WO2024058230A1 - 殺菌発酵乳及びその製造方法 - Google Patents

殺菌発酵乳及びその製造方法 Download PDF

Info

Publication number
WO2024058230A1
WO2024058230A1 PCT/JP2023/033460 JP2023033460W WO2024058230A1 WO 2024058230 A1 WO2024058230 A1 WO 2024058230A1 JP 2023033460 W JP2023033460 W JP 2023033460W WO 2024058230 A1 WO2024058230 A1 WO 2024058230A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
milk
fermented milk
sterilized
mix
Prior art date
Application number
PCT/JP2023/033460
Other languages
English (en)
French (fr)
Inventor
武文 市村
恵 多田
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Publication of WO2024058230A1 publication Critical patent/WO2024058230A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives

Definitions

  • the present invention relates to a set-type sterilized fermented milk and a method for producing the same. More specifically, the present invention relates to a set-type sterilized fermented milk that is filled into a container, fermented (post-fermented), and solidified in the container, and a method for producing the same.
  • fermented milk has a strong sour taste and weak shape retention properties, so in reality, it is eaten as is, spread on vegetables, meat, and other ingredients as a dip, or used as a part of the ingredients when cooking. The main way to eat it is by mixing it with other ingredients.
  • Patent Documents 1 and 2 are prior art documents that disclose a technique common to the production method of the present invention in that heat treatment (secondary heat treatment) is performed after post-fermentation.
  • Patent Document 1 is characterized in that a ⁇ -glucan-containing material (Aureobasidium culture solution) is added as a stabilizer after fermentation and then heat treated, and further, after the heat treatment, the mixture is homogenized and liquefied.
  • a ⁇ -glucan-containing material Aureobasidium culture solution
  • Patent Document 2 is different from the present invention in that it is characterized by blending cross-linked processed starch as a material and is directed to soft or drinkable yogurt prepared by crushing curd after fermentation. .
  • the objective of the present invention is to provide a set type pasteurized fermented milk that has a reduced sour taste and does not easily fall apart when cooked with heat, and a method for producing the same.
  • the present inventors have conducted intensive studies to produce a set-type fermented milk that solves the above-mentioned problems, and found that the content of whey protein is 1.5-3.0% by mass and casein protein is 2.0-3.0% by mass. Add lactic acid bacteria to a raw milk mix containing a specific proportion of 3.0% by mass, and ferment in a container until the pH reaches 5.3 to 5.9. It has been found that a set-type sterilized fermented milk having the desired characteristics (low acidity, resistance to boiling) can be obtained by heat treatment to achieve the above thermal history.
  • the present invention was completed based on this knowledge, and includes the following embodiments.
  • (I) Set type sterilized fermented milk (I-1) Contains 1.5 to 3.0% by mass of whey protein and 2.0 to 3.0% by mass of casein protein, and contains 100 parts by mass of casein protein. A set type sterilized fermented milk with a pH of 5.3 to 5.9 and a whey protein ratio of 50 to 125 parts by mass.
  • (I-2) The sterilized fermented milk described in (I-1), which has a non-fat milk solids content of 9.5 to 11.2% by mass.
  • (I-3) The sterilized fermented milk described in (I-1) or (I-2), which has shape retention and/or resistance to boiling.
  • (I-4) The sterilized fermented milk according to any one of (I-1) to (I-3), in which the maximum load at break is 5.0 to 8.0 N in a break test using a plunger. .
  • (II) Method for producing set type sterilized fermented milk (II-1) (a) Whey protein content is 1.5 to 3.0% by mass, and casein protein content is 2.0 to 3.0% by mass. , a step of adding lactic acid bacteria to a raw milk mix in which the ratio of whey protein to 100 parts of casein protein is 50 to 125 parts by mass, and fermenting it in a container until the pH reaches 5.3 to 5.9; (b) Production of a set-type sterilized fermented milk, which includes the step of heat-treating the obtained fermented milk in a container so that its thermal history becomes at least 75°C x 15 minutes x normal pressure. Method.
  • (II-2) The production method according to (II-1), wherein the non-fat milk solid content of the raw milk mix is 9.5 to 11.2% by mass.
  • (II-3) The production method described in (II-1) or (II-2), wherein the raw milk mix is subjected to homogenization treatment and sterilization treatment before adding lactic acid bacteria.
  • the manufacturing method can also be restated as follows: “Before the step (a) above, the whey protein content is 1.5 to 3.0% by mass, the casein protein content is 2.0 to 3.0% by mass, and the ratio of whey protein to 100 parts by mass of casein protein is The manufacturing method described in (II-1) or (II-2), which comprises the steps of homogenizing and sterilizing 50 to 125 parts by mass of the raw milk mix.
  • (II-4) The production method according to any one of (II-1) to (II-3), wherein the fermentation temperature is 35 to 48°C.
  • the sterilized fermented milk of the present invention and the sterilized fermented milk obtained by the production method of the present invention have a pH higher at 5.3 to 5.9 compared to normal fermented milk, which has a pH of about 4.6. , the acidity is moderated. Therefore, it is easy to eat and can be combined with many ingredients.
  • the sterilized fermented milk of the present invention and the sterilized fermented milk obtained by the production method of the present invention have good shape retention and do not easily collapse even when boiled, so they can be used regardless of whether they are heated or not. Easy to use for various cooking.
  • the broth does not become cloudy, so there is less loss of nutritional components during cooking, and the appearance of the dish does not deteriorate.
  • the sterilized fermented milk of the present invention and the sterilized fermented milk obtained by the production method of the present invention are appropriately adjusted from a hardness and/or texture equivalent to that of silken tofu to a hardness and/or texture equivalent to that of firm tofu. Therefore, it can be used in place of tofu used in widely commonly eaten tofu dishes (boiled tofu, hot pot dishes, soup ingredients, tofu steak, chilled yakko, mapo tofu, etc.). This can expand the cooking uses of fermented milk and increase opportunities for consumers to eat fermented milk, which is a healthy food.
  • the non-fat milk solids content is determined to be 8.0% or more.
  • These fermented milks are made by (a) filling the raw milk into a container and then fermenting it; (b) Crushing the solid fermented milk solidified in a large tank (this is called “set type fermented milk” or “post-fermented fermented milk”) and (b) the curd formed after fermentation in a large tank, etc. (c) paste-like fermented milk filled in a container after mixing with fruit pulp, sauce, etc.
  • Fermented milk in the form of fermented milk or paste-like fermented milk is finely crushed and liquefied using a homogenizer, etc., and mixed with pulp, sauce, etc. as necessary, and then filled into a container to form liquid fermented milk (this is It is broadly divided into ⁇ drinking yogurt.''
  • the fermented milk targeted by the present invention is a set type fermented milk (solid form) that is post-fermented using lactic acid bacteria. Furthermore, the fermented milk targeted by the present invention is sterilized fermented milk that is sterilized by heat treatment after fermentation (referred to as "sterilized fermented milk"). Specifically, it is defined in the Milk Ministerial Ordinance as ⁇ fermented milk that is manufactured by fermenting and then heating it at 75°C for 15 minutes or more, or by heating and sterilizing it by a method that has an equivalent or higher sterilization effect.'' be.
  • the sterilized fermented milk of the present invention contains whey protein at a ratio of 1.5 to 3.0 mass % and casein protein at a ratio of 2.0 to 3.0 mass % per 100 mass % of sterilized fermented milk. It is characterized in that the ratio of whey protein (solid content mass ratio) to 100 parts by mass is 50 to 125 parts by mass.
  • the content of whey protein and casein protein means the solid content of each protein contained in 100% by mass (wet mass) of sterilized fermented milk (in terms of solid content).
  • Whey protein is a mixture of proteins found in whey, the liquid portion of milk after the casein and fat have been removed. Proteins constituting whey protein include ⁇ -lactoglobulin, ⁇ -lactalbumin, immunoglobulin, bovine serum albumin, lactoferrin, lactoperoxidase, proteose peptone, and the like. It is said that about 20% by mass of milk proteins contained in milk is whey protein.
  • Casein protein (commonly referred to as "casein") is a milk protein that is present in approximately 80% of milk and is derived from ⁇ s1 -casein, ⁇ s2 -casein, ⁇ -casein, and ⁇ -casein. It is a complex protein.
  • the content of casein protein and whey protein contained in sterilized fermented milk can be measured by the following method.
  • [Casein protein] Add 90 ml of water to 10 g of sample and warm to about 40-42°C, add 1.5 ml of 10% by mass acetic acid aqueous solution, stir, and leave to stand for 5 minutes, then remove the precipitate (casein) from filter paper. Filter. The precipitate (residue) remaining on the filter paper is washed with water that has been made acidic (pH 4.6) with acetic acid, and the residue is quantified with the filter paper by the combustion method or Kjeldahl method, and this is converted into nitrogen protein. Calculated by multiplying by a coefficient.
  • [Whey protein] It is calculated by quantifying the total protein contained in the sample by the combustion method or Kjeldahl method, and then subtracting the amount of casein protein obtained by the above method.
  • the whey protein content (in terms of solid content) in 100% by mass (wet mass) of sterilized fermented milk is not limited as described above, but is preferably 1.5 to 3.0% by mass, more preferably 1.5% by mass. It is 7 to 2.5% by mass.
  • the casein protein content (in terms of solid content) is not limited as described above, but is preferably 2.3 to 3.0% by mass, more preferably 2.5 to 3.0% by mass.
  • the ratio of whey protein to 100 parts by mass of casein protein (solid content mass ratio) is not limited as described above, but is preferably 50 to 120 parts by mass, more preferably 62 to 100 parts by mass.
  • the content of non-fat milk solids in the sterilized fermented milk of the present invention is 8% by mass or more based on the standards for fermented milk. It is preferably 9 to 12% by weight, more preferably 9.5 to 11.2% by weight.
  • the sterilized fermented milk of the present invention is not limited, the proportion of milk fat is in the range of 0.5 to 4% by mass, preferably 1 to 3.5% by mass, more preferably 1.5 to 3.0% by mass;
  • the proportion of lactose is in the range of 4.4 to 6.7% by mass, preferably 5.0 to 6.2% by mass, more preferably 5.3 to 5.9% by mass;
  • the proportion can range from 0 to 10% by weight, preferably from 2.5 to 7.5% by weight, more preferably from 4 to 6% by weight.
  • the types of carbohydrates other than lactose are not limited, but include monosaccharides (e.g., glucose, fructose, galactose, etc.), disaccharides (e.g., sucrose, maltose, lactose, trehalose, etc.), oligosaccharides (e.g., sucrose, maltose, lactose, trehalose, etc.), For example, fructooligosaccharides, soybean oligosaccharides, raffinose (beet oligosaccharides), galactooligosaccharides, and isomaltooligosaccharides), polysaccharides (e.g., EPS (exopolysaccharides), pectin, etc.), and sugar alcohols (e.g., xylitol). , sorbitol, maltitol, etc.).
  • monosaccharides e.g., glucose, fructose,
  • the sterilized fermented milk of the present invention is characterized by a pH of 5.3 to 5.9, which is higher than the pH of normal fermented milk (about 4.6). For this reason, it has a lower sourness than normal fermented milk. More preferably, the pH is 5.4 to 5.8.
  • the sterilized fermented milk of the present invention is characterized by having a solid state and having shape retention properties.
  • the presence or absence of shape retention is determined by taking out the target sterilized fermented milk from a cylindrical (diameter 7 cm) cup-shaped container (filling capacity 100 g) and placing it on a flat plate such as a plate, as described in the experimental example below.
  • Judgment can be made by whether the shape of the cup is maintained without collapsing even under its own weight when left for 60 minutes at a product temperature (25°C), and if the shape is maintained without collapsing. can be evaluated as having "shape retention".
  • the shape is maintained without collapsing means not only that the cup shape is maintained as it is, but also that the corners (edges) are maintained even if the cup shape is slightly sunken downward. This also includes cases where the flow is maintained without collapsing.
  • the sterilized fermented milk of the present invention is characterized by being resistant to boiling.
  • To determine whether or not the sterilized fermented milk is resistant to boiling remove the target sterilized fermented milk from a cup-shaped container (filling capacity: 100 g), immerse it in 10 times the volume of boiling water (80°C) for 10 minutes (static immersion), and then It can be determined by comparing the shape (cup shape) and whether or not the shape is distorted.
  • the meaning of "the shape has not collapsed” includes not only the case where the cup shape before immersion is maintained as it is, but also the case where the cup shape is in a loose state (swelled state) as a whole. This also includes cases where the corners (edges) can be maintained without collapsing even if there is a problem.
  • the residual liquid (boiled liquid) obtained from the sterilized fermented milk after the boiling resistance test is passed through a 60# filter, and the permeated liquid is transparent, and the 200P TURBIDIMETER (HACH The turbidity is less than 5 NUT when measured using
  • the sterilized fermented milk of the present invention may have a hardness similar to silken tofu (equal to or similar to silken tofu), a hardness similar to silken tofu (equal to or similar to cotton tofu), or a hardness of silken tofu and firm tofu, although it is not limited thereto. It is preferable that the hardness is between . This hardness can be evaluated by eating and comparing the sterilized fermented milk, silken tofu, and cotton tofu of the present invention at the same temperature (for example, 10° C.).
  • evaluation can be made by comparing the maximum load (N) measured in a breaking test using a creep meter (for example, manufactured by Leonor II Co., Ltd., Yamaden Co., Ltd.) with silken tofu or firm tofu. can.
  • a creep meter for example, manufactured by Leonor II Co., Ltd., Yamaden Co., Ltd.
  • silken tofu or firm tofu. can Specifically, as described in the experimental example below, a disk-shaped plunger was lowered from above onto the surface of sterilized fermented milk (test sample) (product temperature 25°C) placed in a cup container, and a load was applied to compress the milk. Measure the curve and determine the maximum value of the load (maximum load (N)) until the test sample breaks.
  • the sterilized fermented milk of the present invention preferably has a maximum load in the range of 5.00 to 8.00N.
  • the range is more preferably 5.10 to 7.00N, and even more preferably 5.10 to 6.50N.
  • the sterilized fermented milk of the present invention has a smooth texture similar to silken tofu (equal to or similar to silken tofu); It is preferable that it has a slightly rough texture similar to tofu (equivalent to or similar to firm tofu), or a texture between silken tofu and firm tofu. More preferably, it has a texture between silken tofu and firm tofu.
  • the texture was evaluated by a specialized panel trained in sensory evaluation using commercially available regular silken tofu and firm tofu, whose temperature was adjusted to 10°C, as controls 1 and 2, respectively. Compare the texture of the sterilized fermented milk of the invention (test sample) (product temperature 10°C) with the texture of Controls 1 and 2, and evaluate whether the degree of smoothness and roughness felt by the tongue is the same or different. be able to.
  • the sterilized fermented milk of the present invention described above can be produced by a method comprising the following steps (a) and (b): (a) The whey protein content in the raw milk mix (100 wet mass %) is 1.5 to 3.0 mass % in solid content, and the casein protein content is 2.0 to 3.0 mass % in solid content. Lactic acid bacteria are added to a raw milk mix in which the ratio of whey protein to 100 parts by mass of casein protein (solid content mass ratio) is 50 to 125 parts by mass, and the pH is adjusted to 5.3 to 5.5 in a container.
  • step (a) or “fermentation step”
  • step (b) the obtained fermented milk is placed in a container with a thermal history of 75°C.
  • step (b) or “heating step”
  • the manufacturing process of the present invention described above includes, before the step (a), (1) a step of preparing a raw milk mix (raw milk mix preparation step), (2) a step of homogenizing the raw milk mix (homogenization). and (3) a step of sterilizing the raw milk mix (pre-sterilization step). These are called pretreatment steps.
  • (2) homogenization step and (3) presterilization step are carried out in any order after subjecting the raw milk mix prepared in (1) to (2) homogenization step.
  • (2) the homogenization step and (3) the presterilization step can be performed simultaneously.
  • the manufacturing process of the present invention described above may further include a step (4) of filling a container with the raw milk mix obtained in the pretreatment steps (1) to (3) above (filling step).
  • the filling step may be performed before adding lactic acid bacteria to the raw milk mix obtained in the pretreatment steps (1) to (3), or may be performed in the pretreatment steps (1) to (3). This may be carried out after adding lactic acid bacteria to the obtained raw milk mix.
  • the raw milk mix obtained in the pretreatment steps (1) to (3) is filled into a container, it is subjected to the step (a), and lactic acid bacteria are added to the raw milk mix filled in the container. , it is preferable to ferment in a container.
  • the "raw milk mix” targeted by the present invention is a composition containing milk components derived from cow's milk, with a whey protein content of 1.5 to 3.0% by mass as a solid content and a casein protein content of 1.5 to 3.0% by mass. is 2.0 to 3.0% by mass as a solid content, and the ratio of whey protein to 100 parts by mass of casein protein is 50 to 125 parts by mass.
  • the raw milk mix contains raw milk squeezed from cows, cow milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, sweetened condensed milk, sweetened skim condensed milk, evaporated condensed milk, and non-fat milk.
  • whey whey
  • WPC whey protein concentrate
  • WPI whey protein isolate
  • alpha-lactalbumin beta-lactoglobulin
  • milk protein Two or more types selected from concentrate (MPC), casein, sodium caseinate, calcium caseinate, cream, fermented cream, compound cream, cream powder, butter, fermented butter, buttermilk, buttermilk powder, butter oil, etc. It can be prepared by appropriately setting and adjusting the proportions of whey protein and casein protein in 100% by mass of the raw milk mix.
  • the content of whey protein and casein protein in the raw milk mix may be within the above range and is not limited, but the whey protein content is preferably 1.5 to 3.0% by mass, more preferably 1.7 to 2.0% by mass.
  • the amount of casein protein is preferably 2.3 to 3% by weight, more preferably 2.5 to 3.0% by weight.
  • the ratio of whey protein to 100 parts by mass of casein protein (solid content mass ratio) is also not limited as described above, but is preferably 50 to 120 parts by mass, more preferably 62 to 100 parts by mass.
  • the sterilization treatment stipulated by the Milk Ministerial Ordinance is ⁇ heat sterilization at 63°C for 30 minutes using a holding method, or heat sterilization by a method that has an equivalent or higher sterilization effect.'' It is sufficient if this is done.
  • Sterilization methods include low temperature sterilization (LTLT), continuous pasteurization (LTLT), high temperature sterilization (HTLT), high temperature short sterilization (HTST), ultra high temperature flash sterilization (UHT), and ultra high temperature sterilization. (LL) is included. 90% of milk sold in Japan is UHT treated.
  • the raw milk mix can be adjusted so that the content of non-fat milk solids is 8% by mass or more based on the specifications for fermented milk. It is preferably 9 to 12% by weight, more preferably 9.5 to 11.2% by weight.
  • the raw milk mix should have a milk fat ratio in the range of 0.5 to 4% by mass, preferably 1 to 3.5% by mass, more preferably 1.5 to 3.0% by mass;
  • the proportion of carbohydrates other than lactose is in the range of 4.4 to 6.7% by mass, preferably 5.0 to 6.2% by mass, more preferably 5.3 to 5.9% by mass; It can be adjusted to a range of 0 to 10% by weight, preferably 2.5 to 7.5% by weight, more preferably 4 to 6% by weight.
  • the raw milk mix can be prepared using only the milk components described above, but as long as the effects of the present invention are not impaired, in addition to the milk components, for example, lipids, whey protein, and casein protein may be added. It may also be prepared by blending other proteins, carbohydrates, minerals (salts), vitamins, flavor components, perfumes, pigments, and other food additives.
  • the raw milk mix targeted by the present invention may contain a gelling agent, a thickening polysaccharide, or a stabilizer (for example, the ⁇ -glucan-containing material described in Patent Document 1, It is preferable that components corresponding to modified starches such as crosslinked modified starch described in Patent Document 2 are not included.
  • the raw milk mix of the present invention is a composition containing water together with the milk components. The proportion of water in the raw milk mix can range from 11 to 25% by mass. Preferably it is 12 to 20% by weight, more preferably 13 to 16% by weight.
  • the step of homogenizing the raw milk mix refers to finely pulverizing (refining) particles composed of proteins and/or lipids contained in the raw milk mix.
  • the method of homogenization can follow a standard method and is not limited, but for example, a method of stirring while applying shear using a device such as a mixer or a pump, a method of stirring the raw milk mix while applying pressure, and forcing it to pass through a narrow gap while pressurizing the raw milk mix. Alternatively, a method may be used in which the raw milk mix is passed through a narrow gap while being sucked under reduced pressure. Note that the method and equipment for homogenizing the raw milk are not limited to the methods described above, and any known method and equipment can be used.
  • the homogenization step may be performed to achieve an average particle size of the raw milk of 0.8 ⁇ m or less.
  • Pre-sterilization step The step of sterilizing the raw milk mix is carried out with the aim of sterilizing the raw milk mix until the number of bacteria (excluding spores) contained in the raw milk mix becomes 10 to the third power or less per ml. Any method and conditions may be used as long as this objective can be achieved; for example, a heat treatment method used for sterilizing milk can be adopted.
  • Heat treatment methods used to sterilize milk include, for example, ultra-high temperature sterilization (UHT sterilization), which involves heat treatment at 120 to 150°C for 2 to 3 seconds, and continuous heat treatment at 72 to 75°C, for 15 seconds or more.
  • UHT sterilization ultra-high temperature sterilization
  • High-temperature short-time sterilization (HTST sterilization) method, high-temperature holding sterilization (HTLT sterilization) method in which heat treatment is performed at 75°C or higher for 15 minutes or more using a holding method, and high-temperature short-term sterilization (HTLT sterilization) in which heat treatment is performed continuously at 72°C or higher for 15 seconds or more.
  • HTST sterilization high-temperature holding sterilization
  • HTLT sterilization high-temperature short-term sterilization
  • HTLT sterilization low temperature holding sterilization
  • LTLT sterilization continuous pasteurization
  • LL sterilization ultra-high temperature sterilization
  • the method is not limited to the above-mentioned method, as long as the thermal history expressed by "heating temperature (product temperature) x heating time x pressure" is equal to or higher than the heat treatment method described above.
  • a method may be used in which the raw milk mix is heat-treated for 1 minute at a temperature of 95° C. under normal pressure conditions.
  • the step of filling the raw milk mix into a container may be performed before the raw milk mix is fermented. This can be done before adding the lactic acid bacteria or after adding the starter to the raw milk mix.
  • the container to be filled with the raw milk mix may be any container commonly used in the production of fermented milk (dairy products) by post-fermentation, and is not particularly limited in size (capacity), material, and shape. .
  • the size (capacity) of the container may be a one-serve size, a family size, or a business size.
  • the material is not limited, for example, containers made of plastic, glass, paper, etc. can be used.
  • the shape is not particularly limited as long as it has strength and sealing properties, and may be, for example, a cup shape, a brick pack shape, or a cheer pack shape. A commonly used method and device for filling the container are also used.
  • the fermentation step can be carried out by adding lactic acid bacteria as a starter to the raw milk mix and then fermenting the raw milk mix in a container.
  • lactic acid bacteria used as starters include Lactobacillus bulgaricus (L. bulgaricus), Streptococcus thermophilus (S. thermophilus), and Lactobacillus lactis (L. lactis). ), Lactobacillus gasseri (L.gasseri), Lactobacillus plantarum (L.plantarum), Lactobacillus casei (L.casei), Lactobacillus acidophilus (L.
  • Lactic acidophilus and Bifidobacterium can be used alone, or two or more types can be used in combination. You can also do it. Bacterium bulgaricus is preferred. In addition, a mixed starter of B. bulgaricus and B. thermophilus can also be used from the viewpoint that it is standardized as a yogurt starter in the Codex standard.
  • the amount of starter (lactic acid bacteria) added to the raw milk mix may be any amount commonly used in the production of fermented milk, for example 0.1 to 10% by mass, preferably 0.1 to 10% by mass, based on the raw milk mix. The amount is 2 to 5% by weight, more preferably 0.5 to 4% by weight.
  • the starter may be added by any method generally used in the production of fermented milk, such as adding it aseptically to the raw milk mix filled in a container, or adding it aseptically to the raw milk mix in a pipe. In this method, the starter is added in-line while the water is still in the tank, and then the starter is filled into containers. Note that the method and equipment for adding the starter to the raw milk mix are not limited to the above-mentioned method, and any known method and equipment can be used.
  • Fermentation of the raw milk mix can be carried out by adding a starter (lactic acid bacteria) and then keeping the mixture filled in a container stationary in a fermentation chamber set at a predetermined temperature.
  • the conditions for fermenting the raw milk mix are adjusted in consideration of the type and amount of lactic acid bacteria added to the raw milk, and the flavor, texture, physical properties, etc. of the fermented milk to be actually obtained.
  • the lower limit of the temperature at which the raw milk mix is fermented is preferably 33°C or higher, more preferably 35°C or higher, and still more preferably 38°C or higher.
  • the upper limit of the temperature at which raw material milk is fermented is preferably 50°C or lower, more preferably 48°C or lower, and even more preferably 45°C or lower.
  • the fermentation temperature range can be set by arbitrarily combining these lower and upper limits. Examples include, but are not limited to, 33-50°C, 35-48°C, 38-45°C, etc.
  • the time for fermenting the raw milk is until the pH of the fermented milk falls within the range of 5.3 to 5.9.
  • fermentation is terminated when the pH of the fermented milk falls within the range of 5.3 to 5.9.
  • the pH range for terminating fermentation is preferably pH 5.4 to 5.8, more preferably pH 5.5 to 5.7.
  • the heating step is a step of heating the fermented milk, which has reached a predetermined pH in the fermentation step, while being filled in a container.
  • the heat treatment is performed without stirring the fermented milk (under non-stirring conditions). This process is carried out to sterilize lactic acid bacteria added as a starter to the raw milk mix to prevent fermentation from proceeding, and to kill bacteria to ensure hygiene and safety as a food product and a shelf life.
  • the heat treatment conditions may be any method and conditions that can achieve this purpose. For example, if the heat history expressed as "heating temperature (product temperature) x heating time x pressure" is "75°C x 15 minutes x normal pressure"'' can be used.
  • the thermal history of "75°C x 15 minutes x normal pressure” means that the product is heated under normal pressure conditions for 15 minutes after the product temperature reaches 75°C. .
  • An example of a heating method that results in a thermal history of "75° C. x 15 minutes x normal pressure" or more includes a heating treatment of immersion in hot water at 85° C. for 60 minutes under normal pressure conditions.
  • normal pressure here means that the pressure inside the container is in a normal pressure state, and does not include a pressure state that is artificially pressurized or reduced.
  • heat treatment may be performed after the fermented milk filled in a container is sealed and packaged. Alternatively, the container may be heat-treated before being sealed and then sealed. Note that any known method and equipment can be used for heat-treating the fermented milk in a container.
  • the sterilized fermented milk produced in this manner can be placed in a container, sealed and packaged, and then distributed.
  • the sterilized fermented milk obtained by the production method of the present invention has shape retention and/or resistance to boiling down, as described in the examples below, and has a texture that is less sour and tofu-like (silky). It has the firmness and texture of tofu (tofu, firm tofu). Therefore, it can be used in a variety of cooking methods as a milk protein-containing ingredient instead of tofu.
  • Sterilized fermented milk (Comparative Examples 7 to 10, Examples 1 to 2) was produced.
  • the maximum load (N) was defined as the maximum load (N) that was applied during the period from 1 to 2 until the test specimen broke.
  • WPI is added to milk as a fermented milk raw material, and the milk protein content is 2.49% by mass of whey and 2.48% by mass of casein (ratio of whey to 100 parts by mass of casein: Using a raw milk mix prepared to contain 100.4 parts by mass), ferment it with lactic acid bacteria in individual containers until the pH reaches 5.4 to 5.8.
  • a secondary heat treatment thermal history equivalent to 75°C x 15 minutes x normal pressure
  • this set type of sterilized fermented milk did not have the sour taste that is felt in ordinary yogurt, was harder than silken tofu, softer than firm tofu, and had a good texture.
  • fermented milk that was not subjected to secondary heat treatment did not have good resistance to boiling down, and even when secondary heat treatment was performed, the pH at the end of fermentation was 5 or less.
  • the fermented milk (Comparative Example 10) had good shape retention and boiling resistance, but had a strong sour taste and a tendency to have an excessively hard texture.
  • Experimental Example 2 Effect of WPI Blend Amount (1) Production of Fermented Milk Based on the results of Experimental Example 1 above, various fermented milks (Example 3 -8 and Comparative Examples 11 to 26) were prepared (see Table 5).
  • the fermented milk of Comparative Examples 11 to 21 was prepared using the method described in Experimental Example 1 (1) (a) (pH 5.8 or 5.4 at the end of fermentation: no secondary heat treatment), and Examples 3 to 8 and The fermented milk of Comparative Examples 22 to 26 was prepared according to the method described in Experimental Example 1 (1) (b) (pH 5.8 or 5.4 at the end of fermentation: with secondary heat treatment).
  • the milk protein content is 1.56 to 2.95% by mass of whey and 2.46 to 2.5% by mass of casein
  • the whey protein content is 1.56 to 2.95% by mass and the casein content is 2.46 to 2.5% by mass, based on 100 parts by mass of casein.
  • a set-type sterilizer that has good shape retention and does not easily collapse even when boiled by subjecting the container to secondary heat treatment (heat history equivalent to 75°C x 15 minutes x normal pressure) or higher within the pH range. It was confirmed that fermented milk (Examples 3 to 8) was obtained. In addition, it was confirmed that this set type of sterilized fermented milk does not have the sour taste that is felt in regular yogurt, and has a tofu-like (firm to silken tofu) texture (hardness and texture). .
  • the milk protein content is 0.63 to 1.1% by mass of whey and 2.51 to 2.53% by mass of casein (ratio of whey to 100 parts by mass of casein: 24.9 to 43.
  • Fermented milk prepared using raw milk mixes containing 8 parts by mass had poor shape retention, or even if the shape retention was good, The boiling resistance was poor.
  • fermented milk prepared so that the milk protein content was the same as in Examples 3 to 8 but not subjected to secondary heat treatment as a fermented milk raw material (Comparative Examples 15 to 20) had shape retention.
  • the fermented milk raw material is prepared so that the milk protein content is within a range of whey content of 3.42% by mass and casein content of 2.45% by mass (ratio of whey to 100 parts by mass of casein: 139.6 parts by mass).
  • the fermented milk prepared using the raw material milk mix had good shape retention and boiling resistance, the texture tended to be too hard.
  • Fermented milk which is a healthy food, can now be used for purposes that have never existed before (general-purpose cooking). Mapo tofu, etc.) It does not fall apart when boiled, and can be ingested without any loss of whey protein in the broth. It is possible to obtain fermented milk without sour taste. Overall, this will lead to the development of a healthy food scene and the development of a new market for fermented milk.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

本発明は、セットタイプの殺菌発酵乳、及びその製造方法を提供する。本発明のセットタイプの殺菌発酵乳は、ホエイたんぱく質を1.5~3.0質量%、及びカゼインたんぱく質を2.0~3.0質量%の割合で含み、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である、pH5.3~5.9のセットタイプの殺菌発酵乳であることを特徴とする。

Description

殺菌発酵乳及びその製造方法 関連出願の参照
 本件出願は、2022年9月14日に出願された日本出願である特願2022-146607号に基づく優先権の主張を伴うものであり、この日本出願の全開示内容は引用することにより本願発明の開示の一部とされる。
 本発明は、セットタイプの殺菌発酵乳、及びその製造方法に関する。より詳細には、容器に充填した後に発酵(後発酵)させて、当該容器内で固化させてなるセットタイプの殺菌発酵乳、及びその製造方法に関する。
 健康志向のなか、発酵乳に対する消費者の関心も高まっているが、発酵乳が、より多くの調理に適用できるようになれば、その摂食機会はより一層増えることが期待される。しかしながら、発酵乳は酸味が強く、保形性が弱いという特性を有するために、実際は、そのまま食べるか、野菜や肉等の食材に塗ってディップのように用いるか、または、調理時に材料の一つとして他の食材と混合する等の食べ方がメインとなっている。
 単に発酵乳の保形性を改善するだけであれば、高濃度組成にしたり、ゲル化剤や増粘多糖類を添加して、固化すれば良いが、加熱調理すると、崩れたり、又は必要以上に硬化するなどの問題が生じる。また、加熱して高温になると酸味が強く発生する、という問題点もある。一方で、酸味を抑えるためにpHを高めると、極端に保形性が低下するために、これを補うために、高濃度組成にするか又はゲル化剤や増粘多糖類の使用が必要になり、風味や食感を損ねてしまうという問題がある。発酵乳をより多くの調理に用いられるようにするためには、酸味を抑えながらも、調理の際に、例えば煮崩れしないなど、味と物性を改良する必要がある。
 ゲル化剤や増粘多糖類を使用することなく、酸味を抑えながらも、煮崩れしない発酵乳、及びその製造方法を開示する先行技術文献は見当たらなかった。
 後発酵後に加熱処理(二次加熱処理)をする点で、本発明の製法と共通する技術を開示する先行技術文献として、特許文献1及び2がある。しかし、特許文献1は、発酵後に安定剤としてβ-グルカン含有素材(アウレオバシジウム培養液)を添加して加熱処理をすることを特徴とし、さらに加熱処理後に混合均質化して液状化しており、セットタイプの殺菌発酵乳ではない点で本発明と相違する。また、特許文献2は、材料として架橋型加工デンプンを配合することを特徴とし、また発酵後にカードを破砕して調製されるソフトまたはドリンクヨーグルトを対象とするものである点で本発明と相違する。
特開2005-137245号公報 特開2017-63727号公報
 本発明は、酸味が抑えられており、また加熱調理に供した場合でも煮崩れしにくい、セットタイプの殺菌発酵乳、及びその製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決した、セットタイプの発酵乳を製造すべく、鋭意検討を重ねていたところ、ホエイたんぱく質を1.5~3.0質量%及びカゼインたんぱく質を2.0~3.0質量%の特定の割合で含む原料乳ミックスに、乳酸菌を添加し、容器内でpHが5.3~5.9まで発酵させた後、容器ごと「75℃×15分×常圧」以上の熱履歴になるように加熱処理することで、前記所望の特性(低酸味、煮崩れ耐性)を有するセットタイプの殺菌発酵乳が得られることを見出した。
 本発明はかかる知見に基づいて完成したものであり、下記の実施形態を有するものである。
(I)セットタイプの殺菌発酵乳
(I-1)ホエイたんぱく質を1.5~3.0質量%、及びカゼインたんぱく質を2.0~3.0質量%の割合で含み、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である、pH5.3~5.9のセットタイプの殺菌発酵乳。
(I-2)無脂乳固形分の含量が9.5~11.2質量%である、(I-1)に記載する殺菌発酵乳。
(I-3)保形性及び/又は煮崩れ耐性を有する、(I-1)又は(I-2)に記載する殺菌発酵乳。
(I-4)プランジャーを用いた破断試験において、破断時の最大荷重が5.0~8.0Nである、(I-1)~(I-3)のいずれかに記載する殺菌発酵乳。
(II)セットタイプの殺菌発酵乳の製造方法
(II-1)(a)ホエイたんぱく質含量が1.5~3.0質量%、及びカゼインたんぱく質含量が2.0~3.0質量%であり、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である原料乳ミックスに乳酸菌を添加して、容器中で、pHが5.3~5.9になるまで発酵させる工程、及び
 (b)得られた発酵乳を、容器に入った状態で、熱履歴が「75℃×15分×常圧」以上になるように加熱処理する工程
を有する、セットタイプの殺菌発酵乳の製造方法。
(II-2)前記原料乳ミックスの無脂乳固形分の含量が9.5~11.2質量%である、(II-1)に記載する製造方法。
(II-3)前記原料乳ミックスは、乳酸菌の添加前に、均質化処理、及び殺菌処理がされてなるものである、(II-1)又は(II-2)に記載する製造方法。
 当該製造方法は、下記のように言い換えることもできる:
「前記(a)の工程前に、ホエイたんぱく質含量が1.5~3.0質量%、及びカゼインたんぱく質含量が2.0~3.0質量%、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である原料乳ミックスを均質化処理、及び殺菌処理する工程を有する、(II-1)又は(II-2)に記載する製造方法。」
(II-4)発酵温度が35~48℃である、(II-1)~(II-3)のいずれかに記載する製造方法。
 本発明の殺菌発酵乳、及び本発明の製造方法で得られる殺菌発酵乳は、pHが4.6程度である通常の発酵乳と比較して、pHが5.3~5.9と高いため、酸味が和らげられている。このため、食べやすく、また多くの食材と組み合わせることが可能である。
 また本発明の殺菌発酵乳、及び本発明の製造方法で得られる殺菌発酵乳は、保形性が良好で、またボイルしても煮崩れしにくいため、非加熱・加熱の別を問わず、さまざまな調理に利用しやすい。また殺菌発酵乳をボイルした際に煮汁が濁りにくいことから、調理による栄養成分のロスが少なく、また料理の見栄えも悪くならない。
 さらに本発明の殺菌発酵乳、及び本発明の製造方法で得られる殺菌発酵乳は、絹ごし豆腐と同等の硬さ及び/又は舌ざわりから木綿豆腐と同等の硬さ及び/又は舌ざわりにまで適宜調整することができるため、広く一般的に食されている豆腐料理(湯豆腐、鍋物、汁物の具、豆腐ステーキ、冷ややっこ、麻婆豆腐等)に使用される豆腐に代えて用いることができる。これにより、発酵乳の調理用途を広げることができ、健康的な食品である発酵乳を消費者が食する機会を増やすことができる。
実験例2において、煮汁濁度試験に供した比較例24及び25、並びに実施例5及び6の煮汁(ビーカー入り)の画像。左から、比較例24(濁度:>40NTU)、比較例25(濁度:33.3NTU)、実施例5(濁度:3.9NTU)、及び実施例6(濁度:>2.9NTU)。
(I)セットタイプの殺菌発酵乳
 発酵乳は、「乳及び乳製品の成分規格等に関する省令」(昭和26年厚生省令第52号、平成27年1月9日改正:日本国厚生労働省」(以下、「乳等省令」と称する)で、「乳またはこれと同等以上の無脂乳固形分を含む乳等を、乳酸菌又は酵母で発酵させ、糊状又は液状にしたもの、またはこれらを凍結したものをいう」と定義されており、無脂乳固形分は8.0%以上と決められている。これらの発酵乳は、(a)原料乳を容器に充填した後に発酵させ、当該容器内で固化させた固形状の発酵乳(これを「セットタイプの発酵乳」又は「後発酵タイプの発酵乳」という)と、(b)大型のタンク等で発酵させた後に形成したカードを破砕し、必要に応じて果肉やソース等と混合した後に、容器に充填した糊状の発酵乳(これを「ソフトヨーグルト」又は「前発酵タイプの発酵乳」という)と、(c)前記の固形状の発酵乳や糊状の発酵乳を、均質機等を用いて細かく破砕して液状化させ、必要に応じて果肉やソース等と混合した後に、容器に充填した液状の発酵乳(これを「ドリンクヨーグルト」という)とに、大別される。
 本発明が対象とする発酵乳は、これらの発酵乳のうち、乳酸菌を用いて後発酵されてなるセットタイプの発酵乳(固形状)である。また、本発明が対象とする発酵乳は、発酵後に加熱処理により殺菌されてなる殺菌した発酵乳(「殺菌発酵乳」と称する)である。具体的には、乳等省令で定められている「発酵させた後に75℃で15分以上の加熱、あるいはそれと同等以上の殺菌効果を発揮する方法で加熱殺菌して製造される発酵乳」である。
 本発明の殺菌発酵乳は、殺菌発酵乳100質量%あたり、ホエイたんぱく質を1.5~3.0質量%、及びカゼインたんぱく質をで2.0~3.0質量%の割合で含み、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合(固形分質量比)が50~125質量部であることを特徴とする。
 ここでホエイたんぱく質及びカゼインたんぱく質の含有量は、殺菌発酵乳100質量%(湿質量)中に含まれている各たんぱく質の固形分の含量を意味する(固形分換算)。
 ホエイたんぱく質は、牛乳からカゼイン及び脂肪を取り除いた液体部分であるホエイ(乳清)に含まれる複数のたんぱく質の混合物である。ホエイたんぱく質を構成するたんぱく質には、β-ラクトグロブリン、α-ラクトアルブミン、免疫グロブリン、ウシ血清アルブミン、ラクトフェリン、ラクトパーオキシダーゼ、及びプロテオースペプトン等が含まれる。なお、牛乳に含まれる乳たんぱく質のうち、約20質量%がホエイたんぱく質であるといわれている。
 カゼインたんぱく質(一般に「カゼイン」と称される)は、牛乳に約80%の割合で含まれている乳たんぱく質であり、αs1-カゼイン、αs2-カゼイン、β-カゼイン、及びκ-カゼインからなる複合たんぱく質である。
 殺菌発酵乳(試料)中に含まれるカゼインたんぱく質、及びホエイたんぱく質の含有量は、下記の方法により測定することができる。
[カゼインたんぱく質]
 試料10gに水90mlを加えて40~42℃程度に加温し、これに10質量%濃度の酢酸水溶液1.5mlを加えて撹拌し、5分間静置した後に、沈殿物(カゼイン)を濾紙でろ過する。濾紙上に残留した沈殿物(残留物)を酢酸で酸性(pH4.6)に調整した水で洗浄し、残留物を濾紙と共に燃焼法あるいはケルダール法にて窒素を定量し、これに窒素たんぱく質換算係数を乗じて算出する。
[ホエイたんぱく質]
 試料に含まれる全たんぱく質を燃焼法あるいはケルダール法にて定量し、そこから、前記方法で得られるカゼインたんぱく質の量を減ずることにより算出する。
 殺菌発酵乳100質量%(湿質量)中のホエイたんぱく質の含有量(固形分換算)は、前記の限り制限されないものの、好ましくは1.5~3.0質量%であり、より好ましくは1.7~2.5質量%である。またカゼインたんぱく質の含有量(固形分換算)は、前記の限り制限されないものの、好ましくは2.3~3.0質量%であり、より好ましくは2.5~3.0質量%である。さらにカゼインたんぱく質100質量部に対するホエイたんぱく質の割合(固形分質量比)は、前記の限り制限されないものの、好ましくは50~120質量部であり、より好ましくは62~100質量部である。
 本発明の殺菌発酵乳の無脂乳固形分の含量は発酵乳の規格に基づいて8質量%以上である。好ましくは9~12質量%であり、より好ましくは9.5~11.2質量%である。
 本発明の殺菌発酵乳は、制限されないものの、乳脂肪の割合が0.5~4質量%の範囲、好ましくは1~3.5質量%、より好ましくは1.5~3.0質量%;乳糖の割合が4.4~6.7質量%の範囲、好ましくは5.0~6.2質量%、より好ましくは5.3~5.9質量%;乳糖以外の糖質(炭水化物)の割合が0~10質量%の範囲、好ましくは2.5~7.5質量%、より好ましくは4~6質量%であることができる。
 なお、乳糖以外の糖質の種類には、制限されないものの、単糖類(例えば、グルコース、果糖、及びガラクトース等)、二糖類(例えば、ショ糖、麦芽糖、乳糖、及びトレハロース等)、オリゴ糖(例えば、フラクトオリゴ糖、大豆オリゴ糖、ラフィノース(ビートオリゴ糖)、ガラクトオリゴ糖、及びイソマルトオリゴ糖)、多糖類(例えば、EPS(菌体外多糖類)、ペクチン等)、及び糖アルコール(例えば、キシリトール、ソルビトール、及びマルチトール等)が含まれる。
 本発明の殺菌発酵乳はpHが5.3~5.9と、通常の発酵乳のpH(4.6程度)よりも高いことを特徴とする。このため、通常の発酵乳と比較して酸味が低い。より好ましくは、pH5.4~5.8である。
 本発明の殺菌発酵乳は固体状を有し、保形性を備えていることを特徴とする。保形性の有無は、後述する実験例に記載するように、対象とする殺菌発酵乳を円柱状(直径7cm)のカップ形状の容器(充填容量100g)からそのまま取り出し、皿等の平板の上に品温(25℃)条件下で60分間静置した場合に、カップ形状が自重によっても崩れず、形状が維持できているかで判断することができ、形状が崩れずに維持できている場合を「保形性あり」と評価することができる。
 なお、「形状が崩れずに維持できている」という意味には、カップ形状がそのまま維持されている場合だけでなく、カップ形状が多少下に沈んだ状態であっても、角(エッジ)が流れ崩れることなく、維持できている場合も含まれる。
 本発明の殺菌発酵乳は煮崩れ耐性を備えていることを特徴とする。煮崩れ耐性の有無は、対象とする殺菌発酵乳をカップ形状の容器(充填容量100g)からそのまま取り出し、10倍容量の熱湯(80℃)に10分間浸漬(静置浸漬)し、浸漬前の形状(カップ形状)と比較して、形状が崩れているか否かで判断することができる。後述する実験例に記載するように、浸漬後も形状が崩れていない場合を「煮崩れ耐性あり」と評価することができる。ここでいう「形状が崩れていない」の意味には、浸漬前のカップ形状がそのまま維持されている場合だけでなく、カップ形状が全体的に緩んだ状態(膨潤状態)になっている場合であっても、角(エッジ)が崩れることなく、維持できている場合も含まれる。 さらに好ましくは、上記煮崩れ耐性試験後に殺菌発酵乳を取り出した残液(煮汁)を、60♯フィルターに通液した透過液が透明であり、後述する実験例に記載する方法により200P TURBIDIMETER(HACH社)を用いて測定した濁度が5NUT未満であるものである。
 また、本発明の殺菌発酵乳は、制限されないものの、絹ごし豆腐様(絹ごし豆腐と同等又は類似)の硬さ、木綿豆腐様(木綿豆腐と同等又は類似)の硬さ、または絹ごし豆腐と木綿豆腐との間の硬さを有するものであることが好ましい。この硬さは、本発明の殺菌発酵乳、絹ごし豆腐、及び木綿豆腐を、同じ品温(例えば10℃)に調整した状態で、それぞれ食べ比べることで評価することができる。
 また、それに代えて、クリープメータ(例えば、レオナーII(株)山電製)を用いた破断試験で測定される最大荷重(N)を、絹ごし豆腐や木綿豆腐と比較することで評価することもできる。具体的には、後述する実験例に記載するように、カップ容器にいれた殺菌発酵乳(被験試料)(品温25℃)の表面に上から円盤型プランジャーを降ろして荷重をかけ、圧縮曲線を測定し、被験試料が破断するまでの間にかけた荷重の最大値(最大荷重(N))を求める。後述する実験例に記載する条件で測定した場合、本発明の殺菌発酵乳は、最大荷重が5.00~8.00Nの範囲にあることが好ましい。より好ましくは5.10~7.00N、さらに好ましくは5.10~6.50Nの範囲である。
 さらに、本発明の殺菌発酵乳は、制限されないものの、口腔内にいれて舌で擦り潰した際に感じられる舌の感覚が、絹ごし豆腐様(絹ごし豆腐と同等又は類似)の滑らかな舌ざわり、木綿豆腐様(木綿豆腐と同等又は類似)の少し粗めな舌ざわり、または絹ごし豆腐と木綿豆腐との間の舌ざわりを有するものであることが好ましい。より好ましくは、絹ごし豆腐と木綿豆腐との間の舌ざわりを有するものである。当該舌ざわりは、後述する実験例に記載するように、官能評価について訓練した専門パネルにより、品温を10℃に調整した市販の通常の絹ごし豆腐、及び木綿豆腐をそれぞれコントロール1及び2として、本発明の殺菌発酵乳(被験試料)(品温10℃)の舌ざわりと、前記コントロール1及び2の舌ざわりとをそれぞれ対比し、舌で感じる滑らかさや粗さの程度が同じか違うかで、評価することができる。
(II)セットタイプの殺菌発酵乳の製造方法
 前述する本発明の殺菌発酵乳は、下記の工程(a)及び(b)を有する方法で製造することができる:
(a)原料乳ミックス(100湿質量%)中のホエイたんぱく質含量が固形分換算で1.5~3.0質量%、及びカゼインたんぱく質含量が固形分換算で2.0~3.0質量%であり、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合(固形分質量比)が50~125質量部である原料乳ミックスに、乳酸菌を添加して、容器中で、pHが5.3~5.9になるまで発酵させる工程(以下、これを「工程(a)」または「発酵工程」と称する)、及び
(b)得られた発酵乳を、容器に入った状態で、熱履歴が75℃15分以上になるように加熱処理する工程(以下、これを「工程(b)」または「加熱工程」と称する)。
 前述する本発明の製造工程は、前記工程(a)の前に、(1)原料乳ミックスを調製する工程(原料乳ミックス調製工程)、(2)原料乳ミックスを均質化する工程(均質化工程)、及び(3)原料乳ミックスを殺菌処理する工程(前殺菌工程)を有することができる。これらを前処理工程と称する。これらの前処理工程のうち、(2)均質化工程と(3)前殺菌工程は、順番を問わず、(1)で調製した原料乳ミックスを(2)均質化工程に供した後に(3)前殺菌工程に供してもよいし、(3)前殺菌工程に供した後に(2)均質化工程に供してもよい。また(2)均質化工程と(3)前殺菌工程とを同時に行うこともできる。
 また、前述する本発明の製造工程は、さらに、前記(1)~(3)の前処理工程で得られた原料乳ミックスを、(4)容器に充填する工程(充填工程)を有することができる。当該充填工程は、(1)~(3)の前処理工程で得られた原料乳ミックスに乳酸菌を添加する前に行ってもよいし、また、(1)~(3)の前処理工程で得られた原料乳ミックスに乳酸菌を添加した後に行ってもよい。
 制限されないものの、前記(1)~(3)の前処理工程後、前記工程(a)の乳酸菌添加前に、充填工程を有することが好ましい。つまり、(1)~(3)の前処理工程で得られた原料乳ミックスを容器に充填した後に、前記工程(a)に供し、当該容器に充填された原料乳ミックスに乳酸菌を添加して、容器内で発酵させることが好ましい。
 以下、各工程を説明する。
[(1)原料乳ミックス調製工程]
 本発明が対象とする「原料乳ミックス」は、牛乳に由来する乳成分を含む組成物であり、ホエイたんぱく質の含有量が固形分として1.5~3.0質量%、カゼインたんぱく質の含有量が固形分として2.0~3.0質量%であり、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である組成物を意味する。
 当該原料乳ミックスは、原料として、牛から搾汁された生乳、牛乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、加糖練乳、加糖脱脂練乳、無糖練乳、無糖脱脂練乳、乳清(ホエイ)、ホエイパウダー、脱塩ホエイ、脱塩ホエイパウダー、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質分離物(WPI)、α-ラクトアルブミン、β-ラクトグロブリン、乳タンパク質濃縮物(MPC)、カゼイン、ナトリウムカゼイネート、カルシウムカゼイネート、クリーム、発酵クリーム、コンパウンドクリーム、クリームパウダー、バター、発酵バター、バターミルク、バターミルクパウダーおよびバターオイル等から選択される2種以上を用いて、原料乳ミックス100質量%中に、ホエイたんぱく質とカゼインたんぱく質が前記の割合になるように適宜設定調整することで調製することができる。
 原料乳ミックス中のホエイたんぱく質及びカゼインたんぱく質の含有量は前記範囲であればよく、制限されないものの、ホエイたんぱく質は、好ましくは1.5~3.0質量%、より好ましくは1.7~2.5質量%であり、カゼインたんぱく質は、好ましくは2.3~3質量%、より好ましくは2.5~3.0質量%である。また、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合(固形分質量比)も、前記の限り制限されないものの、好ましくは50~120質量部であり、より好ましくは62~100質量部である。
 なお、原料として牛乳を用いる場合、乳等省令で定められている殺菌処理「保持式により63℃で30分間加熱殺菌するか、またはこれと同等以上の殺菌効果を有する方法で加熱殺菌すること」が施されていればよい。殺菌処理方法には、低温保持殺菌(LTLT)、連続式低温殺菌(LTLT)、高温保持殺菌 (HTLT)、高温短時間殺菌(HTST)、超高温瞬間殺菌(UHT)、及び超高温滅菌殺菌法(LL)が含まれる。日本で市販されている牛乳の9割はUHT処理が採用されている。
 原料乳ミックスは、無脂乳固形分の含量が発酵乳の規格に基づいて8質量%以上になるように調整することができる。好ましくは9~12質量%であり、より好ましくは9.5~11.2質量%である。また制限されないものの、原料乳ミックスは、乳脂肪の割合が0.5~4質量%の範囲、好ましくは1~3.5質量%、より好ましくは1.5~3.0質量%;乳糖の割合が4.4~6.7質量%の範囲、好ましくは5.0~6.2質量%、より好ましくは5.3~5.9質量%;乳糖以外の糖質(炭水化物)の割合が0~10質量%の範囲、好ましくは2.5~7.5質量%、より好ましくは4~6質量%になるように調整することができる。
 原料乳ミックスは、前述する乳成分のみを用いて調製することができるが、本発明の効果を妨げないことを限度として、さらに、前記乳成分の他に、例えば、脂質、ホエイたんぱく質及びカゼインたんぱく質以外のたんぱく質、糖質、ミネラル(塩類)、ビタミン、香味成分、香料、色素、およびその他の食品用添加物等を配合して調製されるものであってもよい。なお、厳格に制限するものではないが、本発明が対象とする原料乳ミックスには、ゲル化剤、増粘多糖類、又は安定剤(例えば、特許文献1に記載のβ-グルカン含有素材、特許文献2に記載の架橋型加工デンプン等の加工デンプン等)に該当する成分は含まれていないことが好ましい。
 本発明の原料乳ミックスは、前記乳成分とともに水を含む組成物である。原料乳ミックス中の水の割合としては、11~25質量%の範囲を挙げることができる。好ましくは12~20質量%、より好ましくは13~16質量%である。
[(2)均質化工程]
 原料乳ミックスを均質化する工程は、原料乳ミックスに含まれるたんぱく質および/または脂質によって構成される粒子を細かく粉砕(微細化)することをいう。均質化する方法は、定法に従うことができ、制限されないものの、例えば、ミキサーやポンプ等の器具を用いてせん断を加えながら撹拌する方法、原料乳ミックスを加圧して押し出しながら、狭い間隙を通過させる方法、又は、原料乳ミックスを減圧して吸引しながら、狭い間隙を通過させる方法等を用いることができる。なお、原料乳を均質化する方法および設備には、上述した方法に限らず、任意の公知の方法および設備を用いることができる。
 均質化工程は、原料乳の平均粒径が0.8μm以下を達成するように行われてもよい。
[(3)前殺菌工程]
 原料乳ミックスを殺菌する工程は、原料乳ミックス中に含まれる細菌数(芽胞を除く)が1mlあたり10の3乗以下になるまで殺菌することを目的として実施される。
 この目的が達成できる方法及び条件であればよく、例えば、牛乳の殺菌に使用される熱処理方法を採用することができる。牛乳の殺菌に使用される熱処理方法としては、例えば、120~150℃で2~3秒間加熱処理する超高温瞬間殺菌(UHT殺菌)法、72~75℃で連続的に15秒間以上加熱処理する高温短時間殺菌(HTST殺菌)法、保持式で75℃以上で15分以上加熱処理する高温保持殺菌(HTLT殺菌)法、72℃以上で連続的に15秒以上加熱処理する高温短時間殺菌(HTST殺菌)法、保持式で63~65℃で30分間加熱処理する低温保持殺菌(LTLT殺菌)法、連続的に65~68℃で30分以上加熱処理する連続式低温殺菌(LTLT殺菌)法、及び135~150℃で1~4秒間加熱処理する超高温滅菌殺菌(LL殺菌)法を挙げることができる。 前記方法に限らず、「加熱温度(品温)×加熱時間×圧力」で表される熱履歴が前述する熱処理方法と同等またはそれ以上であればよく、例えば、後述する実験例で採用するように、原料乳ミックスを常圧条件下で品温を95℃にした状態で1分間加熱処理する方法を用いることもできる。
[(4)充填工程]
 原料乳ミックスを容器に充填する工程は、前述するように、原料乳ミックスを発酵する前に行えばよく、例えば、前記の均質化工程及び前殺菌工程の後であって、原料乳ミックスにスターターである乳酸菌を添加する前、又は原料乳ミックスにスターターを添加した後に行うことができる。
 原料乳ミックスを充填する容器は、発酵乳(乳製品)の後発酵による製造において一般的に用いられる容器であればよく、大きさ(容量)、素材、及び形状が特に制限されるものではない。例えば、容器の大きさ(容量)は、一人一回の食べきりサイズであってもよいし、またファミリーサイズや業務用サイズであってもよい。また、素材としては、制限されないものの、例えば、プラスチック製、ガラス製および紙製等の容器を用いることができる。その形状も、強度と密封性を備えていれば、特に制限されず、例えば、カップ形状、ブリックパック形状、チアパック形状のいずれであってもよい。容器に充填する方法や装置も一般的に用いられる方法及び装置が使用される。
[(a)発酵工程]
 本発明において、発酵工程は、原料乳ミックスにスターターである乳酸菌を添加した後、容器内で原料乳ミックスを発酵させることで実施することができる。
 スターターといて使用される乳酸菌としては、例えば、ラクトバチルス・ブルガリカス(ブルガリア菌、L.bulgaricus)、ストレプトコッカス・サーモフィルス(サーモフィラス菌、S.thermophilus)、ラクトバチルス・ラクティス(ラクティス菌、L.lactis)、ラクトバチルス・ガッセリ(ガセリ菌、L.gasseri)、ラクトバチルス・プランタラム(プランタラム菌、L.plantarum)、ラクトバチルス・カゼイ(カゼイ菌、L.casei)、ラクトバチルス・アシドフィラス(L.acidophilus)、及びビフィドバクテリウム(Bifidobacterium)等のように、発酵乳の製造において一般的に用いられる乳酸菌から選択した1種を単独で用いることもできるし、または2種以上を組合せて用いることもできる。好ましくは、ブルガリア菌である。また、コーデックス規格において、ヨーグルトスターターとして規格化されている等の観点から、ブルガリア菌とサーモフィラス菌の混合スターターを用いることもできる。
 原料乳ミックスへのスターター(乳酸菌)の添加量は、発酵乳の製造において一般的に用いられる数量であればよく、原料乳ミックスに対して、例えば0.1~10質量%、好ましくは0.2~5質量%、より好ましくは0.5~4質量%である。また、スターターの添加方法は、発酵乳の製造において一般に用いられる方法であればよく、例えば、容器内に充填された原料乳ミックスに無菌的に添加する方法や、原料乳ミックスが配管内を流れている状態でスターターをインラインで添加し、それを容器に充填する方法である。なお、スターターを原料乳ミックスに添加する方法および設備には、上述した方法に限らず、任意の公知の方法、及び設備を用いることができる。
 原料乳ミックスの発酵は、スターター(乳酸菌)を添加した後、容器に充填された状態で、所定の温度に設定された発酵室内で静置保持することで実施することができる。
 原料乳ミックスを発酵させる条件は、原料乳に添加される乳酸菌等の種類および添加量や、実際に得ようとする発酵乳の風味、食感および物性等を考慮して調整される。例えば、原料乳ミックスを発酵させる温度(発酵温度)の下限は、好ましくは33℃以上であり、より好ましくは35℃以上であり、さらに好ましくは38℃以上である。そして、原料乳を発酵させる温度の上限は、好ましくは50℃以下であり、より好ましくは48℃以下であり、さらに好ましくは45℃以下である。これらの下限値と上限値を任意に組みあわせることで、発酵温度の範囲を設定することができる。制限されないものの、一例としては、33~50℃、35~48℃、38~45℃等を例示することができる。
 また、原料乳を発酵させる時間(発酵時間)は、発酵乳のpHが5.3~5.9の範囲になるまでである。つまり、発酵乳のpHが5.3~5.9の範囲になった時点で、発酵を終了する。発酵を終了するpH範囲として、好ましくはpH5.4~5.8であり、より好ましくはpH5.5~5.7である。このpH範囲で、発酵を終了することで、本発明の効果の一つである酸味の少なく、また食感(硬さ、舌ざわり)が豆腐様の発酵乳を得ることができる。
 なお、原料乳ミックスを発酵させる方法および設備には、任意の公知の方法および設備を用いることができる。
[(b)加熱工程]
 加熱工程は、前記の発酵工程において所定のpHに至った発酵乳を、容器に充填された状態で、加熱処理する工程である。当該加熱処理は、発酵乳を撹拌することなく(非撹拌条件下)で実施される。
 当該工程は、原料乳ミックスにスターターとして添加した乳酸菌を殺菌し、発酵が進まないようにするとともに、細菌を殺して食品としての衛生安全性や消費期限を確保するために実施される。
 加熱処理条件は、この目的が達成できる方法及び条件であればよく、例えば、「加熱温度(品温)×加熱時間×圧力」で表される熱履歴が、「75℃×15分×常圧」と同等またはそれ以上になる加熱処理方法を用いることができる。なお、「75℃×15分×常圧」の熱履歴とは、常圧条件下で、品温が75℃に達温してからその温度条件下で15分間加熱処理されることを意味する。こうすることで、乳等省令において「殺菌発酵乳」として定められている規格(発酵させた後に75℃で15分以上の加熱、あるいはそれと同等以上の殺菌効果を発揮する方法で加熱殺菌して製造される発酵乳)に則した殺菌発酵乳を得ることができる。熱履歴が「75℃×15分×常圧」以上となる加熱方法としては、一例として、常圧条件下で、85℃の熱湯に60分間浸漬処理する加熱処理が含まれる。なお、ここでいう常圧とは容器内の圧力が平常の圧力状態にあることを意味し、人為的に加圧又は減圧された圧力状態を含まない。
 かかる加熱処理は、容器に充填された発酵乳を密封包装した後に実施してもよい。また、密封包装前に容器ごと加熱処理した後、密封包装されてもよい。
 なお、容器ごと発酵乳を加熱処理する方法および設備には、任意の公知の方法および設備を用いることができる。
 斯くして製造される殺菌発酵乳は、冷却後、容器に充填・密封包装された状態で、流通に供することができる。
 本発明の製造方法で得られる殺菌発酵乳は、後述する実施例に記載するように、保形性及び/又は煮崩れ耐性を有しており、また食感は酸味が少なく、豆腐様(絹ごし豆腐、木綿豆腐)の硬さ、舌ざわりを有する。このため、豆腐に代わり、乳タンパク質を含有する食材として、さまざまな調理に使用することができる。
 以上、本明細書において、「含む」及び「含有する」の用語には、「からなる」及び「から実質的になる」という意味が含まれる。
 以下、本発明の構成及び効果について、その理解を助けるために、実験例を用いて本発明を説明する。但し、本発明はこれらの実験例によって何ら制限を受けるものではない。以下の実験は、特に言及しない限り、室温(25±5℃)、及び大気圧(常圧)条件下で実施した。なお、特に言及しない限り、以下に記載する「%」は「質量%」、「部」は「質量部」を意味する。
 下記の実験例(実施例、比較例)で使用した原料は以下の通りである。
(原料)
牛乳:成分無調整牛乳(乳たんぱく質3.0~3.6%、乳脂肪分3.5~4.2%、無脂乳固形分8.5~9.3%)(株)明治製
乳たんぱく質濃縮物(MPC):MPC80(カゼイン64.4%、ホエイ16.1%)(株)ラクトジャパン
分離ホエイたんぱく質(WPI):WPI895(ホエイ93.5%)フォンテラ・ジャパン(株)
乳酸菌スターター:明治プロビオヨーグルトR-1((株)明治製)から分離したLactobacillus bulgaricus OLL1073R-1(1073R-1乳酸菌)
実験例1 乳たんぱく質の種類と含有量、二次加熱処理の有無、及び発酵終了pHの影響 下記の方法で、各種の発酵乳(実施例1~2、比較例1~10)を調製し、原料乳ミックスに配合する乳たんぱく質の種類と含有量、二次加熱処理の有無、及び発酵終了pHについて、得られた発酵乳の保形性、煮崩れ耐性、及び食感に対する影響を評価した。
(1)発酵乳の調製
(a)発酵後二次加熱処理なし:比較例1~6
 牛乳(製造工程で均質化処理済み)500gに対し、それぞれ2%の割合でMPC又はWPIを添加し、混合して、表1に記載する成分を含有する原料乳を調製した(比較例1~3:MPC添加、比較例4~6:WPI添加)。この原料乳を95℃で1分間加熱処理(前殺菌処理)し、原料乳ミックスを調製した。この原料乳ミックスを43℃に冷却し、乳酸菌スターターを3%の割合で添加(接種)した。その後、プラスチック製の円柱状(直径7cm)のカップ容器(充填容量:100g)に充填し、発酵室(43℃)に静置し、表1に示すpHに到達するまで発酵した。pH到達後、冷蔵室(10℃以下)で冷却して、発酵乳(比較例1~6)を製造した。
(b)発酵後二次加熱処理あり:比較例7~10、実施例1~2
 牛乳(製造工程で均質化処理済み)500gに対し、それぞれ2%の割合でMPC(又はWPIを添加し、混合して、表1に記載する成分を含有する原料乳を調製した(比較例7~10:MPC添加、比較例11及び実施例1~2:WPI添加)。この原料乳を95℃で1分間加熱処理(前殺菌処理)し、原料乳ミックスを調製した。この原料乳ミックスを43℃に冷却し、乳酸菌スターターを3%の割合で添加(接種)した。その後、プラスチック製のカップ容器(充填容量:100g)に充填し、発酵室(43℃)に静置して、表1に示すpHに到達するまで発酵した。pH到達後、85℃の熱湯に容器ごと60分間浸漬し(二次加熱処理)、その後、氷冷水に移して30分間浸漬することで冷却して、殺菌発酵乳(比較例7~10、実施例1~2)を製造した。
Figure JPOXMLDOC01-appb-T000001
(2)調製した殺菌発酵乳の評価
(a)性状と保形性
 前述するように、調製後、冷却した発酵乳(比較例1~6)及び殺菌発酵乳(比較例7~10、実施例1~2)(品温25℃)を、容器をひっくりかえして中身の殺菌発酵乳をそのまま皿に移し、性状(液状、半固形状、固形状の別)を確認した。60分間静置させた後の発酵乳の性状が、牛乳のように流動状である場合を「液状」、シェイクやソフトヨーグルトのように半流動状であり、自重により崩れて、形状が維持できない場合を「半固形状」と認定し、これらはいずれも「保形性:×」と判断した。一方、自重によっても崩れず形状が維持できている場合を「固形状」と認定し、「保形性:〇」と判断した。なお、カップ形状がそのまま維持されている場合だけでなく、カップ形状が自重によって多少下に沈んでいる状態であっても角(エッジ)が崩れていない場合も、形状が崩れず維持できていると判断した。
(b)煮崩れ耐性
 調製後、冷却した発酵乳(比較例1~10,実施例1~2)のうち、固形状と判断したものについて、煮崩れ耐性を評価した。煮崩れ耐性は、容器からそのまま取り出した殺菌発酵乳100gを1Lの熱湯(80℃)に10分間浸漬し、浸漬前と比較して、形状が全体的に崩れている場合を「煮崩れ耐性:×」、形状の一部が崩れている場合を「煮崩れ耐性:△」、形状が崩れていない場合を「煮崩れ耐性:〇」と判断した。なお、浸漬前の形状がそのまま維持されている場合だけでなく、湯に浸漬することで形状が全体的に膨潤している状態であっても角(エッジ)が崩れていない場合も、形状が崩れていないと判断した。
(c)酸味及び食感
 官能評価について訓練した専門パネル6名に、調製後、10℃に冷却した発酵乳(比較例1~10,実施例1~2)を食べてもらい、酸味と食感(硬さと舌ざわり)を、下記の方法に従って、評価した。
[酸味]
 酸味を有する市販のプレーンヨーグルト(商品名:明治ブルガリアヨーグルトLB81プレーン、(株)明治製、pH4.2)(コントロール)と比較して、下記の基準により、各発酵乳(比較例1~10,実施例1~2)の酸味を評価した。
「酸味あり:+」:コントロールと同程度の酸味がある。
「酸味ややあり:±」:コントロールよりは酸味は少ないもののやや感じられる
「酸味なし:-」:酸味は感じられない。
[食感]
 市販されている通常の木綿豆腐及び絹ごし豆腐(コントロール)の食感(硬さ、舌ざわり[口腔内にいれて舌で擦りつぶした際の舌の感覚])と比較して、下記の基準により、各発酵乳(比較例1~10,実施例1~2)の食感を分類し、食感の良し悪しを評価した。
Figure JPOXMLDOC01-appb-T000002
 なお、コントロールとして使用した木綿豆腐及び絹ごし豆腐は、いずれも日本食品標準成分表2020年版(八訂)(日本国文部科学省)の「一般成分表-無機質・ビタミン類」)に記載されている規格を満たしたものである。
 下記の破断試験により測定された木綿豆腐、及び絹ごし豆腐(各々の検体数:3)の最大荷重(N)は、表3に記載する通りであった。
Figure JPOXMLDOC01-appb-T000003
[破断試験]
(1)測定装置
 クリープメータ(粘弾性測定装置):レオナーII(型番RE-3305S、パラレルプレート型)(株)山電製
(2)破断試験の条件
  プランジャー:円盤型(直径3cm、厚さ8mm)
  被験試料片との接触面積:7.1cm
   圧縮スピード:1mm/秒
  圧縮距離:10mm
(3)破断試験の方法
 プラスチック製のカップ容器(充填容量:100g)に入った状態で被験試料(品温25℃)をクリープメータの試験台に置き、被験試料片の上部からプランジャーを降ろして被験試料片の表面に当てて厚み方向に荷重をかけ、上記条件で破断試験を行った。自動解析装置(型番CA-3305:(株)山電製)、ピーク表示器(型番PA-3305:(株)山電製)及びレコーダーを用いて、圧縮曲線の記録と解析を行い、測定開始から被験試料片が破断するまでの間にかけた荷重(N)のうち最大値を、最大荷重(N)とした。
(3)評価結果
 (1)で製造した発酵乳(比較例1~10,実施例1~2)の評価結果を表4に記載する。
Figure JPOXMLDOC01-appb-T000004
 表4に記載するように、発酵乳原料として、牛乳にWPIを添加して、乳たんぱく質含量がホエイ含量2.49質量%及びカゼイン含量2.48質量%(カゼイン100質量部に対するホエイの割合:100.4質量部)となる範囲で含むように調製した原料乳ミックスを用いて、個別容器中で、乳酸菌にてpH5.4~5.8になるまで発酵させた後、当該pH範囲で容器ごと二次加熱処理(「75℃×15分×常圧」以上に相当する熱履歴)することで、保形性が良好で、ボイルしても煮崩れしにくいセットタイプの殺菌発酵乳(実施例1及び2)が得られることが確認された。また、このセットタイプの殺菌発酵乳は、通常のヨーグルトで感じられる酸味はなく、また絹ごし豆腐よりも硬く木綿豆腐よりも柔らかい硬さであり、舌ざわりも良好であった。
 一方、発酵乳原料として牛乳にMPCを添加して、乳たんぱく質含量がホエイ含量0.94質量%及びカゼイン含量3.76質量%(カゼイン100質量部に対するホエイの割合:25.0質量部)となる範囲で含むように調製した原料乳ミックスを用いて調製した発酵乳(比較例1~3、7~9)は保形性に劣るか、または保形性がよくても煮崩れ耐性が不良であった。また、発酵乳原料として牛乳にWPIを添加して、乳たんぱく質含量が前記実施例1及び2と同じになるように調製した発酵乳(比較例4~6、10)は、保形性は良好であったものの、二次加熱処理を実施していない発酵乳(比較例4~6)は煮崩れ耐性がよくなく、また二次加熱処理を実施した場合でも発酵終了時のpHを5以下とした発酵乳(比較例10)は、保形性及び煮崩れ耐性はいずれも良好であったものの、酸味が強く、食感が硬くなりすぎる傾向があった。
実験例2 WPI配合量の影響
(1)発酵乳の製造
 前記実験例1の結果を踏まえて、乳たんぱく質濃縮物としてWPIを表5に記載する割合で用いて、各種の発酵乳(実施例3~8、比較例11~26)を調製した(表5参照)。比較例11~21の発酵乳は、前記実験例1(1)(a)に記載する方法(発酵終了時pH5.8または5.4:二次加熱処理なし)、並びに実施例3~8及び比較例22~26の発酵乳は、前記実験例1(1)(b)に記載する方法(発酵終了時pH5.8または5.4:二次加熱処理あり)に従って、調製した。
Figure JPOXMLDOC01-appb-T000005
(2)発酵乳の評価
 得られた発酵乳について、実験例1と同じ方法で、性状、保形性、煮崩れ耐性、酸味、及び食感(硬さ、舌ざわり)を評価した。
 また、固形状の発酵乳については、実験例1で豆腐に対して行った破断試験方法に従って破断試験を実施し、最大荷重(N)を求めた。さらに、固形状と判断した発酵乳については、煮崩れ耐性試験に供した後の煮汁の濁度を下記の方法で測定し、濁度から、発酵乳の崩壊度(内容物:乳脂肪、乳たんぱく質などの流出度)を評価した。
[濁度試験]
 容器から取り出した発酵乳100gを1Lの熱湯(80℃)に10分間浸漬し、煮崩れ耐性を評価した後、発酵乳を取り出した残液を、煮汁とする。これを冷ました後、60#フィルターに通液し、透過液の濁度(NTU)を200P TURBIDIMETER(HACH社)により測定する。
 透過液の濁度(NTU)に従って、下記のように評価した:
〇:<5NTU
△:10~5NTU
×:>10NTU
(3)評価結果
 (1)で製造した発酵乳(比較例11~26,実施例3~8)の評価結果を表6に記載する。また、比較例24及び25、実施例5及び6について、煮汁濁度試験に供した煮汁(ビーカー入り)の画像を図1に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に記載するように、発酵乳原料として、乳たんぱく質含量がホエイ含量1.56~2.95質量%及びカゼイン含量2.46~2.5質量%であって、カゼイン100質量部に対するホエイの割合が62.4~119.9質量部となる範囲で含むように調製した原料乳ミックスを用い、容器中で、乳酸菌にてpH5.4~5.8になるまで発酵させた後、当該pH範囲で容器ごと二次加熱処理(「75℃×15分×常圧」以上に相当する熱履歴)することで、保形性が良好で、ボイルしても煮崩れしにくいセットタイプの殺菌発酵乳(実施例3~8)が得られることが確認された。また、このセットタイプの殺菌発酵乳は、通常のヨーグルトで感じられる酸味はなく、また豆腐様(木綿豆腐~絹ごし豆腐)の食感(硬さ、舌ざわり)を有していることが確認された。
 一方、発酵乳原料として、乳たんぱく質含量がホエイ含量0.63~1.1質量%及びカゼイン含量2.51~2.53質量%(カゼイン100質量部に対するホエイの割合:24.9~43.8質量部)となる範囲で含むように調製した原料乳ミックスを用いて調製した発酵乳(比較例11~14、22~25)は保形性に劣るか、または保形性がよくても煮崩れ耐性が不良であった。また、発酵乳原料として、乳たんぱく質含量が前記実施例3~8と同じになるように調製しながらも二次加熱処理を実施していない発酵乳(比較例15~20)は、保形性は良好であったものの、煮崩れ耐性が不良であり、煮汁の濁度も高かった。さらに、発酵乳原料として、乳たんぱく質含量がホエイ含量3.42質量%及びカゼイン含量2.45質量%(カゼイン100質量部に対するホエイの割合:139.6質量部)となる範囲で含むように調製した原料乳ミックスを用いて調製した発酵乳(比較例21、26)は保形性及び煮崩れ耐性は良好であったものの、食感が硬くなりすぎる傾向があった。
 健康的な食品である発酵乳を、これまでに無かった用途(汎用的な調理用途)に用いることが可能となる(例えば、豆腐様の食材用途:鍋ものや、豆腐ステーキ様、冷ややっこ様、麻婆豆腐様など)。茹でた際にも崩れず、また煮汁へのホエイタンパク質などのロスが無く摂取可能である。酸味が無い発酵乳を得ることが可能である。総じて、健康的な食シーンの開拓ならびに新しい発酵乳の市場開拓に繋がる。

Claims (10)

  1.  ホエイたんぱく質を1.5~3.0質量%、及びカゼインたんぱく質を2.0~3.0質量%の割合で含み、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である、pH5.3~5.9のセットタイプの殺菌発酵乳。
  2.  無脂乳固形分の含量が9.5~11.2質量%である、請求項1に記載する殺菌発酵乳。
  3.  保形性及び/又は煮崩れ耐性を有する、請求項1又は2に記載する殺菌発酵乳。
  4.  プランジャーを用いた破断試験において、破断時の最大荷重が5.0~8.0Nである、請求項1又は2に記載する殺菌発酵乳。
  5.  ホエイたんぱく質含量1.5~3.0質量%、及びカゼインたんぱく質含量2.0~3.0質量%の割合で含み、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である原料乳ミックスに乳酸菌を添加して、容器中で、pHが5.3~5.9になるまで発酵させる工程、及び
     得られた発酵乳を、容器に入った状態で、熱履歴が「75℃×15分×常圧」以上になるように加熱処理する工程
    を有する、セットタイプの殺菌発酵乳の製造方法。
  6.  前記原料乳ミックスの無脂乳固形分の含量が9.5~11.2質量%である、請求項5に記載する製造方法。
  7.  前記原料乳ミックスは、乳酸菌の添加前に、均質化処理、及び殺菌処理がされてなるものである、請求項5又は6に記載する製造方法。
  8.  (a)の工程前に、ホエイたんぱく質含量が1.5~3.0質量%、及びカゼインたんぱく質含量が2.0~3.0質量%、カゼインたんぱく質100質量部に対するホエイたんぱく質の割合が50~125質量部である原料乳ミックスを均質化処理、及び殺菌処理する工程を有する、請求項7に記載する製造方法。
  9.  発酵温度が35~48℃である、請求項5又は6に記載する製造方法。
  10.  発酵温度が35~48℃である、請求項7に記載する製造方法。
PCT/JP2023/033460 2022-09-14 2023-09-13 殺菌発酵乳及びその製造方法 WO2024058230A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146607 2022-09-14
JP2022146607 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024058230A1 true WO2024058230A1 (ja) 2024-03-21

Family

ID=90275266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033460 WO2024058230A1 (ja) 2022-09-14 2023-09-13 殺菌発酵乳及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024058230A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029802A1 (ja) * 2015-08-14 2017-02-23 株式会社明治 タンパク質を高濃度で含む発酵乳の製造方法
JP2018074911A (ja) * 2016-11-07 2018-05-17 株式会社明治 濃厚な発酵乳およびその製造方法
JP2018074913A (ja) * 2016-11-07 2018-05-17 株式会社明治 濃厚な発酵乳およびその製造方法
KR20220083746A (ko) * 2019-10-17 2022-06-20 아를라 푸즈 에이엠비에이 유제품 기반 제품, 식품, 이의 제조 방법 및 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029802A1 (ja) * 2015-08-14 2017-02-23 株式会社明治 タンパク質を高濃度で含む発酵乳の製造方法
JP2018074911A (ja) * 2016-11-07 2018-05-17 株式会社明治 濃厚な発酵乳およびその製造方法
JP2018074913A (ja) * 2016-11-07 2018-05-17 株式会社明治 濃厚な発酵乳およびその製造方法
KR20220083746A (ko) * 2019-10-17 2022-06-20 아를라 푸즈 에이엠비에이 유제품 기반 제품, 식품, 이의 제조 방법 및 용도

Similar Documents

Publication Publication Date Title
CA2622691C (en) Method for improving texture of fermented milk
JP2021016318A (ja) ヨーグルト及びヨーグルトの製造方法
JP2021016317A (ja) ヨーグルト及びヨーグルトの製造方法
JP7025842B2 (ja) 低酸味発酵乳の製造方法
TW201711568A (zh) 發酵乳及其製造方法
CA2988233A1 (en) Methods for making shelf-stable cultured dairy products
JP5873422B2 (ja) 撹拌型発酵乳の製造方法
JP7046492B2 (ja) 低酸味発酵乳の製造方法
JP2022529440A (ja) 乳製品および方法
WO2008000913A1 (en) Improving of texture of dairy products
WO2024058230A1 (ja) 殺菌発酵乳及びその製造方法
JP6901837B2 (ja) 低温殺菌した原料ミックスを用いた発酵乳の製造方法
JP7118520B2 (ja) 発酵乳の製造方法
JPH10262550A (ja) 液状発酵乳の製造方法
RU2441390C1 (ru) Способ производства напитка из молочной сыворотки
EP2863755B1 (en) Fermented milk product
KR20220167268A (ko) 저장 안정성 고단백질 요거트 제품
Chandan Dairy: yogurt
JP7471046B2 (ja) 低温発酵による発酵乳の製造方法および該方法により製造された発酵乳
JP7385984B2 (ja) 発酵乳の高pH製造方法および該方法により製造された発酵乳
WO2024058229A1 (ja) 殺菌発酵乳及びその製造方法
JP2022154100A (ja) 発酵乳及びその製造方法
RU2676954C1 (ru) Способ производства синбиотического продукта, обогащенного витаминно-минеральными комплексами
Skryplonek et al. Development of fermented beverages based on acid whey
JP2023047901A (ja) 発酵乳及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865579

Country of ref document: EP

Kind code of ref document: A1