WO2024058393A1 - Iron alloy having antibacterial property and manufacturing method therefor - Google Patents

Iron alloy having antibacterial property and manufacturing method therefor Download PDF

Info

Publication number
WO2024058393A1
WO2024058393A1 PCT/KR2023/010159 KR2023010159W WO2024058393A1 WO 2024058393 A1 WO2024058393 A1 WO 2024058393A1 KR 2023010159 W KR2023010159 W KR 2023010159W WO 2024058393 A1 WO2024058393 A1 WO 2024058393A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
dispersed phase
less
iron alloy
phase
Prior art date
Application number
PCT/KR2023/010159
Other languages
French (fr)
Korean (ko)
Inventor
이광춘
장복현
시바타테츠로
홍상범
Original Assignee
(주)엠티에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠티에이 filed Critical (주)엠티에이
Publication of WO2024058393A1 publication Critical patent/WO2024058393A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to an Fe (iron) alloy having antibacterial properties due to Cu (copper) and a method for manufacturing the same. Specifically, the present invention relates to an antibacterial property obtained by imparting a dispersed phase of fine particles of Cu (copper) to a highly corrosion-resistant iron alloy such as stainless steel. It relates to an iron alloy having and a manufacturing method thereof.
  • antibacterial properties As metals with antibacterial or bactericidal properties (hereinafter simply referred to as "antibacterial properties"), Ag (silver) and Cu (copper) are well known, as are Zn (zinc), Sn (tin), Co (cobalt), and Ni. Metals such as (nickel) are also known to have antibacterial properties. It is believed that these metals dissolve in water and become metal ions, showing antibacterial activity even in very small amounts.
  • Patent Document 1 discloses a method of improving the antibacterial properties of stainless steel by increasing the Cu concentration of the surface oxide film of stainless steel because stainless steel generally has antibacterial properties, but this is not sufficient for practical use.
  • a stainless steel plate on which a porous oxide film has been grown on the surface is used as a cathode as a method of improving the antibacterial properties of stainless steel through surface treatment without damaging the characteristic metallic luster of stainless steel, and a phosphoric acid aqueous solution containing chromic acid and copper salt is used as the cathode. It is intended to increase the Cu concentration of the surface oxide film by performing cathodic electrolysis treatment at a specified current density and electrolyte temperature in the electrolyte solution.
  • Patent Document 2 discloses a stainless steel in which antibacterial properties are imparted by uniformly distributing Cu-rich precipitated phases within the structure by adding 1.5 to 2.0% by weight of Cu to martensitic stainless steel. It is explained that in order to maintain hardness and corrosion resistance, it is necessary to disperse the Cu-rich precipitate phase while uniformly distributing fine Cr carbides within the structure.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-291397
  • Patent Document 2 Japanese Patent Publication No. 2018-500460
  • the present invention was made in consideration of the above situation, and its purpose is to provide an iron alloy that is excellent in manufacturability, exhibits stable high antibacterial properties, and has high mechanical properties, and a method for manufacturing the same.
  • the present inventors took advantage of the property of a copper-iron two-phase alloy in which two liquid phases are separated and segregation is likely to occur on a large scale during solidification due to the difference in specific gravity, to form a Fe-based alloy of a certain known composition, typically more than Cu.
  • a Fe-based alloy of a certain known composition typically more than Cu.
  • the iron alloy according to the present invention is an iron alloy with antibacterial properties in which a dispersed phase made of Cu or a Cu alloy is imparted to a matrix phase made of an Fe-based alloy, and Cu is 10 to 30% of the total in mass%, and the above dispersed It is characterized in that it is contained in the range of 80% or more in the phase and 20% or less in the matrix phase, and the average particle size of the dispersed phase is 100 ⁇ m or less. According to these characteristics, stable and high antibacterial properties can be obtained by a dispersed phase made of Cu or Cu alloy, and manufacturability is also excellent.
  • the matrix phase may be characterized in that it contains Cr in Fe in a range of 10 to 30%, in mass %, and the amount of Cr in the dispersed phase, in mass %, may be 10% or less. According to these characteristics, the generation of surface oxides of iron alloys can be suppressed and stable and higher antibacterial properties can be obtained by the dispersed phase.
  • the manufacturing method according to the present invention is a method of manufacturing an iron alloy having antibacterial properties in which a dispersed phase made of Cu or Cu alloy is imparted to a matrix made of Fe-based alloy, and a predetermined amount of Cu material is placed in a high-frequency induction furnace, stirred and melted at 1550°C or lower, and then cast.
  • a dispersed phase made of Cu or Cu alloy is imparted to a matrix made of Fe-based alloy, and a predetermined amount of Cu material is placed in a high-frequency induction furnace, stirred and melted at 1550°C or lower, and then cast.
  • Cu is contained in the range of 10 to 30% of the total, 80% or more in the dispersed phase, and 20% or less in the matrix phase.
  • the average particle size of the dispersed phase is set to 100 ⁇ m or less. According to these characteristics, an iron alloy with stable and high antibacterial properties due to a dispersed phase made of Cu or Cu alloy can be obtained with high manufacturability.
  • FIG. 1 is a cross-sectional structure photograph of an iron alloy manufactured according to an embodiment of the present invention.
  • (a) is a typical tissue photo of SUS430 containing 20 wt% of Cu
  • (b) and (c) are photos of the structure of A-S10 obtained from manufacturing tests.
  • Figure 2 is a table showing the component composition of each sample and the tensile strength after casting.
  • Figure 3(a) is a cross-sectional tissue photo of 'A-S10', and (b) is a cross-sectional tissue photo of 'A-S20'.
  • Figure 4(a) is a cross-sectional tissue photograph of 'B-S10' and (b) is a cross-sectional tissue photograph of 'B-S20'.
  • Figure 5 shows (a) a powder with a D50 of less than 45 ⁇ m, (b) a powder with a D50 of 45 ⁇ m or more, (c) a powder with a D50 of less than 45 ⁇ m, and (d) of ‘A-S20’. ) This is an electron microscope photo of a powder with a D50 of 45 ⁇ m or more.
  • Figure 6 is a photograph of the appearance of the medium after an antibacterial test using various metal pieces including 'A-S10' and 'A-S20'.
  • the iron alloy 10 in this embodiment is a matrix phase 1 made of an Fe-based alloy excellent in corrosion resistance such as stainless steel, and Cu or Cu with an average particle diameter of 100 ⁇ m or less. It is an alloy in which the dispersed phase (2) made of alloy is finely dispersed. In addition, it was observed that fine particles 2' (see FIG. 1(c)) made of Cu or Cu alloy of several ⁇ m or less, which are finer than the dispersed phase 2 (see FIG. 1(c)), were precipitated in the matrix phase 1.
  • the iron alloy 10 contains 10 to 30% of Cu relative to the total mass%.
  • Cu is expressed in mass% in the dispersed phase (2). It is contained in an amount of 80% or more, and in the matrix phase (1), the content is allowed in the range of 20% or less.
  • Cu is preferably contained in the dispersed phase (2) in an amount of 85% or more by mass, and more preferably in an amount of 90% or more.
  • the amount of Cu allowed to be contained in the matrix phase (1) is preferably 10% or less in mass%, more preferably 8% or less, and even more preferably 5% or less.
  • the dispersed phase (2) is finely dispersed with an average particle diameter of 100 ⁇ m or less.
  • high antibacterial properties due to the dispersed phase (2) can be imparted to the entire surface of the part while maintaining the same mechanical strength as an Fe-based alloy that does not contain Cu, which is the master alloy. That is, stable and high antibacterial properties can be imparted to the iron alloy (10) by the dispersed phase (2) made of Cu or Cu alloy.
  • the fine particles 2' made of Cu or Cu alloy in the matrix phase 1, which are finer than the dispersed phase 2 particularly influence the mechanical strength. Since the precipitation form of these fine particles 2' varies depending on the heat history, the mechanical strength can be adjusted through heat treatment.
  • the matrix phase (1) contains Fe and Cr in the range of 10 to 30 mass%, and the Cr content in the dispersed phase (2) is preferably 10 mass% or less.
  • the Cr content in the dispersed phase (2) is expressed in mass%, and is more preferably 7% or less, and even more preferably 5% or less.
  • the solubility limit of Cu with respect to Fe is not high, and if an amount of Cu exceeding the solubility limit, for example, 20% by mass or more, is contained, Cu that cannot be dissolved in a Fe matrix is formed. Gravity separation is likely to occur.
  • the iron alloy 10 is manufactured by a manufacturing method in which Cu, which cannot be dissolved in solid solution, is finely dispersed in the matrix phase 1 as the dispersed phase 2. Specifically, a predetermined amount of Cu material along with a master alloy made of Fe-based alloy are placed in a high-frequency induction furnace, stirred and melted at 1550°C or lower, and then cast. In this way, the iron alloy 10 can be obtained by a method excellent in manufacturability using a high-frequency induction furnace. Additionally, Cu materials include Cu, Cu alloy, and combinations of alloy components thereof.
  • the solubility limit of Cu for Fe decreases at low temperatures. Therefore, by heat treatment at a relatively low temperature below the melting point of Cu, Cu dissolved in the matrix phase 1 can be precipitated, and the dispersion state of the dispersed phase 2 by Cu can be adjusted.
  • the iron alloy 10 was manufactured by the above-described method, and the results of various tests are explained.
  • the tested iron alloy (10) was two types: 'A-S10' containing about 10% by mass of Cu in ferritic SUS430, 'A-S20' containing about 20% by mass of Cu, and austenite.
  • 'B-S10' which contains about 10% by mass of Cu in SUS316
  • 'B-S20' which contains about 20% by mass of Cu.
  • the powder prepared by the gas atomizing method using 'A-S10' and 'A-S20' obtained above was observed with an electron microscope.
  • Two types of powder were prepared for each alloy type of 'A-S10' and 'A-S20': one with D50 of less than 45 ⁇ m and one with D50 of 45 ⁇ m or more.
  • the Cu dispersed phase (2) and fine particles (2') existed dispersed on the surface.
  • an antibacterial test was conducted using Salmonella bacteria while comparing 'A-S20' with SUS430 used as the master alloy.
  • the test method is to drop 25 ⁇ L of bacterial liquid on test pieces made of various metals, including 'A-S10' and 'A-S20', and collect a sample of the bacterial liquid with the tip of a toothpick every predetermined time immediately after dropping and inoculate the medium. ⁇ Cultured and observed. As shown in the figure, it was confirmed that 'A-S10' and 'A-S20' had high antibacterial properties as salmonella bacteria died 5 minutes after being dropped.
  • both 'A-S10' and 'A-S20' have the same corrosion resistance as SUS in appearance, and the effect of particles made of Cu or Cu alloy on corrosion resistance, for example, local cells in the gap between the matrix phase and The same effect of lowering corrosion resistance was not observed.

Abstract

Provided are: an iron alloy having excellent manufacturability, exhibiting stable and high antibacterial property and having high mechanical properties; and a manufacturing method therefor. The iron alloy having an antibacterial property has a Cu or Cu alloy dispersed phase provided in a Fe-based alloy matrix phase. The present invention contains, by wt%, Cu in the amounts of 10-30% with respect to the entire iron alloy, 80% or more in the dispersed phase and 20% or less in the matrix phase, wherein the average diameter thereof in the dispersed phase is 100 μm or less. The manufacturing method comprises: putting, in a high-frequency induction furnace, a predetermined amount of a Cu material together with a master alloy of an Fe-based alloy; stirring and melting same at 1,550°C or lower; and casting same, and thus the present invention contains, by wt%, Cu in the amounts of 10-30% with respect to the entire iron alloy, 80% or more in the dispersed phase and 20% or less in the matrix phase, wherein the average diameter thereof in the dispersed phase is 100 μm or less.

Description

항균성을 갖는 철 합금 및 그 제조방법Iron alloy with antibacterial properties and manufacturing method thereof
본 발명은 Cu(구리)에 의한 항균성을 갖는 Fe(철) 합금 및 그 제조 방법에 관한 것으로, 상세하게는 스테인리스강과 같은 고내식성 철 합금에 미립자의 Cu(구리) 분산상(分散相)을 부여한 항균성을 갖는 철 합금 및 그 제조방법에 관한 것이다.The present invention relates to an Fe (iron) alloy having antibacterial properties due to Cu (copper) and a method for manufacturing the same. Specifically, the present invention relates to an antibacterial property obtained by imparting a dispersed phase of fine particles of Cu (copper) to a highly corrosion-resistant iron alloy such as stainless steel. It relates to an iron alloy having and a manufacturing method thereof.
항균성 또는 살균성(이하, 이들을 간단히 "항균성"이라 한다)을 갖는 금속으로서, Ag(은)이나 Cu(구리) 등이 잘 알려져 있으며, Zn(아연), Sn(주석), Co(코발트), Ni(니켈) 등의 금속도 항균성을 갖는 것으로 알려져 있다. 이러한 금속은 수중에 용출되어 금속 이온이 되어 극미량으로도 항균 작용을 나타낸다고 여겨진다.As metals with antibacterial or bactericidal properties (hereinafter simply referred to as "antibacterial properties"), Ag (silver) and Cu (copper) are well known, as are Zn (zinc), Sn (tin), Co (cobalt), and Ni. Metals such as (nickel) are also known to have antibacterial properties. It is believed that these metals dissolve in water and become metal ions, showing antibacterial activity even in very small amounts.
예를 들어, 특허문헌 1에서는 일반적으로 스테인리스강은 항균성을 갖지만 실용적으로 충분하지 않아 스테인리스강의 표면 산화막의 Cu 농도를 높여 스테인리스강의 항균성을 개선하는 방법을 개시하고 있다. 여기서, 스테인리스강 특유의 금속 광택을 손상시키지 않고 표면 처리에 의해 스테인리스강의 항균성을 개선하는 방법으로 다공성의 산화막을 표면에 성장시킨 스테인리스강판을 음극으로 하여, 크롬산 및 구리 염을 포함하는 인산 수용액으로 구성된 전해액 중에서 정해진 전류밀도 및 전해액 온도에서 음극 전해 처리하여 표면 산화막의 Cu 농도를 높이는 것으로 하고 있다.For example, Patent Document 1 discloses a method of improving the antibacterial properties of stainless steel by increasing the Cu concentration of the surface oxide film of stainless steel because stainless steel generally has antibacterial properties, but this is not sufficient for practical use. Here, a stainless steel plate on which a porous oxide film has been grown on the surface is used as a cathode as a method of improving the antibacterial properties of stainless steel through surface treatment without damaging the characteristic metallic luster of stainless steel, and a phosphoric acid aqueous solution containing chromic acid and copper salt is used as the cathode. It is intended to increase the Cu concentration of the surface oxide film by performing cathodic electrolysis treatment at a specified current density and electrolyte temperature in the electrolyte solution.
또한, 특허문헌 2에서는 마르텐사이트계 스테인리스강에 Cu를 1.5~2.0 중량% 추가함으로써, 조직 내에 Cu 리치 석출상을 균일하게 분포시켜 항균성을 부여한 스테인리스강을 개시하고 있다. 경도 및 내식성을 유지하기 위해서는 미립자의 Cr 탄화물을 조직 내에 균일하게 분포시킨 상태에서 Cu 리치 석출상을 분산시키는 것이 필요하다고 설명하고 있다.In addition, Patent Document 2 discloses a stainless steel in which antibacterial properties are imparted by uniformly distributing Cu-rich precipitated phases within the structure by adding 1.5 to 2.0% by weight of Cu to martensitic stainless steel. It is explained that in order to maintain hardness and corrosion resistance, it is necessary to disperse the Cu-rich precipitate phase while uniformly distributing fine Cr carbides within the structure.
(선행 기술 문헌)(Prior art literature)
(특허문헌 1) 일본특허공개평9-291397호 공보(Patent Document 1) Japanese Patent Laid-Open No. 9-291397
(특허문헌 2) 일본특허공표 2018-500460호 공보(Patent Document 2) Japanese Patent Publication No. 2018-500460
스테인리스강에 Cu를 함유시킨 Cu 함유 철 합금에서는 항균성을 부여하는 Cu 리치 상(rich phase)의 부여 형태에 따라 Cu 이온의 용출량이 달라지고, 항균성의 정도도 달라진다. 따라서, 제조 방법에서는 Cu 리치 상을 재현성 있게 부여하는 것이 필요하다. 또한, 철 합금의 기계적 특성에 항균성을 부여하기 위한 Cu가 미치는 영향을 고려해야 한다.In Cu-containing iron alloys containing Cu in stainless steel, the amount of Cu ions eluted varies depending on the type of Cu rich phase that provides antibacterial properties, and the degree of antibacterial properties also varies. Therefore, it is necessary to reproducibly provide a Cu-rich phase in the manufacturing method. Additionally, the effect of Cu on imparting antibacterial properties to the mechanical properties of iron alloys must be considered.
본 발명은 위와 같은 상황을 감안하여 이루어진 것으로, 그 목적은 제조성이 우수하고, 안정적으로 높은 항균성을 나타내며, 또한 높은 기계적 특성을 갖는 철 합금 및 그 제조 방법을 제공하는 것에 있다.The present invention was made in consideration of the above situation, and its purpose is to provide an iron alloy that is excellent in manufacturability, exhibits stable high antibacterial properties, and has high mechanical properties, and a method for manufacturing the same.
본 발명자들은, 2액상 분리되어 비중 차에 의해 응고시에 대규모로 편석이 발생하기 쉬운 구리-철 2상 합금의 성질을 이용하여, 소정의 공지된 성분 구성의 Fe 기 합금, 전형적으로는 Cu보다 높은 내식성을 나타내는 스테인리스 합금의 매트릭스 상(모상)에 대해, 구리 또는 구리 합금으로 이루어진 항균 분산상을 부여함으로써, 수(水) 환경에서의 매트릭스 상의 높은 내식성과 항균 분산상의 이온화를 얻을 수 있고, 안정된 항균성을 가지는 철 합금을 얻을 수 있음을 발견하였다.The present inventors took advantage of the property of a copper-iron two-phase alloy in which two liquid phases are separated and segregation is likely to occur on a large scale during solidification due to the difference in specific gravity, to form a Fe-based alloy of a certain known composition, typically more than Cu. By providing an antibacterial dispersed phase made of copper or a copper alloy to the matrix phase (mother phase) of a stainless steel alloy showing high corrosion resistance, high corrosion resistance of the matrix phase in an aqueous environment and ionization of the antibacterial dispersed phase can be obtained, and stable antibacterial properties are achieved. It was discovered that an iron alloy having .
즉, 본 발명에 의한 철 합금은, Cu 또는 Cu 합금으로 이루어진 분산상을 Fe 기 합금으로 이루어진 매트릭스 상에 부여한 항균성을 가지는 철 합금으로, 질량 %로, Cu를 전체에 대해 10~30%, 상기 분산상에서는 80% 이상, 그리고 매트릭스 상에서는 20% 이하의 범위로 함유하고, 상기 분산상의 평균 입경을 100μm 이하로 한 것을 특징으로 한다. 이러한 특징에 따라, Cu 또는 Cu 합금으로 이루어진 분산상에 의한 안정적이고 높은 항균성을 얻을 수 있으며, 제조성도 우수하다.That is, the iron alloy according to the present invention is an iron alloy with antibacterial properties in which a dispersed phase made of Cu or a Cu alloy is imparted to a matrix phase made of an Fe-based alloy, and Cu is 10 to 30% of the total in mass%, and the above dispersed It is characterized in that it is contained in the range of 80% or more in the phase and 20% or less in the matrix phase, and the average particle size of the dispersed phase is 100 μm or less. According to these characteristics, stable and high antibacterial properties can be obtained by a dispersed phase made of Cu or Cu alloy, and manufacturability is also excellent.
위에서 설명한 발명에서, 질량%로, 상기 매트릭스 상은 Fe에 Cr을 10~30% 범위로 함유하고, 상기 분산상의 Cr 양을, 질량%로, 10% 이하로 하는 것을 특징으로 할 수 있다. 이러한 특징에 따라, 철 합금의 표면 산화물 발생을 억제하고 분산상에 의한 안정적이고 더 높은 항균성을 얻을 수 있다.In the invention described above, the matrix phase may be characterized in that it contains Cr in Fe in a range of 10 to 30%, in mass %, and the amount of Cr in the dispersed phase, in mass %, may be 10% or less. According to these characteristics, the generation of surface oxides of iron alloys can be suppressed and stable and higher antibacterial properties can be obtained by the dispersed phase.
또한, 본 발명에 의한 제조 방법은, Cu 또는 Cu 합금으로 이루어진 분산상을 Fe 기 합금으로 이루어진 매트릭스 상에 부여한 항균성을 가지는 철 합금의 제조 방법으로, 상기 Fe 기 합금의 모합금과 함께, 소정 양의 Cu 소재를 고주파 유도로에 넣어 1550℃이하에서 교반 용해하고, 주조함으로써, 질량%로, Cu를 전체에 대해 10~30%, 상기 분산상에서는 80% 이상, 그리고 매트릭스 상에서는 20% 이하의 범위로 함유하고, 상기 분산상의 평균 입경을 100μm 이하로 하는 것을 특징으로 한다. 이러한 특징에 따라, Cu 또는 Cu 합금으로 이루어진 분산상에 의한 안정적이고 높은 항균성을 가지는 철 합금을 높은 제조성을 가지고 얻을 수 있다.In addition, the manufacturing method according to the present invention is a method of manufacturing an iron alloy having antibacterial properties in which a dispersed phase made of Cu or Cu alloy is imparted to a matrix made of Fe-based alloy, and a predetermined amount of Cu material is placed in a high-frequency induction furnace, stirred and melted at 1550°C or lower, and then cast. By mass percentage, Cu is contained in the range of 10 to 30% of the total, 80% or more in the dispersed phase, and 20% or less in the matrix phase. And, the average particle size of the dispersed phase is set to 100 μm or less. According to these characteristics, an iron alloy with stable and high antibacterial properties due to a dispersed phase made of Cu or Cu alloy can be obtained with high manufacturability.
도 1은 본 발명의 실시예에 따라 제조된 철 합금의 단면 조직 사진이다. (a)는 SUS430에 20wt%의 Cu를 포함한 경우의 전형적인 조직 사진, (b) 및 (c)는 제조 시험에서 얻어진 A-S10의 조직 사진이다.1 is a cross-sectional structure photograph of an iron alloy manufactured according to an embodiment of the present invention. (a) is a typical tissue photo of SUS430 containing 20 wt% of Cu, and (b) and (c) are photos of the structure of A-S10 obtained from manufacturing tests.
도 2는 각 시료의 성분 구성 및 주조 후의 인장강도를 나타내는 표이다.Figure 2 is a table showing the component composition of each sample and the tensile strength after casting.
도 3(a)는 'A-S10', (b)는 'A-S20'의 단면 조직 사진이다.Figure 3(a) is a cross-sectional tissue photo of 'A-S10', and (b) is a cross-sectional tissue photo of 'A-S20'.
도 4(a)는 'B-S10', (b)는 'B-S20'의 단면 조직 사진이다.Figure 4(a) is a cross-sectional tissue photograph of 'B-S10' and (b) is a cross-sectional tissue photograph of 'B-S20'.
도 5는 'A-S10'의 (a) D50을 45μm 미만으로 하는 분말, (b) D50을 45μm 이상으로 하는 분말, 'A-S20'의 (c) D50을 45μm 미만으로 하는 분말 및 (d) D50을 45μm 이상으로 하는 분말의 전자현미경 사진이다.Figure 5 shows (a) a powder with a D50 of less than 45 μm, (b) a powder with a D50 of 45 μm or more, (c) a powder with a D50 of less than 45 μm, and (d) of ‘A-S20’. ) This is an electron microscope photo of a powder with a D50 of 45μm or more.
도 6은 'A-S10' 및 'A-S20'를 포함한 각종 금속 조각을 사용한 항균 시험 후 배지의 외관 사진이다.Figure 6 is a photograph of the appearance of the medium after an antibacterial test using various metal pieces including 'A-S10' and 'A-S20'.
본 발명에 따른 일 실시예로서의 철 합금 및 그 제조 방법에 대해, 도 1을 사용하여 설명한다.The iron alloy and its manufacturing method as an embodiment according to the present invention will be described using FIG. 1.
도 1에 나타난 바와 같이, 본 실시예에서의 철 합금(10)은, 스테인리스강 등의 내식성에 우수한 Fe 기(基) 합금으로 이루어진 매트릭스 상(1)에 평균 입경을 100μm 이하로 한 Cu 또는 Cu 합금으로 이루어진 분산상(2)를 미세하게 분산시킨 합금이다. 또한, 매트릭스 상(1)에는, 분산상(2)보다 더 미세한 수 μm 이하의 Cu 또는 Cu 합금으로 이루어진 미세입자(2')(도 1(c) 참조)가 석출되어 있는 것이 관찰되었다.As shown in FIG. 1, the iron alloy 10 in this embodiment is a matrix phase 1 made of an Fe-based alloy excellent in corrosion resistance such as stainless steel, and Cu or Cu with an average particle diameter of 100 μm or less. It is an alloy in which the dispersed phase (2) made of alloy is finely dispersed. In addition, it was observed that fine particles 2' (see FIG. 1(c)) made of Cu or Cu alloy of several μm or less, which are finer than the dispersed phase 2 (see FIG. 1(c)), were precipitated in the matrix phase 1.
여기서, 철 합금(10)에서는 질량%로 전체에 대해 Cu를 10~30%로 함유한다. 특히, 분산상(2)(또는 분산상(2) 보다 더 미세한 매트릭스 상(1) 중의 Cu 또는 Cu 합금으로 이루어진 미세입자)에 의해 높은 항균성을 부여하기 위해, Cu는 질량%로, 분산상(2)에서 80% 이상 함유되고, 매트릭스 상(1)에서는 20% 이하의 범위로 함유가 허용된다. 또한 Cu는 분산상(2)에서, 질량%로 85% 이상 함유되는 것이 바람직하며, 90% 이상 함유되는 것이 보다 바람직하다. 반면, Cu는 매트릭스 상(1)에서 함유가 허용되는 양으로서, 질량%로 10% 이하인 것이 바람직하며, 8% 이하인 것이 보다 바람직하고, 5% 이하인 것이 더욱 바람직하다.Here, the iron alloy 10 contains 10 to 30% of Cu relative to the total mass%. In particular, in order to impart high antibacterial properties by the dispersed phase (2) (or fine particles made of Cu or Cu alloy in the matrix phase (1) finer than the dispersed phase (2)), Cu is expressed in mass% in the dispersed phase (2). It is contained in an amount of 80% or more, and in the matrix phase (1), the content is allowed in the range of 20% or less. Additionally, Cu is preferably contained in the dispersed phase (2) in an amount of 85% or more by mass, and more preferably in an amount of 90% or more. On the other hand, the amount of Cu allowed to be contained in the matrix phase (1) is preferably 10% or less in mass%, more preferably 8% or less, and even more preferably 5% or less.
또한, 분산상(2)는 평균 입경을 100μm 이하로 하여 미세하게 분산되도록 한다. 이로 인해, 모합금인 Cu를 함유하지 않은 Fe 기 합금과 같은 기계적 강도를 유지하면서, 분산상(2)에 의한 높은 항균성을 부품의 표면 전체에 부여할 수 있다. 즉, Cu 또는 Cu 합금으로 이루어진 분산상(2)에 의한 안정적이고 높은 항균성을 철 합금(10)에 부여할 수 있다. 또한, 위에서 언급한 바와 같이, 분산상(2)보다 더 미세한 매트릭스 상(1)의 Cu 또는 Cu 합금으로 이루어진 미립자(2')는 특히 기계 강도에 영향을 준다. 이러한 미립자(2')는 열 히스토리에 따라 석출 형태가 달라지므로, 열처리에 의해 기계 강도 조정이 가능하다.In addition, the dispersed phase (2) is finely dispersed with an average particle diameter of 100 μm or less. As a result, high antibacterial properties due to the dispersed phase (2) can be imparted to the entire surface of the part while maintaining the same mechanical strength as an Fe-based alloy that does not contain Cu, which is the master alloy. That is, stable and high antibacterial properties can be imparted to the iron alloy (10) by the dispersed phase (2) made of Cu or Cu alloy. Additionally, as mentioned above, the fine particles 2' made of Cu or Cu alloy in the matrix phase 1, which are finer than the dispersed phase 2, particularly influence the mechanical strength. Since the precipitation form of these fine particles 2' varies depending on the heat history, the mechanical strength can be adjusted through heat treatment.
또한, 매트릭스 상(1)은 Fe에 Cr을 10~30 질량%의 범위로 포함하며, 분산상(2)에서의 Cr 함량을 10 질량% 이하로 하는 것이 바람직하다. 이로 인해, 분산상(2)의 항균성을 저해하지 않으면서, 매트릭스 상의 구성 성분에 해당하는 스테인리스강과 동등한 기계적 강도를 부여하고, 철 합금(10)의 표면 산화물의 발생을 억제, 즉, 수환경에서의 매트릭스 상(1)의 높은 내식성을 확보할 수 있다. 또한, 분산상(2)에서의 Cr의 함유량은 질량%로, 7% 이하인 것이 보다 바람직하고, 5% 이하인 것이 더욱 바람직하다.In addition, the matrix phase (1) contains Fe and Cr in the range of 10 to 30 mass%, and the Cr content in the dispersed phase (2) is preferably 10 mass% or less. As a result, mechanical strength equivalent to that of stainless steel corresponding to the constituents of the matrix phase is provided without impairing the antibacterial properties of the dispersed phase (2), and the generation of surface oxides of the iron alloy (10) is suppressed, that is, in the water environment. High corrosion resistance of the matrix phase (1) can be secured. Moreover, the Cr content in the dispersed phase (2) is expressed in mass%, and is more preferably 7% or less, and even more preferably 5% or less.
그런데, Fe에 대한 Cu의 고용한(固溶限)은 높지 않고, 예를 들어 20 질량% 이상 등의, 고용한을 초과하는 양의 Cu를 함유하게 되면, Fe 매트릭스에 고용할 수 없는 Cu에 의한 중력 분리가 발생하기 쉽다.However, the solubility limit of Cu with respect to Fe is not high, and if an amount of Cu exceeding the solubility limit, for example, 20% by mass or more, is contained, Cu that cannot be dissolved in a Fe matrix is formed. Gravity separation is likely to occur.
그러므로, 철 합금(10)에서는, 고용할 수 없는 Cu를 분산상(2)로서 매트릭스 상(1)에 미세하게 분산 배치하도록 하는 제조 방법에 의해 제조한다. 구체적으로는, Fe 기 합금으로 이루어진 모합금과 함께 소정 양의 Cu 재료를 고주파 유도로에 넣어 1550℃이하에서 교반 용해하고, 주조하는 것이다. 이처럼, 고주파 유도로를 사용한 제조성에 우수한 방법으로 철 합금(10)을 얻을 수 있다. 또한, Cu 재료는 Cu, Cu 합금, 및 그 합금 성분의 조합 등이다.Therefore, the iron alloy 10 is manufactured by a manufacturing method in which Cu, which cannot be dissolved in solid solution, is finely dispersed in the matrix phase 1 as the dispersed phase 2. Specifically, a predetermined amount of Cu material along with a master alloy made of Fe-based alloy are placed in a high-frequency induction furnace, stirred and melted at 1550°C or lower, and then cast. In this way, the iron alloy 10 can be obtained by a method excellent in manufacturability using a high-frequency induction furnace. Additionally, Cu materials include Cu, Cu alloy, and combinations of alloy components thereof.
또한, 분산상(2)의 분산을 쉽게 얻기 위해, 재료의 용해 과정에 대해서도 고려하는 것이 바람직하다. 예를 들어, 100kg의 SUS430(SUS는 등록 상표)를 모합금으로 약 10 질량%의 Cu를 함유하는 철 합금(10)을 제조하는 경우를 설명한다. 먼저, 용해로의 하부에 11kg의 Cu 중 절반인 5.5kg을 투입하고, 그 위에 100kg의 SUS430을 넣고 용해를 시작한다. 이때 용융 온도가 1,550℃를 초과하지 않도록 용해로의 출력을 조절한다. 용해하면서 110g의 페로실리콘(Fe-Si)을 22g씩 5회로 나누어 투입한다. SUS430의 전량이 용해된 후에 Cu의 잔량 5.5kg을 투입하여 모두 용해시킨다. 마지막으로 110g의 Al을 투입하여 탈산을 수행한다. 그리고 주형에 용융물을 부어서 잉곳을 얻는다. 즉, Cu를 2회에 걸쳐 넣어 전반적으로 분산 배치하기 쉽게 한다. 이처럼 얻은 잉곳에서는 Cu에 의한 분산상(2)이 미세하게 분산된 철 합금(10)을 얻을 수 있다.Additionally, in order to easily obtain dispersion of the dispersed phase (2), it is desirable to also consider the dissolution process of the material. For example, the case of manufacturing an iron alloy 10 containing about 10% by mass of Cu using 100 kg of SUS430 (SUS is a registered trademark) as a master alloy will be described. First, 5.5kg, half of the 11kg Cu, is put into the bottom of the melting furnace, then 100kg of SUS430 is put on top of it and melting begins. At this time, the output of the melting furnace is adjusted so that the melting temperature does not exceed 1,550°C. While dissolving, add 110g of ferrosilicon (Fe-Si) divided into 5 times of 22g each. After the entire amount of SUS430 is dissolved, add the remaining 5.5 kg of Cu and dissolve it all. Finally, deoxidation is performed by adding 110 g of Al. Then pour the melt into the mold to obtain an ingot. In other words, Cu is added twice to make overall distribution easier. From the ingot obtained in this way, an iron alloy (10) in which the dispersed phase (2) of Cu is finely dispersed can be obtained.
또한, 얻어진 주조재에서 Cu의 녹는점 이하의 온도에서 열처리를 수행하는 것이 바람직하다. Cu의 Fe에 대한 고용한은 저온쪽에서 낮아진다. 그 때문에, Cu의 녹는점 이하의 비교적 낮은 온도에서의 열처리에 의해 매트릭스 상(1)에 고용된 Cu를 석출시키고, Cu에 의한 분산상(2)의 분산상태를 조정할 수 있다.Additionally, it is preferable to perform heat treatment at a temperature below the melting point of Cu in the obtained cast material. The solubility limit of Cu for Fe decreases at low temperatures. Therefore, by heat treatment at a relatively low temperature below the melting point of Cu, Cu dissolved in the matrix phase 1 can be precipitated, and the dispersion state of the dispersed phase 2 by Cu can be adjusted.
주조재를 얻은 후에는, 더욱 필요에 따라 단조, 압연, 열처리를 수행한다. 또한, 기타 페라이트계 스테인리스 또는 오스테나이트계 스테인리스를 모합금으로 하는 경우에도, 동일한 제조 방법에 의해 항균성을 가진 철 합금으로 만들 수 있다.After obtaining the casting material, forging, rolling, and heat treatment are further performed as necessary. Additionally, even when other ferritic stainless steels or austenitic stainless steels are used as master alloys, they can be made into iron alloys with antibacterial properties using the same manufacturing method.
[제조 실험][Manufacturing Experiment]
철 합금(10)을 상기한 방법으로 제조하고, 각종 시험에 제공한 결과를 설명한다. 시험 제작한 철 합금(10)은 페라이트계 SUS430에 약 10질량%의 Cu를 함유한 'A-S10'과, 약 20질량%의 Cu를 함유한 'A-S20'의 2종류, 그리고 오스테나이트계 SUS316에 약 10질량%의 Cu를 함유한 'B-S10'과, 약 20질량%의 Cu를 함유한 'B-S20'의 2종류이다.The iron alloy 10 was manufactured by the above-described method, and the results of various tests are explained. The tested iron alloy (10) was two types: 'A-S10' containing about 10% by mass of Cu in ferritic SUS430, 'A-S20' containing about 20% by mass of Cu, and austenite. There are two types: 'B-S10', which contains about 10% by mass of Cu in SUS316, and 'B-S20', which contains about 20% by mass of Cu.
도 2에 도시된 바와 같이, 성분 분석 결과 'A-S10' 및 'A-S20'는 각각 도표에 표시된 양의 Cr 및 Cu를 함유하고 있었다. 또한, 잉곳을 제조한 주조 후의 상태에서 인장 시험을 수행한 결과, SUS430과 동등한 정도의 인장강도를 가지고 있었다. 한편, 'B-S10' 및 'B-S20'는 각각 도표에 표시된 양(여러 곳 측정)의 Cr, Ni, Mo, Si, Mn 및 Cu를 함유하고 있었다. 여기에서도, 잉곳을 제조한 주조 후의 상태에서 인장 시험을 수행한 결과, SUS316과 동등한 정도의 인장강도를 가지고 있었다.As shown in Figure 2, as a result of component analysis, 'A-S10' and 'A-S20' contained Cr and Cu in the amounts indicated in the chart, respectively. In addition, as a result of performing a tensile test on the ingot after casting, it was found to have a tensile strength equivalent to that of SUS430. Meanwhile, 'B-S10' and 'B-S20' each contained Cr, Ni, Mo, Si, Mn, and Cu in the amounts shown in the chart (measured at multiple locations). Here too, as a result of performing a tensile test in the state after manufacturing and casting the ingot, it was found to have a tensile strength equivalent to that of SUS316.
도 3에 나타낸 바와 같이, SUS430에 Cu 입자를 분산시킨 시료의 단면조직을 현미경으로 관찰하였다. 'A-S10'(도 3(a) 참조) 및 'A-S20'(도 3(b) 참조) 모두 Cu에 의한 평균 입경을 100μm 이하로 하는 미세한 분산상(2)이 분산되어 있었다. 매트릭스 상(1)에는 분산상(2)보다 더욱 미세한 수 μm 이하에서 나노 오더의 Cu 또는 Cu 합금으로 이루어진 미립자(2')도 방향 분산되어 있는 것이 확인되었다. 이러한 분산상(2) 및 미립자(2')는 거의 순수 Cu이지만, 매트릭스 상(1)은 거의 Cu를 함유하지 않고, SUS430의 조성 그대로였다. 또한, Cu 함유량이 많은 'A-S20'의 경우 'A-S10'보다 분산상(2)의 수가 많고, 평균 입경도 큰 경향이 있음을 알 수 있었다.As shown in Figure 3, the cross-sectional structure of a sample in which Cu particles were dispersed in SUS430 was observed under a microscope. In both 'A-S10' (see Figure 3(a)) and 'A-S20' (see Figure 3(b)), a fine dispersed phase (2) with an average particle size of 100 μm or less due to Cu was dispersed. It was confirmed that in the matrix phase (1), fine particles (2') made of nano-order Cu or Cu alloy at several μm or less, which were finer than the dispersed phase (2), were also directionally dispersed. Although this dispersed phase (2) and fine particles (2') were almost pure Cu, the matrix phase (1) contained almost no Cu and had the same composition as SUS430. In addition, it was found that 'A-S20', which has a large Cu content, tends to have a larger number of dispersed phases (2) and a larger average particle size than 'A-S10'.
도 4에 나타난 바와 같이, SUS316에 Cu 입자를 분산시킨 시료의 단면조직을 현미경으로 관찰하였다. 'B-S10'(도 4(a) 참조) 및 'B-S20'(도 4(b) 참조) 모두 Cu에 의한 평균 입경을 100μm 이하로 하는 미세한 분산상(2)가 분산되어 있다. 또한, 'A-S10' 등과 마찬가지로, 매트릭스상 1에는, 분산상(2) 보다 더욱 미세한, 미립자(2')도 분산되어 있으며, Cu 함량이 많은 'B-S20'이 'B-S10'보다 분산상(2)의 수가 많고, 평균 입경도 큰 경향이 있었다. 또한, 분산상(2) 및 미립자(2')는 거의 순수 Cu이며 SUS316에 포함된 Ni나 Mo 등의 원소를 포함하지 않는 한편, 매트릭스 상(1)도 Cu를 거의 포함하지 않고, SUS316의 조성 그대로였다.As shown in Figure 4, the cross-sectional structure of a sample in which Cu particles were dispersed in SUS316 was observed under a microscope. Both 'B-S10' (see Figure 4(a)) and 'B-S20' (see Figure 4(b)) have a fine dispersed phase (2) dispersed by Cu with an average particle size of 100 μm or less. In addition, like 'A-S10', fine particles (2'), which are finer than the dispersed phase (2), are also dispersed in the matrix phase 1, and 'B-S20', which has a large Cu content, has a higher dispersed phase than 'B-S10'. (2) The number was large, and the average particle size tended to be large. In addition, the dispersed phase (2) and the fine particles (2') are almost pure Cu and do not contain elements such as Ni or Mo contained in SUS316, while the matrix phase (1) also contains almost no Cu and has the same composition as SUS316. It was.
도 5에 나타낸 바와 같이, 상기에서 얻은 'A-S10' 및 'A-S20'을 사용하여, 가스 아토마이징 방법으로 제조한 분말을 전자현미경으로 관찰하였다. 분말은 'A-S10' 및 'A-S20'의 각각의 합금 종류에 대해 D50을 45μm 미만으로 하는 것과 D50을 45μm 이상인 것의 2가지를 종류를 준비하였다. 어떤 경우에도, Cu에 의한 분산상(2) 및 미립자(2')가 표면에 분산되어 존재하고 있었다.As shown in Figure 5, the powder prepared by the gas atomizing method using 'A-S10' and 'A-S20' obtained above was observed with an electron microscope. Two types of powder were prepared for each alloy type of 'A-S10' and 'A-S20': one with D50 of less than 45μm and one with D50 of 45μm or more. In any case, the Cu dispersed phase (2) and fine particles (2') existed dispersed on the surface.
도 6에 도시된 바와 같이, 'A-S20'에 대해 모합금으로 사용한 SUS430과 비교하면서, 살모넬라균을 사용한 항균 시험을 실시하였다. 시험 방법은 'A-S10' 및 'A-S20'를 포함하는 각종 금속에 의한 시험편 위에 세균액을 25μL 떨어뜨리고, 떨어뜨린 직후부터 소정 시간 경과마다 이쑤시개 끝으로 세균액 샘플을 채취하여 배지에 접종·배양하여 관찰하였다. 도면에서 보여지는 바와 같이, 'A-S10' 및 'A-S20'에서는 떨어뜨린 후 5분 후에 살모넬라균이 사멸하여 높은 항균성을 가지고 있는 것이 확인되었다.As shown in Figure 6, an antibacterial test was conducted using Salmonella bacteria while comparing 'A-S20' with SUS430 used as the master alloy. The test method is to drop 25 μL of bacterial liquid on test pieces made of various metals, including 'A-S10' and 'A-S20', and collect a sample of the bacterial liquid with the tip of a toothpick every predetermined time immediately after dropping and inoculate the medium. ·Cultured and observed. As shown in the figure, it was confirmed that 'A-S10' and 'A-S20' had high antibacterial properties as salmonella bacteria died 5 minutes after being dropped.
또한, 'A-S10'에 대해 JIS Z2801:2012에 따라 황색 포도구균, 대장균 및 레지오넬라균에 대한 항균 활성 값을 구하였을 때, 각각 4.7, 6.3 및 5.8로 나타났다. 'A-S10'도 높은 항균성을 가지고 있는 것이 확인되었다.In addition, when the antibacterial activity values for 'A-S10' against Staphylococcus aureus, Escherichia coli, and Legionella bacteria were calculated according to JIS Z2801:2012, they were found to be 4.7, 6.3, and 5.8, respectively. It was confirmed that 'A-S10' also has high antibacterial properties.
또한, 'A-S10' 및 'A-S20' 모두 외관으로서는 SUS와 같은 내식성을 가지고 있으며, Cu 또는 Cu 합금으로 이루어진 입자가 내식성에 미치는 영향, 예를 들어 매트릭스 상과의 간극에서의 국부 전지와 같은 내식성을 저하시키는 영향은 관찰되지 않았다.In addition, both 'A-S10' and 'A-S20' have the same corrosion resistance as SUS in appearance, and the effect of particles made of Cu or Cu alloy on corrosion resistance, for example, local cells in the gap between the matrix phase and The same effect of lowering corrosion resistance was not observed.
상술한 바와 같이, Fe에 대한 Cu의 고용한을 초과하여 Cu를 함유하는 철 합금에 있어서 동일하게 제조하는 것이 가능하며, SUS430 등의 페라이트계 스테인리스, Ni를 함유하는 SUS316 등의 오스테나이트계 스테인리스에 한정되지 않고 다양한 Fe를 주로 하는 모합금의 경우에도 위와 동일한 Cu 또는 Cu 합금으로 이루어진 분산상을 미세하게 분산시킨 높은 항균성을 가지는 철 합금을 얻을 수 있다.As described above, it is possible to produce the same in iron alloys containing Cu in excess of the solubility limit of Cu with respect to Fe, and in ferritic stainless steels such as SUS430 and austenitic stainless steels such as SUS316 containing Ni. Even in the case of a non-limiting and diverse master alloy mainly made of Fe, an iron alloy with high antibacterial properties can be obtained by finely dispersing the dispersed phase made of the same Cu or Cu alloy as above.
지금까지 본 발명에 의한 실시예 및 이에 기초한 변형예를 설명하였지만, 본 발명은 반드시 이러한 예에 한정되는 것은 아니다. 또한, 해당 업계에서는 본 발명의 취지 또는 첨부된 특허청구의 범위를 벗어나지 않는 다양한 대체 실시예 및 변형예를 찾아낼 수 있을 것이다.Although embodiments of the present invention and modifications based thereon have been described so far, the present invention is not necessarily limited to these examples. Additionally, various alternative embodiments and modifications may be found in the relevant industry without departing from the spirit of the present invention or the scope of the appended patent claims.

Claims (5)

  1. Cu 또는 Cu 합금으로 이루어진 분산상을 Fe 기 합금으로 이루어진 매트릭스 상에 부여한 항균성을 가지는 철 합금에 있어서,In an iron alloy having antibacterial properties in which a dispersed phase made of Cu or a Cu alloy is imparted to a matrix phase made of an Fe-based alloy,
    질량%로, Cu를 전체에 대해 10~30%, 상기 분산상에서 80% 이상, 그리고 매트릭스 상에서 20% 이하의 범위로 함유하며, In terms of mass%, Cu is contained in the range of 10 to 30% of the total, 80% or more in the dispersed phase, and 20% or less in the matrix phase,
    상기 분산상의 평균 입경을 100μm 이하로 한 것을 특징으로 하는 철 합금.An iron alloy characterized in that the average particle size of the dispersed phase is 100 μm or less.
  2. 제1항에 있어서,According to paragraph 1,
    질량%로, 상기 매트릭스 상은 Fe에 Cr을 10~30%의 범위로 함유하면서, 상기 분산상의 Cr 량을 질량%로 10% 이하로 하는 것을 특징으로 하는 철 합금. An iron alloy characterized in that the matrix phase contains Cr in Fe in a range of 10 to 30% in mass%, and the amount of Cr in the dispersed phase is 10% or less in mass%.
  3. Cu 또는 Cu 합금으로 이루어진 분산상을 Fe 기반 합금으로 이루어진 매트릭스 상에 부여한 항균성을 갖는 철 합금의 제조 방법에 있어서, A method for producing an iron alloy with antibacterial properties in which a dispersed phase made of Cu or a Cu alloy is imparted to a matrix phase made of an Fe-based alloy,
    상기 Fe 기반 합금의 모합금과 함께, 정량의 Cu 재료를 고주파 유도로에 넣어 1550℃이하에서 교반 용해하고 주조함으로써, Along with the master alloy of the Fe-based alloy, a fixed amount of Cu material is placed in a high-frequency induction furnace, stirred, melted, and cast at 1550°C or lower.
    질량%로, Cu를 전체에 대해 10~30%, 상기 분산상에서 80% 이상, 그리고 매트릭스 상에서 20% 이하의 범위로 함유하며, In mass%, Cu is contained in the range of 10 to 30% of the total, 80% or more in the dispersed phase, and 20% or less in the matrix phase,
    상기 분산상의 평균 입경을 100μm 이하로 하는 것을 특징으로 하는 철 합금의 제조 방법. A method for producing an iron alloy, characterized in that the average particle size of the dispersed phase is 100 μm or less.
  4. 제3항에 있어서,According to paragraph 3,
    주조 재료를 Cu의 녹는점 이하의 온도에서 열처리하는 것을 특징으로 하는 철 합금의 제조 방법. A method for producing an iron alloy, characterized in that the casting material is heat treated at a temperature below the melting point of Cu.
  5. 제3항 또는 제4항에 있어서,According to clause 3 or 4,
    질량%로, 상기 매트릭스 상은 Fe에 Cr을 10~30%의 범위로 함유하면서, 상기 분산상의 Cr 량을 질량%로 10% 이하로 하는 것을 특징으로 하는 철 합금의 제조 방법.A method for producing an iron alloy, wherein the matrix phase contains Cr in Fe in a range of 10 to 30% in mass %, and the amount of Cr in the dispersed phase is 10% or less in mass %.
PCT/KR2023/010159 2022-09-12 2023-07-17 Iron alloy having antibacterial property and manufacturing method therefor WO2024058393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144816A JP2024040014A (en) 2022-09-12 2022-09-12 Iron alloy with antibacterial properties and its manufacturing method
JP2022-144816 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058393A1 true WO2024058393A1 (en) 2024-03-21

Family

ID=90275496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010159 WO2024058393A1 (en) 2022-09-12 2023-07-17 Iron alloy having antibacterial property and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2024040014A (en)
WO (1) WO2024058393A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026833A (en) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd Antibacterial high corrosion resistant aluminum alloy material and its manufacture
KR20150101544A (en) * 2014-02-27 2015-09-04 주식회사 이젠 Process for preparation of copper iron alloy and copper iron alloy prepared by the process
CN114000066A (en) * 2020-07-27 2022-02-01 香港大学 Antibacterial and antiviral copper-containing stainless steel and preparation and application thereof
KR20220018403A (en) * 2020-08-06 2022-02-15 최대범 Alloy material with antibacterial activity
KR20220032606A (en) * 2020-01-21 2022-03-15 닛테츠 스테인레스 가부시키가이샤 Stainless steel material having antibacterial and antiviral properties and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026833A (en) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd Antibacterial high corrosion resistant aluminum alloy material and its manufacture
KR20150101544A (en) * 2014-02-27 2015-09-04 주식회사 이젠 Process for preparation of copper iron alloy and copper iron alloy prepared by the process
KR20220032606A (en) * 2020-01-21 2022-03-15 닛테츠 스테인레스 가부시키가이샤 Stainless steel material having antibacterial and antiviral properties and manufacturing method thereof
CN114000066A (en) * 2020-07-27 2022-02-01 香港大学 Antibacterial and antiviral copper-containing stainless steel and preparation and application thereof
KR20220018403A (en) * 2020-08-06 2022-02-15 최대범 Alloy material with antibacterial activity

Also Published As

Publication number Publication date
JP2024040014A (en) 2024-03-25

Similar Documents

Publication Publication Date Title
US20200283874A1 (en) High-Performance Corrosion-Resistant High-Entropy Alloys
CN104018083B (en) Nitrogenous stainless bearing steel and preparation method
CA2602529A1 (en) Cu-ni-si-co-cr based copper alloy for electronic material and method for production thereof
CH375903A (en) Niobium alloy
CN107058796B (en) A kind of microalloying of rare earth acid bronze alloy, preparation method and the method for being squeezed into bar
CN109182903A (en) The preparation method of thin-walled anti-bacteria stainless steel pipe and anti-bacteria stainless steel
CN110438390B (en) Steel for petroleum pipeline valve body made of 280 mm-diameter large-size round bar and production method of steel
CN110551915B (en) Copper-iron intermediate alloy and preparation method thereof
CN107829000A (en) A kind of die-cast aluminum alloy material and preparation method thereof
CN105793450A (en) White antimicrobial copper alloy
CA3118930A1 (en) High-strength and corrosion-resistant sucker rod and preparation process thereof
CN101818298B (en) Corrosion-resistant medium-silicon-molybdenum-nickel-cobalt nodular cast iron alloy
CN104870670B (en) The antimicrobial copper alloy of white
CN114525447A (en) Metal wire material for laser cladding and preparation method and application thereof
WO2024058393A1 (en) Iron alloy having antibacterial property and manufacturing method therefor
Wang et al. Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC–Si stainless steels
US20180297109A1 (en) CASTING MOLD MATERIAL AND Cu-Cr-Zr-Al ALLOY MATERIAL
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
CN111304555B (en) In-situ endogenously precipitated ceramic particle reinforced Cr-Mn-Ni-C-N austenitic heat-resistant steel and preparation method and application thereof
CN107385337A (en) A kind of ferrous alloy composition and its preparation method and application
CN114293065A (en) Copper alloy plate with high strength
CN112853222A (en) 06Cr18Ni11Ti austenitic stainless steel and preparation method thereof
CN102002626B (en) High-temperature-resistant and corrosion-resistant alloy and preparation method thereof
CN109706341A (en) One kind wear-resistant copper alloy of high strength and high hardness containing cobalt and preparation method thereof
JP6804777B2 (en) Method for manufacturing metal test piece for corrosion resistance evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865696

Country of ref document: EP

Kind code of ref document: A1