WO2024057454A1 - 連続式圧延機のキャンバー制御装置 - Google Patents

連続式圧延機のキャンバー制御装置 Download PDF

Info

Publication number
WO2024057454A1
WO2024057454A1 PCT/JP2022/034450 JP2022034450W WO2024057454A1 WO 2024057454 A1 WO2024057454 A1 WO 2024057454A1 JP 2022034450 W JP2022034450 W JP 2022034450W WO 2024057454 A1 WO2024057454 A1 WO 2024057454A1
Authority
WO
WIPO (PCT)
Prior art keywords
leveling
tip
camber
rolling
correction
Prior art date
Application number
PCT/JP2022/034450
Other languages
English (en)
French (fr)
Inventor
聡 上野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020247009868A priority Critical patent/KR20240055775A/ko
Priority to CN202280063254.0A priority patent/CN118043148A/zh
Priority to PCT/JP2022/034450 priority patent/WO2024057454A1/ja
Priority to TW112114101A priority patent/TW202410983A/zh
Publication of WO2024057454A1 publication Critical patent/WO2024057454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F

Definitions

  • the present disclosure relates to a camber control device for a continuous rolling mill such as a hot finishing mill, and more particularly relates to a continuous rolling mill equipped with a plurality of rolling stands each having a reduction leveling device.
  • camber at the leading and trailing ends of the rolled material may collide with the side guides between the rolling stands and the side guides on the entry side of the winding machine, which may lead to sheet threading problems.
  • accident handling and equipment repair work occur, which reduces productivity. For this reason, it is necessary to suppress camber.
  • camber refers to the difference in the amount of reduction on the left and right sides during the rolling process, which is expressed as the difference in elongation in the rolling direction.
  • the causes of the difference in the amount of reduction on the left and right sides include misadjustment of the reduction leveling, differences in rolling reaction force due to temperature differences between the left and right sides of the rolled material, uneven wear of the rolling rolls, or differences in the thickness of the base material on the left and right sides. ,and so on.
  • camber In order to suppress camber, it is necessary to appropriately adjust the left and right opening between the upper and lower rolls using a reduction leveling device. In order to correct local camber at the tip, etc., it is necessary to accurately measure the camber shape at each position in the longitudinal direction of the rolled material. However, it is technically difficult to measure the camber shape over the entire length of a rolled material, and many control methods have been proposed that use the meandering amount measurement results instead of the camber shape. Since rough rolling mills can repeatedly carry out measurement and adjustment of rolling reduction leveling, there are many proposals for control methods to be applied to rough rolling mills, but camber also occurs in finishing rolling mills. In particular, camber often remains in areas corresponding to the tip and tail ends where tension is not constrained.
  • the meandering amount is determined within a predetermined range based on the meandering amount detected by meandering amount detectors installed on the exit side and the inlet side of the final rolling stand.
  • the rolling leveling of the final rolling stand is controlled to fit within.
  • the method described in Patent Document 1 is feedback control based on a so-called meandering amount detection value.
  • the length and amount of curvature of the camber are detected by a shape detector provided on the entry side of the finishing rolling mill, and the leveling correction amount of the rolling stand of the finishing rolling mill is set based on the detected values. ing.
  • the meandering amount detector on the exit side of the finishing rolling mill is usually installed at a distance of about 15 m from the final rolling stand, and in the feedback control as described in Patent Document 1, the meandering amount detector at the tip of the rolled material is It is not possible to control the meandering amount or camber of the rolled material at a length less than this distance.
  • An object of the present invention is to provide a camber control device for a continuous rolling mill that can suppress the occurrence of .
  • the first aspect relates to a camber control device for a continuous rolling mill.
  • a continuous rolling mill is equipped with a plurality of rolling stands having a reduction leveling device.
  • the camber control device includes a meandering amount detector that detects the meandering amount of the rolled material, a tip camber measurement section that calculates a tip camber measurement value at the tip of the rolled material based on the meandering amount detected by the meandering amount detector, and a tip camber measurement section that calculates a tip camber measurement value at the tip of the rolled material.
  • a camber correction leveling calculation unit that calculates a camber correction leveling amount, which is a reduction leveling amount necessary to reduce the tip camber in each rolling stand, based on the tip camber measurement value calculated by the camber measurement unit, and a camber correction leveling calculation unit for each rolling stand.
  • the rolling leveling device includes a tip leveling setting section that sets a tip leveling correction amount and a tip leveling control length, which are set values for reducing tip camber, and a tip leveling setting section that sets a tip leveling correction amount and a tip leveling control length, which are set values for reducing tip camber, and a tip leveling setting section that sets a tip leveling correction amount and a tip leveling control length, which are set values for reducing tip camber, and Adjust the rolling leveling device to the position where the leveling correction amount is added, and after the rolling length in each rolling stand reaches the tip leveling control length, adjust the position of the rolling device so that the tip leveling correction amount gradually decreases.
  • the second aspect further has the following characteristics.
  • the meandering amount detector is arranged on the exit side of the final rolling stand.
  • the camber correction leveling calculation unit calculates the camber correction leveling amount based on the measured value of the tip camber on the exit side of the final rolling stand.
  • the camber control device further includes a tip leveling learning section that learns and updates a tip leveling correction amount to be applied to subsequent rolling of the next rolled material based on the camber correction leveling amount.
  • the tip leveling setting section sets the latest value updated by the tip leveling learning section as the tip leveling correction amount.
  • the meandering amount detector includes a first meandering amount detector disposed on the exit side of the final rolling stand, and at least one second meandering amount detector disposed between any one of the rolling stands.
  • the camber correction leveling calculation unit calculates the camber correction leveling amount for the rolling stand upstream of the second meandering amount detector based on the tip camber measurement value at the exit side of the final rolling stand and the tip camber measurement value between the rolling stands. calculate.
  • the camber correction leveling calculation unit calculates the camber correction leveling amount for the rolling stand downstream from the second meandering amount detector based on the measured value of the tip camber on the exit side of the final rolling stand.
  • the camber control device further includes a tip leveling learning section that learns and updates a tip leveling correction amount to be applied to subsequent rolling of the next rolled material based on the camber correction leveling amount.
  • the tip leveling setting section sets the latest value updated by the tip leveling learning section as the tip leveling correction amount.
  • the fourth aspect further has the following characteristics.
  • At least one meandering amount detector is disposed between any one of the rolling stands. After the meandering amount detector completes measurement over the rolling length necessary to calculate the tip camber measurement value, each process of the tip camber measurement section, camber correction leveling calculation section, and tip leveling setting section is immediately executed.
  • the camber correction leveling calculating section calculates the camber correction leveling amount of each rolling stand downstream of the meandering amount detector, based on the tip camber measurement value in the meandering amount detector.
  • the tip leveling setting section sets a tip leveling correction amount and a tip leveling control length to the reduction leveling device of each rolling stand downstream of the meandering amount detector in rolling of the currently rolled material, based on the camber correction leveling amount.
  • a continuous rolling mill equipped with at least one meandering amount detection device it is possible to reduce local camber at the tip of a rolled material, and to reduce the local camber of a steel strip coil wound by a winding machine. Telescope can be suppressed. Moreover, it is possible to avoid the trouble of the curved tip of the rolled material colliding with the side guide during threading of the tip.
  • FIG. 1 is a diagram illustrating a configuration example of a continuous rolling mill to which a camber control device according to the present disclosure is applied.
  • 1 is a block diagram showing the configuration of a camber control device according to Embodiment 1.
  • FIG. 3 is a diagram for explaining the operation of the roll-down leveling device by the roll-down leveling control unit in the first embodiment.
  • FIG. 3 is a diagram for explaining processing by a camber correction leveling calculation unit in the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of a camber control device according to a second embodiment.
  • FIG. 7 is a diagram for explaining processing by a camber correction leveling calculation section in Embodiment 2.
  • FIG. FIG. 2 is a conceptual diagram showing an example of the hardware configuration of a processing circuit included in the camber control device.
  • FIG. 1 is a diagram showing a configuration example of a continuous rolling mill to which a camber control device according to the present disclosure is applied.
  • the continuous rolling mill 1 is a multi-stage rolling mill including a plurality of rolling stands F1, F2, . . . , Fn. n is a natural number of 2 or more.
  • the rolled material M is steel or other metal material.
  • the rolled material M is hot rolled to a predetermined thickness while moving from the left side to the right side in the figure.
  • the rolled material M rolled into a plate shape is wound up into a steel strip coil by a winding machine (not shown).
  • Each rolling stand Fi (1 ⁇ i ⁇ n) includes two upper and lower work rolls Rw, and two upper and lower backup rolls Rb that are respectively disposed on the outside of the work roll Rw in the vertical direction.
  • a rolling down device (not shown) is provided on the working side and the driving side of the backup roll Rb, respectively, so that the gap between the upper and lower work rolls Rw can be adjusted.
  • Each rolling stand Fi is further equipped with a rolling leveling device Vi (1 ⁇ i ⁇ n), and the rolling device adjusts the parallelism of both or one of the working side and the driving side of the upper and lower work rolls Rw. The difference between the working side and the driving side of the gap can be changed.
  • the rolling leveling device Vi lowers the position where the loads detected by the load cells on the working side and the driving side are almost equal when the upper and lower work rolls Rw are brought into contact and the rolling devices on the working side and the driving side are tightened by a certain amount. This is used as the zero reference for the leveling device Vi.
  • the continuous rolling mill 1 has at least one meandering amount detector Di between the rolling stands F1, F2, . . . , Fn or on the exit side of the final rolling stand.
  • the meandering amount detector Di includes a first meandering amount detector Dn arranged on the exit side of the final rolling stand Fn, and a second meandering amount detector D3 arranged between the rolling stands F3 and F4.
  • Each meandering amount detector Di (1 ⁇ i ⁇ n) is installed at a distance LDi on the downstream side of the rolling stand Fi.
  • the meandering amount detector Di may be an optical or contact type detector, and detects the left and right end positions of the rolled material M, and detects the center of the rolled material determined from the left and right end positions of the rolled material M. The deviation of the position from the rolling mill center position is output as the meandering amount.
  • the continuous rolling mill 1 includes a setup device 2 and a camber control device 3.
  • the setup device 2 controls various setup values necessary for the camber control device 3, specifically, the thickness of the rolled material M, the influence coefficient, and the tip leveling control length of the final rolling stand Fn in each rolling stand Fi. is output to the camber control device 3 before the start of rolling of the rolled material.
  • the camber control device 3 calculates the roll-down leveling setting value of each rolling stand Fi based on the setup value acquired from the setup device 2 and the meandering amount collected by the meandering amount detector Di, and adjusts the roll-down leveling device Vi. .
  • FIG. 2 is a block diagram showing the configuration of the camber control device 3 according to the first embodiment.
  • the camber control device 3 includes a tip camber measurement section 31, a camber correction leveling calculation section 32, a tip leveling learning section 33, a tip leveling setting section 34, and a reduction leveling control section 35.
  • the functions constituting the camber control device 3 will be explained in detail.
  • the camber control device 3 executes the tip leveling setting section 34 before starting rolling.
  • the tip leveling setting unit 34 sets the “tip leveling correction amount” and “tip leveling control” of each rolling stand Fi based on the setup value of the next rolled material acquired from the setup device 2 and the learning value acquired from the tip leveling learning unit 33. Determine the length.
  • the tip leveling control length is the length of the tip of the rolled material whose tip camber is desired to be controlled.
  • the tip leveling control length L CMB,N in the final rolling stand Fn is set to any length, for example, within a range of 15 m to 20 m.
  • the tip leveling control length L CMB,i of each rolling stand Fi is determined by the exit side plate thickness hi of each rolling stand Fi relative to the tip leveling control length L CMB,N of the final rolling stand Fn, as shown in the following formula (1). It is determined by the plate thickness ratio (h i /h N ).
  • the tip leveling setting section 34 determines the latest learning value acquired from the tip leveling learning section 33 as the tip leveling correction amount.
  • the tip leveling setting section 34 sets the tip leveling correction amount and the tip leveling control length in the reduction leveling control section 35 at a specified timing before the rolled material M enters each rolling stand Fi.
  • the roll leveling control unit 35 has a tracking function that calculates the rolling length in each rolling stand Fi, and controls the roll leveling device Vi based on the tip leveling correction amount and tip leveling control length set by the tip leveling setting unit 34. operate.
  • FIG. 3 is a diagram for explaining the operation of the roll-down leveling device Vi by the roll-down leveling control section 35.
  • the rolling down leveling device Vi is adjusted to a position to which the tip leveling correction amount is added.
  • the position of the rolling leveling device Vi is adjusted so as to gradually decrease the added tip leveling correction amount.
  • the camber control device 3 After the measurement of the tip of the rolled material by the meandering amount detector Dn on the output side of the final rolling stand Fn is completed, the camber control device 3 operates a tip camber measurement section 31, a camber correction leveling calculation section 32, and a camber correction leveling calculation section 32, as described below. Each process of the tip leveling learning section 33 is executed in sequence.
  • the tip camber measurement unit 31 measures the meandering amount of the tip of the rolled material at each meandering amount detector D i between the rolling stands and on the exit side of the final rolling stand Fn. For each meandering amount, a detected value is collected during a period from when the tip of the rolled material reaches the meandering amount detector Di to passing through a length specified by the tip leveling control length. Next, the tip camber measuring section 31 calculates the measured tip camber value of the rolled material M using the measurement data of the meandering amount.
  • the size of the tip camber is defined as the average value of the curvature when the change in meandering amount near the tip of the rolled material is approximated by a curve.
  • Equation (2) gives the curvature for each measurement position. Therefore, when the approximate polynomial is of third order or higher, the average value of the curvatures calculated for each measurement position is calculated. When the approximate polynomial is quadratic, a unique curvature is calculated, and the result is the average curvature.
  • the camber correction leveling calculation unit 32 calculates the amount of correction of the reduction leveling necessary to correct the tip camber.
  • FIG. 4 is a diagram for explaining the processing by the camber correction leveling calculation section 32.
  • the camber correction leveling calculation unit 32 determines the estimated value of the tip camber at each rolling stand using the tip camber measurement values calculated by the tip camber measurement unit 31 between the rolling stands and on the exit side of the final rolling stand. If no meandering amount detector is provided between any of the rolling stands, the estimated value of the tip camber at each rolling stand is the same as the measured value of the tip camber at the exit side of the final rolling stand Fn.
  • the estimated tip camber value at the rolling stand upstream from the meandering amount detector is calculated using the following formula (3). As shown in Figure 2, the tip camber measurement value on the exit side of the final rolling stand and the tip camber measurement value at the inter-rolling stand meandering amount detector are calculated. The tip camber at the rolling stand downstream of the meandering amount detector is set to be equal to the tip camber measurement value at the exit side of the final rolling stand.
  • the camber correction leveling calculation unit 32 calculates the camber correction leveling amount of each rolling stand using the estimated tip camber value and influence coefficient of each rolling stand, as shown in equation (4) below.
  • the tip leveling learning section 33 updates the tip leveling correction amount of each rolling stand based on the camber correction leveling amount calculated by the camber correction leveling calculation section 32, as shown in equation (5) below.
  • the "OLD value” is a value determined based on the results before the current rolled material, and is stored in a stratified table divided by conditions such as the steel type and size of the rolled material M, heating furnace number, and rolling stand number. has been done.
  • the stratification table is stored in a memory 30c, which will be described later.
  • the "NEW value” is a value updated based on the result of the current rolled material, and the updated latest tip leveling correction amount is overwritten and stored in the layered table.
  • the setting values of the reduction leveling devices of all the rolling stands are adapted based on the measured value of the tip camber at the exit side of the final rolling stand Fn and the measured value of the tip camber at the intermediate rolling stand.
  • the tip camber can be reduced by making the following corrections.
  • FIG. 5 is a block diagram showing the configuration of a camber control device according to the second embodiment.
  • the tip camber measurement unit 31 completes measurement of the meandering amount in the material length range given as the tip leveling control length of the tip of the rolled material by the meandering amount detector D3 between the rolling stands F3 and F4.
  • This embodiment differs from the first embodiment in that the tip camber measurement value is immediately calculated after the calculation. Immediately after the processing of the tip camber measurement section 31 is completed, the processing of the camber correction leveling calculation section 32 is executed.
  • FIG. 6 is a diagram for explaining the processing by the camber correction leveling calculation section 32.
  • the camber correction leveling calculation unit 32 determines the tip camber estimated value in each rolling stand downstream of the meandering amount detector to be equal to the tip camber measurement value.
  • the camber correction leveling calculation unit 32 uses the estimated tip camber value and the influence coefficient to calculate the camber correction leveling amount of each rolling stand downstream of the meandering amount detector, as shown in equation (4) above. calculate.
  • the tip leveling setting section 34 is executed.
  • the tip leveling setting unit 34 determines the tip leveling correction amount and the tip leveling control length to be set in the rolling leveling device of each rolling stand downstream of the meandering amount detector Di.
  • the roll leveling control unit 35 controls the roll leveling device Vi of each rolling stand according to the tip leveling correction amount and tip leveling control length set from the tip leveling setting unit 34. operate.
  • the camber of the tip of the rolled material is measured while the tip of the rolled material is passing through the continuous rolling mill 1, and the rolling leveling of the remaining rolling stands is adjusted. , the tip camber of the rolled material M on the exit side of the final rolling stand Fn can be reduced.
  • FIG. 7 is a diagram showing an example of the hardware configuration of a processing circuit included in the camber control device 3.
  • the functions of the camber control device 3 can be realized by a processing circuit 30 shown in FIG.
  • This processing circuit 30 may be dedicated hardware 30a.
  • This processing circuit may include a processor 30b and a memory 30c.
  • This processing circuit may be partially formed as dedicated hardware 30a and further include a processor 30b and a memory 30c.
  • part of the processing circuit is formed as dedicated hardware 30a, and the processing circuit also includes a processor 30b and a memory 30c.
  • At least a portion of the processing circuitry may be at least one piece of dedicated hardware 30a.
  • the processing circuit can be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the processing circuit may include at least one processor 30b and at least one memory 30c.
  • each function of the camber control device 3 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the memory 30c.
  • the processor 30b realizes the functions of each section by reading and executing programs stored in the memory 30c.
  • the processor 30b is also called a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • the memory 30c is, for example, a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, or the like.
  • the processing circuit can realize each function of the camber control device 3 using hardware, software, firmware, or a combination thereof.
  • the present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit of the present invention.
  • the configuration of the continuous rolling mill is not limited to the example shown in FIG. 1, and the present invention can be applied to continuous rolling mills with variously modified configurations.
  • the number, quantity, amount, range, etc. of each element in the above-described embodiments unless it is specifically specified or it is clearly specified to that number in principle, This invention is not limited to the number.
  • the structures described in the above-described embodiments are not necessarily essential to the present invention, unless explicitly stated or clearly specified in principle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

圧延材の先端部のキャンバーを低減し、鋼帯コイルにおけるテレスコープの発生を抑制可能な連続式圧延機のキャンバー制御装置を提供する。先端キャンバー測定部は、蛇行量検出器で検出した圧延材の蛇行量に基づき、圧延材先端部における先端キャンバー測定値を算出する。キャンバー修正レベリング演算部は、先端キャンバー測定値に基づきキャンバー修正レベリング量を算出する。先端レベリング設定部は、各圧延スタンドの圧下レベリング装置に対し、先端キャンバーを低減するための先端レベリング補正量と先端レベリング制御長さを設定する。圧下レベリング制御部は、各圧延スタンドに圧延材が進入する前に、先端レベリング補正量を加算した位置に圧下レベリング装置を調整し、各圧延スタンドにおける圧延長さが先端レベリング制御長さに到達した後、徐々に先端レベリング補正量が減少するように圧下レベリング装置の位置を調整する。

Description

連続式圧延機のキャンバー制御装置
 本開示は、熱間仕上圧延機などの連続式圧延機のキャンバー制御装置に関し、より詳しくは、連続式圧延機が圧下レベリング装置を夫々有する複数の圧延スタンドを備えるものに関する。
 連続式圧延機で圧延材を圧延するに際して、圧延材が圧延ロール幅方向中心位置からずれ、左右(駆動側と作業側)何れかの方向に移動する現象を蛇行という。一方、圧延材自体が幅方向に湾曲した形状になったものをキャンバーと呼ぶ。圧延材の先端付近や尾端付近では、局所的に大きなキャンバーが生じやすいことが知られている。圧延後の鋼帯に残るキャンバーは、巻き取り後の鋼帯コイルに、テレスコープと呼ばれる巻きズレを引き起こす。鋼帯コイルのテレスコープは、コイル搬送時の事故につながる可能性がある。また、圧延材先尾端の大きなキャンバーは、圧延スタンド間のサイドガイドや、巻き取り機入側のサイドガイドに衝突し、通板トラブルに至ることもある。このようなトラブルが発生すると、事故処理や、設備の補修作業などが発生し、生産性が低下する。このため、キャンバーを抑制する必要がある。
 ここで、キャンバーは、圧延プロセスにおいて、左右の圧下量の差が圧延方向の伸びの差として表われたものである。左右の圧下量の差が生じる原因としては、圧下レベリングの調整ズレ、圧延材の左右の温度差などによる圧延反力の差、圧延ロールの偏った摩耗、あるいは、母材の板厚の左右差、などがある。
 キャンバーを抑制するためには、圧下レベリング装置で上下圧延ロール間の左右開度を適切に調整する必要がある。先端部など局所的なキャンバーを修正するためには、圧延材長手方向の各位置におけるキャンバー形状を正確に測定する必要がある。しかしながら、圧延材全長に亘るキャンバー形状の測定は、技術的に難しい面があり、キャンバー形状の代わりに、蛇行量の測定結果を使った制御方法が多く提案されている。粗圧延機は、測定と、圧下レベリングの調整、を繰り返し実施できるため、粗圧延機に適用する制御方法の提案が多いが、仕上圧延機でもキャンバーは発生する。特に、張力の拘束がない先端付近や尾端付近に対応する部分にキャンバーが残ることが多い。
 特許文献1では、鋼帯コイルのテレスコープの発生を抑制するため、最終圧延スタンドの出側と入側に設置された蛇行量検出器で検出した蛇行量に基づいて、蛇行量が所定の範囲に収まるように最終圧延スタンドの圧下レベリングを制御している。特許文献1記載の方法は、いわゆる蛇行量検出値に基づくフィードバック制御である。また、特許文献2では、仕上圧延機の入側に設けた形状検出器によりキャンバーの長さと曲り量を検出し、当該検出値に基づいて、仕上圧延機の圧延スタンドのレベリング補正量を設定している。
日本特開2020-131196号公報 日本特許第2526323号公報
 しかしながら、仕上圧延機出側の蛇行量検出器は、通常、最終圧延スタンドから15m程度の距離だけ離れて設置されており、特許文献1に記載のようなフィードバック制御では、圧延材先端部の、当該距離以下の長さにおける、圧延材の蛇行量やキャンバーを制御することはできない。
 また、特許文献2記載の方法のように、仕上圧延機入側で検出したキャンバーに基づいて圧下レベリングの位置を調整する方法によれば、粗圧延機で作られたキャンバーを低減することはできたとしても、仕上圧延機の各圧延スタンドの圧下レベリングの調整ズレなど、仕上圧延機に内在する要因(硬さ)に因るキャンバーを抑えることはできない。また、各圧延スタンドの圧下レベリングは、圧延中、一定の圧下レベリング位置に調整、保持されていると思われるが、このように圧下レベリング位置を調整するだけでは、圧延材全長に亘って同じ矯正効果を与え、先端部の局所的な曲りを修正することはできず、これでは歩留まり向上させることができない。
 本開示は、上述のような課題を解決するためになされたものであり、連続式圧延機で圧延材を圧延する際に、圧延材の先端部のキャンバーを低減し、鋼帯コイルにおけるテレスコープの発生を抑制可能な連続式圧延機のキャンバー制御装置を提供することを目的とする。
 第1の観点は、連続式圧延機のキャンバー制御装置に関連する。連続式圧延機は、圧下レベリング装置を有する複数の圧延スタンドを備える。キャンバー制御装置は、圧延材の蛇行量を検出する蛇行量検出器と、蛇行量検出器で検出した蛇行量に基づき、圧延材先端部における先端キャンバー測定値を算出する先端キャンバー測定部と、先端キャンバー測定部で算出した先端キャンバー測定値に基づいて、各圧延スタンドにおける先端キャンバーを低減するのに必要な圧下レベリング量であるキャンバー修正レベリング量を算出するキャンバー修正レベリング演算部と、各圧延スタンドの前記圧下レベリング装置に対し、先端キャンバーを低減するための設定値である先端レベリング補正量と先端レベリング制御長さを設定する先端レベリング設定部と、各圧延スタンドに圧延材が進入する前に、先端レベリング補正量を加算した位置に圧下レベリング装置を調整し、各圧延スタンドにおける圧延長さが先端レベリング制御長さに到達した後、徐々に先端レベリング補正量が減少するように圧下レベリング装置の位置を調整する圧下レベリング制御部と、を備える。
 第2の観点は、第1の観点に加えて、次の特徴を更に有する。蛇行量検出器は、最終圧延スタンド出側に配置される。キャンバー修正レベリング演算部は、最終圧延スタンド出側における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出する。キャンバー制御装置は、キャンバー修正レベリング量に基づいて、次の圧延材以降の圧延に適用される先端レベリング補正量を学習的に更新する先端レベリング学習部を更に備える。先端レベリング設定部は、先端レベリング学習部で更新された最新値を先端レベリング補正量として設定する。
 第3の観点は、第1の観点に加えて、次の特徴を更に有する。蛇行量検出器は、最終圧延スタンド出側に配置される第1蛇行量検出器と、いずれかの圧延スタンド間に配置される少なくとも一つの第2蛇行量検出器とを含む。キャンバー修正レベリング演算部は、第2蛇行量検出器より上流側の圧延スタンドについては、最終圧延スタンド出側における先端キャンバー測定値と、圧延スタンド間における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出する。キャンバー修正レベリング演算部は、第2蛇行量検出器より下流側の圧延スタンドについては、最終圧延スタンド出側における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出する。キャンバー制御装置は、キャンバー修正レベリング量に基づいて、次の圧延材以降の圧延に適用される先端レベリング補正量を学習的に更新する先端レベリング学習部を更に備える。先端レベリング設定部は、先端レベリング学習部で更新された最新値を先端レベリング補正量として設定する。
 第4の観点は、第1の観点に加えて、次の特徴を更に有する。蛇行量検出器は、いずれかの圧延スタンド間に少なくとも一つ配置される。蛇行量検出器で、先端キャンバー測定値の算出に必要な圧延長さに亘る測定を終えた後、先端キャンバー測定部、キャンバー修正レベリング演算部及び先端レベリング設定部の各処理を即座に実行する。記キャンバー修正レベリング演算部は、蛇行量検出器における先端キャンバー測定値に基づいて、蛇行量検出器より下流側の各圧延スタンドのキャンバー修正レベリング量を算出する。先端レベリング設定部は、キャンバー修正レベリング量に基づいて、現圧延材の圧延における蛇行量検出器より下流側の各圧延スタンドの圧下レベリング装置に先端レベリング補正量と先端レベリング制御長さを設定する。
 本開示によれば、少なくとも一つの蛇行量検出装器を備えた連続式圧延機において、圧延材先端部の局所的なキャンバーを低減することができ、巻き取り機で巻き取った鋼帯コイルのテレスコープを抑制することができる。また、先端通板中に、サイドガイドに湾曲した圧延材先端部が衝突するトラブルを回避することができる。
本開示に係るキャンバー制御装置が適用される連続式圧延機の構成例を示す図である。 実施の形態1によるキャンバー制御装置の構成を示すブロック図である。 実施の形態1における圧下レベリング制御部による圧下レベリング装置の操作について説明するための図である。 実施の形態1におけるキャンバー修正レベリング演算部による処理を説明するための図である。 実施の形態2によるキャンバー制御装置の構成を示すブロック図である。 実施の形態2におけるキャンバー修正レベリング演算部による処理を説明するための図である。 キャンバー制御装置が有する処理回路のハードウェア構成例を示す概念図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
[連続式圧延機]
 図1は、本開示に係るキャンバー制御装置が適用される連続式圧延機の構成例を示す図である。連続式圧延機1は、複数の圧延スタンドF1,F2,・・・,Fnを備える複数段の圧延機である。nは、2以上の自然数である。圧延材Mは、鉄鋼又はその他の金属材である。圧延材Mは、図中の左側から右側に移動しながら、熱間で所定の板厚に圧延される。板状に圧延された圧延材Mは、図示省略の巻取機により巻き取られて鋼帯コイルとなる。
 各圧延スタンドFi(1≦i≦n)は、上下2本のワークロールRwと、ワークロールRwの上下方向外側に夫々配置される上下2本のバックアップロールRbを備える。バックアップロールRbの作業側と駆動側には、図示省略の圧下装置が夫々設けられ、上下ワークロールRwの間隙を調整できる。各圧延スタンドFiは、圧下レベリング装置Vi(1≦i≦n)を更に備え、圧下装置により上下ワークロールRwの作業側と駆動側の両方、あるいは一方の平行度を調整し、上下ワークロールRw間隙の作業側と駆動側の差異を変更できる。なお、圧下レベリング装置Viは、上下ワークロールRwを接触させ、作業側と駆動側の圧下装置を一定量締め込んだ時に、作業側と駆動側のロードセルで検出した荷重がほぼ等しくなる位置を圧下レベリング装置Viのゼロ基準とする。
 連続式圧延機1は、圧延スタンドF1,F2,・・・,Fnのスタンド間、あるいは最終圧延スタンドの出側に、少なくとも一つの蛇行量検出器Diを有する。蛇行量検出器Diは、最終圧延スタンドFnの出側に配置される第1蛇行量検出器Dnと、圧延スタンドF3,F4のスタンド間に配置される第2蛇行量検出器D3を含む。各蛇行量検出器Di(1≦i≦n)は、圧延スタンドFiの下流側に距離LDi離れて設置される。蛇行量検出器Diは、光学式または接触式のいずれの方式の検出器であってもよく、圧延材Mの左右端部位置を検出し、圧延材Mの左右端部位置から決まる圧延材中心位置の圧延機中心位置からの偏差を蛇行量として出力する。
 連続式圧延機1は、セットアップ装置2とキャンバー制御装置3を備える。セットアップ装置2は、キャンバー制御装置3に必要な各種セットアップ値、具体的には、各圧延スタンドFiにおける、圧延材Mの板厚、影響係数、および最終圧延スタンドFnの先端レベリング制御長さ、などを当該圧延材の圧延開始前にキャンバー制御装置3に出力する。
 キャンバー制御装置3は、セットアップ装置2から取得したセットアップ値と、蛇行量検出器Diで収集した蛇行量に基づいて、各圧延スタンドFiの圧下レベリング設定値を計算し、圧下レベリング装置Viを調整する。
実施の形態1.
 図2は、実施の形態1によるキャンバー制御装置3の構成を示すブロック図である。キャンバー制御装置3は、先端キャンバー測定部31、キャンバー修正レベリング演算部32、先端レベリング学習部33、先端レベリング設定部34及び圧下レベリング制御部35を備える。以下、キャンバー制御装置3を構成する機能を詳細に説明する。
 キャンバー制御装置3は、圧延開始前に、先端レベリング設定部34を実行する。先端レベリング設定部34は、セットアップ装置2から取得した次圧延材のセットアップ値及び先端レベリング学習部33から取得した学習値に基づいて、各圧延スタンドFiの「先端レベリング補正量」と「先端レベリング制御長さ」を決定する。先端レベリング制御長さは、先端キャンバーを制御したい圧延材先端部の長さである。最終圧延スタンドFnにおける先端レベリング制御長さLCMB,Nとしては、任意の長さが設定され、例えば、15m~20mの範囲内に設定される。各圧延スタンドFiにおける先端レベリング制御長さLCMB,iは、下式(1)に示すように、最終圧延スタンドFnの先端レベリング制御長さLCMB,Nに対する各圧延スタンドFiの出側板厚hiの板厚比(h/h)で決められる。
Figure JPOXMLDOC01-appb-M000001
 先端レベリング設定部34は、先端レベリング学習部33から取得した最新の学習値を先端レベリング補正量と決める。先端レベリング設定部34は、各圧延スタンドFiに圧延材Mが進入する前の指定されたタイミングで、先端レベリング補正量と先端レベリング制御長さを圧下レベリング制御部35に設定する。
 圧下レベリング制御部35は、各圧延スタンドFiにおける圧延長を計算するトラッキング機能を有し、先端レベリング設定部34により設定された先端レベリング補正量と先端レベリング制御長さに基づいて、圧下レベリング装置Viを操作する。
 図3は、圧下レベリング制御部35による圧下レベリング装置Viの操作について説明するための図である。先端レベリング設定部34により先端レベリング補正量と先端レベリング制御長さが設定されると、先端レベリング補正量を加算した位置に圧下レベリング装置Viを調整する。当該圧延スタンドFiの圧延距離が先端レベリング制御長さに達したら、加算した先端レベリング補正量を徐々に減少させるように、圧下レベリング装置Viの位置が調整される。
 キャンバー制御装置3は、最終圧延スタンドFn出側の蛇行量検出器Dnにおける圧延材先端部の測定が完了した後、以下に説明するように、先端キャンバー測定部31、キャンバー修正レベリング演算部32及び先端レベリング学習部33の各処理を順次実施する。
 先端キャンバー測定部31は、圧延スタンド間および最終圧延スタンドFn出側のそれぞれの蛇行量検出器Dにおいて、圧延材先端部の蛇行量を測定する。それぞれの蛇行量は、圧延材先端部が蛇行量検出器Diに到達してから、先端レベリング制御長さで指定される長さを通過する期間の検出値を収集する。次に、先端キャンバー測定部31は、上記蛇行量の測定データを用いて、圧延材Mの先端キャンバー測定値を算出する。先端キャンバーの大きさは、圧延材先端付近における蛇行量の変化を曲線近似したときの曲率の平均値と定義する。採取した蛇行量の測定データを用いて先端キャンバーの曲率を求める方法の一つとして、蛇行量の測定データを、測定位置をX軸、蛇行量をY軸としてプロットした関係から近似多項式を求め、下式(2)に示す方法で算出する方法を用いることができる。下式(2)は、測定位置毎の曲率を与える。このため、近似多項式が3次以上の場合、各測定位置について算出した曲率の平均値を計算することになる。近似多項式が2次の場合は、一意の曲率が算出されるため、その結果が平均曲率となる。
Figure JPOXMLDOC01-appb-M000002
 キャンバー修正レベリング演算部32は、先端キャンバーを修正するのに必要な圧下レベリングの補正量を算出する。図4は、キャンバー修正レベリング演算部32による処理を説明するための図である。まず、キャンバー修正レベリング演算部32は、先端キャンバー測定部31で算出した圧延スタンド間および最終圧延スタンド出側における先端キャンバー測定値を用いて、各圧延スタンドにおける先端キャンバーの推定値を決定する。いずれの圧延スタンド間にも蛇行量検出器が備わっていない場合、各圧延スタンドにおける先端キャンバー推定値は、最終圧延スタンドFn出側における先端キャンバー測定値と同じとする。いずれかの圧延スタンド間に蛇行量検出器が備わっており、先端キャンバー測定値が採取できている場合、当該蛇行量検出器より上流側の圧延スタンドにおける先端キャンバー推定値は、下式(3)に示すように、最終圧延スタンド出側における先端キャンバー測定値と圧延スタンド間蛇行量検出器における先端キャンバー測定値を案分して算出する。当該蛇行量検出器の下流側の圧延スタンドにおける先端キャンバーは、最終圧延スタンド出側における先端キャンバー測定値と等値とする。
Figure JPOXMLDOC01-appb-M000003
 次に、キャンバー修正レベリング演算部32は、下式(4)に示すように、各圧延スタンドの先端キャンバー推定値と影響係数を用いて各圧延スタンドのキャンバー修正レベリング量を算出する。
Figure JPOXMLDOC01-appb-M000004
 先端レベリング学習部33は、下式(5)に示すように、キャンバー修正レベリング演算部32で計算されたキャンバー修正レベリング量に基づいて、各圧延スタンドの先端レベリング補正量を更新する。「OLD値」は、現圧延材以前の結果に基づいて決まった値であり、圧延材Mの鋼種やサイズ、加熱炉番号、および圧延スタンド番号、などの条件で区分された層別テーブルに格納されている。層別テーブルは、後述するメモリ30cに格納されている。「NEW値」は、現圧延材の結果に基づいて更新された値であり、更新された最新の先端レベリング補正量は、当該層別テーブルに上書き格納される。
Figure JPOXMLDOC01-appb-M000005
 以上説明したように、本実施の形態によれば、最終圧延スタンドFn出側における先端キャンバー測定値と中間圧延スタンドにおける先端キャンバー測定値に基づいて、全圧延スタンドの圧下レベリング装置の設定値を適応的に修正することで、先端キャンバーを低減することができる。
実施の形態2.
 図5は、実施の形態2によるキャンバー制御装置の構成を示すブロック図である。本実施の形態では、先端キャンバー測定部31は、圧延スタンドF3,F4間の蛇行量検出器D3により圧延材先端部の先端レベリング制御長さとして与えられる材料長さの範囲の蛇行量測定が完了した後、即座に、先端キャンバー測定値を算出する点で、上記実施の形態1と相違する。先端キャンバー測定部31の処理が完了した後、即座に、キャンバー修正レベリング演算部32の処理が実施される。
 図6は、キャンバー修正レベリング演算部32による処理を説明するための図である。キャンバー修正レベリング演算部32は、蛇行量検出器より下流側の各圧延スタンドにおける先端キャンバー推定値を、前記先端キャンバー測定値と等値として決定する。次に、キャンバー修正レベリング演算部32は、上式(4)に示すように、先端キャンバー推定値と影響係数を用いて、当該蛇行量検出器より下流側の各圧延スタンドのキャンバー修正レベリング量を算出する。キャンバー修正レベリング演算部32の処理が完了したあと、即座に、先端レベリング設定部34が実施される。
 先端レベリング設定部34は、キャンバー修正レベリング量に基づいて、蛇行量検出器Diより下流側の各圧延スタンドの圧下レベリング装置に設定する先端レベリング補正量をおよび先端レベリング制御長さを決定する。
 圧下レベリング制御部35は、上記実施の形態1(図3参照)と同様に、先端レベリング設定部34から設定された先端レベリング補正量と先端レベリング制御長さに従って、各圧延スタンドの圧下レベリング装置Viを操作する。
 以上説明したように、本実施の形態によれば、連続式圧延機1を圧延材先端部が通板している途中の先端キャンバーを測定し、残りの圧延スタンドの圧下レベリングを調整することで、最終圧延スタンドFn出側における圧延材Mの先端キャンバーを低減することができる。
 上記実施の形態1及び2におけるキャンバー制御装置3の具体的構造に限定はないが、一例として次のようなものであってもよい。図7は、キャンバー制御装置3が有する処理回路のハードウェア構成の一例を示す図である。キャンバー制御装置3の機能は、図7に示す処理回路30により実現することができる。この処理回路30は、専用ハードウェア30aであってもよい。この処理回路は、プロセッサ30b及びメモリ30cを備えていてもよい。この処理回路は、一部が専用ハードウェア30aとして形成され、更にプロセッサ30b及びメモリ30cを備えていてもよい。図7の例は、処理回路の一部が専用ハードウェア30aとして形成されるとともに、処理回路がプロセッサ30b及びメモリ30cをも備えている。
 処理回路の少なくとも一部が、少なくとも1つの専用ハードウェア30aであってもよい。この場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。
 処理回路が、少なくとも1つのプロセッサ30b及び少なくとも1つのメモリ30cを備えてもよい。この場合、キャンバー制御装置3の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ30cに格納される。プロセッサ30bは、メモリ30cに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。
 プロセッサ30bは、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPとも呼ばれる。メモリ30cは、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ等が該当する。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、キャンバー制御装置3の各機能を実現することができる。
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。連続式圧延機の構成は、図1に示す例に限定されず、種々変形した構成の連続式圧延機に本発明を適用することができる。また、上述した実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、上述した実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
1…仕上圧延機(連続式圧延機)、3…キャンバー制御装置、Vi…圧下レベリング装置、Fi…圧延スタンド、M…圧延材、Di…蛇行量検出器、Dn…第1蛇行量検出器、D3…第2蛇行量検出器、31…先端キャンバー測定部、32…キャンバー修正レベリング演算部、33…先端レベリング学習部、34…先端レベリング設定部、35…圧下レベリング制御部

Claims (4)

  1.  連続式圧延機のキャンバー制御装置であって、
     前記連続式圧延機が、圧下レベリング装置を有する複数の圧延スタンドを備えるものにおいて、
     圧延材の蛇行量を検出する蛇行量検出器と、
     前記蛇行量検出器で検出した蛇行量に基づき、圧延材先端部における先端キャンバー測定値を算出する先端キャンバー測定部と、
     前記先端キャンバー測定部で算出した先端キャンバー測定値に基づいて、各圧延スタンドにおける先端キャンバーを低減するのに必要な圧下レベリング量であるキャンバー修正レベリング量を算出するキャンバー修正レベリング演算部と、
     各圧延スタンドの前記圧下レベリング装置に対し、先端キャンバーを低減するための設定値である先端レベリング補正量と先端レベリング制御長さを設定する先端レベリング設定部と、
     各圧延スタンドに圧延材が進入する前に、前記先端レベリング補正量を加算した位置に前記圧下レベリング装置を調整し、各圧延スタンドにおける圧延長さが前記先端レベリング制御長さに到達した後、徐々に先端レベリング補正量が減少するように前記圧下レベリング装置の位置を調整する圧下レベリング制御部と、を備えることを特徴とする連続式圧延機のキャンバー制御装置。
  2.  前記蛇行量検出器は、最終圧延スタンド出側に配置され、
     前記キャンバー修正レベリング演算部は、最終圧延スタンド出側における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出し、
     前記キャンバー修正レベリング量に基づいて、次の圧延材以降の圧延に適用される先端レベリング補正量を学習的に更新する先端レベリング学習部を更に備え、
     前記先端レベリング設定部は、前記先端レベリング学習部で更新された最新値を前記先端レベリング補正量として設定する、
     ことを特徴とする請求項1に記載の連続式圧延機のキャンバー制御装置。
  3.  前記蛇行量検出器は、最終圧延スタンド出側に配置される第1蛇行量検出器と、いずれかの圧延スタンド間に配置される少なくとも一つの第2蛇行量検出器とを含み、
     前記キャンバー修正レベリング演算部は、前記第2蛇行量検出器より上流側の圧延スタンドについては、最終圧延スタンド出側における先端キャンバー測定値と、圧延スタンド間における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出し、前記第2蛇行量検出器より下流側の圧延スタンドについては、最終圧延スタンド出側における先端キャンバー測定値に基づいてキャンバー修正レベリング量を算出し、
     前記キャンバー修正レベリング量に基づいて、次圧延材以降の圧延に適用される先端レベリング補正量を学習的に更新する先端レベリング学習部を備え、
     前記先端レベリング設定部は、前記先端レベリング学習部で更新された最新値を先端レベリング補正量として設定する、
     ことを特徴とする請求項1に記載の連続式圧延機のキャンバー制御装置。
  4.  前記蛇行量検出器は、いずれかの圧延スタンド間に少なくとも一つ配置され、
     前記蛇行量検出器による先端キャンバー測定値の算出に必要な圧延長さに亘る測定を終えた後、前記先端キャンバー測定部、前記キャンバー修正レベリング演算部及び前記先端レベリング設定部が各処理を即座に実行し、
     前記キャンバー修正レベリング演算部は、前記蛇行量検出器における先端キャンバー測定値に基づいて、前記蛇行量検出器より下流側の各圧延スタンドのキャンバー修正レベリング量を算出し、
     前記先端レベリング設定部は、前記キャンバー修正レベリング量に基づいて、現圧延材の圧延における前記蛇行量検出器より下流側の各圧延スタンドの圧下レベリング装置に先端レベリング補正量と先端レベリング制御長さを設定する、
     ことを特徴とする請求項1に記載の連続式圧延機のキャンバー制御装置。
PCT/JP2022/034450 2022-09-14 2022-09-14 連続式圧延機のキャンバー制御装置 WO2024057454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247009868A KR20240055775A (ko) 2022-09-14 2022-09-14 연속식 압연기의 캠버 제어 장치
CN202280063254.0A CN118043148A (zh) 2022-09-14 2022-09-14 串列式轧机的翘曲控制装置
PCT/JP2022/034450 WO2024057454A1 (ja) 2022-09-14 2022-09-14 連続式圧延機のキャンバー制御装置
TW112114101A TW202410983A (zh) 2022-09-14 2023-04-14 連續式壓延機之弧曲控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034450 WO2024057454A1 (ja) 2022-09-14 2022-09-14 連続式圧延機のキャンバー制御装置

Publications (1)

Publication Number Publication Date
WO2024057454A1 true WO2024057454A1 (ja) 2024-03-21

Family

ID=90274508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034450 WO2024057454A1 (ja) 2022-09-14 2022-09-14 連続式圧延機のキャンバー制御装置

Country Status (4)

Country Link
KR (1) KR20240055775A (ja)
CN (1) CN118043148A (ja)
TW (1) TW202410983A (ja)
WO (1) WO2024057454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174129A (ja) * 1996-12-16 1997-07-08 Kawasaki Steel Corp ホットストリップ仕上圧延機における圧延制御方法
CN103611736A (zh) * 2013-11-08 2014-03-05 首钢总公司 热轧带钢镰刀弯的快速测量方法
JP2016215241A (ja) * 2015-05-21 2016-12-22 株式会社神戸製鋼所 圧延制御装置及び圧延制御方法
JP2020131196A (ja) * 2019-02-13 2020-08-31 日本製鉄株式会社 熱延コイルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526323Y2 (ja) 1991-02-22 1997-02-19 矢崎総業株式会社 メータの文字盤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174129A (ja) * 1996-12-16 1997-07-08 Kawasaki Steel Corp ホットストリップ仕上圧延機における圧延制御方法
CN103611736A (zh) * 2013-11-08 2014-03-05 首钢总公司 热轧带钢镰刀弯的快速测量方法
JP2016215241A (ja) * 2015-05-21 2016-12-22 株式会社神戸製鋼所 圧延制御装置及び圧延制御方法
JP2020131196A (ja) * 2019-02-13 2020-08-31 日本製鉄株式会社 熱延コイルの製造方法

Also Published As

Publication number Publication date
KR20240055775A (ko) 2024-04-29
TW202410983A (zh) 2024-03-16
CN118043148A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
JP3121471B2 (ja) 圧延機および圧延方法
JP7036241B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP6809488B2 (ja) 熱間圧延の粗圧延方法、熱間圧延の粗圧延装置、熱延鋼板の製造方法及び熱延鋼板の製造装置
WO2024057454A1 (ja) 連続式圧延機のキャンバー制御装置
JP3253013B2 (ja) 熱間圧延における板クラウン・形状制御方法
KR102478274B1 (ko) 압연 재료의 스트립의 편평도를 제어하는 방법, 제어 시스템 및 생산 라인
JP7314921B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
WO2023203691A1 (ja) 板クラウン制御装置
JP6269538B2 (ja) 圧延機の制御方法、圧延機の制御装置、及び鋼板の製造方法
KR950010602B1 (ko) 연속냉간압연기에서 극박재의 형상제어방법
JP3396774B2 (ja) 形状制御方法
JP2019107675A (ja) 圧延機の制御装置および制御方法
WO2022201327A1 (ja) 連続式圧延機の蛇行制御装置
JP2661497B2 (ja) 板クラウン制御装置及び熱間圧延時の板クラウン制御方法
WO2024042936A1 (ja) 冷間圧延方法及び冷間圧延設備
JP6743835B2 (ja) 形鋼の圧延方法及び形鋼の圧延におけるレベリング量の調整方法
JP2661515B2 (ja) 熱間圧延における板クラウン制御方法
JP6520864B2 (ja) 圧延機の板厚制御方法および装置
JP6673285B2 (ja) 被圧延材の形状制御装置及び形状制御方法ならびに金属薄板の製造方法
JP6562010B2 (ja) 圧延機の制御装置および制御方法
JP2003285113A (ja) 板プロフィルの良好な金属板の製造方法
JP6152835B2 (ja) 鋼帯の調質圧延設備および調質圧延方法
JP2001179332A (ja) 帯状材の巻き取り制御方法および装置
JP4091919B2 (ja) 板圧延における板クラウン形状制御方法
JP2001179320A (ja) 熱延鋼板仕上圧延の形状制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20247009868

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958782

Country of ref document: EP

Kind code of ref document: A1