WO2024066229A1 - 光源模组及投影设备 - Google Patents

光源模组及投影设备 Download PDF

Info

Publication number
WO2024066229A1
WO2024066229A1 PCT/CN2023/081977 CN2023081977W WO2024066229A1 WO 2024066229 A1 WO2024066229 A1 WO 2024066229A1 CN 2023081977 W CN2023081977 W CN 2023081977W WO 2024066229 A1 WO2024066229 A1 WO 2024066229A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
primary color
light source
color light
dimming
Prior art date
Application number
PCT/CN2023/081977
Other languages
English (en)
French (fr)
Inventor
张金旺
Original Assignee
深圳洛克创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳洛克创新科技有限公司 filed Critical 深圳洛克创新科技有限公司
Publication of WO2024066229A1 publication Critical patent/WO2024066229A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to a light source module and a projection device.
  • RGB Red
  • G green
  • B blue
  • the projection light source needs to output RGB three-primary color illumination beams in time division, irradiate DMD (Digtial Micromirror Devices) or LCOS panel, and then display color images on the screen through the projection lens.
  • DLP Digital Light Processor
  • LCOS Liquid Crystal on Silicon
  • an embodiment of the present disclosure provides a light source module, comprising: a first light source assembly, a splitting light splitter, and a fluorescent generator.
  • the first light source assembly is used to provide a first primary color light, which is a laser;
  • the splitting light splitter is used to transmit the first primary color light to a first light output channel in a first lighting period to be output as an illumination beam, and to transmit the first primary color light to a second light output channel in a second lighting period to be transmitted to the fluorescent generator, wherein the first lighting period and the second lighting period are different periods;
  • the fluorescent generator is used to generate a second primary color light under the excitation of the first primary color light to be output as an illumination beam.
  • an embodiment of the present disclosure provides a projection device, comprising: a light valve, a projection lens, and the light source module provided in the first aspect above, wherein the first primary color light, the second primary color light, and the third primary color light output by the light source module are irradiated onto a screen via the light valve and the projection lens to display a color image.
  • FIG1 is a schematic diagram of the structure of a projection device according to an embodiment of the present disclosure.
  • FIG2 is a schematic structural diagram of a light source module in an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of light transmission when the dimming element is located at a first preset position in an embodiment of the present disclosure
  • FIG4 is a schematic diagram of light transmission when the dimming element is located at a second preset position in an embodiment of the present disclosure
  • FIG5 is a schematic diagram of the partitions of the rotating dimming wheel in an embodiment of the present disclosure.
  • FIG6 is a schematic structural diagram of a light source module in an embodiment of the present disclosure.
  • FIG7 is a control timing diagram of the light source module in an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of the light source module in the embodiment of the present disclosure.
  • the light beam represented by a solid line is the first primary color light
  • the light beam represented by a double-dash line is the second primary color light
  • the light beam represented by a dotted line is the third primary color light.
  • the disclosed embodiment provides a light source module and a projection device, and the light source module can be applied to the projection device as a projection light source.
  • the projection device 1 includes: a light source module 10, a light valve 20 and a projection lens 30.
  • the red, green and blue primary colors of light output by the light source module 10 are processed by the light valve 20 and then irradiated onto the screen through the projection lens 30 to display a color image.
  • the light valve 20 can be an LCD (Liquid Crystal Display), a DMD or an LCOS light valve, etc., which is not limited in this embodiment.
  • the projection device 1 can be a projection device based on a single-chip light valve, or a projection device based on a double-chip light valve, or a projection device based on a three-chip light valve, which is not limited in this embodiment.
  • the light source module 10 may include: a first light source assembly 100, a splitting light splitter 110, a fluorescent generator 120, and a second light source assembly 130.
  • the splitting light splitter 110 is used to split the first primary color light provided by the first light source assembly 100 in time division, so that it can be directly used as an illumination beam output and can also be used as a pump light for exciting the second primary color light in time division.
  • the first light source assembly 100 is used to provide a first primary color light.
  • the first primary color light can be a light source such as a laser or an LED.
  • the first light source assembly 100 can include a laser light source 101, such as a laser diode array or a single laser diode.
  • the first primary color light can be one of the three primary colors of red, green, and blue.
  • the first light source assembly 100 not only provides the first primary color light for projection illumination, but also serves as a pump light source for the fluorescent generator 120.
  • the first light source assembly 100 is taken as an example of an excitation light source for the second primary color light.
  • the first light source assembly 100 includes a laser light source 101, and it is a blue laser light source, that is, the first primary color light is a blue laser.
  • EEL Electrode Emitting Laser
  • high-power blue semiconductor lasers have high conversion efficiency and have been mass-produced, and their costs are generally low.
  • the laser light source 101 can be a green laser light source 101, and this embodiment does not limit this.
  • the first light source assembly 100 may further include: a first focusing lens 102, the first focusing lens 102 is It is disposed on the optical transmission path between the laser light source 101 and the light splitter 110 and is used to converge the first primary color light output by the laser light source 101 to reduce the beam diameter of the first primary color light.
  • the splitting light splitter 110 can be set at the focal position of the first focusing lens 102. In this way, the light spot irradiated onto the splitting light splitter 110 after being focused by the first focusing lens 102 is smaller, which can effectively reduce the size of the splitting light splitter 110, thereby reducing the occupied space of the splitting light splitter 110, and facilitating the synchronous control of the splitting light splitter 110 and the light valve 20.
  • the transition zone between the first primary color light and the second primary color light shown by the light source module 10 can be reduced, thereby shortening the time of closing the light source module 10 and improving the projection efficiency.
  • the split-light splitter 110 transmits the first primary color light to the first light output channel in the first illumination period to be output as the illumination beam of the first illumination period; and transmits the first primary color light to the second light output channel in the second illumination period to be transmitted to the fluorescent generator 120 to be used as the pump light of the fluorescent generator 120.
  • the first primary color light provided by the same first light source assembly 100 can be transmitted to two different light output channels in a time-sharing manner, so that it can be either directly output as an illumination beam or used as a pump light for exciting the second primary color light.
  • the first illumination period and the second illumination period are different periods, and are determined according to the illumination time ratio of the first primary color light and the second primary color light in each scanning cycle of scanning a frame of an image.
  • the control timing of the split light splitter 110 and the driving timing of the corresponding light valve 20 such as a DMD or LCOS panel can be synchronized, and the first primary color light and the second primary color light can be output to the light valve 20 in a time-sharing manner to achieve a time-series color display.
  • the optical splitter 110 may include an optical path selection element and a driving mechanism.
  • the driving mechanism controls the movement of the optical path selection element so that the first primary color light selectively passes through the optical path selection element or is reflected by the optical path selection element, thereby realizing the above-mentioned light splitting function.
  • the driving mechanism controls the movement of the optical path selection element so that the first primary color light selectively passes through the optical path selection element or is reflected by the optical path selection element, thereby realizing the above-mentioned light splitting function.
  • the optical path selection element may be a dimming element 111, and the driving mechanism is connected to the dimming element 111, and is used to drive the dimming element 111 to deflect.
  • the dimming element 111 is deflected to the first preset position, the first primary color light incident from the first light source assembly 100 is reflected by the dimming element 111 into the first light output channel, and when the dimming element 111 is deflected to the second preset position, the first primary color light incident from the first light source assembly 100 is transmitted from the dimming element 111 into the second light output channel, so as to be further transmitted to the fluorescent generator 120.
  • the driving mechanism may be a mechanical driving mechanism such as a motor, an electrostatic driving mechanism, an electromagnetic driving mechanism, a piezoelectric driving mechanism, or a thermoelectric driving mechanism, etc., which is not limited in this embodiment.
  • the deflection angle of the dimming element 111 can be controlled, so that the dimming element 111 is alternately deflected to the first preset position and the second preset position.
  • the first preset position and the second preset position are predetermined according to the actual optical path.
  • the refractive index of the material of the dimming element 111 is greater than the refractive index of air.
  • the material of the dimming element 111 can be silicon, or a material with a higher refractive index such as lanthanide glass.
  • the light from the first light source assembly 100 enters the dimming element 111 from the front surface of the dimming element 111, and then is emitted from the rear surface of the dimming element 111 into the air.
  • the front surface and the rear surface are two opposite surfaces of the dimming element 111, and the rear surface is the surface away from the first light source assembly 100.
  • the rear surface of the dimming element 111 is the interface of light from the optically dense medium to the optically sparse medium, when the incident angle ⁇ of the first primary color light on the rear surface of the dimming element 111 is greater than the critical angle ⁇ of total reflection, total reflection will occur.
  • the critical angle ⁇ of total reflection can be calculated based on the refractive index of air and the refractive index of the material of the dimming element 111.
  • the first preset position is a position where the incident angle ⁇ of the first primary color light on the rear surface of the dimming element 111 is greater than the critical angle ⁇ of total reflection and less than 90 degrees
  • the second preset position is a position where the incident angle ⁇ of the first primary color light on the rear surface of the dimming element 111 is greater than or equal to 0 degrees and less than the critical angle ⁇ of total reflection.
  • the dimming element 111 when the dimming element 111 is located at the first preset position, since the incident angle ⁇ of the first primary color light is greater than the critical angle ⁇ of total reflection, the first primary color light is totally reflected at the rear surface of the dimming element 111, thereby changing the transmission direction of the first primary color light and transmitting it to the first light output channel.
  • the dimming element 111 when the dimming element 111 is located at the second preset position, the total reflection condition is not met, and the first primary color light can pass through the dimming element 111 into the second light output channel.
  • the first preset position and the second preset position can be set according to the actual light path direction, the pump light intensity required by the fluorescent generator 120, and the amplitude of the deflection of the dimming element 111 that the driving mechanism can drive.
  • the first preset position and the second preset position can be set as close to the critical angle ⁇ of total reflection as possible.
  • the critical angle ⁇ of total reflection is 35 degrees
  • the first preset position can be a position where the incident angle ⁇ is 40 degrees or 45 degrees
  • the second preset position can be a position where the incident angle ⁇ is 0 degrees, 5 degrees, 10 degrees or 20 degrees.
  • the second preset position shown in FIG. 4 i.e., the position when the incident angle ⁇ is 0 degrees, is only for illustration and is not intended to be limiting.
  • an anti-reflection film may be provided on both the upper and lower surfaces of the dimming element 111 .
  • the optical path selection element can be a rotating dimming wheel 112.
  • the rotating dimming wheel 112 has a transmission area 112t and a reflection area 112r.
  • the rotating dimming wheel 112 can be controlled to rotate, and the positions of the transmission area 112t and the reflection area 112r will change with the rotation of the rotating dimming wheel 112, and rotate alternately to the incident position of the first primary color light provided by the first light source assembly 100, thereby realizing the above-mentioned light splitting function.
  • the reflection area 112r of the rotating dimming wheel 112 rotates to the incident position of the first primary color light
  • the first primary color light provided by the first light source assembly 100 is reflected to the first light output channel through the reflection area 112r.
  • the transmission area 112t of the rotating dimming wheel 112 rotates to the incident position of the first primary color light
  • the first primary color light provided by the first light source assembly 100 passes through the transmission area 112t and enters the second light output channel to be further transmitted to the fluorescent generator 120.
  • the substrate of the rotating dimming wheel 112 may be coated in sections, so that the rotating dimming wheel 112 has the above-mentioned transmission area 112t capable of transmitting the first primary color light, and the reflection area 112r capable of reflecting the first primary color light.
  • the size and size ratio of the transmission area 112t and the reflection area 112r shown in FIG5 are only for illustration and are not intended to be limiting.
  • the actual size and ratio of the transmission area 112t and the reflection area 112r are related to the spot size of the first primary color light irradiated on the rotating dimming wheel 112, the time ratio of the above-mentioned first illumination period to the second illumination period, and the rotation rate.
  • the above-mentioned light source module 10 may also include: a first collimating lens 140, which is arranged on the light transmission path between the second light output channel of the splitter light splitter 110 and the fluorescent generator 120, so that the first primary color light entering the second light output channel is collimated by the first collimating lens 140 and then transmitted to the fluorescent generator 120.
  • a first collimating lens 140 which is arranged on the light transmission path between the second light output channel of the splitter light splitter 110 and the fluorescent generator 120, so that the first primary color light entering the second light output channel is collimated by the first collimating lens 140 and then transmitted to the fluorescent generator 120.
  • the fluorescent generator 120 Under the excitation of the first primary color light, the fluorescent generator 120 generates a second primary color light to be output as an illumination beam for the second illumination period.
  • the first primary color light is a blue laser
  • the second primary color light can be green light
  • the fluorescent light emitter is a fluorescent generator 120 that generates green fluorescence under the excitation of blue light.
  • the fluorescent light emitter can use a statically arranged green light ceramic phosphor, or an omnidirectional green fluorescent wheel, etc., which is not specifically limited here.
  • the fluorescent generator 120 can generate the second primary color light under the action of the excitation light, there is no need to set up a color wheel module for filtering, and the fluorescent generator 120 does not need to be partitioned, so there is no need to consider the synchronization between the fluorescent generator 120 and the color wheel module, which effectively reduces the synchronization control requirements, is easier to control and dissipate heat, and is conducive to reducing the module cost.
  • the light source module 10 may also include: a first collimating lens group 121, which is arranged on the light output side of the fluorescent generator 120, so that the second primary color light generated by the fluorescent generator 120 is collimated by the first collimating lens group 121 and then output as a projection illumination light beam.
  • the first collimating lens group 121 can also be used to converge the incident first primary color light to the fluorescent generator 120 to reduce the beam diameter of the excitation light, thereby facilitating the reduction of the size of the fluorescent generator 120.
  • the first collimating lens group 121 is configured according to the collimation and convergence requirements of the actual light path, and can be a single lens, or a combination of multiple lenses, for example, it can include a first lens 122 and a second lens 123.
  • the third primary color light needs to be provided to realize color image display.
  • the second light source assembly 130 is used to provide the third primary color light as the illumination beam output.
  • the second light source assembly 130 includes: a light source 131 for generating a third primary color light.
  • the light source 131 may be an LED light source or a laser light source, etc.
  • the first primary color light is a blue laser and the second primary color light is a green light
  • the third primary color light is red light.
  • the light source 131 is a red LED light source or a red laser light source, etc., and red light can be output without wavelength conversion and color filtering, which is conducive to improving the utilization rate of the light source.
  • the second light source assembly 130 may also include: a second collimating lens group, which is arranged on the light-emitting side of the LED light source, so that the third primary color light generated by the LED light source is collimated by the second collimating lens group and then emitted as a projection illumination beam.
  • the second collimating lens group is configured according to the collimation requirements of the actual light path, and may be a single lens, or may be a combination of multiple lenses, for example, as shown in FIG. 2 , it may include a third lens 132 and a fourth lens 133.
  • the second light source assembly 130 may include: a dual-wavelength LED light source combination, that is, including a first LED light source 131a and a second LED light source 131b, the first LED light source 131a and the second LED light source 131b are used to emit third primary color lights of different wavelengths.
  • the first LED light source 131a may be a red light LED light source with a wavelength of 612nm
  • the second LED light source 131b may be a red light LED light source with a wavelength of 650nm.
  • the second light source assembly 130 may also include: an optical coupling element 134, which is used to couple the third primary color light emitted by the first LED light source 131a and the third primary color light emitted by the second LED light source 131b.
  • the optical coupling element 134 may be a spectroscope, which can transmit the third primary color light of the first wavelength and reflect the third primary color light of the second wavelength.
  • the third primary color light provided by the first LED light source 131a is collimated by the third lens 132a and the fourth lens 133a, and then passes through the optical coupling element 134 and is incident on the second spectroscopic element 170;
  • the third primary color light provided by the second LED light source 131b is collimated by the third lens 132b and the fourth lens 133b, and then reflected by the optical coupling element 134 to the second spectroscopic element 170.
  • the optical coupling element 134 may also be other applicable optical elements, and this embodiment does not limit this.
  • the first primary color light, the second primary color light and the third primary color light provided by the light source module 10 are irradiated on the same light valve 20 in time division, so as to realize color picture display through time color mixing.
  • the second light source assembly 130 is used to output the third primary color light in the third lighting period.
  • the third lighting period is different from the first lighting period and the second lighting period.
  • the first lighting period, the second lighting period and the third lighting period are respectively the illumination time of the first primary color light, the second primary color light and the third primary color light in the scanning cycle of each frame of the image.
  • this embodiment does not limit the order of the first lighting period, the second lighting period and the third lighting period. In actual use, it is necessary to cooperate with the driving timing setting of the corresponding light valve 20 so that the three primary color lights are irradiated on the same light valve 20 in turn according to the corresponding control timing.
  • FIG7 shows a control timing diagram of the light source module 10.
  • G1 represents the switch control signal of the laser light source 101, which is turned on at a high level and turned off at a low level.
  • G2 represents the control signal of the split light splitter 110, which controls the first primary color light to be transmitted to the first light output channel at a high level, and controls the first primary color light to be transmitted to the second light output channel at a low level.
  • G3 represents the switch control signal of the LED light source, which is turned on at a high level and turned off at a low level.
  • T represents the lighting cycle corresponding to a frame of color image
  • t1 represents the first lighting period
  • t2 represents the second lighting period
  • t3 represents the third lighting period.
  • the first primary color light and the second primary color light provided by the light source module 10 can be irradiated to the same light valve 20 in time division, and the third primary color light can be irradiated to another light valve 20.
  • the illumination period of the third primary color light can overlap with the first illumination period and the second illumination period, and needs to be coordinated with the driving timing setting of the corresponding light valve 20, which is not limited in this embodiment.
  • the light source module 10 provided in this embodiment When the light source module 10 provided in this embodiment is applied to a projection device with three light valves, the first primary color light, the second primary color light and the third primary color light provided by the light source module 10 are respectively irradiated onto the corresponding different light valves 20 .
  • the first primary color light, the second primary color light and the third primary color light which are used as the illumination light beam in time division can be further optically coupled.
  • the light source module 10 can also include: a loop mirror group 150, a first beam splitter element 160 and a second beam splitter element 170.
  • the loop mirror assembly 150 is disposed in the first light output channel between the light splitter 110 and the first light splitting element 160, and is used to collimate the first primary color light entering the first light output channel and adjust the transmission direction of the collimated first primary color light so that the light is transmitted to the first light output channel. The light is then input to the first beam splitter 160.
  • the loop mirror assembly 150 may include: a second collimating lens 151, a first reflecting mirror 152, a third collimating lens 153 and a second reflecting mirror 154.
  • the first beam splitter 160 is used to transmit the first primary color light and reflect the second primary color light to achieve optical path coupling of the first primary color light and the second primary color light.
  • the second beam splitter 170 is used to transmit the first primary color light and the second primary color light and reflect the third primary color light to achieve optical path coupling of the first primary color light, the second primary color light and the third primary color light.
  • the first primary color light transmitted to the first light output channel by the splitting light splitter 110 is collimated and folded by the loop mirror group 150, and then sequentially transmitted through the first beam splitter element 160 and the second beam splitter element 170 for output.
  • the first primary color light transmitted to the second light output channel by the splitting light splitter 110 is transmitted to the fluorescent generator 120 through the first beam splitter element 160, and the second primary color light output by the fluorescent generator 120 is reflected to the second beam splitter element 170 by the first beam splitter element 160, and then output through the second beam splitter element 170.
  • the third primary color light output by the second light source assembly 130 is reflected by the second beam splitter element 170 and then output. In this way, the three primary color lights can be combined after passing through the second beam splitter element 170.
  • the light source module 10 may also include: a light homogenizing element 180, which is arranged on the light output side of the second beam splitter 170, and the first primary color light, the second primary color light and the third primary color light outputted by the second beam splitter 170 are all outputted after being subjected to light field homogenization processing by the light homogenizing element 180, so as to be uniformly irradiated onto the corresponding light valve 20.
  • the light homogenizing element 180 may be a fly-eye lens array.
  • the light homogenizing element 180 may also include a second focusing lens 181 and a light rod 182, and the first primary color light, the second primary color light and the third primary color light outputted by the second beam splitter 170 are converged into the light rod 182 through the second focusing lens 181 to achieve light field homogenization.
  • the working process of the light source module 10 is described below according to the embodiment shown in FIG. 2 , taking the first primary color light as blue laser, the second primary color light as green light, and the third primary color light as red light as an example.
  • the blue laser beam provided by the laser light source 101 is converged by the first focusing lens 102 and then focused on the splitting light splitter 110.
  • the splitting light splitter 110 transmits the blue laser beam to the loop mirror group 150, which is collimated and transmitted to the first beam splitter element 160 by the loop mirror group 150, passes through the first beam splitter element 160 and the second beam splitter element 170 in turn, and is incident on the uniform light element 180.
  • the blue laser beam is irradiated onto the light valve 20 as the projection illumination beam of the first illumination period to form a blue sub-image on the projection screen.
  • the split light splitter 110 transmits the blue laser beam to the first collimating lens 140, and after being collimated by the first collimating lens 140, it is transmitted to the first beam splitting element 160, transmitted from the first beam splitting element 160, and converged to the fluorescence generator 120 through the first collimating lens group 121.
  • the fluorescence generator 120 generates a green light beam under the excitation of the blue laser.
  • the green light beam After being collimated by the first collimating lens group 121, the green light beam is reflected by the first beam splitting element 160 to the second beam splitting element 170, and is incident on the uniform light element 180 through the second beam splitting element 170. After being processed by the uniform light element 180 to homogenize the light field, it is irradiated onto the light valve 20 as the projection illumination beam of the second illumination period to form a green sub-image on the projection screen.
  • the LED light source provides a red light beam, which is collimated by the second collimating lens group and incident on the second beam splitter 170, reflected by the second beam splitter 170 to the light homogenizing element 180, and then treated by the light homogenizing element 180 to be a projection illumination beam in the third illumination period and irradiated onto the light valve 20 to form a projection image on the projection screen.
  • the red sub-image is formed, thereby utilizing the visual inertia of the human eye to perform temporal color mixing and realize color image display.
  • the blue light illumination beam is provided by the laser light source 101
  • the green light illumination beam is provided by the blue light laser exciting the green phosphor
  • the red light illumination beam is provided by the LED light source, which is beneficial to ensure color quality and suppress speckle effect.
  • an embodiment of the present disclosure provides a light source module, comprising: a first light source assembly, a light splitter and a fluorescent generator,
  • the first light source assembly is used to provide a first primary color light
  • the light splitter is used to transmit the first primary color light to the first light output channel in the first illumination period to be output as an illumination light beam, and to transmit the first primary color light to the second light output channel in the second illumination period to be transmitted to the fluorescent generator, wherein the first illumination period and the second illumination period are different periods;
  • the fluorescent generator is used to generate the second primary color light under the excitation of the first primary color light, so as to output the second primary color light as the illumination light beam.
  • the splitting light splitter may include: a light path selection element and a driving mechanism; the driving mechanism controls the movement of the light path selection element so that the first primary color light selectively passes through the light path selection element or is reflected by the light path selection element.
  • the light path selection element may be a dimming element
  • the driving mechanism is connected to the dimming element to drive the dimming element to deflect.
  • the dimming element When the dimming element is deflected to the first preset position, the first primary color light provided by the first light source assembly is reflected by the dimming element to the first light output channel.
  • the dimming element When the dimming element is deflected to the second preset position, the first primary color light provided by the first light source assembly passes through the dimming element into the second light output channel to be transmitted to the fluorescent generator.
  • the refractive index of the material of the dimming element is greater than the refractive index of air.
  • the incident angle of the first primary color light on the rear surface of the dimming element is greater than the critical angle of total reflection and less than 90 degrees.
  • the incident angle of the first primary color light on the rear surface of the dimming element is greater than or equal to 0 degrees and less than the critical angle of total reflection, wherein the rear surface of the dimming element is the surface facing away from the first light source assembly, and the critical angle of total reflection is the critical angle at which total reflection occurs when the first primary color light enters the air from the rear surface.
  • the light path selection element may be a rotating dimming wheel having a transmission area and a reflection area.
  • the reflection area of the rotating dimming wheel rotates to the first primary color light incident position, the first primary color light provided by the first light source assembly is reflected by the reflection area to the first light output channel;
  • the transmission area of the rotating dimming wheel rotates to the first primary color light incident position
  • the first primary color light provided by the first light source assembly
  • the light passes through the transmission area and enters the second light output channel to be transmitted to the fluorescent generator.
  • the first light source assembly includes: a laser light source and a first focusing lens, the first focusing lens is arranged on the light transmission path between the laser light source and the light-split splitter, and is used to converge the first primary color light output by the laser light source, and the light-split splitter is arranged at the focal position of the first focusing lens.
  • the light source module provided in the first aspect may further include: a loop mirror group, a first beam splitter element and a second beam splitter element, wherein the loop mirror group is arranged in the first light output channel between the light splitter and the first beam splitter element.
  • the first primary color light transmitted to the first light output channel is collimated and folded by the loop mirror group, and then outputted through the first beam splitter element and the second beam splitter element in sequence;
  • the first primary color light transmitted to the second light output channel is transmitted to the fluorescent generator through the first beam splitter element.
  • the second primary color light output by the fluorescent generator is reflected by the first beam splitter element to the second beam splitter element and then output through the second beam splitter element.
  • the light source module also includes: a second light source component, which is used to provide a third primary color light in a third lighting period, and make the third primary color light output after being reflected by the second light splitting element, wherein the third lighting period is different from the first lighting period and the second lighting period.
  • a second light source component which is used to provide a third primary color light in a third lighting period, and make the third primary color light output after being reflected by the second light splitting element, wherein the third lighting period is different from the first lighting period and the second lighting period.
  • the light source module may also include: a light homogenizing element, which is arranged on the light output side of the second beam splitting element, and the first primary color light, the second primary color light and the third primary color light output by the second beam splitting element are output after being subjected to light field homogenization processing by the light homogenizing element.
  • a light homogenizing element which is arranged on the light output side of the second beam splitting element, and the first primary color light, the second primary color light and the third primary color light output by the second beam splitting element are output after being subjected to light field homogenization processing by the light homogenizing element.
  • the light source module provided in the first aspect also includes: a second light source component, which is used to provide a third primary color light, and the second light source component includes: a red LED light source.
  • the first primary color light is blue laser
  • the second primary color light is green light
  • the third primary color light is red light.
  • the fluorescent generator may be: a green ceramic fluorescent body, or an omnidirectional green fluorescent wheel.
  • an embodiment of the present disclosure provides a projection device, including: a light valve, a projection lens, and the light source module provided in the first aspect.
  • the first primary color light, the second primary color light, and the third primary color light output by the light source module are irradiated onto a screen through the light valve and the projection lens to display a color image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源模组(10)及投影设备,该光源模组(10)包括:第一光源组件(100)、分时光分路器(110)以及荧光发生器(120)。第一光源组件(100)用于提供第一基色光,第一基色光为激光;分时光分路器(110)用于在第一照明时段将第一基色光传输到第一出光通道,以作为照明光束输出,以及在第二照明时段将第一基色光传输到第二出光通道,以传输到荧光发生器(120),其中,第一照明时段和第二照明时段为不同时段;荧光发生器(120)用于在第一基色光的激发下,生成第二基色光,以作为照明光束输出。

Description

光源模组及投影设备
相关申请的交叉引用
本公开要求于2022年9月30日提交的申请号为202211215874.X,名称为“光源模组及投影设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及一种光源模组及投影设备。
背景技术
目前投影显示***,多为光阀结合红(R)、绿(G)、蓝(B)三基色照明光束实现。例如,对于单片光阀的DLP(Digital Light Processor,数字光处理器)或者LCOS(Liquid Crystal on Silicon,硅基液晶)投影显示***来讲,需要投影光源分时输出RGB三基色照明光束,照射到DMD(Digtial Micromirror Devices,数字微镜器件)或LCOS面板,然后通过投影镜头在屏幕上显示彩色图像。
发明内容
第一方面,本公开实施例提供了一种光源模组,包括:第一光源组件、分时光分路器和荧光发生器。所述第一光源组件用于提供第一基色光,所述第一基色光为激光;所述分时光分路器用于在第一照明时段将所述第一基色光传输到第一出光通道,以作为照明光束输出,以及在第二照明时段将所述第一基色光传输到第二出光通道,以传输到荧光发生器,其中,所述第一照明时段和所述第二照明时段为不同时段;所述荧光发生器用于在所述第一基色光的激发下,生成第二基色光,以作为照明光束输出。
第二方面,本公开实施例提供了一种投影设备,包括:光阀、投影镜头以及上述第一方面提供的光源模组。其中,所述光源模组输出的第一基色光、第二基色光以及第三基色光,经所述光阀以及所述投影镜头照射到屏幕上,以显示彩色图像。
上述说明仅是本公开提供的技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它特征和效果能够更明显易懂,以下特举本公开的实施方式。
附图说明
图1为本公开实施例中一种投影设备的结构示意图;
图2为本公开实施例中光源模组的结构示意图;
图3为本公开实施例中调光元件位于第一预设位置时的光传输示意图;
图4为本公开实施例中调光元件位于第二预设位置时的光传输示意图;
图5为本公开实施例中旋转调光轮的分区示意图;
图6为本公开实施例中光源模组的结构示意图;
图7为本公开实施例中光源模组的一种控制时序图;
图8为本公开实施例中光源模组的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。需要指出的是,在附图中,为了图示的清晰可能夸大了元件的尺寸。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。用语“多个”包括两个或大于两个的情况。用语“第一”、“第二”、“第三”等仅作为标记使用,不是对其对象的数量以及先后关系的限制。需要说明的是,附图中示出的光路中,用实线表示的光束为第一基色光,用双点划线表示的光束为第二基色光,用虚线表示的光束为第三基色光。
本公开实施例提供了一种光源模组以及一种投影设备,光源模组可以应用于投影设备,作为投影光源。如图1所示,投影设备1包括:光源模组10、光阀20以及投影镜头30,光源模组10输出的红绿蓝三基色光,经过光阀20的处理后,经过投影镜头30照射到屏幕上,以显示彩色图像。例如,光阀20可以是LCD(Liquid Crystal Display,液晶显示)、DMD或LCOS光阀等,本实施例对此不做限定。例如,投影设备1可以是基于单片光阀的投影设备,或者,也可以是基于双片光阀的投影设备,又或者,还可以是基于三片光阀的投影设备,本实施例对此不做限定。
如图2所示,本公开实施例提供的光源模组10可以包括:第一光源组件100、分时光分路器110、荧光发生器120以及第二光源组件130。其中,分时光分路器110用于分时对第一光源组件100提供的第一基色光进行分路,使其分时段地既能直接用作照明光束输出,又能够用作激发第二基色光的泵浦光。
其中,第一光源组件100用于提供第一基色光。实践中,第一基色光可以为激光或LED等光源。例如,第一光源组件100可以包括激光光源101,如激光二极管阵列或单个激光二极管等。第一基色光可以为:红、绿、蓝三基色光其中之一。
在一些示例中,第一光源组件100既提供投影照明用的第一基色光,又作为荧光发生器120的泵浦光源。此处以第一光源组件100作为第二基色光的激发光源为例,第一光源组件100包括激光光源101,且为蓝光激光光源,即第一基色光为蓝光激光。随着EEL(Edge Emitting Laser,边发射激光器)技术的发展,大功率蓝色半导体激光器转化效率较高且已大规模量产,其成本通常较低。当然,在其他示例中,基于短波长激发长波长的原理,激光光源101可以是绿光激光光源101,本实施例对此不做限制。
进一步地,第一光源组件100还可以包括:第一聚焦透镜102,第一聚焦透镜102设 置在激光光源101与分时光分路器110之间的光传输路径上,用于汇聚激光光源101输出的第一基色光,以减小第一基色光的光束束径。
在一些示例中,分时光分路器110可以设置在第一聚焦透镜102的焦点位置。这样经过第一聚焦透镜102聚焦后照射到分时光分路器110上的光斑较小,可有效减小分时光分路器110的尺寸,从而减小分时光分路器110的占用空间,也便于对分时光分路器110与光阀20进行同步控制。并且,还能够减少光源模组10示出的第一基色光和第二基色光的过渡带,从而缩短关闭光源模组10的时间,提高投影效率。
分时光分路器110在第一照明时段将第一基色光传输到第一出光通道,以作为第一照明时段的照明光束输出;在第二照明时段将第一基色光传输到第二出光通道,以传输到荧光发生器120,用作荧光发生器120的泵浦光。也就是说,通过设置分时光分路器110可以分时将同一第一光源组件100提供的第一基色光传输到两个不同的出光通道,使其要么直接作为照明光束输出,要么作为用于激发第二基色光的泵浦光。这样能够有效地提高光源模组10中的激光利用率,有利于在保证投影画面的亮度、色域、色彩饱和度以及对比度等性能的同时,降低单位亮度成本。同时,也避免了相关技术中光源***需要同时采用红色光源、蓝色光源和绿色光源的问题。
需要说明的是,第一照明时段和第二照明时段为不同时段,根据每扫描一帧图像的扫描周期中,第一基色光和第二基色光的照明时间占比确定。这样就可以通过对分时光分路器110的控制时序以及相应光阀20如DMD或LCOS面板等的驱动时序进行同步,分时输出第一基色光和第二基色光到光阀20,以实现时序彩色化显示。
在一些示例中,分时光分路器110可以包括:光路选择元件以及驱动机构。
驱动机构控制光路选择元件运动以使第一基色光选择性的透过光路选择元件或者被光路选择元件反射,从而实现上述分时光分路功能。其实施方式有多种,下面主要列举两种来进行说明,需要说明的是,在其他示例中,也可以采用其他适用的实施方式,本实施例对此不做限制。
第一种,光路选择元件可以为调光元件111,上述驱动机构与调光元件111连接,用于带动调光元件111偏转。当调光元件111偏转到第一预设位置时,从第一光源组件100入射的第一基色光被调光元件111反射到第一出光通道中,当调光元件111偏转到第二预设位置时,从第一光源组件100入射的第一基色光从调光元件111透射进入第二出光通道,以进一步传输到荧光发生器120。
例如,驱动机构可以为机械驱动机构如马达、静电驱动机构、电磁驱动机构、压电驱动机构或热电驱动机构等,本实施例对此不做限制。通过控制驱动机构就可以控制调光元件111的偏转角度,从而使得调光元件111交替偏转到第一预设位置和第二预设位置。其中,第一预设位置和第二预设位置根据实际光路预先确定。
调光元件111的材料折射率大于空气的折射率。例如,调光元件111的材料可以是硅,或者,镧系玻璃等具有较高折射率的材料。第一光源组件100提供的第一基色光从调光元 件111的前表面进入调光元件111,然后从调光元件111的后表面出射到空气中。其中,前表面和后表面为调光元件111的两个相对的表面,后表面为背离第一光源组件100的表面。由于调光元件111的后表面属于光从光密介质到光疏介质的界面,当第一基色光在调光元件111的后表面的入射角α大于全反射临界角θ时,就会发生全反射。其中,全反射临界角θ可以根据空气折射率以及调光元件111的材料折射率计算得到。由此,第一预设位置为使得第一基色光在调光元件111后表面的入射角α大于全反射临界角θ且小于90度的位置,而第二预设位置为使得第一基色光在调光元件111后表面的入射角α大于或等于0度且小于全反射临界角θ的位置。
如图3所示,当调光元件111位于第一预设位置时,由于第一基色光的入射角α大于全反射临界角θ,第一基色光在调光元件111的后表面发生全反射,从而改变了第一基色光的传输方向,使其传输到第一出光通道。如图4所示,当调光元件111位于第二预设位置时,不满足全反射条件,第一基色光可以透过调光元件111进入第二出光通道。
使用时,第一预设位置和第二预设位置可以根据实际光路走向、荧光发生器120需要的泵浦光强度、以及驱动机构能够驱动调光元件111偏转的幅度设置。例如,为了尽量减小调光元件111的偏转幅度,可以尽量靠近全反射临界角θ设置第一预设位置和第二预设位置。例如,全反射临界角θ为35度,第一预设位置可以是使得入射角α为40度或45度的位置,第二预设位置可以是使得入射角α为0度、5度、10度或20度的位置。需要说明的是,图4中示出的第二预设位置即入射角α为0度时的位置仅为示意,不作为限制。
进一步地,为了增加第一基色光的利用率,还可以在调光元件111的上、下表面均设置增透膜(Anti-Reflection,AR膜)。
第二种,光路选择元件可以为旋转调光轮112,如图5所示,旋转调光轮112具有透射区112t和反射区112r。使用时,可以控制旋转调光轮112旋转,透射区112t和反射区112r的位置就会随着旋转调光轮112的旋转而发生变化,交替旋转到第一光源组件100提供的第一基色光的入射位置,从而实现上述分时光分路功能。当旋转调光轮112的反射区112r旋转到第一基色光入射位置时,第一光源组件100提供的第一基色光经反射区112r反射到第一出光通道。当旋转调光轮112的透射区112t旋转到第一基色光入射位置时,第一光源组件100提供的第一基色光透过透射区112t进入第二出光通道,以进一步传输到荧光发生器120。
例如,可以对旋转调光轮112的基板上进行分段镀膜,使得旋转调光轮112具有上述能够透射第一基色光的透射区112t,以及能够对第一基色光进行反射的反射区112r。需要说明的是,图5中示出的透射区112t与反射区112r的尺寸大小以及尺寸比例仅为示意,不作为限制。透射区112t与反射区112r的实际尺寸大小以及比例与第一基色光照射到旋转调光轮112上的光斑尺寸、上述第一照明时段与第二照明时段的时长比例、以及旋转速率有关。
在一些示例中,为了方便将进入第二出光通道的第一基色光传输到荧光发生器120,上述光源模组10还可以包括:第一准直透镜140,设置在分时光分路器110的第二出光通道与荧光发生器120之间的光传输路径上,使得进入第二出光通道的第一基色光,经过第一准直透镜140准直后,再向着荧光发生器120传输。
荧光发生器120在该第一基色光的激发下,生成第二基色光,以作为第二照明时段的照明光束输出。例如,在第一基色光为蓝光激光的情况下,第二基色光可以为绿光,也就是说,荧光发光器为在蓝光激发下产生绿色荧光的荧光发生器120。例如,荧光发光器可以采用静态设置的绿光陶瓷荧光体,或者,也可以采用全向绿色荧光轮等,此处不做具体限定。由于荧光发生器120能够在激发光的作用下产生第二基色光,无需另外设置色轮模组进行滤波,荧光发生器120也无需分区,也就无需考虑荧光发生器120与色轮模组的同步,有效地降低了同步性控制要求,更容易控制以及散热,有利于降低模组成本。
进一步地,光源模组10还可以包括:第一准直透镜组121,设置在荧光发生器120的出光侧,使得荧光发生器120生成的第二基色光经过第一准直透镜组121准直后输出,以作为投影照明光束。此外,第一准直透镜组121还可以用于将入射的第一基色光汇聚到荧光发生器120,以减小激发光的束径,从而有利于减小荧光发生器120的尺寸。第一准直透镜组121根据实际光路的准直和汇聚需求配置,可以是单个透镜,或者,也可以是多个透镜组合,例如,可以包括第一透镜122和第二透镜123。
当然,除了分时提供第一基色光和第二基色光作为投影用的照明光束以外,还需要提供第三基色光,以实现彩色画面显示。本实施例中,第二光源组件130用于提供第三基色光,以作为照明光束输出。
如图2所示,第二光源组件130包括:用于产生第三基色光的光源131。所述的光源131可以为LED光源或激光光源等。例如,在第一基色光为蓝光激光、第二基色光为绿光的情况下,第三基色光则为红光,相应地,光源131为红光LED光源或红光激光光源等,无需经过波长转换以及滤色就可以输出红光,有利于提高光源利用率。
以光源131采用LED光源为例,考虑到LED光源属于点光源,为了提高第三基色光的利用率,第二光源组件130还可以包括:第二准直透镜组,设置在LED光源的出光侧,使得LED光源产生的第三基色光经过第二准直透镜组准直后出射,作为投影照明光束。第二准直透镜组根据实际光路的准直需求配置,可以是单个透镜,或者,也可以是多个透镜组合,例如,如图2所示,可以包括第三透镜132和第四透镜133。
进一步地,考虑到LED光源的发光亮度相较于激光光源101较弱,为了提高光源模组10输出的第三基色光的亮度,如图6所示,第二光源组件130可以包括:双波长的LED光源组合,即包括第一LED光源131a和第二LED光源131b,第一LED光源131a和第二LED光源131b用于发出不同波长的第三基色光。以第三基色光为红光为例,第一LED光源131a可以为波长为612nm的红光LED光源,第二LED光源131b可以为波长为650nm的红光LED光源。
此时,第二光源组件130还可以包括:光耦合元件134,用于将第一LED光源131a发出的第三基色光以及第二LED光源131b发出的第三基色光耦合在一起。例如,光耦合元件134可以是分光镜,能够透过第一波长的第三基色光,反射第二波长的第三基色光。如图6所示,第一LED光源131a提供的第三基色光经过第三透镜132a和第四透镜133a准直后,透过光耦合元件134,入射到第二分光元件170;第二LED光源131b提供的第三基色光经过第三透镜132b和第四透镜133b准直后,经光耦合元件134反射到第二分光元件170。需要说明的是,光耦合元件134也可以是其他适用的光学元件,本实施例对此不做限制。
当本实施例提供的光源模组10应用于单片光阀的投影设备中时,光源模组10提供的第一基色光、第二基色光和第三基色光分时照射到同一片光阀20上,以通过时间混色实现彩色画面显示。此时,第二光源组件130用于在第三照明时段输出第三基色光。第三照明时段与第一照明时段以及第二照明时段为不同时段。第一照明时段、第二照明时段以及第三照明时段分别为每扫描一帧图像的扫描周期中,第一基色光、第二基色光以及第三基色光的照明时间。需要说明的是,本实施例对第一照明时段、第二照明时段以及第三照明时段的先后顺序不做限制,实际使用时,需要配合相应光阀20的驱动时序设置,以使得三基色光按照相应控制时序先后照射到同一片光阀20上。
例如,图7示出了光源模组10的一种控制时序图。图中G1表示激光光源101的开关控制信号,高电平开启,低电平关闭。G2表示分时光分路器110的控制信号,高电平时控制第一基色光传输到第一出光通道,低电平时,控制第一基色光传输到第二出光通道。G3表示LED光源的开关控制信号,高电平开启,低电平关闭。T表示一帧彩色图像对应的照明周期,t1表示第一照明时段,t2表示第二照明时段,t3表示第三照明时段。需要说明的是,图7中示出的控制时序图仅作为示意,不作为限制,实际需要配合光阀20的驱动时序配置。
当本实施例提供的光源模组10应用于双片光阀的投影设备中时,光源模组10提供的第一基色光和第二基色光可以分时照射到同一片光阀20,第三基色光照射到另一片光阀20上。此时,第三基色光的照明时段可以与第一照明时段以及第二照明时段存在重叠,需要配合相应光阀20的驱动时序设置,本实施例对此不做限制。
当本实施例提供的光源模组10应用于三片光阀的投影设备中时,光源模组10提供的第一基色光、第二基色光和第三基色光各自照射到所对应的不同光阀20上。
以应用于单片光阀20的投影设备为例,为了方便将光源模组10分时输出的三基色光引导到同一片光阀20上,可以进一步对上述分时作为照明光束的第一基色光、第二基色光和第三基色光进行光路耦合。例如,光源模组10还可以包括:回路镜组150、第一分光元件160和第二分光元件170。
回路镜组150设置在分时光分路器110与第一分光元件160之间的第一出光通道中,用于准直进入第一出光通道的第一基色光并调整准直后的第一基色光的传输方向,使其传 输到第一分光元件160。例如,回路镜组150可以包括:第二准直透镜151、第一反射镜152、第三准直透镜153以及第二反射镜154。
第一分光元件160用于透射第一基色光,反射第二基色光,以实现第一基色光和第二基色光的光路耦合。第二分光元件170用于透射第一基色光以及第二基色光,反射第三基色光,以实现第一基色光和第二基色光与第三基色光的光路耦合。
使用时,经分时光分路器110传输到第一出光通道的第一基色光,经过回路镜组150的准直以及折转后,依次透过第一分光元件160以及第二分光元件170输出。经分时光分路器110传输到第二出光通道的第一基色光,透过第一分光元件160传输到荧光发生器120,荧光发生器120输出的第二基色光经第一分光元件160反射到第二分光元件170,透过第二分光元件170输出。第二光源组件130输出的第三基色光经第二分光元件170反射后输出。这样就可以使得三基色光在经过第二分光元件170后合光。
进一步地,上述光源模组10还可以包括:匀光元件180,匀光元件180设置在第二分光元件170的出光侧,先后经第二分光元件170输出的第一基色光、第二基色光以及第三基色光,均经过匀光元件180的光场均匀化处理后输出,以均匀地照射到相应光阀20上。例如,如图2所示,匀光元件180可以为复眼透镜阵列。或者,如图8所示,匀光元件180也可以包括第二聚焦透镜181以及光棒182,先后经第二分光元件170输出的第一基色光、第二基色光以及第三基色光经第二聚焦透镜181汇聚到光棒182中,实现光场均匀化。
为了更清楚地理解本公开提供的技术方案,下面按照图2示出的实施例,以第一基色光为蓝光激光、第二基色光为绿光、第三基色光为红光为例,对光源模组10的工作过程进行说明。
激光光源101提供的蓝光激光光束,经过第一聚焦透镜102汇聚后,聚焦到分时光分路器110。在第一照明时段,分时光分路器110将该蓝光激光光束传输到回路镜组150,经回路镜组150准直并传输到第一分光元件160,依次透过第一分光元件160和第二分光元件170,入射到匀光元件180,进行光场均匀化处理后,作为第一照明时段的投影照明光束照射到光阀20上,以在投影屏幕上形成蓝色子图像。
在第二照明时段,分时光分路器110将该蓝光激光光束传输到第一准直透镜140,经第一准直透镜140准直后传输到第一分光元件160,从第一分光元件160透射,并经过第一准直透镜组121汇聚到荧光发生器120。荧光发生器120在蓝光激光的激发下生成的绿光光束。绿光光束经过第一准直透镜组121准直后,由第一分光元件160反射至第二分光元件170,并透过第二分光元件170入射到匀光元件180,经匀光元件180进行光场均匀化处理后,作为第二照明时段的投影照明光束照射到光阀20上,以在投影屏幕上形成绿色子图像。
在第三照明时段,LED光源提供红光光束,红光光束经第二准直透镜组准直后入射到第二分光元件170,经第二分光元件170反射到匀光元件180,经匀光元件180进行光场均匀化处理后,作为第三照明时段的投影照明光束照射到光阀20上,以在投影屏幕上形 成红色子图像,从而利用人眼的视觉惰性进行时间混色,实现彩色图像显示。
在上述过程中,蓝光照明光束由激光光源101提供、绿光照明光束由蓝光激光激发绿色荧光体提供、红光照明光束由LED光源提供,有利于保证色彩画质,抑制散斑效应。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本公开一个或多个实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
尽管已描述了本公开的示例性实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括示例性实施例以及落入本公开范围的所有变更和修改。
第一方面,本公开实施例提供了一种光源模组,包括:第一光源组件、分时光分路器和荧光发生器,
第一光源组件用于提供第一基色光;
分时光分路器用于在第一照明时段将第一基色光传输到第一出光通道,以作为照明光束输出,以及在第二照明时段将第一基色光传输到第二出光通道,以传输到荧光发生器,其中,第一照明时段和第二照明时段为不同时段;
荧光发生器用于在第一基色光的激发下,生成第二基色光,以作为照明光束输出。
进一步地,在第一方面提供的光源模组中,分时光分路器可以包括:光路选择元件以及驱动机构;驱动机构控制光路选择元件运动以使第一基色光选择性的透过光路选择元件或者被光路选择元件反射。
进一步地,在第一方面提供的光源模组中,光路选择元件可以为调光元件,驱动机构与调光元件连接,用于带动调光元件偏转,
当调光元件偏转到第一预设位置时,第一光源组件提供的第一基色光被调光元件反射到第一出光通道,当调光元件偏转到第二预设位置时,第一光源组件提供的第一基色光透过调光元件进入第二出光通道,以传输到荧光发生器。
进一步地,调光元件的材料折射率大于空气的折射率,当调光元件偏转到第一预设位置时,第一基色光在调光元件的后表面的入射角大于全反射临界角且小于90度,当调光元件偏转到第二预设位置时,第一基色光在调光元件的后表面的入射角大于或等于0度且小于全反射临界角,其中,调光元件的后表面为背离第一光源组件的表面,全反射临界角为第一基色光从后表面进入空气时发生全反射的临界角。
进一步地,在第一方面提供的光源模组中,光路选择元件可以为旋转调光轮,旋转调光轮具有透射区和反射区,
当旋转调光轮的反射区旋转到第一基色光入射位置时,第一光源组件提供的第一基色光经反射区反射到第一出光通道;
当旋转调光轮的透射区旋转到第一基色光入射位置时,第一光源组件提供的第一基色 光透过透射区进入第二出光通道,以传输到荧光发生器。
进一步地,在第一方面提供的光源模组中,第一光源组件包括:激光光源以及第一聚焦透镜,第一聚焦透镜设置在激光光源与分时光分路器之间的光传输路径上,用于汇聚激光光源输出的第一基色光,分时光分路器设置在第一聚焦透镜的焦点位置。
进一步地,在第一方面提供的光源模组中还可以包括:回路镜组、第一分光元件和第二分光元件,回路镜组设置在分时光分路器与第一分光元件之间的第一出光通道中,
传输到第一出光通道的第一基色光,经过回路镜组的准直以及折转后,依次透过第一分光元件以及第二分光元件输出;
传输到第二出光通道的第一基色光,透过第一分光元件传输到荧光发生器,荧光发生器输出的第二基色光经第一分光元件反射到第二分光元件,再透过第二分光元件输出。
进一步地,光源模组还包括:第二光源组件,第二光源组件用于在第三照明时段提供第三基色光,并使得第三基色光经第二分光元件反射后输出,其中,第三照明时段与第一照明时段以及第二照明时段为不同时段。
进一步地,光源模组还可以包括:匀光元件,匀光元件设置在第二分光元件的出光侧,经第二分光元件输出的第一基色光、第二基色光以及第三基色光,经过匀光元件的光场均匀化处理后输出。
进一步地,在第一方面提供的光源模组中还包括:第二光源组件,其用于提供第三基色光,所述第二光源组件包括:红光LED光源。第一基色光为蓝色激光,第二基色光为绿光,第三基色光为红光。
进一步地,在第一方面提供的光源模组中,荧光发生器可以为:绿色陶瓷荧光体,或者,全向绿色荧光轮。
第二方面,本公开实施例提供了一种投影设备,包括:光阀、投影镜头以及第一方面提供的光源模组。其中,光源模组输出的第一基色光、第二基色光以及第三基色光,经过光阀以及投影镜头照射到屏幕上,以显示彩色图像。

Claims (12)

  1. 一种光源模组,包括:第一光源组件(100)、分时光分路器(110)和荧光发生器(120),
    所述第一光源组件(100)用于提供第一基色光;
    所述分时光分路器(110)用于在第一照明时段将所述第一基色光传输到第一出光通道,以作为照明光束输出,以及在第二照明时段将所述第一基色光传输到第二出光通道,以传输到荧光发生器(120),其中,所述第一照明时段和所述第二照明时段为不同时段;
    所述荧光发生器(120)用于在所述第一基色光的激发下,生成第二基色光,以作为照明光束输出。
  2. 根据权利要求1所述的光源模组,其中,所述分时光分路器(110)包括:光路选择元件以及驱动机构;
    所述驱动机构控制所述光路选择元件运动以使所述第一基色光选择性的透过所述光路选择元件或者被所述光路选择元件反射。
  3. 根据权利要求2所述的光源模组,其中,所述光路选择元件为调光元件,所述驱动机构与所述调光元件(111)连接,用于带动所述调光元件(111)偏转,
    当所述调光元件(111)偏转到第一预设位置时,所述第一光源组件(100)提供的第一基色光被所述调光元件(111)反射到所述第一出光通道,当所述调光元件(111)偏转到第二预设位置时,所述第一光源组件(100)提供的第一基色光透过所述调光元件(111)进入所述第二出光通道,以传输到所述荧光发生器(120)。
  4. 根据权利要求3所述的光源模组,其中,所述调光元件(111)的材料折射率大于空气的折射率,当所述调光元件(111)偏转到所述第一预设位置时,所述第一基色光在所述调光元件(111)的后表面的入射角大于全反射临界角且小于90度,当所述调光元件(111)偏转到所述第二预设位置时,所述第一基色光在所述调光元件(111)的后表面的入射角大于或等于0度且小于所述全反射临界角,其中,所述调光元件(111)的后表面为背离所述第一光源组件(100)的表面,所述全反射临界角为所述第一基色光从所述后表面进入空气时发生全反射的临界角。
  5. 根据权利要求2所述的光源模组,其中,所述光路选择元件为旋转调光轮(112),所述旋转调光轮(112)具有透射区和反射区,
    当所述旋转调光轮(112)的反射区旋转到第一基色光入射位置时,所述第一光源组件(100)提供的第一基色光经所述反射区反射到所述第一出光通道;
    当所述旋转调光轮(112)的透射区旋转到第一基色光入射位置时,所述第一光源组件(100)提供的第一基色光透过所述透射区进入所述第二出光通道,以传输到所述荧光发生器(120)。
  6. 根据权利要求1至5中任一项所述的光源模组,其中,所述第一光源组件 (100)包括:激光光源(101)以及第一聚焦透镜(102),所述第一聚焦透镜(102)设置在所述激光光源(101)与所述分时光分路器(110)之间的光传输路径上,用于汇聚所述激光光源(101)输出的第一基色光,所述分时光分路器(110)设置在所述第一聚焦透镜(102)的焦点位置。
  7. 根据权利要求1至6中任一项所述的光源模组,还包括:回路镜组(150)、第一分光元件(160)和第二分光元件(170),所述回路镜组(150)设置在所述分时光分路器(110)与所述第一分光元件(160)之间的所述第一出光通道中,
    传输到所述第一出光通道的第一基色光,经过所述回路镜组(150)的准直以及折转后,依次透过所述第一分光元件(160)以及所述第二分光元件(170)输出;
    传输到所述第二出光通道的第一基色光,透过所述第一分光元件(160)传输到所述荧光发生器(120),所述荧光发生器(120)输出的第二基色光经所述第一分光元件(160)反射到所述第二分光元件(170),再透过所述第二分光元件(170)输出。
  8. 根据权利要求7所述的光源模组,还包括:第二光源组件(130),所述第二光源组件(130)用于在第三照明时段提供第三基色光,并使得所述第三基色光经所述第二分光元件(170)反射后输出,其中,所述第三照明时段与所述第一照明时段以及所述第二照明时段为不同时段。
  9. 根据权利要求8所述的光源模组,还包括:匀光元件(180),所述匀光元件(180)设置在所述第二分光元件(170)的出光侧,经所述第二分光元件(170)输出的所述第一基色光、所述第二基色光以及所述第三基色光,经过所述匀光元件(180)的光场均匀化处理后输出。
  10. 根据权利要求1至9中任一项所述的光源模组,还包括:第二光源组件(130),其用于提供第三基色光,所述第二光源组件(130)包括:红光LED光源;
    所述第一基色光为蓝色激光,所述第二基色光为绿光,所述第三基色光为红光。
  11. 根据权利要求1至10中任一项所述的光源模组,其中,所述荧光发生器(120)为:绿色陶瓷荧光体,或者,全向绿色荧光轮。
  12. 一种投影设备,包括:
    权利要求1-11中任一项所述的光源模组;
    光阀;以及
    投影镜头;
    其中,所述光源模组输出的第一基色光、第二基色光以及第三基色光,经过所述光阀以及所述投影镜头照射到屏幕上,以显示彩色图像。
PCT/CN2023/081977 2022-09-30 2023-03-16 光源模组及投影设备 WO2024066229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215874.X 2022-09-30
CN202211215874.XA CN117850137A (zh) 2022-09-30 2022-09-30 光源模组及投影设备

Publications (1)

Publication Number Publication Date
WO2024066229A1 true WO2024066229A1 (zh) 2024-04-04

Family

ID=90475792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081977 WO2024066229A1 (zh) 2022-09-30 2023-03-16 光源模组及投影设备

Country Status (2)

Country Link
CN (1) CN117850137A (zh)
WO (1) WO2024066229A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101317A (ja) * 2011-10-20 2013-05-23 Panasonic Corp 照明装置およびそれを用いた投写型画像表示装置
US20140268069A1 (en) * 2013-03-14 2014-09-18 Tatsuya Takahashi Light source unit and projector incorporating the same
JP2015022249A (ja) * 2013-07-23 2015-02-02 株式会社リコー 光路分岐光学系及びこの光路分岐光学系を用いた照明光源装置及びこの照明光源装置を用いた画像表示装置及びこの画像表示装置を用いた投射装置
CN213423690U (zh) * 2020-10-21 2021-06-11 中强光电股份有限公司 照明***及投影装置
CN113568265A (zh) * 2021-08-11 2021-10-29 四川长虹电器股份有限公司 一种投影照明***
CN218332280U (zh) * 2022-09-30 2023-01-17 深圳洛克创新科技有限公司 光源模组及投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101317A (ja) * 2011-10-20 2013-05-23 Panasonic Corp 照明装置およびそれを用いた投写型画像表示装置
US20140268069A1 (en) * 2013-03-14 2014-09-18 Tatsuya Takahashi Light source unit and projector incorporating the same
JP2015022249A (ja) * 2013-07-23 2015-02-02 株式会社リコー 光路分岐光学系及びこの光路分岐光学系を用いた照明光源装置及びこの照明光源装置を用いた画像表示装置及びこの画像表示装置を用いた投射装置
CN213423690U (zh) * 2020-10-21 2021-06-11 中强光电股份有限公司 照明***及投影装置
CN113568265A (zh) * 2021-08-11 2021-10-29 四川长虹电器股份有限公司 一种投影照明***
CN218332280U (zh) * 2022-09-30 2023-01-17 深圳洛克创新科技有限公司 光源模组及投影设备

Also Published As

Publication number Publication date
CN117850137A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US10110861B2 (en) Light source system and projection system
US10228613B2 (en) Light source system and related projection system employing a light division system and two spatial light modulators
KR20060111793A (ko) 조명유니트 및 이를 채용한 화상투사장치
WO2020259615A1 (zh) 一种光源***及显示设备
WO2020216263A1 (zh) 光源***和显示设备
CN111258165A (zh) 激光投影设备
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
CN109388004B (zh) 投影***
WO2021259276A1 (zh) 光源组件和投影设备
CN218332280U (zh) 光源模组及投影设备
WO2024066229A1 (zh) 光源模组及投影设备
WO2021259268A1 (zh) 光源组件和投影设备
CN112213908B (zh) 光源***与显示设备
WO2021259274A1 (zh) 光源组件和投影设备
CN115903359A (zh) 光源装置、图像投影装置以及显示装置
WO2024066228A1 (zh) 投影照明装置及投影设备
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置
JP2009198570A (ja) 画像表示装置及び投影装置
WO2023030419A1 (zh) 激光投影设备
WO2021259282A1 (zh) 光源组件和投影设备
CN218917909U (zh) 光源装置和投影设备
JP2012252102A (ja) 投写型表示装置
WO2021037240A1 (zh) 一种光源及投影设备
US20230350281A1 (en) Laser source and projection apparatus
WO2021008330A1 (zh) 光源***与显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869490

Country of ref document: EP

Kind code of ref document: A1