WO2024058609A1 - 자연 살해 t 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신 - Google Patents

자연 살해 t 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신 Download PDF

Info

Publication number
WO2024058609A1
WO2024058609A1 PCT/KR2023/013932 KR2023013932W WO2024058609A1 WO 2024058609 A1 WO2024058609 A1 WO 2024058609A1 KR 2023013932 W KR2023013932 W KR 2023013932W WO 2024058609 A1 WO2024058609 A1 WO 2024058609A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
cancer
cells
peripheral blood
blood mononuclear
Prior art date
Application number
PCT/KR2023/013932
Other languages
English (en)
French (fr)
Inventor
강창율
송보영
전인수
Original Assignee
주식회사 셀리드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀리드 filed Critical 주식회사 셀리드
Publication of WO2024058609A1 publication Critical patent/WO2024058609A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/39Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by a specific adjuvant, e.g. cytokines or CpG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated

Definitions

  • the present invention relates to a vaccine comprising peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens, for example, cancer antigens.
  • Immunotherapy especially immune cell vaccines using antigen-presenting cells, can effectively activate CD8+ T cells and CD4+ T cells, showing excellent anticancer effects.
  • dendritic cells which phagocytose antigens and deliver them with a strong costimulatory signal to effector cells such as T cells, making them efficient as effector cells. Activates cells and induces a strong immune response.
  • cell therapy using dendritic cells first isolates dendritic cells from the patient's bone marrow or peripheral blood, or monocytes, which are their precursors, proliferates and differentiates them in large quantities into dendritic cells, then adds antigen and activates them. Use the method of injecting it back into the patient. Dendritic cells injected into the body deliver specific antigen information to T cells and activate them to effectively induce an antigen-specific immune response.
  • dendritic cells are widely used as an antigen-presenting cell vaccine because the number of dendritic cells that can be obtained directly from blood and lymphoid tissues is extremely small, their isolation is difficult, and differentiation from monocytes requires culturing in vitro for several days. It is not being used.
  • B cells exist in large quantities in lymphoid tissue or blood and can be easily proliferated in vitro, they not only serve as an efficient substitute for dendritic cells for cell vaccines, but also have the advantage of migrating to lymphoid organs after intravenous administration. Despite these advantages, B cells are not widely used as an antigen-presenting cell vaccine due to their weak immunogenicity.
  • iNKT cells Natural Killer T cells
  • Ligand-activated invariant natural killer T cells can induce the activation of dendritic cells as well as T cells, B cells, and natural killer cells.
  • Cancer cells loaded with ⁇ -GC, a ligand for natural killer T cells can induce cancer antigen-specific T cell activity, and mice administered T cells loaded with ⁇ -GC and antigen peptides can produce IFN- ⁇ and Granzyme B. It is known that expression is strongly induced and that it exhibits anticancer therapeutic effects in lung metastatic cancer mice through antigen-specific cytotoxic T lymphocyte response activity (Yeonseok Chung et al., OncoImmunology, 1:2, 141-151, 2012).
  • the present inventors have shown that by loading natural killer T cell ligands into B cells, changing the autoimmune tolerance of these cells to immunogenicity, they can generate a vigorous immune response against cancer antigens presented by the major histocompatibility complex of B cells, An effective cell therapy vaccine was manufactured by confirming that it exhibits anti-cancer effects.
  • the cell therapy for clinical trials developed from the above prior research is produced using a manufacturing process that removes T cells from the patient's peripheral blood, leaving behind B cells and monocytes.
  • this method has the disadvantage that it is difficult to separate T cells, B cells, and monocytes from peripheral blood, and the manufacturing process is complicated.
  • the present inventors have developed an anti-cancer immunotherapy and an anti-cancer immunotherapy method in which natural killer T cell ligands and antigens are loaded on peripheral blood mononuclear cells obtained without separating individual immune cells.
  • a preventive vaccine was developed.
  • Peripheral blood mononuclear cells are a general term for a group of mononuclear mesenchymal cells present in the bloodstream and are mainly composed of monocytes and lymphocytes. In general, it refers to a leukocyte fraction excluding polymorphonuclear leukocytes through non-centrifugation of blood. Lymphocytes include T cells, B cells, and natural killer cells (NK cells). Specifically, the cell therapy developed by the present inventors is based on peripheral blood mononuclear cells, which are cells with round nuclei composed of lymphocytes (T cells, B cells, and natural killer cells) and monocytes. The proportion of cells varies greatly from person to person, but is generally comprised of 45-70% T cells, 5-15% B cells, 5-10% natural killer cells, and 5-10% monocytes.
  • peripheral blood mononuclear cells which are raw materials. If the process of staining and removing T cells in existing cell therapy products is eliminated, the number of peripheral blood mononuclear cells used as raw material increases and the final production volume increases, leading to savings in time, manpower, and cost, as well as increased manufacturing volume.
  • the purpose of the present invention is to provide a vaccine for immunotherapy or prophylaxis containing peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • Another object of the present invention is to provide a method for producing a vaccine for immunotherapy or prophylaxis containing peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • the present invention provides a vaccine for immunotherapy or prevention comprising peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • the present invention provides a method for producing a vaccine for immunotherapy or prophylaxis containing peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of cancer containing as an active ingredient peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • Another object of the present invention is to provide the use of peripheral blood mononuclear cells loaded with natural killer T cell ligands and cancer antigens for use in preventing or treating cancer.
  • Another object of the present invention is to provide a method of preventing or treating cancer by administering an effective amount of peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens to a subject.
  • the present invention relates to an immunoprophylactic and therapeutic vaccine comprising peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens, and specifically, alpha-galactosylceramide (alpha-galactosylceramide), which is a natural killer T cell ligand and a type of glycolipid. It relates to an immunotherapy vaccine containing peripheral blood mononuclear cells loaded with alpha-galactosylceramide (hereinafter referred to as ⁇ -GC).
  • ⁇ -GC peripheral blood mononuclear cells loaded with alpha-galactosylceramide
  • composition of the present invention is easy to obtain because it does not require isolation of specific cells from peripheral blood mononuclear cells, and immunization of peripheral blood mononuclear cells loaded with ligands and antigens of natural killer T cells results in significant levels of natural killer cells and natural killer T cells. It not only induces the activation of killer T cells and cytotoxic T lymphocyte responses, but also has a synergistic effect in the treatment of malignant tumors, so it can be useful as an anticancer immunotherapy treatment.
  • FIG. 1 is a diagram showing the manufacturing process of a peripheral blood mononuclear cell vaccine according to an embodiment of the present invention.
  • Figure 2a shows the activity of natural killer T cells (NKT) and natural killer cells (NK) in the mouse spleen by administration of a peripheral blood mononuclear cell vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing an antigen. am.
  • Figure 2b is a diagram showing the production of IFN- ⁇ by natural killer T cells (NKT) of Figure 2a.
  • Figure 2c is a diagram showing the production of IFN- ⁇ by natural killer cells (NK) of Figure 2a.
  • Figure 3a shows an experimental method for comparing the activation of cytotoxic T cells in mice by administering a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen (target peptide : MAGE-A3 282-290 ).
  • Figure 3b is a histogram showing the results of measuring the antigen-specific cytotoxic T cell activity of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 3c is a graph showing the antigen-specific cytotoxic T cell activity of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 4a is a diagram showing an experimental method to confirm the therapeutic effect of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen on mouse solid cancer.
  • Figure 4b is a graph showing the anticancer effect (change in tumor size) of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 4c is a graph showing the anticancer effect (change in survival rate) of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 5a is a diagram showing an experimental method to confirm the therapeutic effect of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen on lung metastatic cancer.
  • Figure 5b is a photograph of the lungs of a lung metastatic cancer model mouse that received a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 5c is a graph showing the lung metastatic cancer treatment effect (number of metastatic nodules) of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 6a is a diagram showing an experimental method to confirm the effect of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen on metastatic cancer.
  • Figure 6b is a graph showing the anticancer effect (change in survival rate) of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Figure 7a is a diagram showing an experimental method to confirm the activation of antigen-specific cytotoxic T cells by a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and HER2 63-71 peptide (target peptide: HER2 63-71 ).
  • Figure 7b is a histogram showing the activity of antigen-specific cytotoxic T cells by a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and HER2 63-71 peptide.
  • Figure 7c is a graph showing antigen-specific cytotoxic T cell activity by peripheral blood mononuclear cells loaded with ⁇ -GC and HER2 63-71 peptide.
  • Figure 8a is a diagram showing an experimental method to confirm the effect of a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and/or a cancer antigen peptide in treating mouse solid cancer (target peptide: HER2 63-71 ).
  • Figure 8b is a graph showing the anticancer effect (tumor size change) of a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and/or cancer antigen peptide.
  • Figure 9A shows an experimental method for comparing the activation of antigen-specific cytotoxic T cells of a peripheral blood mononuclear cell vaccine and a B cell/monocyte vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen.
  • Doida target peptide: GP100 25-33 .
  • Figure 9b is a histogram showing the activity of antigen-specific cytotoxic T cells by peripheral blood mononuclear cell vaccine and B cell/monocyte vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing antigen.
  • Figure 9c is a graph showing antigen-specific cytotoxic T cell activity by peripheral blood mononuclear cell vaccine and B cell/monocyte vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing antigen.
  • Figure 10a is for comparing the activation of antigen-specific cytotoxic T cells of peripheral blood mononuclear cell vaccine, B cell/monocyte vaccine, and T cell vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing antigen.
  • Diagram showing the experimental method target peptide: GP100 25-33 ).
  • Figure 10b is a histogram showing the activity of antigen-specific cytotoxic T cells by peripheral blood mononuclear cell vaccine, B cell/monocyte vaccine, and T cell vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing antigen. am.
  • Figure 10c is a graph showing antigen-specific cytotoxic T cell activity by peripheral blood mononuclear cell vaccine, B cell/monocyte vaccine, and T cell vaccine transduced with adenovirus loaded with ⁇ -GC and/or expressing antigen. .
  • Figure 11a is a diagram showing an experimental method for comparing the solid tumor treatment effects of a peripheral blood mononuclear cell vaccine transduced with an adenovirus loaded with ⁇ -GC and/or expressing an antigen and a B cell/monocyte vaccine.
  • Figure 11b is a graph showing the anticancer effect (tumor size change) of the peripheral blood mononuclear cell vaccine and B cell/monocyte vaccine transduced with adenovirus loading ⁇ -GC and/or expressing antigen.
  • the present invention provides a vaccine for immunotherapy and prevention of cancer comprising peripheral blood mononuclear cells loaded with natural killer T cell ligands and cancer antigens.
  • Peripheral blood mononuclear cells of the present invention refer to cells with a round nucleus composed of lymphocytes (T cells, B cells, natural killer cells) and monocytes.
  • T cells lymphocytes
  • B cells natural killer cells
  • monocytes monocytes.
  • the proportion of each immune cell in peripheral blood mononuclear cells varies greatly from person to person, but is generally comprised of 45-70% T cells, 5-15% B cells, 5-10% natural killer cells, and 5-10% monocytes. there is.
  • the present inventors added the function of antigen presenting cells by changing the immunogenicity of immune cells through the loading of ⁇ -GC, a natural killer T cell ligand, and antigen delivery to immune cells, thereby inducing a significantly elevated anticancer immune response.
  • An anti-cancer therapeutic cell vaccine has been developed.
  • Neoepitopes a cancer antigen that is a peptide sequence that can induce a cancer cell-specific immune response, is produced by a highly tumor-specific mutation that exists only in cancer cells, not normal cells, and is known to be an ideal method of personalized anticancer immunotherapy for cancer patients.
  • Anticancer immunotherapy using an immune cell vaccine delivered with Neoepitope can strongly induce the development of cancer cell-specific T cells compared to existing immunotherapy, and prevents damage to normal cells, thereby preventing cancer. It can minimize the side effects of treatment and at the same time induce powerful anticancer treatment effects.
  • Alpha-Galactosyl Ceramide is an immune enhancer that induces various anti-cancer immune responses by stimulating NKT cells. In particular, it stimulates T cells with the same efficiency as dendritic cells by B cells and monocytes. Induces an immune response.
  • the present inventors changed the immunogenicity of immune cells through ⁇ -GC loading and antigen delivery to immune cells and added the function of antigen presenting cells to produce an anticancer vaccine with enhanced immune function.
  • antigen delivery using viral vectors delivers cancer antigens to cells with high efficiency, making it suitable for large-scale production of cell therapeutics targeting carcinomas expressing specific cancer antigens.
  • a virus capable of expressing the above antigen is used, so it is applicable to all people without being limited to a specific major histocompatibility complex haplotype, and can induce not only a cellular immune response but also a humoral immune response.
  • viral vectors have limitations in their application to personalized anticancer treatment for cancer patients.
  • the antigen delivery method through peptide loading is used clinically, it is limited to the haplotype of the individual's major histocompatibility complex (MHC), so it cannot be universally used for anyone, and it cannot be used universally for anyone, and is limited to the haplotype of the individual's major histocompatibility complex (MHC). ) has the disadvantage of only presenting ).
  • MHC major histocompatibility complex
  • neoepitope a cancer antigen that is a peptide sequence that is generated by highly tumor-specific mutations that exist only in cancer cells, not normal cells, and can induce a cancer cell-specific immune response, is known to be an ideal target for personalized anticancer immunotherapy for cancer patients.
  • Anti-cancer immunotherapy using an immune cell vaccine delivered with neoepitopes customized to individual cancer patients can strongly induce the development of more cancer cell-specific T cells than existing immunotherapy.
  • the natural killer T cell ligands include alpha-galactosylceramide ( ⁇ -GC), alpha-glucuronosylceramide, phosphatidylinositol tetramannoside, and isoglobotrihexosyl.
  • Ceramide isoglobotrihexosylceramide
  • ganglioside GD3 phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sulfitide, beta-galactosylceramide, lipophospho Glycans (lipophosphoglycan), glycoinositol phospholipids, beta-anomeric galactosylceramide, an analog of alpha-galactosylceramide, and alpha-anomeric galactosylceramide (alpha) -anomeric galactosylceramide), bacterial lipid antigen, and variants of alpha galactosylceramide.
  • the antigen can be any antigen that can be used as a vaccine and cause an immune response, and includes antigens or cancer antigens derived from pathogens including pathogenic bacteria, viruses, and parasites, and the full length of the antigen. Or it may be a fragment.
  • Antigens derived from the pathogen include Bordetella pertussis antigen (pertussis toxin, filamentous haemagglutinin, pertactin), tetanus toxoid, diphtheria toxoid, and Helicobacter pylori antigen (capsula).
  • polysaccharides of serogrup A, B, C, Y and W-135) pneumococcal antigen (Streptococcus pnemoniae type 3 capsular polysaccharide), tuberculosis antigen, cholera antigen (cholera toxin B subunit), staphylococcus aureus It includes staphylococcal enterotoxin B, shigella polysaccharides, Borrelia sp. antigen, Candida albicans antigen, and Plasmodium antigen.
  • the virus-derived antigens include influenza virus antigen (haemagglutinin and neuraminidase antigen), human papilloma virus (HPV) antigen (glycoprotein), and vesicular stomatitis virus antigen (vesicular stomatitis virus).
  • influenza virus antigen haemagglutinin and neuraminidase antigen
  • HPV human papilloma virus
  • vesicular stomatitis virus antigen vesicular stomatitis virus
  • virus glycoprotein cytomegalovirus (CMV) antigen, hepatitis A (HAV), B (HBV), C (HCV), D (HDV) and G (HGV) antigen) (core antigen and surface antigen, respiratory synctytial virus (RSV) antigen, herpes simplex virus antigen, human immunodeficiency virus (HIV) antigen (GP-120, GP-160) , p18, Tat, Gag, Pol, Env) and combinations thereof.
  • CMV cytomegalovirus
  • HAV hepatitis A
  • B HBV
  • C HCV
  • HDV D
  • HGV G antigen
  • RSV respiratory synctytial virus
  • herpes simplex virus antigen herpes simplex virus antigen
  • human immunodeficiency virus (HIV) antigen GP-120, GP-160
  • Tat Gag, Pol, Env
  • the cancer antigens include gp100, melanoma antigen gene (MAGE), human papilloma virus (HPV) E6/E7, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase.
  • TRP-2 -Related protein-2
  • MUC-1 murinoglobulin 1
  • CEA carcinoembryonic antigen
  • p53 alpha-fetoprotein
  • the vaccine can be used for the treatment or prevention of cancer.
  • the carcinoma may include all types of carcinoma.
  • the above cancers include liver cancer, thyroid cancer, testicular cancer, bone cancer, glioblastoma, oral cancer, ovarian cancer, brain tumor, multiple myeloma, gallbladder cancer, biliary tract cancer, colon cancer, head and neck cancer, lymphoma, bladder cancer, leukemia, esophageal cancer, kidney cancer, stomach cancer, breast cancer,
  • Carcinoma may be a solid cancer or a metastatic cancer.
  • the antigen can be directly loaded onto peripheral blood mononuclear cells by taking the form of peptides, lipopolysaccharides, polysaccharides, glycoproteins, or polynucleotides including DNA and RNA, and is transduced into peripheral blood mononuclear cells by a recombinant virus. It can be expressed and loaded.
  • cell vaccines loaded with peptides cell vaccines that introduce entire antigens through viruses are applicable to all people, not limited to haplotypes of the major histocompatibility complex, and can induce immune responses specific to multiple epitopes. It has the advantage of being able to simultaneously induce humoral and cellular immune responses.
  • the vaccine of the present invention may contain one or more active ingredients that exhibit the same or similar functions in addition to the ligand of natural killer T cells and peripheral blood mononuclear cells.
  • the vaccine may be prepared by including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above.
  • Pharmaceutically acceptable carriers can be saline solution, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and a mixture of one or more of these ingredients.
  • Antioxidants, buffer solutions, bacteriostatic agents, etc. may be added as needed.
  • Other conventional additive ingredients may be added.
  • diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, and emulsions.
  • injectable formulations such as aqueous solutions, suspensions, and emulsions.
  • it can be preferably formulated according to each disease or ingredient using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (recent edition), Mack Publishing Company, Easton PA.
  • the vaccine of the present invention can be administered parenterally, and parenteral administration is by subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection.
  • parenteral administration is by subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection.
  • peripheral blood mononuclear cells loaded with natural killer T cell ligands of the present invention peripheral blood mononuclear cells loaded with natural killer T cell ligands and peptides, or infected with a virus expressing a cancer antigen are used.
  • Peripheral blood mononuclear cells are mixed with a stabilizer or buffer to prepare a solution or suspension and formulated into a unit dosage form in ampoules or vials.
  • the vaccine of the present invention can be manufactured in various forms depending on the route of administration.
  • the vaccine of the present invention can be prepared in the form of a sterile aqueous solution or dispersion suitable for injection, or in lyophilized form using freeze-drying technology. Freeze-dried vaccines are typically maintained at about 4° C. and may be reconstituted by stabilizing solutions, such as saline and/or HEPES, with or without adjuvants.
  • factors affecting the amount of vaccine to be administered include, but are not limited to, the mode of administration, frequency of administration, the specific disease being treated, the severity of the disease, the history of the disease, and the subject's other characteristics. Includes whether co-operative therapy is being administered with the therapeutic agent, and the age, height, weight, health, and physical condition of the individual undergoing treatment. In general, as the weight of the patient undergoing treatment increases, it is advisable to administer this agent in larger doses.
  • Vaccines can be administered in amounts effective to stimulate an immune response in patients.
  • the vaccine can be administered to humans once or several times, and the dosage is 1 ⁇ 10 3 cells/kg to 1 ⁇ 10 9 cells/kg, preferably 1 ⁇ 10 4 cells/kg to 1. ⁇ 10 8 pieces/kg.
  • the dosage is 1 ⁇ 10 3 cells/kg to 1 ⁇ 10 9 cells/kg, preferably 1 ⁇ 10 4 cells/kg to 1. ⁇ 10 8 pieces/kg.
  • peripheral blood mononuclear cell vaccine When producing a peripheral blood mononuclear cell vaccine loaded with alpha-galactosylceramide and peptide, 1 to 2 alpha-galactosylceramide per 1 ⁇ 106 /ml to 1 ⁇ 107 /ml of peripheral blood mononuclear cells.
  • a medium containing ⁇ g/ml is used, and the peptide is loaded into the cells by culturing 1 ⁇ 10 6 / ml ⁇ 1 ⁇ 10 7 / ml peripheral blood mononuclear cells in a medium containing 1 ⁇ 10 ⁇ g / ml peptide. .
  • Alpha-galactosylceramide appears not to induce toxicity in rodents and monkeys (Nakata et al., Cancer Res 58:1202-1207, 1988). No side effects were reported even in mice injected with 2200 ⁇ g/kg of ⁇ GalCer (Giaccone et al., Clin Cancer Res 8:3702, 2002). In clinical trials, some side effects such as mild headache were reported due to systemic administration of ⁇ -GalCer (Mie Nieda et al., Blood 103:383-389, Giaccone et al., Clin Cancer Res 8:3702, 2002). It could be prevented by administering paracetamol, and mild systemic side effects do not necessarily occur in these subjects (Giaccone et al., Clin Cancer Res 8:3702, 2002).
  • the present invention provides a pharmaceutical composition for the prevention or treatment of cancer containing as an active ingredient peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • Another object of the present invention is to provide the use of peripheral blood mononuclear cells loaded with natural killer T cell ligands and cancer antigens for use in preventing or treating cancer.
  • Another object of the present invention is to provide a method of preventing or treating cancer by administering an effective amount of peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens to a subject.
  • the present invention provides a method for producing a vaccine for anticancer immunotherapy and prevention comprising peripheral blood mononuclear cells loaded with natural killer T cell ligands and antigens.
  • the manufacturing method is a first step.
  • peripheral blood mononuclear cells can be obtained using, for example, known leukapheresis.
  • peripheral blood mononuclear cells may include T cells, B cells, natural killer cells, monocytes, and some red blood cells, but may not include neutrophils, eosinophils, and basophils.
  • red blood cells can be removed through a known method, for example, using an appropriate lysis buffer.
  • the ligand for natural killer T cells may be added to a culture medium (e.g., peripheral blood mononuclear cell culture medium) and delivered to peripheral blood mononuclear cells through culture.
  • the antigen may be delivered by recombinant virus.
  • Viruses introduced into peripheral blood mononuclear cells for antigen expression include, but are not limited to, adenovirus, retrovirus, vaccinia virus, pox virus, and Sindbis virus.
  • antigen gene delivery can be applied as follows: 1) binding DNA to a liposome to transduce it to protect the DNA from enzymatic degradation or absorbing it into endosomes; 2) converting DNA into a protein.
  • peptides can be used or antigen proteins can be transferred to peripheral blood mononuclear cells. By applying it to cells, peripheral blood mononuclear cells can be made to present antigens.
  • the above manufacturing method eliminates the need for the process of removing other immune cells to obtain each immune cell in the existing method using individual immune cells, thereby reducing the time and cost of vaccine manufacturing and increasing the manufacturing quantity.
  • the present inventors produced a vaccine with significantly improved immune function by changing the immunogenicity of peripheral blood mononuclear cells through ⁇ -GC loading and antigen delivery to peripheral blood mononuclear cells to present antigens.
  • Antigen delivery using viral vectors delivers cancer antigens to cells with high efficiency, making it suitable for large-scale production of cell therapeutics targeting carcinomas expressing specific cancer antigens.
  • a virus capable of expressing the above antigen is used, the entire antigen can be introduced, so it is applicable to all people without being limited to a specific major histocompatibility complex haplotype, and can induce not only a cellular immune response but also a humoral immune response. It has the advantage of being
  • viral vectors have limitations in their application to individualized anticancer treatment for cancer patients.
  • neoepitopes which are peptide sequences that are generated by highly tumor-specific mutations that exist only in cancer cells, not normal cells, and can induce a cancer cell-specific immune response, are known to be an ideal target for personalized anticancer immunotherapy for cancer patients.
  • Anticancer immunotherapy using an immune cell vaccine delivered with Neoepitope can strongly induce the development of cancer cell-specific T cells compared to existing immunotherapy, and prevents damage to normal cells, thereby preventing cancer. It can minimize the side effects of treatment and at the same time induce powerful anticancer treatment effects.
  • a peripheral blood mononuclear cell vaccine was produced by isolating peripheral blood mononuclear cells from mice, loading them with ⁇ -GC, and delivering the antigen in two ways (transferring the antigen gene using a viral vector expressing the antigen or loading the peptide).
  • a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and antigen peptides was prepared, and it was confirmed whether cytotoxic T cell responses were induced by administration of the vaccine. As a result, it was confirmed that an effective cytotoxic response was induced in the peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and HER2 63-71 peptide (see FIGS. 7A to 7C).
  • peripheral blood mononuclear cell vaccine B cell/monocyte vaccine, and T cell vaccine to induce cytotoxic T cell immune responses
  • cancer antigens were detected not only by peripheral blood mononuclear cells and B cells/monocytes, but also by T cells. It was confirmed that a specific cytotoxic T cell immune response was induced (see Figures 10a and 10c).
  • the peripheral blood mononuclear cell vaccine exhibits a strong anticancer treatment effect that continuously inhibits cancer growth compared to the B cell/monocyte vaccine (see Figures 11a and 11b), which means that the peripheral blood mononuclear cell vaccine exists in peripheral blood mononuclear cells. It appears that various immune cells complement each other to induce an improved anticancer treatment response.
  • mice In order to separate the constituent cells of peripheral blood mononuclear cells from mice, mouse spleens were collected and homogenized. After lysing red blood cells using ACK lysing buffer (Gibco), T cells expressing CD4 or CD8 ⁇ on the cell surface and B cells/monocytes expressing B220 or CD11b were separated using microbeads (Miltenyibiotec). After separating T cells and B cells/monocytes, anti-CD49b microbeads (Miltenyibiotec) were used on the remaining spleen cells to obtain CD49b + natural killer cells. Because the amount of immune cells that can be obtained from mouse blood is small, immune cells were isolated from the spleen.
  • each immune cell was divided into T cells: B cells/monocytes: Natural to match the composition of blood. Killer cells were mixed at a ratio of 5:4:1 and the ratio was adjusted to be similar to human peripheral blood mononuclear cells.
  • peripheral blood mononuclear cells isolated and purified as described above were placed in a medium containing serum along with the prepared ⁇ -GC (1 ⁇ g/mL), solvent (DMSO), and/or adenovirus for cancer antigen gene transfer (200 MOI). Centrifuge the cells in a cell culture plate (2,000 rpm, 20 degrees, 90 minutes), and culture the cells in a CO 2 incubator under the culture conditions of 37°C, 80-95% relative humidity, and 5% CO 2 concentration to incubate peripheral blood. A mononuclear cell vaccine was produced. The prepared peripheral blood cell vaccine was washed three times with Dulbecco's phosphate buffered saline (DPBS, Welgene), dissolved in DPBS, and administered into the mouse tail vein.
  • DPBS Dulbecco's phosphate buffered saline
  • Viral vectors deliver cancer antigens common to cancer cells with high efficiency and are an appropriate gene delivery method for large-scale production of cell therapeutics targeting carcinomas expressing specific cancer antigens.
  • viral vectors have limitations in applying NeoEpitope to individualized treatment of cancer patients, so a peripheral blood mononuclear cell vaccine was produced using an antigen delivery method through peptide loading.
  • peripheral blood mononuclear cells isolated from mice by the method of Example 1-1 were treated with ⁇ -GC (1 ⁇ g/mL) or a solvent (DMSO), placed in a medium containing serum, and incubated at 37°C for 15 hours.
  • the culture was performed in a CO 2 incubator under culture conditions of 80-95% relative humidity and 5% CO 2 concentration.
  • HER2 63-71 peptide (2 ⁇ g/mL) was added to the cells and further cultured in a 37 degree CO 2 incubator for 2 hours to produce a peripheral blood mononuclear cell vaccine.
  • the prepared peripheral blood mononuclear cell vaccine was washed three times with DPBS, dissolved in DPBS, and administered into the mouse tail vein.
  • mice spleens were collected and homogenized. After lysing red blood cells using ACK lysing buffer (Gibco), B cells/monocytes expressing B220 or CD11b were isolated using microbeads. Antigen was delivered to the isolated B cells/monocytes in the same manner as Example ⁇ 1-2> or ⁇ 1-3>.
  • mice spleens were collected and homogenized. After lysing red blood cells using ACK lysing buffer (Gibco), T cells expressing CD4 or CD8 ⁇ on the cell surface were isolated using microbeads. The antigen was delivered to the isolated T cells in the same manner as Example ⁇ 1-2> or ⁇ 1-3>.
  • human peripheral blood mononuclear cells obtained by leukapheresis were lysed using ACK lysing buffer (Lonza), and ⁇ -GC (1 ⁇ g/mL) was added to the viral vector expressing the antigen (25 MOI). ), and then culture the cells in a CO 2 incubator at 37°C and 5% CO 2 concentration for 15 hours to produce a peripheral blood mononuclear cell vaccine.
  • ACK lysing buffer Longitridemia
  • peripheral blood mononuclear cell vaccine could activate natural killer T cells and natural killer cells in the body .
  • peripheral blood mononuclear cells obtained from C57BL/6 mice were transduced with ⁇ -GC loaded peripheral blood mononuclear cells (PBMC/ ⁇ -GC), cancer antigen human GP100, and adenovirus Adk35GM for MAGE-A3 gene transfer.
  • PBMC/ ⁇ -GC/Adk35GM peripheral blood mononuclear cells
  • ⁇ -GC/Adk35GM peripheral blood mononuclear cells
  • ⁇ -GC/Adk35GM peripheral blood mononuclear cells
  • 1 x 10 6 peripheral blood mononuclear cells were produced. It was administered intravenously. Six hours later, the level of IFN- ⁇ production in natural killer T cells and natural killer cells in the spleen was measured using flow cytometry.
  • An in vivo cytotoxicity test ( in vivo CTL assay) was performed to determine whether an adenovirus-transduced peripheral blood mononuclear cell vaccine could induce an antigen-specific cytotoxic T cell immune response.
  • a peripheral blood mononuclear cell vaccine loaded with ⁇ -GC or delivered with adenovirus Adk35GM antigen was prepared using peripheral blood mononuclear cells obtained from BALB/c mice, immunized in BALB/c mice, and a cytotoxicity test was performed 7 days later.
  • Figure 3a spleen cells from allogeneic mice were divided into two equal groups. Target cells loaded with MAGE-A3 282-290 peptide were labeled with 3 ⁇ M CFSE (Carboxyfluorescein diacetate succinimidyl ester) (CFSE high ), and control cells to which no peptide was applied were labeled with 3 ⁇ M CFSE (CFSE high).
  • 3 CFSE Carboxyfluorescein diacetate succinimidyl ester
  • peripheral blood mononuclear cell vaccine (PBMC/ ⁇ -GC/Adk35GM) was administered, cancer growth was suppressed for more than 4 weeks and a high survival rate was observed.
  • PBMC/ ⁇ -GC peripheral blood mononuclear cell vaccine
  • cancer growth was hardly delayed and the survival rate was observed to be low.
  • 3 x 10 B16F10/GP100/MAGE-A3 cancer cells were injected intravenously into C57BL/ 6 mice, and 3 days later, 1.5 x 10 6 PBMC/ ⁇ -GC, PBMC/Adk35GM, or PBMC/ ⁇ -GC/Adk35GM were injected intravenously. administered. 16 days after intravenous injection of cancer cells, the extent of lung metastasis of cancer cells was confirmed (Figure 5a).
  • mice 3 x 10 5 B16F10/GP100/MAGE-A3 cancer cells were injected intravenously into C57BL/6 mice, and 3 days later, 2 x 10 6 PBMC/ ⁇ -GC, PBMC/Adk35GM, or PBMC/ ⁇ -GC/Adk35GM were injected intravenously. After administration, the survival rate of mice was tracked ( Figure 6a).
  • peripheral blood mononuclear cell vaccine loaded with the antigen peptide of Example 1-2 could induce a cytotoxic T cell response.
  • Peripheral blood mononuclear cells loaded with ⁇ -GC PBMC/ ⁇ -GC
  • peripheral blood mononuclear cells loaded with HER2 63-71 peptide PBMC/HER2 pep
  • ⁇ -GC and HER2 63-71 peptide ⁇ -GC and HER2 63-71 peptide together
  • Peripheral blood mononuclear cells (PBMC/ ⁇ -GC/HER2 pep) were immunized by intravenous administration to C57BL/6 mice, and an in vivo cytotoxicity test was performed 7 days later (FIG. 7a).
  • a cytotoxic T cell response was induced even in the group administered with peripheral blood mononuclear cells in which only the antigen was delivered with an adenovirus vector without ⁇ -GC (see Figure 3c), PBMC/PBMC loaded with only the peptide No cytotoxic T cell response was observed with HER2 pep (see Figure 7c).
  • This means that delivering the entire antigen through adenovirus to induce various immune responses specific to multiple epitopes is superior to the method of presenting only a single peptide in inducing a cytotoxic T cell immune response.
  • the peripheral blood mononuclear cell vaccine produced by loading ⁇ -GC and delivering antigen is a cell vaccine loaded only with ⁇ -GC or with only antigen delivery. It was confirmed that it had a strong anti-cancer effect compared to , suppressing cancer growth and improving survival rates.
  • a vaccine was prepared by loading ⁇ -GC into B cells/monocytes and peripheral blood mononuclear cells obtained from the spleen of C57BL/6 mice or by delivering adenovirus Adk35GM antigen, and immunizing C57BL/6 mice with target cells (GP100) 7 days later.
  • the CFSE high :CFSE low ratio in mouse spleen cells was calculated using a flow cytometer to measure the lysis of CFSE high target cells loaded with GP100 25-33 peptide (FIG. 9b).
  • the cancer antigen GP100 in both the immune cell vaccine (Bmo/ ⁇ -GC/Adk35GM) administration group consisting of B cells/monocytes and the peripheral blood mononuclear cell vaccine (PBMC/ ⁇ -GC/Adk35GM) administration group More than 80% of target cell death was observed due to a specific cytotoxic T cell response, and slightly higher cytotoxicity was confirmed in the peripheral blood mononuclear cell vaccine administered group.
  • an immune cell vaccine was prepared by loading ⁇ -GC and delivering adenovirus Adk35GM antigen to T cells, B cells/monocytes, and peripheral blood mononuclear cells obtained from the spleen of C57BL/6 mice, and then immunizing C57BL/6 mice. After 7 days, a cytotoxicity test was performed in the same manner as ⁇ 3-1> (FIG. 10a).
  • the peripheral blood mononuclear cell vaccine (PBMC/ ⁇ -GC/Adk35GM) administration group the immune cell vaccine consisting of B cells/monocytes (Bmo/ ⁇ -GC/Adk35GM) administration group
  • T The cytotoxic response was higher in the order in which the immune cell vaccine (T/ ⁇ -GC/Adk35GM) administered was administered.
  • the peripheral blood mononuclear cell vaccine loaded with ⁇ -GC and antigen-delivered with an adenovirus vector is a powerful cancer agent caused by T cells, B cells, and monocytes, which account for 90% of the cells. It can be seen that an antigen-specific cytotoxic T cell immune response can be induced.
  • peripheral blood mononuclear cell vaccine and B cell/monocyte vaccine were compared.
  • peripheral blood mononuclear cell vaccine PBMC/ ⁇ -GC/Adk35GM
  • Bmo/ ⁇ -GC/Adk35GM B cell/monocyte vaccine
  • peripheral blood mononuclear cell vaccine there was no difference in the degree of cytotoxic T cell induction between the peripheral blood mononuclear cell vaccine and the B cell/monocyte vaccine in ⁇ 3-1> and ⁇ 3-2>, but in ⁇ 3-3>, the peripheral blood mononuclear cell vaccine
  • the anticancer treatment effect was confirmed to be much superior to that of this B cell/monocyte vaccine suggests that various immune cell groups within peripheral blood mononuclear cells complement each other to induce an improved anticancer treatment response.
  • the vaccine containing peripheral blood mononuclear cells loaded with the ligands and antigens of natural killer T cells of the present invention is easy to obtain because there is no need to separate specific cells from peripheral blood mononuclear cells, and the ligands and antigens of natural killer T cells Immunization with loaded peripheral blood mononuclear cells not only induces significant levels of activation of natural killer cells and natural killer T cells and cytotoxic T lymphocyte responses, but also has a synergistic effect in the treatment of malignant tumors, thereby preventing cancer. In addition, it can be applied to cancer treatment through immunotherapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 면역 예방 및 치료용 백신에 관한 것으로, 구체적으로 자연 살해 T 세포 리간드이자 당지질의 일종인 알파-갈락토실세라마이드가 적재된 말초혈액단핵세포를 포함하는 면역 치료 백신에 관한 것이다. 본 발명의 조성물은 말초혈액단핵세포로부터 특정 세포를 분리할 필요가 없어 수득이 용이하며, 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포의 면역화는 유의한 수준의 자연 살해 세포 및 자연 살해 T 세포의 활성화와 세포 독성 T 림프구 반응을 유도할 뿐 아니라, 악성종양의 치료 효과에 시너지 효과를 나타내므로 항암 면역 치료제로 유용하게 이용될 수 있다.

Description

자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신
관련 출원의 상호 참조
본 발명은 2022년 9월 15일에 출원한 특허출원 제10-2022-0116552호에 대한 우선권을 주장하며, 상기 특허출원의 전체 내용은 본 개시의 참조를 위해 본 발명에서 통합된다.
기술분야
본 발명은 자연 살해 T 세포의 리간드와 항원, 예를 들어, 암 항원을 적재한 말초혈액단핵세포를 포함하는 백신에 관한 것이다.
최근 의학이 발달함에 따라 암환자의 생존율이 증가하고 있지만, 변화하는 환경적 요인과 평균 수명의 증가 등에 의해 암 발생 빈도 역시 증가하고 있다. 현재까지 암을 치료하기 위한 많은 연구가 진행되고 있으며, 암에 대한 새로운 약제와 치료법이 개발되고 있어 암환자들의 치료효과가 많이 향상되고 있다. 그러나, 악성종양의 경우 미세수술요법과 방사선 치료의 발달, 화학요법과 같은 새로운 치료제의 개발에도 그 치료 효과가 제한적이며, 비특이적 항암 효과에 따른 부작용 및 암의 재발 등의 한계점이 있다. 이를 보완하기 위해 현재 활발히 사용되거나 개발되고 있는 치료법이 면역요법이다. 종양 특이적 독성(tumor-specific toxicity)을 유도함으로써 전신 독성에 의한 부작용을 줄이고, 암 및 암 항원에 대한 능동적인 기억반응(memory response)을 확립함으로써 기존의 암 치료법을 보완할 수 있는 특징이 있기 때문이다.
면역요법 특히 항원제시세포를 이용한 면역세포백신은 효과적으로 CD8+ T 세포와 CD4+ T 세포를 활성화할 수 있으므로 우수한 항암효과를 나타낸다.
현재 항원제시세포 백신으로 가장 많이 사용되는 면역세포는 수지상 세포(Dendritic cells)로 항원을 포식하여 T 세포와 같은 효과기 세포(effector cells)에 강한 공자극(costimulatory signal)과 함께 전달해 주기 때문에 효율적으로 효과기 세포를 활성화하고 강한 면역반응을 유도한다. 실제 임상적으로 수지상 세포를 이용한 세포치료제는 우선 환자의 골수나 말초혈액으로부터 수지상 세포를 분리하거나 혹은 그 전구체인 단핵구(monocyte)를 분리하여 수지상세포로 대량 증식 및 분화시킨 후, 항원을 가하고 활성화시켜 다시 환자에 주입하는 방법을 사용한다. 체내에 주입된 수지상 세포는 특이적인 항원 정보를 T 세포에 전달하고 이를 활성화시켜 항원 특이적인 면역반응을 효과적으로 유도하게 된다. 이러한 장점에도 불구하고 혈액과 림프 조직에 직접적으로 얻을 수 있는 수지상 세포의 수가 극히 소수이며 분리하기가 까다롭고, 단핵구로부터 분화시키는 경우 수일 동안 체외에서 배양해야 하기 때문에 수지상 세포는 항원제시세포 백신으로서는 널리 이용되지 못하고 있다.
본 발명자들은 선행 연구에서 α-GC가 적재된 B 세포에서 세포 독성 T 림프구 반응을 유도하는 효과를 확인하였다 (대한민국 등록특허 제 10-0809873호). B 세포는 림프 조직이나 혈액에 다량 존재하고 체외에서 쉽게 증식될 수 있기 때문에 세포백신을 위한 수지상 세포의 효율적인 대체제가 될 뿐 아니라 정맥투여 후에 림프 기관으로 이동하게 되는 장점이 있다. 이러한 장점들에도 불구하고 B 세포는 약한 면역원성 때문에 항원제시세포 백신으로서는 널리 이용되지 못하고 있다.
한편, 불변성 자연살해 T 세포(invariant Natural Killer T cell; iNKT cell)가 여러 면역 반응 및 면역 병리현상을 총괄하는 중추적인 역할을 담당한다는 것은 최근의 연구를 통해 잘 알려져 있다. 리간드로 활성화된 불변성 자연 살해 T 세포는 수지상 세포뿐만 아니라 T 세포, B 세포 및 자연 살해 세포의 활성화를 유도할 수 있다.
자연 살해 T 세포의 리간드인 α-GC가 적재된 암세포는 암 항원 특이적 T 세포 활성을 유도할 수 있으며, α-GC와 항원 펩타이드가 적재된 T 세포가 투여된 마우스에서 IFN-γ 및 Granzyme B 발현이 강력하게 유도되고, 항원 특이적 세포 독성 T 림프구 반응 활성을 통해 폐 전이암 마우스에서 항암 치료 효과를 나타낸다는 것이 공지되어 있다 (Yeonseok Chung et al., OncoImmunology, 1:2, 141-151, 2012).
본 발명자들은 자연 살해 T 세포 리간드를 B 세포에 적재하여 이 세포들의 자가 면역 관용성을 면역원성으로 변화시킴으로써 B 세포의 주조직 적합성 복합체에 의해 제시되는 암 항원에 대하여 활발한 면역 반응을 생성할 수 있고, 항암 효과를 나타냄을 확인함으로써 효과적인 세포치료 백신을 제조하였다.
또한, 본 발명자들은 선행 연구에서 α-GC가 적재된 단핵구에 항원 펩티드를 적재하거나 항원을 발현하는 아데노바이러스 (adenovirus)로 형질도입하여 체내로 투여할 경우, 항원 특이적인 면역 반응을 유도함과 유의한 항암 효과를 나타냄을 확인함으로써 효과적인 세포치료 백신을 제조하였다 (대한민국 등록특허 제10-1055666호).
그러나 상기 선행 연구로부터 개발한 임상시험용 세포치료제는 환자의 말초혈액으로부터 T 세포를 제거하여 B 세포 및 단핵구를 남기는 방식의 제조공정을 이용하여 생산된다. 그러나, 이러한 방법은 말초혈액으로부터 T 세포, B 세포, 단핵구를 각각 분리하기가 까다로우며, 제조 공정이 복잡하다는 단점이 있다.
이러한 문제점을 해결하기 위하여 본 발명자들은 상기한 다양한 면역세포들에 대한 연구를 근거로 각각의 면역세포를 분리하지 않고 얻어지는 말초혈액단핵세포에 자연 살해 T 세포의 리간드와 항원을 적재한 항암 면역 치료 및 예방용 백신을 개발하였다.
말초혈액단핵세포는 혈류(血流)에 존재하는 단핵의 간엽계세포군의 총칭으로 주로 단핵구(monocyte)와 림프구(lymphocyte)로 구성된다. 일반적으로는 혈액을 비중원심분리하여 다형핵 백혈구를 제외한 백혈구분획을 의미한다. 림프구에는 T세포, B세포, 자연살해세포(NK세포)가 있다. 구체적으로, 본 발명자들이 개발한 세포치료제는 림프구(T 세포, B 세포, 자연 살해 세포)와 단핵구로 구성된 둥근 핵을 가진 세포로 이루어진 말초혈액단핵세포를 원료로 하는데, 말초혈액단핵세포 내 각 면역 세포의 비율은 개인 차가 매우 크지만, 일반적으로 T 세포 45~70%, B 세포 5~15%, 자연 살해 세포 5~10%, 및 단핵구 5~10%로 구성되어 있다.
수지상 세포 및 단핵구에서 분화시킨 수지상 세포백신의 문제점과, B세포 및 단핵구를 이용하는 선행 발명의 문제점을 해결하기 위하여 노력한 결과, 말초혈액단핵세포(Peripheral blood mononuclear cells)를 이용한 백신이 B 세포, 단핵구 및 T 세포 각각의 면역 효과보다 우수한 시너지 효과가 있음을 확인함으로써 본 발명의 말초혈액단핵세포를 포함하는 백신을 개발을 완성하였다.
또한, 각각의 면역세포를 분리하지 않는 공정을 통해 원료인 말초혈액단핵세포의 양 증가하는 것을 포함해 이전 세포치료제에 비하여 다양한 장점을 얻을 수 있다. 기존 세포치료제의 T 세포를 염색하여 제거하는 공정이 사라지면, 원료가 되는 말초혈액단핵세포가 증가되고 최종 생산량이 늘어나서, 시간, 인력, 비용 절감 및 제조량 증가 효과가 유도된다.
본 발명의 목적은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 면역 치료 또는 예방용 백신을 제공하는 것이다.
본 발명의 다른 목적은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 면역 치료 또는 예방용 백신의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 면역 치료 또는 예방용 백신을 제공한다.
또한, 본 발명은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포(Peripheral blood mononuclear cells)를 포함하는 면역 치료 또는 예방용 백신의 제조방법을 제공한다.
또한, 본 발명은 자연 살해 T 세포의 리간드와 항원이 적재된 말초혈액단핵세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.
또한 본 발명의 또 다른 목적은 암을 예방 또는 치료하는데 사용하기 위한, 자연 살해 T 세포의 리간드와 암 항원을 적재한 말초혈액단핵세포의 용도를 제공하는 것이다.
또한 본 발명의 또 다른 목적은 자연 살해 T 세포의 리간드와 항원이 적재된 말초혈액단핵세포의 유효량을 개체에 투여하여 암을 예방하거나 또는 치료하는 방법을 제공하는 것이다.
본 발명은 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 면역 예방 및 치료용 백신에 관한 것으로, 구체적으로 자연 살해 T 세포 리간드이자 당지질의 일종인 알파-갈락토실세라마이드 (alpha-galactosylceramide; 이하, α-GC)가 적재된 말초혈액단핵세포를 포함하는 면역 치료 백신에 관한 것이다. 본 발명의 조성물은 말초혈액단핵세포로부터 특정 세포를 분리할 필요가 없어 수득이 용이하며, 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포의 면역화는 유의한 수준의 자연 살해 세포 및 자연 살해 T 세포의 활성화와 세포 독성 T 림프구 반응을 유도할 뿐 아니라 악성종양의 치료 효과에 시너지 효과를 나타내므로 항암 면역 치료제로 유용하게 이용될 수 있다.
도 1은 본 발명의 실시형태에 따른 말초혈액단핵세포 백신의 제조공정을 나타내는 도이다.
도 2a는 α-GC 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신 투여에 의한 마우스 비장 내 자연 살해 T 세포 (NKT)와 자연 살해 세포 (NK)의 활성을 나타낸 도이다.
도 2b는 도 2a의 자연 살해 T 세포(NKT)의 IFN-γ 생성을 나타낸 도이다.
도 2c는 도 2a의 자연 살해 세포 (NK)의 IFN-γ 생성을 나타낸 도이다.
도 3a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신 투여에 의한 마우스 체내 세포 독성 T 세포의 활성화를 비교하기 위한 실험 방법을 나타낸 도이다 (표적 펩타이드: MAGE-A3282-290).
도 3b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 항원 특이적 세포 독성 T 세포 활성을 측정한 결과를 나타낸 히스토그램이다.
도 3c는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 항원 특이적 세포 독성 T 세포 활성을 나타낸 그래프이다.
도 4a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 마우스 고형암 치료 효과를 확인하기 위한 실험 방법을 나타낸 도이다.
도 4b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 항암 효과(종양 크기 변화)를 나타낸 그래프이다.
도 4c는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 항암 효과(생존율 변화)를 나타낸 그래프이다.
도 5a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 폐 전이암 치료 효과를 확인하기 위한 실험 방법을 나타낸 도이다.
도 5b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신을 투여받은 폐 전이암 모델 마우스의 폐 사진이다.
도 5c는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 폐 전이암 치료 효과(전이성 결절의 개수)를 나타낸 그래프이다.
도 6a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 전이암 치료 효과를 확인하기 위한 실험 방법을 나타낸 도이다.
도 6b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신의 항암 효과(생존율 변화)를 나타낸 그래프이다.
도 7a는 α-GC와 HER263-71 펩타이드가 함께 적재된 말초혈액단핵세포 백신에 의한 항원 특이적인 세포 독성 T 세포의 활성화를 확인하기 위한 실험 방법을 나타낸 도이다(표적 펩타이드: HER263-71).
도 7b는 α-GC와 HER263-71 펩타이드가 함께 적재된 말초혈액단핵세포 백신에 의한 항원 특이적인 세포 독성 T 세포의 활성을 나타낸 히스토그램이다.
도 7c는 α-GC와 HER263-71 펩타이드가 함께 적재된 말초혈액단핵세포에 의한 항원 특이적인 세포 독성 T 세포 활성을 나타낸 그래프이다.
도 8a는 α-GC를 적재 및/또는 암 항원 펩타이드를 적재한 말초혈액단핵세포 백신의 마우스 고형암 치료 효과를 확인하기 위한 실험 방법을 나타낸 도이다 (표적 펩타이드: HER263-71).
도 8b는 α-GC를 적재 및/또는 암 항원 펩타이드를 적재한 말초혈액단핵세포 백신의 항암 효과(종양 크기 변화)를 나타낸 그래프이다.
도 9a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신과 B 세포/단핵구 백신의 항원 특이적인 세포 독성 T 세포의 활성화를 비교하기 위한 실험 방법을 나타낸 도이다(표적 펩타이드: GP10025-33).
도 9b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신과 B 세포/단핵구 백신에 의한 항원 특이적인 세포 독성 T 세포의 활성을 나타낸 히스토그램이다.
도 9c는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신과 B 세포/단핵구 백신에 의한 항원 특이적인 세포 독성 T 세포 활성을 나타낸 그래프이다.
도 10a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신, B 세포/단핵구 백신, T 세포 백신의 항원 특이적인 세포 독성 T 세포의 활성화를 비교하기 위한 실험 방법을 나타낸 도이다(표적 펩타이드: GP10025-33).
도 10b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신, B 세포/단핵구 백신, T 세포 백신에 의한 항원 특이적인 세포 독성 T 세포의 활성을 나타낸 히스토그램이다.
도 10c는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신, B 세포/단핵구 백신, T 세포 백신에 의한 항원 특이적인 세포 독성 T 세포 활성을 나타낸 그래프이다.
도 11a는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신과 B 세포/단핵구 백신의 고형암 치료 효과를 비교하기 위한 실험 방법을 나타낸 도이다.
도 11b는 α-GC를 적재 및/또는 항원을 발현하는 아데노바이러스로 형질도입된 말초혈액단핵세포 백신과 B 세포/단핵구 백신의 항암 효과(종양 크기 변화)를 나타낸 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 자연 살해 T 세포의 리간드와 암 항원을 적재한 말초혈액단핵세포를 포함하는 암의 면역 치료 및 예방용 백신을 제공한다.
본 발명의 말초혈액단핵세포(Peripheral blood mononuclear cells)는 림프구(T 세포, B 세포, 자연 살해 세포)와 단핵구로 구성된 둥근 핵을 가진 세포를 의미한다. 말초혈액단핵세포 내 각 면역 세포의 비율은 개인 차가 매우 크지만, 일반적으로 T 세포 45~70%, B 세포 5~15%, 자연 살해 세포 5~10%, 및 단핵구 5~10%로 구성되어 있다.
이에, 본 발명자들은 면역세포에 자연 살해 T 세포 리간드인 α-GC 적재와 항원 전달을 통해 면역세포의 면역원성을 변화시켜 항원 제시 세포의 기능을 추가하여, 현저히 상승된 항암 면역 반응을 유도할 수 있는 항암 치료 세포 백신을 개발하였다.
정상 세포가 아닌 암세포에만 존재하는 종양 특이성이 높은 돌연변이로 인해 생성돼 암세포 특이적인 면역 반응을 유도할 수 있는 펩타이드 서열인 암 항원인 네오에피톱은 암환자 개별 맞춤형 항암 면역치료의 이상적인 방법으로 알려져 있다. 암환자 개별 맞춤으로 발굴된 네오에피톱을 전달한 면역 세포 백신을 적용한 항암 면역 치료는 기존의 면역요법에 비해 보다 암 세포 특이적인 T 세포의 발생을 강하게 유도할 수 있으며, 정상 세포의 손상을 막아 항암 치료의 부작용을 최소화하면서 동시에 강력한 항암 치료 효과를 유도할 수 있다.
알파-갈락토실세라마이드 (α-Galactosyl Ceramide)는 면역증강제로서 NKT 세포의 자극으로 다양한 항암면역반응을 유도하는데, 특히 B 세포와 단핵구가 수지상세포와 동등한 효율로 T 세포를 자극하도록 하여 T 세포의 면역반응을 유도한다.
알파-갈락토실세라마이드 (α-GC)가 적재된 수지상 세포(dendritic cell, DC)가 불변성 자연 살해 T (NKT) 세포를 활성화시킨다는 것은 공지되어 있다(van der Vliet HJ, et al., J Immunol Methods., 1;247(1-2):61-72, 2001), 또한 본 발명자들은 α-GC가 적재된 B 세포, 단핵구 (monocyte) 및 미분화 골수성 세포 (Immature myeloid cells)에서 세포독성 T 림프구 반응을 유도하는 효과를 확인하였으며 (대한민국 공개특허 10-2007-0105662, 대한민국 공개특허 10-2009-0051598), α-GC가 적재된 자연 살해 세포에서도 자연 살해 T (NKT) 세포를 활성화 시키고, 세포독성 T 림프구 반응을 유도하는 효과를 나타내는 것을 확인하였다 (대한민국 특허 출원번호 10-2022-0072485).
이에, 본 발명자들은 면역세포에 α-GC 적재와 항원 전달을 통해 면역세포의 면역원성을 변화시켜 항원 제시 세포의 기능을 추가하여 면역기능이 상승된 항암백신을 제작하였다.
한편, 바이러스 벡터를 이용한 항원 전달은 암 항원을 높은 효율로 세포에 전달하여, 특정 암 항원을 발현하는 암종을 표적하는 세포 치료제의 대규모 생산에 적절하다. 상기 항원을 발현할 수 있는 바이러스를 이용할 경우 전체 항원을 도입할 수 있어 특정 주조직 적합성 복합체의 일배체형에 국한되지 않고 모든 사람에 적용가능하며, 세포성 면역 반응뿐만 아니라 체액성 면역 반응도 유도할 수 있다는 장점을 지닌다. 반면에, 바이러스 벡터는 암 환자 개별 맞춤 항암 치료에 적용하는데 한계가 있다.
한편, 펩타이드 적재를 통한 항원 전달 방식은 임상적으로 이용할 경우, 개인의 주조직 적합성 복합체 (major histocompatibility complex, MHC)의 일배체형에 제한적으로 사용되므로 누구에게나 보편적으로 사용될 수 없으며, 단일 항원결정기(epitope)만을 제시하는 단점이 있다. 그러나 정상 세포가 아닌 암세포에만 존재하는 종양 특이성이 높은 돌연변이로 인해 생성돼 암세포 특이적인 면역 반응을 유도할 수 있는 펩타이드 서열인 암항원인 네오에피톱은 암환자 개별 맞춤형 항암 면역 치료의 이상적인 표적으로 알려져 있다. 암환자 개별 맞춤으로 발굴된 네오에피톱을 전달한 면역 세포 백신을 적용한 항암 면역 치료는 기존의 면역요법에 비해 보다 암 세포 특이적인 T 세포의 발생을 강하게 유도할 수 있다.
상기 자연 살해 T 세포의 리간드는 알파-갈락토실세라마이드 (alpha-galactosylceramide; α-GC), 알파-글루쿠로노실세라마이드 (alpha-glucuronosylceramide), 포스파티딜이노시톨테트라만노사이드, 이소글로보트리헥소실세라마이드 (isoglobotrihexosylceramide), 갱글리오사이드 GD3 (ganglioside GD3), 포스파티딜콜린 (phosphatidylcholine), 포스파티딜에탄올아민, 포스파티딜이노시톨 (phosphatidylinositol), 설파타이드 (sulfitide), 베타-갈락토실세라마이드 (beta-galactosylceramide), 리포포스포글리칸 (lipophosphoglycan), 글리코이노시톨포스포리피드(glycoinositol phospholipids), 알파-갈락토실세라마이드의 유사체인 베타-아노머 갈락토실세라마이드 (beta-anomeric galactosylceramide) 및 알파-아노머 갈락토실세라마이드 (alpha-anomeric galactosylceramide), 박테리아 지질 항원 및 알파 갈락토실세라마이드의 변이체를 포함한다.
상기 항원은 백신으로 사용되어 면역반응을 일으킬 수 있는 항원은 모두 사용 가능하며, 병원균(pathogenic bacteria), 바이러스 및 기생충을 포함하는 병원체(pathogen) 유래의 항원 또는 암 항원을 포함하고, 상기 항원의 전장 또는 단편일 수 있다.
상기 병원균 유래의 항원은 백일해균(Bordetella pertussis) 항원(pertussis toxin, filamentous haemagglutinin, pertactin), 파상풍균 항원(tetanus toxoid), 디프테리아균(diphtheria) 항원(diphtheria toxoid), 헬리코박터파이로리(Helicobacterpylori) 항원(capsula polysaccharides of serogrup A, B, C, Y 및 W-135), 폐렴균(pneumococcal) 항원(Streptococcus pnemoniae type 3 capsular polysaccharide), 결핵균(tuberculosis) 항원, 콜레라(cholera) 항원(cholera toxin B subunit), 포도상구균 (staphylococcal) 항원(staphylococcal enterotoxin B), 적리균(shigella) 항원(shigella polysaccharides), 보렐리아(Borrelia sp.) 항원, 칸디다(Candida albicans) 항원 및 플라스모디움(Plasmodium) 항원을 포함한다.
상기 바이러스 유래의 항원은 인플루엔자 바이러스(influenza virus) 항원(haemagglutinin 및 neuraminidase 항원), 인간 파필로마 바이러스(human papilloma virus, HPV) 항원(glycoprotein), 소수포성 입안염 바이러스 (vesicular stomatitis virus) 항원(vesicular stomatitis virus glycoprotein), 사이토메갈로바이러스 (cytomegalovirus, CMV) 항원, 간염(hepatitis)바이러스 항원(hepatitis A(HAV), B(HBV), C(HCV), D(HDV) 및 G(HGV) 항원)(core antigen and surface antigen), 호흡기 다핵체 바이러스(respiratory synctytial virus, RSV) 항원, 허피스 심플렉스 바이러스(herpes simplex virus) 항원, 인간 면역결핍 바이러스(human immunodeficiency virus, HIV) 항원(GP-120, GP-160, p18, Tat, Gag, Pol, Env) 및 그의 조합을 포함한다.
상기 암 항원은 gp100, 멜라노마 항원 유전자 (MAGE, melanoma antigen gene), 인간 유두종 바이러스 (HPV: human papilloma virus) E6/E7, 티로시나제 (tyrosinase), 티로시나제-관련 단백질-1(TRP-1), 티로시나제-관련 단백질-2 (TRP-2), 뮤리노글로브린 1 (MUC-1: murinoglobulin 1), 암 배아항원 (CEA: carcinoembryonic antigen), p53, 알파-페토프로테인 (α-fetoprotein), Her-2/neu에 의해 발현되는 유방암 단백질, Proteinase 3, WT-1, PAP, PSA, PSMA, G250, BAGE, GAGE, NY-ESO-1, MART-1, MCIR, Ig Idiotype, CDK4, caspase-8, β-catenin, CIA, BCR/ABL, EBV LMP2a, HCV, HHV-8, 5T4, 종양 특이적인 돌연변이 유래 신생항원 (neoantigen) 및 그의 조합을 포함한다.
상기 백신은 암의 치료 또는 예방에 사용될 수 있다.
상기 암종은 모든 종류의 암종을 포함할 수 있다. 상기 암은 간암, 갑상선암, 고환암, 골암, 교모세포종, 구강암, 난소암, 뇌종양, 다발골수종, 담낭암, 담도암, 대장암, 두경부암, 림프종, 방광암, 백혈병, 식도암, 신장암, 위암, 유방암, 자궁경부암, 전립선암, 직장암, 척수종양, 췌장암, 침샘암, 폐암, 피부암, 후두암, 흑색종, 급성 골수성 백혈병, 신경모세포종, 망막모세포종, 결장직장암 등이 포함된다.
암종은 고형암일 수 있고, 전이암일 수도 있다.
또한, 상기 항원은 펩티드, 지질다당류, 다당류, 당단백질 또는 DNA 및 RNA를 포함한 폴리뉴클레오티드의 형태를 가짐으로써 말초혈액단핵세포에 직접 적재될 수 있으며, 재조합 바이러스에 의해 말초혈액단핵 세포에 형질도입되어 발현되어 적재될 수 있다. 펩티드를 적재한 세포 백신에 반해 바이러스를 매개로 하여 전체 항원을 도입한 세포 백신은 주조직 적합성 복합체의 일배체형에 국한되지 않고 모든 사람에 적용 가능하며, 여러 항원결정기에 특이적인 면역반응을 유도할 수 있으며, 특히 체액성 면역 반응과 세포성 면역 반응을 동시에 유도할 수 있다는 장점이 있다.
본 발명의 백신은 자연 살해 T 세포의 리간드와 말초혈액단핵세포에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.
상기 백신은 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용가능한 담체는 식염수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제 성분을 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등 과 같은 주사용 제형 등으로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근 판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
본 발명의 백신은 비경구로 투여할 수 있으며, 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사 주입방식에 의한다. 비경구 투여용 제형으로 제제화하기 위해서는 본 발명의 자연 살해 T 세포의 리간드를 적재한 말초혈액단핵세포, 자연 살해 T 세포의 리간드와 펩티드를 적재한 말초혈액단핵세포 또는 암 항원을 발현하는 바이러스로 감염된 말초혈액단핵세포는 안정제 또는 완충제와 함께 혼합하여 용액 또는 현탁액으로 제조하고 이를 앰플 또는 바이알의 단위 투여형으로 제제화한다.
본 발명의 백신은 투여 경로에 따라 다양한 형태로 제조할 수 있다. 예를 들면, 본 발명의 백신은 주사용도에 적합한 멸균 수용액 또는 분산액의 형태로 제조될 수 있거나, 또는 동결-건조 기술을 이용하여 냉동건조된 형태로 제조될 수 있다. 냉동건조된 백신은 전형적으로 약 4 ℃에서 유지되며, 보조제를 함유하거나 함유하지 않은 안정화 용액, 예를 들면, 식염수 또는/및 HEPES에 의해 복원될 수 있다.
본 발명의 방법을 실시하는데 있어서, 투여될 백신의 양에 영향을 미치는 인자들로는, 이에 한정되는 것은 아니지만 투여 방식, 투여 빈도, 치료가 진행 중인 특정 질병, 질병의 심각성, 질병의 병력, 개체가 다른 치료제와 함께 협력 치료법이 진행중인 지의 여부, 및 치료가 진행중인 개체의 연령, 키, 체중, 건강, 및 신체 조건을 포함한다. 일반적으로 치료가 진행중인 환자의 체중이 증가할수록 이 제제를 더 많은 양으로 투약하는 것이 바람직하다.
백신은 환자에게서 면역반응을 자극하기에 효과적인 양으로 투여할 수 있다. 예를 들어, 백신은 인간에게 일회 내지 수회로 투여될 수 있고, 투여량은 세포 수가 1×103 개/kg ~ 1×109 개/kg, 바람직하게는 1×104 개/kg ~ 1×108 개/kg이다. 알파-갈락토실세라마이드를 적재한 말초혈액단핵세포 백신을 제작하는 경우, 말초혈액단핵세포 1×106 개/㎖ ~ 1×107 개/㎖ 당 알파-갈락토실세라마이드 1~2 ㎍/㎖가 든 배지를 사용하여 배양한다. 알파-갈락토실세라마이드와 펩티드를 적재한 말초혈액단핵세포 백신을 제작하는 경우, 말초혈액단핵세포 1×106 개/㎖ ~ 1×107 개/㎖당 알파-갈락토실세라마이드 1~2 ㎍/㎖가 든 배지를 사용하고, 펩티드는 말초혈액단핵세포 1×106 개/㎖ ~ 1×107 개/㎖ 를 1~10 ㎍/㎖ 펩티드가 포함된 배지에서 배양하여 세포에 적재시킨다.
알파-갈락토실세라마이드는 설치류 및 원숭이에서 독성을 유도하지 않는 것으로 보이고 있다 (Nakata et al., Cancer Res 58:1202-1207, 1988). 2200 ㎍/㎏의 αGalCer가 주입된 마우스에도 부작용은 보고되고 있지 않다 (Giaccone et al., Clin Cancer Res 8:3702, 2002). 임상 시험에서도 α-GalCer의 전신 투여에 의하여 경미한 두통과 같은 부작용이 일부 보고되었으나 (Mie Nieda et al., Blood 103:383-389, Giaccone et al.,Clin Cancer Res 8:3702, 2002). 파라세타몰(paracetamol) 투여에 의해 예방될 수 있었고, 이들 대상에서도 미약한 전신적 부작용이 반드시 나타나는 것은 아니다 (Giaccone et al., Clin Cancer Res 8:3702, 2002).
또한, 본 발명은 자연 살해 T 세포의 리간드와 항원이 적재된 말초혈액단핵세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.
또한 본 발명의 또 다른 목적은 암을 예방 또는 치료하는데 사용하기 위한, 자연 살해 T 세포의 리간드와 암 항원을 적재한 말초혈액단핵세포의 용도를 제공하는 것이다.
또한 본 발명의 또 다른 목적은 자연 살해 T 세포의 리간드와 항원이 적재된 말초혈액단핵세포의 유효량을 개체에 투여하여 암을 예방하거나 또는 치료하는 방법을 제공하는 것이다.
또한, 본 발명은 자연 살해 T 세포의 리간드 및 항원이 적재된 말초혈액단핵세포를 포함하는 항암 면역 치료 및 예방용 백신 제조 방법을 제공한다.
상기 제조방법은
(a) 말초혈액단핵세포를 수득하는 단계;
(b) 적혈구를 제거하는 단계; 및
(c) 자연 살해 T 세포의 리간드 및 항원을 말초혈액단핵세포에 전달하는 단계;를 포함하는 것을 특징으로 하는, 면역 치료 및 예방용 백신 제조 방법을 제공한다. .
단계 (a)에서, 말초혈액단핵세포는, 예를 들어, 공지의 백혈구성분채집술(leukapheresis)을 사용하여 얻을 수 있다. 여기서 말초혈액단핵세포는 T 세포, B 세포, 자연 살해 세포, 단핵구, 일부 적혈구를 포함하되, 호중구, 호산구, 호염구를 불포함하는 것일 수 있다.
단계 (b)에서 적혈구는 공지의 방법, 예를 들어, 적절한 용해 버퍼를 사용하는 방법을 통해 제거할 수 있다.
단계 (c)에서 자연 살해 T 세포의 리간드는 배양 매체(예를 들어, 말초혈액단핵세포 배양액)에 첨가하여 배양을 통해 말초혈액단핵세포에 전달될 수 있다. 단계 (c)에서, 항원은 재조합 바이러스에 의해 전달될 수 있다. 항원 발현을 위해 말초혈액단핵세포에 도입되는 바이러스는 아데노바이러스, 레트로바이러스, 백시니아 바이러스, 폭스 바이러스(Pox virus), 신드비스(Sindbis virus) 등이 가능하나 이에 한정되지는 않는다.
바이러스를 이용한 방법 외에도 항원 유전자 전달로 적용 가능한 것은 1) DNA를 리포좀(liposome)에 결합시켜 형질도입하여 효소 분해로부터 DNA를 보호하거나 엔도솜(endosome)으로 흡수하도록 하는 방법, 2) DNA에 단백질로 구성된 분자 콘쥬게이트(molecular conjugate)나 합성 리간드를 결합하여 세포로 DNA를 전달 효율을 높이는 방법[예: 아시알로글리코프로테인(Asialoglycoprotein), 트랜스페린(transferrin), 폴리머 IgA(polymeric IgA)], 3) PTD(Protein transduction domain)을 이용한 새로운 DNA 전달 시스템으로 세포로 DNA의 전달 효율을 높임으로써 항원 유전자를 전달하는 방법[예: Mph-1], 4) 상기 방법 외에도 펩티드를 사용하거나 항원 단백질을 말초혈액단핵세포에 적용함으로써 말초혈액단핵세포가 항원을 제시하도록 할 수 있다.
상기의 제조방법은 기존의 각각의 면역세포를 이용하는 방법에서 각각의 면역세포를 얻기 위하여 다른 면역세포를 제거하는 공정이 필요 없게 되어, 백신 제조의 시간과 비용을 절감 및 제조량의 증가 효과가 있다.
본 발명자들은 말초혈액단핵세포에 α-GC 적재와 항원 전달을 통해 말초혈액단핵세포의 면역원성을 변화시켜 말초혈액단핵세포가 항원을 제시하도록 하여 면역 기능이 현저히 향상된 백신을 제작하였다.
바이러스 벡터를 이용한 항원 전달은 암 항원을 높은 효율로 세포에 전달하여, 특정 암 항원을 발현하는 암종을 표적하는 세포 치료제의 대규모 생산에 적절하다. 상기 항원을 발현할 수 있는 바이러스를 이용할 경우 전체 항원을 도입할 수 있어 특정 주조직 적합성 복합체의 일배체형에 국한되지 않고 모든 사람에 적용가능하며, 세포성 면역 반응뿐만 아니라 체액성 면역 반응도 유도할 수 있다는 장점을 지닌다. 반면에, 바이러스 벡터는 암 환자 개별 맞춤 항암 치료에 적용하는데 한계가 있다.
펩타이드 적재를 통한 항원 전달 방식은 임상적으로 이용할 경우, 개인의 주조직 적합성 복합체(major histocompatibility complex, MHC)의 일배체형에 제한적으로 사용되므로 누구에게나 보편적으로 사용될 수 없으며, 단일 항원결정기(epitope)만을 제시하는 단점이 있다. 그러나 정상 세포가 아닌 암세포에만 존재하는 종양 특이성이 높은 돌연변이로 인해 생성돼 암세포 특이적인 면역 반응을 유도할 수 있는 펩타이드 서열인 네오에피톱은 암환자 개별 맞춤형 항암 면역 치료의 이상적인 표적으로 알려져 있다. 암환자 개별 맞춤으로 발굴된 네오에피톱을 전달한 면역 세포 백신을 적용한 항암 면역 치료는 기존의 면역요법에 비해 보다 암 세포 특이적인 T 세포의 발생을 강하게 유도할 수 있으며, 정상 세포의 손상을 막아 항암 치료의 부작용을 최소화하면서 동시에 강력한 항암 치료 효과를 유도할 수 있다.
본 발명에서는, 마우스로부터 말초혈액단핵세포를 분리하여 α-GC를 적재하고 두가지 방식으로 항원을 전달하여 (항원을 발현하는 바이러스 벡터로 항원 유전자를 전달 또는 펩타이드 적재) 말초혈액단핵세포 백신을 제작하였다.
먼저, α-GC가 적재되고, 항원을 발현하는 아데노바이러스 벡터로 항원 유전자를 전달한 말초혈액단핵세포 백신을 제작하고, 상기 백신의 투여가 체내 자연 살해 T 세포 및 자연 살해 세포의 활성화시킬 수 있는지 확인하였다. 그 결과, α-GC가 적재된 말초혈액단핵세포와 α-GC을 적재하고 아데노바이러스로 암 항원 GP100 및 MAGE-A3이 전달된 말초혈액단핵세포를 투여한 마우스의 체내에서 자연 살해 T 세포와 자연 살해 세포가 활성화됨을 확인하였다 (도 2a 내지 도 2c 참조). 또한 상기 백신이 항원 특이적인 세포 독성 T 림프구를 활성화시켜 세포 독성 면역 반응을 유도할 수 있는지 알아보기 위해 생체 내 세포 독성 시험(in vivo CTL assay)를 실시한 결과, α-GC을 적재하고 아데노바이러스로 암항원(GP100 및 MAGE-A3)이 전달된 말초혈액단핵세포 백신에서 효과적인 세포 독성 반응이 유도됨을 확인하였다 (도 3a 내지 도 3c 참조). 또한, 상기 백신의 고형암 치료 효과를 확인한 결과, 종양의 크기가 억제되고 마우스 생존율이 높아지는 유의한 항암 효과를 나타내는 것을 확인하였다 (도 4a 내지 도 4c 참조).
또한 상기 백신의 폐 전이암 치료 효과를 확인한 결과, 아데노바이러스로 암 항원 도입된 두 세포군 모두에서 암조직이 거의 관찰되지 않고 (도 5a 내지 도 5c 참조), 마우스의 생존율도 크게 향상됨을 확인하였다 (도 6a 내지 도 6b 참조).
다음으로, α-GC 및 항원 펩타이드를 적재한 말초혈액단핵세포 백신을 제작하고, 상기 백신의 투여에 의해 세포 독성 T 세포 반응이 유도되는 지 확인하였다. 그 결과, α-GC와 HER263-71 펩타이드가 적재된 말초혈액단핵세포 백신에서 효과적인 세포 독성 반응이 유도됨을 확인하였다 (도 7a 내지 도 7c 참조).
또한, 상기 α-GC 및 암 항원 펩타이드를 적재한 말초혈액단핵세포 백신의 항암 효과를 확인한 결과, 종양의 크기가 억제되는 것을 확인하였다 (도 8a 내지 도 8b 참조).
본 발명의 말초혈액단핵세포를 구성으로 하는 백신과 다른 면역세포를 구성으로 하는 백신의 항암 효과를 비교하였다. 먼저, 말초혈액단핵세포 백신과 B 세포/단핵구 백신 투여군의 세포 독성 T 세포 면역반응 유도능을 비교한 결과, 두 그룹 모두에서 암항원에 특이적인 세포 독성이 관찰되었으며, 말초혈액단핵세포 백신 투여군에서 약간 더 높은 세포 독성이 확인되었다 (도 9a 내지 도 9c 참조). 또한, 말초혈액단핵세포 백신, B 세포/단핵구 백신, T 세포 백신의 세포 독성 T 세포 면역반응 유도능을 비교한 결과, 말초혈액단핵 세포, B 세포/단핵구 뿐만 아니라, T 세포에 의해서도 암항원에 특이적인 세포 독성 T 세포 면역 반응이 유도됨을 확인하였다 (도 10a 및 도 10c 참조). 특히, 말초혈액단핵세포 백신은 B 세포/단핵구 백신과 비교하여 암의 성장을 지속적으로 억제시키는 강력한 항암 치료 효과를 나타냄을 확인하였는데 (도 11a 및 도 11b 참조), 이는 말초혈액단핵세포 내에 존재하는 다양한 면역 세포가 상호 보완작용하여 향상된 항암 치료 반응을 유도하는 것으로 보인다.
이하, 본 발명을 실험예에 의해서 상세히 설명한다.
단, 하기 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실험예에 의해서 한정되는 것은 아니다.
<실시예 1> 말초혈액단핵세포 백신의 제작
<1-1> 마우스 T 세포와 B 세포/단핵구 및 자연 살해 세포의 분리 및 정제
마우스로부터 말초혈액단핵세포의 구성 세포를 각각 분리하기 위하여, 마우스 비장을 채취한 후 균질화 (homogenization)하였다. ACK lysing buffer (Gibco)를 사용해 적혈구 용해한 후, 마이크로비드 (Miltenyibiotec)를 이용해 세포 표면에 CD4 혹은 CD8α를 발현하는 T 세포와 B220 혹은 CD11b를 발현하는 B 세포/단핵구를 각각 분리하였다. T 세포와 B 세포/단핵구를 분리한 다음, 남은 비장 세포에 항-CD49b 마이크로비드 (Miltenyibiotec)를 이용하여 CD49b+ 자연 살해 세포를 얻었다. 마우스 혈액에서 얻을 수 있는 면역세포의 양이 적어서 비장에서 면역 세포를 분리하였으나, 혈액과 비장의 면역 세포의 조성이 상이하여 혈액의 조성으로 맞추기 위해 각 면역 세포를 T 세포 : B 세포/단핵구 : 자연 살해 세포를 5 : 4 : 1 비율로 섞어 인간 말초혈액단핵세포와 유사하도록 비율을 조절하였다.
<1-2> 항원을 발현하는 바이러스 벡터로 항원 전달한 말초혈액단핵세포 백신의 제작
상기와 같이 분리 정제한 말초혈액단핵세포는 준비된 α-GC (1 μg/mL), 용매 (DMSO) 및/또는 암 항원 유전자 전달용 아데노바이러스 (200 MOI)와 함께 혈청이 포함된 배지에 넣었다. 세포 배양 플레이트에 담은 상태로 원심분리 (2,000 rpm, 20도, 90분) 진행하고, 37℃, 상대습도 80~95%, CO2 농도 5%의 배양조건으로 CO2 배양기에서 세포 배양하여 말초혈액단핵세포 백신을 제작하였다. 제작된 말초혈액세포 백신은 Dulbecco's phosphate buffered saline (DPBS, Welgene)으로 3회 세척 후, DPBS에 풀어 마우스 꼬리 정맥에 투여하였다.
<1-3> 항원 펩타이드를 적재한 말초혈액단핵세포 백신의 제작
바이러스 벡터는 암세포 공통의 암 항원을 높은 효율로 세포에 전달하여, 특정 암 항원을 발현하는 암종을 표적하는 세포 치료제의 대규모 생산에 적절한 유전자 전달 수단이다. 그러나, 바이러스 벡터는 네오에피톱을 활용한 암 환자 개별 맞춤 치료에 적용하는데 한계가 있어, 펩타이드 적재를 통한 항원 전달 방식을 이용하여 말초혈액단핵세포 백신을 제작하였다.
구체적으로 실시예 1-1의 방법으로 마우스에서 분리한 말초혈액단핵세포에 α-GC (1 μg/mL) 또는 용매 (DMSO) 처리하고, 혈청이 포함된 배지에 넣고, 15시간 동안 37℃, 상대습도 80~95%, CO2 농도 5%의 배양조건으로 CO2 배양기에서 배양하였다. 이후 세포에 HER263-71 펩타이드 (2 μg/mL)를 추가 후 2시간 동안 37도 CO2 배양기에서 추가 배양해 말초혈액단핵세포 백신을 제작하였다. 제작된 말초혈액단핵세포 백신은 DPBS로 3회 세척 후, DPBS에 풀어 마우스 꼬리 정맥에 투여하였다.
<비교예 1> B 세포/단핵구 백신의 제작
마우스 B 세포/단핵구를 분리하기 위하여, 마우스 비장을 채취한 후 균질화하였다. ACK lysing buffer (Gibco)를 사용해 적혈구 용해한 후, 마이크로비드를 이용해 B220 혹은 CD11b를 발현하는 B 세포/단핵구를 분리하였다. 분리된 B 세포/단핵구에 실시예 <1-2> 또는 <1-3>과 같은 방법으로 항원을 전달하였다.
<비교예 2> T 세포 백신의 제작
마우스 T 세포를 분리하기 위하여, 마우스 비장을 채취한 후 균질화하였다. ACK lysing buffer (Gibco)를 사용해 적혈구 용해한 후, 마이크로비드를 이용해 세포 표면에 CD4 혹은 CD8α를 발현하는 T 세포를 분리하였다. 분리된 T 세포에 실시예 <1-2> 또는 <1-3>과 같은 방법으로 항원을 전달하였다.
<실시예2> 인간 말초혈액단핵세포 백신의 제작
본 발명의 인간 말초혈액단핵세포 백신의 제조 공정은 도 1에 나타나 있다.
구체적으로, 백혈구성분채집술 (leukapheresis)로 얻은 인간 말초혈액단핵세포에 ACK lysing buffer (Lonza)를 사용해 적혈구를 용해하고, α-GC (1 μg/mL)와 항원을 발현하는 바이러스 벡터 (25 MOI)를 처리 후 15시간 동안 37℃, CO2 농도 5%의 배양조건으로 CO2 배양기에서 세포 배양하여 말초혈액단핵세포 백신을 제작한다. 이는 기존의 제조공정에서 T 세포를 제거하는 공정을 제거한 것으로, 시간, 인력, 비용 절감 및 생산량 증가 효과가 있다는 장점이 있다.
<실험예 1> 항원을 발현하는 바이러스 벡터로 항원 전달한 말초혈액단핵세포 백신 투여에 의한 효과 확인
<1-1> 자연 살해 T 세포 및 자연 살해 세포의 활성화 유도 확인
말초혈액단핵세포 백신 투여를 통해 체내 자연 살해 T 세포와 자연 살해 세포를 활성화시킬 수 있는지 확인하였다.
구체적으로, C57BL/6 마우스에서 수득한 말초혈액단핵세포로 α-GC 적재한 말초혈액단핵세포 (PBMC/α-GC), 암 항원 human GP100과 MAGE-A3 유전자 전달용 아데노바이러스 Adk35GM으로 형질도입한 말초혈액단핵세포 (PBMC/Adk35GM), α-GC을 적재하고 아데노바이러스 Adk35GM 항원 전달된 말초혈액단핵세포 (PBMC/α-GC/Adk35GM)를 제작한 후, 1 x 106 개의 말초혈액단핵세포를 정맥 투여하였다. 6 시간 후, 비장 내 자연 살해 T 세포와 자연 살해 세포에서 IFN-γ생산 정도를 유세포분석기를 통해 측정하였다.
그 결과, 도 2a 내지 도 2c에 나타난 바와 같이, α-GC가 적재된 말초혈액단핵세포 (PBMC/α-GC 및 PBMC/α-GC/Adk35GM)를 마우스에 투여하면 형질도입만 된 세포 (PBMC/Adk35GM)의 투여군과 달리 체내 자연 살해 T 세포가 자극돼 결과적으로 자연 살해 세포를 활성화시키는 것을 확인하였다.
이러한 자연 살해 T 세포와 자연 살해 세포의 활성화는 세포 독성 T 세포 반응의 유도와 함께 항암 효과에 기여할 수 있을 것으로 생각된다.
<1-2> 말초혈액단핵세포 백신의 세포 독성 T 세포 반응 유도능 평가
아데노바이러스로 형질도입된 말초혈액단핵세포 백신이 항원 특이적인 세포 독성 T 세포 면역 반응을 유도할 수 있는지 알아보기 위해 생체 내 세포 독성 시험 (in vivo CTL assay)를 실시하였다.
구체적으로, BALB/c 마우스에서 수득한 말초혈액단핵세포로 α-GC 적재시키거나 아데노바이러스 Adk35GM 항원 전달시킨 말초혈액단핵세포 백신를 제작해 BALB/c 마우스에 면역화시키고, 7일 후 세포 독성 시험을 진행하였다 (도 3a). 먼저 동종 마우스의 비장 세포를 동량의 두 군으로 나눈 후, MAGE-A3282-290 펩타이드 적재한 표적 세포는 3 μM CFSE (Carboxyfluorescein diacetate succinimidyl ester)로 표지하고 (CFSEhigh), 펩타이드 적용되지 않은 대조 세포는 0.3 μM CFSE로 표지하여 (CFSElow), 백신 면역화한 마우스에 동량 주입하였다. 하루 뒤 유세포 분석기를 통해 마우스 비장 세포 내 CFSEhigh: CFSElow 비율을 산출하여 표적 세포의 용해를 측정하였다 (도 3b). 항원 펩타이드가 적재된 CFSEhigh 세포의 비율이 낮을수록 항원 특이적인 세포 독성 T 세포 면역 반응이 높게 나타난 것을 의미한다.
그 결과, 도 3c에 나타난 바와 같이, α-GC 사용 여부에 무관하게 Adk35GM 아데노바이러스를 통한 암항원 전달만으로도 MAGE-A3에 특이적인 세포 독성 T 세포 반응에 의해 95% 이상의 타겟 세포가 사멸하는 것을 관찰하여, 암 항원 특이적인 세포 독성 T 세포 면역 반응을 확인하였다.
상기 실험예 1-1과 실험예 1-2를 종합하면, α-GC을 적재하고 아데노바이러스 벡터로 항원 전달된 말초혈액단핵세포 백신 투여에 의해 선천성 면역 반응인 자연 살해 T 세포 및 자연 살해 세포의 활성화와 후천성 면역 반응인 세포 독성 T 세포 면역 반응이 모두 유도될 수 있으며, 따라서 강력한 항암 치료 효과를 보일 것으로 유추해 볼 수 있다.
<1-3> 말초혈액단핵세포 백신의 항암 효과 확인
<1-3-1> 말초혈액단핵세포 백신의 고형암 치료 효과
말초혈액단핵세포 백신 투여가 고형암에 대한 항암 면역을 유도하는지 조사하였다.
이를 위하여 C57BL/6 마우스의 옆구리에 1 x 106 개의 GP100과 MAGE-A3를 발현하는 B16F10/GP100/MAGE-A3 암세포주를 피하로 이식한지 7일 후 2 x 106 개의 PBMC/α-GC, PBMC/Adk35GM 또는 PBMC/α-GC/Adk35GM를 투여하여 면역화한 후 (도 4a), 종양 크기 변화와 마우스 생존율을 측정하였다. 종양의 크기는 캘리퍼를 사용하여 종양의 가로, 세로, 높이를 측정하여 하기의 식으로 계산하였다.
(종양의 크기)= (가로) x (세로) x (높이) x (π/6)
그 결과, 도 4b 및 도 4c에 나타난 바와 같이, 말초혈액단핵세포 백신 (PBMC/α-GC/Adk35GM) 투여한 경우 암의 성장이 4주 이상 억제되었으며 높은 생존율을 관찰하였다. 이와 달리, PBMC/α-GC를 투여한 마우스의 경우는 암 성장을 거의 지연시키지 못하였으며, 생존율도 낮음을 관찰하였다.
상기의 결과를 통하여 α-GC 만을 단독으로 적재한 자연 살해 T 세포와 자연 살해 세포의 활성화만으로는 항암 치료 효과를 유도할 수 없음을 확인하였다.
<1-3-2> 말초혈액단핵세포 백신의 폐 전이암 치료 효과
말초혈액단핵세포 백신 투여가 폐 전이암에 대한 항암 면역을 유도하는지 조사하였다.
이를 위해 C57BL/6 마우스에 3 x 105 개의 B16F10/GP100/MAGE-A3 암세포를 정맥 주사하고 3일 뒤 1.5 x 106 개의 PBMC/α-GC, PBMC/Adk35GM 또는 PBMC/α-GC/Adk35GM를 투여하였다. 암세포의 정맥 주사 16일 후, 암 세포의 폐 전이 정도를 확인하였다 (도 5a).
그 결과, 도 5b 및 도 5c에 나타난 바와 같이, 아데노바이러스로 암 항원 도입된 두 세포군인 PBMC/Adk35GM과 PBMC/α-GC/Adk35GM이 투여된 마우스의 폐에서는 암조직이 거의 관찰되지 않았다.
다음으로, 말초혈액단핵세포 백신의 투여가 전이암 마우스의 생존율에 미치는 영향을 확인하고자 하였다.
이를 위해 C57BL/6 마우스에 3 x 105 개의 B16F10/GP100/MAGE-A3 암세포를 정맥 주사하고 3일 뒤 2 x 106 개의 PBMC/α-GC, PBMC/Adk35GM 또는 PBMC/α-GC/Adk35GM를 투여한 후, 마우스의 생존율을 추적하였다 (도 6a).
그 결과, 도 6b에 나타난 바와 같이, 도 5b의 결과와 마찬가지로, 암 항원이 도입된 PBMC/Adk35GM과 PBMC/α-GC/Adk35GM이 투여된 마우스 그룹의 생존율을 크게 향상시켜 모두 40일 이상 생존하였다.
<실험예 1-2>와 <실험예 1-3>의 결과와 종합해 고려하면, 말초혈액단핵세포에 Adk35GM을 통한 암 항원 전달만으로 강력한 세포 독성 T 세포 반응이 유도되어 강력한 항암 치료 효과를 얻을 수 있음을 알 수 있다.
<실험예 2> 항원 펩타이드를 적재한 말초혈액단핵세포 백신 투여에 의한 효과 확인
<2-1> 세포 독성 T 세포 반응 유도 확인
실시예 1-2의 항원 펩타이드를 적재한 말초혈액단핵세포 백신이 세포 독성 T 세포 반응을 유도할 수 있는지 확인하였다.
α-GC가 적재된 말초혈액단핵세포 (PBMC/α-GC), HER263-71 펩타이드가 적재된 말초혈액단핵세포 (PBMC/HER2 pep), 또는 α-GC와 HER263-71 펩타이드가 함께 제시된 말초혈액단핵세포 (PBMC/α-GC/HER2 pep)를 C57BL/6 마우스에 각각 정맥 투여하여 면역화시키고, 7일 후 생채 내 세포 독성 시험을 실시하였다 (도 7a).
그 결과, 도 7b 및 도 7c에 나타난 바와 같이, 오직 PBMC/α-GC/HER2 pep를 투여한 마우스 군에서만 HER263-71 펩타이드가 적재된 CFSEhigh 표적 세포가 대부분 용해되었다. 이를 통해 α-GC와 펩타이드를 적재한 말초혈액단핵세포 백신에 의해서도 세포 독성 T 세포가 활성화될 수 있음을 확인하였다.
그러나 <실험예 1-2>에서 α-GC 없이 아데노바이러스 벡터로 항원만 전달된 말초혈액단핵세포의 투여군 (도 3c 참조)에서도 세포 독성 T 세포 반응이 유도된 것과 달리, 펩타이드만 적재된 PBMC/HER2 pep에서는 세포 독성 T 세포 반응이 관찰되지 않았다 (도 7c 참조). 이는 아데노바이러스를 통해 항원 전체를 전달해 여러 항원결정기 (에피톱)에 특이적인 다양한 면역 반응을 유도시키는 것이 단일 펩타이드만을 제시하는 방법보다 세포 독성 T 세포 면역 반응 유도에 탁월한다는 것을 의미한다.
<2-2> 말초혈액단핵세포 백신의 항암 효과 확인
항원 펩타이드를 적재한 말초혈액단핵세포 백신이 항암 치료 효과를 일으킬 수 있는지 확인하였다.
이를 위하여 BABL/c 마우스에 2 x 105 개의 CT26-HER2 암세포주를 피하로 이식한지 3일 후 2 x 106 개의 PBMC/α-GC, PBMC/HER2 pep 또는 PBMC/α-GC/HER2 pep로 각각 면역화하였다 (도 8a).
그 결과, 도 8b에 나타난 바와 같이, 말초혈액단핵세포 백신 (PBMC/α-GC/HER2 pep) 투여한 경우 암의 성장이 크게 억제됨을 관찰하였다. 이와 달리, PBMC/α-GC 또는 PBMC/HER2 pep 세포를 투여한 마우스의 경우는 암 성장을 지연시키지 못하였다. 따라서, 펩타이드 단독 적재만으로는 충분한 항암 치료 효과를 유도할 수 없음을 밝혔다.
실시예 1-3의 항암 실험 데이터 (도 4 내지 도 6 참조)와 종합하면, α-GC를 적재하고 항원을 전달시켜 제작한 말초혈액단핵세포 백신은 α-GC 적재 단독이나 항원 전달 단독 세포 백신에 비해 강력한 항암 효과를 나타내 암 성장을 억제하고, 생존율을 향상시키는 것을 확인하였다.
<실험예 3> 말초혈액단핵세포 백신의 타 면역세포 조성 백신 대비한 우수한 항암 효과
<3-1> 말초혈액단핵세포 백신과 B 세포/단핵구 세포 백신의 면역 반응 유도능 비교
말초혈액단핵세포 백신의 세포 독성 T 세포 면역반응 유도능을 B 세포/단핵구로 조성된 기존 항암 세포 백신과 비교하고자 하였다.
이를 위하여, C57BL/6 마우스의 비장에서 얻은 B 세포/단핵구와 말초혈액단핵세포에 α-GC 적재하거나 아데노바이러스 Adk35GM 항원전달시켜 백신을 제작해 C57BL/6 마우스에 면역화시킨 7일 후 타겟 세포 (GP10025-33 펩타이드 적재한 CFSEhigh 라벨된 표적 세포 : 용매 처리한 CFSElow 라벨된 대조 세포 = 1 : 1)를 면역화한 마우스에 투여하여 생체 내 세포 독성 시험을 진행하였다 (도 9a). 하루 뒤 유세포 분석기로 마우스 비장 세포 내 CFSEhigh : CFSElow 비율을 산출하여 GP10025-33 펩타이드 적재된 CFSEhigh 표적 세포의 용해를 측정하였다 (도 9b).
그 결과, 도 9c에 나타난 바와 같이, B 세포/단핵구로 구성된 면역세포 백신 (Bmo/α-GC/Adk35GM) 투여군과 말초혈액단핵세포 백신 (PBMC/α-GC/Adk35GM) 투여군 모두에서 암항원 GP100에 특이적인 세포 독성 T 세포 반응에 의한 80% 이상의 타겟 세포 사멸이 관찰되었으며, 말초혈액단핵세포 백신 투여군에서 약간 더 높은 세포 독성이 확인되었다.
<3-2> PBMC 조성 백신의 구성 세포 성분별 면역 반응 유도능 확인
다음으로 말초혈액단핵세포 백신을 구성하는 각 면역세포에 의해 항원 특이적인 세포 독성 T 세포 면역 반응을 유도할 수 있는지 알아보기 위해 생체 내 세포 독성 시험을 실시하였다.
구체적으로, C57BL/6 마우스의 비장에서 수득한 T 세포, B 세포/단핵구와 말초혈액단핵세포에 α-GC 적재와 아데노바이러스 Adk35GM 항원 전달시켜, 면역 세포 백신을 제작한 후 C57BL/6 마우스에 면역화시킨 7일 후 <3-1>과 동일한 방법으로 세포 독성 시험을 진행하였다 (도 10a).
그 결과, 도 10b 및 도 10c에 나타난 바와 같이, 말초혈액단핵세포 백신 (PBMC/α-GC/Adk35GM) 투여군, B 세포/단핵구로 구성된 면역세포 백신 (Bmo/α-GC/Adk35GM) 투여군, T 세포로 구성된 면역세포 백신 (T/α-GC/Adk35GM) 투여군 순으로 세포 독성 반응이 높게 나타났다.
상기의 결과는 말초혈액단핵세포를 약 40%를 구성하는 B 세포/단핵구 뿐만 아니라, 절반을 차지하는 T 세포에 의해서도 암항원 GP100 특이적인 세포 독성 T 세포 면역 반응이 유도됨을 시사한다.
상기 실험예 3-1과 실험예 3-2를 종합하면, α-GC을 적재하고 아데노바이러스 벡터로 항원 전달된 말초혈액단핵세포 백신을 90%를 차지하는 T 세포, B 세포와 단핵구에 의해 강력한 암 항원 특이적 세포 독성 T 세포 면역반응이 유도될 수 있음을 알 수 있다.
<3-3> 말초혈액단핵세포 백신과 B 세포/단핵구 세포 백신의 항암 치료 효과 비교
마지막으로 말초혈액단핵세포 백신과 B 세포/단핵구 백신의 항암 치료 효과를 비교하였다.
이를 위하여 C57BL/6 마우스의 옆구리에 3 x 105 개의 B16F10/GP100/MAGE-A3 암세포주를 피하로 이식한지 7일 후 1.5 x 106 개의 말초혈액단핵세포로 구성된 PBMC/α-GC, PBMC/α-GC/Adk35GM, 또는 B 세포/단핵구로 구성된 Bmo/α-GC, Bmo/α-GC/Adk35GM을 투여하여 면역화한 후, 종양 크기 변화를 측정하였다 (도 11a).
그 결과, 도 11b에 나타난 바와 같이, 말초혈액단핵세포 백신 (PBMC/α-GC/Adk35GM)와 B 세포/단핵구 백신 (Bmo/α-GC/Adk35GM)을 투여한 경우 암의 성장이 저해되었다. 그러나 Bmo/α-GC/Adk35GM 투여 마우스군의 고형암이 이후 재성장하는 반면, PBMC/α-GC/Adk35GM 투여군의 암은 4주 이상 성장이 억제되며 강력한 항암 치료 효과를 나타냈다.
종합하면, <3-1>과 <3-2>에서 말초혈액단핵세포 백신과 B 세포/단핵구 백신의 세포 독성 T 세포 유도 정도에 차이가 나지 않았으나, <3-3>에서는 말초혈액단핵세포 백신이 B 세포/단핵구 백신 대비 훨씬 뛰어난 항암 치료효과가 확인된 것을 통해 말초혈액단핵세포 내 다양한 면역 세포군은 상호 보완작용하여 향상된 항암 치료 반응을 유도함을 추측할 수 있다.
본 발명의 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신은 말초혈액단핵세포로부터 특정 세포를 분리할 필요가 없어 수득이 용이하며, 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포의 면역화는 유의한 수준의 자연 살해 세포 및 자연 살해 T 세포의 활성화와 세포 독성 T 림프구 반응을 유도할 뿐 아니라, 악성종양의 치료 효과에 시너지 효과를 나타내므로 암을 예방할 수 있을 뿐만 아니라 면역항암요법을 통한 암 치료에 적용될 수 있다.

Claims (17)

  1. 자연 살해 T 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  2. 제1항에 있어서, 말초혈액단핵세포는 말초혈액에서 적혈구를 제거한 것임을 특징으로 하는, 면역 치료 및 예방용 백신.
  3. 제1항에 있어서, 말초혈액단핵세포는 T 세포, B 세포 및 자연 살해 세포로 구성되는 림프구와 단핵구로 구성되는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  4. 제1항에 있어서, 자연 살해 T 세포의 리간드는 알파-갈락토실세라마이드, 알파-글루쿠로노실세라마이드, 포스파티딜이노시톨테트라만노사이드, 이소글로보트리헥소실세라마이드, 갱글리오사이드 GD3, 포스파티딜콜린, 베타-갈락토실세라마이드, 리포포스포글리칸, 글리코이노시톨포스포리피드, 알파-갈락토실세라마이드의 유사체인 베타-아노머 갈락토실세라마이드 및 알파-아노머 갈락토실세라마이드, 박테리아 지질 항원 및 알파 갈락토실세라마이드의 변이체로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  5. 제 1항에 있어서, 항원은 병원균(pathogenic bacteria), 바이러스 및 기생충을 포함하는 병원체(pathogen) 유래의 항원 또는 암 항원인 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  6. 제 5항에 있어서, 병원균 유래의 항원은 백일해균(Bordetella pertussis) 항원(pertussis toxin, filamentous haemagglutinin, pertactin), 파상풍균 항원(tetanus toxoid), 디프테리아균(diphtheria) 항원(diphtheria toxoid), 헬리코박터파이로리(Helicobacterpylori) 항원(capsula polysaccharides of serogrup A, B, C, Y 및 W-135), 폐렴균(pneumococcal) 항원(Streptococcus pnemoniae type 3 capsular polysaccharide), 결핵균 (tuberculosis) 항원, 콜레라(cholera) 항원(cholera toxin B subunit), 포도상구균(staphylococcal) 항원 (staphylococcal enterotoxin B), 적리균(shigella) 항원(shigella polysaccharides), 보렐리아(Borrelia sp.) 항원, 칸디다(Candida albicans) 항원 및 플라스모디움(Plasmodium) 항원으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  7. 제 5항에 있어서, 바이러스 유래의 항원은 인플루엔자 바이러스(influenza virus) 항원(haemagglutinin 및 neuraminidase 항원), 인간 파필로마 바이러스(human papilloma virus, HPV) 항원(glycoprotein), 소수포성 입안염 바이러스(vesicular stomatitis virus) 항원(vesicular stomatitis virus glycoprotein), 사이토메갈로바이러스(cytomegalovirus, CMV) 항원, 간염(hepatitis) 바이러스 항원(hepatitis A(HAV), B(HBV), C(HCV), D(HDV) 및 G(HGV) 항원)(core antigen and surface antigen), 호흡기 다핵체 바이러스(respiratory synctytial virus, RSV) 항원, 허피스 심플렉스 바이러스(herpes simplex virus) 항원, 인간 면역결핍 바이러스(human immunodeficiency virus, HIV) 항원(GP-120, GP-160, p18, Tat, Gag, Pol, Env) 및 그의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  8. 제 5항에 있어서, 암 항원은 gp100, 멜라노마 항원 유전자(MAGE, melanoma antigen gene), 인간 유두종 바이러스(HPV: human papilloma virus) E6/E7, 티로시나제(tyrosinase), 티로시나제-관련 단백질-1(TRP-1), 티로시나제-관련 단백질-2(TRP-2), 뮤리노글로브린 1(MUC-1: murinoglobulin 1), 암 배아항원(CEA: carcinoembryonic antigen), p53, 알파-페토프로테인(α-fetoprotein), Her-2/neu에 의해 발현되는 유방암 단백질, Proteinase 3, WT-1, PAP, PSA, PSMA, G250, BAGE, GAGE, NY-ESO-1, MART-1, MCIR, Ig Idiotype, CDK4, caspase-8, β-catenin, CIA, BCR/ABL, EBV LMP2a, HCV, HHV-8, 5T4, 및 종양 특이적인 돌연변이 유래 신생항원(neoantigen)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  9. 제 1항에 있어서, 상기 항원은 펩티드, 지질다당류, 다당류, 당단백질 또는 DNA 및 RNA를 포함한 폴리뉴클레오티드의 형태를 갖는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  10. 제 8항에 있어서, 암은 간암, 갑상선암, 고환암, 골암, 교모세포종, 구강암, 난소암, 뇌종양, 다발골수종, 담낭암, 담도암, 대장암, 두경부암, 림프종, 방광암, 백혈병, 식도암, 신장암, 위암, 유방암, 자궁경부암, 전립선암, 직장암, 척수종양, 췌장암, 침샘암, 폐암, 피부암, 후두암, 흑색종, 급성 골수성 백혈병, 신경모세포종, 망막모세포종 또는 결장직장암인 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  11. 제 1항에 있어서, 항원은 재조합 바이러스에 의해 도입되어 발현되는 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  12. 제 11항에 있어서, 재조합 바이러스는 항원을 발현하는 유전자가 도입된 아데노바이러스, 레트로바이러스, 백시니아 바이러스, 폭스 바이러스, 신드비스 바이러스(Sindbis virus)인 것을 특징으로 하는, 면역 치료 및 예방용 백신.
  13. (a) 말초혈액단핵세포를 수득하는 단계;
    (b) 적혈구를 제거하는 단계; 및
    (c) 자연 살해 T 세포의 리간드 및 항원을 말초혈액단핵세포에 전달하는 단계;
    를 포함하는 것을 특징으로 하는, 항암 면역 치료 및 예방용 백신 제조 방법.
  14. 제 13항의 방법으로 제조된 항암 면역 치료 및 예방용 백신.
  15. 자연 살해 T 세포의 리간드와 암 항원이 적재된 말초혈액단핵세포를 유효성분으로 포함하는 암의 예방 및 치료용 약학적 조성물.
  16. 암을 예방 또는 치료하는데 사용하기 위한, 자연 살해 T 세포의 리간드와 암 항원을 적재한 말초혈액단핵세포의 용도.
  17. 자연 살해 T 세포의 리간드와 암 항원이 적재된 말초혈액단핵세포의 유효량을 개체에 투여하여 암을 예방하거나 또는 치료하는 방법.
PCT/KR2023/013932 2022-09-15 2023-09-15 자연 살해 t 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신 WO2024058609A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0116552 2022-09-15
KR20220116552 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058609A1 true WO2024058609A1 (ko) 2024-03-21

Family

ID=90275402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013932 WO2024058609A1 (ko) 2022-09-15 2023-09-15 자연 살해 t 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신

Country Status (2)

Country Link
KR (1) KR20240037865A (ko)
WO (1) WO2024058609A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809873B1 (ko) * 2006-04-27 2008-03-06 재단법인서울대학교산학협력재단 자연 살해 t 세포의 리간드와 항원을 적재한 b 세포를매개로 하는 백신
KR20090051598A (ko) * 2007-11-19 2009-05-22 재단법인서울대학교산학협력재단 자연 살해 t 세포의 리간드와 항원을 적재한 단핵구 또는미분화 골수성 세포를 포함하는 백신
KR102122802B1 (ko) * 2018-05-11 2020-06-16 강원대학교산학협력단 알파-갈락토실세라마이드 및 esat6를 적재한 b 세포를 포함하는 결핵 치료 및 예방용 세포 백신

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809873B1 (ko) * 2006-04-27 2008-03-06 재단법인서울대학교산학협력재단 자연 살해 t 세포의 리간드와 항원을 적재한 b 세포를매개로 하는 백신
KR20090051598A (ko) * 2007-11-19 2009-05-22 재단법인서울대학교산학협력재단 자연 살해 t 세포의 리간드와 항원을 적재한 단핵구 또는미분화 골수성 세포를 포함하는 백신
KR102122802B1 (ko) * 2018-05-11 2020-06-16 강원대학교산학협력단 알파-갈락토실세라마이드 및 esat6를 적재한 b 세포를 포함하는 결핵 치료 및 예방용 세포 백신

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMAR SUDEEP; SUNAGAR RAJU; PHAM GIANG; GOSSELIN EDMUND J.; NALIN DAVID: "Ex vivoantigen-pulsed PBMCs generate potent and long lasting immunity to infection when administered as a vaccine", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 35, no. 7, 6 January 2017 (2017-01-06), AMSTERDAM, NL , pages 1080 - 1086, XP029904251, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2016.12.035 *
S. MOTOHASHI, K. NAGATO, N. KUNII, H. YAMAMOTO, K. YAMASAKI, K. OKITA, H. HANAOKA, N. SHIMIZU, M. SUZUKI, I. YOSHINO, M. TANIGUCHI: "A Phase I-II Study of ?-Galactosylceramide-Pulsed IL-2/GM-CSF-Cultured Peripheral Blood Mononuclear Cells in Patients with Advanced and Recurrent Non-Small Cell Lung Cancer", THE JOURNAL OF IMMUNOLOGY, WILLIAMS & WILKINS CO., US, vol. 182, no. 4, 15 February 2009 (2009-02-15), US , pages 2492 - 2501, XP055386155, ISSN: 0022-1767, DOI: 10.4049/jimmunol.0800126 *

Also Published As

Publication number Publication date
KR20240037865A (ko) 2024-03-22

Similar Documents

Publication Publication Date Title
KR100995340B1 (ko) 자연 살해 t 세포의 리간드와 항원을 적재한 단핵구 또는미분화 골수성 세포를 포함하는 백신
JP4713638B2 (ja) ナチュラルキラーt細胞のリガンドと抗原を積載したb細胞を媒介とするワクチン
CA2263503C (en) Melanoma cell lines expressing shared immunodominant melanoma antigens and methods of using same
EP0893507A1 (en) Use of MHC class II ligands (CD4 and LAG-3) as adjuvant for vaccination and of LAG-3 in cancer treatment
WO2019203497A1 (ko) 고갈성 항 cd4 단일클론항체를 포함하는 항암 t 세포치료제 보조용 조성물 및 이의 용도
EP1660040B1 (en) In vivo targeting of dendritic cells
EP1356822B1 (en) Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
WO2020162705A1 (ko) 톨-유사 수용체 7 또는 8 작용자와 콜레스테롤의 결합체 및 그 용도
WO2024058609A1 (ko) 자연 살해 t 세포의 리간드와 항원을 적재한 말초혈액단핵세포를 포함하는 백신
WO2017069512A1 (ko) 바이러스 항원 특이적인 t 세포의 유도 및 증식 방법
KR101055666B1 (ko) 자연 살해 t 세포의 리간드와 항원을 적재한 단핵구 또는 미분화 골수성 세포를 포함하는 백신
WO2023243890A1 (ko) 자연 살해 t 세포의 리간드와 암 항원을 적재한 자연 살해 세포를 포함하는 백신
WO2022203226A1 (ko) 키메릭 항원 수용체(car)를 포함하는 형질전환된 항원 특이적 전문적 항원표출세포 및 이의 용도
Kim et al. Augmentation of antitumor immunity by genetically engineered fibroblast cells to express both B7. 1 and interleukin-7
WO2023128381A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 흑색종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023128380A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 폐 선암종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023128378A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 대장암의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2022250416A1 (ko) 리포펩타이드와 폴리(i:c) 아쥬번트를 이용하는 면역항암치료제 조성물
WO2023128379A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 유방암의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023048530A1 (ko) 종양 연관 항원으로부터 유래된 펩타이드 및 리포펩타이드와 면역활성물질로 구성되는 아쥬번트를 포함하는 항암 백신 조성물 및 이의 용도
WO2023128377A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 폐 유두상 선암종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
KR20230172384A (ko) 자연 살해 t 세포의 리간드와 암 항원을 적재한 자연 살해 세포를 포함하는 백신
WO2023106894A1 (ko) Mr1 제한적 panck t 세포 및 이의 제조방법
WO2022234976A1 (ko) 키메릭 항원 수용체(car)를 포함하는 형질전환된 항원 특이적 전문적 항원표출세포 및 이의 용도
WO2022211376A1 (ko) 키메릭 항원 수용체(car)를 포함하는 형질전환된 항원 특이적 전문적 항원표출세포 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865904

Country of ref document: EP

Kind code of ref document: A1