WO2024058336A1 - 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법 - Google Patents

모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법 Download PDF

Info

Publication number
WO2024058336A1
WO2024058336A1 PCT/KR2023/006567 KR2023006567W WO2024058336A1 WO 2024058336 A1 WO2024058336 A1 WO 2024058336A1 KR 2023006567 W KR2023006567 W KR 2023006567W WO 2024058336 A1 WO2024058336 A1 WO 2024058336A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
processor
angle
speed
angle range
Prior art date
Application number
PCT/KR2023/006567
Other languages
English (en)
French (fr)
Inventor
미야케히로유키
이대성
박성인
윤효진
신효재
이예은
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2024058336A1 publication Critical patent/WO2024058336A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Definitions

  • the present disclosure relates to a refrigerator including a control device for controlling driving of a motor and a method of controlling the same.
  • Compressors used in refrigerators, etc. perform a suction stroke to fill the refrigerant in the cylinder, a compression stroke to compress the refrigerant in the cylinder, and a discharge stroke to discharge the compressed refrigerant to the outside of the compressor, causing vibration and noise due to changes in load.
  • a control device that can drive the motor with high efficiency after suppressing the vibration and noise of the compressor has been proposed as a control device for the compressor motor.
  • the control device described in Patent Document 1 includes an inverter section that supplies power to a three-phase brushless motor with a rotor and a detection section that detects the mechanical angle of the rotor.
  • the control device stores in advance in an internal memory circuit a correction value corresponding to the mechanical angle, which is determined to suppress pulsation that occurs in either the voltage or current of the power due to the load torque of the three-phase brushless motor, and detects the correction value by the detection unit. It includes a microprocessor that controls either voltage or current based on the detected mechanical angle and a correction value corresponding to the mechanical angle.
  • the controller described in Patent Document 2 includes a speed controller, d-axis current command generator, voltage controller, 2-axis/3-phase converter, speed & phase estimator, 3-phase/2-axis converter, current reproduction calculator, period fluctuation suppressor, It is composed of a PWM controller, an adder/subtractor, and an adder. And the basic function of the controller is to calculate the voltage command signal applied to the motor through dq vector control and generate a PWM signal, which is the control signal of the inverter circuit.
  • Patent Document 1 Japanese Patent Application Publication No. 2004-215434
  • Patent Document 2 Japanese Patent Application Publication No. 2020-124085
  • a refrigerator including a control device for controlling driving of a motor includes a storage compartment; a door configured to open and close one open side of the storage compartment; a cold air supply device that generates cold air through a refrigeration cycle including compression, condensation, expansion, and evaporation of a refrigerant, and supplies the cold air to the storage compartment; A motor used to drive a compressor included in the cold air supply device; and a control device for controlling the driving of the motor, wherein the control device includes an inverter unit including a plurality of switches for switching a coil through which a current flows among a plurality of coils included in the motor, and a square wave control for the inverter unit.
  • the processor may include a processor that The processor according to one embodiment determines the torque correction amount used to smooth the speed of the motor, and determines the first energization angle of the plurality of switches in the first mechanical angle range constituting one mechanical angle cycle of the rotor of the motor and the The second energization angle of the plurality of switches may be set in a second mechanical angle range excluding the first mechanical angle range, and the second energization angle may be set to a value greater than the first energization angle.
  • the processor may determine the first mechanical angle range and the second mechanical angle range according to the detected speed of the motor.
  • the processor may adjust the second energization angle according to the load of the motor.
  • the processor may adjust the torque correction amount according to the amount of variation in motor speed.
  • the processor may decrease the torque correction amount compared to when the amount of change is greater than or equal to the preset speed change amount value.
  • the processor further includes an adder that outputs a final command value using a voltage command value and a torque correction amount determined so that the speed of the motor is equal to the speed command value, and the processor is configured to determine the final command value output by the adder in a predetermined manner. If it is smaller than the lower limit, the torque correction amount can be reduced.
  • the processor when at least one of the first conduction angle and the second conduction angle is within a predetermined angle range, determines the timing for transitioning at least one switch among the plurality of switches from the ON state to the OFF state. Based on the advance angle, the first conduction angle and the second conduction angle may overlap.
  • the processor further includes an adjuster that adjusts the electrical angle at which the first conduction angle and the second conduction angle overlap according to the load of the motor, and the processor adjusts the electrical angle to overlap by the angle adjusted by the adjuster. You can.
  • a storage room according to an embodiment of the present disclosure; a cold air supply device that generates cold air through a refrigeration cycle including compression, condensation, expansion, and evaporation of a refrigerant, and supplies the cold air to the storage compartment;
  • a control method of a refrigerator including a control device for controlling driving of the motor, the operation of switching a coil through which current flows among a plurality of coils included in the motor through an inverter unit of the control device, the processor of the control device an operation of controlling the inverter unit with a square wave; an operation of determining, through the processor, a torque correction amount used to smooth the speed of the motor; and, through the processor, a first machine configuring one cycle of the mechanical angle of the rotor of the motor.
  • It may include an operation of setting a second conduction angle for energizing a plurality of switches in a second mechanical angle range excluding the first mechanical angle range to a larger value than a first energization angle for energizing a plurality of switches in each range.
  • the method may further include determining, through a processor, a first mechanical angle range and a second mechanical angle range according to the detected speed of the motor.
  • the operation of adjusting the second energization angle according to the load of the motor through the processor may be further included.
  • the operation of adjusting the torque correction amount according to the amount of change in the speed of the motor through the processor may be further included.
  • an operation of reducing the torque correction amount may be further included when the amount of change is greater than or equal to the preset speed change amount value.
  • an operation of outputting, through a processor, a final command value using a voltage command value and a torque correction amount determined so that the speed of the motor becomes equal to the speed command value, and the final command value output by the adder through the processor is a predetermined lower limit value.
  • an operation of reducing the torque correction amount may be further included.
  • the timing of transitioning at least one switch among the plurality of switches from the ON state to the OFF state is further included.
  • Figure 1A is a diagram showing a refrigerator according to one embodiment.
  • Figure 1B is a block diagram showing a refrigerator according to one embodiment.
  • FIG. 2 is a diagram showing an example of the schematic configuration of a control device according to the first embodiment.
  • Figure 3 is a diagram showing an example of the relationship between the state of the motor and the torque correction amount.
  • FIG. 4A is a graph showing an example of the relationship between the waveform of the induced voltage from the coil of each phase of the motor and the reference voltage.
  • FIG. 4B is a graph showing an example of a waveform showing the result of comparing the induced voltage and the reference voltage.
  • Figure 4c is a graph showing an example of the ON/OFF state of the transistor of the inverter unit based on the signal output from the signal output unit.
  • Figure 5(a) is a graph showing an example of the operation of the correction unit
  • Figure 5(b) is a graph showing an example of the operation of the comparative example.
  • Figure 6 is a graph showing an example of the change in the final command value when the conduction angle is set to 150 electrical degrees in the second mechanical angle range, and the conduction angle is set to 120 electrical degrees in the first mechanical angle range.
  • Figure 7 is a flowchart showing a control method of a control device according to an embodiment.
  • Fig. 8 is a diagram showing an example of a control device according to the second embodiment.
  • Fig. 9 is a diagram showing an example of a control device according to the third embodiment.
  • Fig. 10 is a diagram showing an example of a control device according to the fourth embodiment.
  • Fig. 11 is a diagram showing an example of a control device according to the fifth embodiment.
  • a or B “at least one of A and B”, “at least one of A or B”, “A, B or C”, “at least one of A, B and C”, and “A
  • Each of phrases such as “at least one of , B, or C” may include any one of the items listed together in the corresponding phrase, or any possible combination thereof.
  • control device described in Patent Document 1 has room for improvement in terms of robust performance and vibration suppression.
  • the purpose of the present disclosure is to provide a control device and a control method for realizing high robustness by improving robust performance while reducing energy consumption and improving vibration suppression performance.
  • FIG. 1A is a diagram illustrating a refrigerator 2000 according to an embodiment.
  • the refrigerator 2000 may include a main body 2100, a storage compartment 2200, and a door 2300.
  • the main body 2100 may include an inner case, an external case disposed on the outside of the internal case, and an insulating material provided between the internal case and the external case.
  • the inner box may include at least one of a case, a plate, a panel, or a liner that forms a storage compartment.
  • the inner case may be formed as a single body or may be formed by assembling a plurality of plates.
  • the outer box can form the exterior of the main body, and can be coupled to the outside of the inner box so that an insulating material is disposed between the inner box and the outer box.
  • the insulation material can insulate the inside and outside of the storage room so that the temperature inside the storage room can be maintained at a set appropriate temperature without being affected by the environment outside the storage room.
  • the insulation material may include a foam insulation material.
  • a foam insulation material can be formed by injecting and foaming urethane foam mixed with polyurethane and a foaming agent between the inner and outer wounds.
  • the insulation material may include a vacuum insulation material in addition to the foam insulation material, or the insulation material may be composed of only a vacuum insulation material instead of the foam insulation material.
  • the vacuum insulator may include a core material and an outer shell material that accommodates the core material and seals the interior with a vacuum or a pressure close to vacuum.
  • the insulation material is not limited to the foam insulation material or vacuum insulation material described above and may include various materials that can be used for insulation.
  • the storage compartment 2200 may include a space limited by an internal box.
  • the storage compartment may further include an inner box that defines a space corresponding to the storage compartment.
  • the storage room 2200 can store various items such as food, medicine, and cosmetics.
  • the storage compartment 2200 may be formed so that at least one side is open for loading and unloading items.
  • the refrigerator 2000 may include one or more storage compartments 2200.
  • each storage compartment 2200 may have different purposes and may be maintained at different temperatures.
  • each storage compartment 2200 may be partitioned from each other by a partition wall including an insulating material.
  • the storage compartment 2200 may be maintained at an appropriate temperature range depending on the purpose, and may include a refrigerating room, a freezer room, or an alternate temperature room classified according to the use and/or temperature range.
  • the refrigerator compartment can be maintained at an appropriate temperature for refrigerating products
  • the freezer compartment can be maintained at an appropriate temperature for frozen storage of products.
  • Refrigeration can mean cooling items to cold levels without freezing them.
  • a refrigerated room can be maintained in a range of 0 degrees Celsius to +7 degrees Celsius.
  • Freezing can mean freezing an item or cooling it so that it remains frozen.
  • the freezer may be maintained in a range of -20 degrees Celsius to -1 degree Celsius.
  • the alternate temperature room can be used as either a refrigerator room or a freezer room, with or without the user's choice.
  • the storage room 2200 may be referred to by various names such as a vegetable room, a fresh room, a cooling room, and an ice-making room, in addition to names such as a refrigerator room, a freezer room, and a cold room. Terms such as refrigerating room, freezing room, and alternating temperature room used below should be understood to encompass the storage room 2200, each having a corresponding purpose and temperature range.
  • the refrigerator 2000 may include at least one door 2300 configured to open and close one open side of the storage compartment 2200.
  • the door 2300 may be provided to open and close one or more storage rooms 2200, or one door 2300 may be provided to open and close a plurality of storage rooms 2200.
  • the door 2300 may be rotatably or slidingly installed on the front of the main body.
  • the door 2300 may be configured to seal the storage compartment 2200 when the door 2300 is closed.
  • the door 2300 may include an insulating material like the main body 2100 to insulate the storage compartment 2200 when the door 2300 is closed.
  • the door 2300 may include a door body and a front panel that is detachably coupled to the front of the door body and forms the front of the door 2300.
  • the door body may include a door outer plate that forms the front of the door body, a door inner plate that forms the rear of the door body and faces the storage compartment 2200, an upper cap, a lower cap, and a door insulator provided inside them.
  • a gasket may be provided on the edge of the inner plate of the door to seal the storage compartment by coming into close contact with the front of the main body 2100 when the door 2300 is closed.
  • the door inner plate may include a dyke that protrudes rearward so that a door basket for storing items is mounted.
  • the refrigerator 2000 is divided into French Door Type, Side-by-Side Type, BMF (Bottom Mounted Freezer), and TMF (Top). Mounted Freezer) or one-door refrigerator.
  • the refrigerator 2200 may include a dispenser provided on the door 2300 to provide water and/or ice.
  • the dispenser may be provided in the door 2300 so that the user can access it without opening the door 2300.
  • FIG. 1B is a block diagram showing a refrigerator 2000 according to an embodiment.
  • the refrigerator 2000 may include a storage compartment 2200, a door 2300, a cold air supply device 2400, a motor 1100, and a control device 1.
  • the door 2300 may be configured to open and close one open side of the storage compartment 2300.
  • the door 2300 may be provided to open and close one or more storage rooms 2200, or one door 2300 may be provided to open and close a plurality of storage rooms 2200.
  • the door 2300 may be configured to seal the storage compartment 2200 when the door 2300 is closed.
  • the cold air supply device 2400 may supply cold air to the storage compartment 2200.
  • the cold air supply device 2400 may include a machine, device, electronic device, and/or a system combining them that can generate cold air and guide the cold air to cool the storage compartment 2200.
  • the cold air supply device 2400 may generate cold air through a refrigeration cycle including compression, condensation, expansion, and evaporation processes of the refrigerant.
  • the cold air supply device 2400 may include a refrigeration cycle device having a compressor 1100 capable of driving a refrigeration cycle, a condenser, an expansion device, and an evaporator.
  • the cold air supply device 2400 may include a semiconductor such as a thermoelectric element. The thermoelectric element can cool the storage compartment 2200 by generating heat and cooling through the Peltier effect.
  • the refrigerator 2000 may include a machine room in which at least some parts belonging to the cold air supply device 2400 are arranged.
  • the machine room may be arranged to be partitioned and insulated from the storage room 2200 to prevent heat generated from components placed in the machine room from being transferred to the storage room 2200.
  • the inside of the machine room may be configured to communicate with the outside of the main body of the refrigerator (2000) to dissipate heat from the components placed inside the machine room.
  • the refrigerator 2000 may include a motor 1100 that drives the compressor 1000 and a control device 1 for controlling the operation of the motor 1100.
  • the control device 1 may control the operation of the motor 1100 for driving the compressor 1000 of the refrigerator 2000.
  • the present invention is not limited to this, and the control device 1 may be a device that controls the operation of a motor used in other home appliances such as air conditioners (eg, air conditioners) and washing machines.
  • the control device 1 may include a processor 100 and an inverter unit 140.
  • the processor 100 can control the overall operation of the refrigerator 2000.
  • the processor can control the components of the refrigerator 2000 by executing a program stored in the memory.
  • the processor 100 may include a separate NPU that performs the operation of an artificial intelligence model. Additionally, the processor 100 may include a central processing unit, a graphics processor (GPU), etc.
  • the processor 100 may generate a control signal to control the operation of the cold air supply device 2400. For example, the processor 100 receives temperature information of the storage compartment 2200 from a temperature sensor and generates a cooling control signal to control the operation of the cold air supply device 2400 based on the temperature information of the storage compartment 2200. can do.
  • the processor 100 may process user input of the user interface and control the operation of the user interface according to programs and/or data memorized/stored in the memory.
  • the user interface may be provided using an input interface and an output interface.
  • Processor 100 may receive user input from a user interface. Additionally, the processor 100 may transmit a display control signal and image data for displaying an image on the user interface to the user interface in response to a user input.
  • Processor 100 and memory may be provided integrally or may be provided separately.
  • Processor 100 may include one or more processors.
  • the processor 100 may include a main processor and at least one subprocessor.
  • the control device 1 may control the driving of the motor 1100 based on the results of processing various information using the processor 100 and memory. For example, the control device 1 may control the driving of the motor 1100 for the compressor 1000 used in the refrigerator 2000.
  • the motor 1100 used in the refrigerator 2000 may include a plurality of coils.
  • the control device 1 can control the current flowing through a plurality of coils included in the motor 1100.
  • the inverter unit 140 may convert direct current voltage into alternating current voltage and supply it to the motor 1100.
  • the inverter unit 140 may include a plurality of switches 141, 142, 143, and 144.
  • the inverter unit 140 may include a first switch 141, a second switch 142, a third switch 143, and an N (N is a natural number of 4 or more) switch 144.
  • the plurality of switches 141, 142, 143, and 144 may switch the coil through which current flows among the plurality of coils included in the motor.
  • the processor 100 may control the inverter unit 140 with a square wave.
  • processor 100 may determine a torque correction amount.
  • the torque correction amount can be used to smooth the speed of the motor 1100.
  • the speed of the motor 1100 can be maintained at a constant value according to the torque correction amount determined by the processor 100.
  • the processor 100 may set the electrical conduction angle of the plurality of switches 141, 142, 143, and 144.
  • the processor 100 is greater than the first energization angle of the plurality of switches 141, 142, 143, and 144 in the first mechanical angle range constituting one mechanical angle cycle of the rotor of the motor, excluding the first mechanical angle range.
  • the second energization angle of the plurality of switches 141, 142, 143, and 144 may be set to a larger value in the second mechanical angle range.
  • FIG. 2 is a diagram showing an example of the schematic configuration of the control device 1 according to the first embodiment.
  • the control device 1 is, for example, a device that controls the driving of the motor 1100 for the compressor 1000 used in the refrigerator 2000 described in connection with FIGS. 1A and 1B.
  • the present invention is not limited to this, and the control device 1 may be a device that controls the operation of a motor used in other home appliances such as air conditioners (eg, air conditioners) and washing machines.
  • the control device 1 includes an AC power source 110, a rectifier circuit 120, a smoothing condenser 130, an inverter unit 140, and a processor 100, and converts the inverter unit 140 into a square wave It is a control device that controls the operation of the motor 1100 by controlling it.
  • the compressor 1000 is a device that performs a suction stroke to fill the refrigerant in the cylinder, a compression stroke to compress the refrigerant in the cylinder, and a discharge stroke to discharge the compressed refrigerant to the outside of the compressor 1000.
  • the compression mechanism of the compressor 1000 is not particularly limited, and examples include a rotary type, a reciprocating type, and a scroll type.
  • the motor 1100 may be an example of a 6-pole, 3-phase permanent magnet synchronous motor (PMSM). However, the type of motor 1100 is not particularly limited.
  • the rectifier circuit 120 is connected to the AC power source 110 and converts the alternating current voltage from the AC power source 110 into direct current voltage.
  • the smoothing capacitor 130 is connected to the direct current output terminal of the rectifier circuit 120 and smoothes the direct current voltage output from the rectifier circuit 120.
  • the inverter unit 140 is a circuit for converting direct current voltage into alternating current voltage and supplying it to the motor 1100.
  • the inverter unit 140 is configured by a bridge circuit and includes six independent transistors 141 to 146 as multiple sets of switching elements.
  • the inverter unit 140 has a pair of transistors for each phase of the motor 1100 (three phases: U phase, V phase, and W phase). Specifically, it has a U-use transistor 141 and a transistor 142, a V-use transistor 143 and a transistor 144, and a W-use transistor 145 and a transistor 146.
  • the emitters of transistors 141, 143, and 145 and the collectors of transistors 142, 144, and 146 are connected to the coils of each phase of the motor 1100, respectively. Additionally, the collectors of transistors 141, 143, and 145 are connected to the anode side line of the power supply, and the emitters of transistors 142, 144, and (146) are connected to the cathode side (ground) line of the power supply. It is done.
  • the transistors 141 to 146 may be power transistors of various structures such as bipolar type, field effect type, and MOS type.
  • Each of the transistors 141 to 146 operates ON/OFF according to a control signal output from the processor 100. Accordingly, the inverter unit 140 converts the direct current voltage into alternating current voltage and supplies it to the motor 1100 to output driving force. In other words, the motor 1100 outputs driving force by supplying current according to the ON/OFF operation of the transistors 141 to 146.
  • the processor 100 includes a deviation unit 10 that calculates a deviation ( ⁇ ) between the speed command value ( ⁇ r) and the actual speed ( ⁇ a) of the motor 1100, and a voltage command value (Vr) according to the deviation ( ⁇ ). It is provided with a proportional integral calculation unit 20 that performs.
  • the processor 100 includes a correction unit 30 that determines a torque correction amount (Vc) used to smooth the speed ⁇ a or a current (Ia) described later, and a voltage command value calculated by the proportional integral calculation unit 20 ( Vr) and the correction unit 30 are provided with an addition unit 40 that adds the determined torque correction amount (Vc).
  • the processor 100 includes a generator that generates a phase voltage reference signal using the final command value (Vt), which is the final command value output by the addition unit 40, and the speed ( ⁇ a) of the motor 1100. (50) is provided.
  • the control device 1 includes a speed detection unit 60 that detects the speed ⁇ a of the motor 1100 and a current detection unit 70 that detects the current Ia supplied to the motor 1100.
  • the proportional integral calculation unit 20 calculates the voltage command value Vr so that the deviation ⁇ becomes 0.
  • the voltage command value (Vr) may be duty (%).
  • the processor 100 is configured with a speed feedback control system so that the speed command value ⁇ r matches the speed ⁇ a of the motor 1100.
  • a delay occurs for control every 60 degrees, so a speed feedback control system is configured and the torque correction amount (Vc) is configured as a feed forward control system.
  • FIG. 3 is a diagram illustrating an example of the relationship between the state of the motor 1100 and the torque correction amount (Vc).
  • the correction unit 30 reads the torque correction amount (Vc) according to the state of the motor 1100 previously stored in a storage area such as ROM and outputs it to the addition unit 40.
  • the state may be a state determined according to the number of poles and constant of the motor 1100. For example, when the motor 1100 has 6 poles and 3 phases, the states of the motor 1100 are divided into 18 states 0 to 17.
  • the storage area stores the torque correction amount (Vc) corresponding to the state of the motor 1100 for each rotational speed of the motor 1100.
  • FIG. 2 illustrates the torque correction amount (Vc) corresponding to the state of the motor 1100 stored in the memory area when the rotation speed of the motor 1100 is 1300 (rpm).
  • the torque correction amount (Vc) may be duty (%).
  • the correction unit 30 is not limited to setting the torque correction amount (Vc) using the relationship between the state previously stored in the storage area and the torque correction amount (Vc).
  • the correction unit 30 may set the torque correction amount Vc calculated by substituting predetermined parameters into a calculation formula previously stored in the storage area.
  • FIG. 4A is a graph showing an example of the relationship between the waveform of the induced voltage from the coil of each phase of the motor 1100 and the reference voltage.
  • FIG. 4B is a graph showing an example of a waveform showing the result of comparing the induced voltage and the reference voltage.
  • 'HIGH' When the induced voltage (EU, EV, EW) from each phase coil is greater than the reference voltage, it is called 'HIGH', and when the induced voltage is less than the reference voltage, it is called 'LOW'.
  • Pulsed position signals (HU, HV, HW) with rising or falling edges can be obtained. Since the combination of 'HIGH' and 'LOW' pulses for each coil is synchronized with the position of the rotor of the motor 1100, the position of the rotor can be detected by detecting the combination of pulses for each coil.
  • the speed detection unit 60 detects the speed ⁇ a (rpm) of the motor 1100 by detecting changes in the position of the rotor every unit time.
  • the current detection unit 70 detects a shunt resistor (not shown) connected to the emitter terminal side of the transistors 142, 144, and 146 of the inverter unit 140, and a peak current flowing through the shunt resistor (hereinafter, It has a current detection circuit (not shown) that detects the 'current (Ia').
  • the current detection circuit is composed of an amplifier circuit and a peak hold circuit that detects the peak current flowing through the shunt resistor. This can be exemplified.
  • the generator 50 generates a signal for driving the motor 1100 and a conduction angle setting unit 51 for setting the conduction angle, which is the electric angle for passing electricity to the transistors 141 to 146. It has a signal output unit 52 that outputs.
  • the conduction angle setting unit 51 varies the conduction angle in the first mechanical angle range constituting one mechanical angle cycle of the rotor of the motor 1100 and the second mechanical angle range excluding the first mechanical angle range. At the same time, the second conduction angle in the second mechanical angle range is set to be larger than the first conduction angle in the first mechanical angle range.
  • the conduction angle setting unit 51 sets the conduction angle to 150 electrical degrees within the mechanical angle range corresponding to states 4 to 9 of the motor 1100, and sets the conduction angle to 150 electrical degrees in states 0 to 3 and 10 to 17. Set the conduction angle to 120 electrical degrees within the corresponding mechanical angle range.
  • the first mechanical angle range is the mechanical angle range corresponding to states 0 to 3 and 10 to 17, and the second mechanical angle range is the mechanical angle range corresponding to states 4 to 9. Additionally, the first conduction angle is an electrical angle of 120 degrees, and the second conduction angle is an electrical angle of 150 degrees.
  • the mechanical angle range in which the current conduction angle is set to 150 electrical degrees may be referred to as the 'predetermined angle range'.
  • FIG. 4C is a graph showing an example of the ON/OFF state of the transistors 141 to 146 of the inverter unit 140 based on the signal output from the signal output unit 52.
  • the signal output unit 52 outputs a signal for driving the motor 1100 based on the position of the rotor and performs PWM chopping using the PWM waveform.
  • PWM chopping refers to minutely turning on/off the signal for driving the motor 1100. By turning the signal on/off minutely, the current supplied to each phase of the motor 1100 can be controlled according to the duty, thereby controlling the output torque.
  • the signal output unit 52 turns on the transistors 141 to 146 at an advanced angle of 30 degrees, as shown in FIG. 4C.
  • the signal output unit 52 sets the timing of transition of the transistors 141 to 146 from the OFF state to the ON state to 0 degrees immediately after acquisition of the rotor position signals (HU, HV, HW).
  • the signal output unit 52 acquires the rising edge of the position signal HU, it turns on the transistor 141 above the U phase, and when the rising edge of the position signal HV is acquired, the transistor 141 turns on the upper V phase.
  • the transistor 143 is turned ON, and when the rising edge of the position signal HW is acquired, the transistor 145 above the W phase is turned ON.
  • the signal output unit 52 outputs the transistors 141, 143, ( 145) is turned off at an advance angle of 0 degrees, and outside the predetermined angle range, transistors 141, 143, and (145) are turned off at an advance angle of 30 degrees.
  • the signal output unit 52 sets the timing for transitioning the transistors 141, 143, and 145 from the ON state to the OFF state to 30 degrees after acquisition of the position signal within a predetermined angle range, and Outside the range, it is set to 0 degrees immediately after acquisition of the position signal.
  • the signal output unit 52 sets the rising edge of the position signal HW to 30 degrees after acquisition and turns off the transistor 143 above the V phase, and outside the predetermined angle range, , when the rising edge of the position signal HW is acquired, the transistor 143 above the V phase is turned OFF. Additionally, within a predetermined angle range, the signal output unit 52 sets the rising edge of the position signal HU to 30 degrees after acquisition and turns off the transistor 145 above the W phase, and outside the predetermined angle range, the position When the rising edge of the signal (HU) is acquired, the transistor 145 above the W phase is turned OFF.
  • the signal output unit 52 sets the rising edge of the position signal HV to 30 degrees after acquisition and turns off the transistor 141 above the U phase, and outside the predetermined angle range, the position When the rising edge of the signal HV is acquired, the transistor 141 above the U phase is turned OFF. Accordingly, within a predetermined angle range, the conduction angles of the transistors 141, 143, and 145 overlap by 0 degrees of the advance angle of the timing of transition from the ON state to the OFF state, causing an electrical angle of 30 degrees to overlap.
  • the signal output unit 52 performs PWM chopping only of the transistors above each phase, but may perform PWM chopping only of the transistors below each phase, or may perform PWM chopping of both the upper and lower sides. .
  • the control device 1 sets a voltage command value Vr (an example of a control value) determined so that the speed ⁇ a of the motor 1100 detected by the speed detection unit 60 is equal to the speed command value ⁇ r. , and a correction unit 30 that performs correction using a torque correction amount (Vc) that suppresses fluctuations in the current supplied to the motor 1100.
  • Vc torque correction amount
  • the control device 1 is provided with an inverter unit 140 having transistors 141 to 146 as an example of a plurality of switches for switching coils through which current flows within the plurality of coils of the motor 1100.
  • the control device 1 controls the first mechanical angle range (for example, the mechanical angle range corresponding to states 0 to 3 and 10 to 17) constituting one mechanical angle cycle of the rotor of the motor 1100 and the corresponding In the second mechanical angle range excluding the first mechanical angle range (e.g., the mechanical angle range corresponding to states 4 to 9), the conduction angle, which is the electrical angle for passing electricity to the transistors 141 to 146, can be varied. It is provided with a full width setting unit (51). Additionally, the conduction angle setting unit 51 may set the second conduction angle in the second mechanical angle range to be larger than the first conduction angle in the first mechanical angle range. For example, the conduction angle setting unit 51 may set the second conduction angle to, for example, an electrical angle of 150 degrees, and set the first conduction angle to, for example, an electrical angle of 120 degrees.
  • the conduction angle setting unit 51 may set the second conduction angle to, for example, an electrical angle of 150 degrees, and set the first conduction angle to, for example, an electrical angle of 120 degrees.
  • 510, 520, and 530 in FIG. 5 are graphs showing an example of the operation of the correction unit 30, and 540, 550, and 560 in FIG. 5 are graphs showing an example of the operation of the comparative example.
  • 510, 520, and 530 in FIG. 5 show the final command value (Vt) (duty (%)) output by the addition unit 40, and the speed ( ⁇ a) (rpm) of the motor 1100 detected by the speed detection unit 60. , shows the current (Ia) of the motor 1100 detected by the current detection unit 70.
  • Vt final command value
  • ⁇ a rpm
  • Ia current of the motor 1100 detected by the current detection unit 70.
  • the conduction angle setting unit 51 sets the conduction angle to the same electrical angle of 120 degrees in all mechanical angle ranges of the rotor of the motor 1100. It shows an example.
  • the adder 40 corrects the voltage command value (Vr) using the torque correction amount (Vc) output by the correction unit 30.
  • Vt the final command value
  • the conduction angle setting unit 51 sets the second conduction angle in the second mechanical angle range to be larger than the first conduction angle in the first mechanical angle range, that is, one By overlapping the electrical angle that passes through a commercial usage transistor (e.g., transistor 141) and the electrical angle that passes through another commercial transistor (e.g., transistor 143), the d-axis current decreases and the motor 1100 The maximum value of current is suppressed. As a result, the current rating of the power module can be reduced, making it possible to miniaturize the inverter unit 140.
  • a commercial usage transistor e.g., transistor 141
  • another commercial transistor e.g., transistor 143
  • the energization angle setting unit 51 sets the first mechanical angle range of the rotor of the motor 1100 (for example, the mechanical angle range corresponding to states 0 to 3 and 10 to 17) and the second mechanical angle range ( For example, the conduction angle can be varied within the mechanical angle range corresponding to states 4 to 9. In other words, the conduction angle setting unit 51 overlaps the conduction angle only within the second mechanical angle range (for example, the mechanical angle range corresponding to states 4 to 9).
  • Figure 6 shows a case where the conduction angle is set to 150 electrical degrees only in the second mechanical angle range (for example, the mechanical angle range corresponding to states 4 to 9), and in the first mechanical angle range, the conduction angle is set to 120 electrical degrees.
  • This is a graph showing an example of the change in final command value (Vt).
  • Figure 6 contains a graph showing an example of the change in the final command value (Vt) when the energization angle is set to 120 electrical degrees and when the electrical angle is set to 150 degrees in all mechanical angle ranges of the rotor.
  • the conduction angle setting unit 51 sets the conduction angle to 150 electrical degrees only in the second mechanical angle range, and sets the conduction angle to 120 electrical degrees in the first mechanical angle range, so that all of the rotor In the mechanical angle range, the final command value (Vt) (duty) can be made smaller than when the conduction angle is set to 120 electrical degrees. As a result, it can cope with higher loads.
  • the conduction angle setting unit 51 sets the conduction angle to 150 electrical degrees in the second mechanical angle range, and sets the conduction angle to 120 electrical degrees in the first mechanical angle range, thereby adjusting the conduction angle of the rotor.
  • the minimum value of the final command value (Vt) (duty) can be increased compared to the case where the conduction angle is set to 150 electrical degrees.
  • the waveform of the induced voltage occurs only when the transistor is in the ON state (for example, the transistor 141 and the transistor 145 are in the ON state), so the transistor must be in the ON state for a certain period of time or more to detect the position of the rotor. There is.
  • the conduction angle setting unit 51 can increase the minimum value of the final command value (Vt) by setting the conduction angle to 150 electrical degrees within the second mechanical angle range, the motor 1100 by the speed detection unit 60 The stability of rotor position detection can be improved. As a result, high-speed bursting can be realized by preventing the flow from deviating.
  • Figure 7 is a flowchart showing a control method of the control device 1 according to an embodiment.
  • the coil through which current flows among the plurality of coils included in the motor 1100 may be switched using the inverter unit 140 of the control device 1 according to an embodiment.
  • the inverter unit 140 may be controlled with a square wave using the processor 100 of the control device 1 according to an embodiment.
  • the torque correction amount used to smooth the speed of the motor 1100 may be determined using the correction unit 30 included in the processor 100 according to an embodiment.
  • a plurality of switches are set in a first mechanical angle range constituting one mechanical angle cycle of the rotor of the motor 1100.
  • a plurality of switches (141, 142, 143, 144, 145, 146) in a second mechanical angle range excluding the first mechanical angle range than the first energization angle of the (141, 142, 143, 144, 145, 146) ) can be set to a larger value.
  • FIG. 8 is a diagram showing an example of the control device 2 according to the second embodiment.
  • the control device 2 according to the second embodiment is different from the control device 1 according to the first embodiment in that the generator 250 corresponding to the generator 50 is different.
  • the same symbols are used for the same items, and detailed description thereof will be omitted.
  • the generator 250 according to the second embodiment is different from the generator 50 according to the first embodiment in that the conduction angle setting section 251 corresponds to the conduction angle setting section 51.
  • the conduction angle setting unit 51 according to the first embodiment sets the predetermined angle range for setting the conduction angle to 150 electrical degrees as a predetermined mechanical angle range, but the conduction angle setting unit 251 according to the second embodiment sets the predetermined angle range for setting the conduction angle to 150 electrical degrees.
  • a predetermined angle range is determined according to the speed ( ⁇ a) of the motor 1100.
  • the predetermined ratio is not limited to 10%.
  • the predetermined ratio may be 15% or other values.
  • the energization angle setting unit 251 may use the speed ⁇ a before one revolution immediately before, or the speed ⁇ a before the previous 5 revolutions.
  • the average value of the speed ( ⁇ a) per rotation may be used.
  • the conduction angle setting unit 251 sets the conduction angle of the next state of one state to an electric angle of 150. You can also set it as a road.
  • the conduction angle setting unit 251 determines the first mechanical angle range and the second mechanical angle range according to the speed ⁇ a, which is the rotation speed of the motor 1100. For example, the conduction angle setting unit 251 adjusts the conduction angle differently when the speed ⁇ a is below a predetermined speed, for example, when the speed ⁇ a decreases by a predetermined ratio or more with respect to the speed command value ⁇ r. do. In other words, the conduction angle setting unit 251 sets the section in which the conduction angle is different depending on the load of the motor 1100.
  • the section in which the conduction angle is set to, for example, 150 electrical degrees is reduced, so that the power is deteriorated due to the conduction angle being set to 150 electrical degrees. It can be suppressed.
  • Fig. 9 is a diagram showing an example of the control device 3 according to the third embodiment.
  • the control device 3 according to the third embodiment is different from the control device 1 according to the first embodiment in that the generator 350 corresponding to the generator 50 is different.
  • the same symbols are used for the same items, and detailed description thereof will be omitted.
  • the generation unit 350 according to the third embodiment has an adjustment unit 353 for adjusting the overlapping electric angle with respect to the generation unit 50 according to the first embodiment, and corresponds to the electric conduction angle setting unit 51.
  • the difference is that the conduction angle setting unit 351 sets the conduction angle so as to overlap the electric angle adjusted by the adjustment unit 353.
  • the conduction angle setting unit 51 according to the first embodiment overlaps the electrical angle by 30 degrees in a predetermined mechanical angle range, but the conduction angle setting unit 351 according to the third embodiment adjusts the electrical angle by 30 degrees. Overlap by the angle.
  • the adjustment unit 353 adjusts the electrical angle of overlap according to the load of the motor 1100. For example, depending on the load of the motor 1100, the adjustment unit 353 sets the overlapping electrical angle to, for example, 30 degrees when the load is large, and sets the overlapping electrical angle to, for example, 15 degrees when the load is small. This can be exemplified.
  • the adjustment unit 353 may determine the load of the motor 1100 using the amount of change in speed ⁇ a at the immediately previous mechanical angle of 360 degrees. For example, if the amount of change in speed ⁇ a at the previous machine angle of 360 degrees is greater than or equal to the first speed change amount (e.g., 500 (rpm)), it is determined that the load is large, and the first speed change amount (e.g., 500 (rpm)) is determined to be large. (rpm)), for example, it may be determined that the load is small.
  • the first speed change amount e.g., 500 (rpm)
  • the adjusting unit 353 may adjust the electrical angle of overlap in multiple stages according to the load of the motor 1100. For example, when the load of the motor 1100 is large, the overlapping electrical angle is set to 30 degrees, for example, and when the load is small, the electrical angles are not overlapped. When the load is in the middle between large and small, the electrical angle is set to 30 degrees.
  • the electrical angle of overlap may be, for example, 15 degrees.
  • the adjustment unit 353 determines that the load is large when the amount of change in speed ⁇ a at the immediately preceding machine angle of 360 degrees is greater than or equal to the first amount of speed change (e.g., 500 (rpm)), and generates overlapping electric power.
  • the angle is set to, for example, 30 degrees, and if the second speed change amount (e.g., 100 (rpm)) is smaller than the first speed change amount, it is determined that the load is small and no overlap is made.
  • the adjustment unit 353 generates overlapping electric power.
  • the angle can be set to 15 degrees.
  • the conduction angle setting unit 351 sets the conduction angle so as to overlap the electric angle adjusted by the adjustment unit 353.
  • the conduction angle setting unit 351 causes the second conduction angle, which is the conduction angle in the second mechanical angle range, to be larger than the first conduction angle, which is the conduction angle in the first mechanical angle range, and causes the motor 1100 to Adjust the second conduction angle according to the load.
  • the conduction angle setting unit 351 sets the second conduction angle to an electrical angle of 135 degrees.
  • the signal output unit 52 changes the transistors 141, 143, and 145 from the ON state to the OFF state.
  • the timing of transition to is set to 15 degrees after acquisition of the position signal within a predetermined angle range.
  • the switching loss of the inverter unit 140 can be suppressed, and thus the increase in energy due to overlapping electric angles can be suppressed. .
  • the conduction angle setting unit 351 according to the third embodiment may also determine a predetermined angle range according to the speed ⁇ a of the motor 1100, similar to the conduction angle setting unit 251 according to the second embodiment.
  • Fig. 10 is a diagram showing an example of the control device 4 according to the fourth embodiment.
  • the control device 4 according to the fourth embodiment is different from the control device 1 according to the first embodiment in that the correction unit 430 corresponding to the correction unit 30 is different.
  • the same symbols are used for the same items, and detailed description thereof will be omitted.
  • the correction unit 430 adjusts the torque correction amount (Vc) according to the amount of change in the speed ( ⁇ a) of the motor 1100. For example, when the amount of change in speed ⁇ a at the immediately preceding machine angle of 360 degrees is greater than or equal to the first speed change amount (for example, 500 (rpm)), the correction unit 430 adjusts the torque correction amount illustrated in FIG. 2 ( Vc), and if it is less than the first speed change amount (for example, 500 (rpm)), the torque correction amount (Vc) may be set to 0 in all states.
  • the first speed change amount for example, 500 (rpm)
  • the correction unit 430 may determine the torque correction amount (Vc) in multiple stages according to the amount of variation in the speed ( ⁇ a) of the motor 1100. For example, when the amount of change in speed ⁇ a at the immediately preceding machine angle of 360 degrees is greater than or equal to the first speed change amount (for example, 500 (rpm)), the correction unit 430 adjusts the torque correction amount illustrated in FIG. 2 ( Vc), and if the second speed change amount is less than the first speed change amount (for example, 100 (rpm)), the torque correction amount (Vc) is set to 0 in all states.
  • the first speed change amount for example, 500 (rpm)
  • the correction unit 430 adjusts the torque The correction amount (Vc) is reduced from the torque correction amount (Vc) illustrated in FIG. 2.
  • the correction unit 430 makes the torque correction amount Vc smaller than the absolute value of the torque correction amount Vc illustrated in FIG. 2.
  • the correction unit 430 may set the torque correction amount (Vc) when the amount of variation in the speed ( ⁇ a) is moderate to 1/2 of the torque correction amount (Vc) illustrated in FIG. 2.
  • the correction unit 430 when the amount of variation in the speed ⁇ a of the motor 1100 is small, in other words, when the load is small, the correction unit 430 provides the torque correction amount ( Due to determining Vc), an increase in the maximum current of the motor 1100 can be suppressed.
  • correction unit 430 according to the fourth embodiment may be applied to the control device 2 according to the second embodiment and the control device 3 according to the third embodiment.
  • Fig. 11 is a diagram showing an example of the control device 5 according to the fifth embodiment.
  • the control device 5 according to the fifth embodiment differs from the control device 1 according to the first embodiment in that the correction unit 530 corresponding to the correction unit 30 is different.
  • the same symbols are used for the same items, and detailed description thereof will be omitted.
  • the correction unit 530 changes the torque correction amount (Vc) to the torque correction amount (Vc) in the first embodiment (for example, the torque correction amount illustrated in FIG. 2). (Vc)).
  • the correction unit 530 divides the torque correction amount Vc by adding a predetermined coefficient to the torque correction amount Vc in the first embodiment (for example, the torque correction amount Vc illustrated in FIG. 2). Multiply the value.
  • the lower limit is 17 (%).
  • the predetermined coefficient may be 0.5.
  • the correction unit 530 changes the torque correction amount (Vc) of one revolution from the next state in which the final command value (Vt) becomes smaller than the lower limit to the torque correction amount (Vc) in the first embodiment (e.g., FIG. 2 For example, it may be made smaller than the torque correction amount (Vc) shown in .
  • the speed ⁇ a of the motor 1100 can be suppressed from exceeding the speed command value ⁇ r, which is the target speed.
  • the correction unit 530 adjusts the torque correction amount (Vc) as in the first embodiment. It may be a value obtained by multiplying the torque correction amount Vc (for example, the torque correction amount Vc illustrated in FIG. 2) by a predetermined coefficient.
  • the predetermined speed may be, for example, a speed command value ( ⁇ r).
  • the correction unit 530 may use the speed ⁇ a at the previous mechanical angle of 360 degrees.
  • the speed ⁇ a of the motor 1100 can be suppressed from exceeding the speed command value ⁇ r, which is the target speed.
  • the minimum value of the final command value (Vt) can be increased, the stability of detection of the position of the rotor of the motor 1100 by the speed detection unit 60 can be improved. As a result, high-speed bursting can be realized by preventing the flow from deviating.
  • correction unit 530 according to the fifth embodiment may be applied to the control device 2 according to the second embodiment and the control device 3 according to the third embodiment.
  • a refrigerator 2000 including a control device 1 for controlling the operation of the motor 1100 includes a storage compartment 2200, a door 2300 configured to open and close one open side of the storage compartment 2200, A cold air supply device 2400 that generates cold air through a refrigeration cycle including compression, condensation, expansion, and evaporation processes of the refrigerant and supplies cold air to the storage compartment 2200, and a compressor 1000 included in the cold air supply device 2400.
  • the control device (1, 2, 3, 4, 5) includes a plurality of switches (141, 142, 143, It may include an inverter unit 140 including 144, 145, and 146) and a processor 100 that controls the inverter unit 140 with a square wave.
  • the processor 100 determines the torque correction amount used to smooth the speed of the motor 1100, and determines a plurality of torque correction amounts in the first mechanical angle range constituting one mechanical angle cycle of the rotor of the motor 1100.
  • a plurality of switches (141, 142, 143, 144, 145, 146), the second conduction angle is set, and the second conduction angle can be set to a value greater than the first conduction angle.
  • the processor 100 may determine the first mechanical angle range and the second mechanical angle range according to the detected speed of the motor 1100.
  • the processor 100 may adjust the second energization angle according to the load of the motor 1100.
  • the processor 100 may adjust the torque correction amount according to the amount of change in the speed of the motor 1100.
  • the processor 100 may reduce the torque correction amount when the amount of change in the speed of the motor 1100 is less than a predetermined speed change amount value than when the amount of change is greater than or equal to the preset speed change amount value.
  • the processor 100 may include an adder 40 that outputs a final command value using a determined voltage command value and a torque correction amount so that the speed of the motor 1100 is equal to the speed command value.
  • the processor 100 may reduce the torque correction amount when the final command value output by the adder 40 is less than a predetermined lower limit.
  • the processor 100 operates the plurality of switches 141, 142, 143, 144, 145, and 146 when at least one of the first and second conduction angles is within a predetermined angle range.
  • the first conduction angle and the second conduction angle can be overlapped based on the advance of the timing of transitioning at least one switch from the ON state to the OFF state.
  • the processor 100 may include an adjuster 353 that adjusts the electrical angle at which the first and second conduction angles overlap according to the load of the motor 1100. Through the processor 100 according to one embodiment, the electric angle can be overlapped by the angle adjusted by the adjustment unit 353.
  • a storage compartment 2200 a cold air supply device 2400 that generates cold air through a refrigeration cycle including compression, condensation, expansion, and evaporation of a refrigerant, and supplies cold air to the storage compartment 2200.
  • the control method of the refrigerator 2000 including a motor 1100 used to drive the compressor 1000 included in the device 2400, and a control device 1 for controlling the operation of the motor 1100, includes the control method, An operation of switching a current-carrying coil among a plurality of coils included in the motor 1100 through the inverter unit 140 of the devices 1, 2, 3, 4, and 5, and the control devices 1, 2, and 3 , 4, 5), an operation of controlling the inverter unit 140 with a square wave, an operation of determining a torque correction amount used to smooth the speed of the motor 1100 through the processor 100, and through the processor 100, a first switch of the plurality of switches 141, 142, 143, 144, 145, and 146 in a first mechanical angle range constituting one mechanical angle cycle of the rotor of
  • It may include an operation of setting the second energization angle of the plurality of switches 141, 142, 143, 144, 145, and 146 to a larger value in the second mechanical angle range excluding the first mechanical angle range than the full angle. .
  • the operation of determining the first mechanical angle range and the second mechanical angle range according to the detected speed of the motor 1100 through the processor 100 may be included.
  • the operation of adjusting the second energization angle according to the load of the motor 1100 through the processor 100 may be included.
  • the operation of adjusting the torque correction amount according to the amount of change in the speed of the motor 1100 through the processor 100 may be included.
  • the processor 100 may include an operation of reducing the torque correction amount compared to when the amount of change is more than a predetermined speed change amount value. there is.
  • the plurality of switches 141, 142, 143, 144, 145, and 146 may include an operation of overlapping the first conduction angle and the second conduction angle based on the advance of the timing of transitioning at least one switch from the ON state to the OFF state.
  • robust performance can be improved while reducing energy consumption, thereby achieving high robustness and improving the performance of suppressing vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

본 개시는 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법을 제공한다. 본 개시에 따른 냉장고는 저장실; 상기 저장실의 개방된 일측을 개폐하도록 구성되는 도어; 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 상기 저장실에 상기 냉기를 공급하는 냉기 공급 장치; 상기 냉기 공급 장치에 포함된 압축기의 구동을 위해 사용되는 모터; 및 상기 모터의 구동을 제어하는 제어 장치를 포함하고, 상기 제어 장치는, 상기 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 복수의 스위치들을 포함하는 인버터 유닛; 및 상기 인버터 유닛을 구형파 제어하는 프로세서를 포함하고, 상기 프로세서는, 상기 모터의 속도를 평활하는 데 이용되는 토크 보정량을 결정하고, 상기 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 상기 복수의 스위치들의 제1 통전각 및 상기 제1 기계각 범위를 제외한 제2 기계각 범위에서 상기 복수의 스위치들의 제2 통전각을 설정하며, 상기 제2 통전각을 상기 제1 통전각보다 큰 값으로 설정할 수 있다.

Description

모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법
본 개시는 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법에 관한 것이다.
냉장고 등에 이용되는 압축기는, 실린더 내에 냉매를 채우는 흡입 행정, 실린더 내의 냉매를 압축하는 압축 행정, 및 압축한 냉매를 압축기의 외부에 방출하는 토출 행정을 실시하기 때문에, 부하의 변동에 의해 진동이나 소음이 커진다는 문제가 있다. 그리고 이 압축기용 모터의 제어 장치로서 압축기의 진동과 소음을 억제한 후 높은 효율로 모터를 구동시킬 수 있는 제어 장치가 제안되고 있다.
예를 들면, 특허 문헌 1에 기재된 제어 장치는, 회전자를 가진 3상 브러시리스 모터에 전력을 공급하는 인버터부와, 회전자의 기계각을 검지하는 검출부를 포함한다. 또 제어 장치는, 3상 브러시리스 모터의 부하 토크에 의해 전력의 전압 및 전류 중 어느 하나에 생기는 맥동을 억제하도록 정해진, 기계각에 대응하는 보정치를 미리 내부의 기억 회로에 기억하고, 검출부에 의해 검지된 기계각 및 기계각에 대응하는 보정치에 기초하여 전압 및 전류 중 어느 하나를 제어하는 마이크로 프로세서를 포함한다.
또, 특허 문헌 2에 기재된 제어기는, 속도 제어기, d축 전류 지령 발생기, 전압 제어기, 2축/3상 변환기, 속도&위상 추정기, 3상/2축 변환기, 전류 재현 연산기, 주기 변동 억제기, PWM 제어기, 가감산기, 가산기를 구비하여 구성되어 있다. 그리고 제어기의 기본적인 기능은, dq벡터 제어에 의해 모터에 인가하는 전압 지령 신호를 연산하고, 인버터 회로의 제어 신호인 PWM 신호를 생성하는 것이다.
특허 문헌 1: 일본 특개 2004-215434호 공보
특허 문헌 2: 일본 특개 2020-124085호 공보
본 개시의 일 실시 예에 따른 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고는, 저장실; 상기 저장실의 개방된 일측을 개폐하도록 구성되는 도어; 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 상기 저장실에 상기 냉기를 공급하는 냉기 공급 장치; 상기 냉기 공급 장치에 포함된 압축기의 구동을 위해 사용되는 모터; 및 상기 모터의 구동을 제어하는 제어 장치를 포함하고, 상기 제어 장치는, 상기 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 복수의 스위치들을 포함하는 인버터 유닛 및 인버터 유닛을 구형파 제어하는 프로세서를 포함할 수 있다. 일 실시 예에 따른 프로세서는 모터의 속도를 평활하는 데 이용되는 토크 보정량을 결정하고, 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들의 제1 통전각 및 상기 제1 기계각 범위를 제외한 제2 기계각 범위에서 상기 복수의 스위치들의 제2 통전각을 설정하며, 제2 통전각을 제1 통전각보다 큰 값으로 설정할 수 있다.
일 실시 예에서, 프로세서는, 검출한 모터의 속도에 따라 제1 기계각 범위 및 상기 제2 기계각 범위를 결정할 수 있다.
일 실시 예에서, 프로세서는, 모터의 부하에 따라 제2 통전각을 조정할 수 있다.
일 실시 예에서, 프로세서는, 모터 속도의 변동량에 따라 토크 보정량을 조정할 수 있다.
일 실시 예에서, 프로세서는, 모터의 속도의 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 변동량이 미리 정해진 속도 변동량 값 이상인 경우보다 토크 보정량을 감소시킬 수 있다.
일 실시 예에서, 프로세서는, 모터의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 토크 보정량을 이용하여 최종 지령치를 출력하는 가산부를 더 구비하고, 프로세서는, 가산부가 출력한 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 토크 보정량을 감소시킬 수 있다.
일 실시 예에서, 프로세서는, 제1 통전각 및 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 복수의 스위치들 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 제1 통전각 및 제2 통전각을 오버랩시킬 수 있다.
일 실시 예에서, 프로세서는, 모터의 부하에 따라 제1 통전각 및 제2 통전각이 오버랩되는 전기각을 조정하는 조정부를 더 포함하고, 프로세서는, 조정부가 조정한 각도만큼 전기각을 오버랩시킬 수 있다.
본 개시의 일 실시 예에 따른 저장실; 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 상기 저장실에 상기 냉기를 공급하는 냉기 공급 장치; 상기 냉기 공급 장치에 포함된 압축기의 구동을 위해 사용되는 모터; 및 상기 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고의 제어 방법은, 제어 장치의 인버터 유닛을 통해, 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 동작, 제어 장치의 프로세서를 통해, 인버터 유닛을 구형파 제어하는 동작, 프로세서를 통해, 모터의 속도를 평활하는 데 이용되는 토크 보정량을 결정하는 동작, 및 프로세서를 통해, 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들에 통전하는 제1 통전각보다, 제1 기계각 범위를 제외한 제2 기계각 범위에서 복수의 스위치들에 통전하는 제2 통전각을 큰 값으로 설정하는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 검출한 모터의 속도에 따라 제1 기계각 범위 및 제2 기계각 범위를 결정하는 동작을 더 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 모터의 부하에 따라 제2 통전각을 조정하는 동작을 더 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 모터의 속도의 변동량에 따라 토크 보정량을 조정하는 동작을 더 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 모터의 속도의 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 변동량이 미리 정해진 속도 변동량 값 이상인 경우보다 토크 보정량을 감소시키는 동작을 더 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 모터의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 토크 보정량을 이용하여 최종 지령치를 출력하는 동작, 및 프로세서를 통해, 가산부가 출력한 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 토크 보정량을 감소시키는 동작을 더 포함할 수 있다.
일 실시 예에서, 프로세서를 통해, 제1 통전각 및 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 복수의 스위치들 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 제1 통전각 및 제2 통전각을 오버랩시키는 동작을 더 포함할 수 있다.
도 1a는 일 실시 예에 따른 냉장고를 나타낸 도면이다.
도 1b는 일 실시 예에 따른 냉장고를 나타낸 블록도이다.
도 2는 제1 실시 형태에 관한 제어 장치의 개략 구성의 일례를 도시한 도면이다.
도 3은 모터의 스테이트(state)와 토크 보정량과의 관계의 일례를 도시한 도면이다.
도 4a는 모터의 각 상의 코일로부터의 야기 전압의 파형과 기준 전압과의 관계의 일례를 도시한 그래프이다.
도 4b는 야기 전압과 기준 전압을 비교한 결과를 나타내는 파형의 일례를 도시한 그래프이다.
도 4c는 신호 출력부가 출력한 신호에 기초하여 인버터 유닛의 트랜지스터의 ON/OFF 상태의 일례를 도시한 그래프이다.
도 5의 (a)는 보정부의 작용의 일례를 도시한 그래프이고, 도 5의 (b)는 비교예의 작용의 일례를 도시한 그래프이다.
도 6은 제2 기계각 범위에 한하여 통전각을 전기각 150도로 하고, 제1 기계각 범위에서는 통전각을 전기각 120도로 한 경우의 최종 지령치의 변화의 일례를 도시한 그래프이다.
도 7은 일 실시 예에 따른 제어 장치의 제어 방법을 나타낸 흐름도이다.
도 8은 제2 실시 형태에 관한 제어 장치의 일례를 도시한 도면이다.
도 9는 제3 실시 형태에 관한 제어 장치의 일례를 도시한 도면이다.
도 10은 제4 실시 형태에 관한 제어 장치의 일례를 도시한 도면이다.
도 11은 제5 실시 형태에 관한 제어 장치의 일례를 도시한 도면이다.
본 개시의 다양한 실시예들 및 이에 사용된 용어들은 본 개시에 기재된 기술적 특징들을 특정한 실시예들로 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 또는 대체물을 포함하는 것으로 이해되어야 한다.
도면의 설명과 관련하여, 유사한 또는 관련된 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
아이템에 대응하는 명사의 단수 형은 관련된 문맥상 명백하게 다르게 지시하지 않는 한, 상기 아이템 한 개 또는 복수 개를 포함할 수 있다.
본 개시에서, "A 또는 B", "A 및 B 중 적어도 하나", "A 또는 B 중 적어도 하나", "A, B 또는 C", "A, B 및 C 중 적어도 하나", 및 "A, B, 또는 C 중 적어도 하나"와 같은 문구들 각각은 그 문구들 중 해당하는 문구에 함께 나열된 항목들 중 어느 하나, 또는 그들의 모든 가능한 조합을 포함할 수 있다.
"및/또는"이라는 용어는 복수의 관련된 기재된 구성요소들의 조합 또는 복수의 관련된 기재된 구성요소들 중의 어느 구성요소를 포함한다.
"제1", "제2", 또는 "첫째" 또는 "둘째"와 같은 용어들은 단순히 해당 구성요소를 다른 해당 구성요소와 구분하기 위해 사용될 수 있으며, 해당 구성요소들을 다른 측면(예: 중요성 또는 순서)에서 한정하지 않는다.
또한, 본 개시에서 사용한 '전면', '후면', '상면', '하면', '측면', '좌측', '우측', '상부', '하부' 등의 용어는 도면을 기준으로 정의한 것이며, 이 용어에 의해 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.
"포함하다" 또는 "가지다"등의 용어는 본 개시에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
어떤 구성요소가 다른 구성요소와 "연결", "결합", "지지" 또는 "접촉"되어 있다고 할 때, 이는 구성요소들이 직접적으로 연결, 결합, 지지 또는 접촉되는 경우뿐 아니라, 제3 구성요소를 통하여 간접적으로 연결, 결합, 지지 또는 접촉되는 경우를 포함한다.
어떤 구성요소가 다른 구성요소 "상에" 위치하고 있다고 할 때, 이는 어떤 구성요소가 다른 구성요소에 접해 있는 경우뿐 아니라 두 구성요소 사이에 또 다른 구성요소가 존재하는 경우도 포함한다.
특허 문헌 1에 기재된 제어 장치는, 로버스트(robust) 성능 및 진동 억제의 측면에서 개선의 여지가 있다.
특허 문헌 2에 기재된 제어기와 같이 벡터 제어를 실시하는 것은, 인버터 회로의 스위칭 손실이 증가하기 때문에, 에너지 절약 측면에서 개선의 여지가 있다.
본 개시는, 소비하는 에너지를 감소시키면서 로버스트 성능을 개선하여 고(high) 로버스트화를 실현하고, 진동을 억제하는 성능을 개선시킨 제어 장치 및 그 제어 방법을 제공하는 것을 목적으로 한다.
이하, 첨부 도면을 참조하여 본 개시의 실시 형태에 대해 상세히 설명하기로 한다.
도 1a는 일 실시 예에 따른 냉장고(2000)를 나타낸 도면이다. 일 실시 예에 따른 냉장고(2000)는 본체(2100), 저장실(2200), 및 도어(2300)를 포함할 수 있다.
본체(2100)는 내상과, 내상의 외측에 배치되는 외상과, 내상과 외상의 사이에 마련되는 단열재를 포함할 수 있다. 내상은 저장실을 형성하는 케이스(case), 플레이트(plate), 패널(panel) 또는 라이너(liner) 중 적어도 하나를 포함할 수 있다. 내상은 하나의 몸체로 형성될 수도 있으며 또는 복수의 플레이트들이 조립되어 형성될 수 있다. 외상은 본체의 외관을 형성할 수 있으며, 내상과 외상의 사이에 단열재가 배치되도록 내상의 외측에 결합될 수 있다. 단열재는 저장실 내부의 온도가 저장실 외부 환경에 의해 영향을 받지 않고 설정된 적정 온도로 유지될 수 있도록 저장실 내부와 저장실 외부를 단열할 수 있다. 일 실시예에 따르면 단열재는 발포 단열재를 포함할 수 있다. 내상과 외상의 사이에 폴리우레탄과 발포제가 혼합된 우레탄폼을 주입 및 발포시킴으로써 발포 단열재를 성형할 수 있다.
일 실시예에 따르면 단열재는 발포 단열재 이외에 추가로 진공 단열재를 포함하거나, 단열재는 발포 단열재 대신 진공 단열재만으로 구성될 수도 있다. 진공 단열재는 심재와, 심재를 수용하고 내부를 진공 또는 진공에 가까운 압력으로 밀봉하는 외피재를 포함할 수 있다. 다만, 단열재는 상기한 발포 단열재 또는 진공 단열재에 한정되는 것은 아니고 단열을 위해 사용될 수 있는 다양한 소재를 포함할 수 있다.
저장실(2200)은 내상에 의해 한정되는 공간을 포함할 수 있다. 저장실은 저장실에 대응되는 공간을 한정하는 내상을 더 포함할 수 있다. 저장실(2200)에는 식품, 약품, 화장품 등 다양한 물품이 저장될 수 있다. 저장실(2200)은 물품을 출납하기 위해 적어도 일측이 개방되도록 형성될 수 있다.
냉장고(2000)는 한 개 또는 그 이상의 저장실(2200)을 포함할 수 있다. 냉장고에 2 개 이상의 저장실(2200)이 형성될 때 각각의 저장실(2200)은 서로 다른 용도를 가질 수 있으며 서로 다른 온도로 유지될 수 있다. 이를 위해 각각의 저장실(2200)은 단열재를 포함하는 격벽에 의해 서로 구획될 수 있다.
저장실(2200)은 용도에 따라 적정한 온도 범위에서 유지되도록 마련될 수 있으며, 그 용도 및/또는 온도 범위에 따라 구분되는 냉장실, 냉동실 또는 변온실을 포함할 수 있다. 냉장실은 물품을 냉장 보관하기에 적정한 온도로 유지될 수 있고, 냉동실은 물품을 냉동 보관하기에 적정한 온도로 유지될 수 있다. 냉장은 물품을 얼지 않는 한도에서 차갑게 냉각하는 것을 의미할 수 있다. 일례로, 냉장실은 섭씨 0도에서 섭씨 영상 7도 범위에서 유지될 수 있다. 냉동은 물품을 얼리거나 언 상태로 유지되도록 냉각하는 것을 의미할 수 있다. 일례로, 냉동실은 섭씨 영하 20도 내지 섭씨 영하 1도 범위에서 유지될 수 있다. 변온실은 사용자의 선택 또는 이와 무관하게 냉장실 또는 냉동실 중 어느 하나로 사용될 수 있다.
저장실(2200)은 냉장실, 냉동실, 및 변온실과 같은 명칭 이외에도 야채실, 신선실, 쿨링실 및 제빙실과 같은 다양한 명칭으로 지칭될 수 있다. 이하에서 사용되는 냉장실, 냉동실, 및 변온실과 같은 용어는 각각 대응되는 용도 및 온도 범위를 갖는 저장실(2200)을 포괄하는 의미로 이해되어야 할 것이다.
일 실시예에 따르면 냉장고(2000)는 저장실(2200)의 개방된 일측을 개폐하도록 구성되는 적어도 하나의 도어(2300)를 포함할 수 있다. 도어(2300)는 한 개 또는 그 이상의 저장실(2200) 각각을 개폐하도록 구비되거나, 도어(2300) 하나가 복수의 저장실(2200)을 개폐하도록 구비될 수 있다. 도어(2300)는 본체의 전면에 회전 또는 슬라이딩 가능하게 설치될 수 있다.
도어(2300)는 도어(2300)가 닫힐 시에 저장실(2200)을 밀폐하도록 구성될 수 있다. 도어(2300)는 도어(2300)가 닫힐 시에 저장실(2200)을 단열하도록 본체(2100)와 마찬가지로 단열재를 포함할 수 있다.
일 실시예에 따르면 도어(2300)는 도어 바디와, 도어 바디의 전측에 분리 가능하게 결합되고 도어(2300)의 전면을 형성하는 전방 패널을 포함할 수 있다. 도어 바디는 도어 바디의 전면을 형성하는 도어 외판, 도어 바디의 후면을 형성하고 저장실(2200)을 마주보는 도어 내판, 상부 캡, 하부 캡 및 이들의 내부에 마련되는 도어 단열재를 포함할 수 있다.
도어 내판의 테두리에는 도어(2300)가 닫혔을 때 본체(2100)의 전면에 밀착됨으로써 저장실을 밀폐하는 가스켓이 마련될 수 있다. 도어 내판은 물품을 보관할 수 있는 도어 바스켓이 장착되도록 후방으로 돌출되는 다이크(dyke)를 포함할 수 있다.
냉장고(2000)는 도어(2300) 및 저장실(2200)의 배치에 따라 프렌치 도어 타입(French Door Type), 사이드 바이 사이드 타입(Side-by-side Type), BMF(Bottom Mounted Freezer), TMF(Top Mounted Freezer) 또는 1도어 냉장고 등으로 구별될 수 있다.
일 실시예에 따르면 냉장고(2200)는 물 및/또는 얼음을 제공하도록 도어(2300)에 마련되는 디스펜서를 포함할 수 있다. 디스펜서는 사용자가 도어(2300)를 개방하지 않고 접근 가능하도록 도어(2300)에 마련될 수 있다.
도 1b는 일 실시 예에 따른 냉장고(2000)를 나타낸 블록도이다. 일 실시예에 따른 냉장고(2000)는 저장실(2200), 도어(2300), 냉기 공급 장치(2400), 모터(1100), 및 제어 장치(1)를 포함할 수 있다.
일 실시예에 따른 도어(2300)는 저장실(2300)의 개방된 일측을 개폐하도록 구성될 수 있다. 도어(2300)는 한 개 또는 그 이상의 저장실(2200) 각각을 개폐하도록 구비되거나, 도어(2300) 하나가 복수의 저장실(2200)을 개폐하도록 구비될 수 있다. 도어(2300)는 도어(2300)가 닫힐 시에 저장실(2200)을 밀폐하도록 구성될 수 있다.
일 실시예에 따른 냉기 공급 장치(2400)는 저장실(2200)에 냉기를 공급할 수 있다. 냉기 공급 장치(2400)는 냉기를 생성하고 냉기를 안내하여 저장실(2200)을 냉각할 수 있는 기계, 기구, 전자 장치 및/또는 이들을 조합한 시스템을 포함할 수 있다.
일 실시예에 따르면 냉기 공급 장치(2400)는 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성할 수 있다. 이를 위해 냉기 공급 장치(2400)는 냉동 사이클을 구동시킬 수 있는 압축기(1100), 응축기, 팽창 장치 및 증발기를 갖는 냉동 사이클 장치를 포함할 수 있다. 일 실시예에 따르면 냉기 공급 장치(2400)는 열전 소자와 같은 반도체를 포함할 수 있다. 열전 소자는 펠티어 효과를 통한 발열 및 냉각 작용으로 저장실(2200)을 냉각할 수 있다.
일 실시예에 따르면 냉장고(2000)는 냉기 공급 장치(2400)에 속한 적어도 일부 부품들이 배치되도록 마련되는 기계실을 포함할 수 있다. 기계실은 기계실에 배치되는 부품에서 발생되는 열이 저장실(2200)에 전달되는 것을 방지하기 위해 저장실(2200)과 구획 및 단열되도록 마련될 수 있다. 기계실 내부에 배치된 부품을 방열하도록 기계실 내부는 냉장고(2000) 본체의 외부와 연통되도록 구성될 수 있다.
일 실시예에 따르면 냉장고(2000)는 압축기(1000)를 구동하는 모터(1100) 및 모터(1100)의 구동을 제어하기 위한 제어 장치(1)를 포함할 수 있다. 제어 장치(1)는 냉장고(2000)의 압축기(1000)를 구동하기 위한 모터(1100)의 구동을 제어할 수 있다. 그러나 이에 한정되지 않으며, 제어 장치(1)는 공기조화기(예: 에어컨) 및 세탁기와 같은 다른 가전 기기에 이용되는 모터의 구동을 제어하는 장치일 수 있다. 제어 장치(1)는 프로세서(100) 및 인버터 유닛(140)을 포함할 수 있다.
프로세서(100)는 냉장고(2000) 전반의 동작을 제어할 수 있다. 프로세서는 메모리에 저장된 프로그램을 실행하여, 냉장고(2000)의 구성 요소들을 제어할 수 있다. 프로세서(100)는 인공지능 모델의 동작을 수행하는 별도의 NPU를 포함할 수 있다. 또한 프로세서(100)는 중앙 처리부, 그래픽 전용 프로세서(GPU) 등을 포함할 수 있다. 프로세서(100)는 냉기 공급 장치(2400)의 동작을 제어하기 위한 제어 신호를 생성할 수 있다. 예를 들어, 프로세서(100)는 온도 센서로부터 저장실(2200)의 온도 정보를 수신하고, 저장실(2200)의 온도 정보에 기초하여 냉기 공급 장치(2400)의 동작을 제어하기 위한 냉각 제어 신호를 생성할 수 있다.
또한, 프로세서(100)는 메모리에 기억/저장된 프로그램 및/또는 데이터에 따라 사용자 인터페이스의 사용자 입력을 처리하고, 사용자 인터페이스의 동작을 제어할 수 있다. 사용자 인터페이스는 입력 인터페이스와 출력 인터페이스를 이용하여 제공될 수 있다. 프로세서(100)는 사용자 인터페이스로부터 사용자 입력을 수신할 수 있다. 또한, 프로세서(100)는 사용자 입력에 응답하여 사용자 인터페이스에 영상을 표시하기 위한 표시 제어 신호 및 영상 데이터를 사용자 인터페이스에 전달할 수 있다.
프로세서(100)와 메모리는 일체로 마련되거나 또는 별도로 마련될 수 있다. 프로세서(100)는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 프로세서(100)는 메인 프로세서와 적어도 하나의 서브 프로세서를 포함할 수 있다.
제어 장치(1)는 프로세서(100) 및 메모리를 이용한 다양한 정보의 처리 결과에 기초하여 모터(1100)의 구동을 제어할 수 있다. 예를 들어, 제어 장치(1)는 냉장고(2000)에 이용되는 압축기(1000)용 모터(1100)의 구동을 제어할 수 있다. 냉장고(2000)에 이용되는 모터(1100)는 복수의 코일들을 포함할 수 있다. 제어 장치(1)는 모터(1100)에 포함된 복수의 코일들에 흐르는 전류를 제어할 수 있다.
일 실시 예에서, 인버터 유닛(140)은 직류 전압을 교류 전압으로 변환하여 모터(1100)에 공급할 수 있다. 인버터 유닛(140)은 복수의 스위치들(141, 142, 143, 144)을 포함할 수 있다. 예를 들어, 인버터 유닛(140)은 제1 스위치(141), 제2 스위치(142), 제3 스위치(143), 및 제N(N은 4 이상의 자연수) 스위치(144)를 포함할 수 있다. 복수의 스위치들(141, 142, 143, 144)은 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시킬 수 있다.
일 실시 예에서, 프로세서(100)는 인버터 유닛(140)을 구형파 제어할 수 있다.
일 실시 예에서, 프로세서(100)는 토크 보정량을 결정할 수 있다. 토크 보정량은 모터(1100)의 속도를 평활하는 데 이용될 수 있다. 프로세서(100)가 결정한 토크 보정량에 따라 모터(1100)의 속도를 일정한 값으로 유지할 수 있다.
일 실시 예에서, 프로세서(100)는 복수의 스위치들(141, 142, 143, 144)의 통전각(Electrical Conduction Angle)을 설정할 수 있다. 프로세서(100)는 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들(141, 142, 143, 144)의 제1 통전각보다, 제1 기계각 범위를 제외한 제2 기계각 범위에서 복수의 스위치들(141, 142, 143, 144)의 제2 통전각을 보다 큰 값으로 설정할 수 있다.
<제1 실시 형태>
도 2는 제1 실시 형태에 관한 제어 장치(1)의 개략 구성의 일례를 도시한 도면이다.
제어 장치(1)는, 예를 들면 도 1a 및 도 1b를 결부하여 설명한 냉장고(2000)에 이용되는 압축기(1000)용 모터(1100)의 구동을 제어하는 장치이다. 그러나 이에 한정되지 않으며, 제어 장치(1)는 공기조화기(예: 에어컨) 및 세탁기와 같은 다른 가전 기기에 이용되는 모터의 구동을 제어하는 장치일 수 있다. 제어 장치(1)는, 교류 전원(110)과, 정류 회로(120)와, 평활 콘덴서(130)와, 인버터 유닛(140)과, 프로세서(100)를 구비하고, 인버터 유닛(140)을 구형파 제어함으로써 모터(1100)의 구동을 제어하는 제어 장치이다.
압축기(1000)는, 실린더 내에 냉매를 채우는 흡입 행정, 실린더 내의 냉매를 압축하는 압축 행정, 및 압축한 냉매를 압축기(1000)의 외부에 방출하는 토출 행정을 실시하는 장치이다. 압축기(1000)의 압축 기구는 특별히 한정되지 않으며, 예를 들면, 로터리 방식, 왕복 방식, 스크롤 방식이라는 것을 예시할 수 있다.
모터(1100)는, 6극 3상의 영구자석 동기 전동기(PMSM(Permanent Magnet Synchronous Motor))를 예시할 수 있다. 단, 모터(1100)의 종류는 특별히 한정되지 않는다.
정류 회로(120)는, 교류 전원(110)에 접속되어 교류 전원(110)으로부터의 교류 전압을 직류 전압으로 변환한다.
평활 콘덴서(130)는, 정류 회로(120)의 직류 출력 단자에 접속되어 정류 회로(120)의 출력인 직류 전압을 평활화한다.
인버터 유닛(140)은, 직류 전압을 교류 전압으로 변환하여 모터(1100)에 공급하기 위한 회로이다. 인버터 유닛(140)은, 브릿지 회로에 의해 구성되고, 복수조의 스위칭 소자로서 6개의 독립적인 트랜지스터(141)∼(146)를 구비하고 있다. 본 실시 형태에서는, 인버터 유닛(140)은, 모터(1100)의 각 상(U상, V상, W상의 3상)의 각각에 대해 한 쌍의 트랜지스터를 가지고 있다. 구체적으로는, U상용 트랜지스터(141) 및 트랜지스터(142), V상용 트랜지스터(143) 및 트랜지스터(144), W상용 트랜지스터(145) 및 트랜지스터(146)를 가지고 있다. 트랜지스터(141), (143), (145)의 에미터와 트랜지스터(142), (144), (146)의 콜렉터가 모터(1100)의 각 상의 코일에 각각 접속되어 있다. 또 트랜지스터(141), (143), (145)의 콜렉터는 전원의 양극측 라인과 접속되고, 트랜지스터(142), (144), (146)의 에미터는 전원의 음극측(접지) 라인과 접속되어 있다. 트랜지스터(141)∼(146)는, 바이폴라형, 전계 효과형, MOS형 등 여러 가지 구조의 파워 트랜지스터인 것을 예시할 수 있다.
트랜지스터(141)∼(146)의 각각은, 프로세서(100)로부터 출력되는 제어 신호에 따라 ON/OFF 동작한다. 이로써 인버터 유닛(140)은, 직류 전압을 교류 전압으로 변환하여 모터(1100)에 공급하고 구동력을 출력시킨다. 바꾸어 말하면, 모터(1100)는, 트랜지스터(141)∼(146)의 ON/OFF 동작에 따른 전류가 공급됨으로써 구동력을 출력한다.
프로세서(100)는, 속도 지령치(ωr)와 모터(1100)의 실제 속도(ωa)와의 편차(Δω)를 연산하는 편차부(10)와, 편차(Δω)에 따른 전압 지령치(Vr)를 연산하는 비례 적분 연산부(20)를 구비한다. 또 프로세서(100)는, 속도(ωa)나 후술하는 전류(Ia)를 평활화하는데 이용되는 토크 보정량(Vc)을 결정하는 보정부(30)와, 비례 적분 연산부(20)가 연산한 전압 지령치(Vr)와, 보정부(30)가 결정된 토크 보정량(Vc)을 가산하는 가산부(40)를 구비한다. 또 프로세서(100)는, 가산부(40)가 출력한 최종적인 지령치인 최종 지령치(Vt)와 모터(1100)의 속도(ωa)를 이용하여 상전압(phase voltage) 기준 신호를 발생하는 발생부(50)를 구비한다. 또 제어 장치(1)는, 모터(1100)의 속도(ωa)를 검출하는 속도 검출부(60)와, 모터(1100)에 공급되는 전류(Ia)를 검출하는 전류 검출부(70)를 구비한다.
편차부(10)는, 상위(upper category)의 제어 장치, 예를 들면 냉장고(2000)의 작동을 통괄적으로 제어하는 제어 장치로부터 프로세서(100)에 출력된 속도 지령치(ωr)로부터 속도 검출부(60)에서 검출된 모터(1100)의 실제 속도(ωa)를 감산함으로써 편차(Δω)를 연산한다(Δω=ωr-ωa).
비례 적분 연산부(20)는, 편차(Δω)가 0이 되도록 전압 지령치(Vr)를 연산한다. 전압 지령치(Vr)는 듀티(%)인 것을 예시할 수 있다.
이와 같이, 프로세서(100)는, 속도 지령치(ωr)와 모터(1100)의 속도(ωa)가 일치하도록 속도 피드백 제어계로 구성되어 있다. 그리고 구형파 제어의 경우, 후술하는 바와 같이 60도마다 제어하기 위해 지연이 발생하기 때문에, 속도 피드백 제어계로 구성하면서 토크 보정량(Vc)을 피드 포워드 제어계로 구성하고 있다.
도 3은 모터(1100)의 스테이트(state)와 토크 보정량(Vc)과의 관계의 일례를 도시한 도면이다.
보정부(30)는, 미리 ROM 등의 기억 영역에 기억된 모터(1100)의 스테이트에 따른 토크 보정량(Vc)을 독출하여 가산부(40)에 출력한다. 스테이트는, 모터(1100)의 극수(number of poles) 및 상수(constant)에 따라 결정되는 상태일 수 있다. 예를 들어, 모터(1100)가 6극 3상인 경우, 모터(1100)의 스테이트는 스테이트 0∼스테이트 17로 18분할되어 있다. 기억 영역은, 모터(1100)의 회전 속도마다, 모터(1100)의 스테이트에 대응하는 토크 보정량(Vc)을 기억한다. 도 2에는, 기억 영역이 기억하는, 모터(1100)의 회전 속도가 1300(rpm)인 경우의, 모터(1100)의 스테이트에 대응하는 토크 보정량(Vc)을 예시하고 있다. 토크 보정량(Vc)은 듀티(%)인 것을 예시할 수 있다. 아울러 보정부(30)는, 미리 기억 영역에 기억된 스테이트와 토크 보정량(Vc)과의 관계를 이용하여 토크 보정량(Vc)을 설정하는 것에 한정되지는 않는다. 예를 들면, 보정부(30)는 미리 기억 영역에 기억된 산출식에 미리 정해진 파라미터를 대입함으로써 산출한 토크 보정량(Vc)을 설정해도 좋다.
가산부(40)은, 비례 적분 연산부(20)가 연산한 전압 지령치(Vr)와, 보정부(30)가 결정된 토크 보정량(Vc)을 가산함으로써 얻은 값을 최종적인 지령치인 최종 지령치(Vt)(Vt=Vr+Vc)로서 발생부(50)에 출력한다. 예를 들면, 스테이트 6일 때에는 토크 보정량(Vc)이 -4(%)이기 때문에, 전압 지령치(Vr)가 40(%)인 경우에는, 가산부(40)는 36(%)를 발생부(50)에 출력한다.
다음으로, 속도 검출부(60)에 대해 설명하기로 한다.
도 4a는 모터(1100)의 각 상의 코일로부터의 야기 전압의 파형과 기준 전압과의 관계의 일례를 도시한 그래프이다. 도 4b는 야기 전압과 기준 전압을 비교한 결과를 나타내는 파형의 일례를 도시한 그래프이다.
각 상의 코일로부터의 야기 전압(EU, EV, EW)이 기준 전압보다 클 때를 'HIGH', 야기 전압이 기준 전압보다 작을 때를 'LOW'라고 하면, 야기 전압의 파형이 제로 크로스되는 점에서 상승 또는 하강의 엣지가 있는 펄스형 위치 신호(HU, HV, HW)를 얻을 수 있다. 코일마다의 펄스의 'HIGH' 및 'LOW'의 조합은, 모터(1100)의 회전자의 위치에 동기되어 있기 때문에 코일마다의 펄스의 조합을 검출함으로써 회전자의 위치를 검출할 수 있다. 속도 검출부(60)는 단위 시간마다 회전자의 위치의 변화를 파악함으로써 모터(1100)의 속도(ωa)(rpm)를 검출한다.
전류 검출부(70)는, 인버터 유닛(140)의 트랜지스터(142), (144), (146)의 에미터 단자측에 접속된 션트 저항(미도시)과, 션트 저항에 흐르는 피크 전류(이하, '전류(Ia'로 칭하는 경우가 있다.)를 검출하는 전류 검출 회로(미도시)를 가진다. 전류 검출 회로는, 션트 저항에 흐르는 피크 전류를 검출하는 증폭 회로와 피크 홀드 회로로 이루어진 구성이 되는 것을 예시할 수 있다.
다음으로, 발생부(50)에 대해 설명하기로 한다.
발생부(50)는, 도 2에 도시한 것처럼, 트랜지스터(141)∼(146)에 통전하는 전기각인 통전각을 설정하는 통전각 설정부(51)와, 모터(1100)를 구동하는 신호를 출력하는 신호 출력부(52)를 가진다.
통전각 설정부(51)는, 모터(1100)의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위와 해당 제1 기계각 범위를 제외한 제2 기계각 범위에서 통전각을 다르게 함과 동시에, 제2 기계각 범위에서의 제2 통전각이 제1 기계각 범위에서의 제1 통전각보다 커지도록 설정한다. 본 실시 형태에 관한 통전각 설정부(51)는, 모터(1100)의 스테이트 4∼9에 대응하는 기계각 범위 내에서 통전각을 전기각 150도로 설정하고, 스테이트 0∼3, 10∼17에 대응하는 기계각 범위 내에서 통전각을 전기각 120도로 설정한다. 즉, 제1 기계각 범위가 스테이트 0∼3, 10∼17에 대응하는 기계각 범위이며, 제2 기계각 범위가 스테이트 4∼9에 대응하는 기계각 범위이다. 또, 제1 통전각이 전기각 120도, 제2 통전각이 전기각 150도이다. 이하, 통전각을 전기각 150도로 설정하는 기계각 범위를 '소정 각도 범위'로 칭하는 경우가 있다.
도 4c는 신호 출력부(52)가 출력한 신호에 기초하여 인버터 유닛(140)의 트랜지스터(141)∼(146)의 ON/OFF 상태의 일례를 도시한 그래프이다.
신호 출력부(52)는, 회전자의 위치에 기초하여 모터(1100)를 구동하는 신호를 출력하고, PWM 파형을 이용하여 PWM 쵸핑(chopping)한다. PWM 쵸핑이란, 모터(1100)를 구동하기 위한 신호를 미세하게 ON/OFF하는 것이다. 신호를 미세하게 ON/OFF하면, 듀티에 따라 모터(1100)의 각 상에 공급하는 전류를 제어할 수 있어 출력 토크를 제어할 수 있다.
신호 출력부(52)는, 도 4c에 도시한 것처럼, 트랜지스터(141)∼(146)를 진각(advanced angle) 30도에서 ON으로 한다. 바꾸어 말하면, 신호 출력부(52)는, 트랜지스터(141)∼(146)를 OFF 상태에서 ON 상태로 이행하는 타이밍을, 회전자의 위치 신호(HU, HV, HW) 취득 직후의 0도로 한다. 예를 들면, 신호 출력부(52)는, 위치 신호(HU)의 상승 엣지를 취득하면, U상 위쪽의 트랜지스터(141)를 ON으로 하고, 위치 신호 HV의 상승 엣지를 취득하면, V상 위쪽의 트랜지스터(143)를 ON으로 하고, 위치 신호 HW의 상승 엣지를 취득하면, W상 위쪽의 트랜지스터(145)를 ON으로 한다.
한편, 신호 출력부(52)는, 도 4c에 도시한 것처럼, 통전각 설정부(51)가 통전각을 전기각 150도로 설정하는 소정 각도 범위 내에서는, 트랜지스터(141), (143), (145)를 진각 0도에서 OFF로 하고, 소정 각도 범위 외에서는, 트랜지스터(141), (143), (145)를 진각 30도에서 OFF로 한다. 바꾸어 말하면, 신호 출력부(52)는, 트랜지스터(141), (143), (145)를 ON 상태에서 OFF 상태로 이행하는 타이밍을, 소정 각도 범위 내에서는 위치 신호 취득 후의 30도로 하고, 소정 각도 범위 외에서는 위치 신호 취득 직후의 0도로 한다. 예를 들면, 신호 출력부(52)는, 소정 각도 범위 내에서는, 위치 신호(HW)의 상승 엣지를 취득 후의 30도로 하고 V상 위쪽의 트랜지스터(143)를 OFF로 하고, 소정 각도 범위 외에서는, 위치 신호 HW의 상승 엣지를 취득하면 V상 위쪽의 트랜지스터(143)를 OFF로 한다. 또, 신호 출력부(52)는, 소정 각도 범위 내에서는, 위치 신호(HU)의 상승 엣지를 취득 후의 30도로 하고 W상 위쪽의 트랜지스터(145)를 OFF로 하고, 소정 각도 범위 외에서는, 위치 신호(HU)의 상승 엣지를 취득하면 W상 위쪽의 트랜지스터(145)를 OFF로 한다. 또, 신호 출력부(52)는, 소정 각도 범위 내에서는, 위치 신호(HV)의 상승 엣지를 취득 후의 30도로 하고 U상 위쪽의 트랜지스터(141)를 OFF로 하고, 소정 각도 범위 외에서는, 위치 신호(HV)의 상승 엣지를 취득하면, U상 위쪽의 트랜지스터(141)를 OFF로 한다. 이로써 소정 각도 범위 내에서는, 트랜지스터(141), (143), (145)를, ON 상태에서 OFF 상태로 이행하는 타이밍의 진각 0도만큼 통전각이 오버랩하게 되어, 전기각 30도 오버랩시킨다.
아울러 도 4c에 도시한 예에서는, 신호 출력부(52)는, 각 상(phase) 위쪽의 트랜지스터만을 PWM 쵸핑하였으나, 각 상 아래쪽의 트랜지스터만을 PWM 쵸핑해도 좋고, 위쪽과 아래쪽 모두를 PWM 쵸핑해도 좋다.
이상 설명한 것처럼, 제어 장치(1)는, 속도 검출부(60)가 검출한 모터(1100)의 속도(ωa)가 속도 지령치(ωr)와 동일해지도록 정해진 전압 지령치(Vr)(제어치의 일례)를, 모터(1100)에 공급되는 전류의 변동을 억제하는 토크 보정량(Vc)을 이용하여 보정하는 보정부(30)을 구비한다. 또, 제어 장치(1)는, 모터(1100)의 복수의 코일 내에서 전류를 흘리는 코일을 전환하는 복수의 스위치의 일례로서 트랜지스터(141)∼(146)를 가진 인버터 유닛(140)을 구비하고, 인버터 유닛(140)을 구형파(矩形波) 제어함으로써 모터(1100)의 구동을 제어하는 제어 장치이다. 그리고, 제어 장치(1)는, 모터(1100)의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위(예를 들면 스테이트 0∼3, 10∼17에 대응하는 기계각 범위)와 해당 제1 기계각 범위를 제외한 제2 기계각 범위(예를 들면 스테이트 4∼9에 대응하는 기계각 범위)에서, 트랜지스터(141)∼(146)에 통전하는 전기각인 통전각을 다르게 할 수 있는 통전각 설정부(51)를 구비한다. 그리고, 통전각 설정부(51)는, 제2 기계각 범위에서의 제2 통전각이 제1 기계각 범위에서의 제1 통전각보다 커지도록 설정할 수 있다. 예를 들면, 통전각 설정부(51)는, 제2 통전각을 예를 들면 전기각 150도로 설정하고, 제1 통전각을 예를 들면 전기각 120도로 설정할 수 있다.
도 5의 510, 520, 530은, 보정부(30)의 작용의 일례를 도시한 그래프이고, 도 5의 540, 550, 560은, 비교예의 작용의 일례를 도시한 그래프이다. 도 5의 510, 520, 530에는, 가산부(40)가 출력한 최종 지령치(Vt)(듀티(%)), 속도 검출부(60)가 검출한 모터(1100)의 속도(ωa)(rpm), 전류 검출부(70)가 검출한 모터(1100)의 전류(Ia)를 나타내고 있다. 또, 도 5의 540, 550, 560에는, 비교예로서 보정부(30)를 구비하고 있지 않고, 전압 지령치(Vr)를 보정하지 않는 경우의 최종 지령치(Vt)(전압 지령치(Vr)와 동일해진다.), 속도 검출부(60)가 검출한 모터(1100)의 속도(ωa)(rpm), 전류 검출부(70)가 검출한 모터(1100)의 전류(Ia)를 나타내고 있다. 아울러 도 5의 510, 520, 530, 540, 550, 560에는, 통전각 설정부(51)가, 모터(1100)의 회전자의 모든 기계각 범위에서 통전각을 동일한 전기각 120도로 한 경우의 예를 나타내고 있다.
도 5의 510, 520, 530, 540, 550, 560에 도시한 것처럼, 가산부(40)가, 보정부(30)가 출력하는 토크 보정량(Vc)을 이용하여 전압 지령치(Vr)를 보정한 최종 지령치(Vt)(Vt=Vr+Vc)를 출력함으로써 모터(1100)의 속도(ωa)가 저하되는 것이 억제되므로, 모터(1100)의 진동이 억제된다. 또, 모터(1100)의 전류의 최대치가 억제되므로, 파워 모듈의 전류 정격을 작게 할 수 있어 인버터 유닛(140)의 소형화를 꾀할 수 있다.
또, 제어 장치(1)에서는, 통전각 설정부(51)가 제2 기계각 범위에서의 제2 통전각이 제1 기계각 범위에서의 제1 통전각보다 커지도록 설정함으로써, 즉, 하나의 상용(commercial usage) 트랜지스터(예를 들면 트랜지스터(141))에 통전하는 전기각과 다른 상용 트랜지스터(예를 들면 트랜지스터(143))에 통전하는 전기각을 오버랩시킴으로써 d축 전류가 감소하여 모터(1100)의 전류의 최대치가 억제된다. 그 결과, 파워 모듈의 전류 정격을 줄일 수 있어 인버터 유닛(140)의 소형화를 꾀할 수 있다.
단, 통전각 설정부(51)는, 모터(1100)의 회전자의 제1 기계각 범위(예를 들면 스테이트 0∼3, 10∼17에 대응하는 기계각 범위)와 제2 기계각 범위(예를 들면 스테이트 4∼9에 대응하는 기계각 범위)에서 통전각을 다르게 할 수 있다. 바꾸어 말하면, 통전각 설정부(51)는, 제2 기계각 범위(예를 들면 스테이트 4∼9에 대응하는 기계각 범위)에 한하여 통전각을 오버랩시킨다.
도 6은 제2 기계각 범위(예를 들면 스테이트 4∼9에 대응하는 기계각 범위)에 한하여, 통전각을 전기각 150도로 하고, 제1 기계각 범위에서는 통전각을 전기각 120도로 한 경우의 최종 지령치(Vt)의 변화의 일례를 도시한 그래프이다. 도 6은 비교예로서 회전자의 모든 기계각 범위에서 통전각을 전기각 120도로 한 경우와 전기각 150도로 한 경우의 최종 지령치(Vt)의 변화의 일례를 도시한 그래프를 포함하고 있다.
도 6에 도시한 것처럼, 통전각 설정부(51)가 제2 기계각 범위에 한하여 통전각을 전기각 150도로 하고, 제1 기계각 범위에서는 통전각을 전기각 120도로 설정함으로써 회전자의 모든 기계각 범위에서 통전각을 전기각 120도로 설정하는 경우에 비해 최종 지령치(Vt)(듀티)를 작게 할 수 있다. 그 결과, 보다 높은 부하에 대응할 수 있다.
또 도 6에 도시한 것처럼, 통전각 설정부(51)가 제2 기계각 범위에 한하여 통전각을 전기각 150도로 하고, 제1 기계각 범위에서는 통전각을 전기각 120도로 설정함으로써 회전자의 모든 기계각 범위에서 통전각을 전기각 150도로 설정하는 경우에 비해 최종 지령치(Vt)(듀티)의 최소값을 크게 할 수 있다. 여기서, 야기 전압의 파형은 트랜지스터가 ON 상태(예를 들면 트랜지스터(141)와 트랜지스터(145)가 ON 상태)일 때에만 발생하므로, 회전자의 위치 검출을 위해서는 트랜지스터가 일정 시간 이상 ON 상태일 필요가 있다. 통전각 설정부(51)가 제2 기계각 범위에 한하여 통전각을 전기각 150도로 설정함으로써 최종 지령치(Vt)의 최소치를 크게 할 수 있기 때문에, 속도 검출부(60)에 의한 모터(1100)의 회전자의 위치 검출의 안정성을 높일 수 있다. 그 결과, 흐름을 벗어나지 않게 하여 고로버스트화를 실현할 수 있다.
도 7은 일 실시 예에 따른 제어 장치(1)의 제어 방법을 나타낸 흐름도이다.
동작 710에서 일 실시 예에 따른 제어 장치(1)의 인버터 유닛(140)을 이용하여, 모터(1100)에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시킬 수 있다.
동작 720에서 일 실시 예에 따른 제어 장치(1)의 프로세서(100)를 이용하여, 인버터 유닛(140)을 구형파 제어할 수 있다.
동작 730에서 일 실시 예에 따른 프로세서(100)에 포함된 보정부(30)를 이용하여, 모터(1100)의 속도를 평활하는 데 이용되는 토크 보정량을 결정할 수 있다.
동작 740에서 일 실시 예에 따른 프로세서(100)에 포함된 통전각 설정부(51)를 이용하여, 모터(1100)의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제1 통전각보다, 제1 기계각 범위를 제외한 제2 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제2 통전각을 보다 큰 값으로 설정할 수 있다.
<제2 실시 형태>
도 8은 제2 실시 형태에 관한 제어 장치(2)의 일례를 도시한 도면이다.
제2 실시 형태에 관한 제어 장치(2)는, 제1 실시 형태에 관한 제어 장치(1)에 대해, 발생부(50)에 상당하는 발생부(250)가 다르다. 이하, 제1 실시 형태와 다른 점에 대해 설명하기로 한다. 제1 실시 형태와 제2 실시 형태에서 동일한 것에 대해서는 같은 부호를 이용하고 그 상세한 설명은 생략하기로 한다.
제2 실시 형태에 관한 발생부(250)은, 제1 실시 형태에 관한 발생부(50)에 대해, 통전각 설정부(51)에 상당하는 통전각 설정부(251)가 다르다. 제1 실시 형태에 관한 통전각 설정부(51)는, 통전각을 전기각 150도로 설정하는 소정 각도 범위를 미리 정해진 기계각 범위로 하지만, 제2 실시 형태에 관한 통전각 설정부(251)는, 모터(1100)의 속도(ωa)에 따라 소정 각도 범위를 정한다.
보다 구체적으로는, 통전각 설정부(251)는, 소정 각도 범위를, 속도 지령치(ωr)에 대해, 속도(ωa)가 미리 정해진 소정 비율 이상 저하되는 구간으로 한다. 예를 들면, 속도 지령치(ωr)가 1300(rpm)이고, 소정 비율이 10%인 경우에는, 소정 각도 범위를 1300Х(1-10/100)=1170(rpm) 이하가 되는 속도(ωa)의 범위로 한다. 도 4(a)가, 속도 지령치(ωr)가 1300(rpm)인 경우의 속도(ωa)(rpm)라고 하면, 통전각 설정부(251)는, 소정 각도 범위를 스테이트 5∼7에 대응하는 기계각 범위로 한다. 상기의 경우, 통전각 설정부(251)는, 스테이트 5∼7에서 통전각을 전기각 150도로 설정하고, 스테이트 0∼4, 8∼17에서 통전각을 전기각 120도로 설정한다.
아울러 소정 비율은 10%로 한정되지는 않는다. 예를 들면, 소정 비율은 15%여도 좋고, 그 외의 값이어도 좋다.
또, 통전각 설정부(251)는, 속도(ωa)가 속도 지령치(ωr)에 대해 소정 비율 이상 저하되는 구간을 파악할 때, 직전의 1회전 전의 속도(ωa)를 이용해도 좋고, 직전의 5회전만큼의 속도(ωa)의 평균치를 이용해도 좋다.
또, 통전각 설정부(251)는, 하나의 스테이트에서의 속도(ωa)가 속도 지령치(ωr)에 대해 미리 정해진 소정 비율 이상 저하되었을 때에, 하나의 스테이트의 다음 스테이트의 통전각을 전기각 150도로 설정해도 좋다.
이상 설명한 것처럼, 통전각 설정부(251)는, 모터(1100)의 회전 속도인 속도(ωa)에 따라 제1 기계각 범위와 제2 기계각 범위를 결정한다. 예를 들면, 통전각 설정부(251)는, 속도(ωa)가 미리 정해진 속도 이하인 경우, 예를 들면 속도(ωa)가 속도 지령치(ωr)에 대해 소정 비율 이상 저하되는 경우에 통전각을 다르게 한다. 바꾸어 말하면, 통전각 설정부(251)는, 모터(1100)의 부하에 따라 통전각을 다르게 하는 구간을 다르게 한다. 이로써 예를 들면 모터(1100)의 부하가 낮고 속도 변동이 작은 경우에는, 통전각을 예를 들면 전기각 150도로 하는 구간을 줄이기 때문에 통전각을 전기각 150도로 하는 것에 기인하여 전력이 악화되는 것을 억제할 수 있다.
<제3 실시 형태>
도 9는 제3 실시 형태에 관한 제어 장치(3)의 일례를 도시한 도면이다.
제3 실시 형태에 관한 제어 장치(3)는, 제1 실시 형태에 관한 제어 장치(1)에 대해, 발생부(50)에 상당하는 발생부(350)가 다르다. 이하, 제1 실시 형태와 다른 점에 대해 설명하기로 한다. 제1 실시 형태와 제3 실시 형태에서 동일한 것에 대해서는 같은 부호를 이용하고 그 상세한 설명은 생략하기로 한다.
제3 실시 형태에 관한 발생부(350)는, 제1 실시 형태에 관한 발생부(50)에 대해, 오버랩시키는 전기각을 조정하는 조정부(353)를 가지고, 통전각 설정부(51)에 상당하는 통전각 설정부(351)가, 조정부(353)가 조정한 전기각을 오버랩시키도록 통전각을 설정하는 점이 다르다. 제1 실시 형태에 관한 통전각 설정부(51)는, 미리 정해진 기계각 범위에서 전기각 30도 오버랩시키지만, 제3 실시 형태에 관한 통전각 설정부(351)는, 조정부(353)가 조정한 각도만큼 오버랩시킨다.
조정부(353)는, 모터(1100)의 부하에 따라 오버랩시키는 전기각을 조정한다. 예를 들면, 조정부(353)는, 모터(1100)의 부하에 따라, 부하가 클 때에는 오버랩시키는 전기각을 예를 들면 30도로 하고, 부하가 작을 때는 오버랩시키는 전기각을 예를 들면 15도로 하는 것을 예시할 수 있다.
또 조정부(353)는, 모터(1100)의 부하를, 직전의 기계각 360도에서의 속도(ωa)의 변동량을 이용하여 파악하는 것을 예시할 수 있다. 예를 들면, 직전의 기계각 360도에서의 속도(ωa)의 변동량이 제1 속도 변동량(예를 들면 500(rpm)) 이상인 경우에는 부하가 크다고 판정하고, 제1 속도 변동량(예를 들면 500(rpm)) 미만인 경우에는 부하가 작다고 판정하는 것을 예시할 수 있다.
또 조정부(353)는, 모터(1100)의 부하에 따라 다단계적으로 오버랩시키는 전기각을 조정해도 좋다. 예를 들면, 모터(1100)의 부하가 클 때에는 오버랩시키는 전기각을 예를 들면 30도로 하고, 부하가 작을 때에는 전기각을 오버랩시키지 않도록 하고, 부하가 클 때와 작을 때의 사이인 중간 정도일 때에는 오버랩시키는 전기각을 예를 들면 15도로 해도 좋다.
예를 들면, 조정부(353)는, 직전의 기계각 360도에서의 속도(ωa)의 변동량이 제1 속도 변동량(예를 들면 500(rpm)) 이상인 경우에는 부하가 크다고 판정하여, 오버랩시키는 전기각을 예를 들면 30도로 하고, 제1 속도 변동량보다 작은 제2 속도 변동량(예를 들면 100(rpm)) 미만인 경우에는 부하가 작다고 판정하여 오버랩시키지 않도록 한다. 그리고 조정부(353)는, 속도(ωa)의 변동량이 제2 속도 변동량(예를 들면 100(rpm)) 이상, 제1 속도 변동량(예를 들면 500(rpm)) 미만인 중간 정도일 때에는, 오버랩시키는 전기각을 예를 들면 15도로 하는 것을 예시할 수 있다.
그리고 통전각 설정부(351)는, 조정부(353)가 조정한 전기각을 오버랩시키도록 통전각을 설정한다. 바꾸어 말하면, 통전각 설정부(351)는, 제2 기계각 범위에서의 통전각인 제2 통전각이, 제1 기계각 범위에서의 통전각인 제1 통전각보다 커지도록 하고, 모터(1100)의 부하에 따라 제2 통전각을 조정한다. 예를 들면, 통전각 설정부(351)는, 모터(1100)의 부하가 중간 정도일 때에는, 제2 통전각을 전기각 135도로 한다.
오버랩시키는 전기각을 예를 들면 15도로 하기 위해 제2 통전각을 전기각 135도로 할 경우, 신호 출력부(52)는, 트랜지스터(141), (143), (145)를 ON 상태에서 OFF 상태로 이행하는 타이밍을, 소정 각도 범위 내에서 위치 신호 취득 후의 15도로 한다.
이상과 같이 구성된 제3 실시 형태에 관한 발생부(350)에 의하면, 인버터 유닛(140)의 스위칭 손실을 억제할 수 있기 때문에, 전기각을 오버랩시키는 것에 기인하여 에너지가 증가하는 것을 억제할 수 있다.
아울러 제3 실시 형태에 관한 통전각 설정부(351)도, 제2 실시 형태에 관한 통전각 설정부(251)와 마찬가지로 모터(1100)의 속도(ωa)에 따라 소정 각도 범위를 정해도 좋다.
<제4 실시 형태>
도 10은 제4 실시 형태에 관한 제어 장치(4)의 일례를 도시한 도면이다.
제4 실시 형태에 관한 제어 장치(4)는, 제1 실시 형태에 관한 제어 장치(1)에 대해, 보정부(30)에 상당하는 보정부(430)가 다르다. 이하, 제1 실시 형태와 다른 점에 대해 설명하기로 한다. 제1 실시 형태와 제4 실시 형태에서 동일한 것에 대해서는 같은 부호를 이용하고 그 상세한 설명은 생략하기로 한다.
보정부(430)는, 모터(1100)의 속도(ωa)의 변동량에 따라 토크 보정량(Vc)을 조정한다. 예를 들면, 보정부(430)는, 직전의 기계각 360도에서의 속도(ωa)의 변동량이 제1 속도 변동량(예를 들면 500(rpm)) 이상인 경우에는 도 2에 예시한 토크 보정량(Vc)으로 하고, 제1 속도 변동량(예를 들면 500(rpm)) 미만인 경우에는 토크 보정량(Vc)을 모든 스테이트에서 0으로 하는 것을 예시할 수 있다.
또 보정부(430)는, 모터(1100)의 속도(ωa)의 변동량에 따라 다단계적으로 토크 보정량(Vc)을 결정해도 좋다. 예를 들면, 보정부(430)는, 직전의 기계각 360도에서의 속도(ωa)의 변동량이 제1 속도 변동량(예를 들면 500(rpm)) 이상인 경우에는 도 2에 예시한 토크 보정량(Vc)으로 하고, 제1 속도 변동량보다 작은 제2 속도 변동량(예를 들면 100(rpm)) 미만인 경우에는 토크 보정량(Vc)을 모든 스테이트에서 0으로 한다. 그리고, 보정부(430)는, 속도(ωa)의 변동량이 제2 속도 변동량(예를 들면 100(rpm)) 이상, 제1 속도 변동량(예를 들면 500(rpm)) 미만인 중간 정도일 때에는, 토크 보정량(Vc)을, 도 2에 예시한 토크 보정량(Vc)보다 줄인다. 바꾸어 말하면, 보정부(430)는, 토크 보정량(Vc)을, 도 2에 예시한 토크 보정량(Vc)의 절대치보다 작게 한다. 예를 들면, 보정부(430)는 속도(ωa)의 변동량이 중간 정도일 때의 토크 보정량(Vc)을, 도 2에 예시한 토크 보정량(Vc)의 1/2로 하는 것을 예시할 수 있다.
이상과 같이 구성된 제4 실시 형태에 관한 보정부(430)에 의하면, 모터(1100)의 속도(ωa)의 변동량이 작을 때, 바꾸어 말하면, 부하가 작을 때에, 보정부(430)이 토크 보정량(Vc)를 결정하는 것에 기인하여 모터(1100)의 전류의 최대치가 증가하는 것을 억제할 수 있다.
아울러 제4 실시 형태에 관한 보정부(430)를, 제2 실시 형태에 관한 제어 장치(2) 및 제3 실시 형태에 관한 제어 장치(3)에 적용해도 좋다.
<제5 실시 형태>
도 11은 제5 실시 형태에 관한 제어 장치(5)의 일례를 도시한 도면이다.
제5 실시 형태에 관한 제어 장치(5)는, 제1 실시 형태에 관한 제어 장치(1)에 대해, 보정부(30)에 상당하는 보정부(530)가 다르다. 이하, 제1 실시 형태와 다른 점에 대해 설명하기로 한다. 제1 실시 형태와 제5 실시 형태에서 동일한 것에 대해서는 같은 부호를 이용하고 그 상세한 설명은 생략하기로 한다.
최종 지령치(Vt)가 미리 정해진 하한치보다 작은 경우, 토크 보정량(Vc)은 양으로 치우치기 때문에 모터(1100)의 속도(ωa)가 목표 속도인 속도 지령치(ωr)를 웃도는 폐해가 발생한다. 따라서 보정부(530)는, 최종 지령치(Vt)가 미리 정해진 하한치보다 작은 경우에, 토크 보정량(Vc)을 제1 실시 형태에서의 토크 보정량(Vc)(예를 들면 도 2에 예시한 토크 보정량(Vc))보다 줄인다. 예를 들면, 보정부(530)는, 토크 보정량(Vc)을, 제1 실시 형태에서의 토크 보정량(Vc)(예를 들면 도 2에 예시한 토크 보정량(Vc))에 미리 정해진 소정 계수를 곱한 값으로 한다. 하한치는 17(%)인 것을 예시할 수 있다. 또, 소정 계수는 0.5인 것을 예시할 수 있다.
예를 들면, 보정부(530)는, 최종 지령치(Vt)가 하한치보다 작아진 다음 스테이트로부터 1회전의 토크 보정량(Vc)을 제1 실시 형태에서의 토크 보정량(Vc)(예를 들면 도 2에 예시한 토크 보정량(Vc))보다 작게 하는 것을 예시할 수 있다.
이로써 모터(1100)의 속도(ωa)가 목표 속도인 속도 지령치(ωr)를 웃도는 것을 억제할 수 있다.
혹은, 보정부(530)는 최종 지령치(Vt)가 하한치보다 작고, 또한 모터(1100)의 속도(ωa)가 미리 정해진 소정 속도보다 큰 경우에, 토크 보정량(Vc)을 제1 실시 형태에서의 토크 보정량(Vc)(예를 들면 도 2에 예시한 토크 보정량(Vc))에 소정 계수를 곱한 값으로 해도 좋다. 소정 속도는, 속도 지령치(ωr)인 것을 예시할 수 있다. 예를 들면, 보정부(530)는 속도(ωa)의 평균 속도가 소정 속도보다 큰지 여부를 파악할 때에는, 직전의 기계각 360도에서의 속도(ωa)를 이용하면 된다.
이로써 모터(1100)의 속도(ωa)가 목표 속도인 속도 지령치(ωr)를 웃도는 것을 억제할 수 있다. 또, 최종 지령치(Vt)의 최소치를 크게 할 수 있기 때문에 속도 검출부(60)에 의한 모터(1100)의 회전자의 위치 검출의 안정성을 높일 수 있다. 그 결과, 흐름을 벗어나지 않게 하여 고로버스트화를 실현할 수 있다.
아울러 제5 실시 형태에 관한 보정부(530)를, 제2 실시 형태에 관한 제어 장치(2) 및 제3 실시 형태에 관한 제어 장치(3)에 적용해도 좋다.
일 실시 예에 따른 모터(1100)의 구동을 제어하는 제어 장치(1)를 포함하는 냉장고(2000)는 저장실(2200), 저장실(2200)의 개방된 일측을 개폐하도록 구성되는 도어(2300), 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 저장실(2200)에 냉기를 공급하는 냉기 공급 장치(2400), 냉기 공급 장치(2400)에 포함된 압축기(1000)의 구동을 위해 사용되는 모터(1100), 및 모터(1100)의 구동을 제어하는 제어 장치(1)를 포함할 수 있다. 일 실시 예에 따른 제어 장치(1, 2, 3, 4, 5)는, 모터(1100)에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 복수의 스위치들(141, 142, 143, 144, 145, 146)을 포함하는 인버터 유닛(140) 및 인버터 유닛(140)을 구형파 제어하는 프로세서(100)를 포함할 수 있다. 일 실시 예에 따른 프로세서(100)는 모터(1100)의 속도를 평활하는 데 이용되는 토크 보정량을 결정하고, 모터(1100)의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제1 통전각 및 제1 기계각 범위를 제외한 제2 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제2 통전각을 설정하며, 제2 통전각을 제1 통전각보다 큰 값으로 설정할 수 있다.
일 실시 예에서, 프로세서(100)는, 검출한 모터(1100)의 속도에 따라 제1 기계각 범위 및 제2 기계각 범위를 결정할 수 있다.
일 실시 예에서, 프로세서(100)는, 모터(1100)의 부하에 따라 제2 통전각을 조정할 수 있다.
일 실시 예에서, 프로세서(100)는, 모터(1100)의 속도의 변동량에 따라 토크 보정량을 조정할 수 있다.
일 실시 예에서, 프로세서(100)는, 모터(1100)의 속도의 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 변동량이 미리 정해진 속도 변동량 값 이상인 경우보다 토크 보정량을 감소시킬 수 있다.
일 실시 예에서, 프로세서(100)는, 모터(1100)의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 토크 보정량을 이용하여 최종 지령치를 출력하는 가산부(40)를 포함할 수 있다. 일 실시 예에 따른 프로세서(100)는, 가산부(40)가 출력한 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 토크 보정량을 감소시킬 수 있다.
일 실시 예에서, 프로세서(100)는, 제1 통전각 및 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 복수의 스위치들(141, 142, 143, 144, 145, 146) 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 제1 통전각 및 제2 통전각을 오버랩시킬 수 있다.
일 실시 예에서, 프로세서(100)는, 모터(1100)의 부하에 따라 제1 통전각 및 제2 통전각이 오버랩되는 전기각을 조정하는 조정부(353)를 포함할 수 있다. 일 실시 예에 따른 프로세서(100)를 통해, 조정부(353)가 조정한 각도만큼 전기각을 오버랩시킬 수 있다.
일 실시 예에 따른 저장실(2200), 냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 저장실(2200)에 냉기를 공급하는 냉기 공급 장치(2400), 냉기 공급 장치(2400)에 포함된 압축기(1000)의 구동을 위해 사용되는 모터(1100), 및 모터(1100)의 구동을 제어하는 제어 장치(1)를 포함하는 냉장고(2000)의 제어 방법은, 제어 장치(1, 2, 3, 4, 5)의 인버터 유닛(140)을 통해, 모터(1100)에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 동작, 제어 장치(1, 2, 3, 4, 5)의 프로세서(100)를 통해, 인버터 유닛(140)을 구형파 제어하는 동작, 프로세서(100)를 통해, 모터(1100)의 속도를 평활하는 데 이용되는 토크 보정량을 결정하는 동작, 및 프로세서(100)를 통해, 모터(1100)의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제1 통전각보다, 제1 기계각 범위를 제외한 제2 기계각 범위에서 복수의 스위치들(141, 142, 143, 144, 145, 146)의 제2 통전각을 큰 값으로 설정하는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 검출한 모터(1100)의 속도에 따라 제1 기계각 범위 및 제2 기계각 범위를 결정하는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 모터(1100)의 부하에 따라 제2 통전각을 조정하는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 모터(1100)의 속도의 변동량에 따라 토크 보정량을 조정하는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 모터(1100)의 속도의 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 변동량이 미리 정해진 속도 변동량 값 이상인 경우보다 토크 보정량을 감소시키는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 모터(1100)의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 토크 보정량을 이용하여 최종 지령치를 출력하는 동작 및 프로세서(100)를 통해, 가산부(40)가 출력한 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 토크 보정량을 감소시키는 동작을 포함할 수 있다.
일 실시 예에서, 프로세서(100)를 통해, 제1 통전각 및 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 복수의 스위치들(141, 142, 143, 144, 145, 146) 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 제1 통전각 및 제2 통전각을 오버랩시키는 동작을 포함할 수 있다.
본 개시에 의하면, 소비하는 에너지를 감소시키면서 로버스트 성능을 개선하여 고 로버스트화를 실현하고, 진동을 억제하는 성능을 개선시킬 수 있다.

Claims (15)

  1. 저장실;
    상기 저장실의 개방된 일측을 개폐하도록 구성되는 도어;
    냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 상기 저장실에 상기 냉기를 공급하는 냉기 공급 장치;
    상기 냉기 공급 장치에 포함된 압축기의 구동을 위해 사용되는 모터; 및
    상기 모터의 구동을 제어하는 제어 장치를 포함하고,
    상기 제어 장치는,
    상기 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 복수의 스위치들을 포함하는 인버터 유닛; 및
    상기 인버터 유닛을 구형파 제어하는 프로세서를 포함하고,
    상기 프로세서는,
    상기 모터의 속도를 평활하는 데 이용되는 토크 보정량을 결정하고,
    상기 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 상기 복수의 스위치들의 제1 통전각 및 상기 제1 기계각 범위를 제외한 제2 기계각 범위에서 상기 복수의 스위치들의 제2 통전각을 설정하며,
    상기 제2 통전각을 상기 제1 통전각보다 큰 값으로 설정하는 냉장고.
  2. 청구항 1에 있어서,
    상기 프로세서는, 검출한 상기 모터의 상기 속도에 따라 상기 제1 기계각 범위 및 상기 제2 기계각 범위를 결정하는 냉장고.
  3. 청구항 1 또는 2에 있어서,
    상기 프로세서는, 상기 모터의 부하에 따라 상기 제2 통전각을 조정하는 냉장고.
  4. 청구항 1 내지 3 중 어느 하나의 항에 있어서,
    상기 프로세서는, 상기 모터의 상기 속도의 변동량에 따라 상기 토크 보정량을 조정하는 냉장고.
  5. 청구항 4에 있어서,
    상기 프로세서는, 상기 모터의 상기 속도의 상기 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 상기 변동량이 상기 미리 정해진 속도 변동량 값 이상인 경우보다 상기 토크 보정량을 감소시키는 냉장고.
  6. 청구항 1 내지 5 중 어느 하나의 항에 있어서,
    상기 프로세서는,
    상기 모터의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 상기 토크 보정량을 이용하여 최종 지령치를 출력하는 가산부를 더 포함하고,
    상기 프로세서는,
    상기 가산부가 출력한 상기 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 상기 토크 보정량을 감소시키는 냉장고.
  7. 청구항 1 내지 6 중 어느 하나의 항에 있어서,
    상기 프로세서는, 상기 제1 통전각 및 상기 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 상기 복수의 스위치들 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 상기 제1 통전각 및 상기 제2 통전각을 오버랩시키는 냉장고.
  8. 청구항 7에 있어서,
    상기 프로세서는,
    상기 모터의 부하에 따라 상기 제1 통전각 및 상기 제2 통전각이 오버랩되는 전기각을 조정하는 조정부를 더 포함하고,
    상기 프로세서는, 조정부가 조정한 각도만큼 상기 전기각을 오버랩시키는 냉장고.
  9. 저장실;
    냉매의 압축, 응축, 팽창 및 증발 과정을 포함하는 냉동 사이클을 통해 냉기를 생성하여, 상기 저장실에 상기 냉기를 공급하는 냉기 공급 장치;
    상기 냉기 공급 장치에 포함된 압축기의 구동을 위해 사용되는 모터; 및
    상기 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고의 제어 방법에 있어서,
    상기 제어 장치의 인버터 유닛을 통해, 상기 모터에 포함된 복수의 코일들 중 전류가 흐르는 코일을 전환시키는 동작;
    상기 제어 장치의 프로세서를 통해, 상기 인버터 유닛을 구형파 제어하는 동작;
    상기 프로세서를 통해, 상기 모터의 속도를 평활하는 데 이용되는 토크 보정량을 결정하는 동작; 및
    상기 프로세서를 통해, 상기 모터의 회전자의 기계각 1주기를 구성하는 제1 기계각 범위에서 복수의 스위치들의 제1 통전각보다, 상기 제1 기계각 범위를 제외한 제2 기계각 범위에서 상기 복수의 스위치들의 제2 통전각을 큰 값으로 설정하는 동작을 포함하는, 냉장고 제어 방법.
  10. 청구항 9에 있어서,
    상기 프로세서를 통해, 검출한 상기 모터의 상기 속도에 따라 상기 제1 기계각 범위 및 상기 제2 기계각 범위를 결정하는 동작을 더 포함하는, 냉장고 제어 방법.
  11. 청구항 9 또는 10에 있어서,
    상기 프로세서를 통해, 상기 모터의 부하에 따라 상기 제2 통전각을 조정하는 동작을 더 포함하는, 냉장고 제어 방법.
  12. 청구항 9 내지 11 중 어느 하나의 항에 있어서,
    상기 프로세서를 통해, 상기 모터의 상기 속도의 변동량에 따라 상기 토크 보정량을 조정하는 동작을 더 포함하는, 냉장고 제어 방법.
  13. 청구항 12에 있어서,
    상기 프로세서를 통해, 상기 모터의 상기 속도의 상기 변동량이 미리 정해진 속도 변동량 값 미만인 경우에는, 상기 변동량이 상기 미리 정해진 속도 변동량 값 이상인 경우보다 상기 토크 보정량을 감소시키는 동작을 더 포함하는, 냉장고 제어 방법.
  14. 청구항 9 내지 13 중 어느 하나의 항에 있어서,
    상기 프로세서를 통해, 상기 모터의 속도가 속도 지령치와 동일해지도록 정해진 전압 지령치 및 상기 토크 보정량을 이용하여 최종 지령치를 출력하는 동작; 및
    상기 프로세서를 통해, 상기 가산부가 출력한 상기 최종 지령치가 미리 정해진 하한치보다 작은 경우에, 상기 토크 보정량을 감소시키는 동작을 더 포함하는, 냉장고 제어 방법.
  15. 청구항 9 내지 14 중 어느 하나의 항에 있어서,
    상기 프로세서를 통해, 상기 제1 통전각 및 상기 제2 통전각 중 적어도 하나의 통전각이 소정 각도 범위 내인 경우, 상기 복수의 스위치들 중 적어도 하나의 스위치를 ON 상태에서 OFF 상태로 이행하는 타이밍의 진각에 기초하여, 상기 제1 통전각 및 상기 제2 통전각을 오버랩시키는 동작을 더 포함하는, 냉장고 제어 방법.
PCT/KR2023/006567 2022-09-13 2023-05-15 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법 WO2024058336A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145074A JP2024040616A (ja) 2022-09-13 2022-09-13 制御装置
JP2022-145074 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058336A1 true WO2024058336A1 (ko) 2024-03-21

Family

ID=90275393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006567 WO2024058336A1 (ko) 2022-09-13 2023-05-15 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법

Country Status (2)

Country Link
JP (1) JP2024040616A (ko)
WO (1) WO2024058336A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050804A (ja) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd 冷蔵庫の制御装置
US20070152624A1 (en) * 2005-12-29 2007-07-05 Samsung Electronics Co., Ltd. Motor system, control method thereof, and compressor using the same
JP2009027853A (ja) * 2007-07-20 2009-02-05 Sharp Corp 同期モータ駆動装置,圧縮機駆動装置
JP2009278828A (ja) * 2008-05-16 2009-11-26 Sharp Corp モータ制御装置およびモータシステム
KR20110090546A (ko) * 2010-02-04 2011-08-10 엘지전자 주식회사 냉장고 및 냉장고의 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050804A (ja) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd 冷蔵庫の制御装置
US20070152624A1 (en) * 2005-12-29 2007-07-05 Samsung Electronics Co., Ltd. Motor system, control method thereof, and compressor using the same
JP2009027853A (ja) * 2007-07-20 2009-02-05 Sharp Corp 同期モータ駆動装置,圧縮機駆動装置
JP2009278828A (ja) * 2008-05-16 2009-11-26 Sharp Corp モータ制御装置およびモータシステム
KR20110090546A (ko) * 2010-02-04 2011-08-10 엘지전자 주식회사 냉장고 및 냉장고의 제어방법

Also Published As

Publication number Publication date
JP2024040616A (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2017030407A1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR100690674B1 (ko) 두개의 왕복동식 압축기를 구비한 냉장고의 운전제어장치
WO2016117942A1 (en) Refrigerator and method for controlling the same
WO2018128450A1 (ko) 압축기 구동장치 및 이를 구비한 칠러
JP3107570B2 (ja) 圧縮機制御回路
WO2024058336A1 (ko) 모터의 구동을 제어하는 제어 장치를 포함하는 냉장고 및 그 제어 방법
WO2020027596A1 (ko) 냉장고의 제어방법
US11424698B2 (en) Motor control device and air-conditioning device
KR100400737B1 (ko) 극변환 모터
WO2015050411A1 (en) Inverter module for driving a plurality of compressors and method for controlling the same
JPH10148184A (ja) 圧縮機用電動機の制御装置
WO2019045371A1 (ko) 냉장고 및 그 제어 방법
JP2004064902A (ja) 同期モータの制御装置とこれを用いた機器
WO2014168267A1 (ko) 전동기 구동장치, 및 이를 구비하는 냉장고
JP2005337583A (ja) 冷蔵庫
JPH06201244A (ja) 単相交流端子接続用冷蔵及び/又は冷凍装置
WO2021194085A1 (ko) 냉장고 및 그 제어 방법
US20190072301A1 (en) Domestic refrigeration appliance with a coolant circuit and method for operating a domestic refrigeration appliance with a coolant circuit
KR20050013943A (ko) 냉장고의 모터 구동 장치 및 냉각팬 구동 장치
JPH0518617A (ja) 冷凍機の制御装置
JPH0490472A (ja) 冷凍車両用冷却装置
KR100698320B1 (ko) 극변환 모터
WO2022039362A1 (en) Refrigerator and control method thereof
KR100207088B1 (ko) 냉장고의 기동회로
KR100339390B1 (ko) 고내 온도 조절장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865644

Country of ref document: EP

Kind code of ref document: A1