WO2024065187A1 - 通信方法、通信装置、介质及程序产品 - Google Patents

通信方法、通信装置、介质及程序产品 Download PDF

Info

Publication number
WO2024065187A1
WO2024065187A1 PCT/CN2022/121766 CN2022121766W WO2024065187A1 WO 2024065187 A1 WO2024065187 A1 WO 2024065187A1 CN 2022121766 W CN2022121766 W CN 2022121766W WO 2024065187 A1 WO2024065187 A1 WO 2024065187A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
measurement
reporting
time window
time
Prior art date
Application number
PCT/CN2022/121766
Other languages
English (en)
French (fr)
Inventor
董蕾
唐浩
张立清
马江镭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/121766 priority Critical patent/WO2024065187A1/zh
Publication of WO2024065187A1 publication Critical patent/WO2024065187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications, and more specifically, to a communication method, a communication device, a computer-readable storage medium, and a computer program product.
  • the fifth generation mobile communication technology namely the new radio (NR) system
  • 5G fifth generation mobile communication technology
  • NR new radio
  • the next generation of communication technology that evolves after 5G may also integrate communication networks with perception networks, computing networks, etc., to achieve higher transmission efficiency.
  • the perception network can achieve target positioning (such as ranging, speed measurement or angle measurement), target imaging, target detection or target recognition through perception or measurement.
  • the current measurement result reporting mechanism is designed for communication signals. Its purpose is to determine the channel quality by measuring the communication signals to ensure the communication quality. For example, the terminal device can report the average communication quality of the cell to the network device. However, this measurement result reporting mechanism is not suitable for measuring and reporting perception signals.
  • embodiments of the present application provide a communication method, a communication device, a computer-readable storage medium, and a computer program product for reporting measurement results.
  • a communication method includes: a first communication device measures a measurement signal to obtain a measurement result; and the first communication device sends the measurement result and measurement time information to a second communication device, wherein the measurement time information indicates a measurement time point or a measurement time window at which the first communication device performs the measurement.
  • the first communication device can report the measurement time information of the measurement result, thereby providing the measurement time information of the measurement result to help the second communication device obtain a measurement result with time domain correlation, improve the validity of the measurement result, and thus help the second communication device obtain a more complete measurement result. This is particularly useful in a scenario where the first communication device determines the measurement moment by itself.
  • the measurement time information includes at least one of a system frame number, a time slot index, a mini-time slot index, and a symbol index corresponding to the measurement time point. This can help the second communication device determine the measurement time point of the measurement result with low computing resources.
  • the measurement time information includes a time domain offset, and the time domain offset indicates a time interval between a measurement time point or a measurement time window and a reference time point.
  • the reference time point is a time point at which the first communication device sends a measurement result, or a time point at which the first communication device sends the measurement time information. In this way, the measurement time point or the measurement time window can be easily determined, and the measurement time information can be provided with a lower signaling overhead.
  • the measurement time information indicates a measurement time point based on an index of a measurement signal.
  • the index of the measurement signal includes at least one of the following: a window index, used to indicate a window of a measurement signal in which the measurement signal is located; a type index, used to indicate a type of the measurement signal; and a signal index, used to indicate a measurement signal within the window of the measurement signal in which the measurement signal is located or a measurement signal under the type of the measurement signal or a signal in a predetermined time period.
  • the measurement time information includes at least one of a start time point, an end time point, and a duration of the measurement time window.
  • the measurement time information includes an index of the measurement time window.
  • the measurement time window can be easily determined, and the measurement time information can be provided with a lower signaling overhead.
  • the measurement result includes perception information.
  • time domain related information of the perception measurement result can be provided.
  • a communication method is provided, and the beneficial effects can be found in the description of the first aspect, which will not be repeated here.
  • the method includes: a second communication device receives a measurement result and measurement time information from a first communication device, the measurement result is obtained by the first communication device measuring a measurement signal, and the measurement time information indicates a measurement time point or a measurement time window of the measurement; and the second communication device performs perception processing or communication processing according to the measurement result and the measurement time information.
  • the second communication device can determine the measurement moment corresponding to the measurement result based on the measurement time information, thereby obtaining a measurement result with time domain correlation, improving the validity of the measurement result, and helping the second communication device to obtain a more complete measurement result. This is particularly beneficial in a scenario where the first communication device determines the measurement moment by itself.
  • the measurement time information includes at least one of a system frame number, a time slot index, a mini-time slot index, and a symbol index corresponding to the measurement time point.
  • the measurement time information includes a time domain offset, and the time domain offset indicates a time interval between the measurement time point or the measurement time window and the reference time point.
  • the reference time point is a time point at which the first communication device sends a measurement result, or a time point at which the first communication device sends the measurement time information.
  • the measurement time information indicates a measurement time point based on an index of the measurement signal.
  • the index of the measurement signal includes: a window index for indicating a window of the measurement signal in which the measurement signal is located; a type index for indicating a type of the measurement signal; and a signal index for indicating a measurement signal within the window of the measurement signal in which the measurement signal is located or a reference signal under the type of the measurement signal or a signal among the measurement signals within a predetermined time period.
  • the measurement time information includes at least one of a start time point, an end time point, and a duration of a measurement time window. In some implementations of the second aspect, the measurement time information includes an index of the measurement time window. In some implementations of the second aspect, the measurement result includes perception information.
  • a communication method includes: a first communication device determines a first reporting time window; the first communication device sends a measurement result to a second communication device within the first reporting time window, and the measurement result is obtained by the first communication device measuring the measurement signal.
  • the first communication device can apply the reporting time window when reporting the measurement result. In this way, the timeliness of the measurement result can be ensured, the invalidation of the measurement result can be avoided, and the effectiveness of the measurement effect can be improved.
  • the first reporting time window includes at least one of a starting time point, an ending time point, and a duration.
  • the starting time point is a time point when the first communication device performs measurement or a time point when the first communication device sends the first reporting time window.
  • the method further includes: the first communication device sends a first reporting time window to the second communication device.
  • the first reporting time window is included in a cache status report.
  • the method further includes: the first communication device receives resources for sending measurement results from the second communication device, and the resources are within the first reporting time window.
  • the method further includes: the first communication device selecting a preconfigured resource within the first reporting time window for sending the measurement result to the second communication device.
  • the timeliness of the measurement result can be guaranteed with low resource overhead.
  • the first communication device determines the first reporting time window, including: the first communication device receives one or more reporting time windows determined by the second communication device from the second communication device, the one or more reporting time windows including the first reporting time window; and the first communication device determines the first reporting time window from the one or more reporting time windows. In this way, the first communication device can determine the reporting time window applicable to the current measurement based on the reporting time window determined by the second communication device. In this way, the first communication device can determine the reporting time window with low computing resources.
  • the method further includes: the first communication device sends a reporting condition of the first reporting time window to the second communication device, and the reporting condition includes at least one of the following: the mobility of the first communication device, the measurement environment, the type of measurement result, and the value of the measurement result.
  • the second communication device can determine the first reporting time window based on the reporting condition received from the first communication device, and then determine the resources used to report the measurement results within the first reporting time window. Compared with directly sending the reporting time window, the sending of the reporting condition can occupy lower communication resources. In this way, the second communication device can be informed of the first reporting time window with low resource overhead to assist the second communication device in determining the resources for reporting the measurement results.
  • the first reporting time window is determined according to a reporting condition, where the reporting condition includes at least one of the following: mobility of the first communication device, a measurement environment, a type of measurement result, and a value of the measurement result. In this way, the first reporting time window can be determined with low computing resources.
  • the measurement result includes perception information, thereby ensuring the timeliness of the perception measurement result.
  • a communication method is provided, and the beneficial effects can be found in the description of the third aspect, which will not be repeated here.
  • the method includes: a second communication device determines a first reporting time window; and the second communication device receives a measurement result from the first communication device within the first reporting time window, and the measurement result is obtained by the first communication device measuring the measurement signal.
  • the second communication device determines the first reporting time window, including: the second communication device receives the first reporting time window from the first communication device.
  • the first reporting time window is included in the cache status report.
  • the first reporting time window includes at least one of a starting time point, an ending time point, and a duration.
  • the starting time point is a time point when the first communication device performs measurement or a time point when the first communication device sends the first reporting time window.
  • the method further includes: the second communication device determines resources for the first communication device to send measurement results, the resources are within a first reporting time window; and the second communication device sends an indication of the resources to the first communication device.
  • the second communication device receiving the measurement result includes: the second communication device receiving the measurement result from the first communication device using preconfigured resources within the first reporting time window.
  • the method also includes: the second communication device determines one or more reporting time windows, the one or more reporting time windows include a first reporting time window; and the second communication device sends the one or more reporting time windows to the first communication device.
  • the second communication device determines the first reporting time window, including: the second communication device receives the reporting conditions of the first reporting time window from the first communication device; and the second communication device determines the first reporting time window based on the reporting conditions.
  • the first reporting time window is determined according to a reporting condition, wherein the reporting condition includes at least one of the following: mobility of the first communication device, a measurement environment, a type of measurement result, and a value of the measurement result.
  • the measurement result includes perception information.
  • a first communication device in a fifth aspect, includes a module or a unit for executing any method of the first aspect or the third aspect and implementation manners thereof.
  • a second communication device in a sixth aspect, includes a module or unit for executing any method of the second aspect or the fourth aspect and implementation manners thereof.
  • a first communication device comprising a processor coupled to a memory, wherein the memory stores instructions, which, when executed by the processor, enable the first communication device to perform any method of the first aspect or the third aspect and their implementations.
  • a second communication device including a processor coupled to a memory, wherein the memory stores instructions, which, when executed by the processor, enable the second communication device to perform any method of the second aspect or the fourth aspect and their implementations.
  • a computer-readable storage medium which stores instructions, which, when run, enable the method according to the first aspect or the third aspect or any implementation thereof to be executed.
  • a computer-readable storage medium which stores instructions, which, when run, enable the method according to the second aspect or the fourth aspect or any implementation thereof to be executed.
  • a computer program product comprising instructions, and when the instructions are run, the method according to the first aspect or the third aspect or any implementation thereof is executed.
  • a computer program product comprising instructions, which, when run, enable the method according to the second aspect or the fourth aspect or any implementation thereof to be executed.
  • a communication system which includes a first communication device according to the fifth or seventh aspect and a second communication device according to the sixth or eighth aspect.
  • FIG1 is a schematic diagram showing a scenario of aperiodic measurement and reporting based on the NR protocol
  • FIG2 is a schematic diagram of a communication system to which an embodiment of the present application may be applied;
  • FIG3 shows an interactive signaling diagram of a method for reporting measurement results provided in an embodiment of the present application
  • FIGS. 4A and 4B are schematic diagrams showing an example implementation of measuring time information provided by an embodiment of the present application.
  • FIG5 shows an interactive signaling diagram of a method for reporting measurement results provided in an embodiment of the present application
  • FIG6 is a schematic diagram showing an example implementation of reporting measurement results based on dynamically indicated resources within a reporting time window provided by an embodiment of the present application
  • FIG7 is a schematic flow chart of a method implemented at a first communication device according to an embodiment of the present application.
  • FIG8 is a schematic flow chart of a method implemented at a second communication device according to an embodiment of the present application.
  • FIG9 is a schematic flow chart of a method implemented at a first communication device according to an embodiment of the present application.
  • FIG10 is a schematic flow chart showing a method implemented at a second communication device according to an embodiment of the present application.
  • FIG. 11 shows a schematic block diagram of an example device that can be used to implement an embodiment of the present application.
  • the embodiments of the present application may be implemented according to any appropriate communication protocol, including but not limited to cellular communication protocols such as the fourth generation (4G), fifth generation (5G) and communication protocols evolved after 5G (for example, the sixth generation (6G)), wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • cellular communication protocols such as the fourth generation (4G), fifth generation (5G) and communication protocols evolved after 5G (for example, the sixth generation (6G)
  • wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G systems e.g., NR
  • 5G systems e.g., NR
  • 6G systems communication systems that evolve after 5G (e.g., 6G systems), and the like.
  • the cellular communication system in the 3rd Generation Partnership Project (3GPP) is used as the background to describe the embodiment of the present application.
  • 3GPP 3rd Generation Partnership Project
  • the embodiment of the present application is not limited to the communication system, but can be applied to any communication system with similar problems, such as a wireless local area network (WLAN), a wired communication system, or other communication systems developed in the future.
  • WLAN wireless local area network
  • wired communication system or other communication systems developed in the future.
  • terminal device refers to any terminal device that can communicate with network devices or with each other by wire or wirelessly.
  • Terminal devices may sometimes be referred to as user equipment (UE).
  • Terminal devices may be any type of mobile terminal, fixed terminal or portable terminal.
  • Terminal devices may be various wireless communication devices with wireless communication capabilities.
  • IoT Internet of Things
  • more and more devices that did not previously have communication capabilities such as but not limited to household appliances, vehicles, tools and equipment, service equipment and service facilities, have begun to obtain wireless communication capabilities by configuring wireless communication units, so that they can access wireless communication networks and accept remote control.
  • Such devices have wireless communication capabilities because they are configured with wireless communication units, and therefore also fall into the category of wireless communication devices.
  • the terminal device may include a mobile cellular phone, a cordless phone, a mobile terminal (Mobile Terminal, MT), a mobile station, a mobile device, a wireless terminal, a handheld device, a client, a subscription station, a portable subscription station, an Internet node, a communicator, a desktop computer, a laptop computer, a notebook computer, a tablet computer, a personal communication system device, a personal navigation device, a personal digital assistant (Personal Digital Assistant, PDA), a customer-premises equipment (customer-premises equipment, CPE), a smart point of sale (point of sale, POS) machine, a wireless data Cards, wireless modems (Modulator demodulator, Modem), positioning devices, radio broadcast receivers, e-book devices, gaming devices, IoT devices, vehicle-mounted devices, aircraft, virtual reality (VR) devices, augmented reality (AR) devices, wearable devices (e.g., smart watches), terminals in device-to-device communication (D2D), terminals
  • the present invention relates to a wireless terminal for use in a self-driving vehicle, a wireless terminal for remote medical, a wireless terminal for a smart grid, a wireless terminal for transportation safety, a wireless terminal for a smart city, a wireless terminal for a smart home, a terminal device in a 5G network, or any terminal device in an evolved public land mobile network (PLMN), other devices that can be used for communication, or any combination thereof.
  • PLMN evolved public land mobile network
  • the term "network device” used in this application is an entity or node that can be used to communicate with a terminal device, for example, it can be an access network device.
  • the access network device can be a device deployed in a wireless access network to provide wireless communication functions for mobile terminals, for example, it can be a radio access network (RAN) network device.
  • the access network device can include various types of base stations.
  • the base station is used to provide wireless access services for terminal devices.
  • the access network device may include a macro base station that provides macro cells (Macro cells), a micro base station that provides micro cells (Pico cells), a micro base station that provides micro cells, and a micro base station that provides femto cells.
  • the access network device may also include various forms of relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH), remote radio heads (Remote Radio Head, RRH), transmission points (transmitting and receiving points, TRP), transmitting points (transmitting points, TP), etc.
  • RRU Remote Radio Unit
  • RRU remote radio units
  • Radio Head, RH radio head
  • RRH Remote Radio Head
  • transmission points transmitting and receiving points
  • TRP transmitting points
  • TP transmitting points
  • the names of access network devices may be different, such as evolved NodeB (eNB or eNodeB) in LTE networks, NodeB (NB) in 3G networks, gNB or NR NB in 5G networks, and so on.
  • access network devices may include a Central Unit (CU) and/or a Distributed Unit (DU).
  • CU Central Unit
  • DU Distributed Unit
  • CU and DU may be placed in different places, for example: DU is remote and placed in an area with high traffic volume, and CU is placed in a central computer room. Alternatively, CU and DU may be placed in the same computer room. CU and DU may also be different components under one rack.
  • Network devices may also be devices that perform base station functions in device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • 5G NR systems now have higher data transmission requirements, such as higher throughput, lower latency, higher reliability, and a larger number of connections.
  • the next generation of communication technology that evolves after 5G may also integrate communication networks with perception networks, computing networks, etc., to achieve higher transmission efficiency.
  • the perception network can achieve target positioning (such as ranging, speed measurement, or angle measurement), target imaging, target detection, or target recognition through perception or measurement.
  • the network equipment in order to obtain channel state information (CSI), the network equipment usually first configures the resources for transmitting CSI reference signal (CSI-RS) to the terminal device, and then transmits CSI-RS on the resources.
  • the terminal device receives CSI-RS on the resources, determines various types of CSI according to predetermined criteria, and reports CSI on the preconfigured resources.
  • CSI may include channel quality information (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI), L1 reference signal received power (L1-RSRP), etc.
  • the measurement and reporting of CSI may be periodic, semi-persistent or aperiodic, wherein the resources for transmitting CSI-RS correspond one-to-one to the resources for reporting CSI.
  • the network device first uses radio resource control (RRC) to configure the periodic first resource and the second resource for transmitting CSI-RS and reporting CSI respectively, and the first resource for transmitting CSI-RS corresponds to the second resource for reporting CSI. Then the network device periodically sends CSI-RS on the configured first resource, and the terminal device periodically reports CSI on the configured second resource.
  • RRC radio resource control
  • the network device first uses RRC to configure the periodic first resource and the second resource for transmitting CSI-RS and reporting CSI respectively, and the first resource for transmitting CSI-RS corresponds to the second resource for reporting CSI.
  • the network device uses MAC CE-1 to activate the semi-persistent CSI-RS transmission, and then the network device sends CSI-RS on the configured first resource, and then the network device uses MAC CE-2 to activate the semi-persistent CSI reporting, and then the terminal device reports CSI on the configured second resource.
  • the network device first uses downlink control information (DCI) to trigger the transmission of CSI-RS and the reporting of CSI, and the resources for transmitting CSI-RS correspond one-to-one to the resources for reporting CSI.
  • DCI downlink control information
  • FIG1 shows a schematic diagram of a scenario based on non-periodic measurement and reporting in NR.
  • the terminal device can determine the time domain offset between the transmission time of CSI-RS and the transmission time t1 of DCI as Offset#X, and the time domain offset between the reporting time of CSI and the transmission time t1 of DCI as Offset#Y.
  • the terminal device determines the transmission time t2 of CSI-RS and the reporting time t3 of CSI, which are one-to-one corresponding.
  • the terminal device does not need to additionally indicate the corresponding transmission CSI-RS resources when reporting CSI, because the network device can determine the corresponding transmission CSI-RS resources based on the resources of the reported CSI.
  • the terminal device can determine the average communication quality of the cell based on the long-term measurement results of the beam. Since the average communication quality of the cell is based on the long-term measurement results of multiple beams, when the terminal device reports the measured average communication quality, it is not necessary to report which beam the measurement result is based on. The network device can determine the corresponding beam based on the resource for reporting the average communication quality.
  • the terminal device when the terminal device receives the signal for measurement and reports the measurement result, the receiving resource and the reporting resource are one-to-one corresponding. Therefore, when the terminal device reports the measurement result to the network device, it does not need to report which signal or beam the measurement result is based on.
  • the network device can obtain the time domain related information of the measurement result based on the reporting resource of the measurement result, and then perform communication processing according to the measurement result.
  • Perception technology has created a new application scenario, covering a range of use cases, such as device-based or even device-free target positioning, imaging, environment reconstruction and monitoring, gesture and activity recognition, etc.
  • Perception technology adds new performance dimensions to the research of global mobile communication systems, such as detection accuracy, perception resolution, and perception precision (including distance, speed, angle), and the performance requirements of these dimensions vary from application to application.
  • the terminal device in order to further reduce transmission overhead, can reuse existing signals (for example, reference signals (such as CSI-RS, etc.) or synchronization signals (such as synchronization signal blocks (SSB))) for perception measurement.
  • reference signals such as CSI-RS, etc.
  • SSB synchronization signal blocks
  • the network device can send CSI-RS to the terminal device, and the terminal device can receive CSI-RS and measure and report CSI.
  • CSI-RS can also be used to measure perception information. Due to the dynamic changes in the perception environment, whether the existing reference signal or synchronization signal is used to measure perception information, and when and which reference signal or synchronization signal is used to measure perception information can be determined by the terminal device itself. However, when the terminal device determines to reuse a part of the existing signal for perception measurement, the network device cannot know which signal or beam the perception measurement result is based on based on the perception measurement result. In the case where the network device cannot know the time domain related information of the perception measurement result, the perception measurement result may be unavailable to the network device.
  • the embodiment disclosed in the present application provides a communication method for reporting measurement results.
  • a first communication device e.g., a terminal device
  • measures a measurement signal to obtain a measurement result.
  • the first communication device sends the measurement result and measurement time information to a second communication device (e.g., a network device), and the measurement time information indicates the measurement time point or measurement time window at which the first communication device performs the above measurement.
  • the above method is adopted.
  • the second communication device can determine the measurement time point or measurement time window corresponding to the measurement result according to the measurement time information, thereby determining the measurement signal.
  • the second communication device can obtain a measurement result with time domain correlation, improve the validity of the measurement result, and thus help to obtain a complete and usable measurement result.
  • the embodiment disclosed in the present application can be applied to any other communication scenario, without any limitation. In order to discuss the embodiment disclosed in the present application more clearly, the embodiment disclosed in the present application is described with reference to Figures 2 to 11.
  • FIG2 shows a schematic diagram of a communication system 200 in which an embodiment of the present application can be implemented.
  • the system 200 may include terminal devices 210-1 to 210-N (collectively referred to as terminal devices 210) and network devices 220-1 and 220-2 (collectively referred to as network devices 220).
  • Network devices 220 and terminal devices 210 can communicate directly.
  • terminal device 210 can communicate with corresponding network device 220 via a wireless link.
  • network devices 220 and network devices 220 can communicate directly.
  • network devices 220 can communicate with each other via a backhaul link, which can be a wired backhaul link (e.g., optical fiber, copper cable) or a wireless backhaul link (e.g., microwave).
  • a backhaul link which can be a wired backhaul link (e.g., optical fiber, copper cable) or a wireless backhaul link (e.g., microwave).
  • terminal devices 210 and terminal devices 210 can communicate directly.
  • the terminal device may also be referred to as the first communication device or may include the first communication device
  • the network device may also be referred to as the second communication device or may include the second communication device.
  • Some embodiments below describe the communication between the first communication device and the second communication device, and it should be understood that these communications are not limited to occurring between the terminal device and the network device, and may also occur between terminal devices, between network devices, or between any two or more communication devices in some scenarios.
  • FIG3 shows an interactive signaling diagram of a method 300 for reporting measurement results provided in an embodiment of the present application. For the sake of clarity, the method 300 will be discussed in conjunction with FIG2.
  • the method 300 includes:
  • the first communication device 210 measures a measurement signal to obtain a measurement result.
  • the measurement signal may be a measurement signal received by the first communication device 210 from another communication device.
  • the other communication device may be the second communication device 220 or other communication device to receive the measurement result.
  • the measurement signal may be a measurement signal received by the first communication device 210 from the first communication device 210 itself.
  • the first communication device 210 sends a measurement result 306 and measurement time information 308 to the second communication device 220 .
  • the second communication device 220 receives the measurement result 306 and the measurement time information 308 from the first communication device 210 .
  • the measurement result 306 and the measurement time information 308 may be sent and received simultaneously, or may be sent and received separately at different times.
  • the measurement time information 308 indicates the measurement time point or measurement time window at which the first communication device 210 performs the measurement. Those skilled in the art will appreciate that there may be a corresponding relationship between the time at which the first communication device 210 receives the measurement signal for measurement and the time at which the measurement signal is sent.
  • the measurement time information 308 may indicate the measurement time point or measurement time window at which the first communication device 210 performs the measurement by indicating the sending time point or sending time window at which the measurement signal is sent.
  • the first communication device 210 may provide any appropriate form of measurement time information so that the second communication device 220 may determine a measurement time point or a measurement time window.
  • the measurement time information indicates the measurement time point
  • the measurement time information may include at least one of the system frame number, time slot index, mini time slot index and symbol index corresponding to the measurement time point.
  • the first communication device 210 can use the perception signal to perform perception measurement, and determine the perception measurement time and reporting time by itself.
  • the perception signal can be part or all of the reference signal in the NR protocol, or it can be a newly defined signal.
  • the first communication device 210 can directly indicate the specific perception measurement time corresponding to the perception measurement result, for example, the system frame number, time slot index, mini time slot index and symbol index corresponding to the perception measurement time.
  • the measurement time information may include a time domain offset, which indicates the time interval between the measurement time point or the measurement time window and the reference time point.
  • the time domain offset included in the measurement time information may include the time interval between the measurement time point and the reference time point. If the first communication device 210 measures the measurement signal within a certain measurement time window, the time domain offset included in the measurement time information may include the time interval between the start time of the measurement time window and the reference time point and/or the time interval between the end time of the measurement time window and the reference time point.
  • the reference time point may be the time point when the first communication device 210 sends the measurement result or the time point when the first communication device 210 sends the measurement time information.
  • the reference time point may be other reference time points known to both the first communication device 210 and the second communication device 220.
  • the measurement time information may also include the length of the measurement time window.
  • the unit of the time domain offset or the measurement time window may include at least one of a time slot, a symbol, a mini-time slot, a subframe, a second, a millisecond, and the like.
  • the first communication device 210 performs a perceptual measurement on a reference signal at time t meas to obtain a perceptual measurement result, and reports the perceptual measurement result at time t ref .
  • the first communication device 210 may report a time domain offset T offset between the perceptual measurement time t meas and the reference time t ref , wherein the perceptual measurement result reporting time is used as the reference time t ref .
  • the unit of the time domain offset T offset may be at least one of a time slot, a symbol, a mini-time slot, a subframe, a second, a millisecond, and the like.
  • the measurement time information may indicate the measurement time point based on the index of the measurement signal.
  • the index of the measurement signal may be arranged in any appropriate manner so that the index may be used to distinguish the measurement signals received by the first communication device 210 at different time points.
  • the second communication device 220 may preconfigure the correspondence between the index of the measurement signal and the measurement time point.
  • the index of the measurement signal and the measurement time point may also be specified by a protocol. In this way, the first communication device 210 may indicate the measurement time point to the second communication device 220 by sending the index of the measurement signal.
  • the index of the measurement signal may include a window index, a type index, a signal index, other indexes, and any combination of these different indexes.
  • the window index may be used to indicate the window of the measurement signal in which the measurement signal is located.
  • the type index may be used to indicate the type of the measurement signal.
  • the signal index may be used to indicate a measurement signal within the window of the measurement signal in which the measurement signal is located or a measurement signal under the type of the measurement signal or a signal in the measurement signal within a predetermined time period.
  • the signal index may be used to indicate a serial index of one of the multiple measurement signals sent from the second communication device 220 to the first communication device 210 starting from a certain time point.
  • the signal index may be used to indicate a serial index of one of the multiple measurement signals sent from the second communication device 220 to multiple terminal devices including the first communication device 210 within a predetermined time period with the time point of reporting the measurement result as the end time point.
  • the measurement signal in this article can be any signal that can be measured.
  • the measurement signal can be a synchronization signal, which can include a synchronization signal block.
  • the synchronization signal block can include a primary synchronization signal, a secondary synchronization signal, and a physical layer broadcast channel.
  • the first communication device 210 can reuse SSB as a perception measurement signal for perception measurement.
  • the second communication device 220 sends an SSB signal in the form of an SSB burst set. Each SSB burst set can be regarded as an SSB burst window.
  • the second communication device 220 can preconfigure the length of the SSB burst window, and an SSB burst window can include multiple SSB resources.
  • the second communication device 220 can periodically repeat sending multiple SSB burst windows.
  • the first communication device 210 can also report a synchronization signal index, which includes an index of an SSB burst window and an SSB resource index.
  • the SSB burst window index is used to indicate the SSB burst window where the measured SSB is located
  • the SSB resource index is used to indicate the SSB resource used to send the SSB in the SSB burst window.
  • the measurement time information may be indicated by the SSB burst window index and the SSB resource index.
  • the SSB resource may not be within the SSB burst window.
  • the measurement signal may be a reference signal
  • the first communication device 210 may reuse multiple reference signals as perception measurement signals for perception measurement.
  • Multiple reference signals may be sent in the form of reference signal windows, wherein each reference signal window may include one or more types of reference signals.
  • Multiple types of reference signals may be CSI-RS, SSB, demodulation reference signal (DMRS, demodulation reference signal), channel sounding reference signal (sounding reference signal, SRS), or newly defined perception signals, etc.
  • CSI-RS channel sounding reference signal
  • SRS sounding reference signal
  • a reference signal window may include (multiple) CSI-RS.
  • a reference signal window may include (multiple) CSI-RS and (multiple) SSB.
  • the first communication device 210 may reuse at least one reference signal of type #1 reference signal, type #2 reference signal, and type #3 reference signal as a perception measurement signal for perception measurement.
  • the first communication device 210 receives reference signals in reference signal window #0 and reference signal window #1.
  • the first communication device 210 may report the perception measurement moment in the form of ⁇ reference signal window index; reference signal type index; reference signal index ⁇ , where the reference signal index indicates one of the reference signals under a certain reference signal type in the reference signal window.
  • the reference signals shown in FIG. 4B may be indicated by ⁇ 0; 1; 0 ⁇ 0; 1; 1 ⁇ 0; 1; 2 ⁇ 1; 2; 0 ⁇ 1; 3; 0 ⁇ 1; 3; 1 ⁇ , respectively.
  • the first communication device 210 may provide any appropriate form of measurement time information so that the second communication device 220 may determine a measurement time point or a measurement time window.
  • the measurement time information may include a starting time point, an ending time point, a duration, or any combination thereof of the measurement time window.
  • the first communication device 210 may continuously measure within a measurement time window to obtain perception information such as Doppler shift.
  • the first communication device 210 may directly indicate the starting moment and the ending moment of the measurement time window to report the perception measurement time information.
  • the first communication device 210 may indicate the starting moment and the duration of the measurement time window.
  • the first communication device 210 may indicate the ending moment and the duration of the measurement window.
  • the measurement time information may include an index of a measurement time window.
  • the index of the measurement time window may be arranged in any appropriate manner so that the index can be used to distinguish different measurement time windows.
  • the second communication device 220 may preconfigure the correspondence between the index of the measurement time window and the measurement time window corresponding to the measurement signal.
  • the correspondence between the index of the measurement time window and the measurement time window corresponding to the measurement signal may also be specified by a protocol.
  • the first communication device 210 may indicate the measurement time window to the second communication device 220 by sending the index of the measurement time window.
  • the second communication device 220 may preconfigure the index of the measurement time window, and the first communication device 210 may report the index of the measurement time window corresponding to the measurement result.
  • the measurement result may include perception information.
  • the first communication device 210 may implement perception functions such as positioning, detecting, imaging, and identifying surrounding targets by measuring wireless signals to obtain surrounding physical environment information.
  • the measurement result may also include any other measurement results obtained after measuring the measurement signal.
  • FIG5 shows an interactive signaling diagram of a method 500 for reporting measurement results provided by an embodiment of the present application.
  • the method 500 will be described in conjunction with FIG2. In the method 500, the details are as follows:
  • the first communication device 210 determines a first reporting time window 506 .
  • the first communication device 210 may determine the first reporting time window 506 on its own. For example, the first communication device 210 may determine the first reporting time window 506 applicable to the current measurement based on the mobility of the first communication device 210, the measurement environment, the type of the measurement result, the value of the measurement result, or any combination of these conditions.
  • the first communication device may determine the first reporting time window 506 based on one or more reporting time windows determined by the second communication device. For example, the second communication device 220 may determine one or more reporting time windows, the one or more reporting time windows including the first reporting time window 506. To determine 502 the first reporting time window 506, the first communication device 210 may receive one or more reporting time windows from the second communication device 220, and determine the first reporting time window 506 from the one or more reporting time windows.
  • one or more reporting time windows may be associated with corresponding reporting conditions.
  • the reporting conditions may include any conditions or factors that may affect the determination of the reporting time window.
  • the reporting conditions may include the mobility of the first communication device 210, the measurement environment, the type of the measurement result, the value of the measurement result, etc., and any combination of these conditions.
  • the first reporting time window 506 may be determined based on the reporting condition corresponding to the first reporting time window 506.
  • the first communication device 210 may send the reporting condition corresponding to the first reporting time window 506 to the second communication device 220, and accordingly, the second communication device 220 may receive the reporting condition corresponding to the first reporting time window 506 from the first communication device 210, and determine the first reporting time window 506 based on the reporting condition.
  • the first communication device 210 sends a measurement result 524 to the second communication device 220 within the first reporting time window 506 , where the measurement result 524 is obtained by the first communication device 210 measuring the measurement signal.
  • the second communication device 220 receives the measurement result 524 from the first communication device 210 within the first reporting time window 506 .
  • reporting time window can be used interchangeably with “reporting delay window”.
  • the first communication device 210 determines the perception measurement moment by itself, in order to ensure the timeliness of the perception measurement result, the first communication device 210 reports the perception measurement result within a certain time range after the perception measurement moment, otherwise the perception measurement result may be invalid. In some implementations, if the first communication device 210 has not obtained a complete perception measurement result within the time range, for example due to factors such as the processing capability of the first communication device 210, the first communication device 210 may not report the perception measurement result to the second communication device 220, and the first communication device 210 may clean up the partial perception measurement results that have been obtained.
  • the first communication device 210 may send (504) a first reporting time window 506 to the second communication device 220.
  • the second communication device 220 may receive (508) the first reporting time window 506 from the first communication device 210 to determine (510) the first reporting time window 506. In this way, the second communication device 220 may be assisted in determining a reporting resource that meets the timeliness requirement.
  • the first communication device 210 may carry the first reporting time window 506 in existing information, or may use a new message specifically used to send the first reporting time window 506 to send the first reporting time window 506.
  • the first reporting time window 506 may be included in a buffer status report (BSR).
  • BSR buffer status report
  • the first communication device 210 may indicate the first reporting time window 506 in any appropriate manner so that the second communication device 220 can determine the first reporting time window 506.
  • the first reporting time window 506 may include one of a starting time point, an ending time period, and a duration, or any combination thereof.
  • the starting time point of the first reporting time window 506 may be the time point at which the first communication device 210 performs the measurement.
  • the starting time point of the first reporting time window may be the time point at which the first communication device 210 sends the first reporting time window to the second communication device 220.
  • the second communication device 220 may determine (512) a reporting resource 518 for the first communication device 210 to send the measurement result, the reporting resource 518 being within the first reporting time window 506.
  • the second communication device 220 may send (514) an indication of the reporting resource 518 to the first communication device 210.
  • the first communication device 210 may receive (520) the indication of the resource 518 to use the reporting resource 518 to send the measurement result 524.
  • the first communication device 210 may use the resources dynamically indicated by the second communication device 220 to report the perception measurement result.
  • the first communication device 210 sends a resource request to the second communication device 220, the resource request is used to request the resources for reporting the perception measurement result, and the resource request may include a perception reporting delay window, which is used to assist the second communication device 220 in determining the resources for reporting the perception measurement result, so as to meet the timeliness requirements of the perception measurement result.
  • the starting position of the perception reporting delay window may be the moment when the first communication device 210 sends the resource request to the second communication device 220.
  • the first communication device 210 can report the measurement result 306 or 524 in combination with the method 300 and the method 500.
  • the first communication device 210 can determine the reporting resources required for the first communication device 210 to send (304) the measurement result 306 and the measurement time information 308 to the second communication device 200 in the method 300 through the method 500, thereby ensuring the timeliness of the measurement result 306.
  • the first communication device 210 can report the measurement time information corresponding to the measurement result 524 while reporting the measurement result 524 through the method 300.
  • the first communication device 210 can perform measurements at time t meas .
  • the first communication device 210 sends a resource request to the second communication device 220.
  • the resource request is a scheduling request (SR).
  • the second communication device 220 After receiving the SR, the second communication device 220 sends an indication of reporting resources to the first communication device 210.
  • the indication of reporting resources is sent via DCI.
  • the first communication device 210 then sends a measurement structure on the resources indicated by the DCI.
  • the measurement results can be included in the BSR.
  • the BSR is triggered by the SR only for illustrative description and is not intended to be limiting.
  • the sending of the BSR may also be triggered in other ways.
  • the reporting time window T wind determined by the first communication device 210 may be included in the BSR.
  • the starting point of the reporting time window T wind may be the sending time of the BSR.
  • the starting point of the reporting time window T wind may be t meas .
  • the second communication device 220 may determine the resources for the first communication device 210 to send the measurement result in the reporting time window T wind , for example, the time domain resources may be determined as t rep within the reporting time window T wind .
  • the first communication device 210 reports the measurement result at the t rep moment. In some implementations, if the first communication device 210 has not obtained a complete measurement result at the t rep moment, the first communication device 210 will not report the measurement result at the t rep moment, and will discard the incomplete measurement result that has been obtained.
  • the first communication device 210 may select a preconfigured resource within the first reporting time window 506 for sending a measurement result 524 to the second communication device 220.
  • the measurement result may include perception information.
  • the first communication device 210 may select a resource that meets the perception reporting delay requirement from the preconfigured resources to report the perception measurement result.
  • the first communication device 210 may send the reporting condition corresponding to the first reporting time window 506 to the second communication device 220. Accordingly, the second communication device 220 may receive the reporting condition corresponding to the first reporting time window 506 from the first communication device 210, and determine the first reporting time window 506 based on the reporting condition, and further determine the reporting resources 518 within the first reporting time window 506.
  • the second communication device 220 may configure a corresponding reporting delay window for the first communication device 210.
  • the mobility of the first communication device 210 may indicate the moving speed of the first communication device 210.
  • the perception result of the first communication device 210 has a higher timeliness requirement.
  • the second communication device 220 may configure a first delay range for the stationary state of the first communication device 210, a second delay range for the slow moving state of the first communication device 210, and a third delay range for the fast moving state of the first communication device 210, wherein the second delay range may be greater than the third delay range and less than the first delay range.
  • the measurement environment may indicate whether the environment where the first communication device 210 is located is a relatively static environment or a dynamically changing environment, or whether the environment where the first communication device 210 is located is blocked.
  • the type of the measurement result may indicate that the measurement result is, for example, a channel measurement result, an original perception result, Doppler information, or specific location information (e.g., the distance, angle, etc. of the perception measurement target).
  • the reporting condition may include the mobility of the first communication device and the type of the measurement result.
  • the second communication device 220 may configure a fourth delay range for the Doppler information in a high-speed mobile scenario, and a fifth delay range for the Doppler information in a low-speed mobile scenario, and the fourth delay range may be less than the fifth delay range.
  • the second communication device 220 may configure a sixth delay range for the channel measurement result, and a seventh delay range for the unprocessed original perception result, and the seventh delay range may be greater than the sixth delay range and greater than the fourth delay range.
  • the value of the measurement result may indicate whether the measurement result exceeds a preset threshold.
  • the second communication device 220 may configure an eighth delay range for a channel quality measurement result below a preset threshold, and configure a ninth delay range for a channel quality measurement result above a preset threshold, and the eighth delay range may be less than the ninth delay range.
  • FIG7 shows a schematic flow chart of a method 700 implemented at a first communication device according to an embodiment of the present application.
  • the method 700 may be implemented by a first communication device (terminal device) 210 in the example environment 200.
  • the method 700 may also be implemented by other electronic devices independent of the example environment 200.
  • the method 700 will be described below by taking the implementation by the first communication device 210 in the example environment 200 as an example.
  • the first communication device 210 measures the measurement signal to obtain a measurement result.
  • the first communication device 210 sends a measurement result and measurement time information to the second communication device 220 , where the measurement time information indicates a measurement time point or a measurement time window at which the first communication device 210 performs measurement.
  • the method 700 may also be implemented by the example implementation of the method 300 described above in conjunction with FIG. 3 .
  • FIG8 shows a schematic flow chart of a method 800 implemented at a second communication device according to an embodiment of the present application.
  • the method 800 may be implemented by a second communication device (network device) 220 in the example environment 200.
  • the method 800 may also be implemented by other electronic devices independent of the example environment 200.
  • the method 800 will be described below by taking the implementation by the second communication device 220 in the example environment 200 as an example.
  • the second communication device 220 receives a measurement result and measurement time information from the first communication device 210.
  • the measurement result is obtained by the first communication device 210 measuring a measurement signal.
  • the measurement time information indicates a measurement time point or a measurement time window.
  • the second communication device performs perception processing or communication processing according to the measurement result and the measurement time information.
  • the method 800 may also be implemented by the example implementation of the method 300 described above in conjunction with FIG. 3 .
  • the first communication device can report the measurement time information of the measurement result, so that the second communication device can determine the measurement time corresponding to the measurement result, thereby obtaining a measurement result with time domain correlation, improving the validity of the measurement result, and helping the second communication device to obtain a more complete measurement result. This is particularly useful in the scenario where the first communication device determines the measurement time by itself.
  • FIG9 shows a schematic flow chart of a method 900 implemented at a first communication device according to an embodiment of the present application.
  • the method 900 may be implemented by a first communication device (terminal device) 210 in the example environment 200.
  • the method 900 may also be implemented by other electronic devices independent of the example environment 200.
  • the method 900 will be described below by taking the implementation by the first communication device 210 in the example environment 200 as an example.
  • the first communication device 210 determines a first reporting time window.
  • the first communication device 210 sends a measurement result to the second communication device 220 within the first reporting time window, where the measurement result is obtained by the first communication device 210 measuring the measurement signal.
  • the method 900 may also be implemented by the example implementation of the method 400 described above in conjunction with FIG. 4 .
  • FIG10 shows a schematic flow chart of a method 1000 implemented at a second communication device according to an embodiment of the present application.
  • the method 1000 may be implemented by a second communication device (network device) 220 in the example environment 200.
  • the method 1000 may also be implemented by other electronic devices independent of the example environment 200.
  • the method 1000 will be described below by taking the implementation by the second communication device 220 in the example environment 200 as an example.
  • the second communication device 220 determines a first reporting time window.
  • the second communication device 220 receives a measurement result from the first communication device 210 within a first reporting time window, where the measurement result is obtained by the first communication device 210 measuring a measurement signal.
  • the method 1000 may also be implemented by the example implementation of the method 400 described above in conjunction with FIG. 4 .
  • the first communication device can apply the reporting delay window when reporting the measurement results.
  • the timeliness of the measurement results can be guaranteed, the invalidation of the measurement results can be avoided, and the effectiveness of the measurement effect can be improved.
  • the second communication device configures different reporting delay windows for the first communication device for different environmental scenarios or different types of perception results.
  • the first communication device indicates to the second communication device the perception reporting delay window determined by the first communication device itself, which can assist the second communication device in determining the resources for reporting the measurement results.
  • Figure 11 shows a schematic block diagram of an example device 1100 that can be used to implement an embodiment of the present application.
  • Device 1100 can be implemented as or include the first communication device (terminal device) 210 or the second communication device (network device) 220 of Figure 2.
  • device 1100 may include one or more processors 1110 and a communication module 1140 coupled to processor 1110.
  • device 1100 may be coupled to one or more external memories (not shown).
  • device 1100 may also include one or more memories 1120 coupled to processor 1110.
  • processor 1110 may be integrated with one or more memories 1120'.
  • the communication module 1140 may be used for two-way communication.
  • the communication module 1140 may have at least one communication interface for communication.
  • the communication interface may include any interface necessary for communication with other devices.
  • Processor 1110 may be of any type suitable for the local technology network and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a digital signal processor (DSP), or one or more of a controller-based multi-core controller architecture.
  • Device 1100 may have multiple processors, such as application specific integrated circuit chips, which are time-slave to a clock synchronized with a main processor.
  • the memory 1120 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memories include, but are not limited to, at least one of the following: read-only memory (ROM) 1124, erasable programmable read-only memory (EPROM), flash memory, hard disk, compact disc (CD), digital video disc (DVD), or other magnetic storage and/or optical storage.
  • volatile memories include, but are not limited to, at least one of the following: random access memory (RAM) 1122, or other volatile memories that do not persist during the duration of a power outage.
  • Computer program 1130 includes computer executable instructions executed by associated processor 1110.
  • Program 1130 may be stored in ROM 1124.
  • Processor 1110 may perform any suitable actions and processes by loading program 1130 into RAM 1122.
  • the embodiment of the present application can be implemented with the help of program 1130, so that device 1100 can perform any process discussed with reference to Figures 2 to 10.
  • the embodiment of the present application can also be implemented by hardware or by a combination of software and hardware.
  • Program 1130 may be tangibly embodied in a computer-readable medium that may be included in device 1100 (such as in memory 1120) or other storage device accessible by device 1100. Program 1130 may be loaded from the computer-readable medium into RAM 1122 for execution.
  • Computer-readable media may include any type of tangible non-volatile memory, such as ROM, EPROM, flash memory, hard disk, CD, DVD, etc.
  • the communication module 1140 in the device 1100 may be implemented as a transmitter and a receiver (or a transceiver), which may be configured to send/receive information such as first space related information, second space related information, etc.
  • the device 1100 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be elaborated in detail in this application.
  • the device 1100 in FIG. 11 may be implemented as an electronic device, or may be implemented as a chip or a chip system in an electronic device, which is not limited in the embodiments of the present application.
  • the embodiment of the present application also provides a chip, which may include an input interface, an output interface and a processing circuit.
  • the input interface and the output interface may complete the interaction of signaling or data
  • the processing circuit may complete the generation and processing of signaling or data information.
  • the chip of the first communication device 210 may generate a measurement result and a measurement time information indicating the measurement time point or measurement time window of the measurement based on the measurement of the measurement signal by the first communication device 210.
  • the chip of the second communication device 220 may perform perception processing or communication processing based on the measurement result and measurement time information received from the first communication device 210.
  • the chip of the first communication device 210 may determine a first reporting time window for sending a measurement result to the second communication device 220.
  • the chip of the second communication device 220 may determine a first reporting time window for receiving a measurement result from the first communication device 210.
  • the embodiment of the present application also provides a chip system, including a processor, for supporting a computing device to implement the functions involved in any of the above embodiments.
  • the chip system may also include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device on which the chip system is installed implements the method involved in any of the above embodiments.
  • the chip system may be composed of one or more chips, and may also include chips and other discrete devices.
  • An embodiment of the present application also provides a processor for coupling with a memory, wherein the memory stores instructions.
  • the processor executes the instructions, the processor executes the methods and functions involved in any of the above embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which, when executed on a computer, enables the computer to execute the methods and functions involved in any of the above embodiments.
  • An embodiment of the present application also provides a computer-readable storage medium on which computer instructions are stored.
  • a processor executes the instructions, the processor executes the methods and functions involved in any of the above embodiments.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof. Some aspects can be implemented in hardware, while other aspects can be implemented in firmware or software, which can be performed by a controller, a microprocessor or other computing device. Although various aspects of the embodiments of the present application are shown and described as block diagrams, flow charts or using some other graphical representations, it should be understood that the boxes, devices, systems, techniques or methods described herein can be implemented as, for example, non-limiting examples, hardware, software, firmware, dedicated circuits or logic, general hardware or controllers or other computing devices, or some combination thereof.
  • the present application also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer executable instructions, such as instructions included in a program module, which are executed in a device on a real or virtual processor of the target to perform the process/method as described above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the functions of program modules can be combined or divided between program modules as needed.
  • Machine executable instructions for program modules can be executed in local or distributed devices. In distributed devices, program modules can be located in local and remote storage media.
  • the computer program code for implementing the method of the present application can be written in one or more programming languages. These computer program codes can be provided to the processor of a general-purpose computer, a special-purpose computer or other programmable data processing device, so that the program code, when executed by the computer or other programmable data processing device, causes the function/operation specified in the flow chart and/or block diagram to be implemented.
  • the program code can be executed completely on a computer, partially on a computer, as an independent software package, partially on a computer and partially on a remote computer or completely on a remote computer or server.
  • computer program code or related data may be carried by any appropriate carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, acoustic or other forms of propagation signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • a computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer readable storage media include an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical storage device, a magnetic storage device, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、通信装置、计算机可读存储介质以及计算机程序产品。该通信方法包括:第一通信装置对测量信号进行测量以获得测量结果;以及第一通信装置向第二通信装置发送测量结果和测量时间信息,测量时间信息指示第一通信装置进行测量的测量时间点或测量时间窗口。以此方式,第一通信装置可以上报测量结果的测量时间信息,由此,通过提供测量结果的测量时间信息,有助于第二通信装置获得具有时域相关性的测量结果,提高测量结果的有效性,从而有助于第二通信装置获得更加完整的测量结果。这在第一通信装置自行确定测量时刻的场景下尤其有益。

Description

通信方法、通信装置、介质及程序产品 技术领域
本申请涉及通信领域,更具体地,涉及通信方法、通信装置、计算机可读存储介质以及计算机程序产品。
背景技术
随着无线通信技术的发展,如今,对第五代通信技术(the 5 th Generation Mobile Communication Technology,5G)即新无线电(New Radio,NR)***提出了更高的数据传输要求,如更高吞吐、更低时延、更高可靠性以及更大连接数等。5G之后演进的下一代通信技术还可能将通信网络与感知网络、算力网络等实现融合,从而实现更高的传输效率。其中,感知网络可以通过感知或测量实现目标定位(如测距、测速或测角)、目标成像、目标检测或目标识别等功能。
当前的测量结果上报机制是针对通信信号设计的,其目的是通过对通信信号的测量来确定信道质量以保证通信质量,例如终端设备可以向网络设备上报小区的平均通信质量。然而这种测量结果上报机制不适用于对感知信号的测量和上报。
发明内容
为了解决上述问题,本申请实施例提供了一种用于上报测量结果的通信方法、通信装置、计算机可读存储介质以及计算机程序产品。
第一方面,提供了一种通信方法。该方法包括:第一通信装置对测量信号进行测量以获得测量结果;以及第一通信装置向第二通信装置发送测量结果和测量时间信息,测量时间信息指示第一通信装置进行测量的测量时间点或测量时间窗口。以此方式,第一通信装置可以上报测量结果的测量时间信息,由此,通过提供测量结果的测量时间信息,有助于第二通信装置获得具有时域相关性的测量结果,提高测量结果的有效性,从而有助于第二通信装置获得更加完整的测量结果。这在第一通信装置自行确定测量时刻的场景下尤其有益。
在第一方面的一些实现方式中,测量时间信息包括测量时间点对应的***帧号、时隙索引、迷你时隙索引和符号索引中的至少一种。由此,可以有助于第二通信装置以低的计算资源确定测量结果的测量时间点。
在第一方面的一些实现方式中,测量时间信息包括时域偏移,时域偏移指示测量时间点或测量时间窗口与参考时间点之间的时间间隔。在第一方面的一些实现方式中,参考时间点是第一通信装置发送测量结果的时间点,或者第一通信装置发送测量时间信息的时间点。以此方式,测量时间点或测量时间窗口可以容易地被确定,并且可以以较低的信令开销来提供测量时间信息。
在第一方面的一些实现方式中,测量时间信息基于测量信号的索引来指示测量时间点。在第一方面的一些实现方式中,测量信号的索引包括以下至少一项:窗口索引,用于指示测量信号所在的测量信号的窗口;类型索引,用于指示测量信号的类型;以及信号索引,用于指示测量信号所在的测量信号的窗口内的一个测量信号或指示测量信号的类型下的一个测量信号或者在预定时间段内的测量信号中的一个信号。由此,可以以低的通信资源开销上报测量时间信息。
在第一方面的一些实现方式中,测量时间信息包括测量时间窗口的起始时间点、终止时间点和持续时间中的至少一项。
在第一方面的一些实现方式中,测量时间信息包括测量时间窗口的索引。由此,测量时间窗口可以容易地被确定,并且可以以较低的信令开销来提供测量时间信息。
在第一方面的一些实现方式中,测量结果包括感知信息。由此,可以提供感知测量结果的时域相关信息。
第二方面,提供了一种通信方法,有益效果可以参见第一方面的描述,在此不再赘述。该方法包括:第二通信装置从第一通信装置接收测量结果和测量时间信息,测量结果是第一通信装置对测量信号进行测量而获得的,测量时间信息指示测量的测量时间点或测量时间窗口;以及第二通信装置根据测量结果和测量时间信息进行感知处理或通信处理。由此,第二通信装置可以基于测量时间信息确定与测量结果对应的测量时刻,从而获得具有时域相关性的测量结果,提高测量结果的有效性,有助于第二通信装置获得更加完整的测量结果。这在第一通信装置自行确定测量时刻的场景下尤其有益。
在第二方面的一些实现方式中,测量时间信息包括测量时间点对应的***帧号、时隙索引、迷你时隙索引和符号索引中的至少一种。在第二方面的一些实现方式中,测量时间信息包括时域偏移,时域偏移指示测量时间点或测量时间窗口与参考时间点之间的时间间隔。在第二方面的一些实现方式中,参考时间点是第一通信装置发送测量结果的时间点,或者第一通信装置发送测量时间信息的时间点。
在第二方面的一些实现方式中,测量时间信息基于测量信号的索引来指示测量时间点。在第二方面的一些实现方式中,测量信号的索引包括:窗口索引,用于指示测量信号所在的测量信号的窗口;类型索引,用于指示测量信号的类型;以及信号索引,用于指示测量信号所在的测量信号的窗口内的一个测量信号或指示测量信号的类型下的一个参考信号或者在预定时间段内的测量信号中的一个信号。
在第二方面的一些实现方式中,测量时间信息包括测量时间窗口的起始时间点、终止时间点和持续时间中的至少一项。在第二方面的一些实现方式中,测量时间信息包括测量时间窗口的索引。在第二方面的一些实现方式中,测量结果包括感知信息。
第三方面,提供了一种通信方法。该方法包括:第一通信装置确定第一上报时间窗口;第一通信装置在第一上报时间窗口内向第二通信装置发送测量结果,测量结果是第一通信装置对测量信号进行测量而获得的。以此方式,第一通信装置在上报测量结果时可以应用上报时间窗口。由此,可以确保测量结果的时效性,避免测量结果失效,提高测量效果的有效性。
在第三方面的一些实现方式中,第一上报时间窗口包括起始时间点、结束时间点和持续时间中的至少一种。在第三方面的一些实现方式中,起始时间点是第一通信装置进行测量的时间点或者第一通信装置发送第一上报时间窗口的时间点。由此,可以保证感知测量时刻与上报时刻具有相关性,从而确保测量结果的时效性。
在第三方面的一些实现方式中,该方法还包括:第一通信装置向第二通信装置发送第一上报时间窗口。在第三方面的一些实现方式中,第一上报时间窗口包括在缓存状态报告中。在第三方面的一些实现方式中,该方法还包括:第一通信装置从第二通信装置接收发送测量结果的资源,资源处于第一上报时间窗口内。由此,通过第一通信装置向第二通信装置指示由第一通信装置确定的第一上报时间窗口,可以辅助第二通信装置确定上报测量结果的资源。这种动态指示的上报资源可以进一步增强测量结果上报的时效性,避免测量结果失效,提高 测量效果的有效性。
在第三方面的一些实现方式中,该方法还包括:第一通信装置在第一上报时间窗口内选择预配置的资源以用于向第二通信装置发送测量结果。由此,可以以低的资源开销保证测量结果的时效性。
在第三方面的一些实现方式中,第一通信装置确定第一上报时间窗口包括:第一通信装置从第二通信装置接收由第二通信装置确定的一个或多个上报时间窗口,一个或多个上报时间窗口包括第一上报时间窗口;以及第一通信装置从一个或多个上报时间窗口中确定第一上报时间窗口。以此方式,第一通信装置可以基于由第二通信装置确定的上报时间窗口来确定适用于当前测量的上报时间窗口。这样,第一通信装置可以以低的计算资源确定上报时间窗口。
在第三方面的一些实现方式中,该方法还包括:第一通信装置向第二通信装置发送第一上报时间窗口的上报条件,上报条件包括以下至少一项:第一通信装置的移动性,测量环境,测量结果的类型,以及测量结果的数值。相应地,第二通信可以根据从第一通信装置接收的上报条件来确定第一上报时间窗口,进而确定在第一上报时间窗口内用于上报测量结果的资源。与直接发送上报时间窗口相比,上报条件的发送可以占用较低的通信资源。以此方式,可以以低的资源开销来使第二通信装置获知第一上报时间窗口,以辅助第二通信装置确定上报测量结果的资源。
在第三方面的一些实现方式中,第一上报时间窗口是根据上报条件确定的,上报条件包括以下至少一项:第一通信装置的移动性,测量环境,测量结果的类型,以及测量结果的数值。以此方式,可以以低的计算资源确定第一上报时间窗口。
在第三方面的一些实现方式中,测量结果包括感知信息。由此,可以确保感知测量结果的时效性。
第四方面,提供了一种通信方法,有益效果可以参见第三方面的描述,在此不再赘述。该方法包括:第二通信装置确定第一上报时间窗口;以及第二通信装置在第一上报时间窗口内从第一通信装置接收测量结果,测量结果是第一通信装置对测量信号进行测量而获得的。
在第四方面的一些实现方式中,第二通信装置确定第一上报时间窗口包括:第二通信装置从第一通信装置接收第一上报时间窗口。
在第四方面的一些实现方式中,第一上报时间窗口包括在缓存状态报告中。
在第四方面的一些实现方式中,第一上报时间窗口包括起始时间点、结束时间点和持续时间中的至少一种。在第四方面的一些实现方式中,起始时间点是第一通信装置进行测量的时间点或者第一通信装置发送第一上报时间窗口的时间点。
在第四方面的一些实现方式中,方法还包括:第二通信装置确定用于第一通信装置发送测量结果的资源,资源处于第一上报时间窗口内;以及第二通信装置向第一通信装置发送资源的指示。
在第四方面的一些实现方式中,第二通信装置接收测量结果包括:第二通信装置使用在第一上报时间窗口内的预配置的资源从第一通信装置接收测量结果。
在第四方面的一些实现方式中,方法还包括:第二通信装置确定一个或多个上报时间窗口,一个或多个上报时间窗口包括第一上报时间窗口;以及第二通信装置向第一通信装置发送一个或多个上报时间窗口。
在第四方面的一些实现方式中,第二通信装置确定第一上报时间窗口包括:第二通信装 置从第一通信装置接收第一上报时间窗口的上报条件;以及第二通信装置基于上报条件确定第一上报时间窗口。
在第四方面的一些实现方式中,第一上报时间窗口是根据上报条件确定的,其中上报条件包括以下至少一项:第一通信装置的移动性,测量环境,测量结果的类型,以及测量结果的数值。在第四方面的一些实现方式中,测量结果包括感知信息。
第五方面,提供了一种第一通信装置。第一通信装置包括用于执行上述第一方面或第三方面及其实现方式的任一方法的模块或单元。
第六方面,提供了一种第二通信装置。第二通信装置包括用于执行上述第二方面或第四方面及其实现方式的任一方法的模块或单元。
第七方面,提供了一种第一通信装置。第一通信装置包括处理器,处理器和存储器耦合,存储器存储有指令,该指令在被所述处理器执行时,使得所述第一通信装置执行上述第一方面或第三方面及其实现方式的任一方法。
第八方面,提供了一种第二通信装置。第二通信装置包括处理器,处理器和存储器耦合,存储器存储有指令,该指令在被所述处理器执行时,使得所述第二通信装置执行上述第二方面或第四方面及其实现方式的任一方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有指令,该指令在运行时使得根据上述第一方面或第三方面或其任一实现方式中的方法被执行。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有指令,该指令在运行时使得根据上述第二方面或第四方面或其任一实现方式中的方法被执行。
第十一方面,提供了一种计算机程序产品。该计算机程序产品包括指令,该指令在运行时使得根据上述第一方面或第三方面或其任一实现方式中的方法被执行。
第十二方面,提供了一种计算机程序产品。该计算机程序产品包括指令,该指令在运行时使得根据上述第二方面或第四方面或其任一实现方式中的方法被执行。
第十三方面,提供了一种通信***。该通信***包括根据上述第五方面或第七方面的第一通信装置以及根据上述第六方面或第八方面的第二通信装置。
附图说明
结合附图并参考以下详细说明,本申请各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了基于NR协议的非周期性的测量和上报的场景的示意图;
图2示出了本申请实施例可以适用的通信***的示意图;
图3示出了本申请实施例提供的一种上报测量结果的方法的交互信令图;
图4A和图4B示出了本申请实施例提供的测量时间信息的示例实现方式的示意图;
图5示出了本申请实施例提供的一种上报测量结果的方法的交互信令图;
图6示出了本申请实施例提供的基于上报时间窗口内的动态指示的资源来上报测量结果的示例实现方式的示意图;
图7示出了本申请实施例提供的在第一通信装置处实现的方法的示意流程图;
图8示出了本申请实施例提供的在第二通信装置处实现的方法的示意流程图;
图9示出了本申请实施例提供的在第一通信装置处实现的方法的示意流程图;
图10示出了本申请实施例提供的在第二通信装置处实现的方法的示意流程图;以及
图11示出了可以用来实施本申请实施例的示例设备的示意性框图。
具体实施方式
下面将参照附图更详细地描述本申请实施例。虽然附图中显示了某些申请实施例,然而应当理解的是,本申请可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本申请。应当理解的是,本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。
在本申请实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本申请实施例可以根据任何适当的通信协议来实施,包括但不限于,***(4 th generation,4G)、第五代(5 th generation,5G)以及5G之后演进的通信协议(例如,第六代(6 th generation,6G))等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本申请实施例的技术方案应用于遵循任何适当通信协议的通信***,例如:长期演进(Long Term Evolution,LTE)***、频分双工(Frequency Division Duplex,FDD)***、时分双工(Time Division Duplex,TDD)、5G***(例如,NR)以及5G之后演进的通信***(例如,6G***),等等。
出于说明的目的,下文中以第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)中的蜂窝通信***为背景来描述本申请实施例。然而,应当理解,本申请实施例不限于该通信***,而是可以被应用到任何存在类似问题的通信***中,例如无线局域网(Wireless Local Area Network,WLAN)、有线通信***、或者将来开发的其他通信***等。
在本申请中使用的术语“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。终端设备可以是具备无线通信功能的各种无线通信设备。随着物联网(Internet of Things,IoT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。作为示例,终端设备可以包括移动蜂窝电话、无绳电话、移动终端(Mobile Terminal,MT)、移动台、移动设备、无线终端、手持设备、客户端、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信***设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、无线数据卡、无线调制解调器(Modulator demodulator,Modem)、定位设备、无线电广播接收器、电子书设备、游戏设备、IoT设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备(例如,智能手表等)、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、工业控制(industrial control)中 的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本申请实施例对此并不做限定。
在本申请中使用的术语“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。基站用于为终端设备提供无线接入服务。根据所提供的服务覆盖区域的大小,接入网设备可以包括提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站、用于提供微微蜂窝的微微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。此外,接入网设备还可以包括各种形式的中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)等等。在采用不同的无线接入技术的***中,接入网设备的名称可能会有所不同,例如在LTE网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。网络设备还可以是设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等。为方便描述,后续的本申请实施例中,上述为移动终端提供无线通信功能的装置统称为网络设备,本申请实施例不再具体限定。
随着无线通信技术的发展,如今,5G NR***提出了更高的数据传输要求,如更高吞吐、更低时延、更高可靠性以及更大连接数等。5G之后演进的下一代通信技术还可能将通信网络与感知网络、算力网络等实现融合,从而实现更高的传输效率。其中,感知网络可以通过感知或测量实现目标定位(如测距、测速或测角)、目标成像、目标检测或目标识别等功能。
在当前的5G NR***中,为了获取信道状态信息(channel state information,CSI),网络设备通常首先配置用于向终端设备发射CSI参考信号(CSI-RS reference signal,CSI-RS)的资源,然后在该资源上发射CSI-RS。终端设备在该资源上接收CSI-RS,根据预定准则进行各类CSI的确定,并在预配置的资源上上报CSI,各类CSI可以包括信道质量信息(channel quality indicator,CQI)、预编码矩阵指示符(precoding matrix indicator,PMI)、CSI-RS资源指示符(CSI-RS resource indicator,CRI)、SS/PBCH资源块指示符(SS/PBCH block resource indicator,SSBRI)、层指示符(layer indicator,LI)、秩指示符(rank indication,RI)、L1参考信号接收功率(layer 1 reference signal received power,L1-RSRP)等。CSI的测量和上报可以是周期性的、半持续性的或者非周期性的,其中传输CSI-RS的资源与上报CSI的资源一一对应。
例如,在周期性地进行CSI的测量和上报的情况下,网络设备首先用无线资源控制(radio resource control,RRC)配置周期性的第一资源和第二资源以分别用于传输CSI-RS和上报CSI,传输CSI-RS的第一资源与上报CSI的第二资源一一对应。然后网络设备在配置的第一资源 上周期性地发送CSI-RS,终端设备在配置的第二资源上周期性地上报CSI。或者,在半持续性地进行CSI的测量和上报的情况下,网络设备首先用RRC配置周期性的第一资源和第二资源以分别用于传输CSI-RS和上报CSI,传输CSI-RS的第一资源与上报CSI的第二资源一一对应。然后网络设备用MAC CE-1激活半持续性的CSI-RS传输,接着网络设备在配置的第一资源上进行CSI-RS的发送,网络设备再用MAC CE-2激活半持续性的CSI上报,接着终端设备在配置的第二资源上进行CSI的上报。或者,在非周期性地进行CSI的测量和上报的情况下,网络设备首先用下行链路控制信息(downlink control information,DCI)触发CSI-RS的传输和CSI的上报,传输CSI-RS的资源与上报CSI的资源一一对应。
图1示出了基于NR中非周期性的测量和上报的场景的示意图。如图1所示,基于在t1时刻从网络设备接收到的DCI,终端设备可以确定CSI-RS的传输时刻与DCI的传输时刻t1之间的时域偏置为Offset#X,CSI的上报时刻与DCI的传输时刻t1之间的时域偏置为Offset#Y。终端设备进而确定CSI-RS的传输时刻t2与CSI的上报时刻t3,这两者是一一对应的。在这些情况下,终端设备在上报CSI时无需额外指示对应的传输CSI-RS的资源,因为网络设备可以基于上报CSI的资源来确定对应的传输CSI-RS资源。此外,在NR***的无线资源管理(radio resource management,RRM)技术中,终端设备可以基于波束的长期测量结果来确定小区的平均通信质量。由于小区的平均通信质量是基于多个波束的长期测量结果,因此终端设备在上报测得的平均通信质量时,无需上报该测量结果是基于哪一个波束。网络设备可以基于上报平均通信质量的资源来确定对应的波束。换句话说,终端设备在接收信号以进行测量和上报测量结果的过程中,接收资源和上报资源是一一对应的,因此终端设备在向网络设备上报测量结果时,无需上报该测量结果是基于哪个信号或波束进行测量的,网络设备就能够基于测量结果的上报资源获知测量结果的时域相关信息,进而根据测量结果进行通信处理。
随着通信技术的发展,已经开展了与感知技术相关的研究。感知技术创造了一种新型应用场景,涵盖一系列用例,如基于设备甚至无设备的目标定位、成像、环境重构和监测、手势和活动识别等。感知技术为全球移动通信***的研究增加了新的性能维度,如检测准确率、感知分辨率和感知精度(包括距离、速度、角度),这些维度的性能要求因应用而异。在一些感知技术研究中,为了进一步降低传输开销,终端设备可以重用现有的信号(例如,参考信号(诸如CSI-RS等)或同步信号(诸如同步信号块(Synchronization Signal Block,SSB)))进行感知测量。例如,网络设备可以向终端设备发送CSI-RS,终端设备可以接收CSI-RS并进行测量和上报CSI,CSI-RS除了用于测量现有5G技术中的信道信息,还可以用于测量感知信息测量。由于感知环境的动态变化,现有参考参考信号或同步信号是否被用于测量感知信息,以及何时用哪些参考信号或同步信号进行感知信息的测量可由终端设备自行确定。然而,当终端设备自行确定重用一部分现有的信号进行感知测量时,网络设备无法基于感知测量结果获知该感知测量结果是基于哪个信号或波束进行测量的。在网络设备无法获知感知测量结果的时域相关信息的情况下,感知测量结果对于网络设备而言可能是不可用的。
目前缺乏行之有效的解决方案来使网络设备获知感知测量结果的时域相关信息。例如,网络设备可能需要获取信道随着时间变化的感知测量结果,如果终端设备不上报该感知测量结果是基于之前哪个时刻的参考信号进行测量的,则网络设备无法获得信道随时间的变化信息。尽管上文的分析是针对感知技术场景进行的,同样的或类似的问题也可能一般性地存在于任何通信设备对测量信号进行测量后向另一通信设备发送测量结果的场景中。
为了解决上述问题,本申请公开的实施例提供了一种上报测量结果的通信方法。在该方 法中,第一通信装置(例如,终端设备)对测量信号进行测量以获得测量结果。进而,第一通信装置向第二通信装置(例如,网络设备)发送测量结果和测量时间信息,该测量时间信息指示第一通信装置进行上述测量的测量时间点或测量时间窗口。采用上述方式。第二通信装置能够根据测量时间信息确定测量结果对应的测量时间点或测量时间窗口,从而确定测量信号。以此方式,第二通信装置能够获取具有时域相关性的测量结果,提高测量结果的有效性,从而有助于获得完整、可用的测量结果。如上文指出的本申请公开的实施例可以适用于任何其他通信场景,对此不做任何限制。为了更清楚的讨论本申请公开的实施例,参照图2至图11对本申请公开的实施例进行描述。
图2示出了本申请实施例可实现于其中的通信***200的一个示意图。如图2所示,该***200可以包括终端设备210-1至210-N(统称为终端设备210)以及网络设备220-1和220-2(统称为网络设备220)。网络设备220和终端设备210之间可以直接通信。例如,终端设备210可通过无线链路与对应的网络设备220通信。备选地或附加地,网络设备220和网络设备220之间可以直接通信。例如,网络设备220彼此之间可通过回程(backhaul)链路进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。备选地或附加地,终端设备210和终端设备210之间可以直接通信。
应理解的是,在图2中所示出的终端设备和网络设备的数目仅作为示例。可以存在更多或更少的终端设备和网络设备,本申请对此不做任何限制。下文中终端设备还可称为第一通信装置或者可以包括第一通信装置,网络设备还可称为第二通信装置或者可以包括第二通信装置。下文中的一些实施例描述了在第一通信装置与第二通信装置之间的通信,应理解的是,这些通信不限于发生在终端设备和网络设备之间,在一些场景下也可以发生在终端设备之间、网络设备之间、或者任何两个或更多通信设备之间。
图3示出了本申请实施例提供的一种上报测量结果的方法300的交互信令图。为了讨论清楚,方法300将结合图2来进行讨论。在方法300包括:
302,第一通信装置210对测量信号进行测量以获得测量结果。
在一些实现中,该测量信号可以是第一通信装置210从另一通信装置接收的测量信号。另一通信装置可以是要接收测量结果的第二通信装置220或者其他通信装置。在另外的实现中,该测量信号可以是第一通信装置210从第一通信装置210自身接收的测量信号。
304,第一通信装置210向第二通信装置220发送测量结果306和测量时间信息308。
310,第二通信装置220从第一通信装置210接收测量结果306和测量时间信息308。
测量结果306和测量时间信息308可以被同时发送和接收,或者可以在不同时刻被分别发送和接收。测量时间信息308指示第一通信装置210进行该测量的测量时间点或测量时间窗口。本领域技术人员将会理解,第一通信装置210接收测量信号以进行测量的时间与测量信号被发送的时间之间可以存在对应关系。在一些实现中,测量时间信息308可以通过指示测量信号被发送的发送时间点或发送时间窗口来指示第一通信装置210进行该测量的测量时间点或测量时间窗口。
一般地,第一通信装置210可以提供任何适当形式的测量时间信息,以使得第二通信装置220可以确定测量时间点或测量时间窗口。
一种可能的实现中,测量时间信息指示测量时间点,该测量时间信息可以包括测量时间点对应的***帧号、时隙索引、迷你时隙索引和符号索引中的至少一种。示例性地,第一通信装置210可以利用感知信号进行感知测量,并自行确定感知测量时刻和上报时刻。其中, 该感知信号可以是NR协议中的参考信号的部分或全部,也可以是新定义的信号。当第一通信装置210上报感知测量结果时,第一通信装置210可以直接指示该感知测量结果对应的具体的感知测量时刻,例如,感知测量时刻对应的***帧号、时隙索引、迷你时隙索引和符号索引。
在另一种可能的实现中,测量时间信息可以包括时域偏移,该时域偏移指示测量时间点或测量时间窗口与参考时间点之间的时间间隔。例如,如果第一通信装置210在某个测量时间点内对测量信号进行测量,那么测量时间信息中包括的时域偏移可以包括测量时间点与参考时间点之间的时间间隔。如果第一通信装置210在某个测量时间窗口内对测量信号进行测量,那么测量时间信息中包括的时域偏移可以包括测量时间窗口的起始时刻与参考时间点之间的时间间隔和/或测量时间窗口的结束时刻与参考时间点之间的时间间隔。其中,参考时间点可以是第一通信装置210发送测量结果的时间点或者第一通信装置210发送测量时间信息的时间点。可选地,参考时间点可以是第一通信装置210和第二通信装置220都已知的其他参考时间点。测量时间信息还可以包括测量时间窗口的长度。在一些实现中,时域偏移或测量时间窗口的单位可以包括时隙、符号、迷你时隙、子帧、秒、毫秒等中的至少一种。
现在参考图4A,作为示例来描述测量时间信息的一种示例实现方式的示意图。第一通信装置210在t meas时刻对参考信号进行感知测量以获得感知测量结果,并在t ref时刻上报该感知测量结果。第一通信装置210可以上报感知测量时刻t meas与参考时刻t ref之间的时域偏置T offset,其中感知测量结果上报时刻作为参考时刻t ref。时域偏置T offset的单位可以是时隙、符号、迷你时隙、子帧、秒、毫秒等中的至少一种。
返回图3,在一些实现中,测量时间信息可以基于测量信号的索引来指示测量时间点。在一些实现中,测量信号的索引可以按照任何适当的方式来编排,以使得该索引可以用于区分第一通信装置210在不同时间点处接收的测量信号。例如,第二通信装置220可以预配置测量信号的索引与测量时间点之间的对应关系。备选地,测量信号的索引与测量时间点还可以通过协议进行规定。这样,第一通信装置210可以通过发送测量信号的索引来向第二通信装置220指示测量时间点。测量信号的索引可以包括窗口索引、类型索引、信号索引、其他索引、以及这些不同索引的任意组合。窗口索引可以用于指示测量信号所在的测量信号的窗口。类型索引可以用于指示测量信号的类型。信号索引可以用于指示测量信号所在的测量信号的窗口内的一个测量信号或指示测量信号的类型下的一个测量信号或者在预定时间段内的测量信号中的一个信号。例如,信号索引可以用于指示在从某个时间点开始第二通信装置220向第一通信装置210发送的多个测量信号中的一个信号的编号索引。作为另一示例,信号索引可以用于指示在以上报测量结果的时间点为截止时间点的预定时间段内第二通信装置220向包括第一通信装置210的多个终端设备发送的多个测量信号中的一个信号的编号索引。
一般而言,本文中的测量信号可以是任何可以被测量的信号。示例性地,测量信号可以是同步信号,该同步信号可以包括同步信号块。在一些实现中,同步信号块可以包括主同步信号、辅同步信号和物理层广播信道。例如,第一通信装置210可以重用SSB作为感知测量信号进行感知测量。第二通信装置220以SSB突发集合的形式发送SSB信号。每个SSB突发集合可以被看做一个SSB突发窗口。第二通信装置220可以预配置SSB突发窗口的长度,一个SSB突发窗口可以包括多个SSB资源,第二通信装置220可以周期地重复发送多个SSB突发窗口。第一通信装置210在上报针对SSB的感知测量结果时,还可以上报包括同步信号索引,该同步信号索引包括SSB突发窗口的索引和SSB资源索引,该SSB突发窗口索引用 于指示测量的SSB所在的SSB突发窗口,该SSB资源索引用于指示在SSB突发窗口内用于发送该SSB的SSB资源。换句话说,测量时间信息可以通过SSB突发窗口索引和SSB资源索引来指示。在另外的实现中,SSB资源还可以不在SSB突发窗口内。
示例性地,测量信号可以是参考信号,第一通信装置210可以重用多种参考信号作为感知测量信号进行感知测量。多种参考信号可以以参考信号窗口的形式被发送,其中每个参考信号窗口可以包括一种或多种类型的参考信号。多种类型的参考信号可以是CSI-RS,SSB,解调参考信号(DMRS,demodulation reference signal),信道探测参考信号(sounding reference signal,SRS),或者新定义的感知信号等。针对同一类型的参考信号,同一参考信号窗口内可以包括一个或多个该类型的参考信号。例如,一个参考信号窗口可以包括(多个)CSI-RS。备选地或附加地,一个参考信号窗口可以包括(多个)CSI-RS和(多个)SSB。现在参考图4B,作为示例来描述测量时间信息的另一示例实现方式的示意图。第一通信装置210可以重用类型#1参考信号、类型#2参考信号和类型#3参考信号中的至少一种参考信号作为感知测量信号进行感知测量。第一通信装置210在参考信号窗口#0和参考信号窗口#1中接收参考信号。第一通信装置210可以以{参考信号窗口索引;参考信号类型索引;参考信号索引}的形式上报感知测量时刻,该参考信号索引指示在参考信号窗口内的某个参考信号类型下的其中一个参考信号。例如,图4B中所示的参考信号可以分别通过{0;1;0}{0;1;1}{0;1;2}{1;2;0}{1;3;0}{1;3;1}进行指示。
返回参考图3,关于测量时间信息,如上文提到的,第一通信装置210可以提供任何适当形式的测量时间信息,以使得第二通信装置220可以确定测量时间点或测量时间窗口。在测量时间信息指示测量时间窗口的情况下,在一些实现中,测量时间信息可以包括测量时间窗口的起始时间点、终止时间点、持续时间或其任意组合。示例性地,第一通信装置210可以在一段测量时间窗口内持续地测量以获取诸如多普勒偏移等的感知信息。第一通信装置210可以直接指示测量时间窗口的起始时刻和终止时刻,以上报感知测量时间信息。可选地,第一通信装置210可以指示测量时间窗口的起始时刻和持续时间。可选地,第一通信装置210可以指示测量窗口的终止时刻和持续时间。
在一些实现中,测量时间信息可以包括测量时间窗口的索引。例如,测量时间窗口的索引可以按照任何适当的方式来编排,以使得该索引可以用于区分不同的测量时间窗口。例如,第二通信装置220可以预配置测量时间窗口的索引与测量信号对应的测量时间窗口之间的对应关系。备选地,测量时间窗口的索引与测量信号对应的测量时间窗口之间的对应关系还可以通过协议进行规定。这样,第一通信装置210可以通过发送测量时间窗口的索引来向第二通信装置220指示测量时间窗口。示例性地,第二通信装置220可以预配置测量时间窗口的索引,第一通信装置210可以上报测量结果对应的测量时间窗口的索引。
在一些实现中,测量结果可以包括感知信息。例如,第一通信装置210可以通过测量无线信号来实现对周围目标的定位、检测、成像和识别等感知功能,以获取周围物理环境信息。在其他实施例中,测量结果也可以包括对测量信号进行测量后获得的任何其他测量结果。
此外,在某些场景下,还需要新的机制以确保第一通信装置210获得的测量结果的时效性。图5示出了本申请实施例提供的一种上报测量结果的方法500的交互信令图。方法500将结合图2来进行描述。在方法500中具体如下:
502,第一通信装置210确定第一上报时间窗口506。
在一些实现中,第一通信装置210可以自行确定第一上报时间窗口506。例如,第一通 信装置210可以基于第一通信装置210的移动性、测量环境、测量结果的类型、测量结果的数值、或这些条件的任意组合来确定适用于当前测量的第一上报时间窗口506。
在一些实现中,第一通信装置可以基于由第二通信装置确定的一个或多个上报时间窗口来确定第一上报时间窗口506。例如,第二通信装置220可以确定一个或多个上报时间窗口,该一个或多个上报时间窗口包括第一上报时间窗口506。为了确定(502)第一上报时间窗口506,第一通信装置210可以从第二通信装置220接收一个或多个上报时间窗口,并且从一个或多个上报时间窗口中确定第一上报时间窗口506。
在一些实现中,一个或多个上报时间窗口可以与相应的上报条件相关联。总的来说,上报条件可以包括可能影响上报时间窗口的确定的任何条件或者因素。例如,上报条件可以包括第一通信装置210的移动性、测量环境、测量结果的类型、测量结果的数值等,以及这些条件的任意组合。在上报时间窗口与相应的上报条件相关联的情况下,第一上报时间窗口506可以是基于第一上报时间窗口506对应的上报条件而确定的。第一通信装置210可以向第二通信装置220发送第一上报时间窗口506对应的上报条件,相应地,第二通信装置220可以从第一通信装置210接收第一上报时间窗口506对应的上报条件,并基于该上报条件来确定第一上报时间窗口506。
522,第一通信装置210在第一上报时间窗口506内向第二通信装置220发送测量结果524,该测量结果524是第一通信装置210对测量信号进行测量而获得的。
526,第二通信装置220从第一通信装置210在第一上报时间窗口506内接收测量结果524。
在本申请的上下文中,“上报时间窗口”可以与“上报时延窗口”互换地使用。
示例性地,当第一通信装置210自行确定感知测量时刻时,为了保证感知测量结果的时效性,第一通信装置210在感知测量时刻之后的某一时间范围内上报感知测量结果,否则可能会导致感知测量结果的失效。在一些实现中,如果例如由于第一通信装置210的处理能力等因素影响,第一通信装置210在该时间范围内尚未获得完整的感知测量结果,则第一通信装置210可以不向第二通信装置220上报感知测量结果,并且第一通信装置210可以清理已获得的部分感知测量结果。
在一些实现中,第一通信装置210可以向第二通信装置220发送(504)第一上报时间窗口506。在一些实现中,第二通信装置220可以从第一通信装置210接收(508)第一上报时间窗口506以确定(510)第一上报时间窗口506。以此方式,可以辅助第二通信装置220确定满足时效性要求的上报资源。具体而言,第一通信装置210可以将第一上报时间窗口506承载在现有的信息中,或者可以使用专门用于发送第一上报时间窗口506的新消息来发送第一上报时间窗口506。例如,该第一上报时间窗口506可以被包括在缓存状态报告(buffer status report,BSR)中。
在一些实现中,第一通信装置210可以采用任何适当的方式来指示第一上报时间窗口506,以使第二通信装置220可以确定出第一上报时间窗口506。例如,第一上报时间窗口506可以包括起始时间点、结束时间段和持续时间之一或者它们的任意组合。在一些实现中,第一上报时间窗口506的起始时间点可以是第一通信装置210进行测量的时间点。可选地,第一上报时间窗口的起始时间点可以是第一通信装置210向第二通信装修220发送第一上报时间窗口的时间点。
在一些可能的实现中,第二通信装置220可以确定(512)用于第一通信装置210发送测 量结果的上报资源518,上报资源518处于第一上报时间窗口506内。第二通信装置220可以向第一通信装置210发送(514)上报资源518的指示。第一通信装置210可以接收(520)资源518的指示以使用上报资源518来发送测量结果524。
示例性地,第一通信装置210可以使用由第二通信装置220动态指示的资源来上报感知测量结果。第一通信装置210向第二通信装置220发送资源请求,该资源请求用于请求上报感知测量结果的资源,该资源请求可以包括感知上报时延窗,用于辅助第二通信装置220确定用于上报感知测量结果的资源,以此来达到满足感知测量结果时效性的需求。在这种场景下,感知上报时延窗口的起始位置可以是第一通信装置210向第二通信装置220发送资源请求的时刻。
可以理解,在一个实施例中,第一通信装置210可以结合方法300和方法500来上报测量结果306或524。例如,第一通信装置210可以通过方法500来确定方法300中第一通信装置210向第二通信装置200发送(304)测量结果306和测量时间信息308所需的上报资源,从而保证测量结果306的时效性。或者,第一通信装置210可以通过方法300来在上报测量结果524的同时上报与测量结果524对应的测量时间信息。
现在参考图6,作为示例来描述基于上报时间窗口内的动态指示的资源来上报测量结果的示例实现方式。第一通信装置210可以在t meas时刻进行测量。第一通信装置210向第二通信装置220发送资源请求,示例性的,资源请求为调度请求(scheduling request,SR)。第二通信装置220在收到SR后向第一通信装置210发送上报资源的指示,示例性的,通过DCI发送上报资源的指示。第一通信装置然后第一通信装置210在DCI指示的资源上发送测量结构,示例性的,测量结果可以包含在BSR中。
应理解,本示例中BSR由SR触发仅用于示意性地描述,而不旨在进行限制,还可以以其他方式触发BSR的发送。第一通信装置210确定的上报时间窗口T wind可以被包括在该BSR中。在一些实现中,上报时间窗口T wind的起点可以是BSR的发送时刻。在其他实施例中,上报时间窗口T wind的起点可以是t meas。第二通信装置220可以在上报时间窗口T wind中确定用于第一通信装置210发送测量结果的资源,例如时域资源可以被确定为上报时间窗口T wind内的t rep。由此,第一通信装置210在t rep时刻上报测量结果。在一些实现中,如果在t rep时刻第一通信装置210尚未获得完整的测量结果,第一通信装置210将不会在t rep时刻上报测量结果,并且将丢弃已经获得的不完整的测量结果。
返回参考图5,在一些实现中,第一通信装置210可以在第一上报时间窗口506内选择预配置的资源以用于向第二通信装置220发送测量结果524。在一些实现中,测量结果可以包括感知信息。示例性地,第一通信装置210可以自行从预配置的资源中选择满足感知上报时延要求的资源来上报感知测量结果。
在一些实现中,例如为了确定第一上报时间窗口内的动态指示的上报资源518,第一通信装置210可以向第二通信装置220发送第一上报时间窗口506对应的上报条件。相应地,第二通信装置220可以从第一通信装置210接收第一上报时间窗口506对应的上报条件,并基于该上报条件来确定第一上报时间窗口506,进而确定在第一上报时间窗口内506的上报资源518。
示例性地,针对不同的上报条件(例如,第一通信装置的移动性,测量环境,测量结果的类型,以及测量结果的数值中的至少一项),第二通信装置220可以为第一通信装置210配置相应的上报时延窗口。例如,第一通信装置210的移动性可以指示第一通信装置210的移 动速度。与静态场景相比,在快速移动场景中,第一通信装置210的感知结果具有较高的时效性要求。示例性地,第二通信装置220可以针对第一通信装置210的静止状态配置第一时延范围,针对第一通信装置210的慢速移动状态配置第二时延范围,并且针对第一通信装置210的快速移动状态配置第三时延范围,其中第二时延范围可以大于第三时延范围,并且小于第一时延范围。测量环境可以指示第一通信装置210所在的环境是相对静态的环境还是动态变换的环境,或者第一通信装置210所在的环境是否出现遮挡。测量结果的类型可以指示测量结果是例如信道测量结果、原始感知结果、多普勒信息或特定的位置信息(例如,感知测量目标的距离,角度等)等。例如,上报条件可以包括第一通信装置的移动性和测量结果的类型,第二通信装置220可以针对高速移动场景下的多普勒信息配置第四时延范围,并且针对低速移动场景下的多普勒信息配置第五时延范围,第四时延范围可以小于第五时延范围。此外,第二通信装置220可以针对信道测量结果配置第六时延范围,针对未经处理的原始感知结果配置第七时延范围,第七时延范围可以大于第六时延范围并且大于第四时延范围。此外,测量结果的数值可以指示测量结果是否超过预设阈值。例如,第二通信装置220可以针对低于预设阈值的信道质量测量结果配置第八时延范围,并且针对高于预设阈值的信道质量测量结果配置第九时延范围,第八时延范围可以小于第九时延范围。
图7示出了本申请实施例提供的在第一通信装置处实现的方法700的示意流程图。在一种可能的实现方式中,方法700可以由示例环境200中的第一通信装置(终端设备)210来实现。在其他可能的实现方式中,方法700也可以由独立于示例环境200的其他电子装置来实现。作为示例,在下文中将以由示例环境200中的第一通信装置210来实现为例来描述方法700。
720,第一通信装置210对测量信号进行测量以获得测量结果。
740,第一通信装置210向第二通信装置220发送测量结果和测量时间信息,测量时间信息指示第一通信装置210进行测量的测量时间点或测量时间窗口。
方法700还可以通过如上结合图3所述的方法300的示例实现来实现。
图8示出了本申请实施例提供的在第二通信装置处实现的方法800的示意流程图。在一种可能的实现方式中,方法800可以由示例环境200中的第二通信装置(网络设备)220来实现。在其他可能的实现方式中,方法800也可以由独立于示例环境200的其他电子装置来实现。作为示例,在下文中将以由示例环境200中的第二通信装置220来实现为例来描述方法800。
820,第二通信装置220从第一通信装置210接收测量结果和测量时间信息,测量结果是第一通信装置210对测量信号进行测量而获得的,测量时间信息指示测量的测量时间点或测量时间窗口。
840,第二通信装置根据测量结果和测量时间信息进行感知处理或通信处理。
方法800还可以通过如上结合图3所述的方法300的示例实现来实现。
以此方式,第一通信装置可以上报测量结果的测量时间信息,由此,第二通信装置可以确定与测量结果对应的测量时刻,从而获得具有时域相关性的测量结果,提高测量结果的有效性,有助于第二通信装置获得更加完整的测量结果。这在第一通信装置自行确定测量时刻的场景下尤其有益。
图9示出了本申请实施例提供的在第一通信装置处实现的方法900的示意流程图。在一种可能的实现方式中,方法900可以由示例环境200中的第一通信装置(终端设备)210来 实现。在其他可能的实现方式中,方法900也可以由独立于示例环境200的其他电子装置来实现。作为示例,在下文中将以由示例环境200中的第一通信装置210来实现为例来描述方法900。
920,第一通信装置210确定第一上报时间窗口。
940,第一通信装置210在第一上报时间窗口内向第二通信装置220发送测量结果,该测量结果是第一通信装置210对测量信号进行测量而获得的。
方法900还可以通过如上结合图4所述的方法400的示例实现来实现。
图10示出了本申请实施例提供的在第二通信装置处实现的方法1000的示意流程图。在一种可能的实现方式中,方法1000可以由示例环境200中的第二通信装置(网络设备)220来实现。在其他可能的实现方式中,方法1000也可以由独立于示例环境200的其他电子装置来实现。作为示例,在下文中将以由示例环境200中的第二通信装置220来实现为例来描述方法1000。
1020,第二通信装置220确定第一上报时间窗口。
1040,第二通信装置220在第一上报时间窗口内从第一通信装置210接收测量结果,测量结果是第一通信装置210对测量信号进行测量而获得的。
方法1000还可以通过如上结合图4所述的方法400的示例实现来实现。
以此方式,第一通信装置在上报测量结果时可以应用上报时延窗口。由此,可以保证测量结果的时效性,避免测量结果失效,提高测量效果的有效性。这在第一通信装置自行确定测量时刻的场景下尤其有益。在一些实现中,针对不同的环境场景或者不同类型的感知结果,第二通信装置为第一通信装置配置不同的上报时延窗口。在一些实现中,通过第一通信装置向第二通信装置指示由第一通信装置自行确定的感知上报时延窗口,可以辅助第二通信装置确定上报测量结果的资源。利用来自第二通信装置的辅助信息,可以进一步增强测量结果上报的时效性,避免测量结果失效,提高测量效果的有效性。
图11示出了可以用来实施本申请实施例的示例设备1100的示意性框图。设备1100可以被实现为或者包括图2的第一通信装置(终端设备)210或第二通信装置(网络设备)220。如图所示,设备1100可以包括一个或多个处理器1110以及耦合到处理器1110的通信模块1140。示例性地,设备1100可以耦合到一个或多个外部存储器(未示出)。作为另一示例,设备1100还可以包括耦合到处理器1110的一个或多个存储器1120。作为又一示例,处理器1110可以与一个或多个存储器1120’集成在一起。
通信模块1140可以用于双向通信。通信模块1140可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1110可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。设备1100可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1120可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1124、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random  Access Memory,RAM)1122、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1130包括由关联处理器1110执行的计算机可执行指令。程序1130可以存储在ROM 1124中。处理器1110可以通过将程序1130加载到RAM 1122中来执行任何合适的动作和处理。
可以借助于程序1130来实现本申请实施例,使得设备1100可以执行如参考图2至图10所讨论的任何过程。本申请实施例还可以通过硬件或通过软件和硬件的组合来实现。
程序1130可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在设备1100中(诸如在存储器1120中)或者可以由设备1100访问的其他存储设备。可以将程序1130从计算机可读介质加载到RAM 1122以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实现中,设备1100中的通信模块1140可以被实现为发送器和接收器(或收发器),其可以被配置为发送/接收诸如第一空间相关信息、第二空间相关信息等。另外,设备1100还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本申请不再详细阐述。
示例性地,图11中的设备1100可以被实现为电子设备,或者可以被实现为电子设备中的芯片或芯片***,本申请实施例对此不限定。
本申请实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在申请实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。示例性地,第一通信装置210的芯片可以基于第一通信装置210对测量信号的测量来生成测量结果和指示该测量的测量时间点或测量时间窗口的测量时间信息。第二通信装置220的芯片可以基于从第一通信装置210接收到的测量结果和测量时间信息来进行感知处理或通信处理。备选地或附加地,第一通信装置210的芯片可以确定用于在其中向第二通信装置220发送测量结果的第一上报时间窗口。第二通信装置220的芯片可以确定用于在其中从第一通信装置210接收测量结果的第一上报时间窗口。
本申请实施例还提供了一种芯片***,包括处理器,用于支持计算设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片***还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片***的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片***可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本申请各实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本申请实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、***、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本申请还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本申请的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本申请的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行***、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体***、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本申请的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本申请的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本申请的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (39)

  1. 一种通信方法,包括:
    第一通信装置对测量信号进行测量以获得测量结果;以及
    所述第一通信装置向第二通信装置发送所述测量结果和测量时间信息,所述测量时间信息指示所述第一通信装置进行所述测量的测量时间点或测量时间窗口。
  2. 一种通信方法,包括:
    第二通信装置从第一通信装置接收测量结果和测量时间信息,所述测量结果是所述第一通信装置对测量信号进行测量而获得的,所述测量时间信息指示所述测量的测量时间点或测量时间窗口;以及
    所述第二通信装置根据所述测量结果和所述测量时间信息进行感知处理或通信处理。
  3. 根据权利要求1或2所述的方法,其中所述测量时间信息包括所述测量时间点对应的***帧号、时隙索引、迷你时隙索引和符号索引中的至少一种。
  4. 根据权利要求1或2所述的方法,其中所述测量时间信息包括时域偏移,所述时域偏移指示所述测量时间点与参考时间点之间的时间间隔,或所述测量时间窗口与参考时间点之间的时间间隔。
  5. 根据权利要求3所述的方法,其中所述参考时间点是所述第一通信装置发送所述测量结果的时间点,或者所述第一通信装置发送所述测量时间信息的时间点。
  6. 根据权利要求1-5中任一项所述的方法,其中:
    所述测量时间信息基于所述测量信号的索引来指示所述测量时间点。
  7. 根据权利要求6所述的方法,其中所述测量信号的索引包括以下至少一项:
    窗口索引,用于指示所述测量信号所在的测量信号的窗口;
    类型索引,用于指示所述测量信号的类型;以及
    信号索引,用于指示所述测量信号所在的测量信号的窗口内的一个测量信号或指示所述测量信号的类型下的一个测量信号或者在预定时间段内的测量信号中的一个信号。
  8. 根据权利要求1-7中任一项所述的方法,其中所述测量时间信息包括所述测量时间窗口的起始时间点、终止时间点和持续时间中的至少一项。
  9. 根据权利要求1-8中任一项所述的方法,其中所述测量时间信息包括所述测量时间窗口的索引。
  10. 根据权利要求1-9中任一项所述的方法,其中所述测量结果包括感知信息。
  11. 一种通信方法,包括:
    第一通信装置确定第一上报时间窗口;
    所述第一通信装置在所述第一上报时间窗口内向第二通信装置发送测量结果,所述测量结果是所述第一通信装置对测量信号进行测量而获得的。
  12. 根据权利要求11所述的方法,还包括:
    所述第一通信装置向所述第二通信装置发送所述第一上报时间窗口。
  13. 根据权利要求12所述的方法,其中所述第一上报时间窗口包括在缓存状态报告中。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于:
    所述第一上报时间窗口包括起始时间点、结束时间点和持续时间中的至少一种。
  15. 根据权利要求14所述的方法,其中所述起始时间点是所述第一通信装置进行所述测 量的时间点或者所述第一通信装置发送所述第一上报时间窗口的时间点。
  16. 根据权利要求11-15中任一项所述的方法,还包括:
    所述第一通信装置从所述第二通信装置接收发送所述测量结果的资源,所述资源处于所述第一上报时间窗口内。
  17. 根据权利要求11所述的方法,还包括:
    所述第一通信装置在所述第一上报时间窗口内预配置的资源上向所述第二通信装置发送所述测量结果。
  18. 根据权利要求11至17中任一项所述的方法,所述第一通信装置确定所述第一上报时间窗口包括:
    所述第一通信装置从所述第二通信装置接收一个或多个上报时间窗口,所述一个或多个上报时间窗口包括所述第一上报时间窗口;以及
    所述第一通信装置从所述一个或多个上报时间窗口中确定所述第一上报时间窗口。
  19. 根据权利要求11、16、17和18中任一项所述的方法,还包括:
    所述第一通信装置向所述第二通信装置发送所述第一上报时间窗口的上报条件,所述上报条件包括以下至少一项:
    所述第一通信装置的移动性,测量环境,所述测量结果的类型,以及所述测量结果的数值。
  20. 根据权利要求11-19中任一项所述的方法,所述第一上报时间窗口是根据上报条件确定的,所述上报条件包括以下至少一项:
    所述第一通信装置的移动性,测量环境,所述测量结果的类型,以及所述测量结果的数值。
  21. 根据权利要求11-20中任一项所述的方法,其中:
    所述测量结果包括感知信息。
  22. 一种通信方法,包括:
    第二通信装置确定第一上报时间窗口;以及
    第二通信装置在所述第一上报时间窗口内从第一通信装置接收测量结果,所述测量结果是所述第一通信装置对测量信号进行测量而获得的。
  23. 根据权利要求22所述的方法,其中所述第二通信装置确定所述第一上报时间窗口包括:
    所述第二通信装置从所述第一通信装置接收所述第一上报时间窗口。
  24. 根据权利要求23所述的方法,其中所述第一上报时间窗口包括在缓存状态报告中。
  25. 根据权利要求22至24中任一项所述的方法,其特征在于:
    所述第一上报时间窗口包括起始时间点、结束时间点和持续时间中的至少一种。
  26. 根据权利要求25所述的方法,其中所述起始时间点是所述第一通信装置进行所述测量的时间点或者所述第一通信装置发送所述第一上报时间窗口的时间点。
  27. 根据权利要求22至26中任一项所述的方法,还包括:
    所述第二通信装置确定用于所述第一通信装置发送所述测量结果的资源,所述资源处于所述第一上报时间窗口内;以及
    所述第二通信装置向所述第一通信装置发送所述资源的指示。
  28. 根据权利要求22所述的方法,其中所述第二通信装置接收所述测量结果包括:
    所述第二通信装置使用在所述第一上报时间窗口内的预配置的资源从所述第一通信装置接收所述测量结果。
  29. 根据权利要求22至28中任一项所述的方法,还包括:
    所述第二通信装置确定一个或多个上报时间窗口,所述一个或多个上报时间窗口包括所述第一上报时间窗口;以及
    所述第二通信装置向所述第一通信装置发送所述一个或多个上报时间窗口。
  30. 根据权利要求22、27、28和29中任一项所述的方法,其中所述第二通信装置确定所述第一上报时间窗口包括:
    所述第二通信装置从所述第一通信装置接收所述第一上报时间窗口的上报条件;以及
    所述第二通信装置基于所述上报条件确定所述第一上报时间窗口。
  31. 根据权利要求22-30中任一项所述的方法,其中所述第一上报时间窗口是根据上报条件确定的,其中所述上报条件包括以下至少一项:
    所述第一通信装置的移动性,测量环境,所述测量结果的类型,以及所述测量结果的数值。
  32. 根据权利要求22-31中任一项所述的方法,其中:
    所述测量结果包括感知信息。
  33. 一种第一通信装置,其特征在于,包括用于执行权利要求1和3至10任一项所述的方法的模块或单元。
  34. 一种第二通信装置,其特征在于,包括用于执行权利要求2至10任一项所述的方法的模块或单元。
  35. 一种第一通信装置,包括处理器,所述处理器和存储器耦合,所述存储器存储有指令,所述指令在被所述处理器执行时,使得所述第一通信装置执行根据权利要求1和3至10中任一项或权利要求11至21中任一项所述的方法。
  36. 一种第二通信装置,包括处理器,所述处理器和存储器耦合,所述存储器存储有指令,所述指令在被所述处理器执行时,使得所述第二通信装置执行根据权利要求2至10中任一项或权利要求22至32中任一项所述的方法。
  37. 一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令在运行时使得权利要求1至32中任一项所述的方法被执行。
  38. 一种计算机程序产品,所述计算机程序产品包括指令,所述指令在运行时使得权利要求1至32中任一项所述的方法被执行。
  39. 一种通信***,其特征在于,包括权利要求1和3至10中任一项或权利要求11至21中任一项所述的第一通信装置以及权利要求2至10中任一项或权利要求22至32中任一项所述的第二通信装置。
PCT/CN2022/121766 2022-09-27 2022-09-27 通信方法、通信装置、介质及程序产品 WO2024065187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121766 WO2024065187A1 (zh) 2022-09-27 2022-09-27 通信方法、通信装置、介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121766 WO2024065187A1 (zh) 2022-09-27 2022-09-27 通信方法、通信装置、介质及程序产品

Publications (1)

Publication Number Publication Date
WO2024065187A1 true WO2024065187A1 (zh) 2024-04-04

Family

ID=90475220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121766 WO2024065187A1 (zh) 2022-09-27 2022-09-27 通信方法、通信装置、介质及程序产品

Country Status (1)

Country Link
WO (1) WO2024065187A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215455A (zh) * 2010-04-02 2011-10-12 中兴通讯股份有限公司 一种多媒体广播多播业务的测量上报方法及***
CN104254102A (zh) * 2013-06-26 2014-12-31 中兴通讯股份有限公司 一种测量报告的上报方法、通信节点和***
CN104640148A (zh) * 2010-01-15 2015-05-20 华为技术有限公司 测量上报方法、装置及***
CN107637129A (zh) * 2015-09-10 2018-01-26 广东欧珀移动通信有限公司 信道测量与测量结果上报的方法和装置
CN109039493A (zh) * 2017-09-08 2018-12-18 华为技术有限公司 Rssi测量方法及网络设备、终端设备
WO2021249001A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 一种小区测量方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640148A (zh) * 2010-01-15 2015-05-20 华为技术有限公司 测量上报方法、装置及***
CN102215455A (zh) * 2010-04-02 2011-10-12 中兴通讯股份有限公司 一种多媒体广播多播业务的测量上报方法及***
CN104254102A (zh) * 2013-06-26 2014-12-31 中兴通讯股份有限公司 一种测量报告的上报方法、通信节点和***
CN107637129A (zh) * 2015-09-10 2018-01-26 广东欧珀移动通信有限公司 信道测量与测量结果上报的方法和装置
CN109039493A (zh) * 2017-09-08 2018-12-18 华为技术有限公司 Rssi测量方法及网络设备、终端设备
WO2021249001A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 一种小区测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "RRM measurements on IDLE mode RS", 3GPP DRAFT; R1-1709898, vol. RAN WG1, 17 June 2017 (2017-06-17), Qingdao, P.R. China, pages 1 - 9, XP051304648 *

Similar Documents

Publication Publication Date Title
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
WO2019136724A1 (zh) Srs传输方法及相关设备
JP7384930B2 (ja) アップリンク送信プリエンプション
WO2020164142A1 (zh) 同步信号块信息处理方法、装置及通信装置
CN113875164A (zh) 管理无线网络内的用户设备的多个天线面板
WO2020078318A1 (zh) 通信方法及装置
US20230039093A1 (en) Sidelink resource determining method and communication apparatus
WO2021258776A1 (zh) 通信方法及通信装置
CN111512685B (zh) 信道状态信息测量方法、装置及计算机存储介质
JP2022521719A (ja) 電力制御方法および電力制御装置
JP2020507948A (ja) 参照信号送信方法および装置
JP2022530245A (ja) ビーム参照シグナリングを可能にするための方法、無線デバイス、及びネットワークノード
JP2023512544A (ja) 基準信号リソース構成方法および装置
WO2020220343A1 (en) Method for communication, communication device, and computer readable medium
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品
WO2022253150A1 (zh) 数据传输方法及装置
KR102403157B1 (ko) 잔여 최소 시스템 정보를 위한 방법, 네트워크 디바이스, 및 단말기 디바이스
JP6986547B2 (ja) フィードバックタイミングの決定
US20230027215A1 (en) Resumed beamformed communication with a terminal device
US10348472B2 (en) Determination of feedback timing
US20190363850A1 (en) Method and device for reconfiguring sounding resources
US11800322B2 (en) Signalling for positioning latency control
WO2024140462A1 (zh) 通信方法和通信装置
WO2023029690A1 (zh) 资源分配方法及装置
CN111885636B (zh) 一种路测方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959837

Country of ref document: EP

Kind code of ref document: A1