WO2024062635A1 - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
WO2024062635A1
WO2024062635A1 PCT/JP2022/035550 JP2022035550W WO2024062635A1 WO 2024062635 A1 WO2024062635 A1 WO 2024062635A1 JP 2022035550 W JP2022035550 W JP 2022035550W WO 2024062635 A1 WO2024062635 A1 WO 2024062635A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
board
inspection
inspection area
machine
Prior art date
Application number
PCT/JP2022/035550
Other languages
English (en)
French (fr)
Inventor
英俊 川合
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/035550 priority Critical patent/WO2024062635A1/ja
Publication of WO2024062635A1 publication Critical patent/WO2024062635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • This specification relates to an inspection device and an inspection method.
  • a mounting line disclosed in Patent Document 1 has been known.
  • a conventional mounting line includes a first camera means and a second camera means that can view at least a portion of the board, and an image processing means.
  • the image processing means performs image processing by comparing the image data of the component after the mounting operation photographed by the second camera means with the image data of the component before the mounting operation photographed by the first camera means.
  • the conventional mounting line detects an abnormality in solder printing when solder is printed on a board, or a mounting failure when a component is mounted on a board.
  • An object of the present specification is to provide an inspection device and an inspection method that can determine the state of an inspection area of a substrate over a plurality of substrate-related work processes.
  • This specification includes an acquisition unit that acquires a plurality of image data by capturing images multiple times in accordance with the progress of a predetermined board-to-board work on at least a part of the board to be inspected;
  • the image data acquired by the first work machine that applies the bonding material to the area is used as the reference image data, and the image data is the image data acquired by the second work machine that mounts the component to the inspection area as the work for the board.
  • An inspection device is disclosed that includes a determination unit that determines the state of an inspection area by comparing the inspection image data with inspection image data.
  • the present specification also describes an acquisition step of acquiring a plurality of image data by capturing images multiple times in accordance with the progress of a predetermined board-to-board work on at least a portion of the inspection area of the board;
  • the reference image data is the image data acquired by the first working machine that applies the bonding material to the inspection area as the reference image data
  • the inspection image is the image data acquired by the second working machine that mounts the component to the inspection area as part of the board-to-board work.
  • An inspection method is disclosed that includes a determination step of determining the state of an inspection area by comparing data with reference image data.
  • the state of the inspection area of the board is determined from the process in which the first work machine applies the bonding member to the board to the process in which the second work machine mounts the parts, that is, a plurality of work processes for the board. be able to. The same applies to the inspection method.
  • FIG. 2 is a configuration diagram showing an example of the configuration of a board-related work line.
  • FIG. 2 is a plan view showing a configuration example of a component mounting machine. It is a block diagram showing an example of a control block of an inspection device.
  • FIG. 3 is a schematic diagram showing an example of reference image data.
  • FIG. 3 is a schematic diagram showing an example of inspection image data.
  • FIG. 7 is a schematic diagram showing an example of the state of the board until the work for the board is stopped according to the first modification.
  • FIG. 7 is a schematic diagram showing an example of the state of the board after the board-related work is restarted according to the second modification.
  • a board-to-board work line is exemplified that includes a printing machine that applies a bonding member to a board using a printing machine, and a component mounting machine that performs mounting work to mount components (for example, electronic components, etc.). .
  • a predetermined board work when the printing machine applies a bonding material to the board and the component mounting machine sequentially mounts components onto the board transported from the printing machine, the inspection area set on the board is An example of determining the state will be explained.
  • Board work line WL In the board-to-board work line WL, the board-to-board work machine WM performs a predetermined board-to-board work on the board K. As shown in FIG. 1, the board work line WL of this embodiment includes a plurality of board work machines WM, including a printing machine WM1, a print inspection machine WM2, a component mounting machine WM3, a reflow oven WM4, and an appearance inspection machine WM5. The substrates K are transported in the above order by the substrate transport device. Note that the type and number of substrate-to-board work machines WM that constitute the substrate-to-board work line WL are not limited.
  • the printing machine WM1 is the "first working machine".
  • the printing machine WM1 prints solder as the joining member B at the mounting positions of the plurality of components P on the board K.
  • the joining member B may be any member that joins the board K and the component P, and may include an adhesive or the like in addition to solder.
  • the first working machine may be any working machine that applies the bonding member B to the substrate K, and may include, in addition to the printing machine WM1 that prints solder, a coating device that applies adhesive or the like.
  • the print inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1.
  • At least the printing machine WM1 is provided with a camera device S that images the board K after the bonding member B has been applied, that is, after the solder has been printed.
  • the configuration and operation of the camera device S are the same as those of the board camera 15 of the component mounting machine WM3, which will be described later, so a detailed explanation will be omitted.
  • the component mounting machine WM3 mounts a plurality of components P onto the board K on which solder has been printed by the printing machine WM1.
  • a plurality of (for example, three) component mounting machines WM3 are provided in the board-to-board work line WL.
  • the number of component mounting machines WM3 may be one or more than one. Note that when a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share the task of mounting a plurality of components P.
  • the most upstream component mounting machine WM3 among the plurality of (three) component mounting machines WM3 is referred to as the component mounting machine M1.
  • the component mounting machine M1 mounts the component P in an area other than the inspection area TA (see FIGS. 4 and 5), which will be described later, and which is set on at least a portion of the board K.
  • the next component mounting machine WM3 on the downstream side of the component mounting machine M1 is defined as a component mounting machine M2.
  • the component mounting machine M2 mounts a component P in an inspection area TA and other areas, which will be described later.
  • the next component mounting machine WM3 on the downstream side of the component mounting machine M2 is defined as the component mounting machine M3.
  • the component mounting machine M3 mounts the component P in the inspection area TA.
  • the component mounting machine M3 located farthest from the printer WM1 (the rightmost (downstream) in FIG. 1) is defined as the "second work machine.”
  • the component mounting machine M2 is defined as the “substrate-related work machine located between the first and second work machines" (hereinafter referred to as the "other substrate-related work machine").
  • the "other substrate-related work machines” are not limited to the component mounting machine WM3 (component mounting machine M2) that mounts components P in areas other than the inspection area TA, but may include, for example, substrate-related work machines WM such as a functional inspection machine, a buffer device, a substrate supply device, a substrate inversion device, a shield mounting device, an adhesive application device, and an ultraviolet irradiation device.
  • substrate-related work machines WM such as a functional inspection machine, a buffer device, a substrate supply device, a substrate inversion device, a shield mounting device, an adhesive application device, and an ultraviolet irradiation device.
  • the "substrate-related work machine disposed between the first work machine and the second work machine” must be provided with a camera device S that captures an image of the substrate K, like the printing machine WM1 described above. For this reason, if a camera device S is not provided, one is provided separately.
  • the reflow furnace WM4 heats the board K on which a plurality of components P are mounted by the component mounting machine WM3, melts the solder, and performs soldering.
  • the appearance inspection machine WM5 inspects the mounting state of the plurality of parts P mounted by the component mounting machine WM3.
  • the substrate-to-board work line WL can use a plurality of substrate-to-board work machines WM to transport the substrates K in order, perform production processing including inspection processing, and produce board products Kp.
  • a plurality of board-to-board work machines WM and line management device LC constituting the board-to-board work line WL are communicably connected by a communication unit. Further, the line management device LC and the management device HC are communicably connected by a communication section.
  • the communication unit communicably connects the board-facing work machine WM and the line management device LC, or the line management device LC and the management device HC, by wire or wirelessly. Note that the communication unit can employ various communication methods.
  • a local area network is configured by a plurality of board-facing work machines WM, line management devices LC, and management devices HC.
  • the plurality of board-oriented work machines WM can communicate with each other via the communication section.
  • the plurality of board-oriented work machines WM can communicate with the line management device LC via the communication section.
  • the line management device LC and the management device HC can communicate with each other via the communication section.
  • the line management device LC is equipped with a computer device having a CPU, ROM, RAM, various interfaces, etc., and a storage device that stores various information.
  • the line management device LC controls the plurality of board-related work machines WM that constitute the board-related work line WL, and monitors the operating status of the board-related work line WL.
  • various control data for controlling the plurality of substrate-facing working machines WM are stored in a storage device.
  • the line management device LC transmits control data, including control data output from the management device HC, to each of the plurality of board-facing work machines WM.
  • each of the plurality of board-facing working machines WM transmits the operating status and production status to the line management device LC.
  • the printing machine WM1 which is the first work machine
  • the component mounting machine M3 which is the second work machine
  • the component mounting machine which is the other board-facing work machine
  • the machine M2 outputs image data PD imaged of at least a portion of the inspection area TA of the board K to the line management device LC.
  • the camera device S images the inspection area TA and generates image data PD under the control of a control device (not shown) that is installed in the printing machine WM1 and controls the operation in an integrated manner or a line management device LC. Output.
  • the management device HC manages at least one line management device LC. For example, the operating status and production status of the board-oriented working machine WM acquired by the line management device LC are transmitted to the management device HC as necessary.
  • the management device HC is provided with a storage device.
  • the storage device can store various types of acquired data acquired by the board-facing work machine WM. For example, various image data captured by the substrate work machine WM is included in the acquired data. Records of operating conditions (log data) etc. acquired by the board-oriented work machine WM are included in the acquired data. Further, the storage device can store various production information regarding the production of the substrate product Kp.
  • the board-to-board work line WL is equipped with an input/output device 40.
  • a known input/output device can be used as the input/output device 40.
  • the input/output device 40 includes a display section and displays various data in a visible manner. Furthermore, the display section is configured with a touch panel, and also functions as an input device that accepts various operations by the operator.
  • the component mounting machine WM3 mounts a plurality of components P onto a board K. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
  • the substrate transport device 11 transports the substrate K in the transport direction (X-axis direction), for example, along a transport path formed by a belt conveyor or the like.
  • the substrate K is a circuit board on which, for example, an electronic circuit, an electric circuit, a magnetic circuit, etc. are formed.
  • the board transfer device 11 carries the board K into the component mounting machine WM3 and positions the board K at a predetermined position inside the machine.
  • the board transport device 11 carries the board K out of the component mounting machine WM3 after the mounting process of the plurality of components P by the component mounting machine WM3 is completed.
  • the component supply device 12 supplies a plurality of components P to be mounted on the board K.
  • the component supply device 12 includes a plurality of feeders 121 provided along the substrate K conveyance direction (X-axis direction). Each of the plurality of feeders 121 is equipped with a reel. A carrier tape containing a plurality of parts P is wound around the reel. The feeder 121 feeds the carrier tape in pitches and supplies the component P so that it can be collected at a supply position located on the tip side of the feeder 121 . Further, the component supply device 12 can also supply electronic components (for example, lead components, etc.) that are relatively large compared to chip components and the like, arranged on a tray.
  • electronic components for example, lead components, etc.
  • the component transfer device 13 includes a head drive device 131 and a moving table 132.
  • the head driving device 131 is configured to be able to move the moving table 132 in the X-axis direction and the Y-axis direction (direction perpendicular to the X-axis direction in the horizontal plane) using a linear motion mechanism.
  • the moving table 132 is provided with the mounting head 20 removably (replaceable) using a clamp member.
  • the mounting head 20 uses at least one holding member 21 to pick up and hold the component P supplied by the component supply device 12, and mounts the component P onto the board K positioned by the substrate transfer device 11.
  • a suction nozzle, a chuck, etc. can be used as the holding member 21.
  • the component camera 14 is fixed to the base of the component mounting machine WM3 so that its optical axis faces upward in the vertical direction (Z-axis direction perpendicular to the X-axis direction and the Y-axis direction). Therefore, the component camera 14 can image the component P etc. held by the holding member 21 from below in the vertical direction.
  • the board camera 15 is installed on the moving table 132 of the component transfer device 13 so that its optical axis faces downward in the vertical direction (Z-axis direction). Therefore, the board camera 15 can move in the X-axis direction and the Y-axis direction together with the movable stage 132, and can image the board K and the component P mounted on the board K from above in the vertical direction.
  • the camera device S provided in the printing machine WM1 which is the first work machine, is configured and operates in the same manner as the board camera 15. Therefore, inside the printing machine WM1, the camera device S can move in the X-axis direction and the Y-axis direction by a driving device (not shown) that corresponds to the head driving device 131 and the moving stage 132 of the component mounting machine WM3 described above, and can capture images of the board K and the solder, which is the joining material B printed on the board K, from above in the vertical direction.
  • the component camera 14 and the board camera 15 perform imaging based on control signals sent from the control device 16.
  • the image data of the captured image captured by the component camera 14 is then transmitted to the control device 16.
  • image data PD of a captured image captured by the board camera 15 is transmitted to the control device 16 and the line management device LC.
  • the component camera 14 and the board camera 15 camera device S
  • a known digital imaging device having an imaging element such as a CCD or CMOS can be used, so a detailed description of the structure thereof will be omitted.
  • the control device 16 includes a computer device having a CPU, ROM, RAM, various interfaces, etc., a storage device for storing various information, and the like.
  • the control device 16 receives input of detected values and information output from various sensors provided in each component mounting machine WM3, or various image data (including image data PD) representing captured images.
  • the control device 16 executes a control program and sends control signals to each device according to, for example, predetermined mounting conditions set in advance.
  • control device 16 causes the board camera 15 to image the board K positioned by the board transport device 11 in the component mounting machine WM3. Then, the control device 16 processes the image captured by the board camera 15 and recognizes the positioning state of the board K. Further, the control device 16 causes the holding member 21 to collect and hold the component P supplied by the component supply device 12, and causes the component camera 14 to image the component P held by the holding member 21. The control device 16 then performs image processing on the image captured by the component camera 14 and recognizes the posture of the component P.
  • the control device 16 executes the control program and moves the holding member 21 upward from a preset scheduled mounting position. Further, the control device 16 corrects the scheduled mounting position based on the positioning state of the board K, the attitude of the component P, etc., and sets the mounting position where the component P is actually mounted. Note that the scheduled mounting position and the mounting position include not only the position (X-axis coordinate and Y-axis coordinate) but also the rotation angle.
  • the control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and rotation angle of the holding member 21 according to the mounting position. Then, the control device 16 lowers the holding member 21 at the corrected rotation angle at the corrected target position, and mounts the component P on the board K. The control device 16 executes the mounting process of mounting a plurality of parts P onto the board K by repeating the pick-and-place cycle as described above.
  • the board-to-board work machine WM performs image processing on image data PD acquired by an imaging device (for example, the component camera 14, the board camera 15, etc. in the component mounting machine WM3), and detects defects. In some cases, board-related work may be stopped. Further, the board-related work machine WM may stop the board-related work when a situation occurs in which it is impossible to continue the board-based work (for example, in the component mounting machine WM3, there is a shortage of parts P to be mounted). Furthermore, the operator may operate a stop button to stop the board-facing work by the board-facing work machine WM.
  • each of the board-to-board work machines WM constituting the board-to-board work line WL uses, for example, the image data PD when the board K was carried into the machine and the image data PD captured immediately before the board-to-board work. By comparing, the presence or absence of foreign matter C can be determined.
  • the board K is sequentially conveyed between a plurality of board work machines WM, as in the board work line WL, that is, the board product Kp is finally produced through a plurality of board work processes. There is a request to determine where (in which board-to-board work process using which board-to-board work machine WM) foreign matter C attached to the substrate K has attached to the inspection area TA of the board K.
  • the cause of the board-related work being stopped can be resolved between obtaining the reference image data PD and obtaining the image data PD to be inspected. It may take time to do so. If the work on the board continues to be stopped, the state of the board K, especially the state of the bonding member B, may change. Therefore, obtain the state of the inspection area TA of the board K at the time the work on the board is stopped. There is a request to do so.
  • the inspection apparatus 30 adopts a configuration that can determine the state of the inspection area TA of the board K over a plurality of board-facing work processes.
  • the inspection device 30 includes an acquisition section 31 and a determination section 32.
  • the inspection device 30 includes a setting section 33.
  • the inspection device 30 includes a guide section 34. That is, in this embodiment, as shown in FIG. 3, the inspection device 30 includes an acquisition section 31, a determination section 32, a setting section 33, and a guide section 34.
  • the inspection device 30 uses the image data PD (hereinafter referred to as “standard image data PDb ) and image data PD (hereinafter referred to as “inspection image data PDt”) obtained by imaging the inspection area TA of the board K using the component mounting machine M3, which is the second work machine. , reference image data PDb and test image data PDt can be compared. Then, the inspection device 30 can determine the state of the inspection area TA of the substrate K by comparing the reference image data PDb and the inspection image data PDt.
  • standard image data PDb image data obtained by imaging the inspection area TA of the board K using the component mounting machine M3, which is the second work machine.
  • reference image data PDb and test image data PDt can be compared.
  • the inspection device 30 can determine the state of the inspection area TA of the substrate K by comparing the reference image data PDb and the inspection image data PDt.
  • the inspection device 30 can be provided in various control devices.
  • the inspection device 30 can be provided in the control device 16 of the component mounting machine WM3 (M3), the line management device LC, the management device HC, etc.
  • the inspection device 30 can also be formed on the cloud.
  • the acquisition section 31, determination section 32, setting section 33, and guide section 34 that constitute the inspection device 30 are provided in the line management device LC, as shown in FIG. 3, as an example.
  • the acquisition unit 31 acquires a plurality of image data PD by capturing images of at least a portion of the inspection area TA of the substrate K a plurality of times in accordance with the progress of a predetermined substrate work on the substrate K.
  • the acquisition unit 31 of this embodiment acquires the image data PD, which is an image of the inspection area TA of the board K in the printing machine WM1, as reference image data PDb, and the image data PD of the inspection area TA of the board K in the component mounting machine M3.
  • the obtained image data PD is acquired as inspection image data PDt.
  • the acquisition unit 31 detects that the camera device S provided in the printing machine WM1 moves to the inspection area TA of the board K immediately after the bonding member B (solder) is applied, which is the board-to-board work in the printing machine WM1. Captured reference image data PDb is acquired. Further, the acquisition unit 31 allows the board camera 15 provided in the component mounting machine M3 to inspect the board K immediately before the mounting of the component P into the inspection area TA, which is the board work in the component mounting machine M3, is carried out.
  • the inspection image data PDt is acquired by moving to the area TA and, specifically, moving to the same position as the imaging position of the camera device S of the printing machine WM1 with respect to the substrate K.
  • the acquisition unit 31 may, for example, move the camera device S or the board camera 15 within the inspection area TA.
  • a plurality of image data PD captured by the image data PD are synthesized. Thereby, the acquisition unit 31 acquires one reference image data PDb and one test image data PDt.
  • the determination unit 32 determines the state of the inspection area TA by comparing the reference image data PDb acquired from the printing machine WM1 by the acquisition unit 31 with the inspection image data PDt acquired from the component mounting machine M3.
  • the determination unit 32 of this embodiment detects the difference in the feature amount of the inspection area TA by comparing the reference image data PDb and the inspection image data PDt, and determines the state of the inspection area TA by detecting the difference in the feature amount of the inspection area TA.
  • the presence or absence (existence state) of C is determined.
  • the luminance of each pixel that can be obtained by image processing of the reference image data PDb and the inspection image data PDt will be explained as an example of the feature amount.
  • the feature amount is not limited as long as it can be obtained by image processing the image data PD.
  • the brightness, saturation, brightness, etc. of each pixel of the two image data PD are included in the feature amount.
  • the area of the closed region, the length of the perimeter of the closed region, etc. obtained by image processing (for example, binarization processing, etc.) each of the two image data PD (reference image data PDb and inspection image data PDt) is included in the feature amount.
  • the determination unit 32 determines that a foreign object C exists in the inspection area TA, for example, when the difference in the feature amount of the inspection area TA acquired from each of the reference image data PDb and the inspection image data PDt exceeds a predetermined threshold. It is determined that (there is). On the other hand, the determination unit 32 determines that, for example, when the difference in the feature amount of the inspection area TA acquired from each of the reference image data PDb and the inspection image data PDt is equal to or less than a predetermined threshold, the determination unit 32 determines that the foreign object C does not exist in the inspection area TA. ).
  • the setting unit 33 sets the inspection area TA so as to include the mounting position based on mounting position information Js indicating the mounting position at which a specific component (e.g., a BGA (Ball Grid Array) component P) among the multiple components P mounted on the board K is to be mounted, and component information Jp for identifying the component.
  • the mounting position information Js includes the mounting position specified by the sequence coordinates, the mounting angle when mounting the component P, the mounting order, etc.
  • the component information Jp includes the size of the component P, the shape of the component P, the maximum transport acceleration, etc.
  • the setting unit 33 receives, for example, the mounting position information Js of the component P that has been linked and inputted in advance from the management device HC, and the mounting position information Js of the component P to be mounted at the mounting position represented by the mounting position information Js. Parts information JP is acquired. Then, based on the component information Jp, if the component P to be mounted on the board K is a specific component such as a BGA, the setting unit 33 determines whether the component P to be mounted on the board K is a specific component such as a BGA or the like based on the attached mounting position information Js. The inspection area TA is set to include the mounting position where the specific component is mounted.
  • the inspection area TA set by the setting unit 33 is, for example, based on the mounting position (sequence coordinates), the external shape (size) of the component P, and the margin, according to the shape of the camera field of view of the camera device S or the board camera 15. It is best to set it to a rectangular shape that includes.
  • the setting unit 33 outputs setting information Ja representing the set inspection area TA to the printing machine WM1 and the component mounting machine M3.
  • the printing machine WM1 moves the camera device S to the set inspection area TA according to the setting information Ja, and outputs the captured reference image data PDb to the acquisition unit 31.
  • the component mounting machine M3 moves the board camera 15 to the set inspection area TA according to the setting information Ja, and outputs the captured inspection image data PDt to the acquisition unit 31.
  • the setting information Ja may include mounting position information Js and component information Jp instead of or in addition to the information representing the inspection area TA.
  • the setting unit 33 instead of or in addition to automatically setting the inspection area TA based on the mounting position information Js and the component information Jp acquired from the management device HC, the setting unit 33, for example, It is also possible to set an area designated by a worker working on the WL as the inspection area TA.
  • the board-to-board work line WL of this embodiment includes an input/output device 40.
  • the operator can set an arbitrary area (the mounting position of the entire board K or a part of the board K) as the inspection area TA using, for example, the input/output device 40 shown by the broken line in FIG.
  • the setting unit 33 can, for example, schematically display the mounting position of the component P on the board K on the display unit of the input/output device 40, so that the operator can select an arbitrary mounting position.
  • the guidance unit 34 informs the operator of the state of the inspection area TA determined by the determination unit 32. For example, when the determination unit 32 determines that a foreign object C is present in the inspection area TA, the guidance unit 34 informs the operator of the state of the inspection area TA determined by the determination unit 32.
  • the guide unit 34 may take various forms as long as it can notify the operator of the presence of the foreign object C.
  • the guide unit 34 may be This can be used to notify the operator of the presence of the foreign object C (for example, by displaying a message, providing audio guidance, etc.).
  • the guide unit 34 indicates the presence of the substrate K to which the foreign matter C is attached, the position on the substrate K where the foreign matter C is attached, or the position of the second work device WM. If there are a plurality of them, it is possible to guide the substrate-to-board work machine WM where the substrate K is present. Thereby, the operator can check the substrate K to which the foreign matter C is attached, and can take countermeasures (for example, carry out the substrate K, etc.). Note that the guide unit 34 can also similarly guide the worker about the presence of the foreign object C (for example, by display, voice guidance, vibration, etc.) using a mobile terminal owned by the worker.
  • the acquisition unit 31 images at least a part of the inspection area TA of the board K by imaging a plurality of times according to the progress of the board work by the board work machine WM that performs a predetermined board work on the board K. , a plurality of image data PD obtained by imaging the same inspection area TA are acquired. Specifically, the acquisition unit 31 acquires the image data PD imaged by the printing machine WM1, that is, the reference image data PDb, and acquires the image data PD imaged by the component mounting machine M3, that is, the inspection image data PDt.
  • the inspection area TA is automatically set by the setting unit 33.
  • the determining unit 32 acquires the image data PD captured by the printing machine WM1 from the acquiring unit 31 as reference image data PDb. Further, the determining unit 32 acquires the image data PD acquired by the component mounting machine M3 from the acquiring unit 31 as inspection image data PDt. In the present embodiment, the determination unit 32 determines, based on the difference in the feature amount (for example, pixel brightness, etc.) of the inspection area TA obtained by image processing the reference image data PDb and the inspection image data PDt, respectively. The presence or absence of foreign matter C adhering to the inspection area TA is determined.
  • the feature amount for example, pixel brightness, etc.
  • the determination unit 32 determines that the foreign object C is present in the inspection area TA when the difference in the feature amount of the inspection area TA acquired from each of the reference image data PDb and the inspection image data PDt exceeds a predetermined threshold value. . On the other hand, the determination unit 32 determines that there is no foreign object C in the inspection area TA when the difference in the feature amount of the inspection area TA is less than or equal to a predetermined threshold value.
  • the predetermined threshold value is set to be larger than the feature amount when no foreign object C is attached to the inspection area TA, and smaller than the feature amount when the foreign object C is attached to the inspection area TA. Ru.
  • the predetermined threshold value is obtained in advance by, for example, simulation or verification using an actual device.
  • FIG. 4 and 5 schematically show an example of a plurality of (two) pieces of image data PD acquired by the acquisition unit 31.
  • FIG. 4 shows reference image data PDb of the inspection area TA, which is imaged immediately after the joining member B (solder) is applied in the printing machine WM1 as the first working machine.
  • FIG. 5 shows inspection image data PDt of the inspection area TA, which is imaged immediately before the component P is mounted in the component mounting machine M3, which is the second work machine. Note that in FIGS. 4 and 5, for convenience of explanation, a plurality of pixels arranged in a grid pattern are shown together. Further, the region R shown in FIGS. 4 and 5 indicates the same region (set of the same plurality of pixels) in the inspection area TA.
  • the luminance of the pixel included in the area R of the inspection area TA shown in FIG. 4 for the reference image data PDb and the brightness of the pixel included in the area R of the inspection area TA shown in FIG. exceeds a predetermined threshold.
  • the luminance of the pixels included in the area R of the inspection area TA shown in FIG. 4 for the reference image data PDb, and the area R of the inspection area TA shown in FIG. 5 for the inspection image data PDt becomes equal to or less than a predetermined threshold.
  • the determination unit 32 determines the luminance of pixels included in the area R of the inspection area TA shown in FIG. 4 for the reference image data PDb, and the brightness of the pixels included in the area R of the inspection area TA shown in FIG. When the difference from the brightness exceeds a predetermined threshold value, it is determined that there is a foreign object C in the inspection area TA. On the other hand, the determining unit 32 determines the luminance of pixels included in the area R of the inspection area TA shown in FIG. 4 for the reference image data PDb, and the brightness of the pixels included in the area R of the inspection area TA shown in FIG. When the difference from the brightness is less than a predetermined threshold value, it is determined that there is no foreign object C in the inspection area TA. Note that the brightness comparison is performed for each corresponding pixel, for example.
  • the guide unit 34 guides the operator to the presence of the foreign object C.
  • the guide unit 34 uses the input/output device 40 to guide the operator to the presence of the foreign object C (for example, by display, voice guidance, etc.).
  • the guide unit 34 similarly informs the worker of the presence of the foreign object C using a mobile terminal owned by the worker.
  • the inspection method includes an acquisition step and a determination step.
  • the acquisition process corresponds to control performed by the acquisition unit 31.
  • the determination process corresponds to control performed by the determination unit 32.
  • the inspection method can include a setting step.
  • the setting process corresponds to control performed by the setting section 33.
  • the inspection method can also include a guiding step.
  • the guiding process corresponds to the control performed by the guiding section 34.
  • the printing machine WM1 which is the first working machine, starts from the work process of applying solder, which is the joining member B, to the board K, and the second working machine, which is the component mounting machine.
  • the state of the inspection area TA of the board K can be determined over a work process in which the machine M3 mounts the component P, that is, a plurality of board-facing work processes. What has been described above regarding the inspection device 30 also applies to the inspection method.
  • the determining unit 32 determines whether the inspection area TA determine the state of Specifically, in the first modification, the determination unit 32 detects a change over time in the bonding member B (solder) applied to the inspection area TA by comparing the reference image data PDb and the inspection image data PDt. , the state of the bonding member B (solder) applied to the test area TA is determined as the state of the test area TA.
  • FIG. 6 shows an example of the state of the board K until the work for the board is stopped.
  • the state of the board K until the board work is stopped in the component mounting machine M2 is schematically shown using image data PD.
  • the acquisition unit 31 acquires the image data PD captured by the printing machine WM1 as the reference image data PDb.
  • the acquisition unit 31 acquires first image data PD1 by capturing an image of the inspection area TA at the timing when the board-related work has stopped in the component mounting machine M2 where the board-related work has stopped.
  • the component mounting machine M2 is used as “another board-facing working machine", but for example, when the load of the mounting work on the component mounting machine M2 is high and the work time is long (so-called bottleneck In case of planned stoppage due to maintenance, etc., the component mounting machine M1 or other board-to-board work machine WM that performs board-to-board work should be arbitrarily set to "other board-to-board work machine”. is also possible. That is, in this case, the first image data PD1 can be acquired by imaging the inspection area TA at the timing when the work on the board is stopped by the component mounting machine M1 or the work machine WM on the board.
  • the reference image data PDb and the first image data PD1 shown in FIG. 6 have a small difference in the feature amount of the inspection area TA (the difference in the feature amount is equal to or less than a predetermined threshold value), and the judgment unit 32 judges that there is no foreign matter C in the inspection area TA.
  • the target board K has not yet been transported to the component mounting machine M3, which is the second work machine downstream of the component mounting machine M2, and the image data PD is shown as blank.
  • the determination unit 32 determines whether a foreign object is detected as in the above embodiment. The presence or absence of C can be determined. As a result, the determining unit 32 determines that the image data attached to the inspection area TA is determined by the time when the reference image data PDb is acquired by the acquiring unit 31 and before the component mounting machine M2, which is “another board-facing work machine”, stops the work on the board. The presence or absence of foreign matter C can be determined.
  • the determination unit 32 determines whether the bonding member B that joins the board K and the component P applied to the inspection area TA, that is, the solder printed on the inspection area TA. It is also possible to judge changes over time. For example, if the work on the board continues to be stopped, the feature amount of the inspection area TA obtained by image processing the image data PD may change due to changes in the bonding member B (solder) over time. Specifically, when the bonding member B is solder, the color changes from silver to gray as the flux it contains dries. Therefore, the feature amount of the inspection area TA may change due to changes in the solder over time, and in this case, the determining unit 32 may erroneously determine that the solder that has changed over time is a foreign object C.
  • the time from when the board work is stopped until it is restarted is defined as the stop time Q.
  • the allowable time T is the stopping time Q during which the bonding member B (solder) applied to the inspection area TA is not mistakenly determined to be a foreign substance C even if the characteristic amount of the inspection area TA changes due to changes over time in the bonding member B (solder) applied to the inspection area TA.
  • the stop time Q becomes shorter than the allowable time T
  • the component mounting machine M3 becomes less susceptible to changes over time in the bonding member B when determining the presence or absence of a foreign object C, and the component mounting machine M2 stops working on the board. The necessity of determining the presence or absence of foreign matter C is reduced.
  • the stop time Q becomes longer than the allowable time T, as explained in the above embodiment, when determining the presence or absence of foreign matter C in the component mounting machine M3, which is the second work machine, This becomes susceptible to changes over time, and the determining unit 32 tends to mistakenly determine that the joining member B is a foreign substance C. Therefore, in the first modification, when the stop time Q becomes longer than the allowable time T, the determining unit 32 determines whether or not there is a foreign object C in the component mounting machine M2 where the board work has stopped. Note that the determination of the state of the inspection area TA by the determination unit 32 in the first modification is performed as described above except for acquiring and using the first image data PD1 captured by the component placement machine M2 as the inspection image data PDt. Since it is similar to the form, its explanation will be omitted.
  • the stop time Q it goes without saying that the actually measured actual time is used, but it is also possible to use an estimated time based on, for example, the cause of the stoppage of the board-related work and the details of the recovery work. Further, the allowable time T can be obtained in advance by, for example, simulation or verification using an actual machine.
  • the allowable time T may vary depending on the type of the joining member B, and the determination unit 32 can also use the allowable time T depending on the type of the joining member B.
  • the determination unit 32 can use the allowable time T depending on the type of solder.
  • the determination unit 32 can use the allowable time T depending on the type of adhesive.
  • the determination unit 32 can refer to data showing the relationship between the type of joining member B and the allowable time T to determine the allowable time T according to the type of joining member B.
  • the data showing the relationship between the type of joining member B and the allowable time T may be stored in the inspection device 30, or may be stored in another device that can communicate with the inspection device 30 and acquired through communication.
  • the judgment unit 32 can use the allowable time T according to at least one of the temperature and humidity inside the component mounting machine WM3.
  • the determination unit 32 refers to data indicating the relationship between at least one of the temperature and humidity inside the component mounting machine WM3 and the allowable time T, and determines the temperature and humidity inside the component mounting machine WM3.
  • the allowable time T can be determined according to at least one of the above.
  • the data indicating the relationship between at least one of the temperature and humidity inside the component mounting machine WM3 and the allowable time T may be stored in the inspection device 30, or may be stored in another device that can communicate with the inspection device 30. The information may be stored in the device and acquired through communication.
  • the guide unit 34 guides the operator to the presence of the foreign object C.
  • the guide unit 34 uses the input/output device 40 to guide the operator to the presence of the foreign object C (for example, by display, voice guidance, etc.).
  • the guide unit 34 similarly informs the worker of the presence of the foreign object C using a mobile terminal owned by the worker.
  • the determination unit 32 determines whether the "other board-to-board work" is a board-to-board work machine between the printing machine WM1, which is the first work machine, and the component mounting machine M3, which is the second work machine.
  • the second image data PD2 acquired by the acquisition unit 31 in the component mounting machine M2 as a component mounting machine can be used as the inspection image data PDt.
  • the determination unit 32 uses the reference image data PDb captured (acquired) by the printing machine WM1 and the second image data PD2 acquired by the acquisition unit 31 in the component mounting machine M2.
  • the state of the inspection area TA can be determined by comparing it with the inspection image data PDt.
  • Second Modification When the work is stopped as described in the first modification, there is a possibility that the state of the reference inspection area TA represented by the reference image data PDb captured by the printer WM1 has changed over time. In particular, in the case of the first modification, when the substrate-related work is resumed, there is a high possibility that the state of the reference inspection area TA has changed.
  • the reference image data PDb acquired (captured) by the printer WM1, which is the first work machine can be updated by the image data PD acquired by the acquisition unit 31 in the component mounting machine M2, which is a substrate-related work machine between the printer WM1 and the component mounting machine M3, which is the second work machine, i.e., the "other substrate-related work machine.”
  • the reference image data PDb captured by the printer WM1 is updated using image data PD captured by the component mounting machine M2, which is "another substrate-related work machine.”
  • the second modified example will be explained below, but to facilitate understanding, a situation in which substrate-related work has been resumed in the first modified example described above will be used as an example.
  • the component mounting machine M2 is set as “another board-facing working machine", but for example, when the load of the mounting work on the component mounting machine M2 is high and the work time is long (so-called bottleneck In case of planned stoppage due to maintenance, etc., the component mounting machine M1 or other board-to-board work machine WM that performs board-to-board work should be arbitrarily set to "other board-to-board work machine”. is also possible. That is, in this case, the reference image data PDb can be updated with the image data PD captured by the component mounting machine M1 and the board-facing work machine WM.
  • FIG. 7 shows an example of the state of the board K after the board-related work is resumed.
  • the state of the board K after the board work is restarted in the component mounting machine M2 is schematically shown using image data PD.
  • the bonding member B is shown in black for convenience of illustration, and it is schematically shown that the bonding member B has changed over time while the work for the substrate is stopped.
  • the acquisition unit 31 images the inspection area TA and acquires second image data PD2 when the board-related work is restarted. Specifically, the acquisition unit 31 acquires the image data PD captured by the board camera 15 as the second image data PD2 in the component mounting machine M2, which is "another board-related work machine" and in which the board-related work is restarted. get. Therefore, the second image data PD2 is the image data PD at the time when the board-related work is restarted.
  • the judgment unit 32 acquires the second image data PD2 from the acquisition unit 31.
  • the judgment unit 32 updates the reference image data PDb captured (acquired) by the printing machine WM1 with the second image data PD2, thereby making the second image data PD2 new reference image data PDb.
  • the judgment unit 32 judges the state of the inspection area TA using the updated new reference image data PDb and the inspection image data PDt captured (acquired) by the component mounting machine M3 after the work on the board is resumed.
  • the feature amount of the inspection area TA (the joining member B is white) obtained by image processing the reference image data PDb shown in FIG. 6, and the inspection obtained by image processing the inspection image data PDt shown in FIG.
  • the difference in the feature amounts of the area TA (the joining member B is black) is large, and the difference in the feature amounts exceeds a predetermined threshold value. Therefore, the determining unit 32 mistakenly determines that there is a foreign object C in the inspection area TA.
  • the determination unit 32 selects the inspection area TA obtained by image processing the reference image data PDb and the inspection image data PDt shown in FIG. The presence or absence of the foreign object C is determined based on the difference in the feature amounts.
  • the feature amount of the inspection area TA (joint member B is black) obtained by image processing the reference image data PDb shown in FIG. 7, and the inspection obtained by image processing the inspection image data PDt shown in FIG.
  • the difference in the feature amounts (for example, the brightness of pixels, etc.) is less than or equal to a predetermined threshold. Therefore, the determining unit 32 determines that there is no foreign object C in the inspection area TA. In other words, erroneous determination of foreign matter C due to changes in bonding member B over time is suppressed.
  • FIG. 7 shows the state of the board K after the board work has been resumed, and the image data PD of the printing machine WM1 and the component mounting machine M1 on the upstream side of the component mounting machine M2 are shown as blank. has been done.
  • the inspection area TA can be imaged and the second image data PD2 can be acquired at the timing when the board work is restarted.
  • the inspection device 30 can use the second image data PD2 at the time when the board work is resumed as new reference image data PDb, and for example, the bonding member B for determining the state of the inspection area TA.
  • the effects of changes over time can be suppressed.
  • the same effects as the embodiment and the first modification described above can be obtained, and the accuracy of determining the state of the inspection area TA when the board work is stopped and restarted is improved. can be done.
  • the board transport device 11 transports one board K along one transport path formed by one conveyor belt or the like. I made it.
  • the component mounting machine is equipped with a board transport device that can independently transport the two boards K along two transport paths each formed by two conveyor belts, etc. It may be a machine.
  • the component mounting machine WM3 of the above-described embodiment and each modification includes only one set of the head drive device 131 and the moving table 132 of the component transfer device 13, and the moving table 132 is equipped with one mounting head 20. I made it.
  • the component transfer device is equipped with two sets of head drive devices and moving tables arranged to face each other, and each moving table is equipped with a mounting head. It may also be a type parts mounting machine.
  • the inspection device 30 is provided with the setting section 33.
  • the inspection device 30 is provided with the guide section 34.
  • the guide section 34 may be omitted.
  • the acquisition unit 31 acquires the image data PD from the board camera 15 provided in the component mounting machine WM3 has been described as an example.
  • the acquisition unit 31 is not limited to acquiring the image data PD from the board camera 15, and may acquire the image data PD from a separately provided imaging device (such as a camera).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

検査装置は、基板の少なくとも一部の検査領域を対象として基板に対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データを取得する取得部と、対基板作業として検査領域に接合部材を塗布する第一作業機において取得された画像データを基準画像データとし、基準画像データと対基板作業として検査領域に部品を装着する第二作業機において取得された画像データである検査画像データとを比較することによって検査領域の状態を判断する判断部と、を備える。

Description

検査装置及び検査方法
 本明細書は、検査装置及び検査方法に関するものである。
 従来から、例えば、特許文献1に開示された実装ラインが知られている。従来の実装ラインでは、基板の少なくとも一部を視野に収めることができる第一のカメラ手段及び第二のカメラ手段と、画像処理手段とを備えている。画像処理手段は、第二のカメラ手段で撮像された部品の装着作業後の画像データを第一のカメラ手段で撮像された部品の装着作業前の画像データと比較して画像処理を行う。これにより、従来の実装ラインは、基板にはんだを印刷した際のはんだの印刷異常、又は、基板に部品を装着した際の装着不良を検出するようになっている。
特開2007-335524号公報
 部品を基板に装着する場合、部品の装着位置に異物が付着していると部品の装着が不良になる可能性がある。このため、従来の実装ラインのように、部品を装着する基板の検査対象となる検査領域の状態を判断することは極めて重要である。この場合、例えば、基板に異物が付着することを防止するように対策を検討する場合には、対基板作業ラインの全体において、つまり、複数の対基板作業工程に亘って基板の検査領域の状態を判断できることが好ましい。
 本明細書は、複数の対基板作業工程に亘って基板の検査領域の状態を判断することができる検査装置及び検査方法を提供することを目的とする。
 本明細書は、基板の少なくとも一部の検査領域を対象として基板に対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データを取得する取得部と、対基板作業として検査領域に接合部材を塗布する第一作業機において取得された画像データを基準画像データとし、基準画像データと対基板作業として検査領域に部品を装着する第二作業機において取得された画像データである検査画像データとを比較することによって検査領域の状態を判断する判断部と、を備えた、検査装置を開示する。
 又、本明細書は、基板の少なくとも一部の検査領域を対象として基板に対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データを取得する取得工程と、対基板作業として検査領域に接合部材を塗布する第一作業機において取得された画像データを基準画像データとし、対基板作業として検査領域に部品を装着する第二作業機において取得された画像データである検査画像データと基準画像データとを比較することによって検査領域の状態を判断する判断工程と、を備えた、検査方法を開示する。
 本明細書では、出願当初の請求項5において、「請求項1-3の何れか一項に記載の検査装置」を「請求項1-4の何れか一項に記載の検査装置」に変更した技術的思想も開示されている。又、本明細書では、出願当初の請求項8において、「請求項1-3の何れか一項に記載の検査装置」を「請求項1-7の何れか一項に記載の検査装置」に変更した技術的思想も開示されている。又、本明細書では、出願当初の請求項9において、「請求項1-3の何れか一項に記載の検査装置」を「請求項1-8の何れか一項に記載の検査装置」に変更した技術的思想も開示されている。又、本明細書では、出願当初の請求項10において、「請求項1-3の何れか一項に記載の検査装置」を「請求項1-9の何れか一項に記載の検査装置」に変更した技術的思想も開示されている。更に、本明細書では、出願当初の請求項12において、「請求項1-3の何れか一項に記載の検査装置」を「請求項1-11の何れか一項に記載の検査装置」に変更した技術的思想も開示されている。
 検査装置よれば、第一作業機が接合部材を基板に塗布する工程から第二作業機が部品を装着する工程、即ち、複数の対基板作業工程に亘って基板の検査領域の状態を判断することができる。検査方法についても、同様である。
対基板作業ラインの構成例を示す構成図である。 部品装着機の構成例を示す平面図である。 検査装置の制御ブロックの一例を示すブロック図である。 基準画像データの一例を示す模式図である。 検査画像データの一例を示す模式図である。 第一変形例に係り、対基板作業が停止するまでの基板の状態の一例を示す模式図である。 第二変形例に係り、対基板作業が再開された後の基板の状態の一例を示す模式図である。
 以下、検査装置及び検査方法について、図面を参照しながら説明する。本実施形態においては、印刷機によって基板に接合部材を塗布する印刷機と、部品(例えば、電子部品等)を装着する装着作業を実施する部品装着機とを備えた対基板作業ラインを例示する。そして、「所定の対基板作業」として、印刷機が基板に接合部材を塗布し、部品装着機が印刷機から搬送された基板に順次部品を装着する場合において、基板に設定された検査領域の状態を判断する場合を例示して説明する。
1.対基板作業ラインWL
 対基板作業ラインWLでは、対基板作業機WMが基板Kに所定の対基板作業を行う。本実施形態の対基板作業ラインWLは、図1に示すように、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4及び外観検査機WM5の複数の対基板作業機WMを備えており、基板Kは、基板搬送装置によって上記の順に搬送される。尚、対基板作業ラインWLを構成する対基板作業機WMの種類及び数は、限定されない。
 本実施形態において、印刷機WM1は、「第一作業機」である。印刷機WM1は、基板Kの複数の部品Pの装着位置に、接合部材Bとしてのはんだを印刷する。ここで、以下の説明において、接合部材Bがはんだである場合を例示するが、接合部材Bは、基板Kと部品Pを接合する部材であれば良く、はんだの他に接着剤等を含むことができる。従って、第一作業機としては、基板Kに接合部材Bを塗布する作業機であれば良く、はんだを印刷する印刷機WM1の他に、接着剤等を塗布する塗布装置も例示することができる。印刷検査機WM2は、印刷機WM1によって印刷されたはんだの印刷状態を検査する。
 ここで、本実施形態においては、少なくとも印刷機WM1に接合部材Bの塗布後、即ち、はんだの印刷後の基板Kを撮像するカメラ装置Sが設けられる。尚、カメラ装置Sの構成及び作動については、後述する部品装着機WM3の基板カメラ15と同様であるため、詳細な説明を省略する。
 部品装着機WM3は、図2に示すように、印刷機WM1によってはんだが印刷された基板Kに複数の部品Pを装着する。尚、本実施形態においては、対基板作業ラインWLには、図1に示すように、複数(例えば、3つ)の部品装着機WM3が設けられる。但し、部品装着機WM3は、一つであっても良く、複数であっても良い。尚、部品装着機WM3が複数設けられる場合は、複数の部品装着機WM3が分担して、複数の部品Pを装着することができる。
 ここで、本実施形態においては、説明の便宜上、図1に示すように、複数(3つ)の部品装着機WM3のうちの最も上流側の部品装着機WM3を部品装着機M1とする。部品装着機M1は、基板Kの少なくとも一部に設定される後述の検査領域TA(図4及び図5を参照)以外の基板Kの他領域に部品Pを装着する。又、部品装着機M1よりも下流側の次の部品装着機WM3を部品装着機M2とする。部品装着機M2は、後述の検査領域TA及び他領域に部品Pを装着する。更に、部品装着機M2よりも下流側の次の部品装着機WM3を部品装着機M3とする。部品装着機M3は、検査領域TAに部品Pを装着する。
 そして、複数(3つ)の部品装着機WM3のうち、印刷機WM1から最も遠く(図1において、最も右側(下流側))に配置された部品装着機M3を「第二作業機」とする。又、本実施形態においては、複数(3つ)の部品装着機WM3のうち、部品装着機M2を「第一作業機と第二作業機との間に配置された対基板作業機」(以下、「他の対基板作業機」と称呼する。)とする。
 尚、「他の対基板作業機」としては、検査領域TA以外の他領域にも部品Pを装着する部品装着機WM3(部品装着機M2)に限られず、例えば、機能検査機、バッファ装置、基板供給装置、基板反転装置、シールド装着装置、接着剤塗布装置、紫外線照射装置等の対基板作業機WMを例示することもできる。但し、「第一作業機と第二作業機との間に配置された対基板作業機」には、上述した印刷機WM1のように基板Kを撮像するカメラ装置Sが設けられている必要がある。このため、カメラ装置Sが設けられていない場合には、別途設けられるようになっている。
 リフロー炉WM4は、部品装着機WM3によって複数の部品Pが装着された基板Kを加熱し、はんだを溶融させて、はんだ付けを行う。外観検査機WM5は、部品装着機WM3によって装着された複数の部品Pの装着状態等を検査する。このように、対基板作業ラインWLは、複数の対基板作業機WMを用いて、基板Kを順に搬送し、検査処理を含む生産処理を実行して基板製品Kpを生産することができる。
 対基板作業ラインWLを構成する複数の対基板作業機WM及びライン管理装置LCは、通信部によって通信可能に接続されている。又、ライン管理装置LC及び管理装置HCは、通信部によって通信可能に接続されている。通信部は、有線又は無線により、対基板作業機WM及びライン管理装置LC、又は、ライン管理装置LC及び管理装置HCを通信可能に接続する。尚、通信部は、種々の通信方法を採用することができる。
 ここで、本実施形態においては、複数の対基板作業機WM、ライン管理装置LC及び管理装置HCによって、構内情報通信網(LAN:Local Area Network)が構成されている。これにより、複数の対基板作業機WMは、通信部を介して、互いに通信することができる。又、複数の対基板作業機WMは、通信部を介して、ライン管理装置LCと通信することができる。更に、ライン管理装置LC及び管理装置HCは、通信部を介して、互いに通信することができる。
 ライン管理装置LCは、CPU、ROM、RAM、各種インターフェース等を有するコンピュータ装置及び各種情報を記憶する記憶装置等を備えている。ライン管理装置LCは、対基板作業ラインWLを構成する複数の対基板作業機WMの制御を行い、対基板作業ラインWLの動作状況を監視する。ライン管理装置LCには、記憶装置に複数の対基板作業機WMを制御する種々の制御データが記憶されている。ライン管理装置LCは、管理装置HCから出力される制御データを含め、複数の対基板作業機WMの各々に制御データを送信する。
 又、複数の対基板作業機WMの各々は、ライン管理装置LCに動作状況及び生産状況を送信する。ここで、本実施形態においては、対基板作業機WMのうち、第一作業機である印刷機WM1、第二作業機である部品装着機M3、及び、他の対基板作業機である部品装着機M2は、基板Kの少なくとも一部の検査領域TAを対象として撮像された画像データPDをライン管理装置LCに出力する。尚、印刷機WM1については、印刷機WM1に設けられて作動を統括的に制御する制御装置(図示省略)又はライン管理装置LCによる制御に従い、カメラ装置Sが検査領域TAを撮像し画像データPDを出力する。
 管理装置HCは、少なくとも一つのライン管理装置LCを管理する。例えば、ライン管理装置LCによって取得された対基板作業機WMの動作状況及び生産状況は、必要に応じて、管理装置HCに送信される。管理装置HCには、記憶装置が設けられている。記憶装置は、対基板作業機WMが取得した種々の取得データを保存することができる。例えば、対基板作業機WMによって撮像された種々の画像データは、取得データに含まれる。対基板作業機WMによって取得された稼働状況の記録(ログデータ)等は、取得データに含まれる。又、記憶装置は、基板製品Kpの生産に関する種々の生産情報を保存することができる。
 対基板作業ラインWLは、入出力装置40を備えている。入出力装置40は、公知の入出力装置を用いることができる。入出力装置40は、表示部を備えており、各種データを視認可能に表示する。又、表示部は、タッチパネルにより構成されており、作業者による種々の操作を受け付ける入力装置としても機能する。
2.部品装着機WM3の構成例
 部品装着機WM3は、基板Kに複数の部品Pを装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15及び制御装置16を備えている。
 基板搬送装置11は、例えば、ベルトコンベア等によって形成された搬送路に沿って、基板Kを搬送方向(X軸方向)に搬送する。ここで、基板Kは、回路基板であり、例えば、電子回路、電気回路、磁気回路等が形成される。基板搬送装置11は、部品装着機WM3の機内に基板Kを搬入し、機内の所定位置に基板Kを位置決めする。基板搬送装置11は、部品装着機WM3による複数の部品Pの装着処理が終了した後に、基板Kを部品装着機WM3の機外に搬出する。
 部品供給装置12は、基板Kに装着される複数の部品Pを供給する。部品供給装置12は、基板Kの搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。複数のフィーダ121の各々には、リールが装備される。リールには、複数の部品Pが収納されているキャリアテープが巻回されている。フィーダ121は、キャリアテープをピッチ送りさせて、フィーダ121の先端側に位置する供給位置において部品Pを採取可能に供給する。又、部品供給装置12は、チップ部品等に比べて比較的大型の電子部品(例えば、リード部品等)を、トレイ上に配置した状態で供給することもできる。
 部品移載装置13は、ヘッド駆動装置131及び移動台132を備えている。ヘッド駆動装置131は、直動機構によって移動台132を、X軸方向及びY軸方向(水平面においてX軸方向と直交する方向)に移動可能に構成されている。移動台132は、クランプ部材によって装着ヘッド20が着脱可能(交換可能)に設けられている。装着ヘッド20は、少なくとも一つの保持部材21を用いて、部品供給装置12によって供給された部品Pを採取し保持して、基板搬送装置11によって位置決めされた基板Kに部品Pを装着する。保持部材21は、例えば、吸着ノズル、チャック等を用いることができる。
 部品カメラ14は、光軸が鉛直方向(X軸方向及びY軸方向と直交するZ軸方向)において上向きになるように、部品装着機WM3の基台に固定されている。このため、部品カメラ14は、保持部材21に保持されている部品P等を鉛直方向にて下方から撮像することができる。
 基板カメラ15は、光軸が鉛直方向(Z軸方向)において下向きとなるように、部品移載装置13の移動台132に設けられている。このため、基板カメラ15は、移動台132と共にX軸方向及びY軸方向に移動して、基板K及び基板Kに装着された部品Pを鉛直方向にて上方から撮像することができる。
 ここで、上述したように、本実施形態において第一作業機である印刷機WM1に設けられるカメラ装置Sは、基板カメラ15と同様に構成されると共に同様に作動する。このため、カメラ装置Sは、印刷機WM1の機内において、上述した部品装着機WM3のヘッド駆動装置131及び移動台132に相当する図示省略の駆動装置によってX軸方向及びY軸方向に移動して、基板K及び基板Kに印刷された接合部材Bであるはんだを鉛直方向にて上方から撮像することができる。
 部品カメラ14及び基板カメラ15は、制御装置16から送出される制御信号に基づいて、撮像を行う。そして、部品カメラ14によって撮像された撮像画像の画像データは、制御装置16に送信される。又、基板カメラ15によって撮像された撮像画像の画像データPDは、制御装置16及びライン管理装置LCに送信される。尚、部品カメラ14及び基板カメラ15(カメラ装置S)は、CCDやCMOS等の撮像素子を有する公知のデジタル式の撮像装置を用いることができるため、その詳細な構造についての説明を省略する。
 制御装置16は、CPU、ROM、RAM、各種インターフェース等を有するコンピュータ装置及び各種情報を記憶する記憶装置等を備えている。制御装置16は、各々の部品装着機WM3に設けられている各種センサから出力される検出値や情報、或いは、撮像画像を表す各種画像データ(画像データPDを含む)等が入力される。制御装置16は、制御プログラムを実行し、例えば、予め設定されている所定の装着条件等に応じて、各装置に制御信号を送出する。
 例えば、制御装置16は、部品装着機WM3において基板搬送装置11によって位置決めされた基板Kを基板カメラ15に撮像させる。そして、制御装置16は、基板カメラ15によって撮像された画像を画像処理し、基板Kの位置決め状態を認識する。又、制御装置16は、部品供給装置12によって供給された部品Pを保持部材21に採取させて保持させ、保持部材21に保持されている部品Pを部品カメラ14に撮像させる。そして、制御装置16は、部品カメラ14によって撮像された画像を画像処理し、部品Pの姿勢を認識する。
 制御装置16は、制御プログラムを実行し、予め設定されている装着予定位置の上方に向かって保持部材21を移動させる。又、制御装置16は、基板Kの位置決め状態や部品Pの姿勢等に基づいて装着予定位置を補正し、実際に部品Pを装着する装着位置を設定する。尚、装着予定位置及び装着位置は、位置(X軸座標及びY軸座標)に加え、回転角度も含む。
 制御装置16は、装着位置に合わせて、保持部材21の目標位置(X軸座標及びY軸座標)と回転角度とを補正する。そして、制御装置16は、補正された目標位置において補正された回転角度で保持部材21を下降させ、基板Kに部品Pを装着する。制御装置16は、上述したようにピックアンドプレースサイクルを繰り返すことにより、基板Kに複数の部品Pを装着する装着処理を実行する。
 3.検査装置30の構成例
 例えば、対基板作業機WMは、撮像装置(部品装着機WM3では、例えば、部品カメラ14、基板カメラ15等)によって取得された画像データPDを画像処理した結果が不良の場合に、対基板作業を停止する場合がある。又、対基板作業機WMは、対基板作業を継続できない状況(部品装着機WM3では、例えば、装着する部品Pの不足等)が発生した場合に、対基板作業を停止する場合がある。更に、作業者が停止ボタンを操作し、対基板作業機WMによる対基板作業を停止させる場合がある。
 対基板作業が停止している場合に、図2に示すように、部品Pの装着位置に異物C(例えば、他の部品P、ごみ等)が付着していると、部品Pの装着が不良(例えば、部品Pの不装着、浮き、傾き等)になる可能性があり、基板Kに付着する異物Cの有無を判断する必要がある。この場合に、基板Kの少なくとも一部の同一の検査領域TAを撮像した複数の画像データPDを比較して、画像データPDの特徴量(例えば、画素の輝度等)の差異に基づいて異物Cの有無を判断することが想定される。
 この場合、対基板作業ラインWLを構成する各々の対基板作業機WMにおいて、例えば、機内に基板Kが搬入された際の画像データPDと対基板作業の直前に撮像された画像データPDとを比較することにより、異物Cの有無を判断することができる。しかしながら、対基板作業ラインWLのように、基板Kが複数の対基板作業機WMの間を順次搬送されて、即ち、複数の対基板作業工程を経て最終的に基板製品Kpが生産される場合、基板Kに付着した異物Cが何処で(どの対基板作業機WMを用いたどの対基板作業工程で)基板Kの検査領域TAに付着したのかを判断したいという要請がある。
 又、対基板作業が停止した場合に、基準となる画像データPDを取得してから、検査の対象となる画像データPDを取得するまでの間に、例えば、対基板作業が停止した原因を解消するために、時間を要する場合がある。対基板作業が停止した状態が継続すると、基板Kの状態、特に、接合部材Bの状態が変化する可能性があるため、対基板作業が停止した時点の基板Kの検査領域TAの状態を取得したいという要請がある。
 そこで、本実施形態においては、検査装置30は、複数の対基板作業工程に亘って基板Kの検査領域TAの状態を判断することができる構成を採用する。具体的には、検査装置30は、取得部31と、判断部32とを備える。又、本実施形態においては、検査装置30は、設定部33を備える。更に、本実施形態においては、検査装置30は、案内部34を備える。つまり、本実施形態においては、図3に示すように、検査装置30は、取得部31と、判断部32と、設定部33と、案内部34とを備える。
 これらにより、検査装置30は、対基板作業ラインWLに適用された場合、第一作業機である印刷機WM1にて基板Kの検査領域TAを撮像した画像データPD(以下、「基準画像データPDb」と称呼する。)と、第二作業機である部品装着機M3にて基板Kの検査領域TAを撮像した画像データPD(以下、「検査画像データPDt」と称呼する。)とを取得し、基準画像データPDbと検査画像データPDtとを比較することができる。そして、検査装置30は、基準画像データPDbと検査画像データPDtとを比較することによって、基板Kの検査領域TAの状態を判断することができる。
 尚、検査装置30は、種々の制御装置に設けることができる。例えば、検査装置30は、部品装着機WM3(M3)の制御装置16、ライン管理装置LC、管理装置HC等に設けることができる。検査装置30は、クラウド上に形成することもできる。本実施形態においては、検査装置30を構成する取得部31、判断部32、設定部33及び案内部34は、図3に示すように、ライン管理装置LCに設けられる場合を例示する。
3-1.取得部31
 取得部31は、基板Kの少なくとも一部の検査領域TAを対象として基板Kに対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データPDを取得する。ここで、本実施形態の取得部31は、印刷機WM1において基板Kの検査領域TAを撮像した画像データPDを基準画像データPDbとして取得し、部品装着機M3において基板Kの検査領域TAを撮像した画像データPDを検査画像データPDtとして取得する。
 即ち、取得部31は、印刷機WM1における対基板作業である接合部材B(はんだ)が塗布された直後において、印刷機WM1に設けられたカメラ装置Sが基板Kの検査領域TAに移動して撮像された基準画像データPDbを取得する。又、取得部31は、部品装着機M3における対基板作業である検査領域TA内への部品Pの装着が実行される直前において、部品装着機M3に設けられた基板カメラ15が基板Kの検査領域TAに移動して、具体的には、基板Kに対する印刷機WM1のカメラ装置Sの撮像位置と同一位置に移動して撮像された検査画像データPDtを取得する。
 尚、検査領域TAの大きさがカメラ装置Sや基板カメラ15のカメラ視野の大きさを超える場合には、取得部31は、例えば、カメラ装置Sや基板カメラ15が検査領域TA内を移動して撮像した複数の画像データPDを合成する。これにより、取得部31は、1つの基準画像データPDb及び1つの検査画像データPDtを取得する。
3-2.判断部32
 判断部32は、取得部31によって印刷機WM1から取得された基準画像データPDbと部品装着機M3から取得された検査画像データPDtとを比較することにより、検査領域TAの状態を判断する。本実施形態の判断部32は、基準画像データPDbと検査画像データPDtとを比較することによって検査領域TAの特徴量の差異を検知し、検査領域TAの状態として、検査領域TAに付着する異物Cの有無(存在状態)を判断する。
 ここで、本実施形態においては、特徴量として、基準画像データPDb及び検査画像データPDtの画像処理によって取得可能な画素ごとの輝度を例示して説明する。尚、特徴量については、画像データPDを画像処理して取得可能なものであれば良く、限定されない。二つの画像データPD(基準画像データPDb及び検査画像データPDt)の画素ごとの輝度、彩度、明度等は、特徴量に含まれる。又、二つの画像データPD(基準画像データPDb及び検査画像データPDt)の各々を画像処理(例えば、二値化処理等)して取得される閉領域の面積、閉領域の外周の長さ等は、特徴量に含まれる。
 そして、判断部32は、例えば、基準画像データPDb及び検査画像データPDtの各々から取得した検査領域TAの特徴量の差分が所定閾値を超えている場合に、検査領域TAに異物Cが存在する(有る)と判断する。一方、判断部32は、例えば、基準画像データPDb及び検査画像データPDtの各々から取得した検査領域TAの特徴量の差分が所定閾値以下の場合に、検査領域TAに異物Cが存在しない(無い)と判断する。
3-3.設定部33
 設定部33は、基板Kの装着される複数の部品Pのうちの特定部品(例えば、BGA(Ball Grid Array)の部品P等)が装着される装着位置を表す装着位置情報Jsと、部品を識別するための部品情報Jpとに基づいて、装着位置が含まれるように検査領域TAを設定する。尚、装着位置情報Jsは、シーケンス座標によって指定された装着位置、部品Pを装着する際の装着角度、装着順序等が含まれる。部品情報Jpは、部品Pの大きさ、部品Pの形状、最大搬送加速度等が含まれる。
 具体的に、設定部33は、例えば、管理装置HCから、予め紐付けされて入力されている部品Pの装着位置情報Jsと装着位置情報Jsによって表される装着位置に装着される部品Pの部品情報Jpとを取得する。そして、設定部33は、部品情報Jpに基づいて、基板Kに装着される部品Pが、例えば、BGA等の特定部品であれば、紐付けされている装着位置情報Jsに基づいてBGA等の特定部品が装着される装着位置を含むように検査領域TAを設定する。尚、設定部33によって設定される検査領域TAは、例えば、カメラ装置Sや基板カメラ15のカメラ視野の形状に合わせて、装着位置(シーケンス座標)と部品Pの外形(大きさ)と余裕分を含む矩形状に設定されると良い。
 そして、設定部33は、設定した検査領域TAを表す設定情報Jaを印刷機WM1及び部品装着機M3に出力する。これにより、印刷機WM1は、設定情報Jaに従ってカメラ装置Sを設定された検査領域TAに移動させ、撮像した基準画像データPDbを取得部31に出力する。又、部品装着機M3は、設定情報Jaに従って基板カメラ15を設定された検査領域TAに移動させ、撮像した検査画像データPDtを取得部31に出力する。尚、設定情報Jaについては、検査領域TAを表す情報に代えて、又は、加えて、装着位置情報Js及び部品情報Jpとすることも可能である。
 ここで、設定部33は、管理装置HCから取得した装着位置情報Js及び部品情報Jpに基づいて自動的に検査領域TAを設定することに代えて、又は、加えて、例えば、対基板作業ラインWLにおいて作業を行う作業者が指定した領域を検査領域TAとして設定することも可能である。本実施形態の対基板作業ラインWLは、入出力装置40を備えている。作業者は、例えば、図3において破線により示す入出力装置40を用いて、任意の領域(基板Kの全体又は基板Kの一部の装着位置)を検査領域TAとして設定することができる。この場合、設定部33は、例えば、基板Kにおける部品Pの装着位置を入出力装置40の表示部に模式的に表示させて、作業者が任意の装着位置を選択可能にすることができる。
3-4.案内部34
 案内部34は、判断部32によって判断された検査領域TAの状態を案内する。例えば、案内部34は、判断部32によって検査領域TAに異物Cが有ると判断された場合に、作業者に異物Cの存在を案内する。この場合、案内部34は、作業者に異物Cの存在を案内することができれば良く、種々の形態を取り得る。例えば、案内部34は、入出力装置40を用いて、作業者に異物Cの存在を案内(例えば、表示、音声案内等)することができる。
 具体的には、案内部34は、異物Cが付着している基板Kが存在する旨、基板Kにおいて異物Cが付着している位置、或いは、第二作業機である対基板作業機WMが複数存在する場合には基板Kが存在する対基板作業機WM等を案内することができる。これにより、作業者は、異物Cが付着している基板Kを確認することができ、対処(例えば、基板Kの搬出等)行うことができる。尚、案内部34は、作業者が所有する携帯端末機を用いて、作業者に異物Cの存在を同様に案内(例えば、表示、音声案内、振動等)することもできる。
4.検査装置30による検査領域TAの状態の判断について
 本実施形態においては、検査装置30が、検査領域TAの状態として異物Cの有無を判断する場合を例示する。
 取得部31は、基板Kに所定の対基板作業を行う対基板作業機WMによる対基板作業の進行に応じた複数回に亘る撮像により、基板Kの少なくとも一部の検査領域TAを撮像して、同一の検査領域TAを撮像した複数の画像データPDを取得する。具体的に、取得部31は、印刷機WM1において撮像された画像データPD即ち基準画像データPDbを取得し、部品装着機M3において撮像された画像データPD即ち検査画像データPDtを取得する。ここで、本実施形態においては、検査領域TAは、設定部33によって自動的に設定される。
 判断部32は、取得部31から印刷機WM1において撮像された画像データPDを基準画像データPDbとして取得する。又、判断部32は、取得部31から部品装着機M3において取得された画像データPDを検査画像データPDtとして取得する。そして、本実施形態においては、判断部32は、基準画像データPDb及び検査画像データPDtをそれぞれ画像処理して取得した検査領域TAの特徴量(例えば、画素の輝度等)の差異に基づいて、検査領域TAに付着する異物Cの有無を判断する。
 即ち、判断部32は、基準画像データPDb及び検査画像データPDtの各々から取得した検査領域TAの特徴量の差分が所定閾値を超えている場合に、検査領域TAに異物Cが有ると判断する。一方、判断部32は、検査領域TAの特徴量の差分が所定閾値以下の場合に、検査領域TAに異物Cが無いと判断する。
 尚、所定閾値は、検査領域TAに異物Cが付着していないときの特徴量よりも大きく、且つ、検査領域TAに異物Cが付着しているときの特徴量よりも小さくなるように設定される。所定閾値は、例えば、シミュレーション、実機による検証等によって、予め取得される。
 図4及び図5は、取得部31によって取得された複数(2つ)の画像データPDの一例を模式的に示している。図4は、第一作業機としての印刷機WM1において接合部材B(はんだ)が塗布された直後に撮像された検査領域TAの基準画像データPDbを示している。又、図5は、第二作業機である部品装着機M3において部品Pが実装される直前に撮像された検査領域TAの検査画像データPDtを示している。尚、図4及び図5では、説明の便宜上、格子状に配置されている複数の画素が合わせて図示されている。又、図4及び図5に示す領域Rは、検査領域TAのうちの同一の領域(同一の複数の画素の集合)を示している。
 領域Rに異物Cが有る場合、基準画像データPDbについて図4に示す検査領域TAの領域Rに含まれる画素の輝度と、検査画像データPDtについて図5に示す検査領域TAの領域Rに含まれる画素の輝度と、の差分が所定閾値を超える。逆に、領域Rに異物Cが無い場合、基準画像データPDbについて図4に示す検査領域TAの領域Rに含まれる画素の輝度と、検査画像データPDtについて図5に示す検査領域TAの領域Rに含まれる画素の輝度との差分が所定閾値以下になる。
 従って、判断部32は、基準画像データPDbについて図4に示す検査領域TAの領域Rに含まれる画素の輝度と、検査画像データPDtについて図5に示す検査領域TAの領域Rに含まれる画素の輝度との差分が所定閾値を超えているときに、検査領域TAに異物Cが有ると判断する。一方、判断部32は、基準画像データPDbについて図4に示す検査領域TAの領域Rに含まれる画素の輝度と、検査画像データPDtについて図5に示す検査領域TAの領域Rに含まれる画素の輝度との差分が所定閾値以下のときに、検査領域TAに異物Cが無いと判断する。尚、輝度の比較は、例えば、対応する画素ごとに行われる。
 そして、案内部34は、判断部32によって検査領域TAに異物Cが有ると判断された場合に、作業者に異物Cの存在を案内する。例えば、案内部34は、入出力装置40を用いて、作業者に異物Cの存在を案内(例えば、表示、音声案内等)する。或いは、案内部34は、作業者が所有する携帯端末機を用いて、作業者に異物Cの存在を同様に案内する。
5.検査方法
 検査装置30について上述したことは、検査方法についても同様に言える。具体的には、検査方法は、取得工程と、判断工程とを備えている。取得工程は、取得部31が行う制御に相当する。判断工程は、判断部32が行う制御に相当する。又、検査方法は、設定工程を備えることができる。設定工程は、設定部33が行う制御に相当する。更に、検査方法は、案内工程を備えることもできる。案内工程は、案内部34が行う制御に相当する。
 以上の説明からも理解できるように、検査装置30によれば、第一作業機である印刷機WM1が接合部材Bであるはんだを基板Kに塗布する作業工程から第二作業機である部品装着機M3が部品Pを装着する作業工程、即ち、複数の対基板作業工程に亘って基板Kの検査領域TAの状態を判断することができる。検査装置30について上述したことは、検査方法についても同様である。
6.第一変形例
 上述した実施形態においては、検査装置30の判断部32が、検査領域TAの状態として異物Cの有無を判断する場合を例示した。しかしながら、検査装置30においては、検査領域TAの状態として,判断部32が基板Kの検査領域TAに塗布された接合部材B(はんだ)の状態を判断することもできる。以下、この第一変形例を説明する。
 第一変形例においても、判断部32は、取得部31によって印刷機WM1から取得された基準画像データPDbと部品装着機M3から取得された検査画像データPDtとを比較することにより、検査領域TAの状態を判断する。具体的に、第一変形例においては、判断部32は、基準画像データPDbと検査画像データPDtとを比較することによって検査領域TAに塗布された接合部材B(はんだ)の経時変化を検知し、検査領域TAの状態として、検査領域TAに塗布された接合部材B(はんだ)の状態を判断する。
 図6は、対基板作業が停止するまでの基板Kの状態の一例を示している。図6においては、例えば、部品装着機M2において対基板作業が停止するまでの基板Kの状態が画像データPDを用いて模式的に示されている。この場合においても、取得部31は、印刷機WM1において撮像された画像データPDを基準画像データPDbとして取得する。
 そして、基板Kが部品装着機M1よりも下流側の「他の対基板作業機」である部品装着機M2に搬送され、部品装着機M2において対基板作業が停止したと仮定する。取得部31は、対基板作業が停止した部品装着機M2にて、対基板作業が停止したタイミングにおいて検査領域TAを撮像して第一画像データPD1を取得する。
 尚、第一変形例においては、部品装着機M2を「他の対基板作業機」とするが、例えば、部品装着機M2における装着作業の負荷が高く作業時間が長くなる場合(所謂、ボトルネックになり得る場合)や、メンテナンス等によって計画的に停止する場合は、部品装着機M1や他の対基板作業を行う対基板作業機WMを「他の対基板作業機」に任意に設定することも可能である。即ち、この場合には、部品装着機M1や対基板作業機WMにて、対基板作業が停止したタイミングにおいて検査領域TAを撮像して第一画像データPD1を取得することができる。
 図6に示す基準画像データPDb及び第一画像データPD1は、検査領域TAの特徴量の差異が少なく(特徴量の差分が所定閾値以下であり)、判断部32は、検査領域TAに異物Cが無いと判断する。尚、図6においては、部品装着機M2よりも下流側の第二作業機である部品装着機M3には、対象の基板Kが未だ搬送されておらず、画像データPDは、空白で示されている。
 このように、判断部32は、取得部31によって「他の対基板作業機」である部品装着機M2にて第一画像データPD1が取得された場合に、上述した実施形態と同様に、異物Cの有無を判断することができる。これにより、判断部32は、取得部31によって基準画像データPDbが取得されてから「他の対基板作業機」である部品装着機M2において対基板作業が停止するまでに、検査領域TAに付着する異物Cの有無を判断することができる。
 又、以下に示すように、判断部32は、所定の条件が成立する場合に、検査領域TAに塗布されている基板Kと部品Pを接合する接合部材B即ち検査領域TAに印刷されたはんだの経時変化を判断することもできる。例えば、対基板作業が停止した状態が継続すると画像データPDを画像処理して取得した検査領域TAの特徴量が接合部材B(はんだ)の経時変化によって変動する可能性がある。具体的に、接合部材Bがはんだの場合、含有するフラックスが乾燥するにつれて、銀色から灰色に変色する。このため、はんだの経時変化によって検査領域TAの特徴量が変動する可能性があり、この場合、判断部32は、経時変化したはんだを異物Cと誤判断する可能性がある。
 ここで、図6に示すように、対基板作業が停止してから再開されるまでの時間を停止時間Qとする。又、検査領域TAに塗布されている接合部材B(はんだ)の経時変化によって検査領域TAの特徴量が変動しても接合部材Bが異物Cと誤判断されない停止時間Qを許容時間Tとする。停止時間Qが許容時間Tよりも短くなるほど、部品装着機M3において異物Cの有無を判断する際に、接合部材Bの経時変化の影響を受け難くなり、対基板作業が停止した部品装着機M2において異物Cの有無を判断しておく必要度が低下する。
 逆に、停止時間Qが許容時間Tよりも長くなると、上述した実施形態において説明したように、第二作業機である部品装着機M3において異物Cの有無を判断する際に、接合部材Bの経時変化の影響を受け易くなり、判断部32は、接合部材Bを異物Cと誤判断し易くなる。このため、第一変形例においては、停止時間Qが許容時間Tよりも長くなる場合、判断部32は、対基板作業が停止した部品装着機M2において異物Cの有無を判断する。尚、第一変形例における判断部32による検査領域TAの状態の判断については、部品装着機M2にて撮像された第一画像データPD1を検査画像データPDtとして取得して用いること以外上述した実施形態と同様であるため、その説明を省略する。
 尚、停止時間Qについては、実測される実時間を用いることは言うまでもなく、例えば、対基板作業が停止した原因と復帰作業の内容等に基づいて推定時間を用いることが可能である。又、許容時間Tは、例えば、シミュレーション、実機による検証等によって、予め取得することができる。
 又、接合部材Bの種類に応じて許容時間Tが異なる場合があり、判断部32は、接合部材Bの種類に応じた許容時間Tを用いることもできる。例えば、判断部32は、はんだの種類に応じた許容時間Tを用いることができる。又、判断部32は、接着剤の種類に応じた許容時間Tを用いることができる。
 或いは、判断部32は、接合部材Bの種類と許容時間Tとの関係を示すデータを参照して、接合部材Bの種類に応じた許容時間Tを決定することもできる。尚、接合部材Bの種類と許容時間Tとの関係を示すデータは、検査装置30に記憶されていても良く、又は、検査装置30と通信可能な他の装置に記憶されていて通信により取得するようにしても良い。
 更に、部品装着機WM3の機内の温度が高くなるほど、接合部材Bであるはんだは、含有するフラックスの乾燥が早くなり易い。又、部品装着機WM3の機内の湿度が低くなるほど、接合部材Bであるはんだは、含有するフラックスの乾燥が早くなり易い。従って、判断部32は、部品装着機WM3の機内の温度及び湿度のうちの少なくとも一つに応じた許容時間Tを用いることもできる。
 この場合、判断部32は、例えば、部品装着機WM3の機内の温度及び湿度のうちの少なくとも一つと許容時間Tとの関係を示すデータを参照して、部品装着機WM3の機内の温度及び湿度のうちの少なくとも一つに応じた許容時間Tを決定することができる。尚、部品装着機WM3の機内の温度及び湿度のうちの少なくとも一つと許容時間Tとの関係を示すデータは、検査装置30に記憶されていても良く、又は、検査装置30と通信可能な他の装置に記憶されていて通信により取得するようにしても良い。
 そして、案内部34は、判断部32によって検査領域TAに異物Cが有ると判断された場合に、作業者に異物Cの存在を案内する。例えば、案内部34は、入出力装置40を用いて、作業者に異物Cの存在を案内(例えば、表示、音声案内等)する。或いは、案内部34は、作業者が所有する携帯端末機を用いて、作業者に異物Cの存在を同様に案内する。
 従って、第一変形例においては、判断部32は、第一作業機である印刷機WM1と第二作業機である部品装着機M3との間の対基板作業機である「他の対基板作業機」としての部品装着機M2において取得部31が取得した第二画像データPD2を検査画像データPDtとすることができる。そして、第一変形例においては、判断部32は、印刷機WM1にて撮像された(取得された)基準画像データPDbと、部品装着機M2において取得部31が取得した第二画像データPD2即ち検査画像データPDtとを比較することによって検査領域TAの状態を判断することができる。これにより、第一変形例においても、上述した実施形態と同様の効果が得られる。
7.第二変形例
 上述した第一変形例において説明したように作業が停止した場合、印刷機WM1にて撮像された基準画像データPDbによって表される基準となる検査領域TAの状態に経時変化が生じている可能性がある。特に、上述した第一変形例の場合には、対基板作業が再開された場合に、基準となる検査領域TAの状態が変化している可能性が高い。ここで、第一作業機である印刷機WM1によって取得された(撮像された)基準画像データPDbは、印刷機WM1と第二作業機である部品装着機M3との間の対基板作業機即ち「他の対基板作業機」である部品装着機M2において取得部31が取得した画像データPDによって更新可能である。
 そこで、第一変形例においては、例えば、対基板作業が停止した時間が長い場合、印刷機WM1にて撮像された基準画像データPDbを、「他の対基板作業機」である部品装着機M2にて撮像された画像データPDを用いて更新する。以下、第二変形例を説明するが、理解を容易とするために、上述した第一変形例において対基板作業が再開された状況を例示して説明する。
 尚、第二変形例においては、部品装着機M2を「他の対基板作業機」とするが、例えば、部品装着機M2における装着作業の負荷が高く作業時間が長くなる場合(所謂、ボトルネックになり得る場合)や、メンテナンス等によって計画的に停止する場合は、部品装着機M1や他の対基板作業を行う対基板作業機WMを「他の対基板作業機」に任意に設定することも可能である。即ち、この場合には、部品装着機M1や対基板作業機WMが撮像した画像データPDによって基準画像データPDbを更新することができる。
 図7は、対基板作業が再開された後の基板Kの状態の一例を示している。図7においては、部品装着機M2において対基板作業が再開された後の基板Kの状態が画像データPDを用いて模式的に示されている。尚、図7においては、接合部材Bが図示の便宜上、黒色で示されており、対基板作業が停止している間に、接合部材Bが経時変化したことを模式的に示している。
 取得部31は、対基板作業が再開された場合に、検査領域TAを撮像して第二画像データPD2を取得する。具体的に、取得部31は、「他の対基板作業機」であり、対基板作業が再開される部品装着機M2において、基板カメラ15によって撮像された画像データPDを第二画像データPD2として取得する。従って、第二画像データPD2は、対基板作業が再開された時点の画像データPDである。
 判断部32は、取得部31から第二画像データPD2を取得する。そして、判断部32は、印刷機WM1にて撮像された(取得された)基準画像データPDbを第二画像データPD2によって更新することによって第二画像データPD2を新たな基準画像データPDbとする。そして、判断部32は、更新された新たな基準画像データPDbと対基板作業が再開された後に部品装着機M3にて撮像された(取得された)検査画像データPDtとを用いて、検査領域TAの状態を判断する。
 ここで、図6に示す基準画像データPDbを画像処理して取得した検査領域TAの特徴量(接合部材Bが白色)、及び、図7に示す検査画像データPDtを画像処理して取得した検査領域TAの特徴量(接合部材Bが黒色)は、差異が大きく、特徴量の差分が所定閾値を超えている。従って、判断部32は、検査領域TAに異物Cが有ると誤判断してしまう。これに対して、第二画像データPD2によって基準画像データPDbが更新される場合、判断部32は、図7に示す基準画像データPDb及び検査画像データPDtを各々画像処理して取得した検査領域TAの特徴量の差異に基づいて、異物Cの有無を判断する。
 この場合、図7に示す基準画像データPDbを画像処理して取得した検査領域TAの特徴量(接合部材Bが黒色)、及び、図7に示す検査画像データPDtを画像処理して取得した検査領域TAの特徴量(接合部材Bが黒色)は、差異が少なく、特徴量(例えば、画素の輝度等)の差分が所定閾値以下である。従って、判断部32は、検査領域TAに異物Cが無いと判断する。つまり、接合部材Bの経時変化による異物Cの誤判断が抑制される。なお、図7は、対基板作業が再開された後の基板Kの状態を示しており、部品装着機M2よりも上流側の印刷機WM1及び部品装着機M1の画像データPDは、空白で示されている。
 従って、第二変形例においては、対基板作業が再開されたタイミングにおいて、検査領域TAを撮像して第二画像データPD2を取得することができる。これにより、検査装置30は、対基板作業が再開された時点の第二画像データPD2を新たな基準画像データPDbとして用いることができ、例えば、検査領域TAの状態を判断することに対する接合部材Bの経時変化の影響を抑制することができる。その結果、第二変形例においては、上述した実施形態及び第一変形例と同様の効果が得られると共に、対基板作業が停止して再開された場合における検査領域TAの状態の判断精度を向上させることができる。
8.その他の変形例
 上述した実施形態及び各変形例の部品装着機WM3においては、基板搬送装置11が、1つのコンベアベルト等によって形成された1つの搬送路に沿って1つの基板Kを搬送するようにした。これに代えて、部品装着機が、例えば、2つのコンベアベルト等の各々によって形成された2つの搬送路に沿って2つの基板Kをそれぞれ独立して搬送可能な基板搬送装置を備えた部品装着機であっても良い。
 又、上述した実施形態及び各変形例の部品装着機WM3においては、部品移載装置13のヘッド駆動装置131及び移動台132を1組だけ備え、移動台132に装着ヘッド20を1つ備えるようにした。これに代えて、部品移載装置が、互いに対向するように配置された2組のヘッド駆動装置及び移動台を備え、各々の移動台に装着ヘッドを備えるようにした、所謂、対向(ダブル)型の部品装着機であっても良い。
 又、上述した実施形態及び各変形例においては、検査装置30が設定部33を備えるようにした。しかしながら、例えば、基板Kにおける検査領域TAが予め設定されていて検査領域TAの設定が不要である場合には、設定部33を省略することも可能である。又、上述した実施形態及び各変形例においては、検査装置30が案内部34を備えるようにした。しかしながら、例えば、作業者に対する案内が不要である場合には、案内部34を省略することも可能である。
 更に、上述した実施形態及び各変形例においては、取得部31が部品装着機WM3に設けられた基板カメラ15から画像データPDを取得する場合を例示して説明した。しかしながら、取得部31は、基板カメラ15から画像データPDを取得することに限らず、別途設けられた撮像装置(カメラ等)から画像データPDを取得しても良い。
 15…基板カメラ、30…検査装置、31…取得部、32…判断部、33…設定部、34…案内部、K…基板、Kp…基板製品、P…部品、C…異物、B…接合部材、TA…検査領域、PD…画像データ、PD1…第一画像データ、PD2…第二画像データ、PDb…基準画像データ、PDt…検査画像データ、WM…対基板作業機、WM1…印刷機(第一作業機)、WM3(M3)…部品装着機(第二作業機)、WM3(M2)…部品装着機(他の対基板作業機)、S…カメラ装置、LC…ライン管理装置、HC…管理装置、Js…装着位置情報、Jp…部品情報
 

Claims (14)

  1.  基板の少なくとも一部の検査領域を対象として前記基板に対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データを取得する取得部と、
     前記対基板作業として前記検査領域に接合部材を塗布する第一作業機において取得された前記画像データを基準画像データとし、前記基準画像データと前記対基板作業として前記検査領域に部品を装着する第二作業機において取得された前記画像データである検査画像データとを比較することによって前記検査領域の状態を判断する判断部と、
     を備えた、検査装置。
  2.  前記判断部は、
     前記基準画像データと前記検査画像データとを比較することによって前記検査領域の特徴量の差異を検知し、前記検査領域の状態として、前記検査領域に付着する異物の存在状態を判断する、請求項1に記載の検査装置。
  3.  前記判断部は、
     前記基準画像データと前記検査画像データとを比較することによって前記検査領域に塗布された前記接合部材の経時変化を検知し、前記検査領域の状態として、前記検査領域に塗布された前記接合部材の状態を判断する、請求項1に記載の検査装置。
  4.  前記基板の装着される複数の前記部品のうちの特定部品が装着される装着位置を表す装着位置情報と、前記部品を識別するための部品情報とに基づいて、前記装着位置が含まれるように前記検査領域を設定する設定部を備える、請求項1-3の何れか一項に記載の検査装置。
  5.  前記判断部によって判断された前記検査領域の状態を案内する案内部を備える、請求項1-3の何れか一項に記載の検査装置。
  6.  前記判断部は、前記基準画像データ及び前記検査画像データの各々から取得した前記検査領域の前記特徴量の差分が所定閾値を超えている場合に、前記検査領域に前記異物が存在すると判断し、前記特徴量の前記差分が所定閾値以下の場合に、前記検査領域に前記異物が存在しないと判断する、請求項2に記載の検査装置。
  7.  前記特徴量は、前記基準画像データ及び前記検査画像データの画像処理によって取得可能な、画素ごとの輝度である、請求項6に記載の検査装置。
  8.  前記取得部は、前記第一作業機及び前記第二作業機に設けられて前記基板の一部を撮像可能な基板カメラの撮像によって前記画像データを取得する、請求項1-3の何れか一項に記載の検査装置。
  9.  前記判断部は、前記第一作業機と前記第二作業機との間の対基板作業機において前記取得部が取得した前記画像データを前記検査画像データとし、前記基準画像データと、前記対基板作業機において前記取得部が取得した前記検査画像データとを比較することによって前記検査領域の状態を判断する、請求項1-3の何れか一項に記載の検査装置。
  10.  前記第一作業機によって取得された前記基準画像データは、前記第一作業機と前記第二作業機との間の対基板作業機において前記取得部が取得した前記画像データによって更新可能であり、
     前記判断部は、前記第一作業機において前記取得部が取得した前記基準画像データ、又は、前記対基板作業機おいて前記取得部が取得した前記画像データによって更新された前記基準画像データを用いて、前記検査領域の状態を判断する、請求項1-3の何れか一項に記載の検査装置。
  11.  前記取得部は、前記対基板作業機に設けられて前記基板の一部を撮像可能なカメラの撮像によって前記画像データを取得する、請求項9に記載の検査装置。
  12.  前記取得部は、前記対基板作業機に設けられて前記基板の一部を撮像可能なカメラの撮像によって前記画像データを取得する、請求項10に記載の検査装置。
  13.  前記接合部材は、はんだであり、
     前記第一作業機は、印刷機である、請求項1-3の何れか一項に記載の検査装置。
  14.  基板の少なくとも一部の検査領域を対象として前記基板に対する所定の対基板作業の進行に応じた複数回に亘る撮像によって複数の画像データを取得する取得工程と、
     前記対基板作業として前記検査領域に接合部材を塗布する第一作業機において取得された前記画像データを基準画像データとし、前記対基板作業として前記検査領域に部品を装着する第二作業機において取得された前記画像データである検査画像データと前記基準画像データとを比較することによって前記検査領域の状態を判断する判断工程と、
     を備えた、検査方法。
PCT/JP2022/035550 2022-09-23 2022-09-23 検査装置及び検査方法 WO2024062635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035550 WO2024062635A1 (ja) 2022-09-23 2022-09-23 検査装置及び検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035550 WO2024062635A1 (ja) 2022-09-23 2022-09-23 検査装置及び検査方法

Publications (1)

Publication Number Publication Date
WO2024062635A1 true WO2024062635A1 (ja) 2024-03-28

Family

ID=90454146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035550 WO2024062635A1 (ja) 2022-09-23 2022-09-23 検査装置及び検査方法

Country Status (1)

Country Link
WO (1) WO2024062635A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303269A (ja) * 2004-03-15 2005-10-27 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2006242719A (ja) * 2005-03-02 2006-09-14 Omron Corp 半田材劣化度判断装置、半田印刷機、半田材劣化度判断方法、半田印刷方法、半田材劣化度判断プログラム、半田印刷プログラムおよびコンピュータ読み取り可能な記録媒体
JP2008258519A (ja) * 2007-04-09 2008-10-23 Fuji Mach Mfg Co Ltd 生産ラインの検査システム及び検査方法
JP2013069889A (ja) * 2011-09-22 2013-04-18 Nec Corp 不良検査装置、部品実装システム、不良検査方法、プログラム
JP2014038045A (ja) * 2012-08-17 2014-02-27 Sony Corp 検査装置、照明、検査方法、プログラム及び基板の製造方法
JP2018207023A (ja) * 2017-06-08 2018-12-27 Juki株式会社 検査装置、実装装置、検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303269A (ja) * 2004-03-15 2005-10-27 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2006242719A (ja) * 2005-03-02 2006-09-14 Omron Corp 半田材劣化度判断装置、半田印刷機、半田材劣化度判断方法、半田印刷方法、半田材劣化度判断プログラム、半田印刷プログラムおよびコンピュータ読み取り可能な記録媒体
JP2008258519A (ja) * 2007-04-09 2008-10-23 Fuji Mach Mfg Co Ltd 生産ラインの検査システム及び検査方法
JP2013069889A (ja) * 2011-09-22 2013-04-18 Nec Corp 不良検査装置、部品実装システム、不良検査方法、プログラム
JP2014038045A (ja) * 2012-08-17 2014-02-27 Sony Corp 検査装置、照明、検査方法、プログラム及び基板の製造方法
JP2018207023A (ja) * 2017-06-08 2018-12-27 Juki株式会社 検査装置、実装装置、検査方法

Similar Documents

Publication Publication Date Title
JP4767995B2 (ja) 部品実装方法、部品実装機、実装条件決定方法、実装条件決定装置およびプログラム
US8527082B2 (en) Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
JP5246064B2 (ja) 電子部品実装方法
JP4045838B2 (ja) 部品装着管理方法
JP6075932B2 (ja) 基板検査管理方法および装置
JP2007335524A (ja) 実装ライン
JP2013221766A (ja) 外観検査装置および外観検査方法
JP6047760B2 (ja) 部品実装システムおよび部品実装方法
JP4852456B2 (ja) 実装ライン及び実装方法
JP5927504B2 (ja) 部品実装システムおよび部品実装方法
JP7233974B2 (ja) 部品実装装置および部品実装システム
JP7079371B2 (ja) 補正量算出装置および補正量算出方法
WO2024062635A1 (ja) 検査装置及び検査方法
JP2014041857A (ja) 部品実装装置および部品実装方法
JP6904978B2 (ja) 部品装着機
JP5830652B2 (ja) 外観検査における較正用治具よび較正方法
JP7473735B2 (ja) 異物検出装置および異物検出方法
WO2024033961A1 (ja) 異物検出装置および異物検出方法
WO2023162142A1 (ja) 画像確認装置および画像確認方法
JP7094366B2 (ja) 検査設定装置および検査設定方法
US20230110169A1 (en) Data management device and data management method
JP7113144B2 (ja) 部品実装機
CN111937506B (zh) 元件安装***、元件安装装置以及元件安装方法
EP3315903B1 (en) Board inspection apparatus
JP2023039021A (ja) 部品実装システムおよび部品実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959599

Country of ref document: EP

Kind code of ref document: A1