易に管理することができる安全システムを提供することである。 This disclosure has been made to solve the above-mentioned problems. The purpose of this disclosure is to provide a safety system that can easily manage the safety of people inside a hoistway.
 本開示に係る安全システムは、エレベーターのかごに取り付けられ、かご側電波を発信し、受信した電波の受信強度と受信角度とを検出するかご側装置と、エレベーターの昇降路の内部において、最下階乗場の高さ位置に取り付けられ、乗場側電波を発信し、受信した電波の受信強度と受信角度とを検出する乗場側装置と、昇降路の内部に存在する人に取り付けられ、人側電波を発信する人側装置と、を備え、かご側装置または乗場側装置は、かご側装置が受信した人側電波の受信強度と人側電波の受信角度とに基づいて、かごと人との距離が閾値距離よりも短いか否かを判定し、乗場側装置は、かごと人との距離が閾値距離よりも短いと判定された場合にエレベーターの制御盤にかごを停止させ、かごと人との距離が閾値距離と同じまたは閾値距離よりも長いと判定された場合にかごを停止させない。 The safety system according to the present disclosure comprises a car-side device attached to an elevator car, which transmits car-side radio waves and detects the reception strength and reception angle of the received radio waves, a hall-side device attached inside the elevator shaft at the height of the lowest floor landing, which transmits hall-side radio waves and detects the reception strength and reception angle of the received radio waves, and a person-side device attached to a person inside the shaft and transmits person-side radio waves, and the car-side device or hall-side device determines whether the distance between the car and the person is shorter than a threshold distance based on the reception strength and reception angle of the person-side radio waves received by the car-side device, and the hall-side device causes the elevator control panel to stop the car if it is determined that the distance between the car and the person is shorter than the threshold distance, and does not stop the car if it is determined that the distance between the car and the person is the same as or longer than the threshold distance.
 本開示によれば、かごと人との距離が閾値距離よりも短いと判定された場合にかごが停止される。このため、昇降路の内部に存在する人の安全を容易に管理することができる。 According to the present disclosure, the car is stopped when it is determined that the distance between the car and the person is shorter than the threshold distance. This makes it easy to manage the safety of people inside the elevator shaft.
実施の形態1における安全システムの概要を示す図である。1 is a diagram showing an overview of a safety system in a first embodiment. 実施の形態1における安全システムのブロック図である。FIG. 1 is a block diagram of a safety system according to a first embodiment. 実施の形態1における安全システムの概要を示す図である。1 is a diagram showing an overview of a safety system in a first embodiment. 実施の形態1における安全システムの概要を示す図である。1 is a diagram showing an overview of a safety system in a first embodiment. 実施の形態1における安全システムの第2動作の概要を説明するためのフローチャートである。10 is a flowchart for explaining an overview of a second operation of the safety system in the first embodiment. 実施の形態1における安全システムの概要を示す図である。1 is a diagram showing an overview of a safety system in a first embodiment. 実施の形態2における安全システムの概要を示す図である。FIG. 11 is a diagram showing an overview of a safety system in a second embodiment. 実施の形態2における安全システムの動作のフローチャートを示す図である。FIG. 11 is a flowchart showing the operation of the safety system in the second embodiment. 実施の形態3における安全システムの概要を示す図である。FIG. 11 is a diagram showing an overview of a safety system in a third embodiment.
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 The embodiments for implementing the present disclosure will be described with reference to the attached drawings. Note that in each drawing, the same or corresponding parts are given the same reference numerals. Duplicate descriptions of the parts will be appropriately simplified or omitted.
実施の形態1.
 図1は実施の形態1における安全システムの概要を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an overview of a safety system according to a first embodiment.
 図1のエレベーターシステム1において、昇降路2は、建築物3の各階を貫く。ピット2aは、昇降路2の底部である。図示されないが、例えば、ピット2aには、緩衝器、ピットスイッチ等のピット機器が設けられる。 In the elevator system 1 of FIG. 1, the elevator shaft 2 passes through each floor of the building 3. The pit 2a is the bottom of the elevator shaft 2. Although not shown, for example, pit equipment such as a shock absorber and a pit switch is provided in the pit 2a.
 複数の乗場4は、建築物3の各階にそれぞれ設けられる。複数の乗場4の各々は、昇降路2に対向する。図1には、複数の乗場4のうちの最も下の1階の乗場4である最下階乗場4aと2階の乗場4である上階乗場4bとが示される。複数の乗場床5は、複数の乗場4にそれぞれ対応する。乗場床5は、対応する乗場4の床である。図1には、最下階の乗場床5aと上階である2階の乗場床5bとが示される。 The multiple landings 4 are provided on each floor of the building 3. Each of the multiple landings 4 faces the elevator shaft 2. Figure 1 shows a lowest floor landing 4a, which is the lowest of the multiple landings 4 on the first floor, and an upper floor landing 4b, which is the second floor landing 4. The multiple landing floors 5 correspond to the multiple landings 4, respectively. The landing floor 5 is the floor of the corresponding landing 4. Figure 1 shows the lowest floor landing floor 5a and the upper floor landing floor 5b on the second floor.
 かご6は、昇降路2の内部に設けられる。かご6は、昇降路2の内部を昇降可能である。かご6は、かご底面6aを有する。かご底面6aは、かご6の外側の面のうちのピット2aを向く面である。例えば、かご底面6aは、かご6のうち最も下方に存在する部分である。 The car 6 is provided inside the elevator shaft 2. The car 6 can move up and down inside the elevator shaft 2. The car 6 has a car bottom surface 6a. The car bottom surface 6a is the surface of the outer surface of the car 6 that faces the pit 2a. For example, the car bottom surface 6a is the part of the car 6 that is located at the lowest position.
 制御盤7は、図示されない機械室に設けられる。制御盤7は、エレベーターシステム1を全体的に制御し得る。具体的には、制御盤7は、かご6の昇降動作を全体的に制御し得る。 The control panel 7 is provided in a machine room (not shown). The control panel 7 can control the entire elevator system 1. Specifically, the control panel 7 can control the entire raising and lowering operation of the car 6.
 安全システム10は、エレベーターシステム1に適用される。安全システム10は、ピット2aで保守作業を行う人Hの安全を確保するシステムである。例えば、人Hは、ピット2aにおいて、かご6の下部の機器の点検、異音の調査、等の保守作業を行う。この際、かご6は、人Hによって点検用の昇降操作によって移動する場合がある。または、かご6は、人Hとは別の作業員によって手動で操作される場合がある。 The safety system 10 is applied to the elevator system 1. The safety system 10 is a system that ensures the safety of a person H who performs maintenance work in the pit 2a. For example, in the pit 2a, the person H performs maintenance work such as inspecting the equipment below the car 6 and investigating abnormal noises. At this time, the car 6 may be moved by the person H using a lifting and lowering operation for inspection. Alternatively, the car 6 may be manually operated by a worker other than the person H.
 安全システム10は、かご側装置20と乗場側装置30と人側装置40とを備える。なお、安全システム10には、制御盤7等のエレベーターシステム1の構成が含まれてもよい。 The safety system 10 includes a car-side device 20, a hall-side device 30, and a person-side device 40. The safety system 10 may also include components of the elevator system 1, such as a control panel 7.
 かご側装置20は、かご6に取り付けられる。例えば、かご側装置20は、かご底面6aに取り付けられる。かご側装置20には、かご6の最も下方に存在する部分までの距離が設定される。なお、かご側装置20がかご底面6aに取り付けられる場合、かご側装置20には、かご6の最も下方に存在する部分までの距離が0に設定されてもよいし、かご6の最も下方に存在する部分までの距離の設定が省略されてもよい。 The car side device 20 is attached to the car 6. For example, the car side device 20 is attached to the bottom surface 6a of the car. The distance to the lowest part of the car 6 is set in the car side device 20. Note that, when the car side device 20 is attached to the bottom surface 6a of the car, the distance to the lowest part of the car 6 may be set to 0 in the car side device 20, or the setting of the distance to the lowest part of the car 6 may be omitted.
 かご側装置20は、ビーコン装置として、特定の周波数の電波を発信および受信する。例えば、かご側装置20は、かご側電波を発信する。かご側装置20は、受信した電波の受信強度を検出する。かご側装置20は、電波の受信強度に基づいて、当該電波を発信した機器との距離を検出する。かご側装置20は、受信した電波の位相等に基づいて当該電波を発信した機器が存在する方向を検出する。かご側装置20は、検出した情報に基づいて、基準となる方向に対して当該電波を発信した機器が存在する角度である受信角度を検出する。 The car side device 20, as a beacon device, transmits and receives radio waves of a specific frequency. For example, the car side device 20 transmits car side radio waves. The car side device 20 detects the reception strength of the received radio waves. Based on the reception strength of the radio waves, the car side device 20 detects the distance to the device that transmitted the radio waves. Based on the phase of the received radio waves, etc., the car side device 20 detects the direction in which the device that transmitted the radio waves is located. Based on the detected information, the car side device 20 detects the reception angle, which is the angle at which the device that transmitted the radio waves is located relative to a reference direction.
 乗場側装置30は、昇降路2の内側に取り付けられる。例えば、乗場側装置30は、昇降路2の内壁に取り付けられる。この際、乗場側装置30は、ピット2aの底面に対して最下階乗場4aの乗場床5aの高さと同じ高さに取り付けられる。乗場側装置30には、乗場床5aまでの鉛直方向の距離が設定される。なお、乗場側装置30が乗場床5aと同じ高さに取り付けられる場合、乗場側装置30には、乗場床5aまでの距離が0に設定されてもよいし、乗場床5aまでの距離の設定が省略されてもよい。 The landing side device 30 is attached to the inside of the elevator shaft 2. For example, the landing side device 30 is attached to the inner wall of the elevator shaft 2. In this case, the landing side device 30 is attached at the same height as the landing floor 5a of the lowest floor landing 4a relative to the bottom surface of the pit 2a. A vertical distance to the landing floor 5a is set for the landing side device 30. Note that, when the landing side device 30 is attached at the same height as the landing floor 5a, the distance to the landing floor 5a may be set to 0 for the landing side device 30, or the setting of the distance to the landing floor 5a may be omitted.
 乗場側装置30は、かご側装置20と同様に、ビーコン装置として、特定の周波数の電波を発信および受信する。例えば、乗場側装置30は、乗場側電波を発信する。かご側装置20は、受信した電波の受信強度を検出する。乗場側装置30は、かご側装置20と同様に、受信した電波の受信強度、位相、等に基づいて、当該電波を発信した機器との距離および受信角度を検出する。 Like the car side device 20, the platform side device 30, as a beacon device, transmits and receives radio waves of a specific frequency. For example, the platform side device 30 transmits platform side radio waves. The car side device 20 detects the reception strength of the received radio waves. Like the car side device 20, the platform side device 30 detects the distance and reception angle from the device that transmitted the radio waves based on the reception strength, phase, etc. of the received radio waves.
 乗場側装置30は、かご6を停止させるための指令を制御盤7に通知し得る。具体的には、例えば、乗場側装置30は、ピットスイッチに電気的に接続され、エレベーターシステム1の安全回路を遮断し得る。当該安全回路が遮断された場合、制御盤7は、かご6を停止させる。なお、乗場側装置30は、制御盤7と有線または無線によって通信し得るよう設けられてもよい。この場合、乗場側装置30は、制御盤7に対してかご6を停止させる指令を送信可能であってもよい。例えば、乗場側装置30は、かご6を停止させる動作として、安全回路を遮断する代わりに制御盤7に対してかご6を停止させる指令を送信してもよい。 The hall side device 30 may notify the control panel 7 of a command to stop the car 6. Specifically, for example, the hall side device 30 may be electrically connected to a pit switch and may cut off the safety circuit of the elevator system 1. When the safety circuit is cut off, the control panel 7 stops the car 6. The hall side device 30 may be provided so as to be able to communicate with the control panel 7 by wire or wirelessly. In this case, the hall side device 30 may be capable of sending a command to the control panel 7 to stop the car 6. For example, the hall side device 30 may send a command to the control panel 7 to stop the car 6 instead of cutting off the safety circuit as an operation to stop the car 6.
 人側装置40は、ピット2aで作業を行う人Hに取り付けられる。例えば、人側装置40は、人Hの頭の頂部に取り付けられる。人側装置40には、取り付けられた人の頭の頂部までの距離が設定される。なお、人側装置40が人Hの頭の頂部に取り付けられる場合、人側装置40には、人の頭の頂部までの距離が0に設定されてもよいし、人の頭の頂部までの距離の設定が省略されてもよい。 The human-side device 40 is attached to a person H who is working in the pit 2a. For example, the human-side device 40 is attached to the top of the head of the person H. The distance to the top of the head of the person to whom the human-side device 40 is attached is set. Note that when the human-side device 40 is attached to the top of the head of the person H, the distance to the top of the person's head may be set to 0 in the human-side device 40, or the setting of the distance to the top of the person's head may be omitted.
 人側装置40は、ビーコン装置として、特定の周波数の電波を発信および受信する。例えば、人側装置40は、人側電波を発信する。 The human-side device 40, as a beacon device, transmits and receives radio waves of a specific frequency. For example, the human-side device 40 transmits human-side radio waves.
 エレベーターシステム1の保守点検が行われる際、人Hがピット2aに存在する状態で、かご6が昇降することがある。この際、人側装置40は、規定の周期で人側電波を発信する。かご側装置20は、人側電波を受信する。かご側装置20は、受信した人側電波に基づいて、人の頭の頂部とかご6の最も下の部分との距離を演算する。距離が規定の閾値よりも小さくなった場合、乗場側装置30は、かご6を停止させる。 When maintenance and inspection of the elevator system 1 is performed, the car 6 may rise or fall while a person H is present in the pit 2a. At this time, the person-side device 40 transmits person-side radio waves at a specified cycle. The car-side device 20 receives the person-side radio waves. Based on the received person-side radio waves, the car-side device 20 calculates the distance between the top of the person's head and the lowest part of the car 6. If the distance becomes smaller than a specified threshold, the hall-side device 30 stops the car 6.
 次に、図2を用いて、安全システム10を説明する。
 図2は実施の形態1における安全システムのブロック図である。
Next, the safety system 10 will be described with reference to FIG.
FIG. 2 is a block diagram of the safety system according to the first embodiment.
 図2に示されるように、かご側装置20は、電波部21と検出部22と演算部23とを備える。 As shown in FIG. 2, the car side device 20 includes a radio wave unit 21, a detection unit 22, and a calculation unit 23.
 電波部21は、かご側の電波部として、電波の発信および受信を行う。例えば、電波部21は、1以上のアンテナとアンテナの制御装置とを含む。具体的には、電波部21は、Bluetooth(登録商標)の規格に準拠し、BLE(Bluetooth Low Energy)技術を利用して電波の発信、電波の受信、およびその制御を行ってもよい。電波部21によって、かご側装置20は、電波を介して乗場側装置30および人側装置40と通信し得る。 The radio wave unit 21 transmits and receives radio waves as a radio wave unit on the car side. For example, the radio wave unit 21 includes one or more antennas and an antenna control device. Specifically, the radio wave unit 21 complies with the Bluetooth (registered trademark) standard and may transmit, receive, and control radio waves using BLE (Bluetooth Low Energy) technology. The radio wave unit 21 allows the car-side device 20 to communicate with the hall-side device 30 and the person-side device 40 via radio waves.
 電波部21は、受信した電波の受信強度と当該電波が発信された方向とを検出可能である。具体的には、例えば、電波部21は、AoA(Angle of Arrival)と呼ばれる電波の測角方法に基づき、複数のアンテナを用いて電波が発信された方向を検出する。この際、電波部21は、複数のアンテナの各々が受信した電波の位相の違いを検出することで、当該電波が発信された方向を検出する。電波部21は、当該方向に基づいて受信角度を検出する。 The radio wave unit 21 can detect the reception strength of the received radio waves and the direction from which the radio waves were transmitted. Specifically, for example, the radio wave unit 21 detects the direction from which the radio waves were transmitted using multiple antennas based on a radio wave angle measurement method called AoA (Angle of Arrival). In this case, the radio wave unit 21 detects the direction from which the radio waves were transmitted by detecting the difference in phase of the radio waves received by each of the multiple antennas. The radio wave unit 21 detects the reception angle based on the direction.
 検出部22は、かご側装置20の加速度を検出するセンサである。例えば、検出部22は、加速度を検出することでかご6が移動したことを検出する。 The detection unit 22 is a sensor that detects the acceleration of the car side device 20. For example, the detection unit 22 detects that the car 6 has moved by detecting the acceleration.
 演算部23は、かご側の演算部として、電波部21で受信した電波および検出部22の測定値に基づく演算を行う。演算部23は、かご側装置20が行う各判定の演算を行う。例えば、演算部23は、メモリとプロセッサとを有するマイクロコンピュータである。演算部23には、演算に必要な情報が格納される。演算部23の機能は、プロセッサがメモリに格納されたプログラムを実行することで実現される。 The calculation unit 23, as the car-side calculation unit, performs calculations based on the radio waves received by the radio wave unit 21 and the measurement values of the detection unit 22. The calculation unit 23 performs calculations for each determination made by the car-side device 20. For example, the calculation unit 23 is a microcomputer having a memory and a processor. The calculation unit 23 stores information necessary for calculations. The functions of the calculation unit 23 are realized by the processor executing a program stored in the memory.
 乗場側装置30は、電波部31と通信部32と指令部33と演算部34とを備える。 The hall-side device 30 includes a radio wave unit 31, a communication unit 32, a command unit 33, and a calculation unit 34.
 電波部31は、乗場側の電波部として、電波の発信および受信を行う。例えば、電波部31は、1以上のアンテナとアンテナの制御装置とを含む。電波部31は、電波部21と同様に、Bluetoothの規格に準拠し、BLE技術を利用して電波の発信、電波の受信、およびその制御を行う。 The radio wave unit 31, as the radio wave unit on the boarding side, transmits and receives radio waves. For example, the radio wave unit 31 includes one or more antennas and an antenna control device. Like the radio wave unit 21, the radio wave unit 31 conforms to the Bluetooth standard and uses BLE technology to transmit and receive radio waves and control them.
 電波部31は、受信した電波の受信強度と当該電波が発信された方向とを検出可能である。電波部31は、電波部21と同様の電波の測角方法に基づいて、電波が発信された方向を検出する。電波部31は、当該方向に基づいて受信角度を検出する。 The radio wave unit 31 can detect the reception strength of the received radio waves and the direction from which the radio waves were transmitted. The radio wave unit 31 detects the direction from which the radio waves were transmitted based on the same radio wave angle measurement method as the radio wave unit 21. The radio wave unit 31 detects the reception angle based on the direction.
 通信部32は、制御盤7と通信可能である。例えば、通信部32は、制御盤7と電気的に通信するインターフェースである。具体的には、通信部32は、図2には図示されない複数の乗場4の各々に配線されたシリアル通信配線に接続される。当該シリアル配線は、制御盤7に接続されている。 The communication unit 32 is capable of communicating with the control panel 7. For example, the communication unit 32 is an interface that electrically communicates with the control panel 7. Specifically, the communication unit 32 is connected to a serial communication wiring that is wired to each of the multiple landings 4 (not shown in FIG. 2). The serial wiring is connected to the control panel 7.
 指令部33は、かご6を停止させるための指令を制御盤7に通知し得る機器である。例えば、指令部33は、図示されない安全回路を遮断させる接点である。この場合、指令部33は、図示されないピットスイッチに電気的に接続される。また、例えば、指令部33は、制御盤7に指令を送信するインターフェースである。なお、指令部33の機能は、通信部32に含まれてもよい。 The command unit 33 is a device that can notify the control panel 7 of a command to stop the car 6. For example, the command unit 33 is a contact that cuts off a safety circuit (not shown). In this case, the command unit 33 is electrically connected to a pit switch (not shown). Also, for example, the command unit 33 is an interface that transmits commands to the control panel 7. The functions of the command unit 33 may be included in the communication unit 32.
 演算部34は、乗場側の演算部として、電波部31で受信した電波および通信部32で受信した情報に基づく演算を行う。演算部34は、乗場側装置30が行う各判定の演算を行う。例えば、演算部34は、メモリとプロセッサとを有するマイクロコンピュータである。演算部34には、演算に必要な情報が格納される。演算部34は、指令部33の動作を制御可能である。演算部34の機能は、プロセッサがメモリに格納されたプログラムを実行することで実現される。 The calculation unit 34, as the hall-side calculation unit, performs calculations based on the radio waves received by the radio wave unit 31 and the information received by the communication unit 32. The calculation unit 34 performs calculations for each determination made by the hall-side device 30. For example, the calculation unit 34 is a microcomputer having a memory and a processor. The calculation unit 34 stores information necessary for the calculations. The calculation unit 34 is capable of controlling the operation of the command unit 33. The functions of the calculation unit 34 are realized when the processor executes a program stored in the memory.
 人側装置40は、電波部41と報知部42とを備える。電波部41は、人側の電波部として、電波の発信および受信を行う。例えば、電波部41は、1以上のアンテナとアンテナの制御装置とを含む。電波部41は、電波部21および電波部31と同様に、Bluetooth(登録商標)の規格に準拠し、BLE技術を利用して電波の発信、電波の受信、およびその制御を行う。報知部42は、人に情報を報知可能である。例えば、報知部42には、音を発するスピーカーとスピーカーの制御装置とが含まれる。例えば、報知部42は、電波部41が受信した電波に基づいて音を発する。 The human-side device 40 includes a radio wave unit 41 and an alarm unit 42. The radio wave unit 41 transmits and receives radio waves as the human-side radio wave unit. For example, the radio wave unit 41 includes one or more antennas and an antenna control device. Like the radio wave units 21 and 31, the radio wave unit 41 conforms to the Bluetooth (registered trademark) standard and transmits, receives, and controls radio waves using BLE technology. The alarm unit 42 is capable of notifying the person of information. For example, the alarm unit 42 includes a speaker that emits sound and a speaker control device. For example, the alarm unit 42 emits sound based on the radio waves received by the radio wave unit 41.
 なお、電波部21と電波部31と電波部41とは、AoAと呼ばれる方法ではなく、別の電波の測角方法に基づいて、電波を発信する機器が存在する方向を検出してもよい。具体的には、例えば、電波部21と電波部31と電波部41とは、AoD(Angle of Departure)と呼ばれる電波の測角技術に基づいて動作してもよい。 Note that radio wave unit 21, radio wave unit 31, and radio wave unit 41 may detect the direction in which a device transmitting radio waves is located based on a different radio wave angle measurement method rather than the method known as AoA. Specifically, for example, radio wave unit 21, radio wave unit 31, and radio wave unit 41 may operate based on a radio wave angle measurement technology known as AoD (Angle of Departure).
 AoDと呼ばれる測角技術が採用される場合、電波部41には、複数のアンテナが含まれる。電波部41は、複数のアンテナにそれぞれ対応する複数の人側電波を発信する。電波部21と電波部31とは、それぞれ少なくとも1つのアンテナを含めばよい。電波部21は、複数の人側電波の間における位相の違いを検出することで、人側電波が発信された方向である人側装置40が存在する方向を検出する。電波部31は、電波部21と同様に人側装置40が存在する方向を検出する。 When an angle measurement technology called AoD is adopted, the radio wave unit 41 includes multiple antennas. The radio wave unit 41 transmits multiple human-side radio waves that correspond to the multiple antennas. Each of the radio wave units 21 and 31 needs to include at least one antenna. The radio wave unit 21 detects the phase difference between the multiple human-side radio waves, thereby detecting the direction in which the human-side device 40 is located, which is the direction from which the human-side radio waves are transmitted. The radio wave unit 31 detects the direction in which the human-side device 40 is located, in the same way as the radio wave unit 21.
 次に、図3を用いて、安全システム10の第1動作を説明する。
 図3は実施の形態1における安全システムの概要を示す図である。
Next, a first operation of the safety system 10 will be described with reference to FIG.
FIG. 3 is a diagram showing an outline of the safety system according to the first embodiment.
 図3に示されるように、第1動作において、かご側装置20は、人Hの頭の頂部とかご6のうち最も下方に存在する部分との距離Yを演算する。以降では、人側装置40の高さ位置が人Hの頭の頂部の高さ位置とみなされる。かご側装置20の高さ位置がかご6のうち最も下方に存在する部分の高さ位置とみなされる。即ち、距離Yは、人側装置40とかご底面6aとの距離である。 As shown in FIG. 3, in the first operation, the car-side device 20 calculates the distance Y between the top of person H's head and the lowest part of the car 6. Thereafter, the height position of the person-side device 40 is regarded as the height position of the top of person H's head. The height position of the car-side device 20 is regarded as the height position of the lowest part of the car 6. In other words, the distance Y is the distance between the person-side device 40 and the car bottom surface 6a.
 かご側装置20は、人側装置40から発信された人側電波を受信する。かご側装置20は、人側電波の受信強度に基づいてかご側装置20と人側装置40との距離Xを演算する。 The car-side device 20 receives the human-side radio waves transmitted from the human-side device 40. The car-side device 20 calculates the distance X between the car-side device 20 and the human-side device 40 based on the reception strength of the human-side radio waves.
 かご側装置20は、受信した人側電波に基づいて、人側装置40が存在する方向を検出する。かご側装置20は、人側装置40が存在する方向に基づいて、かご底面6aに対して人側装置40が存在する受信角度θを検出する。受信角度θは、かご側装置20から人側装置40までを結ぶ線分と基準面であるかご底面6aとがなす角度である。もしくは、受信角度θは、かご側装置20を原点とし、かご底面6aを基準面としたときの、人側装置40の仰角である。 The car-side device 20 detects the direction in which the human-side device 40 is located based on the received human-side radio waves. The car-side device 20 detects the reception angle θ at which the human-side device 40 is located relative to the car bottom surface 6a based on the direction in which the human-side device 40 is located. The reception angle θ is the angle between the line segment connecting the car-side device 20 to the human-side device 40 and the car bottom surface 6a, which is a reference plane. Alternatively, the reception angle θ is the elevation angle of the human-side device 40 when the car-side device 20 is the origin and the car bottom surface 6a is the reference plane.
 かご側装置20は、以下の(1)式に基づいて、演算した距離Xおよび受信角度θから距離Yを演算する。(1)式は、図2に示されるような幾何学的な関係から導出される。
Y=X*sinθ   (1)
The car side device 20 calculates the distance Y from the calculated distance X and the receiving angle θ based on the following formula (1): Formula (1) is derived from the geometric relationship shown in FIG.
Y = X * sin θ (1)
 かご側装置20は、演算した距離Yが規定の閾値距離よりも小さいか否かを判定する。かご側装置20は、距離Yが規定の閾値距離以上であると判定した場合、人Hの安全性が確保されていると判断し、特に動作を行わない。なお、かご側装置20は、演算した距離Yを示す情報を人側装置40に音声等によって報知させてもよい。 The car side device 20 determines whether the calculated distance Y is smaller than a specified threshold distance. If the car side device 20 determines that the distance Y is equal to or greater than the specified threshold distance, it determines that the safety of person H is ensured and takes no particular action. Note that the car side device 20 may notify the person side device 40 of information indicating the calculated distance Y by voice or the like.
 かご側装置20は、距離Yが規定の閾値距離よりも小さいと判定した場合、かご6を停止させる指令を示すかご側電波を発信する。乗場側装置30は、当該かご側電波を受信する。この場合、乗場側装置30は、制御盤7に対してかご6を停止させる動作を行う。制御盤7は、かご6を停止させる。なお、人側装置40は、当該かご側電波を受信した場合、危険を知らせる旨を音声等によって報知してもよい。 When the car-side device 20 determines that the distance Y is less than the specified threshold distance, it transmits a car-side radio wave indicating a command to stop the car 6. The hall-side device 30 receives the car-side radio wave. In this case, the hall-side device 30 instructs the control panel 7 to stop the car 6. The control panel 7 stops the car 6. When the person-side device 40 receives the car-side radio wave, it may issue a warning of danger by voice or the like.
 次に、図4と図5とを用いて安全システムの第2動作を説明する。
 図4は実施の形態1における安全システムの概要を示す図である。図5は実施の形態1における安全システムの第2動作の概要を説明するためのフローチャートである。
Next, a second operation of the safety system will be described with reference to FIGS.
Fig. 4 is a diagram showing an outline of the safety system in the embodiment 1. Fig. 5 is a flowchart for explaining an outline of a second operation of the safety system in the embodiment 1.
 第2動作において、かご側装置20は、第1動作で演算した距離Xを補正した距離X´を演算する。かご側装置20は、距離Xの代わりに距離X´を使用する。即ち、かご側装置20は、(1)式に基づいて、距離X´と受信角度θとから距離Yを演算する。距離Xの補正は、いくつかの手法のうちの1つに基づいて実行される。 In the second operation, the car side device 20 calculates the distance X' by correcting the distance X calculated in the first operation. The car side device 20 uses the distance X' instead of the distance X. That is, the car side device 20 calculates the distance Y from the distance X' and the receiving angle θ based on the formula (1). The correction of the distance X is performed based on one of several methods.
 補正の手法の一例において、距離Xは、検出部22である加速度センサの測定値に基づいて補正される。当該補正を行う際、かご側装置20は、乗場側装置30からの乗場側電波の受信強度の情報を併せて用いる。 In one example of a correction method, the distance X is corrected based on the measurement value of the acceleration sensor, which is the detection unit 22. When making this correction, the car-side device 20 also uses information on the reception strength of the hall-side radio waves from the hall-side device 30.
 具体的には、かご側装置20は、乗場側電波の受信強度に基づいて、かご6の最も下方に存在する部分と最下階の乗場床5aとの第1距離Aを演算する。第1距離Aは、電波の受信強度に基づく距離である。なお、かご6の最も下方に存在する部分と最下階の乗場床5aとの距離は、かご側装置20の高さ位置と乗場側装置30の高さ位置との差と同じ値であるみなされ得る。第1距離Aが演算される際、かご6の最も下方に存在する部分とかご側装置20との距離が用いられてもよい。第1距離Aが演算される際、乗場床5aと乗場側装置30との距離が用いられてもよい。 Specifically, the car side device 20 calculates a first distance A between the lowest part of the car 6 and the lowest landing floor 5a based on the reception strength of the landing side radio waves. The first distance A is a distance based on the reception strength of the radio waves. The distance between the lowest part of the car 6 and the lowest landing floor 5a can be considered to be the same value as the difference between the height position of the car side device 20 and the height position of the landing side device 30. When calculating the first distance A, the distance between the lowest part of the car 6 and the car side device 20 may be used. When calculating the first distance A, the distance between the landing floor 5a and the landing side device 30 may be used.
 かご側装置20の検出部22は、かご6の昇降方向の加速度を常時測定する。かご側装置20は、加速度の測定値を時間積分することで、かご側装置20の移動速度およびかご側装置20の移動距離を演算する。即ち、かご側装置20は、かご6の高さ位置を演算する。かご側装置20は、移動距離に基づいて、かご6の最も下方に存在する部分と乗場床5aとの第2距離Bを演算する。第2距離Bは、加速度に基づく距離である。なお、第2距離Bは、第1距離Aと同様に、かご側装置20の高さ位置と乗場側装置30の高さ位置との差と同じ値であるみなされ得る。 The detection unit 22 of the car side device 20 constantly measures the acceleration in the ascending and descending direction of the car 6. The car side device 20 calculates the moving speed and moving distance of the car side device 20 by integrating the measured acceleration value over time. That is, the car side device 20 calculates the height position of the car 6. The car side device 20 calculates a second distance B between the lowermost part of the car 6 and the landing floor 5a based on the moving distance. The second distance B is a distance based on the acceleration. Note that the second distance B can be considered to be the same value as the difference between the height position of the car side device 20 and the height position of the landing side device 30, similar to the first distance A.
 補正の手法の一例において、かご側装置20は、かご6の移動速度が0であり、かつ第1距離Aが0である場合に、かご6が最下階乗場4aに停止したと判定する。この場合、かご側装置20は、加速度に基づく第2距離Bを0に再設定する。かご側装置20は、かご6の移動速度が0であり、かつ第1距離Aが最下階乗場4aから上階乗場4bまでの距離である場合に、かご6が上階乗場4bに停止したと判定する。この場合、かご側装置20は、加速度に基づく第2距離Bを最下階乗場4aから上階乗場4bまでの距離に再設定する。最下階乗場4aから上階乗場4bまでの距離は、建築物ごとに設定されて、かご側装置20に記憶されている。例えば、当該距離は、4mと設定されている。 In one example of a correction method, the car side device 20 determines that the car 6 has stopped at the lowest floor boarding point 4a when the moving speed of the car 6 is 0 and the first distance A is 0. In this case, the car side device 20 resets the second distance B based on the acceleration to 0. In the case where the moving speed of the car 6 is 0 and the first distance A is the distance from the lowest floor boarding point 4a to the upper floor boarding point 4b, the car side device 20 determines that the car 6 has stopped at the upper floor boarding point 4b. In this case, the car side device 20 resets the second distance B based on the acceleration to the distance from the lowest floor boarding point 4a to the upper floor boarding point 4b. The distance from the lowest floor boarding point 4a to the upper floor boarding point 4b is set for each building and stored in the car side device 20. For example, the distance is set to 4 m.
 かご側装置20は、以下の(2)式に基づいて、距離X、第1距離Aおよび第2距離Bから補正後の距離X´を演算する。
X´=X*B/A   (2)
The car side device 20 calculates the corrected distance X′ from the distance X, the first distance A, and the second distance B based on the following equation (2).
X'=X*B/A (2)
 その後、かご側装置20は、距離X´に基づいて距離Yを演算し、第1動作と同様の動作を行う。即ち、第1距離Aおよび第2距離Bに基づいて、距離Yの補正が行われる。 Then, the car side device 20 calculates the distance Y based on the distance X' and performs an operation similar to the first operation. That is, the distance Y is corrected based on the first distance A and the second distance B.
 図5に示されるフローチャートは、任意のタイミングで開始される。なお、当該フローチャートにおいて、かご6は最下階乗場4aおよび上階乗場4bのいずれにも停止していない状態である。 The flowchart shown in FIG. 5 can be started at any time. In this flowchart, the car 6 is not stopped at either the lowest floor landing 4a or the upper floor landing 4b.
 ステップS001において、人側装置40は、人側電波を発信する。かご側装置20は、人側電波を受信する。 In step S001, the person-side device 40 transmits person-side radio waves. The car-side device 20 receives the person-side radio waves.
 その後、ステップS002の動作が行われる。ステップS002において、かご側装置20は、人側電波の受信強度に基づいて距離Xを演算する。かご側装置20は、受信角度θを演算する。 Then, the operation of step S002 is performed. In step S002, the car side device 20 calculates the distance X based on the reception strength of the person-side radio wave. The car side device 20 calculates the reception angle θ.
 その後、ステップS003の動作が行われる。ステップS003において、かご側装置20は、乗場側電波を受信する。かご側装置20は、電波の受信強度に基づく第1距離Aを演算する。かご側装置20は、加速度に基づく第2距離Bを演算する。 Then, the operation of step S003 is performed. In step S003, the car side device 20 receives the hall side radio wave. The car side device 20 calculates the first distance A based on the reception strength of the radio wave. The car side device 20 calculates the second distance B based on the acceleration.
 その後、ステップS004の動作が行われる。ステップS004において、かご側装置20は、距離Xを第1距離Aおよび第2距離Bで補正した距離X´を演算する。 Then, the operation of step S004 is performed. In step S004, the car side device 20 calculates the distance X' by correcting the distance X with the first distance A and the second distance B.
 その後、ステップS005の動作が行われる。ステップS005において、かご側装置20は、距離Yを演算する。 Then, the operation of step S005 is performed. In step S005, the car side device 20 calculates the distance Y.
 その後、ステップS006の動作が行われる。ステップS006において、かご側装置20は、距離Yが規定の閾値距離よりも小さいか否かを判定する。 Then, the operation of step S006 is performed. In step S006, the car side device 20 determines whether the distance Y is smaller than a specified threshold distance.
 ステップS006で、距離Yが規定の閾値距離以上であると判定された場合、ステップS007の動作が行われる。ステップS007において、かご側装置20は、距離Yの値の情報を人側装置40に報知させる指令を送信する。人側装置40は、距離Yの値を音声によって人Hに報知する。 If it is determined in step S006 that the distance Y is equal to or greater than the specified threshold distance, the operation of step S007 is performed. In step S007, the car-side device 20 transmits a command to notify the person-side device 40 of the value of the distance Y. The person-side device 40 notifies the person H of the value of the distance Y by voice.
 その後、フローチャートの動作が終了される。 Then, the operation of the flowchart ends.
 ステップS006で、距離Yが規定の閾値距離よりも小さいと判定された場合、ステップS008の動作が行われる。ステップS008において、かご側装置20は、かご6を停止させる指令を示すかご側電波を発信する。乗場側装置30は、当該かご側電波に基づいて、かご6を停止させる動作を行う。人側装置40は、当該かご側電波に基づいて、危険を知らせる旨を報知する。 If it is determined in step S006 that the distance Y is less than the specified threshold distance, the operation of step S008 is performed. In step S008, the car-side device 20 transmits a car-side radio wave indicating a command to stop the car 6. The hall-side device 30 performs an operation to stop the car 6 based on the car-side radio wave. The person-side device 40 issues a warning of a danger based on the car-side radio wave.
 その後、フローチャートの動作が終了される。 Then, the operation of the flowchart ends.
 なお、乗場側装置30によってかご6が停止された後、かご6は、人H等の作業員によって運転を再開する作業が行われる。 After the car 6 is stopped by the hall-side device 30, the car 6 is restarted by a worker such as person H.
 なお、第1動作では、図5のフローチャートにおけるステップS003およびS004が省略され、ステップS002の後にステップS005の動作が行われる。 In the first operation, steps S003 and S004 in the flowchart of FIG. 5 are omitted, and the operation of step S005 is performed after step S002.
 以上で説明した実施の形態1によれば、安全システム10は、かご側装置20と乗場側装置30と人側装置40とを備える。かご側装置20は、かご6と人Hとの距離を演算する。かご6と人Hとの距離が閾値距離よりも短いと判定された場合、乗場側装置30は、制御盤7にかご6を停止させる動作を行う。この際、人H以外の監視員等の監視は不要である。このため、昇降路2の内部に存在する人Hの安全を容易に管理することができる。 According to the above-described embodiment 1, the safety system 10 includes a car-side device 20, a hall-side device 30, and a person-side device 40. The car-side device 20 calculates the distance between the car 6 and the person H. If it is determined that the distance between the car 6 and the person H is shorter than the threshold distance, the hall-side device 30 causes the control panel 7 to stop the car 6. At this time, there is no need for monitoring by a monitor or the like other than the person H. This makes it easy to manage the safety of the person H inside the elevator 2.
 さらに、従来のように、監視員等がピット2aに存在する人を監視しながら作業が行われる場合、監視員等と当該人とが連絡を取り合いながら作業が行われる必要があった。このため、当該作業の作業性が低下していた。本実施の形態によれば、安全管理のための連絡を取ることが不要となるため、作業性が低下することを抑制することができる。 Furthermore, as in the past, when work was carried out while a supervisor or the like was monitoring a person in the pit 2a, the supervisor or the like and the person in question had to communicate with each other while the work was being carried out. This reduced the workability of the work. According to this embodiment, there is no need to communicate for safety management, so the reduction in workability can be suppressed.
 なお、かご側装置20が行う演算および判定の処理は、乗場側装置30によって代わりに行われてもよい。この場合、かご側装置20は、人側電波の受信強度および位相の差の情報を示すかご側電波を乗場側装置30に発信してもよい。または、かご側装置20は、距離Xと受信角度θとの演算までを行い、距離Xと受信角度θとの値を示すかご側電波を乗場側装置30に発信してもよい。乗場側装置30は、受信したかご側電波に基づいて必要な演算および判定を行ってもよい。 The calculation and judgment processes performed by the car side device 20 may be performed by the hall side device 30 instead. In this case, the car side device 20 may transmit car side radio waves indicating information on the reception strength and phase difference of the person side radio waves to the hall side device 30. Alternatively, the car side device 20 may perform calculations up to the distance X and reception angle θ, and transmit car side radio waves indicating the values of the distance X and reception angle θ to the hall side device 30. The hall side device 30 may perform the necessary calculations and judgments based on the received car side radio waves.
 また、かご側装置20は、加速度を測定する。安全システム10において、当該加速度の測定値に基づいて演算されたかご6の高さ位置とかご側装置20が受信した乗場側電波の受信強度とに基づいて、かご6と人Hとの距離Xが距離X´に補正される。この際、距離Xは、第1距離Aと第2距離Bとの比に基づいて距離X´に補正される。即ち、距離Yが第1距離Aと第2距離Bと基づいて補正される。このため、かご6と人Hとの距離をより正確に演算することができる。具体的には、第1距離と第2距離との比を用いて、当該距離を演算する。その結果、安全システム10の安全性を向上させることができる。 The car side device 20 also measures acceleration. In the safety system 10, the distance X between the car 6 and the person H is corrected to distance X' based on the height position of the car 6 calculated based on the measured acceleration value and the reception strength of the hall side radio wave received by the car side device 20. At this time, the distance X is corrected to distance X' based on the ratio of the first distance A to the second distance B. In other words, the distance Y is corrected based on the first distance A to the second distance B. This makes it possible to calculate the distance between the car 6 and the person H more accurately. Specifically, the distance is calculated using the ratio of the first distance to the second distance. As a result, the safety of the safety system 10 can be improved.
 また、人側装置40は、かご6と人Hとの距離の値を人Hに報知する。このため、人Hは、報知された距離に応じて安全管理を行うことができる。 The human-side device 40 also notifies the person H of the distance between the car 6 and the person H. This allows the person H to perform safety management according to the notified distance.
 また、かご側装置20は、かご底面6aに取り付けられる。乗場側装置30は、最下階の乗場床5aと同じ高さに取り付けられる。人側装置40は、人Hの頭の頂部に取り付けられる。この場合、かご側装置20からかご側電波が発信される位置が、かご6の最も下方に存在する部分の位置に対応する。乗場側装置30が電波を受信する位置および乗場側電波が発信される位置が、乗場床5aの高さ位置に対応する。人側装置40から人側電波が発信される位置が、人Hの最も上方に存在する部分の位置に対応する。このため、安全システム10において、追加の演算を行うことなく、かご6の最も下方に存在する部分の位置、乗場床5aの高さ位置および人Hの最も上方に存在する部分の位置が正確に把握されることができる。その結果、人Hの安全性をさらに向上させることができる。 The car-side device 20 is attached to the bottom surface 6a of the car. The platform-side device 30 is attached at the same height as the lowest floor platform floor 5a. The person-side device 40 is attached to the top of the head of the person H. In this case, the position from which the car-side radio waves are transmitted from the car-side device 20 corresponds to the position of the lowest part of the car 6. The position from which the platform-side device 30 receives radio waves and the position from which the platform-side radio waves are transmitted correspond to the height position of the platform floor 5a. The position from which the person-side device 40 transmits the person-side radio waves corresponds to the position of the highest part of the person H. Therefore, in the safety system 10, the position of the lowest part of the car 6, the height position of the platform floor 5a, and the position of the highest part of the person H can be accurately grasped without performing additional calculations. As a result, the safety of the person H can be further improved.
 さらに、安全システム10において、かご側装置20と乗場側装置30と人側装置40と発信および受信する電波によって各動作が実行される。このため、安全システム10は、既存の設備に後付けで実装されることが可能である。その結果、幅広い種類、型式のエレベーターに適用されることができる。 Furthermore, in the safety system 10, each operation is carried out by radio waves transmitted and received by the car-side device 20, hall-side device 30, and person-side device 40. For this reason, the safety system 10 can be retrofitted to existing equipment. As a result, it can be applied to a wide variety and types of elevators.
 なお、安全システム10は、機械室がなく、制御盤7が昇降路2の下部または上部に設けられているエレベーターシステム1に適用されてもよい。 The safety system 10 may also be applied to an elevator system 1 that does not have a machine room and in which the control panel 7 is located at the bottom or top of the elevator shaft 2.
 なお、安全システム10において、かご側装置20が行う演算処理は、乗場側装置30によって演算されてもよい。また、乗場側装置30が行う演算処理は、かご側装置20によって演算されてもよい。いずれの場合においても、かご側装置20と乗場側装置30とは、必要な情報を示す電波を発信または受信することで、互いに情報を提供する。 In the safety system 10, the calculation processing performed by the car side device 20 may be calculated by the hall side device 30. Also, the calculation processing performed by the hall side device 30 may be calculated by the car side device 20. In either case, the car side device 20 and the hall side device 30 provide information to each other by transmitting or receiving radio waves indicating the necessary information.
 次に、図6を用いて、安全システム10の第2動作で適用される、補正の手法の別の例を説明する。
 図6は実施の形態1における安全システムの概要を示す図である。
Next, another example of a correction technique applied in the second operation of the safety system 10 will be described with reference to FIG.
FIG. 6 is a diagram showing an outline of the safety system according to the first embodiment.
 図6に示される別の例において、一例における第2距離Bではなく、かご6の運行情報に基づく第3距離B´が距離Xの補正に用いられる。例えば、かご6の運行情報は、図示されないガバナエンコーダ等からの信号に基づいて制御盤7によって作成される。 In another example shown in FIG. 6, a third distance B' based on the operation information of car 6 is used to correct distance X, instead of the second distance B in the first example. For example, the operation information of car 6 is generated by control panel 7 based on a signal from a governor encoder or the like (not shown).
 別の例において、乗場側装置30は、制御盤7からかご6の高さ位置の情報を取得する。乗場側装置30は、かご6の高さ位置の情報を示す乗場側電波をかご側装置20に発信する。かご側装置20は、当該乗場側電波に示されるかご6の高さ位置に基づいて、かご6の最も下方の部分と最下階の乗場床5aとの第3距離B´を演算する。 In another example, the hall side device 30 acquires information on the height position of the car 6 from the control panel 7. The hall side device 30 transmits hall side radio waves indicating the information on the height position of the car 6 to the car side device 20. The car side device 20 calculates a third distance B' between the lowermost part of the car 6 and the lowest landing floor 5a based on the height position of the car 6 indicated in the hall side radio waves.
 かご側装置20は、第2距離Bの代わりに第3距離B´を用いて、距離Xを補正した距離X´を演算する。このため、距離Yは、第3距離B´に基づいて補正される。 The car side device 20 calculates the distance X' by correcting the distance X using the third distance B' instead of the second distance B. Therefore, the distance Y is corrected based on the third distance B'.
 以上で説明した実施の形態1の別の例によれば、乗場側装置30は、制御盤7から取得したかご6の高さ位置の情報を取得する。安全システム10において、制御盤7から取得されたかご6の高さ位置とかご側装置20が受信した乗場側電波の受信強度とに基づいて、かご6と人Hとの距離Xが距離X´に補正される。このため、かご6と人Hとの距離をより正確に演算することができる。 According to another example of the first embodiment described above, the hall-side device 30 acquires information on the height position of the car 6 from the control panel 7. In the safety system 10, the distance X between the car 6 and the person H is corrected to distance X' based on the height position of the car 6 acquired from the control panel 7 and the reception strength of the hall-side radio wave received by the car-side device 20. This makes it possible to more accurately calculate the distance between the car 6 and the person H.
実施の形態2.
 図7は実施の形態2における安全システムの概要を示す図である。図8は実施の形態2における安全システムの動作のフローチャートを示す図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
Fig. 7 is a diagram showing an overview of the safety system in the embodiment 2. Fig. 8 is a diagram showing a flowchart of the operation of the safety system in the embodiment 2. Note that the same reference numerals are used to designate parts that are the same as or equivalent to those in the embodiment 1. Explanation of these parts will be omitted.
 図7に示されるように、乗場側装置30は、人側電波に基づいて、人側装置40が存在する方向として受信角度λを演算する。乗場側装置30は、受信角度λに基づいて、人側装置40が最下階の乗場床5aよりも低い位置に存在するか否かを判定する。 As shown in FIG. 7, the hall-side device 30 calculates the reception angle λ as the direction in which the human-side device 40 is located based on the human-side radio wave. The hall-side device 30 determines whether the human-side device 40 is located at a position lower than the lowest hall floor 5a based on the reception angle λ.
 具体的には、乗場側装置30は、人側装置40が存在する方向に基づいて、乗場側装置30を含む平面であって水平方向に垂直な平面を基準面としたときの人側装置40の仰角である受信角度λを演算する。なお、受信角度λは、鉛直方向を向き乗場側装置30を通る基準軸に対して乗場側装置30と人側装置40とを結ぶ線分がなす角としても定義され得る。 Specifically, the hall-side device 30 calculates the reception angle λ, which is the elevation angle of the human-side device 40 when a plane including the hall-side device 30 and perpendicular to the horizontal direction is used as a reference plane based on the direction in which the human-side device 40 is located. Note that the reception angle λ can also be defined as the angle formed by a line segment connecting the hall-side device 30 and the human-side device 40 with a reference axis that faces vertically and passes through the hall-side device 30.
 乗場側装置30は、受信角度λが90°よりも小さいか否かを判定する。乗場側装置30は、受信角度λが90°よりも小さいと判定した場合、人側装置40の位置である人Hの位置が自身よりも低い位置、即ち最下階の乗場床5aよりも低い位置に存在すると判定する。乗場側装置30は、受信角度λが90°以上であると判定した場合、人側装置40の位置である人Hの位置が最下階の乗場床5aと同じ高さもしくは乗場床5aよりも高い位置に存在すると判定する。ここで、乗場側装置30は、人側装置40の位置を人Hの頭の頂部の高さ位置とみなしてもよい。または、乗場側装置30は、人側装置40の位置から人Hの頭の頂部の高さ位置を演算してもよい。 The landing-side device 30 judges whether the receiving angle λ is smaller than 90°. If the landing-side device 30 judges that the receiving angle λ is smaller than 90°, it judges that the position of person H, which is the position of the person-side device 40, is lower than itself, i.e., lower than the landing floor 5a of the lowest floor. If the landing-side device 30 judges that the receiving angle λ is 90° or more, it judges that the position of person H, which is the position of person-side device 40, is at the same height as the landing floor 5a of the lowest floor or higher than the landing floor 5a. Here, the landing-side device 30 may consider the position of the person-side device 40 to be the height position of the top of person H's head. Alternatively, the landing-side device 30 may calculate the height position of the top of person H's head from the position of the person-side device 40.
 乗場側装置30は、受信角度λが90°以上であると判定した場合、制御盤7に対して通常の運行速度よりも遅い低速で運行する指令を送信する。 If the hall-side device 30 determines that the reception angle λ is 90° or greater, it sends a command to the control panel 7 to operate the vehicle at a speed slower than the normal operating speed.
 乗場側装置30は、受信角度λが90°よりも小さいと判定した場合、制御盤7に対して通常の運行速度で運行してもよい指令を送信する。安全管理上、かご6は、降下移動している場合に最下階の乗場床5aに到達した場合、いったん停止するように制御される。このため、人側装置40が最下階の乗場床5aよりも低い位置に存在する場合、かご6が通常の運行速度で運行されたとしても、ピット2aに存在する人Hの安全が確保され得る。 If the landing side device 30 determines that the receiving angle λ is less than 90°, it sends a command to the control panel 7 to operate at the normal operating speed. For safety management reasons, the car 6 is controlled to stop once it reaches the lowest landing floor 5a while descending. Therefore, if the person-side device 40 is located at a position lower than the lowest landing floor 5a, the safety of people H present in the pit 2a can be ensured even if the car 6 operates at the normal operating speed.
 図8に示されるフローチャートは、任意のタイミングで開始される。 The flowchart shown in FIG. 8 can be started at any time.
 ステップS101において、人側装置40は、人側電波を発信する。乗場側装置30は、人側電波を受信する。 In step S101, the person-side device 40 transmits person-side radio waves. The hall-side device 30 receives the person-side radio waves.
 その後、ステップS102の動作が行われる。ステップS102において、乗場側装置30は、受信角度λを演算する。 Then, the operation of step S102 is performed. In step S102, the hall-side device 30 calculates the reception angle λ.
 その後、ステップS103の動作が行われる。ステップS103において、乗場側装置30は、受信角度λが90°より小さいか否かを判定する。 Then, the operation of step S103 is performed. In step S103, the hall-side device 30 determines whether the reception angle λ is less than 90°.
 ステップS103で、受信角度λが90°より小さいと判定された場合、ステップS104の動作が行われる。ステップS104において、乗場側装置30は、制御盤7に対して通常の運行速度で運行してもよい指令を送信する。なお、ステップS104において、乗場側装置30は、当該指令を送信せずに終了してもよい。 If it is determined in step S103 that the reception angle λ is less than 90°, the operation of step S104 is performed. In step S104, the hall-side device 30 transmits a command to the control panel 7 to operate at the normal operating speed. Note that in step S104, the hall-side device 30 may end the process without transmitting the command.
 その後、フローチャートの動作が終了される。 Then, the operation of the flowchart ends.
 ステップS103で、受信角度λが90°以上であると判定された場合、ステップS105の動作が行われる。ステップS105において、乗場側装置30は、制御盤7に対して通常の運行速度よりも遅い低速で運行する指令を送信する。 If it is determined in step S103 that the reception angle λ is 90° or more, the operation of step S105 is performed. In step S105, the hall-side device 30 sends a command to the control panel 7 to operate at a speed slower than the normal operating speed.
 その後、フローチャートの動作が終了される。 Then, the operation of the flowchart ends.
 以上で説明した実施の形態2によれば、乗場側装置30は、人側電波の受信角度に応じてかご6の運行速度に関する指令を制御盤7に送信する。具体的には、従来、ピット2aで作業が行われる場合、かご6は、通常の運行速度よりも遅い低速で運行されていた。本実施の形態では、人Hが乗場床5aよりも低い位置に存在する場合、安全が確保されているため、かご6は、通常の運行速度で運行され得る。このため、保守作業の作業効率が低下することを抑制することができる。即ち、安全システム10において、保守の作業性を悪化させることなく人Hの安全が確保され得る。 According to the above-described embodiment 2, the hall-side device 30 transmits a command to the control panel 7 regarding the operating speed of the car 6 according to the receiving angle of the person-side radio waves. Specifically, conventionally, when work was performed in the pit 2a, the car 6 operated at a speed slower than the normal operating speed. In this embodiment, when the person H is at a position lower than the hall floor 5a, safety is ensured and the car 6 can operate at the normal operating speed. This makes it possible to prevent a decrease in the efficiency of maintenance work. In other words, in the safety system 10, the safety of the person H can be ensured without deteriorating the ease of maintenance work.
 なお、乗場側装置30は、受信角度λの代わりに、乗場側装置30を含む水平面を基準面とする人側装置40の仰角である受信角度λ´に基づいて、人側装置40が乗場側装置30よりも低い位置に存在するか否かを判定してもよい。この場合、受信角度λ´と受信角度λとの間には、以下の(3)式の関係が成立する。
λ´=90°-λ   (3)
The hall-side device 30 may determine whether the human-side device 40 is located lower than the hall-side device 30 based on a reception angle λ', which is an elevation angle of the human-side device 40 with respect to a horizontal plane including the hall-side device 30 as a reference plane, instead of the reception angle λ. In this case, the relationship of the following formula (3) is established between the reception angle λ' and the reception angle λ.
λ' = 90° - λ (3)
実施の形態3.
 図9は実施の形態3における安全システムの概要を示す図である。なお、実施の形態1または実施の形態2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 3.
9 is a diagram showing an outline of a safety system in embodiment 3. Note that the same reference numerals are used to designate parts that are the same as or correspond to parts in embodiment 1 or embodiment 2. Description of these parts will be omitted.
 図9に示されるように、実施の形態3において、乗場側装置30は、かご側装置20から受信角度θの値を示す電波を受信する。乗場側装置30は、受信角度θと受信角度λとを用いて、人側装置40の高さ位置を演算する。図9に示されるように、受信角度θと受信角度λとに基づけば、幾何学的な関係から、人側装置40の高さ位置が一意に演算され得る。 As shown in FIG. 9, in the third embodiment, the hall-side device 30 receives radio waves indicating the value of the receiving angle θ from the car-side device 20. The hall-side device 30 calculates the height position of the person-side device 40 using the receiving angle θ and the receiving angle λ. As shown in FIG. 9, based on the receiving angle θ and the receiving angle λ, the height position of the person-side device 40 can be uniquely calculated from the geometric relationship.
 乗場側装置30は、制御盤7から、かご6の昇降方向、かご6の高さ位置およびかご6の昇降速度を含む運行情報を取得する。乗場側装置30は、運行情報と人側装置40の高さ位置の情報とに基づいて、かご6が移動を継続した場合にかご6と人Hとが接触するまでの猶予時間を演算する。具体的には、乗場側装置30は、かご6の高さ位置と人側装置40の高さ位置とからかご底面6aと人Hとの距離を演算する。乗場側装置30は、かご底面6aと人Hとの距離をかご6の昇降速度で除算することで、かご6と人Hとが接触するまでの猶予時間を演算する。なお、当該演算において、かご6の昇降速度が一定値をとることが仮定されてもよい。 The hall-side device 30 acquires operation information from the control panel 7, including the direction of ascent and descent of the car 6, the height position of the car 6, and the ascent and descent speed of the car 6. Based on the operation information and the information on the height position of the person-side device 40, the hall-side device 30 calculates the grace period until the car 6 comes into contact with the person H if the car 6 continues to move. Specifically, the hall-side device 30 calculates the distance between the car bottom 6a and the person H from the height position of the car 6 and the height position of the person-side device 40. The hall-side device 30 calculates the grace period until the car 6 comes into contact with the person H by dividing the distance between the car bottom 6a and the person H by the ascent and descent speed of the car 6. Note that in this calculation, it may be assumed that the ascent and descent speed of the car 6 is a constant value.
 例えば、乗場側装置30は、猶予時間を示す乗場側電波を発信する。人側装置40は、猶予時間を示す乗場側電波を受信する。人側装置40は、当該乗場側電波に基づいて、音声によって猶予時間を人Hに報知することで、注意喚起を行う。 For example, the hall-side device 30 transmits hall-side radio waves indicating the grace period. The person-side device 40 receives hall-side radio waves indicating the grace period. The person-side device 40 alerts the person H of the grace period by audio based on the hall-side radio waves.
 また、乗場側装置30は、猶予時間が規定の閾値時間よりも短い場合に、かご6を停止させる動作を行ってもよい。 The hall side device 30 may also perform an operation to stop the car 6 if the grace period is shorter than a specified threshold period.
 なお、乗場側装置30ではなく、かご側装置20が同様の演算を行ってもよい。この場合、かご側装置20は、乗場側装置30から受信角度λの値を示す電波を受信する。 The car side device 20 may perform the same calculation instead of the hall side device 30. In this case, the car side device 20 receives radio waves indicating the value of the reception angle λ from the hall side device 30.
 以上で説明した実施の形態3によれば、かご側装置20または乗場側装置30は、受信角度θおよび受信角度λに基づいて、人Hが存在する高さ位置を演算する。この際、人側電波の受信強度の情報は用いられる必要がない。このため、かご側装置20および乗場側装置30が電波を受信する条件によっては、人Hが存在する高さ位置がより正確に演算されることができる。 According to the third embodiment described above, the car-side device 20 or the hall-side device 30 calculates the height position at which person H is present based on the reception angle θ and the reception angle λ. At this time, there is no need to use information on the reception strength of the person-side radio waves. Therefore, depending on the conditions under which the car-side device 20 and the hall-side device 30 receive the radio waves, the height position at which person H is present can be calculated more accurately.
 また、かご側装置20または乗場側装置30は、猶予時間を演算する。人側装置40は、猶予時間を人Hに報知する。このため、人Hに対して、かご6との接触の危険を喚起させることができる。その結果、安全性を向上させることができる。 Furthermore, the car-side device 20 or the hall-side device 30 calculates the grace period. The person-side device 40 notifies the person H of the grace period. This makes it possible to alert the person H to the risk of contact with the car 6. As a result, safety can be improved.
 以上のように、本開示に係る安全システムは、エレベーターシステムに利用できる。 As described above, the safety system disclosed herein can be used in elevator systems.
 1 エレベーターシステム、 2 昇降路、 2a ピット、 3 建築物、 4 乗場、 4a 最下階乗場、 4b 上階乗場、 5 乗場床、 5a 最下階の乗場床、 5b 2階の乗場床、 6 かご、 6a かご底面、 7 制御盤、 10 安全システム、 20 かご側装置、 21 電波部、 22 検出部、 23 演算部、 30 乗場側装置、 31 電波部、 32 通信部、 33 指令部、 34 演算部、 40 人側装置、 41 電波部、 42 報知部、 H 人 1. Elevator system, 2. Hoistway, 2a. Pit, 3. Building, 4. Landing, 4a. Lowest floor landing, 4b. Upper floor landing, 5. Landing floor, 5a. Lowest floor landing floor, 5b. Second floor landing floor, 6. Cage, 6a. Cage bottom, 7. Control panel, 10. Safety system, 20. Cage side device, 21. Radio wave unit, 22. Detection unit, 23. Calculation unit, 30. Landing side device, 31. Radio wave unit, 32. Communication unit, 33. Command unit, 34. Calculation unit, 40. Person side device, 41. Radio wave unit, 42. Notification unit, H. Person

Claims (9)

  1.  エレベーターのかごに取り付けられ、かご側電波を発信し、受信した電波の受信強度と受信角度とを検出するかご側装置と、
     前記エレベーターの昇降路の内部において、最下階乗場の高さ位置に取り付けられ、乗場側電波を発信し、受信した電波の受信強度と受信角度とを検出する乗場側装置と、
     前記昇降路の内部に存在する人に取り付けられ、人側電波を発信する人側装置と、
    を備え、
     前記かご側装置または前記乗場側装置は、前記かご側装置が受信した前記人側電波の受信強度と前記人側電波の受信角度とに基づいて、前記かごと前記人との距離が閾値距離よりも短いか否かを判定し、
     前記乗場側装置は、前記かごと前記人との距離が前記閾値距離よりも短いと判定された場合に前記エレベーターの制御盤に前記かごを停止させ、前記かごと前記人との距離が前記閾値距離と同じまたは前記閾値距離よりも長いと判定された場合に前記かごを停止させない安全システム。
    a car-side device attached to an elevator car, which transmits car-side radio waves and detects the reception strength and reception angle of the received radio waves;
    a hall-side device that is installed inside the elevator shaft at a height position of a lowest floor hall, the hall-side device transmitting hall-side radio waves and detecting a receiving strength and a receiving angle of the received radio waves;
    A human-side device that is attached to a person present inside the elevator and transmits human-side radio waves;
    Equipped with
    the car-side device or the hall-side device determines whether or not a distance between the car and the person is shorter than a threshold distance based on a reception strength of the person-side radio wave received by the car-side device and a reception angle of the person-side radio wave;
    The hall-side device is a safety system that causes the elevator control panel to stop the car when it is determined that the distance between the car and the person is shorter than the threshold distance, and does not stop the car when it is determined that the distance between the car and the person is the same as or longer than the threshold distance.
  2.  前記かご側装置は、加速度を測定し、測定した加速度に基づく前記かごの高さ位置を演算し、
     前記かご側装置または前記乗場側装置は、前記かご側装置が受信した前記乗場側電波の受信強度と前記かご側装置が演算した前記かごの高さ位置とに基づいて、前記かごと前記人との距離の値を補正する請求項1に記載の安全システム。
    The car side device measures acceleration, and calculates a height position of the car based on the measured acceleration,
    The safety system according to claim 1, wherein the car side device or the hall side device corrects a value of a distance between the car and the person based on a reception strength of the hall side radio wave received by the car side device and a height position of the car calculated by the car side device.
  3.  前記かご側装置または前記乗場側装置は、前記かご側装置が受信した前記乗場側電波の受信強度に基づいて前記かごと前記最下階乗場との第1距離を演算し、前記かご側装置によって演算された加速度に基づく前記かごの高さ位置に基づいて前記かごと前記最下階乗場との第2距離を演算し、前記第1距離と前記第2距離との比を用いて前記かごと前記人との距離の値を補正する請求項2に記載の安全システム。 The safety system according to claim 2, wherein the car side device or the platform side device calculates a first distance between the car and the lowest floor platform based on the reception strength of the platform side radio wave received by the car side device, calculates a second distance between the car and the lowest floor platform based on the height position of the car based on the acceleration calculated by the car side device, and corrects the value of the distance between the car and the person using the ratio between the first distance and the second distance.
  4.  前記かご側装置は、前記乗場側電波の受信強度に基づいて前記かごと前記最下階乗場との第1距離を演算し、
     前記乗場側装置は、前記制御盤から前記かごの高さ位置の情報を受信し、
     前記かご側装置または前記乗場側装置は、前記乗場側装置が前記制御盤から取得した前記かごの高さ位置の情報に基づいて前記かごと前記最下階乗場との第3距離を演算し、前記第1距離と前記第3距離とに基づいて前記かごと前記人との距離の値を補正する請求項1に記載の安全システム。
    The car side device calculates a first distance between the car and the lowest floor landing based on a reception strength of the landing side radio wave,
    The hall side device receives information on the height position of the car from the control panel,
    The safety system described in claim 1, wherein the car side device or the hall side device calculates a third distance between the car and the lowest floor hall based on information on the height position of the car obtained by the hall side device from the control panel, and corrects the value of the distance between the car and the person based on the first distance and the third distance.
  5.  前記人側装置は、前記かご側装置または前記乗場側装置に演算された前記かごと前記人との距離を前記人に報知する請求項1から請求項4のいずれか一項に記載の安全システム。 The safety system according to any one of claims 1 to 4, wherein the person-side device notifies the person of the distance between the car and the person calculated by the car-side device or the hall-side device.
  6.  前記乗場側装置は、
     前記人側電波の受信角度に基づいて前記人が前記最下階乗場の高さよりも低い位置に存在するか否かを判定し、
     前記人が前記最下階乗場の高さよりも低い位置に存在すると判定した場合に、前記制御盤に通常の運行速度で前記かごを運行させ、
     前記人が前記最下階乗場の高さと同じ位置または前記最下階乗場の高さよりも高い位置に存在すると判定した場合に、前記制御盤に前記通常の運行速度よりも遅い速度で前記かごを運行させる請求項1から請求項5のいずれか一項に記載の安全システム。
    The landing side device is
    determining whether the person is located at a position lower than the height of the lowest floor landing based on a reception angle of the person-side radio wave;
    When it is determined that the person is present at a position lower than the height of the lowest floor landing, the control panel is caused to operate the car at a normal operating speed;
    A safety system as described in any one of claims 1 to 5, wherein when it is determined that the person is present at a position equal to or higher than the height of the lowest floor landing, the control panel is caused to operate the car at a speed slower than the normal operating speed.
  7.  前記かご側装置または前記乗場側装置は、前記かご側装置が受信した前記人側電波の受信角度と前記乗場側装置が受信した前記電波の受信角度とに基づいて、前記人が存在する高さを演算する請求項1から請求項6のいずれか一項に記載の安全システム。 The safety system according to any one of claims 1 to 6, wherein the car-side device or the hall-side device calculates the height at which the person is present based on the reception angle of the person-side radio wave received by the car-side device and the reception angle of the radio wave received by the hall-side device.
  8.  前記かご側装置または前記乗場側装置は、前記制御盤によって演算された前記かごの高さ位置および前記かごの昇降速度が含まれる運行情報と前記人が存在する高さの情報とに基づいて、前記かごが前記人に接触するまでの猶予時間を演算し、
     前記人側装置は、演算された前記猶予時間を前記人に報知する請求項7に記載の安全システム。
    The car-side device or the hall-side device calculates a grace period until the car contacts the person based on operation information including the height position of the car and the lifting/lowering speed of the car calculated by the control panel and information on the height at which the person is present,
    The safety system according to claim 7 , wherein the human-side device notifies the person of the calculated grace period.
  9.  前記かご側装置は、前記かごの底面に取り付けられ、
     前記乗場側装置は、前記昇降路の内部において前記最下階乗場の床の高さと同じ高さに取り付けられ、
     前記人側装置は、前記人の頭の頂部に取り付けられる請求項1から請求項8のいずれか一項に記載の安全システム。
    The car side device is attached to a bottom surface of the car,
    The landing side device is attached inside the elevator shaft at the same height as the floor height of the lowest floor landing,
    The safety system according to any one of claims 1 to 8, wherein the person-side device is attached to the top of the person's head.
PCT/JP2022/035614 2022-09-26 2022-09-26 Safety system WO2024069675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035614 WO2024069675A1 (en) 2022-09-26 2022-09-26 Safety system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035614 WO2024069675A1 (en) 2022-09-26 2022-09-26 Safety system

Publications (1)

Publication Number Publication Date
WO2024069675A1 true WO2024069675A1 (en) 2024-04-04

Family

ID=90476610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035614 WO2024069675A1 (en) 2022-09-26 2022-09-26 Safety system

Country Status (1)

Country Link
WO (1) WO2024069675A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132543A (en) * 2003-10-29 2005-05-26 Hitachi Building Systems Co Ltd Safety device of elevator used in maintenance
US9359171B1 (en) * 2015-01-20 2016-06-07 Inventio Ag Safety system for a lift installation and safety helmet as individual component of such a safety system
JP2019014582A (en) * 2017-07-07 2019-01-31 三菱電機ビルテクノサービス株式会社 Alarm system
JP2019059620A (en) * 2017-09-26 2019-04-18 オーチス エレベータ カンパニーOtis Elevator Company Elevator motion alert system and method of issuing alarm
JP2021187577A (en) * 2020-05-26 2021-12-13 株式会社日立ビルシステム Elevator maintenance device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132543A (en) * 2003-10-29 2005-05-26 Hitachi Building Systems Co Ltd Safety device of elevator used in maintenance
US9359171B1 (en) * 2015-01-20 2016-06-07 Inventio Ag Safety system for a lift installation and safety helmet as individual component of such a safety system
JP2019014582A (en) * 2017-07-07 2019-01-31 三菱電機ビルテクノサービス株式会社 Alarm system
JP2019059620A (en) * 2017-09-26 2019-04-18 オーチス エレベータ カンパニーOtis Elevator Company Elevator motion alert system and method of issuing alarm
JP2021187577A (en) * 2020-05-26 2021-12-13 株式会社日立ビルシステム Elevator maintenance device

Similar Documents

Publication Publication Date Title
EP2867150B1 (en) Position and load measurement system for an elevator
JP4368854B2 (en) Elevator equipment
JP6203068B2 (en) Elevator car landing position deviation detection device and elevator car landing position deviation detection method
CN108349686A (en) Elevator device and method for controlling elevator device
KR100976781B1 (en) Apparatus for floor indication of elevator
EP3872018B1 (en) An elevator monitoring system
US20220297977A1 (en) Elevator safety system
JP2011195282A (en) Wind emergency operation device of elevator
WO2019063406A1 (en) Safe access to elevator shaft
EP3666710B1 (en) Safety system based on hoistway access detection
JP6190171B2 (en) elevator
CN114728758A (en) Elevator control system and elevator control method
WO2024069675A1 (en) Safety system
JP6410684B2 (en) Submersion operation control method for elevator and submersion operation control system for elevator
CN113371569B (en) Elevator safety system
KR20150003476U (en) Position detecting system of elevator car using by laser sensor
KR101689201B1 (en) Elevator control panel and control system using NMEA2000
JP2010089877A (en) Elevator device
JP2008280123A (en) Car position informing system of elevator
KR101827142B1 (en) Safety system for elevating work platform having wireless telecommunication system for guardrail sensor
KR101827141B1 (en) Safety system using helmet for elevating work platform
WO2022254630A1 (en) Elevator camera calibration system
JP7156044B2 (en) elevator equipment
KR20170078942A (en) Recognition system for an elevator internal situation
JP7289360B2 (en) elevator system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960740

Country of ref document: EP

Kind code of ref document: A1