WO2023029690A1 - 资源分配方法及装置 - Google Patents

资源分配方法及装置 Download PDF

Info

Publication number
WO2023029690A1
WO2023029690A1 PCT/CN2022/101125 CN2022101125W WO2023029690A1 WO 2023029690 A1 WO2023029690 A1 WO 2023029690A1 CN 2022101125 W CN2022101125 W CN 2022101125W WO 2023029690 A1 WO2023029690 A1 WO 2023029690A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
terminal devices
transmission resource
information
terminal
Prior art date
Application number
PCT/CN2022/101125
Other languages
English (en)
French (fr)
Inventor
董九山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029690A1 publication Critical patent/WO2023029690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to the communication field, and more specifically, to a resource allocation method and device.
  • Spectrum resources of wireless network mobile operators are limited. For example, it is assumed that the bandwidth spectrum allocated to the operator is 160 MHz. For different cells within the coverage of the operator, the available bandwidth range may be different. For example, the bandwidth range that can be used by a certain cell is 100MHz, and the bandwidth range that can be used by another cell is 60MHz, and the two The bandwidths available to the cells do not overlap in the frequency domain. However, such an approach may result in insufficient utilization of effective spectrum resources.
  • Embodiments of the present disclosure provide a resource allocation solution, which can improve spectrum resource utilization.
  • a resource allocation method includes: determining the first space-related information of the first group of terminal devices and the second space-related information of the second group of terminal devices; and based on the first space-related information and the second space-related information, determining The first transmission resource and the second transmission resource for the second group of terminal devices, the first transmission resource and the second transmission resource at least partially overlap in the frequency domain.
  • the first transmission resource determined for the first group of terminal devices and the second transmission resource for the second group of terminal devices determined in the embodiments of the present disclosure partially overlap in the frequency domain, so that one of the first group of terminal devices Or multiple first terminal devices and one or more second terminal devices in the second group of terminal devices may simultaneously perform uplink and downlink transmission in the same frequency domain, thereby improving resource utilization while ensuring transmission efficiency.
  • determining the first transmission resource and the second transmission resource based on the first spatial correlation information and the second spatial correlation information includes: determining a space between the first spatial correlation information and the second spatial correlation information degree of correlation; and if the degree of spatial correlation is lower than the threshold correlation degree, determining the first transmission resource for the first group of terminal devices and the second transmission resource for the second group of terminal devices, where the first transmission resource and the second transmission resource are in frequency Domains overlap at least partially.
  • the spatial correlation between the first spatial correlation information and the second spatial correlation information is lower than the threshold correlation, it can be determined that the first transmission resource and the second transmission resource partially overlap in the frequency domain, so that even the second A terminal device and a second terminal device simultaneously perform uplink and downlink transmission in the same frequency domain without interfering with each other, thereby improving resource utilization while ensuring transmission efficiency.
  • the low frequency part of the first frequency domain range indicated by the first transmission resource overlaps with the high frequency part of the second frequency domain range indicated by the second transmission resource.
  • the proportion of the low frequency part in the first frequency domain range does not exceed a first threshold, and/or the proportion of the high frequency part in the second frequency domain range does not exceed a second threshold.
  • determining the first space-related information of the first group of terminal devices includes: receiving a first measurement report from at least one first terminal device in the first group of terminal devices, the first measurement report includes A channel sounding reference signal measurement result or a precoding matrix indication measurement result related to at least one terminal device; and determining first spatial correlation information based on a first measurement report of at least one first terminal device.
  • determining the first space-related information of the first group of terminal devices includes: receiving first location information from at least one first terminal device in the first group of terminal devices; The first location information of a terminal device determines the first space related information.
  • determining the second spatial correlation information of the second group of terminal devices includes: receiving a second measurement report from at least one second terminal device in the second group of terminal devices, the second measurement report includes A channel sounding reference signal measurement result or a precoding matrix indication measurement result related to at least one second terminal device; and determining second spatial correlation information based on a second measurement report of the at least one second terminal device.
  • determining the first space-related information of the first group of terminal devices includes: receiving second location information from at least one second terminal device in the first group of second terminal devices; and based on at least The second location information of a second terminal device determines the second space-related information.
  • determining spatial correlation information through measurement reports or location information is simple and fast, and can be used for resource allocation efficiently.
  • the first space-related information includes at least one of the following: a first horizontal orientation of the first group of terminal devices relative to the network device, a first distance between the first group of terminal devices and the network device ; and wherein the second space-related information includes at least one of the following: a second horizontal orientation of the second group of terminal devices relative to the network device, and a second distance between the second group of terminal devices and the network device.
  • the degree of spatial association between the first spatially related information and the second spatially related information is determined based on at least one of the following: the angle between the first horizontal orientation and the second horizontal orientation, Or the difference between the first distance and the second distance.
  • the degree of spatial correlation is determined by means of an included angle or a distance difference.
  • This determination method is simple and easy to implement, and can improve the efficiency of resource allocation.
  • a resource allocation device in a second aspect, includes: a first determining unit configured to determine first space related information of a first group of terminal devices and second space related information of a second group of terminal devices; and a second determining unit configured to determine based on the first space
  • the correlation information and the second spatial correlation information determine the first transmission resource for the first group of terminal devices and the second transmission resource for the second group of terminal devices, and the first transmission resource and the second transmission resource overlap at least partially in the frequency domain .
  • an electronic device in a third aspect, includes a processor and a memory, and the memory stores instructions executed by the processor. When the instructions are executed by the processor, the electronic device realizes: determining the first space-related information of the first group of terminal devices and the second group of terminals The second space related information of the device; and based on the first space related information and the second space related information, determine the first transmission resource for the first group of terminal devices and the second transmission resource for the second group of terminal devices, the first transmission The resource and the second transmission resource at least partially overlap in the frequency domain.
  • the processor executes instructions so that the electronic device implements: determining the degree of spatial association between the first spatially related information and the second spatially related information; and if the degree of spatial association is lower than a threshold degree of association, A first transmission resource for the first group of terminal devices and a second transmission resource for the second group of terminal devices are determined, where the first transmission resource and the second transmission resource at least partially overlap in the frequency domain.
  • the low frequency part of the first frequency domain range indicated by the first transmission resource overlaps with the high frequency part of the second frequency domain range indicated by the second transmission resource.
  • the proportion of the low frequency part in the first frequency domain range does not exceed a first threshold, and/or the proportion of the high frequency part in the second frequency domain range does not exceed a second threshold.
  • the processor executes instructions so that the electronic device realizes: receiving a first measurement report from at least one first terminal device in the first group of terminal devices, the first measurement report includes information related to at least one terminal device A device-related channel sounding reference signal measurement result or a precoding matrix indication measurement result; and determining first spatial correlation information based on a first measurement report of at least one first terminal device.
  • the processor executes instructions so that the electronic device realizes: receiving first location information from at least one first terminal device in the first group of terminal devices; The first location information determines first spatially related information.
  • the processor executes instructions so that the electronic device realizes: receiving a second measurement report from at least one second terminal device in the second group of terminal devices, the second measurement report including A channel sounding reference signal measurement result or a precoding matrix indication measurement result related to the two terminal devices; and determining second spatial correlation information based on a second measurement report of at least one second terminal device.
  • the processor executes instructions so that the electronic device realizes: receiving second location information from at least one second terminal device in the first group of second terminal devices; and based on at least one second terminal device The second location information of the device determines second spatially related information.
  • the first space-related information includes at least one of the following: a first horizontal orientation of the first group of terminal devices relative to the network device, a first distance between the first group of terminal devices and the network device ; and wherein the second space-related information includes at least one of the following: a second horizontal orientation of the second group of terminal devices relative to the network device, and a second distance between the second group of terminal devices and the network device.
  • the degree of spatial correlation between the first spatially related information and the second spatially related information is determined by the processor based on at least one of the following: the distance between the first horizontal orientation and the second horizontal orientation The included angle, or the difference between the first distance and the second distance.
  • a computer-readable storage medium on which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, the above-mentioned first aspect or any embodiment thereof can be implemented.
  • a chip or a chip system in a fifth aspect, includes a processing circuit configured to perform operations according to the method in the above first aspect or any embodiment thereof.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and comprises computer-executable instructions which, when executed, implement operations according to the method in the first aspect above or any embodiment thereof.
  • Figure 1 shows a schematic diagram of a scenario in which an operator allocates spectrum to two cells
  • FIG. 2 shows a schematic diagram of time-division multiplexing of frequency spectrum by two cells
  • FIG. 3 shows a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented
  • FIG. 4 shows a schematic flowchart of a resource allocation process in an embodiment of the present disclosure
  • Fig. 5 shows an interactive signaling diagram of a process of determining first space-related information of a first group of terminal devices according to an embodiment of the present disclosure
  • Fig. 6 shows a schematic flowchart of a process of determining a first transmission resource and a second transmission resource according to an embodiment of the present disclosure
  • Fig. 7 shows a schematic block diagram of a resource allocation device according to an embodiment of the present disclosure.
  • Fig. 8 shows a schematic block diagram of an example device that may be used to implement embodiments of the present disclosure.
  • Embodiments of the present disclosure may be implemented according to any suitable communication protocol, including but not limited to, third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and other cellular communication protocols, such as electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • other cellular communication protocols such as electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • IEEE Institute of Electrical and Electronics Engineers
  • embodiments of the present disclosure are described below in the context of an NR communication system in 3GPP. However, it should be understood that the embodiments of the present disclosure are not limited to this communication system, but can be applied to any communication system with similar problems, such as wireless local area network (WLAN), wired communication system, or other communication systems developed in the future, etc. .
  • WLAN wireless local area network
  • wired communication system or other communication systems developed in the future, etc.
  • terminal device refers to any terminal device capable of wired or wireless communication with network devices or with each other.
  • the terminal equipment may sometimes be called user equipment (User Equipment, UE).
  • a terminal device may be any type of mobile terminal, stationary terminal or portable terminal.
  • terminal equipment may include a mobile handset, station, unit, device, mobile terminal (Mobile Terminal, MT), subscription station, portable subscription station, Internet node, communicator, desktop computer, laptop computer, notebook computer, tablet Computers, personal communication system devices, personal navigation devices, personal digital assistants (Personal Digital Assistant, PDA), positioning devices, radio broadcast receivers, e-book devices, game devices, Internet of Things (IoT) devices, vehicle-mounted devices , aircraft, virtual reality (Virtual Reality, VR) devices, augmented reality (Augmented Reality, AR) devices, wearable devices, terminal devices in 5G networks or evolved Public Land Mobile Networks (Public Land Mobile Network, PLMN) Any terminal device, other device that can be used for communication, or any combination of the above. Embodiments of the present disclosure do not limit this.
  • the term "network device” used in this disclosure is an entity or node that can be used to communicate with a terminal device, such as an access network device.
  • the access network device may be a device deployed in the radio access network to provide a wireless communication function for the mobile terminal, for example, it may be a radio access network (Radio Access Network, RAN) network device.
  • Access network equipment may include various types of base stations. As an example, the access network equipment may include various forms of macro base stations, micro base stations, pico base stations, femto base stations, relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH ), Remote Radio Head (RRH) and so on.
  • RRU Remote Radio Unit
  • RH Remote Radio Head
  • the names of access network equipment may be different, for example, in a Long Term Evolution (LTE) network, it is called an evolved NodeB (evolved NodeB, eNB or eNodeB), which is called Node B (NodeB, NB) in 3G network, can be called gNode B (gNB) or NR Node B (NR NB) in 5G network, and so on.
  • the access network device may include a central unit (Central Unit, CU) and/or a distributed unit (Distributed Unit, DU).
  • CU and DU can be placed in different places, for example: DU is remote and placed in a high-traffic area, and CU is placed in the central computer room.
  • the CU and DU can also be placed in the same equipment room.
  • the CU and DU can also be different components under one rack.
  • the above-mentioned apparatuses for providing wireless communication functions for mobile terminals are collectively referred to as network devices, which are not specifically limited in the embodiments of the present disclosure.
  • Spectrum resources of wireless network mobile operators are limited, and the cell bandwidth supported by each standard is also fixed.
  • the operator's spectrum is not an integer multiple of the maximum bandwidth supported by the standard.
  • the bandwidth spectrum allocated by the operator is 160MHz, and the same coverage area can form a 100MHz+60MHz network.
  • FIG. 1 shows a schematic diagram of a scenario 100 in which an operator allocates spectrum to two cells, where Cell 1 and Cell 2 can form a 100MHz+100MHz network, and the 40MHz in the middle overlapping section is shared by Cell 1 and Cell 2 of.
  • the shared 40 MHz will be split into two non-overlapping sections in terms of frequency spectrum, one section is used by cell 1 and the other section is used by cell 2 .
  • This sharing method may also be referred to as time-division multiplexed spectrum.
  • a sharing scheme 200 is shown in FIG. 2 .
  • the middle 40 MHz is used by cell 1 , that is, the spectrum range available to cell 1 is 100 MHz, and the spectrum range available to cell 2 is 60 MHz.
  • cell 2 uses the middle 40 MHz, that is, the spectrum range available to cell 1 is 60 MHz, and the spectrum range available to cell 2 is 100 MHz.
  • the scheme of time division multiplexing shown in Fig. 2 can realize dynamic spectrum sharing to a certain extent.
  • FIG. 3 shows a schematic diagram of a communication system 300 in which embodiments of the present disclosure may be implemented.
  • the system 300 includes a network device 310, a scheduling module 320, terminal devices 330-1 to 330-3 (collectively referred to as terminal devices 330), and terminal devices 340-1 to 340-4 (collectively referred to as terminal devices 340).
  • the network device 310 can communicate with the terminal device 330 and the terminal device 340 .
  • the scheduling module 320 may be independent from the network device 310 or may be integrated within the network device 310 .
  • the device where the scheduling module 320 is located may be another access network device, and communication between the scheduling module 320 and the network device 310 may be performed.
  • the scheduling module 320 may serve as an internal module of the network device 310 .
  • the scheduling module 320 is shown in FIG. 3 as being independent of the network device 310, but it should be understood that the present disclosure is not limited thereto. It should also be noted that some of the following embodiments describe the communication between the scheduling module 320 and the network device 310, which can be understood as the network device 310 in the scenario where the scheduling module 320 is integrated in the network device 310 internal operations.
  • Fig. 4 shows a schematic flowchart of a resource allocation process 400 according to an embodiment of the present disclosure.
  • Process 400 may be performed by scheduling module 320 as shown in FIG. 3 .
  • the scheduling module 320 can be independent of the network device 310 and implemented as a physically independent network element.
  • the scheduling module 320 may be integrated inside the network device 310 and implemented as a part of the network device 310 , in this case, the process 400 may also be considered to be executed by the network device 310 .
  • first spatially related information of the first group of terminal devices and second spatially related information of the second group of terminal devices are determined.
  • the embodiments of the present disclosure provide a resource allocation solution, so that spectrum resources in overlapping segments can be used by different cells at the same time. Compared with the time-division multiplexing scheme shown in FIG. 2 , the embodiments of the present disclosure improve resource utilization in a space-division multiplexing manner.
  • the first group of terminal devices includes terminal devices 330 - 1 to 330 - 3 , and for brevity, the first group of terminal devices is collectively referred to as terminal device 330 .
  • the second group of terminal devices includes terminal devices 340 - 1 to 340 - 4 , and for brevity, the second group of terminal devices is collectively referred to as terminal devices 340 .
  • the embodiment of the present disclosure does not limit the number of terminal devices included in the first group of terminal devices, for example, it may be 1, 2 or more, and the first group of terminal devices may also be called the first group of terminal devices.
  • the embodiments of the present disclosure do not limit the number of terminal devices included in the second group of terminal devices, for example, it may be 1, 2 or more, and the second group of terminal devices may also be referred to as the first group of terminal devices.
  • the cell where the first group of terminal devices resides may be a first cell
  • the cell where the second group of terminal devices resides may be a second cell
  • the first cell and the second cell are different cells.
  • the distance between any two terminal devices in the first group of terminal devices is smaller than the first distance threshold, or all the terminal devices in the first group of terminal devices use the same beam (for example, the first beam ) communicate with the network device 310. akin.
  • the distance between any two terminal devices in the second group of terminal devices is smaller than the second distance threshold, or, all the terminal devices in the second group of terminal devices use the same beam (for example, the second beam) to communicate with the network device 310 communication.
  • the first distance threshold may be determined based on the size of the first cell
  • the second distance threshold may be determined based on the size of the second cell
  • the first distance threshold and the second distance threshold may be equal or not. equal.
  • the first beam and the second beam are different beams.
  • the distance between any terminal device (for example, the first terminal device) in the first group of terminal devices and any terminal device (for example, the second terminal device) in the second group of terminal devices is greater than a third distance threshold, and the third distance threshold greater than the first distance threshold, and the third distance threshold is greater than the second distance threshold.
  • the first group of terminal devices and the second group of terminal devices may use the same standard, for example, both are NR terminals.
  • the first group of terminal devices and the second group of terminal devices may use different standards, for example, the first group of terminal devices are Long Term Evolution (LTE) terminals, and the second group of terminal devices are NR terminals.
  • LTE Long Term Evolution
  • the first spatial correlation information may be determined based on a measurement report from at least one terminal device in the first group of terminal devices. In some embodiments, the first space-related information may be determined based on location information from at least one terminal device in the first group of terminal devices.
  • At least one terminal device in the first group of terminal devices may periodically send the measurement report or location information to the network device.
  • At least one terminal device in the first group of terminal devices may send a measurement report or location information to the network device based on a request from the network device, as described in conjunction with the embodiment of FIG. 5 below.
  • Fig. 5 shows an interactive signaling diagram of a process 500 of determining first spatially related information of a first group of terminal devices according to an embodiment of the present disclosure.
  • Process 500 involves network device 310 , scheduling module 320 and terminal device 330 .
  • network device 310 sends 510 a request message to terminal device 330 .
  • the request message may include a measurement request.
  • the measurement request may instruct the terminal device 330 to perform channel sounding reference signal (Sounding Reference Signal, SRS) measurement or precoding matrix indication (Pre-coding Matrix Indication, PMI) measurement, etc.
  • SRS Sounding Reference Signal
  • PMI Pre-coding Matrix Indication
  • the measurement can be based on SRS or PMI
  • the embodiments of the present disclosure are not limited to this, and in actual scenarios, the measurement can also be based on other signals, such as channel state information reference signals.
  • CSI-RS Channel State Information Reference Signal
  • Synchronization Signal Block Synchronization Signal Block
  • SSB Synchronization Signal Block
  • the request message may include location report indication information.
  • the location reporting instruction information may instruct the terminal device 330 to report location information.
  • the request message may be sent by the network device 310 in a broadcast manner.
  • the request message may also be sent by the network device 310 in a unicast or multicast manner, which is not limited in the present disclosure.
  • the terminal device 330 determines 520 a response message to the request message based on the request message.
  • the terminal device 330 may perform air interface measurement based on the measurement request to obtain a measurement report.
  • the terminal device 330 may obtain a measurement report through beam scanning, signal strength measurement, etc., but it is understandable that the embodiments of the present disclosure are not limited thereto.
  • the obtained measurement report may include at least one of the following: SRS measurement report, PMI measurement report, CSI-RS measurement report, or SSB measurement report. It should be understood that the measurement report may also be obtained based on other signals, which will not be listed one by one in this disclosure.
  • the measurement report may be generated by the terminal device 330 based on a measurement result obtained by one measurement, or may be generated based on multiple measurement results obtained by multiple measurements.
  • the terminal device 330 may determine the location information based on the location report indication information. For example, the terminal device 330 may determine location information through its positioning module, and the location information may include latitude and longitude information and/or altitude information (such as altitude).
  • the terminal device 330 may determine the location information by using a currently existing or later-developed location technology.
  • the observed time difference of arrival (Observed Time Difference of Arrival, OTDOA) technology can be used, so that the location information can be determined more accurately for terminal devices that have a fixed location for a long time and are online for a long time.
  • OTDOA observed Time Difference of Arrival
  • the terminal device 330 that determines the response message may be any terminal device 330 that receives the request message. In other words, for the terminal device 330 that receives the request message, it can determine the response message, or ignore the request message and determine the corresponding response message. 3, for example, terminal equipment 330-1 to terminal equipment 330-3 can all receive the request message, but only terminal equipment 330-1 determines the response message based on the request message, while terminal equipment 330-2 and terminal equipment 330 -3 Ignore the request message without generating a corresponding response message. That is to say, among all the terminal devices 330, at least one of them only needs to determine the response message based on the request message.
  • the terminal device 330 sends 530 a response message to the network device 310 .
  • the network device 310 may determine 542 the first space-related information of the terminal device 330 based on the response message. Subsequently, the network device 310 may send 544 the first spatially related information to the scheduling module 320 .
  • the network device 310 may send 552 a response message to the scheduling module 320 as shown by the dashed box 550 in FIG. 5 .
  • the scheduling module 320 may then determine 554 the first space-related information of the terminal device 330 based on the response message.
  • 540 and 550 are performed alternatively. It can be understood that, for the scenario where the scheduling module 320 is integrated inside the network device 310 , 544 and 552 shown in FIG. 5 should be understood as internal operations of the network device 310 .
  • the network device 310 or the scheduling module 320 determining the first spatial correlation information based on the response message may include: the network device 310 or the scheduling module 320 determining the first spatial correlation information based on the measurement report or location information.
  • the first space-related information may include a first horizontal orientation of the first group of terminal devices relative to the network device 310 and/or a first distance between the first group of terminal devices and the network device 310 .
  • the network device 310 may receive multiple response messages from multiple terminal devices 330, and accordingly, the network device 310 or the scheduling module 320 determines the first spatial correlation information based on the multiple response messages.
  • the first horizontal orientation may be expressed in the form of an angle.
  • the angle between the line between the center of the terminal device 330 (one or more) from which the response message comes and the network device 310 and a predetermined direction can be determined, wherein the predetermined direction can be a direction parallel to the latitude, or directions parallel to longitude, etc.
  • the first distance may be expressed as a straight-line distance between the center of the terminal device(s) 330 (one or more) from which the response message comes and the network device 310 .
  • the first distance may be expressed as an average value of multiple distances between multiple terminal devices 330 from which the response message comes and the network device 310 .
  • the first space-related information in this embodiment of the present disclosure may include other information, such as an antenna port, a beam identifier, or a sector identifier, etc., which is not limited in this embodiment of the present disclosure.
  • the embodiment of determining the first space-related information of the first group of terminal devices shown in FIG. 5 is only for illustration.
  • at least one terminal device in the first group of terminal devices may periodically Measurement reports or location information are sent to network device 310 .
  • the network device 310 may determine the first space-related information of the terminal device 330 based on the measurement report or location information, and may send the first space-related information to the scheduling module 320 .
  • the network device 310 may send the measurement report or location information to the scheduling module 320 , and the scheduling module 320 determines the first space-related information of the terminal device 330 .
  • determining the first space related information of the first group of terminal devices and determining the second space related information of the second group of terminal devices are independent of each other.
  • the first spatial correlation information and the second spatial correlation information may be determined in parallel or not simultaneously.
  • the first spatial correlation information and the second spatial correlation information may be determined in the same manner or in different manners.
  • the first space-related information is determined through the measurement reports of the first group of terminal devices, and the second space-related information is determined through the location information of the second group of terminal devices; and so on.
  • the second space-related information may include a second horizontal orientation of the second group of terminal devices relative to the network device 310 and/or a second distance between the second group of terminal devices and the network device 310 .
  • the second horizontal orientation may be expressed as, for example, the angle between the line between the center of the second group of terminal devices and the network device 310 and a predetermined direction, wherein the predetermined direction may be a direction parallel to latitude or parallel to longitude direction etc.
  • the second distance may be represented, for example, as a straight-line distance between the center of the second group of terminal devices and the network device 310 .
  • the second space-related information may include other information, such as an antenna port, a beam identifier, or a sector identifier, which is not limited in this embodiment of the present disclosure.
  • the scheduling module 320 may determine the first transmission resource for the first group of terminal devices and the second transmission resource for the second group of terminal devices based on both the first spatial correlation information and the second spatial correlation information.
  • Fig. 6 shows a schematic flowchart of a process 600 of determining a first transmission resource and a second transmission resource according to an embodiment of the present disclosure.
  • the process 600 is executed by the scheduling module 320 , and it can be understood that, for the scenario where the scheduling module 320 is integrated in the network device 310 , the process 600 may also be executed by the network device 310 .
  • a degree of spatial association between the first spatially related information and the second spatially related information is determined.
  • the first space-related information may include a first horizontal orientation of the first group of terminal devices relative to the network device 310 and/or a first distance between the first group of terminal devices and the network device 310
  • the second space-related information may include a second horizontal orientation of the second group of terminal devices relative to the network device 310 and/or a second distance between the second group of terminal devices and the network device 310
  • the degree of spatial correlation may be determined based on at least one of the following: an angle between the first horizontal orientation and the second horizontal orientation, or a difference between the first distance and the second distance.
  • the included angle can be understood as an absolute value included angle
  • the difference can be understood as an absolute value difference.
  • the degree of spatial correlation can be expressed as the difference between 180 degrees and the angle between the absolute value.
  • the degree of spatial correlation can be expressed as the reciprocal of the absolute value difference.
  • the degree of spatial correlation may be expressed as a weighted sum of (a) the difference between the angle between 180 degrees and the absolute value and (b) the reciprocal of the absolute value difference.
  • the degree of spatial correlation may be constructed as a function of an absolute value angle and/or an absolute value difference, and its value ranges from 0 to 1.
  • the degree of spatial correlation can be conversely used to characterize the degree of spatial isolation between the first group of terminal devices and the second group of terminal devices. For example, the closer the absolute value of the included angle is to 180 degrees, the higher the spatial isolation. For example, the larger the absolute value difference, the higher the spatial isolation.
  • the form of the threshold correlation degree depends on the specific form of the spatial correlation degree.
  • the degree of spatial correlation is expressed as the difference between 180 degrees and the angle between the absolute value, and correspondingly, the degree of correlation of the threshold value is an angle threshold, such as 30 degrees or other values.
  • the spatial correlation degree is expressed as the reciprocal of the absolute value difference, and correspondingly, the threshold correlation degree is a numerical threshold, such as 0.1 or other values.
  • the spatial correlation degree is expressed as a normalized value between 0 and 1, and correspondingly, the threshold correlation degree is a numerical threshold, such as 0.3 or other values.
  • a first transmission resource for the first group of terminal devices and a second transmission resource for the second group of terminal devices are determined, and the determined first transmission resource and the second transmission resource do not overlap at all in the frequency domain.
  • the first transmission resource and the second transmission resource may not overlap.
  • the range of the first transmission resource in the frequency domain is f11 to f12
  • the range of the second transmission resource in the frequency domain is f13 to f14
  • f11 ⁇ f12 ⁇ f13 ⁇ f14 is f11 to f12
  • first transmission resources for the first group of terminal devices and second transmission resources for the second group of terminal devices are determined, and the determined first transmission resources and second transmission resources overlap at least partially in the frequency domain.
  • the first transmission resource and the second transmission resource may be at least partially overlapped, for example completely overlapped or partially overlapped.
  • terminal devices that can be paired two different groups of terminal devices that can use partially overlapping frequency domain transmission resources may be referred to as terminal devices that can be paired. It can be understood that paired terminal devices can respectively schedule frequency domain resources in parallel. In this way, space division multiplexing can be realized, and the utilization rate of spectrum resources can be improved.
  • the range of the first transmission resource in the frequency domain is f21 to f22
  • the range of the second transmission resource in the frequency domain is f23 to f24
  • f21 ⁇ f23 ⁇ f22 ⁇ f24 the two transmission resources overlap in the frequency domain range from f23 to f22.
  • the overlapping part ie f23 to f22
  • the proportion of the overlapping part in the first frequency domain range may be lower than a first threshold, for example, the first threshold may be to 40% or some other value.
  • the proportion of the overlapping part in the second frequency domain range may be lower than a second threshold, for example, the second threshold may be 40% or other values. It can be understood that the first threshold and the second threshold may be equal or unequal, which is not limited in the present disclosure.
  • the spatial correlation degree between the first spatial related information and the second spatial related information is lower than the threshold correlation degree, it may be determined that the first transmission resource and the first transmission resource for the first group of terminal devices are related to The second transmission resource for the second group of terminal devices partially overlaps in the frequency domain, even if one or more first terminal devices in the first group of terminal devices and one or more second terminal devices in the second group of terminal devices At the same time, uplink and downlink transmissions are performed in the same frequency domain without mutual interference, thereby improving resource utilization while ensuring transmission efficiency.
  • the cell where the first group of terminal devices resides may be the first cell
  • the cell where the second group of terminal devices resides may be the second cell
  • the determined first transmission resource may be the first cell
  • the resource used, the determined second transmission resource is a resource that can be used by the second cell.
  • the network device 310 or the scheduling module 320 may further perform resource scheduling for the terminal devices in the first cell or the second cell.
  • the terminal device 330 - 1 may send a scheduling request to the network device 310 . Then the network device 310 can determine the resources available to the terminal device 330-1, and the network device 310 can send a scheduling permission to the terminal device 330-1 to indicate the resources available to the terminal device 330-1. It can be understood that the resources available to the terminal device 330-1 are a subset of the first transmission resources.
  • the resource scheduling process is performed in parallel, so that even in the same time period (such as a symbol or a time slot), the resources scheduled for the first terminal device and the resources scheduled for the second terminal device may overlap in the frequency domain. In this way, the utilization rate of frequency domain resources can be improved, and thus the throughput rate of the entire network can be improved.
  • Fig. 7 shows a schematic block diagram of a resource allocation device 700 according to an embodiment of the present disclosure.
  • the apparatus 700 may be implemented as the scheduling module 320 as shown in FIG. 3 , or may be implemented in the scheduling module 320 as shown in FIG. 3 .
  • the apparatus 700 may include a first determining unit 710 and a second determining unit 720 .
  • the first determining unit 710 may be configured to determine the first space-related information of the first group of terminal devices and the second space-related information of the second group of terminal devices.
  • the second determining unit 720 may be configured to determine the first transmission resource for the first group of terminal devices and the second transmission resource for the second group of terminal devices based on the first spatial correlation information and the second spatial correlation information, the first transmission The resource and the second transmission resource at least partially overlap in the frequency domain.
  • the second determining unit 720 may be configured to: determine the degree of spatial correlation between the first spatial correlation information and the second spatial correlation information; and if the spatial correlation degree is lower than the threshold correlation degree, determine The first transmission resource and the second transmission resource for the second group of terminal devices, the first transmission resource and the second transmission resource at least partially overlap in the frequency domain.
  • first transmission resource and the second transmission resource may completely overlap or partially overlap in the frequency domain.
  • the low frequency part of the first frequency domain range indicated by the first transmission resource and the high frequency part of the second frequency domain range indicated by the second transmission resource partially overlap.
  • the proportion of the low frequency part in the first frequency domain range does not exceed the first threshold
  • the proportion of the high frequency part in the second frequency domain range does not exceed the second threshold.
  • the first threshold and the second threshold may be equal, for example, both are 40%.
  • the first determining unit 710 may be configured to: receive a first measurement report from at least one first terminal device in the first group of terminal devices, the first measurement report includes A device-related channel sounding reference signal measurement result or a precoding matrix indication measurement result; and determining first spatial correlation information based on a first measurement report of at least one first terminal device.
  • the first determining unit 710 may be configured to: receive first location information from at least one first terminal device in the first group of terminal devices; and based on at least one first terminal device The first location information of determines the first spatial correlation information.
  • the first determining unit 710 may be configured to: receive a second measurement report from at least one second terminal device in the second group of terminal devices, the second measurement report includes information related to at least one second A channel sounding reference signal measurement result or a precoding matrix indication measurement result related to the terminal device; and determining second spatial correlation information based on a second measurement report of at least one second terminal device.
  • the first determining unit 710 may be configured to: receive second location information from at least one second terminal device in the first group of second terminal devices; The second location information of the terminal device determines the second space related information.
  • the first space-related information may include at least one of the following: a first horizontal orientation of the first group of terminal devices relative to the network device, and a first distance between the first group of terminal devices and the network device.
  • the second space-related information may include at least one of the following: a second horizontal orientation of the second group of terminal devices relative to the network device, and a second distance between the second group of terminal devices and the network device.
  • the degree of spatial association between the first spatial correlation information and the second spatial correlation information may be determined by the second determining unit 720 based on at least one of the following: the angle between the first horizontal orientation and the second horizontal orientation, Or the difference between the first distance and the second distance.
  • the apparatus 700 in FIG. 7 may be implemented as the scheduling module 320 , or may be implemented as a chip or chip system in the scheduling module 320 . It can be understood that, for the scenario where the scheduling module 320 is integrated in the network device 310, the apparatus 700 in FIG. Examples of this are not limited.
  • the division of modules or units in the embodiments of the present disclosure is schematic, and is only a logical function division. In actual implementation, there may also be other division methods.
  • the functional units in the disclosed embodiments can be integrated In one unit, it may exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the apparatus 700 in FIG. 7 can be used to implement the processes described above in conjunction with the scheduling module 320 in FIG. 4 to FIG.
  • FIG. 8 shows a schematic block diagram of an example device 800 that may be used to implement embodiments of the present disclosure.
  • the device 800 may be implemented as or included in the scheduling module 320 of FIG. 3 .
  • device 800 includes one or more processors 810 , one or more memories 820 coupled to processors 810 , and a communication module 840 coupled to processors 810 .
  • the communication module 840 can be used for two-way communication.
  • the communication module 840 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • Processor 810 may be of any type suitable for the local technical network, and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a digital signal processor (Digital Signal Processor, DSP), or a control-based One or more of the multi-core controller architectures of the processor.
  • Device 800 may have multiple processors, such as application specific integrated circuit chips, that are time slaved to a clock that is synchronized to a main processor.
  • Memory 820 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include but are not limited to at least one of the following: read-only memory (Read-Only Memory, ROM) 824, erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, hard disk , Compact Disc (CD), Digital Video Disk (Digital Versatile Disc, DVD) or other magnetic and/or optical storage.
  • Examples of volatile memory include, but are not limited to, at least one of: Random Access Memory (RAM) 822, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • the computer program 830 comprises computer-executable instructions executed by the associated processor 810 .
  • Program 830 may be stored in ROM 824.
  • Processor 810 may perform any suitable actions and processes by loading program 830 into RAM 822.
  • Embodiments of the present disclosure may be implemented by means of a program 830 such that the device 800 may perform any of the processes as discussed with reference to FIGS. 4 to 6 .
  • Embodiments of the present disclosure can also be realized by hardware or by a combination of software and hardware.
  • Program 830 may be tangibly embodied on a computer readable medium, which may be included in device 800 (such as in memory 820 ) or other storage device accessible by device 800 . Program 830 may be loaded from a computer readable medium into RAM 822 for execution.
  • the computer readable medium may include any type of tangible nonvolatile memory such as ROM, EPROM, flash memory, hard disk, CD, DVD, and the like.
  • the communication module 840 in the device 800 may be implemented as a transmitter and a receiver (or transceiver), which may be configured to send/receive information such as first space-related information, second space-related information, and the like.
  • the device 800 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in this disclosure.
  • the device 800 in FIG. 8 may be implemented as an electronic device, or may be implemented as a chip or a chip system in the electronic device, which is not limited by the embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • a chip which may include an input interface, an output interface, and a processing circuit.
  • the interaction of signaling or data may be completed by the input interface and the output interface, and the generation and processing of signaling or data information may be completed by the processing circuit.
  • Embodiments of the present disclosure also provide a chip system, including a processor, configured to support a computing device to implement the functions involved in any of the foregoing embodiments.
  • the system-on-a-chip may further include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device installed with the system-on-a-chip can implement the program described in any of the above-mentioned embodiments.
  • the chip system may consist of one or more chips, and may also include chips and other discrete devices.
  • Embodiments of the present disclosure further provide a processor, configured to be coupled with a memory, where instructions are stored in the memory, and when the processor executes the instructions, the processor executes the methods and functions involved in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer program product containing instructions, which, when run on a computer, cause the computer to execute the methods and functions involved in any of the above embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which computer instructions are stored, and when a processor executes the instructions, the processor is made to execute the methods and functions involved in any of the above embodiments.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. While various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, devices, systems, techniques or methods described herein can be implemented as, without limitation, Exemplary, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product comprises computer-executable instructions, eg included in program modules, which are executed in a device on a real or virtual processor of a target to perform the process/method as above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided as desired among the program modules.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules may be located in both local and remote storage media.
  • Computer program codes for implementing the methods of the present disclosure may be written in one or more programming languages. These computer program codes can be provided to processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the computer or other programmable data processing devices, The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, sound, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer-readable storage media include electrical connections with one or more wires, portable computer diskettes, hard disks, random storage access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash), optical storage, magnetic storage, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提供了一种资源分配方法及装置,涉及通信领域。该资源分配方法包括:确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。如此,本公开的实施例中所确定的针对第一组终端设备的第一传输资源与针对第二组终端设备的第二传输资源在频域上部分重叠,从而第一组终端设备中的一个或多个第一终端设备与第二组终端设备中的一个或多个第二终端设备可以同时在相同的频域进行上下行传输,从而在保证传输效率的同时提升了资源的利用率。

Description

资源分配方法及装置 技术领域
本公开涉及通信领域,更具体地,涉及一种资源分配方法及装置。
背景技术
无线网络移动运营商的频谱资源是有限的,例如,假设运营商被分配到的带宽频谱是160MHz。针对运营商覆盖范围内的不同的小区,可以使用的带宽的范围可能是不一样的,例如某个小区可以使用的带宽范围是100MHz,另一小区可以使用的带宽范围是60MHz,并且这两个小区可使用的带宽在频域上不重叠。但是,这样的方式可能导致有效的频谱资源不能的到充分的利用。
发明内容
本公开的实施例提供了一种资源分配方案,能够提高频谱的资源利用率。
第一方面,提供了一种资源分配方法。该方法包括:确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
如此,本公开的实施例中所确定的针对第一组终端设备的第一传输资源与针对第二组终端设备的第二传输资源在频域上部分重叠,从而第一组终端设备中的一个或多个第一终端设备与第二组终端设备中的一个或多个第二终端设备可以同时在相同的频域进行上下行传输,从而在保证传输效率的同时提升了资源的利用率。
在第一方面的一些实施例中,基于第一空间相关信息和第二空间相关信息确定第一传输资源和第二传输资源包括:确定第一空间相关信息和第二空间相关信息之间的空间关联度;以及如果空间关联度低于阈值关联度,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
如此,在第一空间相关信息与第二空间相关信息之间的空间关联度低于阈值关联度的情况下,可以确定第一传输资源与第二传输资源在频域上部分重叠,这样即使第一终端设备与第二终端设备同时在相同的频域进行上下行传输,也不会互相干扰,从而在保证传输效率的同时提升了资源的利用率。
在第一方面的一些实施例中,第一传输资源所指示的第一频域范围的低频部分与第二传输资源所指示的第二频域范围的高频部分重叠。
在第一方面的一些实施例中,低频部分在第一频域范围中的比例不超过第一阈值,和/或,高频部分在第二频域范围中的比例不超过第二阈值。
如此,通过限定重叠部分频域不高于整个频域范围的第一/第二阈值,能够确保传输效率。
在第一方面的一些实施例中,确定第一组终端设备的第一空间相关信息包括:接收来自第一组终端设备中的至少一个第一终端设备的第一测量报告,第一测量报告包括与至少一个终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第一终端设备的第一测量报告确定第一空间相关信息。
在第一方面的一些实施例中,确定第一组终端设备的第一空间相关信息包括:接收来自 第一组终端设备中的至少一个第一终端设备的第一位置信息;以及基于至少一个第一终端设备的第一位置信息确定第一空间相关信息。
在第一方面的一些实施例中,确定第二组终端设备的第二空间相关信息包括:接收来自第二组终端设备中的至少一个第二终端设备的第二测量报告,第二测量报告包括与至少一个第二终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第二终端设备的第二测量报告确定第二空间相关信息。
在第一方面的一些实施例中,确定第一组终端设备的第一空间相关信息包括:接收来自第一组第二终端设备中的至少一个第二终端设备的第二位置信息;以及基于至少一个第二终端设备的第二位置信息确定第二空间相关信息。
如此,通过测量报告或者位置信息来确定空间相关信息,该方式简单快速地,能够高效地被用于资源分配。
在第一方面的一些实施例中,第一空间相关信息包括以下至少一项:第一组终端设备相对于网络设备的第一水平方位、第一组终端设备与网络设备之间的第一距离;并且其中第二空间相关信息包括以下至少一项:第二组终端设备相对于网络设备的第二水平方位、第二组终端设备与网络设备之间的第二距离。
在第一方面的一些实施例中,第一空间相关信息和第二空间相关信息之间的空间关联度基于以下至少一项被确定:第一水平方位与第二水平方位之间的夹角,或第一距离与第二距离之间的差值。
如此,通过夹角或距离差值的方式来确定空间关联度,该确定方式简单易于执行,能够提升资源分配的效率。
第二方面,提供了一种资源分配装置。该装置包括:第一确定单元,被配置为确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及第二确定单元,被配置为基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
第三方面,提供了一种电子设备。该电子设备包括处理器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该电子设备实现:确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
在第三方面的一些实施例中,处理器执行指令使得该电子设备实现:确定第一空间相关信息和第二空间相关信息之间的空间关联度;以及如果空间关联度低于阈值关联度,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
在第三方面的一些实施例中,第一传输资源所指示的第一频域范围的低频部分与第二传输资源所指示的第二频域范围的高频部分重叠。
在第三方面的一些实施例中,低频部分在第一频域范围中的比例不超过第一阈值,和/或,高频部分在第二频域范围中的比例不超过第二阈值。
在第三方面的一些实施例中,处理器执行指令使得该电子设备实现:接收来自第一组终端设备中的至少一个第一终端设备的第一测量报告,第一测量报告包括与至少一个终端设备 有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第一终端设备的第一测量报告确定第一空间相关信息。
在第三方面的一些实施例中,处理器执行指令使得该电子设备实现:接收来自第一组终端设备中的至少一个第一终端设备的第一位置信息;以及基于至少一个第一终端设备的第一位置信息确定第一空间相关信息。
在第三方面的一些实施例中,处理器执行指令使得该电子设备实现:接收来自第二组终端设备中的至少一个第二终端设备的第二测量报告,第二测量报告包括与至少一个第二终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第二终端设备的第二测量报告确定第二空间相关信息。
在第三方面的一些实施例中,处理器执行指令使得该电子设备实现:接收来自第一组第二终端设备中的至少一个第二终端设备的第二位置信息;以及基于至少一个第二终端设备的第二位置信息确定第二空间相关信息。
在第三方面的一些实施例中,第一空间相关信息包括以下至少一项:第一组终端设备相对于网络设备的第一水平方位、第一组终端设备与网络设备之间的第一距离;并且其中第二空间相关信息包括以下至少一项:第二组终端设备相对于网络设备的第二水平方位、第二组终端设备与网络设备之间的第二距离。
在第三方面的一些实施例中,第一空间相关信息和第二空间相关信息之间的空间关联度由处理器基于以下至少一项被确定:第一水平方位与第二水平方位之间的夹角,或第一距离与第二距离之间的差值。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现根据上述第一方面或其任一实施例中的方法的操作。
第五方面,提供了一种芯片或芯片***。该芯片或芯片***包括处理电路,被配置为执行根据上述第一方面或其任一实施例中的方法的操作。
第六方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时实现根据上述第一方面或其任一实施例中的方法的操作。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了运营商对两个小区频谱分配的场景的示意图;
图2示出了两个小区对频谱进行时分复用的示意图;
图3示出了本公开的实施例可以实现于其中的通信***的示意图;
图4示出了本公开的实施例的资源分配的过程的示意流程图;
图5示出了根据本公开的实施例的确定第一组终端设备的第一空间相关信息的过程的交互信令图;
图6示出了根据本公开的实施例的确定第一传输资源和第二传输资源的过程的示意流程图;
图7示出了根据本公开的实施例的资源分配装置的示意框图;以及
图8示出了可以用来实施本公开的实施例的示例设备的示意性框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、***(4G)、第五代(5G)等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开的实施例的技术方案应用于遵循任何适当通信协议的通信***,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信***(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进***(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信***(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)***、宽带码分多址***(Wideband Code Division Multiple Access,WCDMA)、码分多址2000***(Code Division Multiple Access,CDMA2000)、时分同步码分多址***(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)***、时分双工(Time Division Duplex,TDD)、第五代(5G)***或新无线电(New Radio,NR),等等。
出于说明的目的,下文中以3GPP中的NR通信***为背景来描述本公开的实施例。然而,应当理解,本公开的实施例不限于该通信***,而是可以被应用到任何存在类似问题的通信***中,例如无线局域网(WLAN)、有线通信***、或者将来开发的其他通信***等。
在本公开中使用的术语“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。作为示例,终端设备可以包括移动手机、站点、单元、设备、移动终端(Mobile Terminal,MT)、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信***设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中使用的术语“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装 置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。作为示例,接入网设备可以包括各种形式的宏基站、微基站、微微基站、毫微微基站、中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的***中,接入网设备的名称可能会有所不同,例如在长期演进***(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本公开后续的实施例中,上述为移动终端提供无线通信功能的装置统称为网络设备,本公开的实施例不再具体限定。
无线网络移动运营商的频谱资源是有限的,各个标准所能够支持的小区带宽也是固定的。在一些场景下,运营商的频谱不是标准所支持的最大带宽的整数倍。例如,运营商分配到的带宽频谱是160MHz,同一覆盖区域可以组成100MHz+60MHz的组网。
为了实现性能提升,一种方案如图1所示。图1示出了运营商对两个小区频谱分配的场景100的一个示意图,其中,小区1和小区2可以组成100MHz+100MHz的组网形式,中间重叠段的40MHz是由小区1和小区2共享的。
但是,在同一个时间段(如一个时隙)内,被共享的40MHz在频谱上会被拆分为不重叠的两段,其中一段由小区1使用,另一段由小区2使用。这种共享方式也可以被称为时分复用频谱。例如如图2示出的是一种共享方案200。如图2所示,在T1时间,由小区1使用中间的40MHz,即小区1可使用的频谱范围是100MHz,而小区2可使用的频谱范围是60MHz。在T2时间,由小区2使用中间的40MHz,即小区1可使用的频谱范围是60MHz,而小区2可使用的频谱范围是100MHz。图2中所示的时分复用的方案能够在一定程度上实现动态频谱共享。
图3示出了本公开实施例可实现在其中的通信***300的一个示意图。如图3所示,该***300包括网络设备310、调度模块320、终端设备330-1至330-3(统称为终端设备330)、以及终端设备340-1至340-4(统称为终端设备340)。网络设备310可以与终端设备330、终端设备340进行通信。
调度模块320可以独立于网络设备310或者可以被集成在网络设备310内。在调度模块320独立于网络设备310的场景中,调度模块320所在的设备可以是另一接入网设备,调度模块320与网络设备310之间可以进行通信。在调度模块320被集成在网络设备310内的场景中,调度模块320可以作为网络设备310的内部模块。
为了简洁,图3中将调度模块320示出为独立于网络设备310,但是应理解,本公开不限于此。另外应注意的是,下文中的一些实施例描述了调度模块320与网络设备310之间的通信,这些通信在调度模块320被集成在网络设备310内的场景中可以被理解为是网络设备310的内部操作。
下面将结合图3描述本公开的实施例中的资源分配的方案。
图4示出了根据本公开的实施例的资源分配的过程400的示意流程图。过程400可以由如图3所示的调度模块320执行。可理解,调度模块320可以独立于网络设备310,被实现 为物理上独立的网元。或者,调度模块320可以被集成在网络设备310内部,被实现为网络设备310的一部分,在这种情形下,也可以认为过程400由网络设备310执行。
在框410,确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息。
在框420,基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
如此,本公开的实施例提供了一种资源分配的方案,使得重叠段的频谱资源可以同时被不同的小区使用。与如图2所示的时分复用的方案相比,本公开的实施例以空分复用的方式提升了资源的利用率。
结合图3,可以假设第一组终端设备包括终端设备330-1至330-3,为了简洁,将第一组终端设备统称为终端设备330。可以假设第二组终端设备包括终端设备340-1至340-4,为了简洁,将第二组终端设备统称为终端设备340。应注意,本公开的实施例对第一组终端设备中所包括的终端设备的数量不做限定,例如可以为1个、2个或更多个,第一组终端设备也可以被称为第一终端设备簇或者第一终端设备集合或者其他名称等。类似地,本公开的实施例对第二组终端设备中所包括的终端设备的数量不做限定,例如可以为1个、2个或更多个,第二组终端设备也可以被称为第二终端设备簇或者第二终端设备集合或者其他名称等。本公开对此不限定。
第一组终端设备所在的小区可以为第一小区,第二组终端设备所在的小区可以为第二小区,并且第一小区和第二小区为不同的小区。
在一些实施例中,第一组终端设备中的任意两个终端设备之间的距离都小于第一距离阈值,或者,第一组终端设备中的所有终端设备使用相同的波束(例如第一波束)与网络设备310进行通信。类似的。第二组终端设备中的任意两个终端设备之间的距离都小于第二距离阈值,或者,第二组终端设备中的所有终端设备使用相同的波束(例如第二波束)与网络设备310进行通信。示例性地,第一距离阈值可以是基于第一小区的大小所确定的,第二距离阈值可以是基于第二小区的大小所确定的,第一距离阈值和第二距离阈值可以相等也可以不相等。示例性地,第一波束和第二波束为不同的波束。
第一组终端设备中的任一终端设备(例如第一终端设备)与第二组终端设备中任一终端设备(例如第二终端设备)之间的距离大于第三距离阈值,第三距离阈值大于第一距离阈值,且第三距离阈值大于第二距离阈值。
可选地,第一组终端设备与第二组终端设备可以使用相同的制式,例如都是NR终端。可选地,第一组终端设备与第二组终端设备可以使用不同的制式,例如第一组终端设备是长期演进(Long Term Evolution,LTE)终端,第二组终端设备是NR终端。
在一些实施例中,第一空间相关信息可以是基于来自第一组终端设备中至少一个终端设备的测量报告所确定的。在一些实施例中,第一空间相关信息可以是基于来自第一组终端设备中至少一个终端设备的位置信息所确定的。
举例而言,第一组终端设备中至少一个终端设备可以周期性地将测量报告或者位置信息发送至网络设备。
举例而言,第一组终端设备中至少一个终端设备可以基于来自网络设备的请求而将测量报告或者位置信息发送至网络设备,如结合下面图5的实施例所描述的。
图5示出了根据本公开的实施例的确定第一组终端设备的第一空间相关信息的过程500的交互信令图。过程500涉及网络设备310、调度模块320和终端设备330。
在过程500中,网络设备310向终端设备330发送510请求消息。
在一些实施例中,该请求消息可以包括测量请求。具体的,该测量请求可以指示终端设备330进行信道探测参考信号(Sounding Reference Signal,SRS)测量或者预编码矩阵指示(Pre-coding Matrix Indication,PMI)测量等。
应注意,尽管此处列举出了进行测量可以基于SRS或者PMI,但是本公开的实施例对此不限定,实际场景中也可以基于其他的信号进行测量,其他信号例如可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、同步信号块(Synchronization Signal Block,SSB)等,这里不再一一罗列。
在一些实施例中,该请求消息可以包括位置上报指示信息。具体的,该位置上报指示信息可以指示终端设备330上报位置信息。
可理解,请求消息可以是网络设备310通过广播的方式发送的。或者,请求消息也可以是网络设备310通过单播或组播的方式发送的,本公开对此不限定。
随后,终端设备330基于请求消息确定520针对该请求消息的响应消息。
在请求消息包括测量请求的实施例中,终端设备330可以基于该测量请求进行空口测量,以得到测量报告。终端设备330可以通过波束扫描、信号强度测量等方式得到测量报告,但是可理解本公开的实施例不限于此。所得到的测量报告可以包括以下至少一项:SRS测量报告、PMI测量报告、CSI-RS测量报告、或SSB测量报告。应理解,测量报告也可以基于其他的信号进行测量得到,本公开中不再一一罗列。
测量报告可以是终端设备330基于一次测量得到的测量结果生成的,也可以是基于多个测量得到的多个测量结果生成的。
在请求消息包括位置上报指示信息的实施例中,终端设备330可以基于该位置上报指示信息确定位置信息。例如,终端设备330可以通过其定位模块来确定位置信息,该位置信息可以包括经纬度信息和/或高度信息(如海拔)等。
本公开的实施例中,终端设备330可以采用目前已有的或者以后发展的定位技术来确定位置信息。例如可以采用观测到达时间差(Observed Time Difference of Arrival,OTDOA)技术等,这样对于在较长时间内位置固定且长期在线的终端设备而言可以更加准确地确定位置信息。
另外,应注意的是,确定响应消息的终端设备330可以是接收到请求消息的任一个终端设备330。换句话说,对于接收到请求消息的终端设备330而言,其可以确定响应消息,也可以忽略请求消息不确定对应的响应消息。结合图3,举例而言,终端设备330-1至终端设备330-3可以都接收到请求消息,但是只有终端设备330-1基于请求消息确定响应消息,而终端设备330-2和终端设备330-3忽略该请求消息没有生成对应的响应消息。也就是说,所有终端设备330中,只要有其中的至少一个基于请求消息确定响应消息即可。
随后,终端设备330将响应消息发送530到网络设备310。
在一些实施例中,如图5中的虚线框540所示,网络设备310可以基于响应消息确定542终端设备330的第一空间相关信息。随后,网络设备310可以将第一空间相关信息发送544到调度模块320。
在一些实施例中,如图5中的虚线框550所示,网络设备310可以将响应消息发送552 到调度模块320。随后调度模块320可以基于该响应消息确定554终端设备330的第一空间相关信息。
可理解,540和550是择一执行的。可理解,对于调度模块320被集成在网络设备310内部的场景而言,图5中所示出的544和552相应地应理解为是网络设备310的内部操作。
网络设备310或者调度模块320基于响应消息确定第一空间相关信息可以包括:网络设备310或者调度模块320基于测量报告或位置信息来确定第一空间相关信息。在一些实施例中,第一空间相关信息可以包括第一组终端设备相对于网络设备310的第一水平方位和/或第一组终端设备与网络设备310之间的第一距离。
在一些实施例中,网络设备310可以接收来自多个终端设备330的多个响应消息,相应地,网络设备310或者调度模块320基于多个响应消息确定第一空间相关信息。
第一水平方位可以表示为角度的形式。例如,可以确定响应消息所来自的终端设备330(一个或多个)的中心和网络设备310之间的连线与预定方向之间的夹角,其中预定方向可以为与纬度平行的方向、或者与经度平行的方向等。
第一距离可以表示为响应消息所来自的终端设备330(一个或多个)的中心和网络设备310之间的直线距离。或者,第一距离可以表示为响应消息所来自的多个终端设备330与网络设备310之间的多个距离的均值。
应注意的是,本公开实施例中的第一空间相关信息可以包括其他的信息,例如天线端口、波束标识、或所在扇区标识等,本公开的实施例对此不限定。
另外,可理解,图5所示的确定第一组终端设备的第一空间相关信息的实施例仅是示意,在一些实施例中,第一组终端设备中至少一个终端设备可以周期性地将测量报告或者位置信息发送至网络设备310。随后,类似于图5中的虚线框540所示,网络设备310可以基于测量报告或者位置信息确定终端设备330的第一空间相关信息,并且可以将第一空间相关信息发送到调度模块320。或者随后,类似于图5中的虚线框550所示,网络设备310可以将测量报告或者位置信息发送到调度模块320,并由调度模块320确定终端设备330的第一空间相关信息。
以上结合图5描述了确定第一组终端设备的第一空间相关信息的实施例,可理解的是,本公开中确定第二组终端设备的第二空间相关信息的方式是类似的,为了简洁,这里不再赘述。
应注意,本公开的实施例中确定第一组终端设备的第一空间相关信息以及确定第二组终端设备的第二空间相关信息是彼此独立的。举例而言,可以并行地或者不同时地确定第一空间相关信息和第二空间相关信息。举例而言,可以采用相同的方式或不同的方式来确定第一空间相关信息和第二空间相关信息。例如,通过第一组终端设备的测量报告来确定第一空间相关信息,通过第二组终端设备的位置信息来确定第二空间相关信息;等等。
类似地,可以理解,第二空间相关信息可以包括第二组终端设备相对于网络设备310的第二水平方位和/或第二组终端设备与网络设备310之间的第二距离。第二水平方位可以表示为,例如,第二组终端设备的中心和网络设备310之间的连线与预定方向之间的夹角,其中预定方向可以为与纬度平行的方向、或者与经度平行的方向等。第二距离可以表示为,例如,第二组终端设备的中心和网络设备310之间的直线距离。另外,第二空间相关信息可以包括其他的信息,例如天线端口、波束标识、或所在扇区标识等,本公开的实施例对此不限定。
进一步地,调度模块320可以基于第一空间相关信息和第二空间相关信息两者,来确定 针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源。
图6示出了根据本公开的实施例的确定第一传输资源和第二传输资源的过程600的示意流程图。过程600由调度模块320执行,可理解,对于调度模块320被集成在网络设备310中的场景,过程600也可以由网络设备310来执行。
在框610,确定第一空间相关信息和第二空间相关信息之间的空间关联度。
结合如上图5所示的实施例,第一空间相关信息可以包括第一组终端设备相对于网络设备310的第一水平方位和/或第一组终端设备与网络设备310之间的第一距离,第二空间相关信息可以包括第二组终端设备相对于网络设备310的第二水平方位和/或第二组终端设备与网络设备310之间的第二距离。在一些实施例中,可以基于以下至少一项来确定空间关联度:第一水平方位与第二水平方位之间的夹角,或,第一距离与第二距离之间的差值。夹角可以理解为是绝对值夹角,差值可以理解为是绝对值差值。
本公开的实施例对空间关联度的具体形式不作限定。例如,空间关联度可以被表示为180度与绝对值夹角的差值。例如,空间关联度可以被表示为绝对值差值的倒数。例如,空间关联度可以被表示为(a)180度与绝对值夹角的差值与(b)绝对值差值的倒数的加权和。例如,空间关联度可以被构建为绝对值夹角和/或绝对值差值的函数,且其取值范围为0至1。
空间关联度可以相反地用于表征第一组终端设备与第二组终端设备之间的空间隔离度。例如,绝对值夹角越接近于180度,说明该空间隔离度高。例如,绝对值差值越大,说明该空间隔离度越高。
在框620,确定空间关联度是否低于阈值关联度。
可理解,阈值关联度的形式取决于空间关联度的具体形式。作为一例,空间关联度被表示为180度与绝对值夹角的差值,相应地,阈值关联度为角度阈值,例如30度或其他值。作为一例,空间关联度被表示为绝对值差值的倒数,相应地,阈值关联度为数值阈值,例如0.1或其他值。作为一例,空间关联度被表示为0至1之间的归一化值,相应地,阈值关联度为数值阈值,例如0.3或其他值。
如果在框620处确定空间关联度不低于阈值关联度,则前进到框630;相反,如果在框620处确定空间关联度低于阈值关联度,则前进到框640。
在框630,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,并且所确定的第一传输资源和第二传输资源在频域上完全不重叠。
如果确定空间关联度不低于阈值关联度,即第一组终端设备与第二组终端设备之间的隔离度低,此时这两组终端设备之间在相同的频域可能会存在干扰,因此可以使第一传输资源和第二传输资源不重叠。例如,第一传输资源在频域上的范围为f11至f12,第二传输资源在频域上的范围为f13至f14,且f11<f12<f13<f14。
在框640,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,并且所确定的第一传输资源和第二传输资源在频域上至少部分重叠。
如果确定空间关联度低于阈值关联度,即第一组终端设备与第二组终端设备之间的隔离度高,此时这两组终端设备之间在相同的频域不会产生干扰,因此可以使第一传输资源和第二传输资源至少部分重叠,例如完全重叠或部分重叠。
作为另一种表述,可以将能够使用部分重叠的频域传输资源的两组不同的终端设备称为能够配对的终端设备。可理解,配对的终端设备能够被并行地分别调度频域资源。这样,能够实现空分复用,提升频谱资源的利用率。
举例而言,第一传输资源在频域上的范围为f21至f22,第二传输资源在频域上的范围为f23至f24,且f21<f23<f22<f24。也就是说,在f23至f22的频域范围内两个传输资源是重叠的。在该示例中,重叠的部分(即f23至f22)属于第一传输资源所指示的第一频域范围的高频部分,同时属于第二传输资源所指示的第二频域范围的低频部分。
对于第一传输资源和第二传输资源在频域上部分重叠的情形,在一些实施例中,重叠的部分占第一频域范围的比例可以低于第一阈值,例如,该第一阈值可以为40%或其他值。重叠的部分占第二频域范围的比例可以低于第二阈值,例如该第二阈值可以为40%或其他值。可理解,第一阈值和第二阈值可以相等或不相等,本公开对此不限定。
如此,通过本公开的实施例,在第一空间相关信息与第二空间相关信息之间的空间关联度低于阈值关联度的情况下,可以确定针对第一组终端设备的第一传输资源与针对第二组终端设备的第二传输资源在频域上部分重叠,即使第一组终端设备中的一个或多个第一终端设备与第二组终端设备中的一个或多个第二终端设备同时在相同的频域进行上下行传输,也不会互相干扰,从而在保证传输效率的同时提升了资源的利用率。
本公开的实施例中,第一组终端设备所在的小区可以为第一小区,第二组终端设备所在的小区可以为第二小区,相应地,所确定的第一传输资源为第一小区可以使用的资源,所确定的第二传输资源为第二小区可以使用的资源。
进一步地,网络设备310或者调度模块320还可以进一步地为第一小区或第二小区中的终端设备进行资源调度。
以第一小区中的第一终端设备(假设为图3中的终端设备330-1)为例,终端设备330-1可以向网络设备310发送调度请求。随后网络设备310可以确定该终端设备330-1可以使用的资源,并且网络设备310可以向终端设备330-1发送调度许可,以指示该终端设备330-1可以使用的资源。可理解的是,该终端设备330-1可以使用的资源是第一传输资源的子集。
可理解,对于第一小区中的第一终端设备和第二小区中的第二终端设备,分别进行资源调度的过程是并行进行的,如此,即使在同一个时间段(如一个符号或一个时隙),为第一终端设备所调度的资源和为第二终端设备所调度的资源在频域上可以重叠。这样,能够提升频域资源的利用率,进而能够提升整个网络的吞吐率。
图7示出了根据本公开的实施例的资源分配装置700的示意框图。装置700可以被实现为如图3中所示的调度模块320,或者可以被实现在如图3中所示的调度模块320中。
装置700可以包括第一确定单元710和第二确定单元720。第一确定单元710可以被配置为确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息。第二确定单元720可以被配置为基于第一空间相关信息和第二空间相关信息,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
具体地,第二确定单元720可以被配置为:确定第一空间相关信息和第二空间相关信息之间的空间关联度;以及如果空间关联度低于阈值关联度,确定针对第一组终端设备的第一传输资源和针对第二组终端设备的第二传输资源,第一传输资源和第二传输资源在频域上至少部分重叠。
可理解,第一传输资源和第二传输资源在频域上可以完全重叠或者可以部分重叠。
对于第一传输资源和第二传输资源在频域上部分重叠的情形,第一传输资源所指示的第一频域范围的低频部分与第二传输资源所指示的第二频域范围的高频部分重叠。并且,在一 些实施例中,低频部分在第一频域范围中的比例不超过第一阈值,和/或,高频部分在第二频域范围中的比例不超过第二阈值。举例而言,第一阈值和第二阈值可以相等,例如都为40%。
可选地,在一些实施例中,第一确定单元710可以被配置为:接收来自第一组终端设备中的至少一个第一终端设备的第一测量报告,第一测量报告包括与至少一个终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第一终端设备的第一测量报告确定第一空间相关信息。或者可选地,在一些实施例中,第一确定单元710可以被配置为:接收来自第一组终端设备中的至少一个第一终端设备的第一位置信息;以及基于至少一个第一终端设备的第一位置信息确定第一空间相关信息。
类似地,在一些实施例中,第一确定单元710可以被配置为:接收来自第二组终端设备中的至少一个第二终端设备的第二测量报告,第二测量报告包括与至少一个第二终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及基于至少一个第二终端设备的第二测量报告确定第二空间相关信息。或者可选地,在一些实施例中,第一确定单元710可以被配置为:接收来自第一组第二终端设备中的至少一个第二终端设备的第二位置信息;以及基于至少一个第二终端设备的第二位置信息确定第二空间相关信息。
在一些实施例中,第一空间相关信息可以包括以下至少一项:第一组终端设备相对于网络设备的第一水平方位、第一组终端设备与网络设备之间的第一距离。并且第二空间相关信息可以包括以下至少一项:第二组终端设备相对于网络设备的第二水平方位、第二组终端设备与网络设备之间的第二距离。相应地,第一空间相关信息和第二空间相关信息之间的空间关联度可以由第二确定单元720基于以下至少一项被确定:第一水平方位与第二水平方位之间的夹角,或第一距离与第二距离之间的差值。
示例性地,图7中的装置700可以被实现为调度模块320,或者可以被实现为调度模块320中的芯片或芯片***。可理解,对于调度模块320被集成在网络设备310中的场景而言,图7中的装置700可以被实现为网络设备310,或者可以被实现为网络设备310中的芯片或芯片***,本公开的实施例对此不限定。
本公开的实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时也可以有另外的划分方式,另外,在公开的实施例中的各功能单元可以集成在一个单元中,也可以是单独物理存在,也可以两个或两个以上单元集成为一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图7中的装置700能够用于实现上述结合图4至图6中由调度模块320所述的各个过程,为了简洁,这里不再赘述。
图8示出了可以用来实施本公开的实施例的示例设备800的示意性框图。设备800可以被实现为或者被包括在图3的调度模块320中。如图所示,设备800包括一个或多个处理器810,耦合到处理器810的一个或多个存储器820,以及耦合到处理器810的通信模块840。
通信模块840可以用于双向通信。通信模块840可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器810可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。设备800可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器820可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性 存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)824、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)822、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序830包括由关联处理器810执行的计算机可执行指令。程序830可以存储在ROM 824中。处理器810可以通过将程序830加载到RAM 822中来执行任何合适的动作和处理。
可以借助于程序830来实现本公开的实施例,使得设备800可以执行如参考图4至图6所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
程序830可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在设备800中(诸如在存储器820中)或者可以由设备800访问的其他存储设备。可以将程序830从计算机可读介质加载到RAM 822以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,设备800中的通信模块840可以被实现为发送器和接收器(或收发器),其可以被配置为发送/接收诸如第一空间相关信息、第二空间相关信息等。另外,设备800还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图8中的设备800可以被实现为电子设备,或者可以被实现为电子设备中的芯片或芯片***,本公开的实施例对此不限定。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片***,包括处理器,用于支持计算设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片***还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片***的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片***可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、***、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。 该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行***、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体***、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (24)

  1. 一种资源分配方法,其特征在于,包括:
    确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及
    基于所述第一空间相关信息和所述第二空间相关信息,确定针对所述第一组终端设备的第一传输资源和针对所述第二组终端设备的第二传输资源,所述第一传输资源和所述第二传输资源在频域上至少部分重叠。
  2. 根据权利要求1所述的方法,其特征在于,其中基于所述第一空间相关信息和所述第二空间相关信息确定所述第一传输资源和所述第二传输资源包括:
    确定所述第一空间相关信息和所述第二空间相关信息之间的空间关联度;以及
    如果所述空间关联度低于阈值关联度,确定针对所述第一组终端设备的所述第一传输资源和针对所述第二组终端设备的所述第二传输资源,所述第一传输资源和所述第二传输资源在频域上至少部分重叠。
  3. 根据权利要求1或2所述的方法,其特征在于,其中所述第一传输资源所指示的第一频域范围的低频部分与所述第二传输资源所指示的第二频域范围的高频部分重叠。
  4. 根据权利要求3所述的方法,其特征在于,其中所述低频部分在所述第一频域范围中的比例不超过第一阈值,和/或,所述高频部分在所述第二频域范围中的比例不超过第二阈值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,其中确定第一组终端设备的第一空间相关信息包括:
    接收来自所述第一组终端设备中的至少一个第一终端设备的第一测量报告,所述第一测量报告包括与所述至少一个终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及
    基于所述至少一个第一终端设备的第一测量报告确定所述第一空间相关信息。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,其中确定第一组终端设备的第一空间相关信息包括:
    接收来自所述第一组终端设备中的至少一个第一终端设备的第一位置信息;以及
    基于所述至少一个第一终端设备的第一位置信息确定所述第一空间相关信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,其中确定第二组终端设备的第二空间相关信息包括:
    接收来自所述第二组终端设备中的至少一个第二终端设备的第二测量报告,所述第二测量报告包括与所述至少一个第二终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及
    基于所述至少一个第二终端设备的第二测量报告确定所述第二空间相关信息。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,其中确定第一组终端设备的第一空间相关信息包括:
    接收来自所述第一组第二终端设备中的至少一个第二终端设备的第二位置信息;以及
    基于所述至少一个第二终端设备的第二位置信息确定所述第二空间相关信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,其中所述第一空间相关信息包括以下至少一项:所述第一组终端设备相对于网络设备的第一水平方位、所述第一组终端设备与所述网络设备之间的第一距离;并且其中所述第二空间相关信息包括以下至少一项: 所述第二组终端设备相对于所述网络设备的第二水平方位、所述第二组终端设备与所述网络设备之间的第二距离。
  10. 根据权利要求9所述的方法,其特征在于,其中所述第一空间相关信息和所述第二空间相关信息之间的空间关联度基于以下至少一项被确定:所述第一水平方位与所述第二水平方位之间的夹角,或所述第一距离与所述第二距离之间的差值。
  11. 一种资源分配装置,其特征在于,包括:
    第一确定单元,被配置为确定第一组终端设备的第一空间相关信息和第二组终端设备的第二空间相关信息;以及
    第二确定单元,被配置为基于所述第一空间相关信息和所述第二空间相关信息,确定针对所述第一组终端设备的第一传输资源和针对所述第二组终端设备的第二传输资源,所述第一传输资源和所述第二传输资源在频域上至少部分重叠。
  12. 根据权利要求11所述的装置,其特征在于,其中所述第二确定单元被配置为:
    确定所述第一空间相关信息和所述第二空间相关信息之间的空间关联度;以及
    如果所述空间关联度低于阈值关联度,确定针对所述第一组终端设备的所述第一传输资源和针对所述第二组终端设备的所述第二传输资源,所述第一传输资源和所述第二传输资源在频域上至少部分重叠。
  13. 根据权利要求11或12所述的装置,其特征在于,其中所述第一传输资源所指示的第一频域范围的低频部分与所述第二传输资源所指示的第二频域范围的高频部分重叠。
  14. 根据权利要求13所述的装置,其特征在于,其中所述低频部分在所述第一频域范围中的比例不超过第一阈值,和/或,所述高频部分在所述第二频域范围中的比例不超过第二阈值。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,其中所述第一确定单元被配置为:
    接收来自所述第一组终端设备中的至少一个第一终端设备的第一测量报告,所述第一测量报告包括与所述至少一个终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及
    基于所述至少一个第一终端设备的第一测量报告确定所述第一空间相关信息。
  16. 根据权利要求11至14中任一项所述的装置,其特征在于,其中所述第一确定单元被配置为:
    接收来自所述第一组终端设备中的至少一个第一终端设备的第一位置信息;以及
    基于所述至少一个第一终端设备的第一位置信息确定所述第一空间相关信息。
  17. 根据权利要求11至16中任一项所述的装置,其特征在于,其中所述第一确定单元被配置为:
    接收来自所述第二组终端设备中的至少一个第二终端设备的第二测量报告,所述第二测量报告包括与所述至少一个第二终端设备有关的信道探测参考信号测量结果或者预编码矩阵指示测量结果;以及
    基于所述至少一个第二终端设备的第二测量报告确定所述第二空间相关信息。
  18. 根据权利要求11至16中任一项所述的装置,其特征在于,其中所述第一确定单元被配置为:
    接收来自所述第一组第二终端设备中的至少一个第二终端设备的第二位置信息;以及
    基于所述至少一个第二终端设备的第二位置信息确定所述第二空间相关信息。
  19. 根据权利要求11至18中任一项所述的装置,其特征在于,其中所述第一空间相关信息包括以下至少一项:所述第一组终端设备相对于网络设备的第一水平方位、所述第一组终端设备与所述网络设备之间的第一距离;并且其中所述第二空间相关信息包括以下至少一项:所述第二组终端设备相对于所述网络设备的第二水平方位、所述第二组终端设备与所述网络设备之间的第二距离。
  20. 根据权利要求19所述的装置,其特征在于,其中所述第一空间相关信息和所述第二空间相关信息之间的空间关联度由所述第二确定单元基于以下至少一项被确定:所述第一水平方位与所述第二水平方位之间的夹角,或所述第一距离与所述第二距离之间的差值。
  21. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器上存储有计算机指令,当所述计算机指令被所述处理器执行时,使得所述电子设备执行权利要求1至10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现根据权利要求1至10中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品上包含计算机可执行指令,所述计算机可执行指令在被执行时实现根据权利要求1至10中任一项所述的方法。
  24. 一种芯片,其特征在于,包括处理电路,被配置为执行根据权利要求1至10中任一项所述的方法。
PCT/CN2022/101125 2021-08-30 2022-06-24 资源分配方法及装置 WO2023029690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111007223.7 2021-08-30
CN202111007223.7A CN115734354A (zh) 2021-08-30 2021-08-30 资源分配方法及装置

Publications (1)

Publication Number Publication Date
WO2023029690A1 true WO2023029690A1 (zh) 2023-03-09

Family

ID=85291122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101125 WO2023029690A1 (zh) 2021-08-30 2022-06-24 资源分配方法及装置

Country Status (2)

Country Link
CN (1) CN115734354A (zh)
WO (1) WO2023029690A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316522A (zh) * 2011-09-21 2012-01-11 中兴通讯股份有限公司 一种控制信令传输资源位置的通知方法及一种终端
CN102469467A (zh) * 2010-11-15 2012-05-23 大唐移动通信设备有限公司 一种资源分配的方法和设备
WO2012065278A1 (en) * 2010-11-15 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Two-dimensional ue pairing in mimo systems
US20180049180A1 (en) * 2014-12-01 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for determining transmission resource and transmission power in wireless communication system
CN108605219A (zh) * 2016-03-29 2018-09-28 Oppo广东移动通信有限公司 用于确定设备到设备通信的传输资源的方法和装置
CN111356244A (zh) * 2018-12-21 2020-06-30 海能达通信股份有限公司 一种资源分配方法及装置
CN112055326A (zh) * 2019-06-05 2020-12-08 华为技术有限公司 一种车联网的数据发送方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469467A (zh) * 2010-11-15 2012-05-23 大唐移动通信设备有限公司 一种资源分配的方法和设备
WO2012065278A1 (en) * 2010-11-15 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Two-dimensional ue pairing in mimo systems
CN102316522A (zh) * 2011-09-21 2012-01-11 中兴通讯股份有限公司 一种控制信令传输资源位置的通知方法及一种终端
US20180049180A1 (en) * 2014-12-01 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for determining transmission resource and transmission power in wireless communication system
CN108605219A (zh) * 2016-03-29 2018-09-28 Oppo广东移动通信有限公司 用于确定设备到设备通信的传输资源的方法和装置
CN111356244A (zh) * 2018-12-21 2020-06-30 海能达通信股份有限公司 一种资源分配方法及装置
CN112055326A (zh) * 2019-06-05 2020-12-08 华为技术有限公司 一种车联网的数据发送方法及装置

Also Published As

Publication number Publication date
CN115734354A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
WO2019136724A1 (zh) Srs传输方法及相关设备
US11304235B2 (en) Method and device for data transmission
CN115004720B (zh) 侧链路定位参考信号的重传
US20190059127A1 (en) Method and Device for Performing Uplink Transmission
WO2022022610A1 (zh) 一种同步信号块的传输方法和通信装置
US10433323B2 (en) Communication control station device, communication terminal device, and communication control method
CN111526587A (zh) 一种侧行链路资源的配置方法、装置及设备
CN113923750A (zh) 接入小区的方法和装置
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
WO2023125267A1 (zh) 信号处理设备及数据传输方法
WO2023029690A1 (zh) 资源分配方法及装置
WO2021160103A1 (zh) 一种小区全球标识cgi的处理方法及设备
US20230276486A1 (en) Methods, computer readable medium and devices for communication
JP2024501323A (ja) 通信の方法、装置及びコンピュータ可読記憶媒体
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品
EP4346295A1 (en) Devices, methods and apparatuses for power headroom report
CN113259079B (zh) 针对测量间隙的动态信令
WO2024026832A1 (zh) 无线通信的方法及装置
US11751065B2 (en) First grant request optimization based on geographic location
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
US20230163933A1 (en) Information transmission method and communication apparatus
WO2022236595A1 (en) Methods, devices and computer storage media for communication
WO2024026644A1 (zh) Srs资源的配置方法、装置、介质及产品
WO2023206305A1 (zh) 数据收发方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE