WO2024055399A1 - 一种毫米波隔离装置 - Google Patents

一种毫米波隔离装置 Download PDF

Info

Publication number
WO2024055399A1
WO2024055399A1 PCT/CN2022/130256 CN2022130256W WO2024055399A1 WO 2024055399 A1 WO2024055399 A1 WO 2024055399A1 CN 2022130256 W CN2022130256 W CN 2022130256W WO 2024055399 A1 WO2024055399 A1 WO 2024055399A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
circuit
antenna
chip
transmitting
Prior art date
Application number
PCT/CN2022/130256
Other languages
English (en)
French (fr)
Inventor
李成
李作纬
Original Assignee
德氪微电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德氪微电子(深圳)有限公司 filed Critical 德氪微电子(深圳)有限公司
Publication of WO2024055399A1 publication Critical patent/WO2024055399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/75Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for isolation purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a signal isolation device, in particular to a millimeter wave isolation device.
  • High-voltage circuits are widely used in our daily lives, such as power supply circuits, motor drive circuits, etc.
  • the battery fast charging technology used in handheld devices is a classic application of high-voltage circuits.
  • the high voltage circuit usually consists of a low voltage field and a high voltage field.
  • the low-voltage area is usually used to generate trigger signals and digital signals
  • the high-voltage area is usually high-voltage circuits, such as charging circuits, motor circuits or special high-voltage devices (GaN, SiC, LDMOS), etc.
  • Signals need to be transmitted between high-voltage areas and low-voltage areas, and high isolation is required to prevent damage caused by high-voltage areas to low-voltage areas.
  • this device used to transmit signals and perform isolation is called a switch or isolator.
  • the current mainstream isolators include photo couplers, capacitive sensing (Capacitive coupling) circuits or coil (inductive) sensing (Inductive coupling) circuits.
  • optocouplers require additional independent components
  • capacitive circuits require special oxide layer materials
  • coil sensing circuits have area issues. Therefore, with the demand for fast response time, low latency and high-bandwidth digital signal processing of new high-voltage circuits.
  • the above three types of isolators can no longer meet the demand.
  • new high-voltage circuits have another strict requirement, that is, no short circuit can occur after the high voltage is destroyed, and both coils and capacitors have potential short circuits.
  • the technical problem to be solved by the present invention is to provide a millimeter wave isolation device that can realize signal isolation while ensuring efficient and safe signal transmission.
  • a millimeter wave isolation device including a first isolated circuit and a second isolated circuit, and also includes a millimeter wave transceiver;
  • the output end of the first isolated circuit is connected to the input end of the millimeter wave transceiver
  • the output end of the millimeter wave transceiver is connected to the input end of the second isolated circuit.
  • the beneficial effects of the present invention are that: the isolation between the first isolated circuit and the second isolated circuit is achieved with the help of a millimeter wave transceiver, and the millimeter wave is used as a short-distance transmission mode of the carrier wave.
  • the bandwidth can reach 200kHz to 20GHz, and the transmission speed can reach 200kHz to 20GHz. Reaching 100kbps to 10Gbps, it is fast and can be applied to any scenario.
  • the millimeter-wave carrier antenna is small. Wireless transmission can be achieved through the antenna, and signal isolation can also be achieved. There is no need for optocouplers and additional isolation layers, and even if the product is installed Wearing the antenna will not cause a metal short circuit, thereby achieving good isolation while ensuring fast signal transmission, small delay, high efficiency, and safer.
  • Figure 1 is a schematic structural diagram of three common circuits used to achieve high and low voltage isolation in the prior art
  • Figure 2 is a schematic structural diagram of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a first circuit of a millimeter wave transceiver in a millimeter wave isolation device according to an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of a second circuit of a millimeter wave transceiver in a millimeter wave isolation device according to an embodiment of the present invention
  • Figure 5 is a schematic structural diagram of a first circuit of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a second circuit of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a first implementation of a millimeter wave transceiver chip of a millimeter wave isolation device according to an embodiment of the present invention
  • Figure 8 is a schematic structural diagram of a second implementation of a millimeter wave transceiver chip of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a third implementation of a millimeter wave transceiver chip of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a fourth implementation of a millimeter wave transceiver chip of a millimeter wave isolation device according to an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of multiple millimeter wave transceiver chips integrated on the same packaging structure of a millimeter wave isolation device according to an embodiment of the present invention
  • Figure 12 is a schematic structural diagram of a millimeter-wave isolation device applied to a high-voltage bridge circuit according to an embodiment of the present invention.
  • the above-mentioned millimeter wave isolation device of the present application can be applied to various circuits that require signal isolation, such as isolation between low-voltage area circuits and high-voltage area circuits in high-voltage circuits; control signal circuits and control signal circuits in the upper and lower bridges in high-voltage bridge circuits.
  • signal isolation such as isolation between low-voltage area circuits and high-voltage area circuits in high-voltage circuits; control signal circuits and control signal circuits in the upper and lower bridges in high-voltage bridge circuits.
  • a millimeter wave isolation device includes a first isolated circuit and a second isolated circuit, and also includes a millimeter wave transceiver.
  • the third One isolated circuit is a low-voltage zone circuit of a high-voltage circuit
  • the second isolated circuit is a high-voltage zone circuit of a high-voltage circuit;
  • the output end of the first isolated circuit is connected to the input end of the millimeter wave transceiver
  • the output end of the millimeter wave transceiver is connected to the input end of the second isolated circuit
  • the millimeter wave transceiver includes a millimeter wave transmitting circuit, a millimeter wave receiving circuit, a transmitting antenna and a receiving antenna;
  • the output end of the first isolated circuit is connected to the input end of the millimeter wave transmitting circuit
  • the output end of the millimeter wave transmitting circuit is connected to the transmitting antenna
  • the input end of the millimeter wave receiving circuit is connected to the receiving antenna;
  • the output terminal of the millimeter wave receiving circuit is connected to the input terminal of the second isolated circuit.
  • the millimeter wave transmitting circuit includes a digital-to-analog converter, a first baseband amplifier, a first mixer, a first phase locked loop and a first radio frequency amplifier and first filter;
  • the millimeter wave receiving circuit includes a second filter, a second radio frequency amplifier, a second mixer, a second phase locked loop, a second baseband amplifier and an analog-to-digital converter;
  • the input terminal of the digital-to-analog converter is connected to the output terminal of the first isolated circuit, and the output terminal is connected to the first input terminal of the first mixer;
  • the second input terminal of the first mixer is connected to the output terminal of the phase-locked loop, and the output terminal is connected to the input terminal of the second radio frequency amplifier;
  • the output end of the first radio frequency amplifier is connected to the input end of the first filter
  • the output end of the first filter is connected to the transmitting antenna
  • the input end of the second filter is connected to the receiving antenna, and the output end is connected to the first input end of the second mixer;
  • the second input terminal of the second mixer is connected to the output terminal of the second phase-locked loop, and the output terminal is connected to the input terminal of the second baseband filter;
  • the output end of the second baseband filter is connected to the input end of the analog-to-digital converter
  • the output terminal of the analog-to-digital converter is connected to the input terminal of the second isolated circuit
  • the signal in the low-voltage area is converted from digital to analog and mixed with the signal provided by the phase locked loop, and then the amplifier drives the transmitting antenna to send the signal. After receiving the signal, the receiving antenna The signal amplified by the amplifier is finally restored through analog to digital conversion and enters the high voltage area.
  • the millimeter wave transmitting circuit includes an oscillator, a modulator and a third radio frequency amplifier;
  • the millimeter wave receiving circuit includes a fourth radio frequency amplifier and an envelope detector;
  • the output terminal of the oscillator is connected to the first input terminal of the modulator
  • the second input terminal of the modulator is connected to the output terminal of the first isolator, and the output terminal is connected to the input terminal of the third radio frequency amplifier;
  • the output end of the third radio frequency amplifier is connected to the transmitting antenna
  • the input end of the fourth radio frequency amplifier is connected to the receiving antenna, and the output end is connected to the input end of the envelope detector;
  • the output end of the envelope detector is connected to the input end of the second isolated circuit
  • the low-voltage area signal enters the modulator (Modulator) to modulate the signal and is amplified and sent out through the transmitting antenna.
  • the receiving antenna receives the signal and is amplified and then detected by the envelope detector (Envelope detector) before entering the high-voltage area;
  • Figures 5 and 6 show the circuit structure diagram of the above two different millimeter wave transmitting circuits used in high-voltage circuits.
  • the low-voltage area signal is input to the input end of the digital-to-analog converter, and the output of the analog-to-digital converter The signal is input to the high-voltage zone circuit.
  • the low-voltage zone signal is input to the second input terminal of the modulator, and the output terminal of the envelope detector is input to the high-voltage zone circuit.
  • the millimeter wave transceiver is a millimeter wave transceiver chip
  • the millimeter wave transceiver chip includes a millimeter wave transmitting chip, a millimeter wave receiving chip, a first substrate, a second substrate and a packaging layer, and both the first substrate and the second substrate are made of insulating materials;
  • the first substrate, the second substrate and the packaging layer are stacked in sequence;
  • the thickness of the packaging layer is 300-400um, and the total thickness of the first substrate and the second substrate is 80-400um;
  • the millimeter wave transmitting chip and the millimeter wave receiving chip are arranged in the packaging layer at intervals of 10um to 1000kum;
  • the transmitting antenna and the receiving antenna can be embedded in the chip to achieve isolated transmission and safety and reliability.
  • the transmitting antenna and receiving antenna can be embedded in the chip in a variety of ways:
  • the transmitting antenna M1 and the receiving antenna M2 are arranged in parallel, that is, they form vertical isolation, and their positional relationship is interchangeable;
  • the transmitting antenna M1 is disposed in the millimeter wave transmitting chip Chip-TX, and the receiving antenna M2 is disposed in the second substrate (Substrate). Specifically, the transmitting antenna M1 is disposed close to the millimeter wave transmitting chip Chip-TX. On one side of the second substrate, the receiving antenna M2 is set on the side of the second substrate close to the first substrate.
  • the transmitting antenna M1 and the transmitting antenna M2 are in a parallel relationship, and the grounding unit is set on the first in the substrate, and is disposed on the side of the first substrate away from the second substrate; in another optional embodiment, the transmitting antenna M1 is disposed in the second substrate Substrate, and the receiving antenna M2 is disposed on the second substrate.
  • the millimeter wave receiving chip Chip-RX In the millimeter wave receiving chip Chip-RX;
  • one of the transmitting antenna and the receiving antenna is provided in the encapsulation layer, and the other is provided in the second substrate;
  • the transmitting antenna M1 is disposed on the side of the packaging layer close to the second substrate
  • the receiving antenna M2 is disposed on the side of the second substrate close to the first substrate
  • the grounding unit is disposed in the first substrate and disposed on The side of the first substrate away from the second substrate, where the positions of the transmitting antenna M1 and the receiving antenna M2 can be interchanged;
  • the transmitting antenna M1 can also be disposed on the side of the second substrate close to the first substrate, the receiving antenna M2 can be disposed on the side of the packaging layer close to the second substrate, and the grounding unit is disposed in the first substrate and disposed on The side of the first substrate away from the second substrate;
  • the above-mentioned antennas are all vertically isolated antenna structures. Due to the high frequency of millimeter waves, the size of the antenna is relatively small. Therefore, the size of the antenna is suitable for design on the substrate or chip.
  • One of the antennas can be designed as a chip antenna. , the other antenna is a substrate antenna design.
  • Both the transmitting antenna and the receiving antenna can be a patch antenna (patch antenna), a loop antenna (loop antenna), a helix antenna (helix antenna), an aperture antenna (aperture antenna), Waveguide antenna (waveguide antenna), slot antenna (slot antenna), dipole antenna (dipole antenna) or monopole antenna (monopole antenna) use the substrate as an insulating material to achieve good isolation; it is implemented through a chip and the antenna is It can be embedded in the chip, so the millimeter wave transceiver chip can be prepared using standard CMOS technology and standard packaging technology, with low cost and high reliability.
  • a side-radiating antenna architecture may also be adopted, in which the transmitting antenna and the receiving antenna are horizontally and spaced apart in the packaging layer;
  • the transmitting antenna M1 and the receiving antenna M2 are spaced apart on the side of the packaging layer close to the second substrate, with a spacing distance of 10um to 100kum;
  • the encapsulation layer and the distance between M1 and M2 are used as insulating materials to achieve isolation between M1 and M2.
  • the millimeter wave transceiver chip includes two sets of separate chip packaging structures, that is, the millimeter wave transmitting chip and the millimeter wave receiving chip are each in a single package design;
  • two sets of chip packaging structures are set apart at a distance of 10um to 100kum; the millimeter wave transmitting chip is packaged in one of the chip packaging structures, and the millimeter wave receiving chip is packaged in the other chip packaging structure. ;
  • the millimeter wave transmitting chip and the millimeter wave receiving chip are separately packaged in the packaging layer of the corresponding chip packaging structure;
  • the transmitting antenna is disposed in the packaging layer of the chip packaging structure where the millimeter wave transmitting chip is located. Specifically, the transmitting antenna is disposed on a side of the packaging layer close to the first substrate;
  • the receiving antenna is disposed in the packaging layer of the chip packaging structure where the millimeter wave receiving chip is located. Specifically, the receiving antenna is disposed on a side of the packaging layer close to the first substrate;
  • a single package design is used to package the millimeter-wave transmitter chip and the millimeter-wave receiver chip.
  • the cost is lower, and on the other hand, the distance between the air and the body is used as an insulating layer to achieve better isolation effect;
  • the transmitting antenna and the receiving antenna may be a dipole antenna, a monopole antenna, a helix antenna, or a loop Antenna (loop antenna), aperture antenna (aperture antenna), waveguide antenna (waveguide antenna), slot antenna (slot antenna) or patch antenna (patch antenna);
  • the above-mentioned millimeter wave isolation device can be applied to a high-voltage bridge circuit.
  • the first isolated circuit is a control signal circuit of the upper bridge in the high-voltage bridge circuit.
  • the second isolated circuit is the high-voltage device of the lower bridge and the high-voltage device of the lower bridge in the high-voltage bridge circuit;
  • the signal enters the millimeter wave transmitter and then propagates the signal to the millimeter wave receiver via the antenna.
  • the millimeter wave receiver then sends the signal to the high voltage devices M1 and M2 to drive the high voltage devices.
  • the millimeter wave isolation device uses a millimeter wave transceiver to achieve isolation between the first isolated circuit and the second isolated circuit, and can be suitable for various signal isolation scenarios, such as high voltage Circuits, high-voltage bridge circuits and switching power supplies, etc., use millimeter waves as short-distance transmission methods of carrier waves.
  • the bandwidth can reach 200kHz to 20GHz, and the transmission speed can reach 100kbps to 10Gbps. It is fast, applicable to any scene, and has wide applicability.
  • the millimeter-wave carrier antenna is small and can be embedded in the millimeter-wave chip.
  • Wireless transmission and signal isolation can be achieved through the antenna, and the chip design can be well integrated without the need for optocouplers and additional
  • the isolation layer can be produced using standard CMOS technology and standard packaging technology. The production cost is low.
  • the standardized packaging technology is easy to integrate into consumer products, and even if the product is penetrated, the antenna will not cause a metal short circuit, thus While achieving good isolation, it can ensure fast signal transmission speed, small delay, high efficiency, and more safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Near-Field Transmission Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开一种毫米波隔离装置,包括第一被隔离电路和第二被隔离电路,还包括毫米波收发器;所述第一被隔离电路的输出端与所述毫米波收发器的输入端连接;所述毫米波收发器的输出端与所述第二被隔离电路的输入端连接;借助毫米波收发器实现第一被隔离电路和第二被隔离电路之间的隔离,采用毫米波作为载波的短距离传输方式,带宽能够达到200kHz到20GHz,传输速度可达100kbps到10Gbps,速度快,能够适用于任何场景,并且毫米波载波天线小,通过天线既可以实现无线传输,也能够实现信号的隔离,不需要光耦及额外的隔离层,并且即便产品打穿,天线也不会造成金属短路,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。

Description

一种毫米波隔离装置 技术领域
本发明涉及信号隔离装置,尤其涉及一种毫米波隔离装置。
背景技术
高压电路在我们日常生活中有着广泛的应用,比如电力电源电路、马达驱动电路等。而手持装置所使用的电池快充技术,更是高压电路的经典应用。
在典型的高压电路中,高压电路通常由低压区(Low voltage field)和高压区(High voltage field)组成。低压区通常是用来生成触发信号和数字信号,高压区通常是高压电路,比如充电电路、马达电路或者特殊的高压器件(GaN,SiC,LDMOS)等。在高压区与低压区之间需要传递信号,并且需要有高隔离度以防止高压区对低压区造成的破坏。通常,这个用来传递信号并起到隔离作用的器件叫做切换器(Switch)或隔离器(Isolator)。
如图1所示,目前主流的隔离器包括光耦合器(Photo coupler)、电容式感应(Capacitive coupling)电路或是线圈(电感式)感应(Inductive coupling)电路。但是,光耦合器需要另外的独立器件,电容式电路需要特别的氧化层材料,线圈感应电路有面积问题。因此,随着新式高压电路快速响应时间、低延迟与高宽带数字信号处理的需求下。上述三类隔离器已经无法满足需求。并且,新式的高压电路还有另外一个严格的要求,即在高压破坏后,不能有短路发生,而线圈和电容都有潜在的短路现象。
发明内容
本发明所要解决的技术问题是:提供一种毫米波隔离装置,在实现信号隔离的同时保证信号高效、安全地传输。
为了解决上述技术问题,本发明采用的一种技术方案为:
一种毫米波隔离装置,包括第一被隔离电路和第二被隔离电路,还包括毫米波收发器;
所述第一被隔离电路的输出端与所述毫米波收发器的输入端连接;
所述毫米波收发器的输出端与所述第二被隔离电路的输入端连接。
本发明的有益效果在于:借助毫米波收发器实现第一被隔离电路和第二被隔离电路之间的隔离,采用毫米波作为载波的短距离传输方式,带宽能够达到200kHz到20GHz,传输速度可达100kbps到10Gbps,速度快,能够适用于任何场景,并且毫米波载波天线小,通过天线既可以实现无线传输,也能够实现信号的隔离,不需要光耦及额外的隔离层,并且即便产品打穿,天线也不会造成金属短路,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。
附图说明
图1为现有技术中实现高低压隔离的三种常见电路的结构示意图;
图2为本发明实施例的一种毫米波隔离装置的结构示意图;
图3为本发明实施例的一种毫米波隔离装置中毫米波收发器的第一种电路的结构示意图;
图4为本发明实施例的一种毫米波隔离装置中毫米波收发器的第二种电路的结构示意图;
图5为本发明实施例的一种毫米波隔离装置的第一种电路的结构示意图;
图6为本发明实施例的一种毫米波隔离装置的第二种电路的结构示意图;
图7为本发明实施例的一种毫米波隔离装置的毫米波收发器芯片的第一种实现方式的结构示意图;
图8为本发明实施例的一种毫米波隔离装置的毫米波收发器芯片的第二种实现方式的结构示意图;
图9为本发明实施例的一种毫米波隔离装置的毫米波收发器芯片的第三种实现方式的结构示意图;
图10为本发明实施例的一种毫米波隔离装置的毫米波收发器芯片的第四种实现方式的结构示意图;
图11为本发明实施例的一种毫米波隔离装置的多个毫米波收发器芯片在同 一封装结构上集成的结构示意图;
图12为本发明实施例的一种毫米波隔离装置应用于高压桥式电路的结构示意图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本申请上述毫米波隔离装置能够适用于各种需要进行信号隔离的电路中,比如高压电路中低压区电路与高压区电路之间的隔离;高压桥式电路中上、下桥中控制信号电路与高压器件之间的隔离以及开关电源中数字逻辑控制电路与反馈回路之间的隔离,以下通过具体实施方式进行说明:
在一个可选的实施方式中,如图2所示,一种毫米波隔离装置,包括第一被隔离电路和第二被隔离电路,还包括毫米波收发器,本实施方式中,所述第一被隔离电路为高压电路的低压区电路,所述第二被隔离电路为高压电路的高压区电路;
所述第一被隔离电路的输出端与所述毫米波收发器的输入端连接;
所述毫米波收发器的输出端与所述第二被隔离电路的输入端连接;
其中,所述毫米波收发器包括毫米波发射电路、毫米波接收电路、发射天线和接收天线;
所述第一被隔离电路的输出端与所述毫米波发射电路的输入端连接;
所述毫米波发射电路的输出端与所述发射天线连接;
所述毫米波接收电路的输入端与所述接收天线连接;
所述毫米波接收电路的输出端与所述第二被隔离电路的输入端连接。
在另一个可选的实施方式中,如图3所示,所述毫米波发射电路包括数模转换器、第一基带放大器、第一混频器、第一锁相环和第一射频放大器和第一滤波器;
所述毫米波接收电路包括第二滤波器、第二射频放大器、第二混频器、第二锁相环、第二基带放大器和模数转换器;
所述数模转换器的输入端与所述第一被隔离电路的输出端连接,输出端与所述第一混频器的第一输入端连接;
所述第一混频器的第二输入端与所述锁相环的输出端连接,输出端与所述第二射频放大器的输入端连接;
所述第一射频放大器的输出端与所述第一滤波器的输入端连接;
所述第一滤波器的输出端与所述发射天线连接;
所述第二滤波器的输入端与所述接收天线连接,输出端与所述第二混频器的第一输入端连接;
所述第二混频器的第二输入端与所述第二锁相环的输出端连接,输出端与所述第二基带滤波器的输入端连接;
所述第二基带滤波器的输出端与所述模数转换器的输入端连接;
所述模数转换器的输出端与所述第二被隔离电路的输入端连接;
本实施方式中,低压区信号经数模转换(Digital toAnalog)并与锁相环(Phase locked loop)提供的信号混频后于放大器(Amplifier)推动发射天线发送信号,接收天线接收到信号后经放大器放大信号最后于通过模数转换(Analog to digital)还原并进入高压区。
在另一个可选的实施方式中,如图4所示,所述毫米波发射电路包括振荡器、调制器和第三射频放大器;
所述毫米波接收电路包括第四射频放大器和包络检波器;
所述振荡器的输出端与所述调制器的第一输入端连接;
所述调制器的第二输入端与所述第一被隔离器的输出端连接,输出端与所述第三射频放大器的输入端连接;
所述第三射频放大器的输出端与所述发射天线连接;
所述第四射频放大器的输入端与所述接收天线连接,输出端与所述包络检波器的输入端连接;
所述包络检波器的输出端与所述第二被隔离电路的输入端连接;
本实施方式中,低压区信号进入调制器(Modulator)调制信号后经放大通过发送天线发出,接收天线接收信号后经放大再由包络检波器(Envelope detector)检波 后进入高压区;
图5、6所示为上述两种不同的毫米波发射电路应用于高压电路中的电路结构图,在图5中,低压区信号输入到数模转换器的输入端,模数转换器的输出信号输入到高压区电路中,图6中,低压区信号输入到调制器的第二输入端,包络检波器的输出端输入到高压区电路中。
在另一个可选的实施方式中,所述毫米波收发器为毫米波收发器芯片;
具体地,所述毫米波收发器芯片包括毫米波发射芯片、毫米波接收芯片、第一基板、第二基板和封装层,第一基板和第二基板均采用绝缘材料;
所述第一基板、第二基板和封装层依次层叠设置;
其中,封装层的厚度为300~400um,第一基板和第二基板的总厚度为80~400um;
所述毫米波发射芯片和毫米波接收芯片间隔设置于所述封装层中,间隔距离为10um~1000kum;
其中,发送天线和接收天线可以内嵌于芯片中,从而实现隔离传输并且安全可靠,发送天线和接收天线可以有多种方式实现内嵌于芯片中:
在一个可选的实施方式中,如图7所示,所述发射天线M1和所述接收天线M2平行设置,即二者构成垂直型隔离,其中,二者的位置关系可互换;
所述发射天线M1设置于所述毫米波发射芯片Chip-TX中,所述接收天线M2设置于所述第二基板(Substrate中,具体的,发送天线M1设置在毫米波发送芯片Chip-TX靠近第二基板的一侧,接收天线M2设置在第二基板靠近第一基板的一侧,通过图7可以看出,发射天线M1和发射天线M2之间呈平行关系,接地单元则设置在第一基板中,并设置于第一基板远离第二基板的一侧;在另一个可选的实施方式中,所述发射天线M1设置于所述第二基板Substrate中,所述接收天线M2设置于所述毫米波接收芯片Chip-RX中;
在另一个可选的实施方式中,所述发射天线和所述接收天线中其中一个设置于所述封装层中,另一个设置于所述第二基板中;
如图8所示,发射天线M1设置在封装层靠近第二基板的一侧,接收天线M2设置在第二基板靠近第一基板的一侧,接地单元则设置在第一基板中,并设 置于第一基板远离第二基板的一侧,其中,发射天线M1和接收天线M2之间的位置可以互换;
或者,也可以将发射天线M1设置在第二基板靠近第一基板的一侧,将接收天线M2设置在封装层靠近第二基板的一侧,接地单元则设置在第一基板中,并设置于第一基板远离第二基板的一侧;
上述几种天线的设置方式都是垂直型隔离的天线架构,由于毫米波频率高,因此,天线尺寸相对较小,因此天线大小适合设计在基板或芯片中,可以设计其中一个天线为芯片天线设计,另一个天线为基板天线设计,所述发射天线和接收天线均可以为贴片式天线(patch antenna)、环路天线(loop antenna)、螺旋天线(helix antenna)、孔径天线(aperture antenna)、波导天线(waveguide antenna)、槽式天线(slot antenna)、双偶天线(dipole antenna)或者单偶天线(monopole antenna),利用基板作为绝缘材料,可以很好的实现隔离;通过芯片实现并且天线又可以内嵌于芯片中,因此可以使用标准CMOS工艺以及标准的封装工艺实现毫米波收发器芯片的制备,成本低,并且可靠性高。
在另一个可选的实施方式中,也可以采用侧面辐射型的天线架构方式,所述发射天线和所述接收天线水平并且间隔设置于所述封装层中;
如图9所示,发射天线M1和接收天线M2分别间隔设置在封装层靠近第二基板的一侧,间隔距离为10um~100kum;
本实施方式中,利用封装层以及M1和M2之间的距离作为绝缘材料,实现M1与M2之间的隔离。
在另一个可选的实施方式中,所述毫米波收发器芯片包括两组单独的芯片封装结构,即毫米波发射芯片和毫米波接收芯片分别单一封装设计;
具体地,如图10所示,两组芯片封装结构间隔设置,间隔距离为10um~100kum;毫米波发射芯片封装在其中一个芯片封装结构中,毫米波接收芯片则封装在另一个芯片封装结构中;
所述毫米波发射芯片和毫米波接收芯片分别单独封装在对应的芯片封装结构的所述封装层中;
所述发射天线设置在所述毫米波发射芯片所在的芯片封装结构的所述封装 层中,具体地,发射天线设置在封装层靠近第一基板的一侧;
所述接收天线设置在所述毫米波接收芯片所在的芯片封装结构的所述封装层中,具体地,接收天线设置在封装层靠近第一基板的一侧;
本实施方式中,采用单一封装设计的方式实现毫米波发射芯片和毫米波接收芯片的封装,一方面成本更低,另一方面利用空气与实体距离作为绝缘层,隔离效果更佳;
上述侧面辐射型(endfire)的天线架构方式中,所述发射天线和所述接收天线均可以为双偶天线(dipole antenna)、单偶天线(monopole antenna)、螺旋天线(helix antenna)、环路天线(loop antenna)、孔径天线(aperture antenna)、波导天线(waveguide antenna)、槽式天线(slot antenna)或贴片式天线(patch antenna);
在另一个可选的实施方式中,在产品封装上,如图11所示,可以整合多芯片于单一封装结构中以实现更好的集成度设计。
在另一个可选的实施方式中,可以将上述毫米波隔离装置应用于高压桥式电路中,如图12所示,所述第一被隔离电路为高压桥式电路中上桥的控制信号电路以及下桥的控制信号电路;
所述第二被隔离电路为高压桥式电路中下桥的高压器件以及下桥的高压器件;
信号进入毫米波发射器再经由天线传播信号给毫米波接收器,毫米波接收器再将信号发送给高压器件M1、M2以对高压器件进行驱动。
综上所述,本发明提供的一种毫米波隔离装置,借助毫米波收发器实现第一被隔离电路和第二被隔离电路之间的隔离,能够适用于各种信号隔离场景中,比如高压电路、高压桥式电路以及开关电源等,采用毫米波作为载波的短距离传输方式,带宽能够达到200kHz到20GHz,传输速度可达100kbps到10Gbps,速度快,能够适用于任何场景,适用性广,并且毫米波载波天线小,能够内嵌于毫米波芯片中,通过天线既可以实现无线传输,也能够实现信号的隔离,并且通过芯片的设计能够很好地实现集成化,不需要光耦及额外的隔离层,可以采用标准CMOS工艺以及标准的封装工艺进行产品化生成,生成成本低,标准 化的封装工艺容易集成在消费品类产品中,并且即便产品打穿,天线也不会造成金属短路,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种毫米波隔离装置,包括第一被隔离电路和第二被隔离电路,其特征在于,还包括毫米波收发器;
    所述第一被隔离电路的输出端与所述毫米波收发器的输入端连接;
    所述毫米波收发器的输出端与所述第二被隔离电路的输入端连接。
  2. 根据权利要求1所述的一种毫米波隔离装置,其特征在于,所述毫米波收发器包括毫米波发射电路、毫米波接收电路、发射天线和接收天线;
    所述第一被隔离电路的输出端与所述毫米波发射电路的输入端连接;
    所述毫米波发射电路的输出端与所述发射天线连接;
    所述毫米波接收电路的输入端与所述接收天线连接;
    所述毫米波接收电路的输出端与所述第二被隔离电路的输入端连接。
  3. 根据权利要求2所述的一种毫米波隔离装置,其特征在于,所述毫米波发射电路包括数模转换器、第一基带放大器、第一混频器、第一锁相环和第一射频放大器和第一滤波器;
    所述毫米波接收电路包括第二滤波器、第二射频放大器、第二混频器、第二锁相环、第二基带放大器和模数转换器;
    所述数模转换器的输入端与所述第一被隔离电路的输出端连接,输出端与所述第一混频器的第一输入端连接;
    所述第一混频器的第二输入端与所述锁相环的输出端连接,输出端与所述第二射频放大器的输入端连接;
    所述第一射频放大器的输出端与所述第一滤波器的输入端连接;
    所述第一滤波器的输出端与所述发射天线连接;
    所述第二滤波器的输入端与所述接收天线连接,输出端与所述第二混频器的第一输入端连接;
    所述第二混频器的第二输入端与所述第二锁相环的输出端连接,输出端与所述第二基带滤波器的输入端连接;
    所述第二基带滤波器的输出端与所述模数转换器的输入端连接;
    所述模数转换器的输出端与所述第二被隔离电路的输入端连接。
  4. 根据权利要求2所述的一种毫米波隔离装置,其特征在于,所述毫米波 发射电路包括振荡器、调制器和第三射频放大器;
    所述毫米波接收电路包括第四射频放大器和包络检波器;
    所述振荡器的输出端与所述调制器的第一输入端连接;
    所述调制器的第二输入端与所述第一被隔离器的输出端连接,输出端与所述第三射频放大器的输入端连接;
    所述第三射频放大器的输出端与所述发射天线连接;
    所述第四射频放大器的输入端与所述接收天线连接,输出端与所述包络检波器的输入端连接;
    所述包络检波器的输出端与所述第二被隔离电路的输入端连接。
  5. 根据权利要求1至4中任一项所述的一种毫米波隔离装置,其特征在于,所述毫米波收发器为毫米波收发器芯片。
  6. 根据权利要求5所述的一种毫米波隔离装置,其特征在于,所述毫米波收发器芯片包括毫米波发射芯片、毫米波接收芯片、第一基板、第二基板和封装层;
    所述第一基板、第二基板和封装层依次层叠设置;
    所述毫米波发射芯片和毫米波接收芯片间隔设置于所述封装层中;
    所述发射天线和所述接收天线平行设置;
    所述发射天线设置于所述毫米波发射芯片中,所述接收天线设置于所述第二基板中;
    或者所述发射天线设置于所述第二基板中,所述接收天线设置于所述毫米波接收芯片中;
    或者所述发射天线和所述接收天线中其中一个设置于所述封装层中,另一个设置于所述第二基板中。
  7. 根据权利要求6所述的一种毫米波隔离装置,其特征在于,所述发射天线和所述接收天线水平并且间隔设置于所述封装层中。
  8. 根据权利要求6所述的一种毫米波隔离装置,其特征在于,所述毫米波收发器芯片包括两组单独的芯片封装结构;
    两组芯片封装结构间隔设置;
    所述毫米波发射芯片和毫米波接收芯片分别单独封装在对应的芯片封装结构的所述封装层中;
    所述发射天线设置在所述毫米波发射芯片所在的芯片封装结构的所述封装层中;
    所述接收天线设置在所述毫米波接收芯片所在的芯片封装结构的所述封装层中。
  9. 根据权利要求6至9中任一项所述的一种毫米波隔离装置,其特征在于,所述发射天线和所述接收天线为贴片式天线、环路天线、螺旋天线、孔径天线、波导天线、槽式天线、单偶天线或双偶天线。
  10. 根据权利要求1至4及6至9中任一项所述的一种毫米波隔离装置,其特征在于,所述第一被隔离电路为高压电路的低压区电路,所述第二被隔离电路为高压电路的高压区电路。
  11. 根据权利要求1至4及6至9中任一项所述的一种毫米波隔离装置,其特征在于,所述第一被隔离电路为高压桥式电路中上桥的控制信号电路以及下桥的控制信号电路;所述第二被隔离电路为高压桥式电路中下桥的高压器件以及下桥的高压器件。
PCT/CN2022/130256 2022-09-17 2022-11-07 一种毫米波隔离装置 WO2024055399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211132475.7A CN115378468A (zh) 2022-09-17 2022-09-17 一种毫米波隔离装置
CN202211132475.7 2022-09-17

Publications (1)

Publication Number Publication Date
WO2024055399A1 true WO2024055399A1 (zh) 2024-03-21

Family

ID=84071970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130256 WO2024055399A1 (zh) 2022-09-17 2022-11-07 一种毫米波隔离装置

Country Status (8)

Country Link
JP (1) JP3240776U (zh)
KR (1) KR102586891B1 (zh)
CN (1) CN115378468A (zh)
DE (1) DE202022106459U1 (zh)
FR (1) FR3139954A3 (zh)
GB (1) GB2622649A (zh)
TW (1) TW202414904A (zh)
WO (1) WO2024055399A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069984A1 (en) * 2001-05-21 2004-04-15 Estes Michael J. Terahertz interconnect system and applications
US20120082194A1 (en) * 2009-06-10 2012-04-05 The Regents Of The University Of California Milli-meter-wave-wireless-interconnect (m2w2 - interconnect) method for short-range communications with ultra-high data capability
CN103460616A (zh) * 2010-12-17 2013-12-18 加利福尼亚大学董事会 用于短距离毫米波无线互连(m2w2互连)的周期性近场导引器(pnfd)
CN206258575U (zh) * 2016-12-23 2017-06-16 四川先导中通光电科技有限公司 一种毫米波收发模块及接收模块
CN207339849U (zh) * 2017-08-29 2018-05-08 西北工业大学 一种短距离多频段工作的小型能量与信号无线传输***
CN207410338U (zh) * 2016-01-29 2018-05-25 苹果公司 电子设备
CN211743401U (zh) * 2020-04-10 2020-10-23 南京达斯琪数字科技有限公司 一种毫米波双圆极化双向数传模块及装置
WO2021232523A1 (zh) * 2020-05-21 2021-11-25 深圳市知用电子有限公司 一种信号隔离传输装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530503B1 (ko) * 2003-02-12 2005-11-22 코모텍 주식회사 비방사 유전체 도파관과 구형 도파관을 이용한하이브리드형 밀리미터 파대의 진폭편이방식 송수신기
KR100747975B1 (ko) * 2005-09-13 2007-08-08 엘지이노텍 주식회사 프론트앤드모듈
US8674888B2 (en) * 2006-06-21 2014-03-18 Broadcom Corporation Integrated circuit with power supply line antenna structure and methods for use therewith
US8200156B2 (en) * 2007-01-31 2012-06-12 Broadcom Corporation Apparatus for allocation of wireless resources
US20120295539A1 (en) * 2008-12-23 2012-11-22 Waveconnex, Inc. Ehf communication with electrical isolation and with dielectric transmission medium
US8472437B2 (en) * 2010-02-15 2013-06-25 Texas Instruments Incorporated Wireless chip-to-chip switching
CN105230036B (zh) * 2013-03-15 2019-06-28 凯萨股份有限公司 适于ehf无接触通信的物理层和虚拟化物理层
CN203250166U (zh) * 2013-03-26 2013-10-23 施耐德电器工业公司 隔离装置及具有该隔离装置的编程器
CN105190992B (zh) * 2013-04-15 2018-02-09 松下知识产权经营株式会社 高频传输装置
CN103630732B (zh) * 2013-11-19 2015-10-28 杭州休普电子技术有限公司 隔离式无源高压带电指示装置
CN103684422A (zh) * 2013-12-12 2014-03-26 安伏(苏州)电子有限公司 无光耦元件的高压直流信号隔离采样装置
CN108539869B (zh) * 2018-04-25 2020-10-09 柏壹科技(深圳)有限公司 一种无线充电发射器及无线充电***
CN109004321B (zh) * 2018-06-27 2021-07-09 安徽华东光电技术研究所有限公司 一种基于介质波导的准光学亚毫米波隔离器
CN208401840U (zh) * 2018-07-02 2019-01-18 成都吉纬科技有限公司 一种毫米波收发装置
CN209446786U (zh) * 2018-12-28 2019-09-27 同方威视技术股份有限公司 毫米波安检设备及其多频带毫米波收发***
CN110830040B (zh) * 2019-10-31 2023-04-14 西安空间无线电技术研究所 一种u频段微波直接调制***
KR102185413B1 (ko) * 2019-11-12 2020-12-01 넵코어스 주식회사 안테나 장치
KR20200079227A (ko) * 2020-06-23 2020-07-02 전자부품연구원 광도파로 소자 및 이를 이용한 밀리미터파 양방향 인터커넥트
TWI737529B (zh) * 2020-10-30 2021-08-21 精拓科技股份有限公司 數位隔離器
CN218679074U (zh) * 2022-09-17 2023-03-21 德氪微电子(深圳)有限公司 一种毫米波隔离装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069984A1 (en) * 2001-05-21 2004-04-15 Estes Michael J. Terahertz interconnect system and applications
US20120082194A1 (en) * 2009-06-10 2012-04-05 The Regents Of The University Of California Milli-meter-wave-wireless-interconnect (m2w2 - interconnect) method for short-range communications with ultra-high data capability
CN103460616A (zh) * 2010-12-17 2013-12-18 加利福尼亚大学董事会 用于短距离毫米波无线互连(m2w2互连)的周期性近场导引器(pnfd)
CN207410338U (zh) * 2016-01-29 2018-05-25 苹果公司 电子设备
CN206258575U (zh) * 2016-12-23 2017-06-16 四川先导中通光电科技有限公司 一种毫米波收发模块及接收模块
CN207339849U (zh) * 2017-08-29 2018-05-08 西北工业大学 一种短距离多频段工作的小型能量与信号无线传输***
CN211743401U (zh) * 2020-04-10 2020-10-23 南京达斯琪数字科技有限公司 一种毫米波双圆极化双向数传模块及装置
WO2021232523A1 (zh) * 2020-05-21 2021-11-25 深圳市知用电子有限公司 一种信号隔离传输装置

Also Published As

Publication number Publication date
FR3139954A3 (fr) 2024-03-22
GB2622649A (en) 2024-03-27
KR102586891B1 (ko) 2023-10-11
DE202022106459U1 (de) 2023-01-13
JP3240776U (ja) 2023-02-03
CN115378468A (zh) 2022-11-22
TW202414904A (zh) 2024-04-01
GB202216928D0 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
CN102543965B (zh) 具有减小的rf损耗的射频封装
US8364195B2 (en) Integrated galvanic isolator using wireless transmission
US9620841B2 (en) Radio frequency coupling structure
JP6528241B2 (ja) 共鳴結合器、及び、伝送装置
US20140346887A1 (en) Galvanic isolator
CN105190992A (zh) 电磁共振耦合器以及高频传输装置
CN107919866B (zh) 一种数字信号隔离器
CN103201898A (zh) 电磁共振耦合器
EP2151919B1 (en) Even harmonic mixer
TW201519615A (zh) 寬頻連接結構及其連接方法、傳輸裝置及傳輸寬頻訊號的方法
US20170353056A1 (en) Electromagnetic resonant coupler including input line, first resonance line, second resonance line, output line, and coupling line, and transmission apparatus including the electromagnetic resonant coupler
CN218679074U (zh) 一种毫米波隔离装置
WO2024055399A1 (zh) 一种毫米波隔离装置
JP3244142U (ja) ミリ波ベースのスイッチング電源
CN105743533A (zh) 一种基于高温无压无缝烧结技术的小型化毫米波收发组件
CN203813770U (zh) 电隔离器及***
CN101740869B (zh) 集成化的mimo***基站多天线和多工器模组装置
US11611364B1 (en) Millimeter-wave isolation device
Ragonese et al. Reinforced Galvanic Isolation: Integrated Approaches to Go Beyond 20-kV Surge Voltage
Shinoda et al. Insulated signal transmission system using planar resonant coupling technology for high voltage IGBT gate driver
TWI517613B (zh) 非接觸式訊號傳輸整合式裝置
JP2011172173A (ja) ミリ波回路モジュール及びそれを用いたミリ波送受信機
CN220544990U (zh) 一种全差分隔离器装置
Dong et al. On-chip patch antenna on InP substrate for short-range wireless communication at 140 GHz
CN109787562A (zh) 超宽带毫米波变频模块及组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958587

Country of ref document: EP

Kind code of ref document: A1