WO2024055190A1 - 具有检测电路的马达驱动器 - Google Patents

具有检测电路的马达驱动器 Download PDF

Info

Publication number
WO2024055190A1
WO2024055190A1 PCT/CN2022/118699 CN2022118699W WO2024055190A1 WO 2024055190 A1 WO2024055190 A1 WO 2024055190A1 CN 2022118699 W CN2022118699 W CN 2022118699W WO 2024055190 A1 WO2024055190 A1 WO 2024055190A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
control circuit
switch
bridge switch
Prior art date
Application number
PCT/CN2022/118699
Other languages
English (en)
French (fr)
Inventor
吕建玮
陈育良
林继谦
Original Assignee
威刚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威刚科技股份有限公司 filed Critical 威刚科技股份有限公司
Priority to PCT/CN2022/118699 priority Critical patent/WO2024055190A1/zh
Publication of WO2024055190A1 publication Critical patent/WO2024055190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a motor driver, and in particular to a motor driver with a detection circuit.
  • fans are often used to cool heat-generating components such as processors.
  • the motor driver must operate normally to accurately drive the fan motor and drive the fan blades to rotate, so that the fan can exhibit the most appropriate cooling performance and properly cool the heating components.
  • multiple switch components used to drive the motor may be in an abnormal state of short circuit or open circuit, causing the motor to fail to operate normally.
  • the technical problem to be solved by the present invention is to provide a motor driver with a detection circuit that is suitable for motors in view of the shortcomings of the existing technology.
  • the motor driver includes a drive circuit, a control circuit and an abnormal state detection circuit.
  • the driver circuit contains multiple switching component groups. Each switch component group includes an upper bridge switch and a lower bridge switch. The first end of the upper bridge switch of each switch assembly group is connected to the positive terminal of the input power supply. The second end of the upper bridge switch in each switch assembly group is connected to the first end of the lower bridge switch.
  • the second end of the lower bridge switch of each switch assembly group is connected to the negative terminal of the input power supply, and the node between the second end of the upper bridge switch and the first end of the lower bridge switch in the same switch assembly group is connected to the same phase of the motor. .
  • Different multiple switch component groups are respectively connected to different phases of the motor.
  • the control circuit is connected to the control end of each upper bridge switch and the control end of each lower bridge switch.
  • the control circuit is configured to turn on or off each upper bridge switch and each lower bridge switch.
  • the abnormal state detection circuit contains multiple AC sensors. A plurality of AC sensors are respectively disposed adjacent to lines between the drive circuit and different phases of the motor.
  • the plurality of AC sensors are respectively configured to sense currents flowing between the plurality of switch component groups and different phases of the motor to respectively output a plurality of AC sensing signals to the control circuit.
  • the control circuit turns on multiple upper-bridge switches and multiple lower-bridge switches in turn, and at the same time, based on multiple AC sensing signals, determines whether the drive circuit and the motor are in an abnormal state of short circuit or open circuit.
  • control circuit when the control circuit turns on the upper bridge switch connected to one phase of the motor and determines that the current value of the AC sensing signal output by the AC sensor of one phase of the motor is greater than the current threshold, the control circuit determines At least one of the plurality of lower-side switches that are not in phase with the open upper-side switch connected to the motor is short-circuited.
  • control circuit when the control circuit turns on the upper bridge switch connected to one phase of the motor, and the control circuit determines that the current value of the AC sensing signal output by each AC sensor of the other phases of the motor is greater than the current threshold, the control circuit The circuit determines that there is a short circuit in the lower bridge switch connected to the phase of the motor sensed by the AC sensor.
  • control circuit when the control circuit turns on the low-bridge switch connected to one phase of the motor and determines that the current value of the AC sensing signal output by the AC sensor of one phase of the motor is greater than the current threshold, the control circuit determines At least one of the multiple high-side switches that are not in phase with the open low-side switch connected to the motor is short-circuited.
  • control circuit when the control circuit turns on the low-bridge switch connected to one phase of the motor, and the control circuit determines that the current value of the AC sensing signal output by each AC sensor of the other phases of the motor is greater than the current threshold, the control circuit The circuit determines that the upper bridge switch connected to the phase of the motor sensed by the AC sensor is short-circuited.
  • the abnormal state detection circuit further includes a DC sensor.
  • the DC sensor is located adjacent to the line between the positive terminal of the input power supply and the first terminal of each upper bridge switch.
  • the DC sensor is configured to sense the current flowing from the input power supply to the first terminal of each high-bridge switch to output a DC sensing signal, and the control circuit determines whether a short circuit occurs based on the DC sensing signal.
  • control switch when the control switch turns on any upper bridge switch and it is judged that the current value of the DC sensing signal is greater than the current threshold, it is judged that the lower bridge switch connected to the same phase of the motor as the turned on upper bridge switch has a short circuit.
  • the control circuit determines that a short circuit occurs in the upper bridge switch of the same phase as the opened lower bridge switch connected to the motor. .
  • control circuit turns on the high-side switch connected to one phase of the motor and simultaneously turns on the low-side switch connected to the other phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of one phase of the motor is less than the basic current value, the control circuit determines that the open upper bridge switch is open.
  • control circuit when the control circuit turns on the upper bridge switch connected to one phase of the motor, and simultaneously turns on the lower bridge switch connected to another phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of one phase of the motor is also less than the basic current value, the control circuit determines that the open upper bridge switch is open.
  • control circuit when the control circuit turns on the low-side switch connected to one phase of the motor, and at the same time turns on the high-side switch connected to another phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of one phase of the motor is less than the basic current value, the control circuit determines that the open lower bridge switch is open.
  • control circuit when the control circuit turns on the lower bridge switch connected to one phase of the motor, and simultaneously turns on the upper bridge switch connected to another phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of one phase of the motor is also less than the basic current value, the control circuit determines that the open lower-side switch is open.
  • control circuit turns on the high-side switch connected to one phase of the motor and simultaneously turns on the low-side switch connected to the other phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of one phase and/or the other phase of the motor is greater than a current threshold, the control circuit determines that the circuit from the first phase to the second phase of the motor is faulty. short circuit.
  • control circuit turns on the low-side switch connected to one phase of the motor and simultaneously turns on the high-side switch connected to the other phase of the motor. At this time, if the current value of the AC sensing signal output by the AC sensor of the first phase or the second phase of the motor is greater than the current threshold, the control circuit determines that the circuit from the first phase to the second phase of the motor is short-circuited.
  • the motor is a three-phase motor.
  • the plurality of switch component groups include a first switch component group, a second switch component group, and a third switch component group.
  • the second switch assembly is connected to the first phase of the motor.
  • a third switch assembly is connected to the second phase of the motor.
  • the first switch assembly is connected to the third phase of the motor.
  • the present invention provides a motor driver with a detection circuit, which does not require the use of external equipment and instruments, but directly uses its own current sensor, including a DC sensor, multiple AC sensors or a combination thereof, to detect the phase of the motor.
  • the current is used to determine whether there is an abnormal state of short circuit or open circuit in the switch component and/or motor.
  • FIG. 1 is a circuit diagram of a motor driver with a detection circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram of the first short-circuit detection stage of the drive circuit of the motor driver with the detection circuit according to the embodiment of the present invention.
  • 3A is a first step flow chart of the first short circuit detection stage of the motor driver with a detection circuit according to the embodiment of the present invention.
  • 3B is a second step flow chart of the first short circuit detection stage of the motor driver with a detection circuit according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the detection sequence of multiple switch components in the second detection stage of the motor driver with a detection circuit according to the embodiment of the present invention.
  • FIG. 5 is a diagram of the second open circuit detection stage of the drive circuit of the motor driver with the detection circuit according to the embodiment of the present invention.
  • Figure 6 is a diagram of the second short-circuit detection stage of the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention.
  • FIG. 7 is a waveform diagram of a normal signal detected by the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention.
  • FIG. 8 is a waveform diagram of a signal detected when a circuit break occurs in the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention.
  • FIG. 9 is a waveform diagram of a normal signal detected by the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention when a short circuit occurs.
  • FIG. 1 is a circuit diagram of a motor driver with a detection circuit according to an embodiment of the present invention.
  • the motor driver according to the embodiment of the present invention may include a control circuit 10, a drive circuit, and an abnormal state detection circuit, and is suitable for motor MT such as a three-phase motor.
  • the driving circuit of the motor driver of the embodiment of the present invention may include a plurality of switch components.
  • the plurality of switch components are classified into a plurality of switch component groups.
  • Each switch component group may include an upper bridge switch and a lower bridge switch.
  • the upper bridge switch and the lower bridge switch of the same switch component group are connected to the same phase of the motor MT.
  • Different switch component groups are connected to different phases of the motor MT.
  • the first switch component group includes a first upper bridge switch H1 and a first lower bridge switch L1 , which can be connected to one phase of the motor MT, such as the U phase.
  • the second switch component group includes a second upper bridge switch H2 and a second lower bridge switch L2, which can be connected to another phase of the motor MT, such as the V phase.
  • the third switch component group includes a third upper bridge switch H3 and a third lower bridge switch L3, which can be connected to another phase of the motor MT, such as the W phase.
  • the first terminal of the first high-bridge switch H1 may be connected to the positive terminal of the input power supply VS.
  • the second terminal of the first high-bridge switch H1 may be connected to the first terminal of the first low-bridge switch L1.
  • the second terminal of the first low-bridge switch L1 may be connected to the negative terminal of the input power supply VS (through the resistor R0 and the first resistor R1).
  • the node NU between the second terminal of the first high-bridge switch H1 and the second terminal of the first low-bridge switch L1 may be connected to one phase of the motor MT, such as the U phase.
  • the control terminal of the first upper bridge switch H1 and the control terminal of the first lower bridge switch L1 may be connected to the control circuit 10 .
  • the first terminal of the second upper bridge switch H2 can be connected to the positive terminal of the input power supply VS.
  • the second terminal of the second high-bridge switch H2 may be connected to the first terminal of the second low-bridge switch L2.
  • the second terminal of the second low-bridge switch L2 may be connected to the negative terminal of the input power supply VS (through the resistor R0 and the second resistor R2).
  • the node NV between the second terminal of the second high-bridge switch H2 and the second terminal of the second low-bridge switch L2 may be connected to another phase of the motor MT, such as the V phase.
  • the control terminal of the second upper bridge switch H2 and the control terminal of the second lower bridge switch L2 may be connected to the control circuit 10 .
  • the first terminal of the third upper bridge switch H3 can be connected to the positive terminal of the input power supply VS.
  • the second terminal of the third high-bridge switch H3 can be connected to the first terminal of the third low-bridge switch L3.
  • the second terminal of the third low-bridge switch L3 may be connected to the negative terminal of the input power supply VS (through the resistor R0 and the third resistor R3).
  • the node NW between the second terminal of the third high-bridge switch H3 and the second terminal of the third low-bridge switch L3 may be connected to yet another phase of the motor MT, such as the W phase.
  • the control terminal of the third upper bridge switch H3 and the control terminal of the third lower bridge switch L3 may be connected to the control circuit 10 .
  • the motor driver according to the embodiment of the present invention may further include a capacitor C1.
  • the input power supply VS can charge the capacitor C1 in advance. Afterwards, the capacitor C1 can discharge the first terminal of each high-bridge switch (eg, the first high-bridge switch H1, the second high-bridge switch H2, and the third high-bridge switch H3).
  • the abnormal state detection circuit of the motor driver in the embodiment of the present invention may include multiple current sensors, such as the first AC sensor CTU, the second AC sensor CTV, the third AC sensor CTW, and the DC sensor shown in Figure 1 CTDC, or any combination thereof.
  • the DC sensor CTDC can be in direct electrical contact or electrical connection, or can be non-contactly located adjacent to (for example, but not limited to, set in) the positive terminal of the input power supply VS and connected to the third terminal of each upper bridge switch.
  • the line between one end is only illustrated here, and the present invention is not limited to this.
  • the DC sensor CTDC can sense the current flowing from the input power supply VS to one or more high-side switches to output a DC sensing signal.
  • the first AC sensor CTU may be in direct electrical contact or electrical connection, or may be non-contactly located adjacent to (for example, but not limited to, nested in) the first switch assembly group (the first upper bridge switch H1 and /Or the first lower bridge switch L1) is connected to the line between the U phases of the motor MT.
  • the first AC sensor CTU can sense the current flowing between the first switch component group (the first upper bridge switch H1 and/or the first lower bridge switch L1) and the U phase of the motor MT to output the first AC sense. test signal.
  • the motor driver may include a first sensing resistor Ru, and the first AC sensor CTU may detect the current flowing through the first sensing resistor Ru to output a first AC sensing signal.
  • the second AC sensor CTV may be in direct electrical contact or electrical connection, or may be non-contactly located adjacent to (for example, but not limited to, nested in) the second switch component group (the second upper bridge switch H2 and /or the second lower bridge switch L2) is connected to the line between the V phases of the motor MT.
  • the second AC sensor CTV can sense the current flowing between the second switch component group (the second upper bridge switch H2 and/or the second lower bridge switch L2) and the V phase of the motor MT to output a second AC sense. test signal.
  • the motor driver may include a second sensing resistor Rv, and the second AC sensor CTV may detect the current flowing through the second sensing resistor Rv to output a second AC sensing signal.
  • the third AC sensor CTW may be in direct electrical contact or electrical connection, or may be non-contactly located adjacent to (for example, but not limited to, nested in) the third switch component group (the third upper bridge switch H3 and /or the third lower bridge switch L3) is connected to the line between the W phases of the motor MT.
  • the third AC sensor CTW can sense the current flowing between the third switch component group (the third upper bridge switch H3 and/or the third lower bridge switch L3) and the W phase of the motor MT to output a third AC sense. test signal.
  • the motor driver of the embodiment of the present invention may include a third sensing resistor Rw, and the third AC sensor CTW may detect the current flowing through the third sensing resistor Rw to output a third AC sensing signal.
  • the control circuit 10 can turn on or off multiple switch components, such as the first upper bridge switch H1, the second upper bridge switch H2, the third upper bridge switch H3, the first lower bridge switch L1, the second lower bridge switch shown in Figure 1. bridge switch L2 and the third lower bridge switch L3.
  • the control circuit 10 can control the DC sensing signal, the first AC sensing signal, the second AC sensing signal and the third AC sensing signal received from one or more current sensors in different switching states of the multiple switch components. All or part of the signals are used to determine whether abnormal conditions such as short circuit or open circuit occur in multiple switch components and/or motor MT.
  • Figure 2 is a diagram of the first short-circuit detection stage of the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention
  • Figures 3A and 3B are diagrams of the implementation of the present invention. Step flow chart of the first short-circuit detection stage of the motor driver with detection circuit of the example.
  • the motor driver according to the embodiment of the present invention can be configured with any one or more of the DC sensor CTDC, the first AC sensor CTU, the second AC sensor CTV, and the third AC sensor CTW, and execute state 1 to state 6 as shown in Figure 2 Any one or more of them, to detect the first upper bridge switch H1, the second upper bridge switch H2, the third upper bridge switch H3, the first lower bridge switch L1, the second lower bridge switch L2 and the third lower bridge switch If any one or more of L3 are short-circuited.
  • the motor driver of this embodiment only uses the DC sensor CTDC, the first AC sensor CTU and the second AC sensor CTV, but does not use the third AC sensor CTW, and sequentially performs the steps shown in Figure 3A and Figure 3B S100, S101 to S121, S201 to S221, S301 to S321, S401 to S421, S501 to S521, S601 to S621 are only examples here, and the invention is not limited thereto.
  • step S101 of FIG. 3A state 1 shown in FIG. 2 is started, and the control circuit 10 turns on the first upper bridge switch H1 connected to the U phase of the motor MT.
  • steps S103 to S105 in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the U connected to the motor MT
  • the first lower bridge switch L1 of the phase has no short circuit or other abnormalities and can operate normally.
  • steps S107 to S109 shown in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the U phase connected to the motor MT The first lower bridge switch L1 is short-circuited.
  • the current threshold for example, zero value
  • steps S111 and S115 in FIG. 3A when the control circuit 10 determines that the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is greater than the current threshold (for example, zero value), the control circuit 10 The circuit 10 determines that at least one of the second low-side switch L2 connected to the V-phase of the motor MT and the third low-side switch L3 connected to the W-phase of the motor MT is short-circuited. On the contrary, as shown in step S113 in FIG. 3 , the control circuit 10 determines that only the first low-bridge switch L1 connected to the U-phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S117 to S119 shown in FIG. 3A when the control circuit 10 determines that the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is greater than the current threshold (for example, zero value) , the control circuit 10 determines that the second lower bridge switch L2 connected to the V phase of the motor MT is short-circuited. On the contrary, in step S121, the control circuit 10 determines that the third lower bridge switch L3 connected to the W phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • the third AC sensor CTW is not used.
  • the third AC sensor CTW can also be used, and the control circuit 10 can determine whether the third low-bridge switch L3 is short-circuited based on the current value of the third AC sensing signal output by the third AC sensor CTW.
  • step S201 of FIG. 3A state 2 shown in FIG. 2 is started, and the control circuit 10 turns on the second upper bridge switch H2 connected to the V phase of the motor MT.
  • steps S203 to S205 in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the V connected to the motor MT
  • the second lower bridge switch L2 of the phase does not have short circuit or other abnormalities and can operate normally.
  • steps S207 to S209 shown in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the V phase connected to the motor MT The second lower bridge switch L2 is short-circuited.
  • the current threshold for example, zero value
  • steps S211 and S215 of FIG. 3A when the control circuit 10 determines that the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is greater than a current threshold (for example, zero value), the control circuit 10 The circuit 10 determines that at least one of the first low-side switch L1 connected to the U-phase of the motor MT and the third low-side switch L3 connected to the W-phase of the motor MT is short-circuited. On the contrary, as shown in step S213 in FIG. 3 , the control circuit 10 determines that only the second low-side switch L2 of the U-phase of the motor MT is short-circuited.
  • a current threshold for example, zero value
  • steps S217 to S219 shown in FIG. 3A when the control circuit 10 determines that the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is greater than the current threshold (for example, zero value), The control circuit 10 determines that the first lower bridge switch L1 connected to the U-phase of the motor MT is short-circuited. On the contrary, as in step S221 shown in FIG. 3A , the control circuit 10 determines that the third lower bridge switch L3 connected to the W phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S301 of FIG. 3A state 3 shown in FIG. 2 is started, and the control circuit 10 turns on the third upper bridge switch H3 connected to the W phase of the motor MT.
  • steps S303 to S305 in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the W connected to the motor MT
  • the third lower bridge switch L3 of the phase has no short circuit or other abnormalities and can operate normally.
  • steps S307 to S309 shown in FIG. 3A when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the W phase connected to the motor MT The third low-bridge switch L3 is short-circuited.
  • the current threshold for example, zero value
  • steps S311 and S315 of FIG. 3A when the control circuit 10 determines the first AC sensing signal output by the first AC sensor CTU of the U-phase of the motor MT and the second AC sensor signal CTV output by the second AC sensor CTV of the V-phase of the motor MT.
  • the control circuit 10 determines at least one of the first low-bridge switch L1 connected to the U-phase of the motor MT and the second low-bridge switch L2 connected to the V-phase of the motor MT. A short circuit occurs.
  • step S313 in FIG. 3 the control circuit 10 determines that only the third lower bridge switch L3 of the W phase of the motor MT is short-circuited.
  • steps S317 to S319 shown in FIG. 3A when the control circuit 10 determines that the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is greater than the current threshold (for example, zero value), The control circuit 10 determines that the first lower bridge switch L1 connected to the U-phase of the motor MT is short-circuited. On the contrary, as in step S321 shown in FIG. 3A , the control circuit 10 determines that the second low-side switch L2 connected to the V phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S401 shown in FIG. 2 state 4 shown in FIG. 2 is started, and the control circuit 10 turns on the first low-bridge switch L1 connected to the U-phase of the motor MT.
  • steps S403 to S405 in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the U connected to the motor MT
  • the first upper bridge switch H1 of the phase has no short circuit or other abnormalities and can operate normally.
  • step S407 to S409 shown in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the U phase connected to the motor MT The first upper bridge switch H1 is short-circuited.
  • the current threshold for example, zero value
  • steps S411 and S415 of FIG. 3B when the control circuit 10 determines that the current value of the first AC sensing signal output by the first AC sensor CTU of the U phase of the motor MT is greater than the current threshold (e.g., zero value), the control circuit 10 determines that at least one of the second upper bridge switch H2 connected to the V phase of the motor MT and the third upper bridge switch H3 connected to the W phase of the motor MT is short-circuited. On the contrary, as shown in step S413 of FIG. 3 , the control circuit 10 determines that only the first upper bridge switch H1 of the U phase of the motor MT is short-circuited.
  • the current threshold e.g., zero value
  • step S417 to S419 shown in FIG. 3B when the control circuit 10 determines that the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is greater than the current threshold (for example, zero value), control The circuit 10 determines that the second upper bridge switch H2 connected to the V phase of the motor MT is short-circuited. On the contrary, as shown in step S421 of FIG. 3B , the control circuit 10 determines that the third upper bridge switch H3 connected to the W phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S501 of FIG. 3B state 5 shown in FIG. 2 is started, and the control circuit 10 turns on the second lower bridge switch L2 connected to the V phase of the motor MT.
  • steps S503 to S505 in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the V connected to the motor MT
  • the second upper bridge switch H2 of the phase does not have short circuit or other abnormalities and can operate normally.
  • step S507 to S509 shown in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the V phase connected to the motor MT The second upper bridge switch H2 is short-circuited.
  • the current threshold for example, zero value
  • steps S511 and S515 in FIG. 3B when the control circuit 10 determines that the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is greater than the current threshold (for example, zero value), the control circuit 10 It is determined that at least one of the first high-bridge switch H1 connected to the U-phase of the motor MT and the third high-bridge switch H3 connected to the W-phase of the motor MT is short-circuited. On the contrary, as shown in step S513 in FIG. 3 , the control circuit 10 determines that only the second upper bridge switch H2 of the U phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S517 to S519 shown in FIG. 3B when the control circuit 10 determines that the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is greater than the current threshold (for example, zero value), control The circuit 10 determines that the first upper bridge switch H1 connected to the U-phase of the motor MT is short-circuited. On the contrary, as shown in step S521 of FIG. 3B , the control circuit 10 determines that the third upper bridge switch H3 connected to the W phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • step S601 of FIG. 3B state 6 shown in FIG. 2 is started, and the control circuit 10 turns on the third lower bridge switch L3 connected to the W phase of the motor MT.
  • steps S603 to S605 in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is equal to the current threshold (for example, zero value), the control circuit 10 determines that the U connected to the motor MT
  • the third upper bridge switch H3 of the phase has no short circuit or other abnormalities and can operate normally.
  • step S607 to S609 shown in FIG. 3B when the control circuit 10 determines that the current value of the DC sensing signal output by the DC sensor CTDC is greater than the current threshold (for example, zero value), the control circuit 10 determines that the U connected to the motor MT The third upper bridge switch H3 of the phase is short-circuited.
  • the current threshold for example, zero value
  • steps S611 and S615 of FIG. 3B when the control circuit 10 determines the first AC sensing signal output by the first AC sensor CTU of the U-phase of the motor MT and the second AC sensor signal CTV output by the second AC sensor CTV of the V-phase of the motor MT.
  • the control circuit 10 determines that at least one of the first high-bridge switch H1 connected to the U-phase of the motor MT and the second high-bridge switch H2 connected to the V-phase of the motor MT is One has a short circuit.
  • step S613 in FIG. 3 the control circuit 10 determines that only the third upper bridge switch H3 connected to the W phase of the motor MT is short-circuited.
  • steps S617 to S619 shown in FIG. 3B when the control circuit 10 determines that the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is greater than the current threshold (for example, zero value), The control circuit 10 determines that the first upper bridge switch H1 connected to the U-phase of the motor MT is short-circuited. On the contrary, as shown in step S521 of FIG. 3B , the control circuit 10 determines that the second upper bridge switch H2 connected to the V phase of the motor MT is short-circuited.
  • the current threshold for example, zero value
  • FIG. 5 is a diagram of the second open circuit detection stage of the drive circuit of the motor driver with the detection circuit according to the embodiment of the present invention.
  • the control circuit 10 shown in Figure 1 needs to follow the normal driving vectors shown in Figure 4 in sequence, that is, according to vector 1 ⁇ vector 2 ⁇ vector 3 ⁇ vector 4 ⁇ Vector 5 ⁇ Vector 6 in sequence to switch multiple switch components in turn, such as the first upper bridge switch H1, the second upper bridge switch H2, the third upper bridge switch H3, and the first lower bridge switch L1 as shown in Figure 1 , the second lower bridge switch L2 and the third lower bridge switch L3 to drive the motor MT to rotate to multiple consecutive positions in sequence.
  • control circuit 10 needs to turn on multiple switch components in a sequence different from the normal drive vector to prevent the drive motor MT from running during the detection process.
  • Figure 4 vector 5 ⁇ vector 1 ⁇ vector 4 ⁇ vector 2 ⁇ vector 6 ⁇ vector 3.
  • vector 1 ⁇ vector 4 ⁇ vector 2 ⁇ vector 6 ⁇ vector 3 ⁇ vector 5.
  • vector 2 ⁇ vector 4 ⁇ vector 1 ⁇ vector 3 ⁇ vector 6 ⁇ vector 5.
  • vector 3 ⁇ vector 1 ⁇ vector 5 ⁇ vector 2 ⁇ vector 4 ⁇ vector 6.
  • the control circuit 10 can turn on the first upper bridge switch H1 as shown in vector 2 in Figures 4 and 5, and at the same time open the V connected to the motor MT. phase of the second lower bridge switch L2. At this time, if the current value of the first AC sensing signal output by the first AC sensor CTU of the U-phase of the motor MT is less than a basic current value, the control circuit 10 initially determines that the first upper bridge switch H1 may be open.
  • the control circuit 10 can turn on the first upper bridge switch H1 according to the vector 3 shown in FIG. 4 and FIG. 5 , and simultaneously turn on the third lower bridge switch L3 connected to the W phase of the motor MT. At this time, if the current value of the first AC sensing signal output by the first AC sensor CTU of the U-phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the first upper bridge switch H1 is open.
  • the control circuit 10 can turn on the first low-bridge switch L1 as shown in vector 6 in Figures 4 and 5, and at the same time turn on the V connected to the motor MT. phase of the second upper bridge switch H2. At this time, if the current value of the first AC sensing signal output by the U-phase first AC sensor CTU of the motor MT is less than a basic current value, the control circuit 10 initially determines that the first low-bridge switch L1 may be open.
  • the control circuit 10 can turn on the first lower bridge switch L1 using the vector 5 shown in FIG. 4 and FIG. 5 , and simultaneously turn on the third upper bridge switch H3 connected to the W phase of the motor MT. At this time, if the current value of the first AC sensing signal output by the first AC sensor CTU of the U-phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the first low-bridge switch L1 is open.
  • the control circuit 10 can turn on the second high-bridge switch H2 as shown in vector 4 in Figures 4 and 5, and at the same time turn on the W connected to the motor MT.
  • the control circuit 10 initially determines that the second upper bridge switch H2 may be open.
  • the control circuit 10 can turn on the second upper bridge switch H2 using the vector 5 shown in Figures 4 and 5, and at the same time turn on the first lower bridge switch L1 connected to the U phase of the motor MT. At this time, if the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the second upper bridge switch H2 is open.
  • the control circuit 10 can turn on the second low-bridge switch L2 as shown in vector 2 in Figures 4 and 5, and at the same time turn on the U connected to the motor MT. Phase first upper bridge switch H1. At this time, if the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is less than a basic current value, the control circuit 10 initially determines that the second low-side switch L2 may be open.
  • the control circuit 10 can turn on the second lower bridge switch L2 using the vector 1 shown in FIG. 4 and FIG. 5 , and simultaneously turn on the third upper bridge switch H3 connected to the W phase of the motor MT. At this time, if the current value of the second AC sensing signal output by the second AC sensor CTV of the V phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the second low-side switch L2 is open.
  • the control circuit 10 can turn on the third upper bridge switch H3 as shown in vector 6 in Figures 4 and 5, and at the same time open the U connected to the motor MT. phase of the first lower bridge switch L1. At this time, if the current value of the third AC sensing signal output by the third AC sensor CTW of the W phase of the motor MT is less than a basic current value, the control circuit 10 initially determines that the third upper bridge switch H3 may be open.
  • the control circuit 10 can turn on the third upper bridge switch H3 according to the vector 1 shown in FIG. 4 and FIG. 5 , and simultaneously turn on the second lower bridge switch L2 connected to the V phase of the motor MT. At this time, if the current value of the third AC sensing signal output by the third AC sensor CTW of the W phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the third upper bridge switch H3 is open.
  • the control circuit 10 can turn on the third low-bridge switch L3 as shown in vector 4 in Figures 4 and 5, and at the same time turn on the V connected to the motor MT. phase of the second upper bridge switch H2. At this time, if the current value of the third AC sensing signal output by the third AC sensor CTW of the W phase of the motor MT is less than a basic current value, the control circuit 10 initially determines that the third low-side switch L3 may be open.
  • the control circuit 10 can turn on the third lower bridge switch L3 using the vector 3 shown in FIG. 4 and FIG. 5 , and simultaneously turn on the first upper bridge switch H1 connected to the U phase of the motor MT. At this time, if the current value of the third AC sensing signal output by the third AC sensor CTW of the W phase of the motor MT is also smaller than the basic current value, the control circuit 10 determines that the third low-side switch L3 is open.
  • FIG. 6 is a diagram of the second short circuit detection stage of the drive circuit of the motor driver with the detection circuit according to the embodiment of the present invention.
  • the control circuit 10 can turn on the first upper bridge switch H1 connected to the U-phase of the motor MT using vector 2 as shown in Figures 4 and 6, and at the same time Turn on the second low-side switch L2 connected to the V phase of the motor MT. Additionally or alternatively, the control circuit 10 may turn on the second upper bridge switch H2 connected to the V phase of the motor MT and simultaneously turn on the first lower bridge switch H2 connected to the U phase of the motor MT using the vector 5 shown in FIGS. 4 and 6 . Bridge switch L1.
  • control circuit 10 determines that a short circuit occurs in the U-phase to V-phase circuits of the motor MT.
  • the control circuit 10 can turn on the second upper bridge switch H2 connected to the V phase of the motor MT at the vector 4 shown in Figures 4 and 6, and at the same time Turn on the third lower bridge switch L3 connected to the W phase of the motor MT. Additionally or alternatively, the control circuit 10 may turn on the third upper bridge switch H3 connected to the W phase of the motor MT, and simultaneously turn on the second lower bridge switch H3 connected to the V phase of the motor MT, using vector 1 as shown in FIGS. 4 and 6 . Bridge switch L2.
  • control circuit 10 determines that the circuit from the V phase to the W phase of the motor MT is short-circuited.
  • the control circuit 10 can turn on the third upper bridge switch H3 connected to the W phase of the motor MT at the vector 6 shown in Figures 4 and 6, and at the same time Turn on the first lower bridge switch L1 connected to the U phase of the motor MT. Additionally or alternatively, the control circuit 10 may turn on the first upper bridge switch H1 connected to the U phase of the motor MT, and simultaneously turn on the third lower bridge switch H1 connected to the W phase of the motor MT, as shown in vector 3 in FIGS. 4 and 6 . Bridge switch L3.
  • control circuit 10 determines that a short circuit occurs in the U-phase to W-phase circuits of the motor MT.
  • Figure 7 is a waveform diagram of a motor driver with a detection circuit according to an embodiment of the present invention when the drive circuit detects a normal signal.
  • Figure 8 is a waveform diagram of a motor driver with a detection circuit according to an embodiment of the present invention. The waveform diagram of the signal detected by the drive circuit when an open circuit occurs.
  • FIG. 9 is a waveform diagram of the normal signal detected by the drive circuit of the motor driver with a detection circuit according to the embodiment of the present invention when a short circuit occurs.
  • the current threshold described herein may be equal to the product value of the Nth pulse and each current increment, where each current increment may depend on different characteristics of different motors MT and motor drivers.
  • the base current values described herein may depend on system resolution, noise, etc.
  • the basic current value is less than the current threshold.
  • the base current value may be, for example, but not limited to, half of each current increment.
  • the basic current value can be 1A
  • the current threshold at the first pulse is 2A
  • the current threshold at the second pulse is 4A
  • the current threshold at the third pulse The current threshold is 6A
  • the current threshold at the fourth pulse is 8A
  • the current threshold at the fifth pulse is 10A, and so on.
  • the U-phase current of the motor MT gradually increases with time.
  • the U-phase current of the motor MT is 1.2A, which is less than the current threshold of 6A and greater than the basic current value of 1A.
  • the U-phase current of the motor MT is 2A, which is less than the current threshold of 10A and greater than the basic current value of 1A.
  • the U-phase current of the motor MT is 3.5A, which is less than the current threshold of 18A and greater than the basic current value of 1A. Accordingly, as the U-phase current of the motor MT shown in FIG. 7 is less than the current threshold and greater than the basic current value, the control circuit 10 determines that the U-phase current of the motor MT is normal.
  • the U-phase current of the motor MT is 0A, which is less than the basic current value of 1A. Accordingly, the U-phase current of the motor MT shown in FIG. 9 is less than the base current value, and the control circuit 10 determines that the U-phase current of the motor MT is open.
  • the U-phase current of the motor MT is 5A, which is greater than the current threshold of 2A.
  • the U-phase current of the motor MT is 29A, which is 4A greater than the current threshold.
  • the U-phase current of the motor MT is 25A, which is greater than the current threshold of 6A. Accordingly, the U-phase current of the motor MT shown in FIG. 9 is greater than the current threshold, and the control circuit 10 determines that the U-phase current of the motor MT is short-circuited.
  • the present invention provides a motor driver with a detection circuit, which does not require the use of external equipment and instruments, but directly uses its own current sensor, including a DC sensor, multiple AC sensors or a combination thereof, to detect the motor's Phase current is used to determine whether there is an abnormal state of short circuit or open circuit in the switching component and/or motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种具有检测电路的马达驱动器。马达驱动器包含驱动电路、控制电路(10)以及异常状态检测电路。异常状态检测电路包含多个交流传感器、直流传感器或其仼意组合。直流传感器感测在输入电源至各开关组件之间流动的电流。多个交流传感器分别感测在多个开关组件以及马达的不同相之间流动的电流,以分别输出多个交流感测信号。控制电路(10)轮流开启多个开关组件,同时依据多个交流感测信号,判断多个开关组件以及马达是否发生短路或断路。

Description

具有检测电路的马达驱动器 技术领域
本发明涉及一种马达驱动器,尤其涉及一种具有检测电路的马达驱动器。
背景技术
在电子设备中,风扇常用于冷却处理器等发热组件。在风扇冷却发热组件的过程中,马达驱动器需正常运作,才能精准驱动风扇的马达运转,带动扇叶转动,使风扇表现出最适当的冷却性能,适当地冷却发热组件。然而,在马达驱动器中,用以驱动马达运转的多个开关组件,可能发生短路或断路之异常状态,导致马达无法正常运转。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种具有检测电路的马达驱动器,适用于马达。马达驱动器包含驱动电路、控制电路以及异常状态检测电路。驱动电路包含多个开关组件组。各开关组件组包含一上桥开关以及一下桥开关。各开关组件组的上桥开关的第一端连接输入电源的正极端。在各开关组件组中的上桥开关的第二端连接下桥开关的第一端。各开关组件组的下桥开关的第二端连接输入电源的负极端,在同一开关组件组中的上桥开关的第二端以及下桥开关的第一端之间的节点连接马达的同一相。不同的多个开关组件组分别连接马达的不同相。控制电路连接各上桥开关的控制端以及各下桥开关的控制端。控制电路配置以开启或关闭各上桥开关以及各下桥开关。异常状态检测电路包含多个交流传感器。多个交流传感器分别邻设于驱动电路连接至马达的不同相之间的线路。多个交流传感器分别配置以感测在多个开关组件组以及马达的不同相之间流动的电流,以分别输出多个交流感测信号至控制电路。控制电路轮流开启多个上桥开关以及多个下桥开关,同时依据多个交流感测信号,判断驱动电路以及马达是否发生短路或断路之异常状态。
在实施例中,当控制电路开启连接至马达的其中一相的上桥开关,且判断马达的此其中一相的交流传感器输出的交流感测信号的电流值大于电流阀值时,控制电路判定与开启的上桥开关连接至马达不同相的多个下桥开关中至少一者发生短路。
在实施例中,当控制电路开启连接至马达的其中一相的上桥开关,且控制电路判断马达的其他相的各交流传感器所输出的交流感测信号的电流值大于电流阀值时,控制电路判定与交流传感器感测的马达的那一相连接的那一下桥开关发生短路。
在实施例中,当控制电路开启连接至马达的其中一相的下桥开关,且判断马达的此其中一相的交流传感器输出的交流感测信号的电流值大于电流阀值时,控制电路判定与开启的下桥开关连接至马达不同相的多个上桥开关中至少一者发生短路。
在实施例中,当控制电路开启连接至马达的其中一相的下桥开关,且控制电路判断马达的其他相的各交流传感器所输出的交流感测信号的电流值大于电流阀值时,控制电路判定与交流传感器感测的马达的那一相连接的那一上桥开关发生短路。
在实施例中,异常状态检测电路还包含直流传感器。直流传感器邻设于输入电源的正极端连接至各上桥开关的第一端之间的线路。直流传感器配置以感测从输入电源流往各上桥开关的第一端的电流以输出直流感测信号,控制电路依据直流感测信号以判断是否发生短路。
在实施例中,当控制开关开启任一上桥开关,且判断直流感测信号的电流值大于电流阀值时,判断与开启的上桥开关连接至马达的同一相的下桥开关发生短路。
在实施例中,当控制开关开启任一下桥开关,且判断直流感测信号的电流值大于电流阀值时,控制电路判定与开启的下桥开关连接至马达的同一相的上桥开关发生短路。
在实施例中,控制电路开启连接至马达的其中一相的上桥开关,同时开启连接至马达的另一相的下桥开关。此时,若马达的此其中一相的交流传感器所输出的交流感测信号的电流值小于基础电流值时,控制电路判定开启的上桥开关发生断路。
在实施例中,当控制电路开启连接至马达的其中一相的上桥开关,同时开启连接至马达的又另一相的下桥开关时。此时,若马达的此其中一相的交流传感器所输出的交流感测信号的电流值也小于基础电流值时,控制电路判定开启的上桥开关发生断路。
在实施例中,当控制电路开启连接至马达的其中一相的下桥开关,同时开启连接至马达的另一相的上桥开关时。此时,若马达的此其中一相的交流传感器所输出的交流感测信号的电流值小于基础电流值时,控制电路判定开启的下桥开关发生断路。
在实施例中,当控制电路开启连接至马达的其中一相的下桥开关,同时开启连接至马达的又另一相的上桥开关时。此时,若马达的此其中一相的交流传感器所输出的交流感测信号的电流值也小于基础电流值时,控制电路判定开启的下桥开关发生断路。
在实施例中,控制电路开启连接至马达的其中一相的上桥开关,同时开启连接至马达的另一相的下桥开关。此时,若马达的其中一相及/或另一相的交流传感器所输出的交流感测信号的电流值大于一电流阀值时,控制电路判定马达的第一相至第二相的线路发生短路。
在实施例中,控制电路开启连接至马达的其中一相的下桥开关,同时开启连接至马达的另一相的上桥开关。此时,若马达的第一相或第二相的交流传感器所输出的交流感测信号的电流值大于电流阀值时,控制电路判定马达的第一相至第二相的线路发生短路。
在实施例中,马达为三相马达。多个开关组件组包含第一开关组件组、第二开关组件组以及第三开关组件组。第二开关组件组连接至马达的第一相。第三开关组件组连接至马达的第二相。第一开关组件组连接至马达的第三相。
如上所述,本发明提供一种具有检测电路的马达驱动器,其不需使用外部设备和仪器,直接使用本身设置的电流传感器,包含直流传感器、多个交流传感器或其组合,来检测马达的相电流,据以判断是否有开关组件及/或马达发生短路或断路之异常状态。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明实施例的具有检测电路的马达驱动器的电路图。
图2为本发明实施例的具有检测电路的马达驱动器的驱动电路的第一短路检测阶段的图表。
图3A为本发明实施例的具有检测电路的马达驱动器的第一短路检测阶段的第一步骤流程图。
图3B为本发明实施例的具有检测电路的马达驱动器的第一短路检测阶段的第二步骤流程图。
图4为本发明实施例的具有检测电路的马达驱动器的第二检测阶段的多个开关组件的检测顺序的图表。
图5为本发明实施例的具有检测电路的马达驱动器的驱动电路的第二断路检测阶段的图表。
图6为本发明实施例的具有检测电路的马达驱动器的驱动电路的第二短路检测阶段 的图表。
图7为本发明实施例的具有检测电路的马达驱动器的驱动电路检测到正常的信号的波形图。
图8为本发明实施例的具有检测电路的马达驱动器的驱动电路在发生断路时所检测到的信号的波形图。
图9为本发明实施例的具有检测电路的马达驱动器的驱动电路在发生短路时所检测到正常的信号的波形图。
具体实施方式
以下是通过特定的具体实施例来说明本发明的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包含相关联的列出项目中的任一个或者多个的组合。
请参阅图1,其为本发明实施例的具有检测电路的马达驱动器的电路图。如图1所示,本发明实施例的马达驱动器可包含控制电路10以及驱动电路以及异常状态检测电路,适用于马达MT例如三相马达。
本发明实施例的马达驱动器的驱动电路可包含多个开关组件。为方便说明,将多个开关组件分类至多个开关组件组。各开关组件组可包含一上桥开关以及一下桥开关。同一开关组件组的上桥开关以及下桥开关连接至马达MT的同一相。不同开关组件组连接至马达MT的不同相。
如图1所示,第一开关组件组包含第一上桥开关H1以及第一下桥开关L1,可连接至马达MT的其中一相例如U相。第二开关组件组包含第二上桥开关H2以及第二下桥开关L2,可连接至马达MT的另一相例如V相。第三开关组件组包含第三上桥开关H3以及第三下桥开关L3,可连接至马达MT的又另一相例如W相。
详言之,第一上桥开关H1的第一端可连接输入电源VS的正极端。第一上桥开关H1的第二端可连接第一下桥开关L1的第一端。第一下桥开关L1的第二端可(通过电阻R0以及第一电阻R1)连接输入电源VS的负极端。第一上桥开关H1的第二端以及第一下桥 开关L1的第二端之间的节点NU可连接至马达MT的其中一相例如U相。第一上桥开关H1的控制端以及第一下桥开关L1的控制端可连接控制电路10。
第二上桥开关H2的第一端可连接输入电源VS的正极端。第二上桥开关H2的第二端可连接第二下桥开关L2的第一端。第二下桥开关L2的第二端可(通过电阻R0以及第二电阻R2)连接输入电源VS的负极端。第二上桥开关H2的第二端以及第二下桥开关L2的第二端之间的节点NV可连接至马达MT的另一相例如V相。第二上桥开关H2的控制端以及第二下桥开关L2的控制端可连接控制电路10。
第三上桥开关H3的第一端可连接输入电源VS的正极端。第三上桥开关H3的第二端可连接第三下桥开关L3的第一端。第三下桥开关L3的第二端可(通过电阻R0以及第三电阻R3)连接输入电源VS的负极端。第三上桥开关H3的第二端以及第三下桥开关L3的第二端之间的节点NW可连接至马达MT的又另一相例如W相。第三上桥开关H3的控制端以及第三下桥开关L3的控制端可连接控制电路10。
若有需要,本发明实施例的马达驱动器更可包含电容C1。输入电源VS可预先对电容C1充电。之后,电容C1可对各上桥开关(例如第一上桥开关H1、第二上桥开关H2以及第三上桥开关H3)的第一端放电。
值得注意的是,本发明实施例的马达驱动器的异常状态检测电路可包含多个电流传感器,例如图1所示的第一交流传感器CTU、第二交流传感器CTV、第三交流传感器CTW、直流传感器CTDC、或其任意组合。
如图1所示,直流传感器CTDC可直接电性接触或电性连接,或非接触式地邻设于(例如但不限于套设于)输入电源VS的正极端连接至各上桥开关的第一端之间的线路,在此仅举例说明,本发明不以此为限。直流传感器CTDC可感测从输入电源VS流往一或多个上桥开关的电流,以输出一直流感测信号。
第一交流传感器CTU可直接电性接触或电性连接,或如图1所示非接触式地邻设于(例如但不限于套设)第一开关组件组(的第一上桥开关H1及/或第一下桥开关L1)连接至马达MT的U相之间的线路。第一交流传感器CTU可感测在第一开关组件组(的第一上桥开关H1及/或第一下桥开关L1)以及马达MT的U相之间流动的电流,以输出第一交流感测信号。
若有需要,本发明实施例的马达驱动器可包含第一感测电阻Ru,第一交流传感器CTU可检测流过第一感测电阻Ru的电流,以输出第一交流感测信号。
第二交流传感器CTV可直接电性接触或电性连接,或如图1所示非接触式地邻设于(例如但不限于套设)第二开关组件组(的第二上桥开关H2及/或第二下桥开关L2)连接至马达MT的V相之间的线路。第二交流传感器CTV可感测在第二开关组件组(的第二上桥开关H2及/或第二下桥开关L2)以及马达MT的V相之间流动的电流,以输出第二交流感测信号。
若有需要,本发明实施例的马达驱动器可包含第二感测电阻Rv,第二交流传感器CTV可检测流过第二感测电阻Rv的电流,以输出第二交流感测信号。
第三交流传感器CTW可直接电性接触或电性连接,或如图1所示非接触式地邻设于(例如但不限于套设)第三开关组件组(的第三上桥开关H3及/或第三下桥开关L3)连接至马达MT的W相之间的线路。第三交流传感器CTW可感测在第三开关组件组(的第三上桥开关H3及/或第三下桥开关L3)以及马达MT的W相之间流动的电流,以输出第三交流感测信号。
若有需要,本发明实施例的马达驱动器可包含第三感测电阻Rw,第三交流传感器CTW可检测流过第三感测电阻Rw的电流,以输出第三交流感测信号。
控制电路10可轮流开启或关闭多个开关组件,例如图1所示的第一上桥开关H1、第二上桥开关H2、第三上桥开关H3、第一下桥开关L1、第二下桥开关L2以及第三下桥开关L3。
控制电路10可在多个开关组件不同的切换状态下,依据从一或多个电流传感器接收到的直流感测信号、第一交流感测信号、第二交流感测信号以及第三交流感测信号中的所有或部分数者,来判断多个开关组件及/或马达MT是否发生短路或断路等异常状态。
请参阅图1、图2、图3A和图3B,其中图2为本发明实施例的具有检测电路的马达驱动器的驱动电路的第一短路检测阶段的图表;图3A和图3B为本发明实施例的具有检测电路的马达驱动器的第一短路检测阶段的步骤流程图。
本发明实施例的马达驱动器可配置直流传感器CTDC、第一交流传感器CTU、第二交流传感器CTV以及第三交流传感器CTW中的任一或多者,执行如图2所示的状态1至状态6中的任一或多者,来检测第一上桥开关H1、第二上桥开关H2、第三上桥开关H3、第一下桥开关L1、第二下桥开关L2以及第三下桥开关L3中的任一或多者是否发生短路。
举例而言,本实施例的马达驱动器仅使用直流传感器CTDC、第一交流传感器CTU以及第二交流传感器CTV,而不使用第三交流传感器CTW,依序执行如图3A和图3B所 示的步骤S100、S101至S121、S201至S221、S301至S321、S401至S421、S501至S521、S601至S621,在此仅举例说明,本发明不以此为限。
在如图3A的步骤S101,开始执行如图2所示的状态1,控制电路10开启连接马达MT的U相的第一上桥开关H1。
接着,在如图3A的步骤S103至S105,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第一下桥开关L1未发生短路等异常,可正常运作。
在图3A所示的步骤S107至S109,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第一下桥开关L1发生短路。
在如图3A的步骤S111、S115,当控制电路10判断马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的V相的第二下桥开关L2以及连接马达MT的W相的第三下桥开关L3中至少一者发生短路。反之,如图3步骤S113,控制电路10判定仅连接马达MT的U相的第一下桥开关L1发生短路。
在如图3A所示的步骤S117至S119,当控制电路10判断马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接至马达MT的V相的第二下桥开关L2发生短路。反之,在步骤S121,控制电路10判定连接至马达MT的W相的第三下桥开关L3发生短路。
在执行图3A和图3B所示的示例中,举例未使用第三交流传感器CTW。实务上,也可使用第三交流传感器CTW,控制电路10可依据第三交流传感器CTW所输出的第三交流感测信号的电流值,来判断第三下桥开关L3是否发生短路。
在如图3A的步骤S201,开始执行如图2所示的状态2,控制电路10开启连接马达MT的V相的第二上桥开关H2。
接着,在如图3A的步骤S203至S205,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的V相的第二下桥开关L2未发生短路等异常,可正常运作。
在图3A所示的步骤S207至S209,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的V 相的第二下桥开关L2发生短路。
在如图3A的步骤S211、S215,当控制电路10判断马达MT的V相的第二交流传感器CTV输出的第二交流感测信号的电流值大于一电流阀值(例如零值)时,控制电路10判定连接至马达MT的U相的第一下桥开关L1以及连接至马达MT的W相的第三下桥开关L3中至少一者发生短路。反之,如图3步骤S213,控制电路10判定仅马达MT的U相的第二下桥开关L2发生短路。
在图3A所示的步骤S217至S219,当控制电路10判断马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接至马达MT的U相的第一下桥开关L1发生短路。反之,如在图3A所示的步骤S221,控制电路10判定连接至马达MT的W相的第三下桥开关L3发生短路。
在如图3A的步骤S301,开始执行如图2所示的状态3,控制电路10开启连接至马达MT的W相的第三上桥开关H3。
接着,在如图3A的步骤S303至S305,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的W相的第三下桥开关L3未发生短路等异常,可正常运作。
在图3A所示的步骤S307至S309,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的W相的第三下桥开关L3发生短路。
在如图3A的步骤S311、S315,当控制电路10判断马达MT的U相的第一交流传感器CTU输出的第一交流感测信号以及马达MT的V相的第二交流传感器CTV输出的第二交流感测信号的电流值皆大于电流阀值时,控制电路10判定连接至马达MT的U相的第一下桥开关L1以及连接至马达MT的V相的第二下桥开关L2中至少一者发生短路。反之,如图3步骤S313,控制电路10判定仅马达MT的W相的第三下桥开关L3发生短路。
在图3A所示的步骤S317至S319,当控制电路10判断马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接至马达MT的U相的第一下桥开关L1发生短路。反之,如在图3A所示的步骤S321,控制电路10判定连接至马达MT的V相的第二下桥开关L2发生短路。
在图2所示的步骤S401下,开始执行如图2所示的状态4,控制电路10开启连接至马达MT的U相的第一下桥开关L1。
接着,在如图3B的步骤S403至S405,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第一上桥开关H1未发生短路等异常,可正常运作。
在图3B所示的步骤S407至S409,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第一上桥开关H1发生短路。
在如图3B的步骤S411、S415,当控制电路10判断马达MT的U相的第一交流传感器CTU输出的第一交流感测信号的电流值大于电流阀值(例如零值),控制电路10判定连接至马达MT的V相的第二上桥开关H2以及连接至马达MT的W相的第三上桥开关H3中至少一者发生短路。反之,如图3步骤S413,控制电路10判定仅马达MT的U相的第一上桥开关H1发生短路。
在图3B所示的步骤S417至S419,当控制电路10判断马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值大于电流阀值(例如零值),控制电路10判定连接至马达MT的V相的第二上桥开关H2发生短路。反之,如在图3B所示的步骤S421,控制电路10判定连接马达MT的W相的第三上桥开关H3发生短路。
在如图3B的步骤S501,开始执行如图2所示的状态5,控制电路10开启连接至马达MT的V相的第二下桥开关L2。
接着,在如图3B的步骤S503至S505,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的V相的第二上桥开关H2未发生短路等异常,可正常运作。
在图3B所示的步骤S507至S509,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的V相的第二上桥开关H2发生短路。
在如图3B的步骤S511、S515,当控制电路10判断马达MT的V相的第二交流传感器CTV输出的第二交流感测信号的电流值大于电流阀值(例如零值),控制电路10判定连接至马达MT的U相的第一上桥开关H1以及连接至马达MT的W相的第三上桥开关H3中至少一者发生短路。反之,如图3步骤S513,控制电路10判定仅马达MT的U相的第二上桥开关H2发生短路。
在图3B所示的步骤S517至S519,当控制电路10判断马达MT的U相的第一交流 传感器CTU所输出的第一交流感测信号的电流值大于电流阀值(例如零值),控制电路10判定连接至马达MT的U相的第一上桥开关H1发生短路。反之,如在图3B所示的步骤S521,控制电路10判定连接马达MT的W相的第三上桥开关H3发生短路。
在如图3B的步骤S601,开始执行如图2所示的状态6,控制电路10开启连接至马达MT的W相的第三下桥开关L3。
接着,在如图3B的步骤S603至S605,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值等于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第三上桥开关H3未发生短路等异常,可正常运作。
在如图3B所示的步骤S607至S609,当控制电路10判断直流传感器CTDC所输出的直流感测信号的电流值大于电流阀值(例如零值)时,控制电路10判定连接马达MT的U相的第三上桥开关H3发生短路。
在如图3B的步骤S611、S615,当控制电路10判断马达MT的U相的第一交流传感器CTU输出的第一交流感测信号以及马达MT的V相的第二交流传感器CTV输出的第二交流感测信号的电流值皆大于一电流阀值时,控制电路10判定连接至马达MT的U相的第一上桥开关H1以及连接至马达MT的V相的第二上桥开关H2中至少一者发生短路。反之,如图3步骤S613,控制电路10判定仅连接马达MT的W相的第三上桥开关H3发生短路。
在如图3B所示的步骤S617至S619,当控制电路10判断马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值大于电流阀值(例如零值),控制电路10判定连接至马达MT的U相的第一上桥开关H1发生短路。反之,如在图3B所示的步骤S521,控制电路10判定连接马达MT的V相的第二上桥开关H2发生短路。
请参阅图1、图4和图5,其中图5为本发明实施例的具有检测电路的马达驱动器的驱动电路的第二断路检测阶段的图表。
如图4所示,若欲正常驱动马达MT运转,如图1所示的控制电路10需依序依据如图4所示的正常驱动向量,即按照向量1→向量2→向量3→向量4→向量5→向量6的顺序,来轮流切换多个开关组件例如如图1所示的第一上桥开关H1、第二上桥开关H2、第三上桥开关H3、第一下桥开关L1、第二下桥开关L2以及第三下桥开关L3,以驱动马达MT依序旋转至多个连续位置。
然而,若欲检测开关组件或马达是否发生断路,控制电路10需以不同于正常驱动向 量的顺序,来轮流开启多个开关组件,以防止在检测过程中驱动马达MT运转。
举例而言,在检测开关组件或马达过程中,多个开关组件的切换顺序如图4所示为:向量5→向量1→向量4→向量2→向量6→向量3。或者,向量1→向量4→向量2→向量6→向量3→向量5。或者,向量2→向量4→向量1→向量3→向量6→向量5。或者,向量3→向量1→向量5→向量2→向量4→向量6。或者,向量5→向量4→向量6→向量2→向量1→向量3。
又或者,在检测开关组件或马达过程中,多个开关组件的切换顺序如图5所示为:向量2→向量4→向量6→向量3→向量1→向量5。
若欲检测连接马达MT的U相的第一上桥开关H1是否断路,控制电路10可如图4和图5所示的向量2,开启第一上桥开关H1,同时开启连接马达MT的V相的第二下桥开关L2。此时,若马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第一上桥开关H1可能发生断路。
接着,控制电路10可如图4和图5所示的向量3,开启第一上桥开关H1,同时开启连接马达MT的W相的第三下桥开关L3。此时,若马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值也小于基础电流值时,控制电路10判定第一上桥开关H1发生断路。
若欲检测连接马达MT的U相的第一下桥开关L1是否断路,控制电路10可如图4和图5所示的向量6,开启第一下桥开关L1,同时开启连接马达MT的V相的第二上桥开关H2。此时,若马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第一下桥开关L1可能发生断路。
接着,控制电路10可如图4和图5所示的向量5,开启第一下桥开关L1,同时开启连接马达MT的W相的第三上桥开关H3。此时,若马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值也小于基础电流值时,控制电路10判定第一下桥开关L1发生断路。
若欲检测连接马达MT的V相的第二上桥开关H2是否断路,控制电路10可如图4和图5所示的向量4,开启第二上桥开关H2,同时开启连接马达MT的W相的第三下桥开关L3。此时,若马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第二上桥开关H2可能发生断路。
接着,控制电路10可如图4和图5所示的向量5,开启第二上桥开关H2,同时开启 连接马达MT的U相的第一下桥开关L1。此时,若马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值也小于基础电流值时,控制电路10判定第二上桥开关H2发生断路。
若欲检测连接马达MT的V相的第二下桥开关L2是否断路,控制电路10可如图4和图5所示的向量2,开启第二下桥开关L2,同时开启连接马达MT的U相的第一上桥开关H1。此时,若马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第二下桥开关L2可能发生断路。
接着,控制电路10可如图4和图5所示的向量1,开启第二下桥开关L2,同时开启连接马达MT的W相的第三上桥开关H3。此时,若马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值也小于基础电流值时,控制电路10判定第二下桥开关L2发生断路。
若欲检测连接马达MT的W相的第三上桥开关H3是否断路,控制电路10可如图4和图5所示的向量6,开启第三上桥开关H3,同时开启连接马达MT的U相的第一下桥开关L1。此时,若马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第三上桥开关H3可能发生断路。
接着,控制电路10可如图4和图5所示的向量1,开启第三上桥开关H3,同时开启连接马达MT的V相的第二下桥开关L2。此时,若马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值也小于基础电流值时,控制电路10判定第三上桥开关H3发生断路。
若欲检测连接马达MT的W相的第三下桥开关L3是否断路,控制电路10可如图4和图5所示的向量4,开启第三下桥开关L3,同时开启连接马达MT的V相的第二上桥开关H2。此时,若马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值小于一基础电流值时,控制电路10初步判定第三下桥开关L3可能发生断路。
接着,控制电路10可如图4和图5所示的向量3,开启第三下桥开关L3,同时开启连接马达MT的U相的第一上桥开关H1。此时,若马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值也小于基础电流值时,控制电路10判定第三下桥开关L3发生断路。
请参阅图1、图4和图6,其中图6为本发明实施例的具有检测电路的马达驱动器的驱动电路的第二短路检测阶段的图表。
若欲检测马达MT的U相至V相的线路是否发生短路,控制电路10可如图4和图6所示的向量2,开启连接至马达MT的U相的第一上桥开关H1,同时开启连接至马达MT的V相的第二下桥开关L2。另外或替换地,控制电路10可如图4和图6所示的向量5,开启连接至马达MT的V相的第二上桥开关H2,同时开启连接至马达MT的U相的第一下桥开关L1。
在此情况下,当控制电路10取得的马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值及/或马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值,大于一电流阀值时,控制电路10判定马达MT的U相至V相的线路发生短路。
若欲检测马达MT的V相至W相的线路是否发生短路,控制电路10可如图4和图6所示的向量4,开启连接至马达MT的V相的第二上桥开关H2,同时开启连接至马达MT的W相的第三下桥开关L3。另外或替换地,控制电路10可如图4和图6所示的向量1,开启连接至马达MT的W相的第三上桥开关H3,同时开启连接至马达MT的V相的第二下桥开关L2。
在此情况下,当控制电路10取得的马达MT的V相的第二交流传感器CTV所输出的第二交流感测信号的电流值及/或马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值,大于电流阀值时,控制电路10判定马达MT的V相至W相的线路发生短路。
若欲检测马达MT的U相至W相的线路是否发生短路,控制电路10可如图4和图6所示的向量6,开启连接至马达MT的W相的第三上桥开关H3,同时开启连接至马达MT的U相的第一下桥开关L1。另外或替换地,控制电路10可如图4和图6所示的向量3,开启连接至马达MT的U相的第一上桥开关H1,同时开启连接至马达MT的W相的第三下桥开关L3。
在此情况下,当控制电路10取得的马达MT的U相的第一交流传感器CTU所输出的第一交流感测信号的电流值及/或马达MT的W相的第三交流传感器CTW所输出的第三交流感测信号的电流值,大于电流阀值时,控制电路10判定马达MT的U相至W相的线路发生短路。
请参阅图1至图9,其中图7为本发明实施例的具有检测电路的马达驱动器的驱动电路检测到正常的信号的波形图,图8为本发明实施例的具有检测电路的马达驱动器的驱动 电路在发生断路时所检测到的信号的波形图,图9为本发明实施例的具有检测电路的马达驱动器的驱动电路在发生短路时所检测到正常的信号的波形图。
在本文中所述的电流阀值可等于第N次脉冲与每次电流增加量的乘积值,其中每次电流增加量可取决于不同马达MT和马达驱动器的不同特性。在本文中所述的基础电流值可取决于***分辨率、杂信等。基础电流值小于电流阀值。基础电流值可例如但不限于为每次电流增加量的一半。
举例而言,若每次电流增加量为2A,基础电流值可为1A,第1次脉冲时的电流阀值为2A,第2次脉冲时的电流阀值为4A,第3次脉冲时的电流阀值为6A,第4次脉冲时的电流阀值为8A,第5次脉冲时的电流阀值为10A,以此类推。
如图7所示,在时间范围300ms至1200ms内,马达MT的U相电流随时间逐渐增加。在第3次脉冲时,马达MT的U相电流为1.2A,小于电流阀值为6A并且大于基础电流值1A。第5次脉冲时,马达MT的U相电流为2A,小于电流阀值为10A并且大于基础电流值1A。第9次脉冲时,马达MT的U相电流为3.5A,小于电流阀值为18A且大于基础电流值1A。据此,如图7所示的马达MT的U相电流小于电流阀值且大于基础电流值,控制电路10判定马达MT的U相正常。
如图8所示,在时间范围300ms至1200ms内,马达MT的U相电流皆为0A,小于基础电流值1A。据此,如图9所示的马达MT的U相电流小于基础电流值,控制电路10判定马达MT的U相断路。
如图9所示,在第1次脉冲时,马达MT的U相电流为5A,大于电流阀值为2A。在第2次脉冲时,马达MT的U相电流为29A,大于电流阀值为4A。在第3次脉冲时,马达MT的U相电流为25A,大于电流阀值为6A。据此,如图9所示的马达MT的U相电流大于电流阀值,控制电路10判定马达MT的U相短路。
综上所述,本发明提供一种具有检测电路的马达驱动器,其不需使用外部设备和仪器,直接使用本身设置的电流传感器,包含直流传感器、多个交流传感器或其组合,来检测马达的相电流,据以判断是否有开关组件及/或马达发生短路或断路之异常状态。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书内。

Claims (15)

  1. 一种具有检测电路的马达驱动器,适用于马达,其特征在于,所述的具有检测电路的马达驱动器包含:
    驱动电路,包含多个开关组件组,各所述开关组件组包含上桥开关以及下桥开关,各所述开关组件组的所述上桥开关的第一端连接输入电源的正极端,在各所述开关组件组中的所述上桥开关的第二端连接所述下桥开关的第一端,各所述开关组件组的所述下桥开关的第二端连接所述输入电源的负极端,在同一所述开关组件组中的所述上桥开关的第二端以及所述下桥开关的第一端之间的节点连接所述马达的同一相,不同的所述多个开关组件组分别连接所述马达的不同相;
    控制电路,连接各所述上桥开关的控制端以及各所述下桥开关的控制端,配置以开启或关闭各所述上桥开关以及各所述下桥开关;以及
    异常状态检测电路,包含:
    多个交流传感器,所述多个交流传感器分别邻设于所述驱动电路连接至所述马达的不同相之间的线路,分别配置以感测在所述多个开关组件组以及所述马达的不同相之间流动的电流,以分别输出多个交流感测信号至所述控制电路;
    其中,所述控制电路轮流开启多个所述上桥开关以及多个所述下桥开关,同时依据所述多个交流感测信号,判断所述驱动电路以及所述马达是否发生短路或断路之异常状态。
  2. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,当所述控制电路开启连接至所述马达的其中一相的所述上桥开关,且判断所述马达的此其中一相的所述交流传感器输出的所述交流感测信号的电流值大于一电流阀值时,所述控制电路判定与开启的所述上桥开关连接至所述马达不同相的所述多个下桥开关中至少一者发生短路。
  3. 根据权利要求2所述的具有检测电路的马达驱动器,其特征在于,当所述控制电路开启连接至所述马达的其中一相的所述上桥开关,且所述控制电路判断所述马达的其他相的各所述交流传感器所输出的所述交流感测信号的电流值大于所述电流阀值时,所述控制电路判定与所述交流传感器感测的所述马达的那一相连接的那一所述下桥开关发生短路。
  4. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,当所述控制电路开启连接至所述马达的其中一相的所述下桥开关,且判断所述马达的此其中一相的所述交流传感器输出的所述交流感测信号的电流值大于一电流阀值时,所述控制电路判定与开 启的所述下桥开关连接至所述马达不同相的所述多个上桥开关中至少一者发生短路。
  5. 根据权利要求4所述的具有检测电路的马达驱动器,其特征在于,当所述控制电路开启连接至所述马达的其中一相的所述下桥开关,且所述控制电路判断所述马达的其他相的各所述交流传感器所输出的所述交流感测信号的电流值大于所述电流阀值时,所述控制电路判定与所述交流传感器感测的所述马达的那一相连接的那一所述上桥开关发生短路。
  6. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,所述异常状态检测电路还包含一直流传感器,邻设于所述输入电源的正极端连接至各所述上桥开关的第一端之间的线路,配置以感测从所述输入电源流往各所述上桥开关的第一端的电流以输出一直流感测信号,所述控制电路依据所述直流感测信号以判断是否发生短路。
  7. 根据权利要求6所述的具有检测电路的马达驱动器,其特征在于,当所述控制开关开启任一所述上桥开关,且判断所述直流感测信号的电流值大于一电流阀值时,所述控制电路判定与开启的所述上桥开关连接至所述马达的同一相的所述下桥开关发生短路。
  8. 根据权利要求6所述的具有检测电路的马达驱动器,其特征在于,当所述控制开关开启任一所述下桥开关,且判断所述直流感测信号的电流值大于一电流阀值时,所述控制电路判定与开启的所述下桥开关连接至所述马达的同一相的所述上桥开关发生短路。
  9. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,所述控制电路开启连接至所述马达的其中一相的所述上桥开关,同时开启连接至所述马达的另一相的所述下桥开关,此时若所述马达的此其中一相的所述交流传感器所输出的所述交流感测信号的电流值小于一基础电流值,所述控制电路判定开启的所述上桥开关发生断路。
  10. 根据权利要求9所述的具有检测电路的马达驱动器,其特征在于,所述控制电路开启连接至所述马达的其中一相的所述上桥开关,同时开启连接至所述马达的又另一相的所述下桥开关,此时若所述马达的此其中一相的所述交流传感器所输出的所述交流感测信号的电流值也小于所述基础电流值时,所述控制电路判定开启的所述上桥开关发生断路。
  11. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,所述控制电路开启连接至所述马达的其中一相的所述下桥开关,同时开启连接至所述马达的另一相的所述上桥开关,此时若所述马达的此其中一相的所述交流传感器所输出的所述交流感测信号的电流值小于一基础电流值时,所述控制电路判定开启的所述下桥开关发生断路。
  12. 根据权利要求11所述的具有检测电路的马达驱动器,其特征在于,所述控制电 路开启连接至所述马达的其中一相的所述下桥开关,同时开启连接至所述马达的又另一相的所述上桥开关,此时若所述马达的此其中一相的所述交流传感器所输出的所述交流感测信号的电流值也小于所述基础电流值时,所述控制电路判定开启的所述下桥开关发生断路。
  13. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,所述控制电路开启连接至所述马达的其中一相的所述上桥开关,同时开启连接至所述马达的另一相的所述下桥开关,此时若所述马达的其中一相及/或另一相的所述交流传感器所输出的所述交流感测信号的电流值大于一电流阀值时,所述控制电路判定所述马达的第一相至第二相的线路发生短路。
  14. 根据权利要求13所述的具有检测电路的马达驱动器,其特征在于,所述控制电路开启连接至所述马达的其中一相的所述下桥开关,同时开启连接至所述马达的另一相的所述上桥开关,此时若所述马达的第一相或第二相的所述交流传感器所输出的所述交流感测信号的电流值大于所述电流阀值时,所述控制电路判定所述马达的第一相至第二相的线路发生短路。
  15. 根据权利要求1所述的具有检测电路的马达驱动器,其特征在于,所述马达为三相马达,所述多个开关组件组包含第一开关组件组、第二开关组件组以及第三开关组件组,所述第二开关组件组连接至所述马达的第一相,所述第三开关组件组连接至所述马达的第二相,所述第一开关组件组连接至所述马达的第三相。
PCT/CN2022/118699 2022-09-14 2022-09-14 具有检测电路的马达驱动器 WO2024055190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118699 WO2024055190A1 (zh) 2022-09-14 2022-09-14 具有检测电路的马达驱动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118699 WO2024055190A1 (zh) 2022-09-14 2022-09-14 具有检测电路的马达驱动器

Publications (1)

Publication Number Publication Date
WO2024055190A1 true WO2024055190A1 (zh) 2024-03-21

Family

ID=90274107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118699 WO2024055190A1 (zh) 2022-09-14 2022-09-14 具有检测电路的马达驱动器

Country Status (1)

Country Link
WO (1) WO2024055190A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382585A (zh) * 2007-09-07 2009-03-11 比亚迪股份有限公司 一种电机中逆变器的测试方法、装置及电机
CN103744013A (zh) * 2014-01-21 2014-04-23 上海新世纪机器人有限公司 全控桥式电路故障诊断方法
CN109541337A (zh) * 2018-10-16 2019-03-29 苏州汇川技术有限公司 变频器故障检测方法、***、设备及计算机可读存储介质
CN109975648A (zh) * 2019-04-24 2019-07-05 重庆理工大学 一种电动机桥式电路功率开关管短路在线检测方法
CN110108997A (zh) * 2019-04-09 2019-08-09 上海奇电电气科技股份有限公司 一种变频器自检方法
CN111244898A (zh) * 2019-12-30 2020-06-05 扬州曙光光电自控有限责任公司 一种交流伺服驱动器输出端相间短路的保护电路及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382585A (zh) * 2007-09-07 2009-03-11 比亚迪股份有限公司 一种电机中逆变器的测试方法、装置及电机
CN103744013A (zh) * 2014-01-21 2014-04-23 上海新世纪机器人有限公司 全控桥式电路故障诊断方法
CN109541337A (zh) * 2018-10-16 2019-03-29 苏州汇川技术有限公司 变频器故障检测方法、***、设备及计算机可读存储介质
CN110108997A (zh) * 2019-04-09 2019-08-09 上海奇电电气科技股份有限公司 一种变频器自检方法
CN109975648A (zh) * 2019-04-24 2019-07-05 重庆理工大学 一种电动机桥式电路功率开关管短路在线检测方法
CN111244898A (zh) * 2019-12-30 2020-06-05 扬州曙光光电自控有限责任公司 一种交流伺服驱动器输出端相间短路的保护电路及方法

Similar Documents

Publication Publication Date Title
US6169383B1 (en) Self adapting motor controller
EP3408932B1 (en) Motor control current zero crossing detector
CN112242831A (zh) 栅极驱动器电路和检测逆变器支路中的短路事件的方法
CN109463034B (zh) 具有放电功能的功率转换装置
JP2000299631A (ja) 電源供給制御装置および電源供給制御方法
WO2018078851A1 (ja) 電動機駆動装置
US11088639B2 (en) Motor driving device and method thereof
US10199974B2 (en) Motor driving circuit and motor driving method
JPH08327685A (ja) 開放負荷を検出する方法およびその回路
JP2013158173A (ja) モータ駆動制御装置およびその動作方法
US11171478B2 (en) Electronic fuse circuit, corresponding device and method
EP3703247B1 (en) Electric motor driving apparatus
US6469461B1 (en) Motor control apparatus
WO2024055190A1 (zh) 具有检测电路的马达驱动器
TWI823562B (zh) 具有檢測電路的馬達驅動器
US20060044045A1 (en) Semiconductor apparatus provided with power switching semiconductor device
CN110557115B (zh) 栅极接口电路
JP2793909B2 (ja) 組合わせ入出力点を有する入出力モジュール
Sobanski Fuzzy-logic-based approach to voltage inverter fault diagnosis in induction motor drive
JP2001258151A (ja) 電源電圧異常検出回路および方法
CN106891991B (zh) 电机控制装置
EP2688195A2 (en) Motor controller
US11303233B2 (en) Motor drive control device
JPH07322682A (ja) モータの駆動制御装置
JPH06253580A (ja) インバータ装置の保護装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958384

Country of ref document: EP

Kind code of ref document: A1