WO2024053085A1 - Electrode tip regeneration device - Google Patents

Electrode tip regeneration device Download PDF

Info

Publication number
WO2024053085A1
WO2024053085A1 PCT/JP2022/033857 JP2022033857W WO2024053085A1 WO 2024053085 A1 WO2024053085 A1 WO 2024053085A1 JP 2022033857 W JP2022033857 W JP 2022033857W WO 2024053085 A1 WO2024053085 A1 WO 2024053085A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaping
electrode tip
tip
electrode
jig
Prior art date
Application number
PCT/JP2022/033857
Other languages
French (fr)
Japanese (ja)
Inventor
政則 松岡
Original Assignee
有限会社Tne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Tne filed Critical 有限会社Tne
Priority to JP2022554888A priority Critical patent/JP7219935B1/en
Priority to PCT/JP2022/033857 priority patent/WO2024053085A1/en
Publication of WO2024053085A1 publication Critical patent/WO2024053085A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/16Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for bevelling, chamfering, or deburring the ends of bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work

Definitions

  • the present invention relates to an electrode tip regeneration device that regenerates an electrode tip by stretching out the deformed portion of the electrode tip that bulges and deforms as the number of shots in electric resistance welding increases and reshaping the tip into a regular shape.
  • regeneration differs from the concept of cutting the bulging deformed part of the electrode tip into a regular shape by polishing or cutting it, and the term “regeneration” refers to stretching out the deformed part and shaping it into a regular shape. means to regenerate.
  • the term "regular shape” refers to the shape of the electrode tip when it is not in use, as well as the shape of the electrode tip when it is regenerated according to the present invention. This also includes a shape that is close to, but not completely identical to, an unused electrode tip in a state in which an alloy layer of a predetermined thickness remains on the surface.
  • the electrode tip attached to the welding gun and used for electric resistance welding may bulge and deform (increase in diameter) or wear out due to pressure contact with the workpiece and heat generated during electric resistance welding. This can cause the applied current distribution to become uneven, resulting in poor welding nugget quality (welding quality), and metal particles evaporated from the chip base material and workpiece plating layer due to sputtering to the tip (surface). This causes problems such as increased power consumption during electric resistance welding due to the formation of an alloy layer as a resistance layer.
  • the tip dresser device shown in Patent Document 1 is provided in a holder such that the electrode is inserted under pressure into the electrode entry recess of the holder, which is rotated by a rotating member.
  • a rotating blade cuts away the deformed part of the electrode tip and regenerates it into its normal shape.
  • the amount of cutting of the electrode (the amount of cutting relative to the total length of the electrode tip) is 0.1 mm to 0.3 mm, and each time the electrode tip is cut, the electrode tip becomes shorter and its life is reduced, resulting in the number of welding shots.
  • the cost of electric resistance welding increases, and during cutting, the rotational torque and rotational speed fluctuate due to the cutting resistance caused by the pressure of the electrode against the holder, making the amount of cutting (amount of consumption) unstable. If the number of welding shots increases, the number of welding shots will decrease, and conversely, if the amount of cutting decreases, there will be problems such as the inability to cut the electrode tip into a regular shape.
  • the electrode tip shaping jig disclosed in Patent Document 2 includes a notch portion in which the outer circumferential side of the shaping chamber is cut out except for a part of the bottom surface of the shaping chamber, which has a cup-shaped inner circumferential surface into which the tip end of the electrode tip can enter; At least one at least one is provided on the circumferential surface of the shaping chamber corresponding to at least the proximal side and the distal side shaping areas assumed at the distal end of the electrode tip, and presses against the corresponding shaping areas to push the deformed portion to each side.
  • Two or more shaping parts and a tip face shaping unit which is provided extending in the radial direction at the bottom of the shaping chamber, is in pressure contact with the tip end face of the electrode tip, and shaves off a part of the alloy layer formed on the tip face to shape it. and a cutting blade for cutting at least the extruded excess portion of the outer periphery of the tip of the electrode tip within the notch.
  • the electrode tip shaping device on which the electrode tip shaping jig is mounted, shapes and regenerates the electrode tip into a regular shape, includes a shaping holder that pivotally supports a rotary disk that removably holds the electrode tip shaping jig; It is composed of a rotating member such as an electric motor or a rotary actuator that rotates the rotating disk at a desired rotational torque and rotational speed.
  • the electrode tip When regenerating an electrode tip, for example, if the expected number of welding shots for one electrode tip is 30,000, and the electrode tip is regenerated every 20 shots, that is, if it is regenerated 1,500 times. must be set so that the cutting amount in one shaping operation (reproduction operation) is approximately 0.005 mm (5 ⁇ m) on average.
  • the cutting amount of the electrode tip in an electrode tip shaping device that uses an electrode tip shaping jig that has a notch on a part of the outer periphery and a cutting blade attached to it is the cutting amount of the cutting blade relative to the tip of the electrode tip at the notch. Determined by the amount of penetration.
  • the amount of biting depends on the rotational speed of the electrode tip shaping jig, the pressing force of the electrode tip against the electrode tip shaping jig, the notch width of the electrode tip shaping jig, the shaping time, etc. Among these, the pressing force, notch width, and shaping time are determined in advance and do not change during shaping.
  • the driving force of the rotating member is applied directly to the shaping holder or by a gear train.
  • fluctuations in rotational torque and rotational speed were unavoidable due to cutting resistance caused by the cutting blade biting into the tip of the electrode tip.
  • the problem we are trying to solve is that the cutting amount is reduced due to fluctuations in rotational torque and rotational speed due to pressure contact of the electrode tip entering the shaping chamber of the electrode tip shaping jig and cutting resistance when the cutting blade bites into the electrode tip. There is a risk that the electrode tip will not be stabilized, and the life of the electrode tip will be shortened, or that it will be difficult to shape the electrode tip into a regular shape.
  • Claim 1 provides a shaping section that is provided on the circumferential surface of the shaping chamber into which the electrode tip enters and that presses against a shaping area assumed at least on the distal end side and/or base end side of the electrode tip tip, and on the bottom surface of the shaping chamber.
  • a cutting blade is provided in a notch formed in a part of the inner circumferential surface of the shaping chamber and is in pressure contact with the outer periphery and tip surface of the tip of the electrode tip.
  • the provided electrode tip shaping jig is rotated and the deformed part of the tip of the electrode tip is pushed out by the shaping cloth and the tip face shaping part, and the excess part is cut by the cutting blade to be shaped into a regular shape and regenerated.
  • An electrode chip regeneration device includes: a rotary disc having a hollow portion in the center into which an electrode chip shaping jig is inserted in a non-rotating state; a regeneration holder rotatably supporting the rotary disc; and a rotary disc.
  • a rotary member connected to the rotary member and rotated at least at a predetermined number of rotations, and a flywheel coaxially provided on either the rotary disk or the rotary member, and the cutting blade cuts into the excess portion of the electrode tip.
  • the main feature is that when the rotational torque fluctuates, the rotational force is supplemented by the inertia force of the flywheel, making it possible to suppress fluctuations in the rotational speed.
  • the present invention can prevent the rotational speed from changing even when the rotational torque fluctuates due to pressure contact of the electrode tip entering the shaping chamber of the electrode tip shaping jig or cutting resistance when the cutting blade bites into the electrode tip. This makes it possible to shape the electrode tip with a stable amount of cutting.
  • FIG. 1 is a partially exploded perspective view schematically showing an electrode chip regeneration device.
  • FIG. 3 is a schematic perspective view showing the inside of the playback head.
  • FIG. 3 is a partially exploded perspective view of the electrode tip shaping jig.
  • FIG. 3 is a plan view of the electrode tip shaping jig.
  • 5 is a vertical cross-sectional view taken along the line AA in FIG. 4.
  • FIG. 5 is a vertical cross-sectional view taken along the line AB in FIG. 4.
  • FIG. FIG. 3 is an explanatory diagram showing an electrode tip before regeneration with a deformed tip.
  • a rotary disk having a hollow portion in the center into which the electrode tip shaping jig is inserted in a non-rotating state; a regeneration holder that rotatably supports the rotary disk; A rotary member that rotates at a rotational speed of In the best embodiment, the rotational force can be supplemented by the inertial force of the flywheel to suppress fluctuations in the rotational speed.
  • an electrode tip regeneration device 1 is installed, for example, at the tip of an arm (not shown) of a conventionally known multi-joint electric resistance welding machine (not shown) called a so-called welding robot.
  • the welding gun is placed at the movement origin position (standby position) of a conventionally known C-type or X-type welding gun (not shown).
  • a C-type welding gun is configured to move toward and away from the other arm by means of an air cylinder or a numerically controllable servo motor connected to one mounting arm, for example.
  • Electrode tips 7 are attached to each attachment arm so that their axes coincide with each other, facing each other, and are replaceable.
  • Each electrode chip 7 is connected to a workpiece (not shown), such as a plurality of stacked galvanized steel plates, located between the two mounting arms when one mounting arm moves in a direction approaching the other mounting arm.
  • a workpiece such as a plurality of stacked galvanized steel plates
  • the front and back surfaces of the workpiece are clamped under a predetermined pressure, and electrical resistance welding is performed using an applied welding current.
  • Each electrode tip 7 is made of copper (Cu), copper-chromium alloy (Cr-Cu), etc., which has a low electrical resistance value and is easily plastically deformed.
  • the outer periphery of the tip extends in a curved shape that gradually decreases in diameter toward the tip with the required outer diameter, and the tip surface is almost flat or a curved surface with a predetermined curvature ( Figure 7 shows the case where the tip surface is flat). ) is formed.
  • the support member 11 of the electrode chip regeneration device 1 is fixed to a column (not shown) provided at the movement origin position (standby position), and there are two pairs of supports (not shown) above and below the support member 11 (in this embodiment).
  • Brackets 13 are provided at predetermined intervals in the vertical direction.
  • a pair of left and right guide rods 15 having axes in the vertical direction are provided between the pair of brackets 13, and a slider 18 fixed to the base end of the reproducing head 17 is attached to the pair of guide rods 15 in the vertical direction. It is supported so that it can slide in the direction.
  • the playback head 17 is moved, for example, to the axially intermediate portion of the guide rod 15 by the elastic force of elastic members 19 such as compression springs and rubber bushes provided on the guide rods 15 located above and below the playback head 17. be located.
  • elastic members 19 such as compression springs and rubber bushes provided on the guide rods 15 located above and below the playback head 17.
  • the first gear 21 has a rotating member 27 such as a step motor, an induction motor, or a rotary actuator attached to the lower side of the base end of the playback head 17, whose output shaft is coaxial with the first gear 21 and has a large diameter. and are connected via a flywheel 29 of large mass.
  • the flywheel 29 may be coaxially attached to the upper part of the shaft of the first gear 21 to which the rotating member 27 is connected.
  • the flywheel 29 is a member provided to compensate for the decrease in rotational speed due to an increase in rotational torque with its inertial force. It will be set accordingly.
  • the flywheel 29 has a large mass, whereas when the opening width of the notch 37 is narrow and the rotational torque fluctuates little. is set on the flywheel 29 having a small mass.
  • the center large diameter portion 25a of the third gear 25 has a hollow portion having a shape that can be inserted and fitted in alignment with the plane of the electrode tip shaping jig 33, and an axial length that matches the height of the electrode tip shaping jig 33. 25b is formed.
  • a presser plate 31 is screwed to the upper and lower surfaces of the central large-diameter portion 25a and is fixed to the upper and lower portions of the outer peripheral surfaces of the electrode tip shaping jig 33 inserted into the hollow portion 25b. Ru.
  • the electrode tip shaping jig 33 is configured as follows. As shown in FIGS. 3 to 6, the electrode tip shaping jig 33 is made of cemented carbide (high-speed steel), ceramics, etc., and has a polygonal column shape (the figure shows a hexagonal column shape) that can prevent rotation relative to the hollow portion 25b. ), and the upper and lower parts thereof have an inner diameter (inner diameter larger than the outer diameter of the electrode tip 7) into which the tip of the opposing electrode tip 7 can enter.
  • Cup-shaped shaping chamber 35 (In the following explanation, since the upper and lower shaping chambers 35 are vertically mirror symmetrical, only the upper shaping chamber 35 will be explained, and the explanation of the lower shaping chamber 35 will be omitted. ) are provided mirror-symmetrically with respect to the axial direction.
  • a notch 37 is formed on a part of the outer periphery of the electrode tip shaping jig 33, extending from a position eccentric from the center of the bottom surface of each shaping chamber 35 to the outer periphery, leaving the center of the bottom surface open at a predetermined angle a. .
  • the opening angle of the notch 37 determines the amount of cutting of the stretched surplus portion (referred to as a kiriko or scarf), which will be described later. This is one element and is determined according to the outer diameter of the tip of the electrode tip 7 and the shape of the tip surface. That is, when the tip of the electrode tip 7 has a large diameter, the opening angle is set wide, and conversely, when the tip has a small diameter, the opening angle is set narrow. The range is set to .
  • the notch surface 37a of the notch 37 located on the upper side in the rotational direction has a cutting blade 39 made of, for example, high-speed steel, cemented carbide, ceramics, etc., and the end surface on the lower side in the rotational direction of the blade 39a has an electrode tip. It is screwed so as to coincide with the center line of the shaping jig 33.
  • the cutting blade 39 mainly cuts the tip of the electrode tip 7 into the first shaping section 43 (described later) at a timing slightly delayed from the timing at which the tip end surface of the electrode tip 7 that has entered the shaping chamber 35 is regenerated into a normal shape by the tip end surface shaping section 37.
  • the surplus portion stretched toward the distal end side and a portion of the remaining alloy layer generated on the distal end surface and cut by the distal end surface shaping section 47 are cut off.
  • a cutting waste discharge hole 41 is formed in the inner peripheral surface of the shaping chamber 35 on the opposite side to the notch 37, extending in the axial direction of the electrode tip shaping jig 33 and penetrating the partition wall of each shaping chamber 35. Ru.
  • a first shaping portion 43 is formed on the inner circumferential surface of the shaping chamber 35 on the upper side of the cutting waste discharge hole 41 in the rotational direction so that the radius of curvature of the ridge line matches the radius of curvature of the shaping region on the distal end side. Ru. When regenerating the electrode tips 7 and 9, the first shaping section 43 comes into pressure contact with the distal end side shaping region and stretches the deformed portion toward the distal end surface side.
  • a second shaping section 45 is formed on the inner circumferential surface of the shaping chamber 35 on the downstream side of the cutting waste discharge hole 41 in the rotational direction so that the radius of curvature of its ridge line matches the radius of curvature of the proximal shaping region. be done.
  • the second shaping section 45 comes into pressure contact with the proximal side reshaping region and stretches the deformed portion toward the proximal side.
  • a distal end face shaping section 47 is formed on the bottom surface of the shaping chamber 35 so as to curve and extend in the radial direction (direction orthogonal to the axis) at a location deviated from the rotation center.
  • the upper surface of the distal end surface shaping portion 47 is formed into a curved surface or a flat surface corresponding to the distal end surface of the regular electrode tip 7.
  • the tip surface shaping section 47 is in pressure contact with the tip surface of the electrode tip 7 entering the shaping chamber 35, and when the workpiece is a galvanized steel plate, for example, chromium-zinc (YCr) generated on the tip surface by electric resistance welding is applied. - Of the alloy layers (YCr-Zn layer, Fe -Zn layer) and regenerate it into the desired curved or flat surface.
  • YCr chromium-zinc
  • the electrode tip shaping jig 33 is described in detail in Patent Document 2, the configuration of the electrode tip shaping jig 33 will be cited below. Note that the reference numerals attached to the cited electrode tip shaping jig and the numerals attached to the present application are different, so please refer to them interchangeably.
  • the electrode tip shaping jig 11 is made of cemented carbide (high-speed steel), ceramics, etc., and has a polygonal column shape (the figure shows a hexagonal column shape) that is inserted into the mounting hole 13a of the rotary disk 13 so as to prevent rotation.
  • the shape is not limited to this shape.
  • the upper and lower parts have an inner diameter (from the outer diameter of the electrode tips 7 and 9) into which the tips of the opposing electrode tips 7 and 9 can enter.
  • Cup-shaped treatment chambers 25 and 27 large inner diameter (in the following explanation, since the upper and lower treatment chambers are mirror-symmetrical, only the upper treatment chamber will be explained, and the one attached to the lower treatment chamber will be explained below). ) are provided mirror-symmetrically with respect to the axial direction.Furthermore, the electrode tip shaping jig 11 is rotated, for example, in the clockwise direction as shown in the figure, as the electric motor rotates.
  • a notch 29 is formed on a part of the outer periphery of the electrode tip shaping jig 11, extending from a position eccentric from the center of the bottom of each shaping chamber 25, 27 to the outer periphery, and opening at a predetermined angle, leaving the center of the bottom.
  • Ru A locking recess 29b is formed in the center of the notch surface 29a located on the upper side in the rotational direction of the notch 29 (at the partition wall of each shaping chamber 25, 27), and a screw is inserted into the locking recess 29b.
  • a hole 29c is formed.
  • a cutting waste discharge hole 31 is formed on the inner peripheral surface of the shaping chambers 25 and 27 on the opposite side to the notch 27, extending in the axial direction of the electrode tip shaping jig 11 and penetrating the partition between the two. be done.
  • a first shaping part 33 is formed on the inner peripheral surfaces of the shaping chambers 25 and 27 corresponding to the upper side of the cutting waste discharge hole 31 in the rotational direction such that the radius of curvature of the ridgeline matches the radius of curvature of the distal shaping area a.
  • a second shaping portion 35 is provided on the inner peripheral surface of the shaping chambers 25 and 27 on the downstream side of the cutting waste discharge hole 31 in the rotational direction, and the radius of curvature of the ridge line thereof matches the radius of curvature of the proximal shaping region b.
  • a tip face shaping section 37 is formed so as to curve and extend in the radial direction at a location deviated from the center of rotation.
  • the distal end surface shaping section 37 is formed in a curved or flat shape corresponding to the curved surface or flat surface of the distal end surface of the electrode tips 7 and 9 whose upper surfaces have regular shapes, and is formed in a curved or flat shape corresponding to the curved surface or plane of the distal end surface of the electrode tips 7 and 9 that have regular upper surfaces.
  • the workpiece is a galvanized steel plate, chromium-zinc (YCr-Zn layer, BCr-Zn layer), iron-zinc alloy (Fe-
  • the tip surface is curved as required while removing the harder alloy layers (YCr-Zn layer, Fe-Zn layer) and leaving only the lower hardness alloy layer (BCr-Zn layer). Shape into a surface or plane.
  • a cutting blade 39 is screwed into the notch surface 29a of the notch portion 29 so that the end surface of the blade portion 39a on the lower side in the rotational direction is along the center line of the electrode tip shaping jig 11.
  • the cutting blade 39 is made of, for example, high-speed steel, cemented carbide, ceramics, etc., and matches the tip shape of the electrode tips 7 and 9, which have a regular shape on the inner peripheral surface side, excluding a part of the tip surface.
  • the cutting blade 39 mainly cuts the tips of the electrode tips 7 and 9 at a timing slightly delayed from the timing when the tip surfaces of the electrode tips 7 and 9 that have entered the shaping chambers 25 and 27 come into contact with the tip surface shaping section 37 and are shaped into regular shapes. 1. The surplus portion stretched toward the distal end side and a part of the alloy layer on the distal end surface are cut by the first shaping section 33 to prevent generation of scarf pieces. ”
  • Tables 1 and 2 show the relationship between rotational torque and rotational speed when the electrode tip 7 is regenerated by the shaping chamber 35 located above; Since the relationship between torque and rotation speed is almost the same, the description will be omitted.
  • the electrode tip 7 regenerated by the electrode tip regeneration device 1 according to the present invention is subjected to electric resistance welding for a predetermined number of shots as shown in FIG. 7 (deformed state is shown by a solid line, and normal state is shown by a broken line) When it reaches the point, the tip is swollen and deformed due to pressure contact with the workpiece and welding heat, resulting in a larger diameter.
  • the tip surface is melted and deformed by metal evaporation by metal sputtering, and an alloy layer (for example, when the workpiece is a galvanized steel plate, an alloy layer of YCr-Zn, BCr-Zn, and Fe-Zn is generated, but the alloy layer composition is determined by the workpiece and the metal material plated on its surface.) is generated.
  • the alloy layer has a characteristic of having a higher electrical resistance value than the copper or copper alloy that is the base material of the electrode tips 7 and 9.
  • the timing for regenerating the electrode tip 7 by the electrode chip regeneration device 1 is when multiple shots of welding work for one workpiece are completed, or when welding work for a required number of workpieces is completed. This may be done either when the welding gun 3 is returned to the movement origin position during standby until the next work is carried into the required welding position.
  • the contact area with the workpiece will change, and the pressing force against the workpiece will become uneven, or The applied current value is not stabilized, and a uniform weld nugget cannot be formed between the workpieces, resulting in poor welding quality.
  • the amount of cutting allowed during regeneration of the electrode tip 7 needs to be about 0.005 mm (5 ⁇ m) on average.
  • the amount of cutting of the electrode tip 7 that is allowed during regeneration is mainly determined by the pressing force of the electrode tip 7 against the tip shaping jig 33, the opening width (opening angle) of the notch 37, the rotation speed, and the shaping time. .
  • the pressurizing force, opening width, and shaping time can be set in advance and do not vary greatly depending on the state of the electrode tip 7 during regeneration, so the rotation speed (time) is a variable factor in the amount of cutting. It becomes important.
  • the electrode tips 7 have been moved in the respective shaping chambers 35 of the electrode tip shaping jig 33, which rotates in the clockwise direction shown in the figure as the rotary member 27 is rotated, so that their axes coincide with each other at the standby position.
  • the first shaping portion 43 that presses against the distal shaping region of the outer peripheral surface of the distal end of the electrode tip 7 pushes the bulged deformed portion toward the distal end. Extend and play.
  • the other second shaping section 45, the tip surface shaping section 47, and the cutting blade 39 are in a non-contact state with respect to the outer periphery of the tip end of the electrode tip 7 entering, and the rotational resistance of the electrode tip shaping jig 33 is Avoiding becoming.
  • the other first shaping section 43 , tip face shaping section 47 , and cutting blade 39 are in a non-contact state with respect to the outer peripheral surface of the tip end of the electrode tip 7 entering, and the electrode tip shaping jig 33 is rotated. Avoiding resistance.
  • the tip surface shaping section 47 causes the electrode tip 7 to have a shape formed on the tip surface during electric resistance welding.
  • the alloy layer (BCr-Zn layer) with relatively low hardness remains with a predetermined layer thickness (0.05 to 0.15 mm), Shape.
  • the above-mentioned surplus portion is cut by a cutting blade 39 that approaches or contacts the outer peripheral surface of the tip of the electrode tip 7 that enters the shaping chamber 35 of the electrode tip shaping jig 33, and is discharged to the outside through the notch 29.
  • the electrode tip 7 is regenerated by avoiding the occurrence of scarf or by shaping the electrode tip 7 into a regular shape so that scarf is reduced.
  • the remaining alloy layer of the tip surface of the electrode tip 7 that has been shaped by the tip surface shaping section 47 is cut off by the cutting blade 39 that comes into contact with the outer circumferential side thereof.
  • an alloy layer with a predetermined thickness remains on the tip surface of the electrode tip 7 in a predetermined range (1/4 to 1/2 of the diameter of the tip surface) from the center.
  • the amount of cutting (scarf amount) of the surplus portion and the outer circumferential side of the alloy layer by the cutting blade 39 is determined by the pressing force of the electrode tip 7 against the electrode tip shaping jig 33, the opening width of the notch 37, the electrode tip
  • the pressing force of the electrode tip 7, the opening width of the notch 37, and the shaping time are set in advance and are constant, so the electrode tip shaping is a variable factor. It depends on the rotation speed of the jig 33.
  • the electrode tip shaping jig 33 rotates when the cutting blade 39 bites into the surplus part in the notch 37 or the outer periphery of the alloy layer. As the torque increases, the rotational speed decreases and the amount of cutting increases.
  • the electrode tip shaping jig 33 is adjusted as shown in Table 1. Even if the rotational torque increases, the inertial force of the flywheel 29 can supplement the rotational force and prevent the rotational speed from decreasing. Thereby, the amount of cutting by the cutting blade 39 can be stabilized.
  • electric motor output 750 W, pressing force: 200 kg, and opening angle: 30 degrees.
  • the amount of cutting due to regeneration of the electrode tip 7 can be made to be about 0.005 mm on average.
  • electric motor output 750 W
  • pressing force 200 kg
  • opening angle 30 degrees.
  • This embodiment has a simple configuration in which the rotational driving force of the rotating member 27 is transmitted to the third gear 25 via the flywheel 29 to rotate the electrode tip shaping jig 33, thereby making it possible to cut the tip of the electrode tip 7. Even if the rotational torque fluctuates due to biting of the machining blade 39, the inertial force of the flywheel 29 complements the rotational force, suppresses fluctuations in rotational speed, and shapes the electrode tip 7 with a stable cutting amount. Can be played.
  • the electrode tip regeneration device 1 in which the shaping chambers 35 are provided on both sides of the electrode tip shaping jig 33 in the axial direction, and a pair of opposing electrode tips 7 are simultaneously regenerated.
  • An electrode tip shaping jig 33 provided with one shaping chamber 35 may be installed, and the electrode tips 7 may be shaped and regenerated one by one.
  • Electrode chip regeneration device 7 Electrode chip 11 Support member 13 Bracket 15 Guide rod 17 Reproduction head 18 Slider 19 Elastic member 21 First gear 21a Shaft 23 Second gear 25 Third gear 25a as a rotating disk Hollow part 27 Rotating member 29 Flywheel 31 Holding plate 33 Electrode tip shaping jig 35 Shaping chamber 37 Notch part 39 Cutting blade 39a Blade part 41 Cutting waste discharge hole 43 First shaping part 45 Second shaping part 47 Tip surface shaping part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

[Problem] To provide an electrode tip regeneration device that makes it possible to suppress variation in rotational speed and shape an electrode tip with a stable cutting quantity, even when rotational torque varies due to pressure welding of the electrode tip which enters a shaping chamber of an electrode tip shaping jig, and/or due to cutting resistance when a cutting process blade bites into the electrode tip. [Solution] The present invention comprises: a rotating disc that has, in a center section thereof, a hollow section into which an electrode tip shaping jig is inserted and fitted while rotation of the electrode tip shaping jig is prevented; a regeneration holder that axially supports the rotating disc in a manner allowing the same to rotate; a rotation member that is linked to the rotating disc and causes the same to rotate at least at a prescribed rotational speed; and a flywheel that is provided in a coaxial manner with the rotating disk or the rotation member, wherein it is possible to use the inertial force of the flywheel to supplement the rotational force and suppress variation in the rotational speed when the rotational torque varies due to a cutting process blade biting into an excess portion of the electrode tip.

Description

電極チップ再生装置Electrode chip regeneration device
本発明は、電気抵抗溶接のショット回数が増大するのに伴って膨出変形した電極チップの変形部分を押延ばして正規形状に整形して再生する電極チップ再生装置に関する。 The present invention relates to an electrode tip regeneration device that regenerates an electrode tip by stretching out the deformed portion of the electrode tip that bulges and deforms as the number of shots in electric resistance welding increases and reshaping the tip into a regular shape.
なお、本発明において「再生」とは、電極チップの膨出変形部分を研磨したり、切削したりして正規形状にする切削概念とは異なり、変形部分を押延ばして正規形状に整形して再生することを意味する。 In addition, in the present invention, "regeneration" differs from the concept of cutting the bulging deformed part of the electrode tip into a regular shape by polishing or cutting it, and the term "regeneration" refers to stretching out the deformed part and shaping it into a regular shape. means to regenerate.
また、本発明において「正規形状」とは未使用時の電極チップ形状の他に本願発明で再生された電極チップにあっては整形余剰部分の切削により軸線方向長さが多少、短くなると共に先端面に生成される所定層厚の合金層が残存した状態で、未使用の電極チップとは形状的には完全に一致していなくてもこれに近い形状をも含むものとする。 In addition, in the present invention, the term "regular shape" refers to the shape of the electrode tip when it is not in use, as well as the shape of the electrode tip when it is regenerated according to the present invention. This also includes a shape that is close to, but not completely identical to, an unused electrode tip in a state in which an alloy layer of a predetermined thickness remains on the surface.
溶接ガンに装着されて電気抵抗溶接に使用する電極チップは、溶接ショット回数が増加するに従ってワークに対する圧接や電気抵抗溶接時に発生する熱により先端部が膨出変形(大径化)したり、摩耗したりして印加される電流分布が不均一になり、溶接ナゲットの品質(溶接品質)が悪くなったり、またスパッタによりチップ母材やワーク材鍍金層から蒸発した金属粒子が先端部(面)に付着し、抵抗層としての合金層が生成されることにより電気抵抗溶接時の消費電力が増大したりする問題が生じている。 As the number of welding shots increases, the electrode tip attached to the welding gun and used for electric resistance welding may bulge and deform (increase in diameter) or wear out due to pressure contact with the workpiece and heat generated during electric resistance welding. This can cause the applied current distribution to become uneven, resulting in poor welding nugget quality (welding quality), and metal particles evaporated from the chip base material and workpiece plating layer due to sputtering to the tip (surface). This causes problems such as increased power consumption during electric resistance welding due to the formation of an alloy layer as a resistance layer.
上記問題を解決するため、例えば特許文献1に示すチップドレッサ装置は、回動部材により回転するホルダの電極侵入凹部内に対して電極を加圧した状態で進入させた状態でホルダに設けられた回転刃により電極チップの変形部分を切削して正規形状に再生している。 In order to solve the above problem, the tip dresser device shown in Patent Document 1, for example, is provided in a holder such that the electrode is inserted under pressure into the electrode entry recess of the holder, which is rotated by a rotating member. A rotating blade cuts away the deformed part of the electrode tip and regenerates it into its normal shape.
しかし、該チップドレッサ装置にあっては、電極の切削量(電極チップ全長に対する切削量)が0.1mm~0.3mmで、切削の度に電極チップが短くなって低寿命化して溶接ショット回数が少なる結果、電気抵抗溶接コストが増大する問題や、切削中においてはホルダに対する電極の圧接による切削抵抗により回転トルクや回転数が変動して切削量(消耗量)が不安定化し、切削量が多くなれば溶接ショット回数が少なくなり、反対に切削量が少なくなれば、電極チップを正規形状に切削できない問題等が生じている。 However, with this tip dresser device, the amount of cutting of the electrode (the amount of cutting relative to the total length of the electrode tip) is 0.1 mm to 0.3 mm, and each time the electrode tip is cut, the electrode tip becomes shorter and its life is reduced, resulting in the number of welding shots. As a result, the cost of electric resistance welding increases, and during cutting, the rotational torque and rotational speed fluctuate due to the cutting resistance caused by the pressure of the electrode against the holder, making the amount of cutting (amount of consumption) unstable. If the number of welding shots increases, the number of welding shots will decrease, and conversely, if the amount of cutting decreases, there will be problems such as the inability to cut the electrode tip into a regular shape.
この問題を解決するため、本出願人は、特許文献2に示す「電極チップ整形治具及び電極チップ整形装置」を提案した。特許文献2に示す電極チップ整形治具は、電極チップの先端部が進入可能なカップ凹状の内周面を有した整形室の一部底面を除いて外周側が切り欠かれた切欠き部と、電極チップの先端部に想定される少なくとも基端側及び先端側の整形領域にそれぞれ対応して整形室内周面に設けられ、対応する整形領域に圧接して変形部分をそれぞれの側へ押延ばす少なくとも2つ以上の整形部と、整形室の底面にて放射方向へ延出して設けられ、電極チップ先端面に圧接し、先端面に生成した合金層の一部を削り落として整形する先端面整形部と、上記切欠き部内の電極チップの少なくとも先端部外周の押延ばし余剰部分を切削する切削加工刃を備えている。 In order to solve this problem, the present applicant proposed an "electrode tip shaping jig and electrode tip shaping device" shown in Patent Document 2. The electrode tip shaping jig disclosed in Patent Document 2 includes a notch portion in which the outer circumferential side of the shaping chamber is cut out except for a part of the bottom surface of the shaping chamber, which has a cup-shaped inner circumferential surface into which the tip end of the electrode tip can enter; At least one at least one is provided on the circumferential surface of the shaping chamber corresponding to at least the proximal side and the distal side shaping areas assumed at the distal end of the electrode tip, and presses against the corresponding shaping areas to push the deformed portion to each side. Two or more shaping parts and a tip face shaping unit, which is provided extending in the radial direction at the bottom of the shaping chamber, is in pressure contact with the tip end face of the electrode tip, and shaves off a part of the alloy layer formed on the tip face to shape it. and a cutting blade for cutting at least the extruded excess portion of the outer periphery of the tip of the electrode tip within the notch.
そして該電極チップ整形治具が装着されて電極チップを正規形状に整形して再生する電極チップ整形装置は、電極チップ整形治具を着脱可能に保持する回転盤を軸支する整形ホルダと、該回転盤を所望の回転トルク及び回転数で回転駆動する電動モータやロータリーアクチュエータ等の回動部材とから構成される。 The electrode tip shaping device, on which the electrode tip shaping jig is mounted, shapes and regenerates the electrode tip into a regular shape, includes a shaping holder that pivotally supports a rotary disk that removably holds the electrode tip shaping jig; It is composed of a rotating member such as an electric motor or a rotary actuator that rotates the rotating disk at a desired rotational torque and rotational speed.
電極チップを再生する際には、例えば1本の電極チップに想定される溶接ショット回数が30000回で、ショット回数が20回ごとに電極チップを再生する場合、即ち、1500回、再生する場合には、1回の整形作業(再生作業)による切削量が平均で約0.005mm(5μm)になるように設定する必要がある。 When regenerating an electrode tip, for example, if the expected number of welding shots for one electrode tip is 30,000, and the electrode tip is regenerated every 20 shots, that is, if it is regenerated 1,500 times. must be set so that the cutting amount in one shaping operation (reproduction operation) is approximately 0.005 mm (5 μm) on average.
外周の一部に切欠き部を設けて切削加工刃が取付けられた電極チップ整形治具を使用する電極チップ整形装置における電極チップの切削量は、切欠き部における電極チップ先端部に対する切削加工刃の食い込み量により決定される。その食い込み量は、電極チップ整形治具の回転数、電極チップ整形治具に対する電極チッ
プの加圧力、電極チップ整形治具の切欠き幅及び整形時間等により左右される。その内、加圧力、切欠き幅及び整形時間に関しては、予め決定され、整形時に変動す
ることがない。
The cutting amount of the electrode tip in an electrode tip shaping device that uses an electrode tip shaping jig that has a notch on a part of the outer periphery and a cutting blade attached to it is the cutting amount of the cutting blade relative to the tip of the electrode tip at the notch. Determined by the amount of penetration. The amount of biting depends on the rotational speed of the electrode tip shaping jig, the pressing force of the electrode tip against the electrode tip shaping jig, the notch width of the electrode tip shaping jig, the shaping time, etc. Among these, the pressing force, notch width, and shaping time are determined in advance and do not change during shaping.
このため、切削量を上記数値に近い値で安定的に達成するには、切欠き部内の電極チップ先端部に対して切削加工刃が食い込んで回転トルクが変動する場合であっても、回転数を安定化させることにより食い込み量を安定化させる必要がある。 Therefore, in order to stably achieve a cutting amount close to the above value, even if the cutting blade bites into the tip of the electrode tip inside the notch and the rotational torque fluctuates, the rotational speed It is necessary to stabilize the amount of penetration by stabilizing the .
しかし、上記のように切欠き部に切削加工刃が取付けられた電極チップ整形治具が装着された電極チップ整形装置においては、整形ホルダに対して回動部材の駆動力を直接又はギヤ列を介して間接的に伝達するように構成されているが、電極チップ先端部に対する切削加工刃の食い込みによる切削抵抗により回転トルク及び回転数の変動が避けられなかった。 However, in the electrode tip shaping device equipped with the electrode tip shaping jig with the cutting blade attached to the notch as described above, the driving force of the rotating member is applied directly to the shaping holder or by a gear train. However, fluctuations in rotational torque and rotational speed were unavoidable due to cutting resistance caused by the cutting blade biting into the tip of the electrode tip.
すなわち、回転駆動力が一定の場合には、回転トルクが増加すると、回転数が低下して食い込み量が多くなって切削量が多くなり、反対に回転トルクが低下すると、回転数が増加して食い込み量が少なくなって切削量が少なくなっている。 In other words, when the rotational driving force is constant, when the rotational torque increases, the rotational speed decreases and the amount of cutting increases, and the amount of cutting increases.On the other hand, when the rotational torque decreases, the rotational speed increases. The amount of cutting is reduced because the amount of biting is reduced.
特に、この傾向は、回動部材として数値制御可能なパルスモータ(ステップモータ)を使用した場合に顕著に現れ、電極チップを上記した所望の切削量で安定的に整形して再生することを困難にしている。 This tendency is particularly noticeable when a numerically controllable pulse motor (step motor) is used as the rotating member, making it difficult to stably shape and regenerate the electrode tip with the desired amount of cutting described above. I have to.
また、電極チップ整形治具の回転トルク及び回転数の変動により切削量が多くなると、電気抵抗溶接に伴って電極チップの先端面に生成した合金層も過度に切削される恐れがある。このように再生された電極チップで電気抵抗溶接すると、ワーク材に対し、圧接する電極チップ先端面のほぼ全体から溶接電流が印加されることになり、溶接ナゲットを高品質に生成して電気抵抗溶接することが困難であった。 Furthermore, if the amount of cutting increases due to fluctuations in the rotational torque and rotational speed of the electrode tip shaping jig, there is a risk that the alloy layer formed on the tip end surface of the electrode tip due to electric resistance welding will also be excessively removed. When electrical resistance welding is performed using the electrode tip regenerated in this way, welding current is applied to the workpiece from almost the entire tip surface of the electrode tip that is in pressure contact with the workpiece, producing a high-quality weld nugget and increasing the electrical resistance. It was difficult to weld.
日本国特許第5219704号公報Japanese Patent No. 5219704 日本国特許第7121962号公報Japanese Patent No. 7121962
解決しようとする問題点は、電極チップ整形治具の整形室内に進入する電極チップの圧接や電極チップに対して切削工刃が食い込む際の切削抵抗により回転トルク及び回転数の変動により切削量が安定化せず、電極チップが低寿命化したり、電極チップを正規形状に整形することを困難にしたりする恐れがある。 The problem we are trying to solve is that the cutting amount is reduced due to fluctuations in rotational torque and rotational speed due to pressure contact of the electrode tip entering the shaping chamber of the electrode tip shaping jig and cutting resistance when the cutting blade bites into the electrode tip. There is a risk that the electrode tip will not be stabilized, and the life of the electrode tip will be shortened, or that it will be difficult to shape the electrode tip into a regular shape.
請求項1は、電極チップが進入する整形室内周面に設けられ、電極チップ先端部の少なくとも先端側及び/又は基端側に想定される整形領域に圧接する整形部と、上記整形室底面に設けられ、電極チップ先端面に圧接する先端面整形部と、整形室の一部内周面に形成された切欠き部に設けられ、電極チップの先端部外周及び先端面に圧接する切削加工刃を備えた電極チップ整形治具を回転駆動して整形布武及び先端面整形部により電極チップ先端部の変形部分を押延ばすと共に切削加工刃により余剰部分を切削して正規形状に整形して再生する電極チップ再生装置において、中心部に電極チップ整形治具が回り止めされた状態で挿嵌される中空部を有した回転盤と、上記回転盤を回転可能に軸支する再生ホルダと、回転盤に連結されて少なくとも所定の回転数で回転させる回動部材と、上記回転盤及び回動部材のいずれか一方に同軸に設けられるフライホイールを備え、電極チップの余剰部分に対する切削加工刃の食い込みにより回転トルクが変動した際にフライホイールの慣性力により回転力を補完して回転数の変動を抑制可能にしたことを最も主要な特徴とする。 Claim 1 provides a shaping section that is provided on the circumferential surface of the shaping chamber into which the electrode tip enters and that presses against a shaping area assumed at least on the distal end side and/or base end side of the electrode tip tip, and on the bottom surface of the shaping chamber. A cutting blade is provided in a notch formed in a part of the inner circumferential surface of the shaping chamber and is in pressure contact with the outer periphery and tip surface of the tip of the electrode tip. The provided electrode tip shaping jig is rotated and the deformed part of the tip of the electrode tip is pushed out by the shaping cloth and the tip face shaping part, and the excess part is cut by the cutting blade to be shaped into a regular shape and regenerated. An electrode chip regeneration device includes: a rotary disc having a hollow portion in the center into which an electrode chip shaping jig is inserted in a non-rotating state; a regeneration holder rotatably supporting the rotary disc; and a rotary disc. A rotary member connected to the rotary member and rotated at least at a predetermined number of rotations, and a flywheel coaxially provided on either the rotary disk or the rotary member, and the cutting blade cuts into the excess portion of the electrode tip. The main feature is that when the rotational torque fluctuates, the rotational force is supplemented by the inertia force of the flywheel, making it possible to suppress fluctuations in the rotational speed.
本発明は、電極チップ整形治具の整形室内に進入する電極チップの圧接や電極チップに対して切削工刃が食い込む際の切削抵抗により回転トルクが変動する場合であっても、回転数の変動を抑制して安定した切削量で電極チップを整形することを可能にする。 The present invention can prevent the rotational speed from changing even when the rotational torque fluctuates due to pressure contact of the electrode tip entering the shaping chamber of the electrode tip shaping jig or cutting resistance when the cutting blade bites into the electrode tip. This makes it possible to shape the electrode tip with a stable amount of cutting.
電極チップ再生装置の概略を示す一部分解斜視図である。FIG. 1 is a partially exploded perspective view schematically showing an electrode chip regeneration device. 再生ヘッド内を示す略体斜視図である。FIG. 3 is a schematic perspective view showing the inside of the playback head. 電極チップ整形治具の一部分解斜視図である。FIG. 3 is a partially exploded perspective view of the electrode tip shaping jig. 電極チップ整形治具の平面図である。FIG. 3 is a plan view of the electrode tip shaping jig. 図4のA-A線縦断面図である。5 is a vertical cross-sectional view taken along the line AA in FIG. 4. FIG. 図4のA-B線縦断面図である。5 is a vertical cross-sectional view taken along the line AB in FIG. 4. FIG. 先端部が変形した再生前の電極チップを示す説明図である。FIG. 3 is an explanatory diagram showing an electrode tip before regeneration with a deformed tip.
中心部に電極チップ整形治具が回り止めされた状態で挿嵌される中空部を有した回転盤と、上記回転盤を回転可能に軸支する再生ホルダと、回転盤に連結されて少なくとも所定の回転数で回転させる回動部材と、上記回転盤及び回動部材のいずれか一方に同軸に設けられるフライホイールと、を備え、電極チップの余剰部分に対する切削加工刃の食い込みにより回転トルクが変動した際にフライホイールの慣性力により回転力を補完して回転数の変動を抑制可能にしたことを最良の実施形態とする。 a rotary disk having a hollow portion in the center into which the electrode tip shaping jig is inserted in a non-rotating state; a regeneration holder that rotatably supports the rotary disk; A rotary member that rotates at a rotational speed of In the best embodiment, the rotational force can be supplemented by the inertial force of the flywheel to suppress fluctuations in the rotational speed.
以下、本発明の実施例を図に従って説明する。
図1及び図2に示すように電極チップ再生装置1は、例えば従来公知の所謂溶接ロボットと称される多関節型電気抵抗溶接機(図示せず)のアーム(図示せず)先端部に設けられた従来公知のC型又はX型の溶接ガン(図示せず)の移動原点位置(待機位置)に配置される。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, an electrode tip regeneration device 1 is installed, for example, at the tip of an arm (not shown) of a conventionally known multi-joint electric resistance welding machine (not shown) called a so-called welding robot. The welding gun is placed at the movement origin position (standby position) of a conventionally known C-type or X-type welding gun (not shown).
例えばC型の溶接ガンにあっては、例えば一方の取付けアームに連結されたエアーシリンダーや数値制御可能なサーボモータ等により他方のアームに向かって近づく方向及び遠ざかる方向へ移動するように構成される。各取付けアームには、電極チップ7が互いの軸線が一致して相対し、かつ交換可能にそれぞれ取り付けられる。 For example, a C-type welding gun is configured to move toward and away from the other arm by means of an air cylinder or a numerically controllable servo motor connected to one mounting arm, for example. . Electrode tips 7 are attached to each attachment arm so that their axes coincide with each other, facing each other, and are replaceable.
各電極チップ7は、一方の取付けアームが他方の取付けアームに近づく方向へ移動した際に、両者間に位置する、例えば重ね合された複数枚の亜鉛メッキ鋼板等のワーク(何れも図示せず。ワークに付いては、上記亜鉛メッキ鋼板に限定されるものではない。)の表裏面を所定の圧力で挟持し、印加される溶接電流により電気抵抗溶接する。 Each electrode chip 7 is connected to a workpiece (not shown), such as a plurality of stacked galvanized steel plates, located between the two mounting arms when one mounting arm moves in a direction approaching the other mounting arm. (The workpiece is not limited to the galvanized steel plate mentioned above.) The front and back surfaces of the workpiece are clamped under a predetermined pressure, and electrical resistance welding is performed using an applied welding current.
各電極チップ7は、電気抵抗値が低く、塑性変形し易い銅(Cu)や銅-クロム合金(Cr-Cu)等で、図7に破線で示すように未使用状態においては、所要の軸線長さで、先端部外周が所要の外径で先端に向かって徐々に小径化する湾曲状に延出し、かつ先端面がほぼ平面又は所定曲率の湾曲面(図7は先端面が平面の場合を示す。)に形成される。 Each electrode tip 7 is made of copper (Cu), copper-chromium alloy (Cr-Cu), etc., which has a low electrical resistance value and is easily plastically deformed. The outer periphery of the tip extends in a curved shape that gradually decreases in diameter toward the tip with the required outer diameter, and the tip surface is almost flat or a curved surface with a predetermined curvature (Figure 7 shows the case where the tip surface is flat). ) is formed.
上記電極チップ再生装置1の支持部材11は、移動原点位置(待機位置)に設けられた支柱(図示せず)に固定され、該支持部材11の上下(本実施例の場合)には、一対のブラケット13が上下方向に所定の間隔をおいて設けられる。該一対のブラケット13間には、上下方向に軸線を有した左右一対のガイドロッド15が設けられ、該一対のガイドロッド15には、再生ヘッド17の基端部に固定されたスライダ18が上下方向へ摺動可能に支持される。 The support member 11 of the electrode chip regeneration device 1 is fixed to a column (not shown) provided at the movement origin position (standby position), and there are two pairs of supports (not shown) above and below the support member 11 (in this embodiment). Brackets 13 are provided at predetermined intervals in the vertical direction. A pair of left and right guide rods 15 having axes in the vertical direction are provided between the pair of brackets 13, and a slider 18 fixed to the base end of the reproducing head 17 is attached to the pair of guide rods 15 in the vertical direction. It is supported so that it can slide in the direction.
該再生ヘッド17は、該再生ヘッド17の上方及び下方に位置するガイドロッド15にそれぞれ設けられた圧縮ばねやゴムブッシュ等の弾性部材19の弾性力により、例えばガイドロッド15の軸線方向中間部に位置される。 The playback head 17 is moved, for example, to the axially intermediate portion of the guide rod 15 by the elastic force of elastic members 19 such as compression springs and rubber bushes provided on the guide rods 15 located above and below the playback head 17. be located.
再生ヘッド17内には、上下方向に軸線を有し、互いに噛合した第1及び第2歯車21、23と第2歯車と噛合する回転盤としての第3歯車25がそれぞれ軸受(図示せず)を介して回転可能に軸支される。第1歯車21には、再生ヘッド17の基端部下側に取付けられたステップモータ、誘導モータ又はロータリーアクチュエータ等の回動部材27が、その出力軸が第1歯車21と同軸で、かつ大径で大質量のフライホイール29を介して連結される。該フライホイール29としては、回動部材27が連結された第1歯車21の軸上部に同軸に取付けてもよい。 Inside the reproducing head 17, the first and second gears 21 and 23, which have axes in the vertical direction and are in mesh with each other, and the third gear 25 as a rotary disk that meshes with the second gear are mounted on bearings (not shown). is rotatably supported via. The first gear 21 has a rotating member 27 such as a step motor, an induction motor, or a rotary actuator attached to the lower side of the base end of the playback head 17, whose output shaft is coaxial with the first gear 21 and has a large diameter. and are connected via a flywheel 29 of large mass. The flywheel 29 may be coaxially attached to the upper part of the shaft of the first gear 21 to which the rotating member 27 is connected.
後述する電極チップ整形治具33における切欠き部37の開口幅が広い場合には、電極チップ7の先端部に対する切削加工刃39の食い込み量が多くなり、これに伴って回転トルクが大きく増大することにより回転数が大きく低下することになる。上記フライホイール29は、回転トルクの増大に伴う回転数の低下を、その慣性力で補完するために設けられる部材であり、その質量は、回転トルクの変動幅、従って切欠き部37の開口幅に応じて設定される。 When the opening width of the notch 37 in the electrode tip shaping jig 33 described later is wide, the amount of biting of the cutting blade 39 into the tip of the electrode tip 7 increases, and the rotational torque increases accordingly. This causes the rotational speed to drop significantly. The flywheel 29 is a member provided to compensate for the decrease in rotational speed due to an increase in rotational torque with its inertial force. It will be set accordingly.
すなわち、切欠き部37が幅広で回転トルクが大幅に変動する場合には、大質量のフライホイール29に、反対に切欠き部37の開口幅が幅狭で回転トルクの変動幅が少ない場合には、小質量のフライホイール29に設定される。 That is, when the notch 37 is wide and the rotational torque fluctuates significantly, the flywheel 29 has a large mass, whereas when the opening width of the notch 37 is narrow and the rotational torque fluctuates little. is set on the flywheel 29 having a small mass.
第3歯車25の中心大径部25aには、電極チップ整形治具33の平面と一致して挿嵌可能な形状で、該電極チップ整形治具33の高さと一致する軸長さの中空部25bが形成される。中心大径部25aの上面及び下面には、中空部25bに挿嵌された上記電極チップ整形治具33の上部及び下部の一部外周面に係止して固定する押え板31がねじ固定される。 The center large diameter portion 25a of the third gear 25 has a hollow portion having a shape that can be inserted and fitted in alignment with the plane of the electrode tip shaping jig 33, and an axial length that matches the height of the electrode tip shaping jig 33. 25b is formed. A presser plate 31 is screwed to the upper and lower surfaces of the central large-diameter portion 25a and is fixed to the upper and lower portions of the outer peripheral surfaces of the electrode tip shaping jig 33 inserted into the hollow portion 25b. Ru.
上記電極チップ整形治具33は、以下のように構成される。
図3乃至図6に示すように電極チップ整形治具33は、超硬合金(高速度鋼)やセラミックス等で、上記中空部25bに対して回り止め可能な多角柱形状(図は六角柱形状を示すが、該形状に限定されるものではない。)に形成され、その上部及び下部には相対する電極チップ7の先端部が進入可能な内径(電極チップ7の外径より大きい内径)のカップ状の整形室35(以下の説明においては、上下の整形室35が上下ミラー対称であるため、上方の整形室35に付いてのみ説明し、下方の整形室35に付いての説明を省略する。)が軸線方向に対してミラー対称に設けられる。
The electrode tip shaping jig 33 is configured as follows.
As shown in FIGS. 3 to 6, the electrode tip shaping jig 33 is made of cemented carbide (high-speed steel), ceramics, etc., and has a polygonal column shape (the figure shows a hexagonal column shape) that can prevent rotation relative to the hollow portion 25b. ), and the upper and lower parts thereof have an inner diameter (inner diameter larger than the outer diameter of the electrode tip 7) into which the tip of the opposing electrode tip 7 can enter. Cup-shaped shaping chamber 35 (In the following explanation, since the upper and lower shaping chambers 35 are vertically mirror symmetrical, only the upper shaping chamber 35 will be explained, and the explanation of the lower shaping chamber 35 will be omitted. ) are provided mirror-symmetrically with respect to the axial direction.
上記電極チップ整形治具33の一部外周には各整形室35の底面中心から偏心した位置から外周に亘り、底面中央部を残して所定の角度aで開口した切欠き部37が形成される。該切欠き部37の開口角度(図示の例では、開口角度を30度としている。)は、後述する押延ばされた余剰部分(キリコ又はスカーフと称される。)の切削量を決定する1つの要素であり、電極チップ7における先端部の外径及び先端面の形状に応じて決定される。すなわち、電極チップ7における先端部が大径の場合には、開口角度が広く、反対に小径の場合には、開口角度が狭く設定される。
の範囲に設定される。
A notch 37 is formed on a part of the outer periphery of the electrode tip shaping jig 33, extending from a position eccentric from the center of the bottom surface of each shaping chamber 35 to the outer periphery, leaving the center of the bottom surface open at a predetermined angle a. . The opening angle of the notch 37 (in the illustrated example, the opening angle is 30 degrees) determines the amount of cutting of the stretched surplus portion (referred to as a kiriko or scarf), which will be described later. This is one element and is determined according to the outer diameter of the tip of the electrode tip 7 and the shape of the tip surface. That is, when the tip of the electrode tip 7 has a large diameter, the opening angle is set wide, and conversely, when the tip has a small diameter, the opening angle is set narrow.
The range is set to .
回転方向上手側に位置する切欠き部37の切欠き面37aには、例えば高速度鋼、超硬合金、セラミックス等の切削加工刃39が、その刃部39aの回転方向下手側端面が電極チップ整形治具33の中心線に一致するようにねじ止めされる。 The notch surface 37a of the notch 37 located on the upper side in the rotational direction has a cutting blade 39 made of, for example, high-speed steel, cemented carbide, ceramics, etc., and the end surface on the lower side in the rotational direction of the blade 39a has an electrode tip. It is screwed so as to coincide with the center line of the shaping jig 33.
該切削加工刃39は、整形室35内に進入した電極チップ7の先端面が先端面整形部37により正規形状に再生されるタイミングより若干遅延したタイミングで、主に後述する第1整形部43により先端部側に押延ばされた余剰部分や先端面に生成して先端面整形部47により切削された残りの合金層の一部を切削する。 The cutting blade 39 mainly cuts the tip of the electrode tip 7 into the first shaping section 43 (described later) at a timing slightly delayed from the timing at which the tip end surface of the electrode tip 7 that has entered the shaping chamber 35 is regenerated into a normal shape by the tip end surface shaping section 37. The surplus portion stretched toward the distal end side and a portion of the remaining alloy layer generated on the distal end surface and cut by the distal end surface shaping section 47 are cut off.
また、上記切欠き部37と反対側の整形室35の内周面には、電極チップ整形治具33の軸線方向に延びて各整形室35の隔壁を貫通する切削屑排出孔41が形成される。 Further, a cutting waste discharge hole 41 is formed in the inner peripheral surface of the shaping chamber 35 on the opposite side to the notch 37, extending in the axial direction of the electrode tip shaping jig 33 and penetrating the partition wall of each shaping chamber 35. Ru.
切削屑排出孔41の回転方向上手側に応じた整形室35の内周面には、第1整形部43が、その稜線の曲率半径が先端側整形領域の曲率半径と一致するように形成される。該第1整形部43は、電極チップ7・9を再生する際に、上記先端側整形領域に圧接して変形部分を先端面側へ押延ばして再生する。 A first shaping portion 43 is formed on the inner circumferential surface of the shaping chamber 35 on the upper side of the cutting waste discharge hole 41 in the rotational direction so that the radius of curvature of the ridge line matches the radius of curvature of the shaping region on the distal end side. Ru. When regenerating the electrode tips 7 and 9, the first shaping section 43 comes into pressure contact with the distal end side shaping region and stretches the deformed portion toward the distal end surface side.
切削屑排出孔41の回転方向下手側に応じた整形室35の内周面には、第2整形部45が、その稜線の曲率半径が基端側整形領域の曲率半径に一致するように形成される。該第2整形部45は、電極チップ7を再生する際に、上記基端側整形領域に圧接して変形部分を基端側へ押延ばして再生する。 A second shaping section 45 is formed on the inner circumferential surface of the shaping chamber 35 on the downstream side of the cutting waste discharge hole 41 in the rotational direction so that the radius of curvature of its ridge line matches the radius of curvature of the proximal shaping region. be done. When regenerating the electrode tip 7, the second shaping section 45 comes into pressure contact with the proximal side reshaping region and stretches the deformed portion toward the proximal side.
整形室35の底面には、先端面整形部47が回転中心から偏位した箇所にて放射方向(軸線直交方向)へ湾曲して延出するように形成される。先端面整形部47の上面は、正規形状の電極チップ7先端面に対応する湾曲面又は平面に形成される。 A distal end face shaping section 47 is formed on the bottom surface of the shaping chamber 35 so as to curve and extend in the radial direction (direction orthogonal to the axis) at a location deviated from the rotation center. The upper surface of the distal end surface shaping portion 47 is formed into a curved surface or a flat surface corresponding to the distal end surface of the regular electrode tip 7.
該先端面整形部47は、整形室35内に進入する電極チップ7の先端面に圧接し、例えばワークが亜鉛鋼板の場合には、電気抵抗溶接作業により先端面に生成したクロム-亜鉛(YCr-Zn層、BCr-Zn層)、鉄―亜鉛合金(Fe-Zn層)等の内、硬度が低い合金層(BCr-Zn層)を残して硬度が高い合金層(YCr-Zn層、Fe-Zn層)を削り落として所要の湾曲面又は平面に再生する。 The tip surface shaping section 47 is in pressure contact with the tip surface of the electrode tip 7 entering the shaping chamber 35, and when the workpiece is a galvanized steel plate, for example, chromium-zinc (YCr) generated on the tip surface by electric resistance welding is applied. - Of the alloy layers (YCr-Zn layer, Fe -Zn layer) and regenerate it into the desired curved or flat surface.
なお、電極チップ整形治具33に付いては、特許文献2に詳細に記載されているため、以下において電極チップ整形治具33の構成を引用する。なお、引用された電極チップ整形治具に付された符号と本願に付した符号は相違しているため、読み替えて参照されたい。
「上記電極チップ整形治具11は、超硬合金(高速度鋼)やセラミックス等で、回転盤13の取付け穴13aに対して回り止め可能に挿嵌される多角柱形状(図は六角柱形状を示すが、該形状に限定されるものではない。)に形成され、その上部及び下部には相対する電極チップ7・9の先端部が進入可能な内径(電極チップ7・9の外径より大きい内径)のカップ状の整形室25・27(以下の説明においては、上下の整形室が上下ミラー対称であるため、上方の整形室に付いてのみ説明し、下方の整形室に付いての説明を省略する。)が軸線方向に対してミラー対称に設けられる。また、上記電極チップ整形治具11は電動モータの回転駆動に伴って、例えば図示する時計方向へ回転される。
上記電極チップ整形治具11の一部外周には各整形室25・27の底面中心から偏心した位置から外周に亘り、底面中央部を残して所定の角度で開口した切欠き部29が形成される。該切欠き部29における回転方向上手側に位置する切欠き面29aの中央部(各整形室25・27の隔壁箇所)には、係止凹部29bが形成され、該係止凹部29bにはねじ穴29cが形成される。
また、上記切欠き部27と反対側の整形室25・27の内周面には、該電極チップ整形治具11の軸線方向に延びて両者間の隔壁を貫通する切削屑排出孔31が形成される。
切削屑排出孔31の回転方向上手側に応じた整形室25・27の内周面には、第1整形部33が、その稜線の曲率半径が先端側整形領域aの曲率半径に一致するように形成され、先端部が膨出変形した電極チップ7・9を整形する際に、上記先端側整形領域aに圧接して膨出した変形部分を先端面側へ押延ばして整形する。
切削屑排出孔31の回転方向下手側に応じた整形室25・27の内周面には、第2整形部35が、その稜線の曲率半径が基端側整形領域bの曲率半径に一致するように形成され、膨出変形した電極チップ7・9を整形する際に、上記基端側整形領域bに圧接して膨出した変形部分を基端側へ押延ばして整形する。
上記切欠き部27が形成されていない整形室25・27の底面には、先端面整形部37が回転中心から偏位した箇所にて放射方向へ湾曲して延出するように形成される。先端面整形部37は、上面が正規形状の電極チップ7・9における先端面の湾曲面又は平面に対応する湾曲状又は平面状に形成され、整形室25・27内に進入する電極チップ7・9の先端面に圧接し、例えばワークが亜鉛鋼板の場合には、電気抵抗溶接作業により先端面に生成したクロム-亜鉛(YCr-Zn層、BCr-Zn層)、鉄-亜鉛合金(Fe-Zn層)等の内、硬度が高い合金層(YCr-Zn層、Fe-Zn層)を削り落として硬度が低い合金層(BCr-Zn層)のみが残るようにしながら先端面を所要の湾曲面又は平面に整形する。
上記切欠き部29の切欠き面29aには、切削加工刃39が、その刃部39aの回転方向下手側端面が電極チップ整形治具11の中心線に沿うようにねじ止めされる。該切削加工刃39は、例えば高速度鋼、超硬合金、セラミックス等により形成され、内周面側に正規形状の電極チップ7・9における先端面の一部を除いた先端部形状に一致する刃部39aを備え、上記切欠き面29aに相対する面の中央部に設けられた被係止部39bを係止凹部29bに係止した後に、透孔39c内に挿入されるねじ39dをねじ穴29cにねじ止めして固定される。
該切削加工刃39は、整形室25・27内に進入した電極チップ7・9の先端面が先端面整形部37に当接して正規形状に整形するタイミングより若干遅延したタイミングで、主に第1整形部33により先端部側に押延ばされた余剰部分や先端面の合金層の一部を切削してスカーフ片の発生を防止する。」
In addition, since the electrode tip shaping jig 33 is described in detail in Patent Document 2, the configuration of the electrode tip shaping jig 33 will be cited below. Note that the reference numerals attached to the cited electrode tip shaping jig and the numerals attached to the present application are different, so please refer to them interchangeably.
``The electrode tip shaping jig 11 is made of cemented carbide (high-speed steel), ceramics, etc., and has a polygonal column shape (the figure shows a hexagonal column shape) that is inserted into the mounting hole 13a of the rotary disk 13 so as to prevent rotation. (However, the shape is not limited to this shape.), and the upper and lower parts have an inner diameter (from the outer diameter of the electrode tips 7 and 9) into which the tips of the opposing electrode tips 7 and 9 can enter. Cup-shaped treatment chambers 25 and 27 (large inner diameter) (in the following explanation, since the upper and lower treatment chambers are mirror-symmetrical, only the upper treatment chamber will be explained, and the one attached to the lower treatment chamber will be explained below). ) are provided mirror-symmetrically with respect to the axial direction.Furthermore, the electrode tip shaping jig 11 is rotated, for example, in the clockwise direction as shown in the figure, as the electric motor rotates.
A notch 29 is formed on a part of the outer periphery of the electrode tip shaping jig 11, extending from a position eccentric from the center of the bottom of each shaping chamber 25, 27 to the outer periphery, and opening at a predetermined angle, leaving the center of the bottom. Ru. A locking recess 29b is formed in the center of the notch surface 29a located on the upper side in the rotational direction of the notch 29 (at the partition wall of each shaping chamber 25, 27), and a screw is inserted into the locking recess 29b. A hole 29c is formed.
Furthermore, a cutting waste discharge hole 31 is formed on the inner peripheral surface of the shaping chambers 25 and 27 on the opposite side to the notch 27, extending in the axial direction of the electrode tip shaping jig 11 and penetrating the partition between the two. be done.
On the inner peripheral surfaces of the shaping chambers 25 and 27 corresponding to the upper side of the cutting waste discharge hole 31 in the rotational direction, a first shaping part 33 is formed such that the radius of curvature of the ridgeline matches the radius of curvature of the distal shaping area a. When shaping the electrode tips 7 and 9, which are formed in the shape of a tip and have a bulging deformation at the tip, the deformed portion that bulges by pressing against the tip side shaping area a is pushed out toward the tip side and shaped.
A second shaping portion 35 is provided on the inner peripheral surface of the shaping chambers 25 and 27 on the downstream side of the cutting waste discharge hole 31 in the rotational direction, and the radius of curvature of the ridge line thereof matches the radius of curvature of the proximal shaping region b. When shaping the bulging and deformed electrode tips 7 and 9, the deformed portions that bulge out by pressing against the proximal shaping region b are pushed toward the proximal side and shaped.
On the bottom surfaces of the shaping chambers 25 and 27 where the notch 27 is not formed, a tip face shaping section 37 is formed so as to curve and extend in the radial direction at a location deviated from the center of rotation. The distal end surface shaping section 37 is formed in a curved or flat shape corresponding to the curved surface or flat surface of the distal end surface of the electrode tips 7 and 9 whose upper surfaces have regular shapes, and is formed in a curved or flat shape corresponding to the curved surface or plane of the distal end surface of the electrode tips 7 and 9 that have regular upper surfaces. For example, if the workpiece is a galvanized steel plate, chromium-zinc (YCr-Zn layer, BCr-Zn layer), iron-zinc alloy (Fe- The tip surface is curved as required while removing the harder alloy layers (YCr-Zn layer, Fe-Zn layer) and leaving only the lower hardness alloy layer (BCr-Zn layer). Shape into a surface or plane.
A cutting blade 39 is screwed into the notch surface 29a of the notch portion 29 so that the end surface of the blade portion 39a on the lower side in the rotational direction is along the center line of the electrode tip shaping jig 11. The cutting blade 39 is made of, for example, high-speed steel, cemented carbide, ceramics, etc., and matches the tip shape of the electrode tips 7 and 9, which have a regular shape on the inner peripheral surface side, excluding a part of the tip surface. After the locked portion 39b, which is provided with a blade portion 39a and is provided at the center of the surface facing the notch surface 29a, is locked in the locking recess 29b, the screw 39d inserted into the through hole 39c is screwed. It is fixed by screwing into the hole 29c.
The cutting blade 39 mainly cuts the tips of the electrode tips 7 and 9 at a timing slightly delayed from the timing when the tip surfaces of the electrode tips 7 and 9 that have entered the shaping chambers 25 and 27 come into contact with the tip surface shaping section 37 and are shaped into regular shapes. 1. The surplus portion stretched toward the distal end side and a part of the alloy layer on the distal end surface are cut by the first shaping section 33 to prevent generation of scarf pieces. ”
次に、上記のように構成される電極チップ再生装置1による電極チップ7の再生作用を説明する。なお、説明の便宜上、表1及び表2は上方に位置する整形室35による電極チップ7再生時の回転トルク及び回転数の関係を示すが、下方の整形室35よる電極チップ7再生時の回転トルク及び回転数の関係は、ほぼ同様であるため、省略する。 Next, the regeneration operation of the electrode chip 7 by the electrode chip regeneration device 1 configured as described above will be explained. For convenience of explanation, Tables 1 and 2 show the relationship between rotational torque and rotational speed when the electrode tip 7 is regenerated by the shaping chamber 35 located above; Since the relationship between torque and rotation speed is almost the same, the description will be omitted.
先ず、本願発明に係る電極チップ再生装置1により再生される電極チップ7は、図7(変形状態を実線で、また正規状態を破線で示す。)に示すように電気抵抗溶接が所定ショット数に達した際にはワークに対する圧接や溶接熱により先端部が膨出変形して大径化している。また、その先端面は金属スパッタによる金属蒸発により溶融して変形すると共に先端面には金属蒸発して固着した電極チップ7の金属成分とワーク(鍍金層を含む)の金属成分からなる合金層(例えばワークが亜鉛鋼板の場合には、YCr-Zn、BCr-Zn、Fe-Znの合金層が生成されるが、ワーク及びその表面に鍍金された金属材質により合金層成分が決定される。)が生成される。該合金層は、電極チップ7・9の母材である銅又は銅合金と比べて電気抵抗値が高い特性を有している。 First, the electrode tip 7 regenerated by the electrode tip regeneration device 1 according to the present invention is subjected to electric resistance welding for a predetermined number of shots as shown in FIG. 7 (deformed state is shown by a solid line, and normal state is shown by a broken line) When it reaches the point, the tip is swollen and deformed due to pressure contact with the workpiece and welding heat, resulting in a larger diameter. Further, the tip surface is melted and deformed by metal evaporation by metal sputtering, and an alloy layer ( For example, when the workpiece is a galvanized steel plate, an alloy layer of YCr-Zn, BCr-Zn, and Fe-Zn is generated, but the alloy layer composition is determined by the workpiece and the metal material plated on its surface.) is generated. The alloy layer has a characteristic of having a higher electrical resistance value than the copper or copper alloy that is the base material of the electrode tips 7 and 9.
なお、ワークが亜鉛鋼板の場合にあっては、先端面側から硬度が低い合金層(BCr-Zn層)及び硬度が高い合金層(YCr-Zn層、Fe-Zn層)の順に生成される。また、電極チップ再生装置1による電極チップ7の再生作業を実行するタイミングとしては、上記の他に1個のワークに対する複数ショットの溶接作業が終了したとき、所要個数のワークの溶接作業が終了したとき或いは次のワークが所要の溶接位置に搬入されるまでの間で溶接ガン3を移動原点位置に戻した待機時のいずれであってもよい。 In addition, if the workpiece is a galvanized steel plate, an alloy layer with lower hardness (BCr-Zn layer) and an alloy layer with higher hardness (YCr-Zn layer, Fe-Zn layer) are generated in this order from the tip side. . In addition to the above timings, the timing for regenerating the electrode tip 7 by the electrode chip regeneration device 1 is when multiple shots of welding work for one workpiece are completed, or when welding work for a required number of workpieces is completed. This may be done either when the welding gun 3 is returned to the movement origin position during standby until the next work is carried into the required welding position.
このように先端部が膨出変形したり、先端面に合金層が生成された電極チップ7にあっては、ワークに対する接触面積が変化し、ワークに対する圧接力が不均一になったり、ワークに印加される電流値が安定化せず、ワーク間に均一な溶接ナゲットを形成できず、溶接品質が悪くなっている。これを解決するため、膨出変形した電極チップ7の先端部を電極チップ再生装置1により図7に示す正規形状に近い形状に整形して再生する必要がある。 If the tip of the electrode tip 7 is bulged and deformed or an alloy layer is formed on the tip surface, the contact area with the workpiece will change, and the pressing force against the workpiece will become uneven, or The applied current value is not stabilized, and a uniform weld nugget cannot be formed between the workpieces, resulting in poor welding quality. In order to solve this problem, it is necessary to reshape and regenerate the distal end of the bulging and deformed electrode tip 7 into a shape close to the normal shape shown in FIG. 7 using the electrode chip regenerating device 1.
その際、1個の電極チップ7による電気抵抗溶接のショット回数を約30000回に想定し、、ショット回数が20回ごとに電極チップを再生する場合、即ち、1500回、再生する場合には、電極チップ7の再生時に許容される切削量を平均して約0.005mm(5μm)にする必要がある。再生時に許容される電極チップ7の切削量は、主に極チップ整形治具33に対する電極チップ7の加圧力、切欠き部37の開口幅(開口角度)、回転数及び整形時間により決定される。 At that time, assuming that the number of shots of electric resistance welding using one electrode tip 7 is about 30,000, and when regenerating the electrode tip every 20 shots, that is, when regenerating 1,500 times, The amount of cutting allowed during regeneration of the electrode tip 7 needs to be about 0.005 mm (5 μm) on average. The amount of cutting of the electrode tip 7 that is allowed during regeneration is mainly determined by the pressing force of the electrode tip 7 against the tip shaping jig 33, the opening width (opening angle) of the notch 37, the rotation speed, and the shaping time. .
その内、加圧力、開口幅及び整形時間に付いては、予め設定可能で、再生時に電極チップ7の状態により大きく変動する要素にはならないため、切削量の変動要素として回転数(時間)が重要になってくる。 Among these, the pressurizing force, opening width, and shaping time can be set in advance and do not vary greatly depending on the state of the electrode tip 7 during regeneration, so the rotation speed (time) is a variable factor in the amount of cutting. It becomes important.
そして回動部材27の回転駆動に伴って図示する時計方向へ回転する電極チップ整形治具33の各整形室35内に対し、待機位置にて相互の軸線が一致するように移動した電極チップ7を互いに近づく方向へ所定の移動量で移動制御して進入させると、電極チップ7における先端部外周面の先端側整形領域に圧接する第1整形部43により膨出した変形部分を先端側へ押延ばして再生する。 The electrode tips 7 have been moved in the respective shaping chambers 35 of the electrode tip shaping jig 33, which rotates in the clockwise direction shown in the figure as the rotary member 27 is rotated, so that their axes coincide with each other at the standby position. When the two are controlled to move toward each other by a predetermined movement amount and enter, the first shaping portion 43 that presses against the distal shaping region of the outer peripheral surface of the distal end of the electrode tip 7 pushes the bulged deformed portion toward the distal end. Extend and play.
この時、他の第2整形部45、先端面整形部47及び切削加工刃39は、進入する電極チップ7の先端部外周に対して非接触状態になり、電極チップ整形治具33の回転抵抗になるのを回避している。 At this time, the other second shaping section 45, the tip surface shaping section 47, and the cutting blade 39 are in a non-contact state with respect to the outer periphery of the tip end of the electrode tip 7 entering, and the rotational resistance of the electrode tip shaping jig 33 is Avoiding becoming.
次に、各整形室35内に対して電極チップ7の先端部が更に進入されると、先端部外周面の基端側整形領域に圧接する第2整形部45により変形部分を基端側へ押延ばして再生する。 Next, when the distal end of the electrode tip 7 further enters into each shaping chamber 35, the deformed portion is moved toward the proximal side by the second shaping section 45 that presses against the proximal shaping region of the outer peripheral surface of the distal end. Extend and play.
この時、他の第1整形部43、先端面整形部47及び切削加工刃39は、進入する電極チップ7の先端部外周面に対して非接触状態になり、電極チップ整形治具33の回転抵抗になるのを回避している。 At this time, the other first shaping section 43 , tip face shaping section 47 , and cutting blade 39 are in a non-contact state with respect to the outer peripheral surface of the tip end of the electrode tip 7 entering, and the electrode tip shaping jig 33 is rotated. Avoiding resistance.
そして、更に整形室35内に対して電極チップ7を、その先端面が先端面整形部47に圧接するように進入させると、先端面整形部47により、電気抵抗溶接時に先端面に生成されたクロム-亜鉛(YCr-Zn層、BCr-Zn層)、鉄―亜鉛合金(Fe-Zn層)等の内、比較的硬度が高い合金層(YCr-Zn層、Fe-Zn層)を削り落とす一方、比較的硬度が低い合金層(BCr-Zn層)が所定の層厚(0.05~0.15mm)で残存するように平面状、湾曲面状及びこれらの複合面状のいずれかに整形する。 Then, when the electrode tip 7 is further advanced into the shaping chamber 35 so that its tip surface comes into pressure contact with the tip surface shaping section 47, the tip surface shaping section 47 causes the electrode tip 7 to have a shape formed on the tip surface during electric resistance welding. Scraping off relatively hard alloy layers (YCr-Zn layer, Fe-Zn layer) of chromium-zinc (YCr-Zn layer, BCr-Zn layer), iron-zinc alloy (Fe-Zn layer), etc. On the other hand, so that the alloy layer (BCr-Zn layer) with relatively low hardness remains with a predetermined layer thickness (0.05 to 0.15 mm), Shape.
上記第1及び第2整形部43・45及び先端面整形部47による電極チップ7先端部の再生時においては、押延ばされる一部の余剰部分が電極チップ整形治具33の回転に伴って基端側へ押延ばされたスカーフが発生している。特に、先端部整形部47により先端面の外周側へ押延ばされる余剰部分は、スカーフになり易い傾向がある。 When the first and second shaping sections 43 and 45 and the distal end surface shaping section 47 regenerate the tip of the electrode tip 7, a part of the stretched surplus portion becomes the base as the electrode tip shaping jig 33 rotates. The scarf is stretched towards the edges. In particular, the excess portion that is pushed toward the outer periphery of the distal end surface by the distal end shaping section 47 tends to become a scarf.
上記余剰部分は、電極チップ整形治具33の整形室35内に進入する電極チップ7先端部の外周面に近接又は接触する切削加工刃39により切削されて切欠き部29を介して外部へ排出され、スカーフが発生するのを回避したり、スカーフが少なくなるように電極チップ7を正規形状に整形したりして再生している。 The above-mentioned surplus portion is cut by a cutting blade 39 that approaches or contacts the outer peripheral surface of the tip of the electrode tip 7 that enters the shaping chamber 35 of the electrode tip shaping jig 33, and is discharged to the outside through the notch 29. The electrode tip 7 is regenerated by avoiding the occurrence of scarf or by shaping the electrode tip 7 into a regular shape so that scarf is reduced.
また、先端面整形部47により整形された電極チップ7の先端面は、その外周側に接触する切削加工刃39により残存する合金層が切削される。これにより電極チップ7における先端面には、その中心から所定範囲(先端面直径の1/4~1/2)にて所定の層厚の合金層が残存される。 Furthermore, the remaining alloy layer of the tip surface of the electrode tip 7 that has been shaped by the tip surface shaping section 47 is cut off by the cutting blade 39 that comes into contact with the outer circumferential side thereof. As a result, an alloy layer with a predetermined thickness remains on the tip surface of the electrode tip 7 in a predetermined range (1/4 to 1/2 of the diameter of the tip surface) from the center.
上記切削加工刃39による余剰部分や合金層外周側の切削量(スカーフ量)は、上記したように電極チップ整形治具33に対する電極チップ7の加圧力、切欠き部37の開口幅、電極チップ整形治具33の回転数及び整形時間により決定されるが、電極チップ7の加圧力、切欠き部37の開口幅及び整形時間は予め設定されて一定であるため、変動要素としての電極チップ整形治具33の回転数に依存している。 The amount of cutting (scarf amount) of the surplus portion and the outer circumferential side of the alloy layer by the cutting blade 39 is determined by the pressing force of the electrode tip 7 against the electrode tip shaping jig 33, the opening width of the notch 37, the electrode tip Although it is determined by the rotation speed of the shaping jig 33 and the shaping time, the pressing force of the electrode tip 7, the opening width of the notch 37, and the shaping time are set in advance and are constant, so the electrode tip shaping is a variable factor. It depends on the rotation speed of the jig 33.
上記切削加工刃39による余剰部分や合金層外周側の切削時においては、切削加工刃39が切欠き部37内の余剰部分や合金層外周側に食い込む際に、電極チップ整形治具33の回転トルクが増大することにより回転数が低下して切削量が多くなっている。 When the cutting blade 39 cuts the surplus part or the outer periphery of the alloy layer, the electrode tip shaping jig 33 rotates when the cutting blade 39 bites into the surplus part in the notch 37 or the outer periphery of the alloy layer. As the torque increases, the rotational speed decreases and the amount of cutting increases.
しかし、本願発明にあっては、回動部材27の駆動力を、フライホイール29を介して第3歯車25に伝達する構成を採用するため、表1に示すように電極チップ整形治具33の回転トルクが増大しても、フライホイール29の慣性力により回転力を補完して回転数が低下するのを回避することができる。これにより切削加工刃39による切削量を安定化させることができる。なお、表1においては、電動モータ出力:750W、加圧力:200kg、開口角度:30度とする。
Figure JPOXMLDOC01-appb-T000001
However, in the present invention, since a configuration is adopted in which the driving force of the rotating member 27 is transmitted to the third gear 25 via the flywheel 29, the electrode tip shaping jig 33 is adjusted as shown in Table 1. Even if the rotational torque increases, the inertial force of the flywheel 29 can supplement the rotational force and prevent the rotational speed from decreasing. Thereby, the amount of cutting by the cutting blade 39 can be stabilized. In Table 1, electric motor output: 750 W, pressing force: 200 kg, and opening angle: 30 degrees.
Figure JPOXMLDOC01-appb-T000001
この結果、本実施例においては、表2に示すように電極チップ7の再生に伴う切削量を平均して0.005mm程度とすることができる。なお、表2においては、電動モータ出力:750W、加圧力:200kg、開口角度:30度とする。
Figure JPOXMLDOC01-appb-T000002
As a result, in this embodiment, as shown in Table 2, the amount of cutting due to regeneration of the electrode tip 7 can be made to be about 0.005 mm on average. In Table 2, electric motor output: 750 W, pressing force: 200 kg, and opening angle: 30 degrees.
Figure JPOXMLDOC01-appb-T000002
本実施例は、回動部材27の回転駆動力を、フライホイール29を介して第3歯車25に伝達して電極チップ整形治具33を回転させる簡易な構成により、電極チップ7先端部に対する切削加工刃39の食い込みにより回転トルクが変動した場合であっても、フライホイール29の慣性力により回転力を補完して回転数の変動を抑制して安定した切削量で電極チップ7を整形して再生することができる。 This embodiment has a simple configuration in which the rotational driving force of the rotating member 27 is transmitted to the third gear 25 via the flywheel 29 to rotate the electrode tip shaping jig 33, thereby making it possible to cut the tip of the electrode tip 7. Even if the rotational torque fluctuates due to biting of the machining blade 39, the inertial force of the flywheel 29 complements the rotational force, suppresses fluctuations in rotational speed, and shapes the electrode tip 7 with a stable cutting amount. Can be played.
上記説明は、電極チップ整形治具33の軸線方向両側にそれぞれの整形室35をそれぞれ設け、相対する一対の電極チップ7を同時に再生する電極チップ再生装置1としたが、電極チップ再生装置1に1個の整形室35を設けた電極チップ整形治具33を装着し、電極チップ7を1つずつ整形して再生してもよい。 In the above description, the electrode tip regeneration device 1 is described in which the shaping chambers 35 are provided on both sides of the electrode tip shaping jig 33 in the axial direction, and a pair of opposing electrode tips 7 are simultaneously regenerated. An electrode tip shaping jig 33 provided with one shaping chamber 35 may be installed, and the electrode tips 7 may be shaped and regenerated one by one.
1  電極チップ再生装置
7  電極チップ
11  支持部材
13  ブラケット
15  ガイドロッド
17  再生ヘッド
18 スライダ
19 弾性部材
21 第1歯車
21a 軸
23 第2歯車
25  回転盤としての第3歯車
25a 中空部
27 回動部材
29 フライホイール
31 押え板
33 電極チップ整形治具
35 整形室
37 切欠き部
39 切削加工刃
39a 刃部
41 切削屑排出孔
43 第1整形部
45 第2整形部
47 先端面整形部
1 Electrode chip regeneration device 7 Electrode chip 11 Support member 13 Bracket 15 Guide rod 17 Reproduction head 18 Slider 19 Elastic member 21 First gear 21a Shaft 23 Second gear 25 Third gear 25a as a rotating disk Hollow part 27 Rotating member 29 Flywheel 31 Holding plate 33 Electrode tip shaping jig 35 Shaping chamber 37 Notch part 39 Cutting blade 39a Blade part 41 Cutting waste discharge hole 43 First shaping part 45 Second shaping part 47 Tip surface shaping part

Claims (5)

  1. 電極チップが進入する整形室内周面に設けられ、電極チップ先端部の少なくとも先端側及び/又は基端側に想定される整形領域に圧接する整形部と、上記整形室底面に設けられ、電極チップ先端面に圧接する先端面整形部と、整形室の一部内周面に形成された切欠き部に設けられ、電極チップの先端部外周及び先端面に圧接する切削加工刃を備えた電極チップ整形治具を回転駆動して整形布武及び先端面整形部により電極チップ先端部の変形部分を押延ばすと共に切削加工刃により余剰部分を切削して正規形状に整形して再生する電極チップ再生装置において、
    中心部に電極チップ整形治具が回り止めされた状態で挿嵌される中空部を有した回転盤と、
    上記回転盤を回転可能に軸支する再生ホルダと、
    回転盤に連結されて少なくとも所定の回転数で回転させる回動部材と、
    上記回転盤及び回動部材のいずれか一方に同軸に設けられるフライホイールと、
    を備え、
    電極チップの余剰部分に対する切削加工刃の食い込みにより回転トルクが変動した際にフライホイールの慣性力により回転力を補完して回転数の変動を抑制可能にしたことを特徴とする電極チップ再生装置。
    A shaping section is provided on the peripheral surface of the shaping chamber into which the electrode tip enters, and presses against a shaping area assumed to be at least on the distal end side and/or the proximal end side of the electrode tip tip; An electrode tip shaping unit that includes a tip face shaping section that comes into pressure contact with the tip surface, and a cutting blade that is provided in a notch formed in a part of the inner peripheral surface of the shaping chamber and comes into pressure contact with the outer periphery of the tip end and the tip surface of the electrode tip. In an electrode tip regeneration device that rotates a jig to elongate the deformed portion of the tip of the electrode tip using a shaping cloth and a tip face shaping section, and cuts off the excess portion using a cutting blade to reshape the tip into a regular shape. ,
    a rotary disk having a hollow portion in the center into which an electrode tip shaping jig is inserted in a non-rotating state;
    a reproduction holder that rotatably supports the rotary disk;
    a rotating member that is connected to a rotating disk and rotates at least at a predetermined number of rotations;
    a flywheel coaxially provided on either one of the rotating disk and the rotating member;
    Equipped with
    An electrode chip regeneration device characterized in that when the rotational torque fluctuates due to the cutting blade biting into the surplus portion of the electrode chip, the rotational force is supplemented by the inertia force of the flywheel, thereby making it possible to suppress the fluctuation in the rotational speed.
  2. 請求項1において、
    フライホイールは、電極チップ整形治具における切欠き部の開口幅に対応する質量とした電極チップ再生装置。
    In claim 1,
    The flywheel is an electrode chip regeneration device whose mass corresponds to the opening width of the notch in the electrode chip shaping jig.
  3. 請求項1において、
    回転盤と回動部材は、少なくとも1個の歯車を介して駆動連結されると共に歯車及び回動部材の少なくとも1つの回動軸にはフライホイールを同軸に設けた電極チップ再生装置。
    In claim 1,
    The rotating disc and the rotating member are drivingly connected through at least one gear, and a flywheel is provided coaxially with at least one rotating shaft of the gear and the rotating member.
  4. 請求項1において、
    再生ホルダは、電極チップ整形治具の軸線と一致する方向に軸線を有したガイド軸に軸線方向へ摺動可能に軸支され、
    ガイド軸には再生ホルダを電極チップの進入方向と反対方向へ付勢する弾性部材を設けた電極チップ再生装置。
    In claim 1,
    The regeneration holder is pivotally supported so as to be slidable in the axial direction on a guide shaft having an axis in a direction that coincides with the axis of the electrode tip shaping jig,
    An electrode chip regeneration device in which the guide shaft is provided with an elastic member that biases the regeneration holder in a direction opposite to the direction in which the electrode tip enters.
  5. 請求項1において、
    電極チップ整形治具は、上記整形部、上記先端面整形部及び上記切欠き部に取付けられる切削加工刃を設けた2個の整形室を軸線方向に対して対称に設け、相対する電極チップが各整形室内に進入可能にすると共に、
    再生ホルダは、電極チップ整形治具の軸線と一致する方向に軸線を有したガイド軸に軸線方向へ摺動可能に軸支されると共に弾性部材により各電極チップの進入方向と反対方向へ付勢される電極チップ再生装置。
    In claim 1,
    The electrode tip shaping jig has two shaping chambers provided with the shaping section, the distal end shaping section, and a cutting blade attached to the notch section, which are arranged symmetrically with respect to the axial direction, so that the electrode tips facing each other are In addition to making it possible to enter each orthopedic room,
    The regeneration holder is supported slidably in the axial direction by a guide shaft whose axis coincides with the axis of the electrode tip shaping jig, and is biased by an elastic member in a direction opposite to the direction in which each electrode tip enters. Electrode chip regeneration device.
PCT/JP2022/033857 2022-09-09 2022-09-09 Electrode tip regeneration device WO2024053085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022554888A JP7219935B1 (en) 2022-09-09 2022-09-09 Electrode chip regenerator
PCT/JP2022/033857 WO2024053085A1 (en) 2022-09-09 2022-09-09 Electrode tip regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033857 WO2024053085A1 (en) 2022-09-09 2022-09-09 Electrode tip regeneration device

Publications (1)

Publication Number Publication Date
WO2024053085A1 true WO2024053085A1 (en) 2024-03-14

Family

ID=85173913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033857 WO2024053085A1 (en) 2022-09-09 2022-09-09 Electrode tip regeneration device

Country Status (2)

Country Link
JP (1) JP7219935B1 (en)
WO (1) WO2024053085A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248365A (en) * 2001-02-27 2002-09-03 Matsushita Electric Ind Co Ltd Crusher
JP2007090427A (en) * 2005-09-01 2007-04-12 Kyokutoh Co Ltd Chip forming apparatus
JP2009136882A (en) * 2007-12-03 2009-06-25 Nadex Co Ltd Device for shaping electrode tip
JP2015058446A (en) * 2013-09-18 2015-03-30 トヨタ車体株式会社 Aligning method of spot welding chip
JP7121962B1 (en) * 2022-01-19 2022-08-19 有限会社Tne Electrode tip shaping jig and electrode tip shaping device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248365A (en) * 2001-02-27 2002-09-03 Matsushita Electric Ind Co Ltd Crusher
JP2007090427A (en) * 2005-09-01 2007-04-12 Kyokutoh Co Ltd Chip forming apparatus
JP2009136882A (en) * 2007-12-03 2009-06-25 Nadex Co Ltd Device for shaping electrode tip
JP2015058446A (en) * 2013-09-18 2015-03-30 トヨタ車体株式会社 Aligning method of spot welding chip
JP7121962B1 (en) * 2022-01-19 2022-08-19 有限会社Tne Electrode tip shaping jig and electrode tip shaping device

Also Published As

Publication number Publication date
JP7219935B1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US4484053A (en) Device for electrical discharge machining of a work in the form of a roll
JP5204537B2 (en) Grinding machine for grinding gears
CN102015166A (en) Method and tool for producing a surface having a predetermined roughness
US4471199A (en) EDM Of a roll using segmented electrode short-circuited in the rough machine step
JP6489703B2 (en) Electrode chip regenerator and electrode chip regenerator
CN112453601B (en) Electric spark machine tool for processing inner cavity of metal product
WO2024053085A1 (en) Electrode tip regeneration device
JP4893906B2 (en) Electrode tip shaping device and electrode tip shaping tool
JP7121962B1 (en) Electrode tip shaping jig and electrode tip shaping device
CN101795797A (en) Cutting tool, method of forming cutting tool, and method of manufacturing cutting tool
WO2017199911A1 (en) Dimple forming method using rotary cutting tool
KR101311491B1 (en) Resistance welding method for galvanized steel sheet, electrode tip of method for resistance welding for galvanized steel sheet
JP5606250B2 (en) Resistance welding method for galvanized steel sheet and method for regenerating electrode tip for galvanized steel sheet resistance welding
CN115213503B (en) Wire cutting equipment with grinding process
JP5170613B2 (en) Electrode tip regenerating tool and regenerating method thereof
US3624336A (en) Electrocontour machining setup and method
JPH0994717A (en) Deburring device and method
US3479479A (en) Quick-change tool for spark cutting apparatus
JP2010029883A (en) Shaping apparatus of welding electrode tip and its shaping method
JP2014151327A (en) Electrode tip regeneration tool and electrode tip regeneration process
JP4333037B2 (en) Discharge surface treatment method and apparatus, and discharge surface treatment electrode
JP3641561B2 (en) Tool operating mechanism of coil manufacturing equipment
JP5131924B2 (en) Electrode tip regenerator
CN113894508B (en) Riveting auxiliary rotary friction welding process and application of dissimilar metal bar
CN219541586U (en) Novel external thread full-expansion thread rolling machine head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958163

Country of ref document: EP

Kind code of ref document: A1