WO2024051828A1 - 雾化芯及其制造方法和雾化设备 - Google Patents

雾化芯及其制造方法和雾化设备 Download PDF

Info

Publication number
WO2024051828A1
WO2024051828A1 PCT/CN2023/117759 CN2023117759W WO2024051828A1 WO 2024051828 A1 WO2024051828 A1 WO 2024051828A1 CN 2023117759 W CN2023117759 W CN 2023117759W WO 2024051828 A1 WO2024051828 A1 WO 2024051828A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
area
groove
array
insulating
Prior art date
Application number
PCT/CN2023/117759
Other languages
English (en)
French (fr)
Inventor
唐立恒
江志钧
黎华梅
彭晓峰
Original Assignee
上海琨纬科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海琨纬科技有限公司 filed Critical 上海琨纬科技有限公司
Publication of WO2024051828A1 publication Critical patent/WO2024051828A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the present application relates to the technical field of atomization devices, and more specifically, to an atomization core and its manufacturing method and atomization equipment.
  • the electronic atomization device heats the oil through the atomization core to atomize the oil to form smoke.
  • the atomization core includes a substrate and a resistance layer formed on the substrate as a heating film.
  • the resistance layer is formed on the substrate using a mask process. In this process, a mask plate is required, which makes the process complex and requires high precision, which is not conducive to reducing the production cost of the atomizing core.
  • the embodiment of the present application provides a manufacturing method of an atomizing core, an atomizing core and atomizing equipment.
  • the substrate including a first surface and a second surface opposite to each other, the substrate having a plurality of base units, each base unit being provided with a perforation array penetrating the first surface and the second surface;
  • a resistance layer is formed on the entire first surface, and the resistance layer has a conductive portion corresponding to the base unit;
  • the conductive portion on the base unit is processed to form a first region and a second region insulated from the first region, the first region at least partially overlaps the through hole array.
  • a resistive layer is first formed on the entire first surface of the substrate, and then the conductive portion of the resistive layer is processed so that the conductive portion forms a first area that at least partially overlaps the through-hole array.
  • processing the conductive portion on the base unit to form a first region and a second region insulated from the first region includes:
  • the material of the conductive part is removed according to the processing path to form a first insulating groove, the first insulating groove divides the conductive part into a first area and a second area, and the first insulating groove passes through the Perforated array.
  • removing the material of the conductive portion according to the processing path to form a first insulating groove includes:
  • the material of the conductive part is removed according to the processing path to form first grooves and second grooves.
  • the first grooves and the second grooves are spaced apart and both pass through the through-hole array.
  • the first area forms Between the first groove and the second groove, the first insulating groove includes the first groove and the second groove.
  • the method further includes disposing an electrode on the first region.
  • the first area includes a heating area and a power connection area connected to the heating area, the power connection area is located outside the perforation array, and the heating area is at least partially connected to the perforation array. overlapping;
  • Electrodes are arranged on the first area, including:
  • the electrode is arranged in the electrical connection area.
  • the method further includes:
  • Material in the second region is removed to form a second insulating groove, the second insulating groove divides the second region into an insulating first sub-region and a second sub-region, the second sub-region corresponds to the the end of the first region;
  • the arrangement of electrodes on the first area includes:
  • the conductive material is cured to form the electrode.
  • the method further includes:
  • the substrate with the resistive layer is divided according to the position of the base unit to form a plurality of chips, each of the chips including one of the base units and one of the conductive parts.
  • forming a resistive layer on the entire first surface includes:
  • the entire resistive layer is formed over the entire first surface.
  • An atomizer core includes:
  • a substrate the substrate is provided with an array of perforations penetrating the substrate along the thickness direction of the substrate;
  • a conductive part which is in the form of a sheet and is laid on the substrate.
  • the conductive part includes a first region and a second region insulated from the first region.
  • the first region is at least 100 cm apart from the through-hole array. Partially overlapping.
  • a first insulating groove is formed on the conductive part, the first insulating groove divides the conductive part into a first region and a second region, and the first insulating groove passes through the Perforated array.
  • the first insulating groove includes a first groove and a second groove, the first groove and the second groove are spaced apart and both pass through the through hole array, and the first area is located between the first groove and the second groove.
  • electrodes are arranged on the first region, and the electrodes are electrically connected to the first region.
  • the first area includes a heating area and a power connection area connected to the heating area, the power connection area is located outside the perforation array, and the heating area is at least partially connected to the perforation array. Overlapping, the electrodes are arranged on the contact area.
  • the second area is provided with a second insulating groove, and the second insulating groove divides the second area into an insulated first sub-region and a second sub-region, and the first sub-region A region corresponds to the electrically connected area, and the electrode extends from the electrically connected area to the first sub-region and covers at least part of the second sub-region.
  • An atomizing core which is prepared by the method described in any of the above embodiments.
  • the atomization device in the embodiment of the present application includes the atomization core described in any of the above embodiments.
  • Figure 1 is a schematic process diagram of the manufacturing method according to the embodiment of the present application.
  • Figure 2 is a schematic flow chart of the manufacturing method according to the embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of the atomizing core according to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the manufacturing method according to the embodiment of the present application.
  • Figure 5 is a schematic process diagram of the manufacturing method according to the embodiment of the present application.
  • Figure 6 is a schematic diagram of the intermediate product of the atomizing core according to the embodiment of the present application.
  • Figure 7 is a schematic process diagram of the manufacturing method according to the embodiment of the present application.
  • Figure 8 is a schematic flow chart of the manufacturing method according to the embodiment of the present application.
  • Figure 9 is a schematic process diagram of the manufacturing method according to the embodiment of the present application.
  • Figure 10 is a schematic flow chart of the manufacturing method according to the embodiment of the present application.
  • Figure 11 is a schematic process diagram of the manufacturing method according to the embodiment of the present application.
  • Figure 12 is a schematic flow chart of the manufacturing method according to the embodiment of the present application.
  • Figure 13 is a schematic diagram of the atomizing core according to the embodiment of the present application.
  • Figure 14 is a schematic three-dimensional view of the atomization device according to the embodiment of the present application.
  • Atomizing core 100 Atomizing core 100, substrate 10, first surface 12, second surface 14, base unit 16, perforated array 18, resistive layer 20, conductive part 22.
  • the term “above” or “below” a first feature to a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • a first feature "on”, “above” and “over” a second feature includes the first feature being directly above and diagonally above the second feature, or It simply means that the level of the first feature is higher than that of the second feature.
  • “Below”, “below” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • this application discloses a manufacturing method of the atomizing core 100.
  • the manufacturing method includes the steps:
  • the substrate 10 includes a first surface 12 and a second surface 14 that are opposite to each other.
  • the substrate 10 has a plurality of base units 16, and each base unit 16 is provided with a first surface 12 and a second surface 14. perforated array 18;
  • the resistive layer 20 is first formed on the entire first surface 12 of the substrate 10 , and then the conductive portion 22 of the resistive layer 20 is processed so that the conductive portion 22 forms a third layer that at least partially overlaps the through-hole array 18 .
  • the first area 24 there is no need to use a mask in the process, which can save the production cost of the atomizing core 100.
  • a heating film is plated on the perforated area of the base material through a mask plate.
  • the masking process requires precise positioning, otherwise The heating film may shift and cause defects.
  • the mask needs to be replaced from time to time, resulting in considerable costs.
  • the mask plate’s contact with the substrate will increase the risk of scratches.
  • the resistive layer 20 is provided on the entire first surface 12 of the substrate 10. Therefore, the process of using a mask plate for precise positioning is omitted.
  • the manufacturing process is simple, the process can be simplified, and the efficiency can be improved.
  • first region 24 and a second region 26 that are insulated from each other are processed on the conductive portion 22 of each base unit 16, and the first region 24 at least partially overlaps the perforation array 18, so that the atomizing core 100 is in use.
  • the first area 24 can heat the oil to atomize the oil to ensure the normal use of the atomizing core 100 .
  • the substrate 10 may be in a flat plate shape.
  • the entire substrate 10 can be a square plate, a circular plate, or other plates of various shapes that meet the needs.
  • the substrate 10 can be made of dense materials such as sapphire single crystal, other single crystal or polycrystalline materials, dense ceramics, or high temperature and thermal shock resistant glass such as quartz glass, borosilicate glass or aluminosilicate glass.
  • the base plate 10 can be divided into a plurality of base units 16 according to the final size of the atomization core 100, and each base unit 16 can finally be processed into an atomization core 100.
  • the plurality of base units 16 can be arranged in a rectangular array, which makes the processing of the perforation array 18 on the base unit 16 more convenient, and also facilitates the subsequent process of dividing the base unit 16.
  • the perforation array 18 can be manufactured by glass perforation technology such as laser perforation.
  • the perforation array 18 includes a plurality of perforations, each of which has a pore diameter ranging from 1 ⁇ m to 100 ⁇ m.
  • the hole diameter of the perforation can be specifically designed according to the viscosity of the oil. For example, the greater the viscosity of the oil, the The aperture of the perforation can be designed to be larger, and the specific size of the aperture of the perforation is not limited in this application.
  • the diameter of each perforation may be equal or unequal.
  • the multiple perforations can be arranged in a rectangular array.
  • the multiple perforations can be arranged in 8 rows and 10 columns.
  • the porosity of the perforations may range from 20% to 70%.
  • Porosity refers to the ratio of the total volume of the perforations to the total volume of the matrix unit 16 .
  • the resistive layer 20 may be bonded on the first surface 12 by coating or screen printing, vapor deposition, sputtering or directly bonding.
  • the entire substrate 10 with the perforated array 18 can be put into a magnetron sputtering instrument for coating, and the resistive layer 20 can be directly sputtered on the entire first surface 12 so that the resistive layer 20 can be formed together with the base unit 16 A corresponding conductive portion 22 .
  • the processing speed of the resistive layer 20 in the embodiment of the present application can reach 1000mm/s, which greatly improves the processing efficiency.
  • the resistance layer 20 can be made of metal, alloy, or other conductive and easily heat-generating materials.
  • the material of the resistance layer 20 may be platinum, palladium, palladium-copper alloy, gold-silver-platinum alloy, titanium-zirconium alloy, nickel-chromium alloy, gold-silver alloy, palladium-silver alloy, gold-platinum alloy, etc.
  • the thickness of the resistive layer 20 ranges from 100 nm to 10 ⁇ m.
  • the resistive layer 20 is continuously distributed, or in some examples, the entire resistive layer 20 is formed on the entire first surface 12 . That is to say, in some examples, the resistive layer 20 continuously covers the entire first surface 12 .
  • the first region 24 and the second region 26 can be obtained by removing part of the material of the conductive portion 22 , for example, by laser engraving, machining, or other methods.
  • the first region 24 and the second region 26 are insulated, so that when a voltage is applied to the first region 24, the second region 26 will not conduct electricity, ensuring the utilization of electric energy.
  • Laser engraving is used to achieve non-contact processing with the substrate, which avoids the risk of scratches compared to the mask process.
  • the precision of laser engraving is extremely high, and its deviation is less than 10 microns.
  • the position accuracy of the heating film is greatly improved, so that the heating film maintains an appropriate distance from the edge of the perforation. It will cover the edge perforation and will not be too far away from the edge perforation, which improves the efficiency of the atomizer core and avoids the risk of dry burning.
  • the conductive portion 22 is divided into a first region 24 and a second region 26, so that the first region 24 that at least partially overlaps with the through hole array 18 has a suitable size, thereby making the resistance value of the first region 24 suitable, usually within the resistance range. It is 0.5 ⁇ -10 ⁇ , which is beneficial to the first region 24 generating heat when a voltage is applied. By controlling the size of the first region 24, the resistance deviation of the first region 24 can be controlled within 0.1 ⁇ .
  • the first area 24 at least partially overlaps the perforation array 18 , the first area 24 and the perforation array 18 have an intersection, and the area of the first area 24 may be greater than the area of the perforation array 18 , or may be less than or equal to the perforation array 18 area.
  • the boundary of the first area 24 may be located within the area of the perforation array 18 , or may be located outside the area of the perforation array 18 ; or part of the boundary of the first area 24 is located within the area of the perforation array 18 , and part of the boundary is located outside the area of the perforation array 18 .
  • the overlapping portion of the first area 24 and the perforated array 18 is an effective portion of the first area 24. After a voltage is applied to the first area 24, the effective portion can be in contact with the oil, so that the oil is heated, so that the oil Liquid forms smoke.
  • the first region 24 and the second region 26 may have regular shapes or irregular shapes.
  • both the first region 24 and the second region 26 may be rectangular, which makes the first region 24 and the second region 26 easier to process.
  • the second area 26 can help Helping the atomizer core 100 dissipate heat can improve the heat dissipation effect of the atomizer core 100.
  • the number of the first area 24 is one, and the number of the second area 26 is two.
  • the two second areas 26 are respectively located on opposite sides of the first area 24. In other words, the first area 24 is located on between the two second areas 26.
  • the number of first areas 24 and second areas 26 may be other numbers.
  • the number of the first area 24 can be one, and the number of the second area 26 can also be one, and one first area 24 and one second area 26 are arranged side by side; for another example, the first area 24 and the second area 26 There can be multiple ones, each area is insulated and arranged, and the first area 24 is located between the second areas 26 .
  • a voltage may be applied to one or more first regions 24 .
  • processing the conductive portion 22 on the base unit 16 to form a first region 24 and a second region 26 insulated from the first region 24 includes:
  • the first insulating groove 28 divides the conductive part 22 into the first region 24 and the second region 26.
  • the first insulating groove 28 passes through the through-hole array 18. .
  • the first insulating groove 28 can be used to effectively insulate the first region 24 and the second region 26 to prevent the first region 24 and the second region 26 from being electrically connected.
  • the first insulating groove 28 passes through the through-hole array 18, and also That is to say, the perforated array 18 is partially located in the second area 26, so that the oil can be fully supplied without dry burning.
  • the processing path can be determined by coordinate positioning or by a vision system.
  • the first insulating groove 28 may be processed by laser engraving. It can be understood that in order to effectively insulate the first region 24 and the second region 26 , the first insulating groove 28 penetrates the conductive part 22 .
  • the first insulating groove 28 can be a linear groove or a curved groove.
  • the specific shape of the first insulating groove 28 can be determined according to the specific shapes of the first region 24 and the second region 26 . This application does not limit the first insulating groove 28 shape.
  • removing the material of the conductive portion 22 according to the processing path to form the first insulating groove 28 includes:
  • the material of the conductive portion 22 is removed according to the processing path to form first grooves 30 and second grooves 32 .
  • the first grooves 30 and the second grooves 32 are spaced apart and both pass through the through-hole array 18 .
  • the first region 24 is formed in the first groove 30 Between the first insulating groove 28 and the second groove 32 , the first insulating groove 28 includes a first groove 30 and a second groove 32 .
  • the edge portion of the perforation array 18 is located in the second area 26, or in other words, the perforation array 18 is partially located outside the first area 24, which makes the width of the first area 24 appropriate and ensures that the resistance of the first area 24 can effectively generate heat. , to heat the oil.
  • the perforated array 18 is partially located outside the first area 24, so that all areas located in the first area 24 are in contact with the oil during the heating process, thereby preventing the first area 24 from being damaged by dry burning.
  • both the first groove 30 and the second groove 32 can be formed by laser engraving. Both the first groove 30 and the second groove 32 can be linear grooves or grooves of other shapes. As in the example of FIG. 5 , when the first groove 30 and the second groove 32 are linear grooves, the first groove 30 and the second groove 32 are linear grooves. 30 and the second groove 32 may be arranged in parallel.
  • both the first groove 30 and the second groove 32 may be arc-shaped, and the area between the first groove 30 and the second groove 32 is similar to a part of an ellipse.
  • the first groove 30 and the second groove 32 are symmetrical about the long axis of the through hole array 18 , that is to say, in the same width direction of the substrate 10 , the distance between the first groove 30 and the center of the through hole array 18 is equal to The distance between the second groove 32 and the center of the perforation array 18 .
  • the first insulation groove 28 includes the first groove 30 and the second groove 32 , that is to say, the number of the first insulation groove 28 is two.
  • the number of the first insulating slots 28 may be one, or may be more than three. This application does not limit the specific number of the first insulating slots 28 .
  • the method further includes:
  • the electrode 34 on the first area 24.
  • the electrode 34 facilitates the connection between the first region 24 and the external circuit, so that the external circuit can apply voltage to the first region 24 through the electrode 34 .
  • the number of electrodes 34 is two, and the two electrodes 34 are respectively arranged at both ends of the first region 24 .
  • the electrode 34 can be made of metal material with low resistivity, such as gold and silver. There are no specific limitations in this application. For example, silver can be selected as the electrode 34 because silver not only has good electrical conductivity but also has relatively low cost.
  • the electrode 34 can be disposed on the first area 24 by coating, sputtering, or other methods. It can be understood that the electrode 34 is electrically connected to the first region 24 .
  • the first area 24 includes a heating area 36 and a power connection area 38 connected to the heating area 36 .
  • the power connection area 38 is located outside the perforation array 18 , and the heating area 36 is at least partial overlap;
  • the steps of arranging the electrode 34 on the first area 24 include:
  • Electrodes 34 are arranged in the electrical connection area 38 .
  • the electrode 34 can apply voltage to the heating area 36 through the electrical connection area 38, so that the heating area 36 can generate heat.
  • one end of the heating area 36 connected to the electrical connection area 38 extends outside the perforated array 18 .
  • the number of power connection areas 38 is two, and each power connection area 38 is provided with an electrode 34 .
  • the two power connection areas 38 are respectively connected to both ends of the heating area 36 .
  • the area of the heating zone 36 is larger than the area of one of the electrically connected zones 38 .
  • the shape of the power connection area 38 can be square, which makes the shape of the power connection area 38 simple and easy to identify, thereby facilitating the arrangement of the electrodes 34 on the power connection area 38 and conducive to improving the manufacturing of the atomization core 100 efficiency.
  • the method further includes:
  • a notch 37 is formed on the heating area 36 to increase the resistance of the heating area 36 .
  • the resistance of the heating zone 36 can be formed within a predetermined resistance range during the manufacturing process of the atomization core 100 .
  • the score 37 can be formed by laser engraving. It can be understood that the score 37 can destroy the structure of the original heating zone 36. structure, thereby increasing the resistance of the heating zone 36.
  • the number of notches 37 can be one or more, and the length of the notches 37 is 5 microns to 30 microns.
  • the shape of the score 37 includes but is not limited to straight line, broken line, curve, etc.
  • the adjusted resistance of the heating zone 36 between the two electrodes 34 is 0.5 ⁇ -2 ⁇ .
  • the manufacturing method further includes:
  • the material of the second region 26 is removed to form a second insulating groove 40.
  • the second insulating groove 40 divides the second region 26 into an insulating first sub-region 42 and a second sub-region 44.
  • the second sub-region 44 corresponds to the first insulating sub-region 42 and the second insulating sub-region 44. end of area 24;
  • Arranging the electrode 34 on the first area 24 includes:
  • the electrodes 34 are arranged on the first sub-region 42 and the first region 24 at the same time, which facilitates the arrangement of the electrodes 34; at the same time, the second insulating groove 40 can effectively isolate the first sub-region 42 and the second sub-region 44.
  • the prevention electrode 34 is electrically connected to the second sub-region 44 to ensure the heating performance of the first region 24.
  • the first sub-region 42 serves as the boundary area of the conductive part 22, and the conductive material is coated from the first sub-region 42 through the first area 24. This eliminates the need to specifically design the boundary of the electrode 34 and improves the coating efficiency of the conductive material. , thereby improving the manufacturing efficiency of the atomizing core 100.
  • the width of the electrode 34 is greater than the width of the first region 24 .
  • the width of the electrode 34 may be equal to the width of the first region 24 , or may be smaller than the width of the first region 24 .
  • the electrode 34 covers part of the perforated array 18, so that the resistors in the first area 24 corresponding to the perforated array 18 can be in contact with the oil, preventing the resistors from being damaged by dry burning, and improving the life of the atomizing core 100. .
  • the step of forming the second insulating groove 40 may be performed before the step of coating the conductive material, or may be performed after the step of coating the conductive material.
  • the conductive material can be coated on the first region 24 and the second region 26 first, and after the conductive material is cured to form the electrode 34, the second insulating groove 40 can then be formed on the second region 26. It can be appreciated that the conductive material is coated on the electrically connected area 38 of the first area 24 .
  • the manufacturing method further includes:
  • each chip 46 including a base unit 16 and a conductive part 22 .
  • the minimum unit of the atomizing core 100 can be formed by dividing the substrate 10 .
  • the substrate 10 with the resistive layer 20 can be processed by laser cutting.
  • Each base unit 16 serves as the smallest unit of an atomization core 100. After cutting the substrate 10, the atomization core 100 can be obtained, or the atomization core 100 can be obtained. An intermediate product of the atomizing core 100 is obtained.
  • step S50 can be executed before step S30 and after step S20, or after step S30; when step S50 is executed after step S30, step S50 can be executed before step S40, or after step S40. implement.
  • the substrate 10 with the resistive layer 20 may be first divided into multiple chips 46, and then a third chip 46 may be processed on each chip 46.
  • An insulating groove 28 is formed, and then the electrode 34 is arranged on the first area 24, and finally a second insulating groove 40 is formed.
  • the first insulating groove 28 can be processed on the resistive layer 20 first, and then the substrate 10 with the resistive layer 20 is divided into a plurality of chips 46, and then the electrodes 34 are arranged on the first area 24, and finally the third insulating groove 28 is formed on the resistive layer 20.
  • Two insulation slots 40 are provided.
  • This application also provides an atomizing core 100.
  • the atomizing core 100 is manufactured using the method of any of the above embodiments.
  • the atomizing core 100 includes a base 48 and a conductive part 22.
  • the base 48 is provided with a perforation array 18 that penetrates the base 48 along the thickness direction of the base 48; the conductive part 22
  • the conductive portion 22 In the form of a sheet and laid on the substrate 48 , the conductive portion 22 includes a first area 24 and a second area 26 insulated from the first area 24 , the first area 24 at least partially overlaps the through hole array 18 .
  • the first area 24 can heat the oil passing through the perforation array 18 to atomize the oil
  • the second area 26 can speed up the heat dissipation efficiency of other parts of the atomization core 100 to prevent other parts of the atomization core 100 from being too hot and causing It will cause adverse effects on the components around the atomizer core 100.
  • the thickness of resistive layer 20 ranges from 100 nm to 100 ⁇ m. Therefore, the thickness of the conductive portion 22 also ranges from 100 nm to 100 ⁇ m.
  • a first insulating groove 28 is formed on the conductive part 22 , the first insulating groove 28 divides the conductive part 22 into a first region 24 and a second region 26 , and the first insulating groove 28 passes through the through-hole array 18 .
  • the first insulating groove 28 can be used to effectively insulate the first region 24 and the second region 26 to prevent the first region 24 and the second region 26 from being electrically connected.
  • the first insulating groove 28 passes through the through-hole array 18, so that That is to say, the perforated array 18 is partially located in the second area 26, so that the heat generated by the first area 24 after voltage is applied can completely heat the oil, and the utilization rate of electrical energy is high.
  • the first insulating groove 28 includes a first groove 30 and a second groove 32 .
  • the first groove 30 and the second groove 32 are spaced apart and both pass through the perforation array 18 .
  • the first region 24 is located between the first groove 30 and the second groove 32 .
  • the edge portion of the perforation array 18 is located in the second area 26, or in other words, the perforation array 18 is partially located outside the first area 24, which makes the width of the first area 24 appropriate and ensures that the resistance of the first area 24 can effectively generate heat. , to heat the oil.
  • an electrode 34 is disposed on the first region 24 , and the electrode 34 is electrically connected to the first region 24 .
  • the electrode 34 facilitates the connection between the first region 24 and the external circuit, so that the external circuit can apply voltage to the first region 24 through the electrode 34 .
  • the first area 24 includes a heating area 36 and a power connection area 38 connected to the heating area 36.
  • the power connection area 38 is located outside the perforation array 18, the heating area 36 at least partially overlaps the perforation array 18, and the electrode 34 Arranged on the power connection area 38.
  • the electrode 34 can apply voltage to the heating area 36 through the electrical connection area 38, so that the heating area 36 can generate heat.
  • one end of the heating area 36 connected to the electrical connection area 38 extends outside the perforated array 18 .
  • the number of power connection areas 38 is two, and each power connection area 38 is provided with an electrode 34.
  • the two power connection areas 38 are respectively connected to both ends of the heating.
  • the area of the heating zone 36 is larger than the area of one of the electrically connected zones 38 .
  • the second area 26 is provided with a second insulating groove 40, and the second insulating groove 40 connects the second area
  • the domain 26 is divided into an insulated first sub-region 42 and a second sub-region 44.
  • the first sub-region 42 corresponds to the electrically connected area 38.
  • the electrode 34 extends from the electrically connected area 38 to the first sub-region 42 and covers at least part of the second sub-region 42. Subarea 44.
  • the electrodes 34 are arranged on the first sub-region 42 and the first area 24 at the same time, which facilitates the arrangement of the electrodes 34 and is beneficial to improving the production efficiency of the atomizing core 100; at the same time, the second insulating groove 40 can effectively separate the first The sub-region 42 and the second sub-region 44 are isolated to prevent the electrode 34 from being electrically connected to the second sub-region 44, thereby ensuring the heating performance of the first region 24.
  • the heating zone 36 is formed with a score 37 that is used to adjust the resistance of the heating zone 36 between the two electrodes 38 .
  • the score 37 can form the resistance of the heating zone 36 within a predetermined resistance range.
  • the atomization device 200 in the embodiment of the present application includes the atomization core 100 of any of the above embodiments.
  • the atomization device 200 in the embodiment of the present application is a device that converts oil liquid into aerosol by heating or other methods. It should be noted that the oil liquid used in the embodiment of the present application may be a smoke-forming liquid.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the described features. In the description of the embodiments of the present application, “plurality” means two or more, unless otherwise explicitly and specifically limited.

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Resistance Heating (AREA)

Abstract

一种雾化芯(100)及其制造方法和雾化设备(200),制造方法包括:(S10),提供一基板(10),基板(10)包括相背的第一表面(12)和第二表面(14),基板(10)具有多个基体单元(16),每个基体单元(16)设有贯穿第一表面(12)和第二表面(14)的穿孔阵列(18);(S20),在整个第一表面(12)上形成电阻层(20),电阻层(20)具有与基体单元(16)一一对应的导电部(22);(S30),加工基体单元(16)上的导电部(22)以形成第一区域(24)和与第一区域(24)绝缘的第二区域(26),第一区域(24)与穿孔阵列(18)至少部分重叠。

Description

雾化芯及其制造方法和雾化设备 技术领域
本申请涉及雾化装置技术领域,更具体而言,涉及一种雾化芯及其制造方法和雾化设备。
背景技术
目前,电子雾化装置的应用越来越广。电子雾化装置通过雾化芯加热油液以使得油液烟雾化从而形成烟雾。在相关技术中,雾化芯包括基底和形成于基底上作为发热膜的电阻层,在大规模制造中,电阻层采用掩膜工艺形成于基底上。此种工艺中,需要使用掩膜板,使得工艺复杂且对精度要求较高,不利于降低雾化芯的生产成本。
发明内容
本申请实施方式提供了一种雾化芯的制造方法、雾化芯和雾化设备。
本申请实施方式的雾化芯的制造方法,包括:
提供一基板,所述基板包括相背的第一表面和第二表面,所述基板具有多个基体单元,每个基体单元设有贯穿所述第一表面和所述第二表面的穿孔阵列;
在整个所述第一表面上形成电阻层,所述电阻层具有与所述基体单元一一对应的导电部;
加工所述基体单元上的导电部以形成第一区域和与所述第一区域绝缘的第二区域,所述第一区域与所述穿孔阵列至少部分重叠。
本申请实施方式的制造方法中,先在基板的整个第一表面上形成电阻层,之后再加工电阻层的导电部,使得导电部形成与穿孔阵列至少部分重叠的第一区域,相较于先形成单个基体单元,之后在单个基体单元上设置导电层的方式,本申请的制造方法的效率较高,可以节约雾化芯的生产成本。
在某些实施方式中,所述加工所述基体单元上的导电部以形成第一区域和与所述第一区域绝缘的第二区域,包括:
在所述导电部上规划加工路径;
按所述加工路径去除所述导电部的材料以形成第一绝缘槽,所述第一绝缘槽将所述导电部划分为第一区域和第二区域,所述第一绝缘槽穿过所述穿孔阵列。
在某些实施方式中,所述按所述加工路径去除所述导电部的材料以形成第一绝缘槽,包括:
按所述加工路径去除所述导电部的材料以形成第一槽和第二槽,所述第一槽和所述第二槽间隔设置并均穿过所述穿孔阵列,所述第一区域形成在所述第一槽和所述第二槽之间,所述第一绝缘槽包括所述第一槽和所述第二槽。
在某些实施方式中,所述方法还包括:在所述第一区域上布置电极。
在某些实施方式中,所述第一区域包括加热区和与所述加热区连接的接电区,所述接电区位于所述穿孔阵列外,所述加热区与所述穿孔阵列至少部分重叠;
所述第一区域上布置电极,包括:
在所述接电区布置所述电极。
在某些实施方式中,所述方法还包括:
去除所述第二区域的材料以形成第二绝缘槽,所述第二绝缘槽将所述第二区域划分为绝缘的第一子区和第二子区,所述第二子区对应于所述第一区域的端部;
所述在所述第一区域上布置电极,包括:
将导电材料涂布在所述第一子区和所述第一区域上;
固化所述导电材料以形成所述电极。
在某些实施方式中,所述方法还包括:
按所述基体单元的位置分割带有所述电阻层的所述基板以形成多个芯片,每个所述芯片包括一个所述基体单元和一个所述导电部。
在某些实施方式中,所述在整个所述第一表面上形成电阻层,包括:
在整个所述第一表面上形成整个电阻层。
一种雾化芯,包括:
基底,所述基底设有沿所述基底的厚度方向贯穿所述基底的穿孔阵列;
导电部,所述导电部呈片状并铺设在所述基底上,所述导电部包括第一区域和与所述第一区域绝缘的第二区域,所述第一区域与所述穿孔阵列至少部分重叠。
在某些实施方式中,所述导电部上形成有第一绝缘槽,所述第一绝缘槽将所述导电部划分为第一区域和第二区域,所述第一绝缘槽穿过所述穿孔阵列。
在某些实施方式中,所述第一绝缘槽包括第一槽和第二槽,所述第一槽和所述第二槽间隔设置并均穿过所述穿孔阵列,所述第一区域位于所述第一槽和所述第二槽之间。
在某些实施方式中,所述第一区域上布置有电极,所述电极与所述第一区域电连接。
在某些实施方式中,所述第一区域包括加热区和与所述加热区连接的接电区,所述接电区位于所述穿孔阵列外,所述加热区与所述穿孔阵列至少部分重叠,所述电极布置在所述接电区上。
在某些实施方式中,所述第二区域设有第二绝缘槽,所述第二绝缘槽将所述第二区域划分为绝缘的第一子区和第二子区,所述第一子区对应于所述接电区,所述电极自所述接电区延伸至所述第一子区并遮盖至少部分所述第二子区。
一种雾化芯,所述雾化芯采用以上任一实施方式所述的方法制得。
在本申请实施方式的雾化设备包括上述任一实施方式所述的雾化芯。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本 申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的制造方法的过程示意图;
图2是本申请实施方式的制造方法的流程示意图;
图3是本申请实施方式的雾化芯的剖面示意图;
图4是本申请实施方式的制造方法的流程示意图;
图5是本申请实施方式的制造方法的过程示意图;
图6是本申请实施方式的雾化芯的中间产品的示意图;
图7是本申请实施方式的制造方法的过程示意图;
图8是本申请实施方式的制造方法的流程示意图;
图9是本申请实施方式的制造方法的过程示意图;
图10是本申请实施方式的制造方法的流程示意图;
图11是本申请实施方式的制造方法的过程示意图;
图12是本申请实施方式的制造方法的流程示意图;
图13是本申请实施方式的雾化芯的示意图;
图14是本申请实施方式的雾化设备的立体示意图。
主要标记说明:
雾化芯100、基板10、第一表面12、第二表面14、基体单元16、穿孔阵列18、电阻层20、导电部
22、第一区域24、第二区域26、第一绝缘槽28、第一槽30、第二槽32、电极34、加热区36、接电区38、第二绝缘槽40、第一子区42、第二子区44、芯片46、基底48、雾化设备200。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或 仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1-图3,本申请公开了一种雾化芯100的制造方法,该制造方法包括步骤:
S10,提供一基板10,基板10包括相背的第一表面12和第二表面14,基板10具有多个基体单元16,每个基体单元16设有贯穿第一表面12和第二表面14的穿孔阵列18;
S20,在整个第一表面12上形成电阻层20,电阻层20具有与基体单元16一一对应的导电部22;
S30,加工基体单元16上的导电部22以形成第一区域24和与第一区域24绝缘的第二区域26,第一区域24与穿孔阵列18至少部分重叠。
本申请实施方式的制造方法中,先在基板10的整个第一表面12上形成电阻层20,之后再加工电阻层20的导电部22,使得导电部22形成与穿孔阵列18至少部分重叠的第一区域24,工艺过程无需使用掩膜板,可以节约雾化芯100的生产成本。
具体地,在相关技术中,在雾化芯的制备过程中,通过掩膜板在基材的穿孔区域镀上发热膜,基材的其他区域没有发热膜,因此掩膜工艺需要精确定位,否则发热膜有可能发生偏移造成不良,此外掩膜板需要时时更换,形成相当的成本。另外掩膜板接触接触基材会增加划伤风险。
而本申请的雾化芯100的制造方法中,在基板10的整个第一表面12设置电阻层20,因此省略了采用掩膜板精准定位的工艺,制造过程简便,可以简化工艺,提高效率。
进一步地,在每个基体单元16的导电部22上加工出相互绝缘的第一区域24和第二区域26,并且使得第一区域24与穿孔阵列18至少部分重叠,使得雾化芯100在使用时,第一区域24可以加热油液,以使油液雾化,保证雾化芯100的正常使用。
具体地,在步骤S10中,可以理解,基板10可以呈平板状。基板10整体可以为方形板、圆形板等满足需求的各种形状的板。基板10可以采用蓝宝石单晶、其他单晶或多晶材料、致密陶瓷等致密材料制成,也可以采用石英玻璃、硼硅玻璃或铝硅玻璃等耐高温抗热震玻璃制成。
基板10可以根据雾化芯100的最终尺寸划分为多个基体单元16,每个基体单元16最终可以加工成一个雾化芯100。多个基体单元16可以呈矩形阵列排布,这样使得基体单元16上的穿孔阵列18加工更加方便,也有利于后续将基体单元16分割的工艺。
穿孔阵列18可以激光穿孔等玻璃穿孔技术制造得到。穿孔阵列18包括多个穿孔,每个穿孔的孔径范围1μm-100μm。可以理解,穿孔的孔径可以根据油液的粘度进行具体设计,例如,油液的粘度越大, 穿孔的孔径可以设计越大,本申请的不限制穿孔的孔径的具体尺寸。
本申请实施方式中,在多个穿孔中,每个穿孔的孔径可以相等,也可以不相等。在多个穿孔的排布方式,多个穿孔可以呈矩形阵列排布,例如,多个穿孔可以排列成8行10列的方式。
在每个基体单元16中,穿孔的孔隙率可以为20%至70%。孔隙率指的是穿孔的总体积与基体单元16的总体积的比值。
在步骤S20中,电阻层20可以采用涂层或丝网印刷、气相沉积、溅射工艺或直接键合在第一表面12上。例如,可以将整版带有穿孔阵列18的基板10放入磁控溅射仪内镀膜,直接在整个第一表面12上溅射形成电阻层20,以电阻层20可以形成与基体单元16一一对应的导电部22。本申请实施方式电阻层20的加工速度可以达到1000mm/s,大幅提高了加工效率。
电阻层20可以采用金属、合金等导电并且容易发热的材料制成。例如,电阻层20的材料可以为铂、钯、钯铜合金、金银铂合金、钛锆合金、镍铬合金、金银合金、钯银合金、金铂合金等。电阻层20的厚度范围为100nm~10μm。
需要指出的是,电阻层20是连续分布的,或者说,在一些例子中,在整个第一表面12上形成整个电阻层20。也即是说,在一些例子中,电阻层20连续布满整个第一表面12。
在步骤S30中,第一区域24和第二区域26可以通过去除导电部22的部分材料制得,例如,可以通过激光雕刻、机加工等方式得到。第一区域24和第二区域26绝缘,使得第一区域24在施加电压的情况下,第二区域26不会导电,保证电能的利用率。采用激光雕刻实现了与基板的无接触加工,相对于掩膜板工艺,避免了划伤风险。另外激光雕刻的精度超高,其偏离度在10微米以下,相比掩膜板工艺的100微米公差,极大的提高了发热膜的位置精度,使得发热膜与穿孔边缘保持合适的距离,不会覆盖边缘穿孔,也不会过于远离边缘穿孔,提高了雾化芯的效率的同时避免了干烧的风险。
另外,将导电部22划分为第一区域24和第二区域26,使得与穿孔阵列18至少部分重叠的第一区域24具有合适的尺寸,进而使得第一区域24的电阻值适合,通常电阻范围为0.5Ω-10Ω,有利于第一区域24在被施加电压的情况下发热。通过控制第一区域24的尺寸,可以将第一区域24的阻偏差控制在0.1Ω内。
需要指的是,第一区域24与穿孔阵列18至少部分重叠,第一区域24和穿孔阵列18具有交集,第一区域24的面积可以大于穿孔阵列18的面积,也可以小于或等于穿孔阵列18的面积。第一区域24的边界可以位于穿孔阵列18的区域内,也可以位于穿孔阵列18的区域外;或者第一区域24的部分边界位于穿孔阵列18的区域内,部分边界位于穿孔阵列18之外。
可以理解,第一区域24与穿孔阵列18重叠的部分为第一区域24的有效部分,在第一区域24被施加电压后,该有效部分可以与油液接触,以使加热油液,使得油液形成烟雾。
第一区域24和第二区域26可以为规则的形状,可以为不规则形状。例如,第一区域24和第二区域26均可以呈长方形,这样使得第一区域24和第二区域26更加容易加工得到。还有,第二区域26可以帮 助雾化芯100散热,可以提高雾化芯100的散热效果。
本申请实施方式中,第一区域24的数量为一个,第二区域26的数量为两个,两个第二区域26分别位于第一区域24相对的两侧,或者说,第一区域24位于两个第二区域26之间。
当然,在其他实施方式中,第一区域24和第二区域26的数量可以其他数量。例如,第一区域24的数量可以为一个,第二区域26的数量也可以为一个,一个第一区域24与一个第二区域26并列排布;又如,第一区域24和第二区域26可以均为多个,各个区域之间绝缘设置,第一区域24位于第二区域26之间。
在第一区域24的数量可以为多个的情况下,可以对一个或多个第一区域24施加电压。
请参阅图1及图4,在某些实施方式中,加工基体单元16上的导电部22以形成第一区域24和与第一区域24绝缘的第二区域26(步骤S30),包括:
S31,在导电部22上规划加工路径;
S32,按加工路径去除导电部22的材料以形成第一绝缘槽28,第一绝缘槽28将导电部22划分为第一区域24和第二区域26,第一绝缘槽28穿过穿孔阵列18。
如此,采用第一绝缘槽28可以有效地将第一区域24和第二区域26绝缘,避免第一区域24和第二区域26电连接,另外,第一绝缘槽28穿过穿孔阵列18,也即是说,穿孔阵列18部分位于第二区域26中,这样使得油液能充分供应而不会发生干烧。
具体的,在步骤S31中,加工路径可以通过坐标定位的方式确定,也可以通过视觉***的方式确定。
在步骤S32中,可以采用激光雕刻的方式加工得到第一绝缘槽28,可以理解,为了使得第一区域24和第二区域26有效绝缘,第一绝缘槽28贯穿导电部22。第一绝缘槽28可以为直线槽,也可以为曲线槽,第一绝缘槽28的具体形状可以根据第一区域24和第二区域26的具体形状去确定,本申请不限制第一绝缘槽28的形状。
请参阅图5,在某些实施方式中,按加工路径去除导电部22的材料以形成第一绝缘槽28(步骤S32),包括:
按加工路径去除导电部22的材料以形成第一槽30和第二槽32,第一槽30和第二槽32间隔设置并均穿过穿孔阵列18,第一区域24形成在第一槽30和第二槽32之间,第一绝缘槽28包括第一槽30和第二槽32。
如此,穿孔阵列18的边缘部分位于第二区域26中,或者说,穿孔阵列18部分位于第一区域24外,这样使得第一区域24的宽度适宜,保证第一区域24的电阻可以有效地发热,以加热油液。另外,穿孔阵列18部分位于第一区域24外,可以使得位于第一区域24的加热过程中均与油液接触,避免第一区域24干烧而损坏。
具体地,第一槽30和第二槽32均可以通过激光雕刻的方式形成。第一槽30和第二槽32均可以为直线槽,也可以其他形状的槽。如图5的示例中,在第一槽30和第二槽32为直线槽的情况下,第一槽 30和第二槽32可以平行设置。
如图6的示例中,第一槽30和第二槽32均可以呈弧形,第一槽30和第二槽32之间区域类似椭圆形的一部分。
本申请实施方式中,第一槽30和第二槽32关于穿孔阵列18的长轴线对称,也即是说,在基板10的同一宽度方向上,第一槽30与穿孔阵列18中心的距离等于第二槽32与穿孔阵列18中心的距离。
如以上所讨论的,本申请实施方式中,第一绝缘槽28包括第一槽30和第二槽32,也是说,第一绝缘槽28的数量为两个。当然,在其他实施方式中,第一绝缘槽28的数量可以为一个,也可以为三个以上的数量,本申请不限制第一绝缘槽28的具体数量。
请参阅图7及图8,在某些实施方式中,方法还包括:
S40,在第一区域24上布置电极34。如此,电极34有利于第一区域24与外部电路连接,使得外部电路可以通过电极34向第一区域24施加电压。
具体地,电极34的数量为两个,两个电极34分别布置在第一区域24的两个端部。电极34可以采用电阻率低的金属材料,例如金银等。本申请不做具体限定。例如可以选择银作为电极34,因为银不仅导电性能良好,而且成本相对较低。
电极34可以采用涂布、溅镀等方式设置在第一区域24上。可以理解的是,电极34与第一区域24导电连接。
请参阅图7,在某些实施方式中,第一区域24包括加热区36和与加热区36连接的接电区38,接电区38位于穿孔阵列18外,加热区36与穿孔阵列18至少部分重叠;
第一区域24上布置电极34的步骤包括:
在接电区38布置电极34。
如此,电极34可以通过接电区38向加热区36施加电压,从而使得加热区36可以产生热量。具体地,加热区36与接电区38连接的一端伸出在穿孔阵列18外。本申请实施方式中,接电区38的数量为两个,每个接电区38均布置有电极34,两个接电区38分别连接在加热区36的两端。加热区36的面积大于其中一个接电区38的面积。
本申请实施方式中,接电区38的形状可以呈方形,这样使得接电区38的形状简单,容易识别,从而方便在接电区38上布置电极34,有利于提高雾化芯100的制造效率。
请结合图13,在某些实施方式中,所述方法还包括:
检测加热区36位于两个电极34之间的电阻;
在加热区36位于两个电极34之间的电阻小于预设值的情况下,在加热区36上形成刻痕37以增大加热区36的电阻。
如此,这样可以在雾化芯100的制造过程中将加热区36的电阻形成在预定阻值范围内。
具体地,刻痕37可以采用激光雕刻的方式形成,可以理解,刻痕37可以破坏原来的加热区36的结 构,从而使得加热区36的阻值增加。刻痕37的数量可以为一条或多条,刻痕37的长度为长度5微米-30微米。刻痕37的形状包括但不限于直线型、折线型、曲线型等。
示例性地,调整后的加热区36位于两个电极34之间的电阻为0.5Ω-2Ω。
请参阅图9和图10,在某些实施方式中,制造方法还包括:
去除第二区域26的材料以形成第二绝缘槽40,第二绝缘槽40将第二区域26划分为绝缘的第一子区42和第二子区44,第二子区44对应于第一区域24的端部;
在第一区域24上布置电极34(步骤S40),包括:
S41,将导电材料涂布在第一子区42和第一区域24上;
S42,固化导电材料以形成电极34。
如此,将电极34同时布置在第一子区42和第一区域24上,方便电极34的设置;同时,第二绝缘槽40可以有效地将第一子区42和第二子区44隔离,防止电极34与第第二子区44电连接,保证第一区域24的发热性能。
具体地,第一子区42作为导电部22的边界区域,将导电材料由第一子区42涂布经过第一区域24,这样无需特意设计电极34的边界,提高了导电材料的涂布效率,进而提高雾化芯100的制作效率。
由于电极34涂布在第一子区42第一区域24上,因此,电极34的宽度大于第一区域24的宽度。当然,在其他实施方式中,当电极34只涂布在第一区域24上的情况下,电极34的宽度可以与第一区域24的宽度相等,也可以小于第一区域24的宽度。
本申请实施方式中,电极34覆盖部分穿孔阵列18,从而使得与穿孔阵列18对应的第一区域24的电阻均能够与油液接触,防止电阻干烧而损坏,提高了雾化芯100的寿命。
需要指出的是,形成第二绝缘槽40的步骤可以在涂布导电材料的步骤之前执行,也可以在涂布导电材料的步骤之后执行。例如,可以先在第一区域24和第二区域26上涂布导电材料,固化导电材料形成电极34后,之后在第二区域26上形成第二绝缘槽40。可以理解,导电材料涂布在第一区域24的接电区38上。
请参阅图11和图12,在某些实施方式中,制造方法还包括:
S50,按基体单元16的位置分割带有电阻层20的基板10以形成多个芯片46,每个芯片46包括一个基体单元16和一个导电部22。
如此,将基板10分割开,从而可以形成雾化芯100的最小单元。具体地,带有电阻层20的基板10可以通过激光切割的方式加工得到,每个基体单元16作为一个雾化芯100的最小单元,在切割基板10后,可以得到雾化芯100,也可以得到雾化芯100的中间产物。
需要指出的是,步骤S50可以在步骤S30之前步骤S20之后执行,也可以在步骤S30之后执行;当步骤S50在步骤S30之后执行时,步骤S50可以在步骤S40之前执行,也可以在步骤S40之后执行。
例如,可以先将带有电阻层20的基板10分割成多个芯片46后,然后在每个芯片46上加工形成第 一绝缘槽28,之后再在第一区域24上布置电极34,最后加工形成第二绝缘槽40。
又如,可以先在电阻层20上加工第一绝缘槽28,然后将带有电阻层20的基板10分割成多个芯片46,之后再在第一区域24上布置电极34,最后加工形成第二绝缘槽40。
请再次参阅图3,本申请还提供一种雾化芯100,雾化芯100采用以上任一实施方式的方法制得。
请再次参阅图1和图3,在本申请一个实施方式中,雾化芯100包括基底48和导电部22,基底48设有沿基底48的厚度方向贯穿基底48的穿孔阵列18;导电部22呈片状并铺设在基底48上,导电部22包括第一区域24和与第一区域24绝缘的第二区域26,第一区域24与穿孔阵列18至少部分重叠。
如此,第一区域24可以加热通过穿孔阵列18的油液,使得油液雾化,第二区域26可以加快雾化芯100其他部位的散热效率,避免雾化芯100其他部位部温度过高而对雾化芯100周围的零部件造成不良的影响。
如以上所讨论的,电阻层20的厚度范围为100nm~100μm。因此,导电部22的厚度范围也为100nm~100μm。
在某些实施方式中,导电部22上形成有第一绝缘槽28,第一绝缘槽28将导电部22划分为第一区域24和第二区域26,第一绝缘槽28穿过穿孔阵列18。
如此,用第一绝缘槽28可以有效地将第一区域24和第二区域26绝缘,避免第一区域24和第二区域26电连接,另外,第一绝缘槽28穿过穿孔阵列18,也即是说,穿孔阵列18部分位于第二区域26中,这样使得第一区域24在被施加电压后产生的热量可以完全加热油液,电能的利用率较高利用。
请参阅图7,在某些实施方式中,第一绝缘槽28包括第一槽30和第二槽32,第一槽30和第二槽32间隔设置并均穿过穿孔阵列18,第一区域24位于第一槽30和第二槽32之间。
如此,穿孔阵列18的边缘部分位于第二区域26中,或者说,穿孔阵列18部分位于第一区域24外,这样使得第一区域24的宽度适宜,保证第一区域24的电阻可以有效地发热,以加热油液。
请参阅图3和图7,在某些实施方式中,第一区域24上布置有电极34,电极34与第一区域24电连接。
如此,电极34有利于第一区域24与外部电路连接,使得外部电路可以通过电极34向第一区域24施加电压。
在某些实施方式中,第一区域24包括加热区36和与加热区36连接的接电区38,接电区38位于穿孔阵列18外,加热区36与穿孔阵列18至少部分重叠,电极34布置在接电区38上。
如此,电极34可以通过接电区38向加热区36施加电压,从而使得加热区36可以产生热量。具体地,加热区36与接电区38连接的一端伸出在穿孔阵列18外。本申请实施方式中,接电区38的数量为两个,每个接电区38均布置有电极34,两个接电区38分别连接在加热的两端。加热区36的面积大于其中一个接电区38的面积。
请参阅图3和图9,在某些实施方式中,第二区域26设有第二绝缘槽40,第二绝缘槽40将第二区 域26划分为绝缘的第一子区42和第二子区44,第一子区42对应于接电区38,电极34自接电区38延伸至第一子区42并遮盖至少部分第二子区44。
如此,将电极34同时布置在第一子区42和第一区域24上,方便电极34的设置,有利于提高雾化芯100的生产效率;同时,第二绝缘槽40可以有效地将第一子区42和第二子区44隔离,防止电极34与第二子区44电连接,保证第一区域24的发热性能。
在某些实施方式中,加热区36形成有刻痕37,所述刻痕37用于调节加热区36位于两个电极38之间的电阻。如此,刻痕37可以将加热区36的电阻形成在预定阻值范围内。
需要指出的是,本申请实施方式的雾化芯100的其他未展开部分请参考上述制造方法中相同或类似的部分,在此不再赘述。或者说,上述实施方式的制造方法的解释说明适用于本申请的雾化芯100。
请参阅图14,在本申请实施方式的雾化设备200包括上述任一实施方式的雾化芯100。本申请实施方式的雾化设备200是一种通过加热等方式将油液形成烟雾的设备。需要说明的是,在本申请实施方式采用的油液可以为形成烟雾的液体。
在本申请的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (18)

  1. 一种雾化芯的制造方法,其特征在于,包括:
    提供一基板,所述基板包括相背的第一表面和第二表面,所述基板具有多个基体单元,每个基体单元设有贯穿所述第一表面和所述第二表面的穿孔阵列;
    在整个所述第一表面上形成电阻层,所述电阻层具有与所述基体单元一一对应的导电部;
    加工所述基体单元上的导电部以形成第一区域和与所述第一区域绝缘的第二区域,所述第一区域与所述穿孔阵列至少部分重叠。
  2. 根据权利要求1所述的方法,其特征在于,所述加工所述基体单元上的导电部以形成第一区域和与所述第一区域绝缘的第二区域,包括:
    在所述导电部上规划加工路径;
    按所述加工路径去除所述导电部的材料以形成第一绝缘槽,所述第一绝缘槽将所述导电部划分为第一区域和第二区域,所述第一绝缘槽穿过所述穿孔阵列。
  3. 根据权利要求2所述的方法,其特征在于,所述按所述加工路径去除所述导电部的材料以形成第一绝缘槽,包括:
    按所述加工路径去除所述导电部的材料以形成第一槽和第二槽,所述第一槽和所述第二槽间隔设置并均穿过所述穿孔阵列,所述第一区域形成在所述第一槽和所述第二槽之间,所述第一绝缘槽包括所述第一槽和所述第二槽。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一区域上布置电极。
  5. 根据权利要求4所述的方法,其特征在于,所述第一区域包括加热区和与所述加热区连接的接电区,所述接电区位于所述穿孔阵列外,所述加热区与所述穿孔阵列至少部分重叠;
    所述第一区域上布置电极,包括:
    在所述接电区布置所述电极。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    检测所述加热区位于两个所述电极之间的电阻;
    在所述电阻小于预设值的情况下,在所述加热区上形成刻痕以增大所述加热区的电阻。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    去除所述第二区域的材料以形成第二绝缘槽,所述第二绝缘槽将所述第二区域划分为绝缘的第一子区和第二子区,所述第二子区对应于所述第一区域的端部;
    所述在所述第一区域上布置电极,包括:
    将导电材料涂布在所述第一子区和所述第一区域上;
    固化所述导电材料以形成所述电极。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    按所述基体单元的位置分割带有所述电阻层的所述基板以形成多个芯片,每个所述芯片包括一个所述基体单元和一个所述导电部。
  9. 根据权利要求1所述的方法,其特征在于,所述在整个所述第一表面上形成电阻层,包括:
    在整个所述第一表面上形成整个电阻层。
  10. 一种雾化芯,其特征在于,包括:
    基底,所述基底设有沿所述基底的厚度方向贯穿所述基底的穿孔阵列;
    导电部,所述导电部呈片状并铺设在所述基底上,所述导电部包括第一区域和与所述第一区域绝缘的第二区域,所述第一区域与所述穿孔阵列至少部分重叠。
  11. 根据权利要求10所述的雾化芯,其特征在于,所述导电部上形成有第一绝缘槽,所述第一绝缘槽将所述导电部划分为第一区域和第二区域,所述第一绝缘槽穿过所述穿孔阵列。
  12. 根据权利要求11所述的雾化芯,其特征在于,所述第一绝缘槽包括第一槽和第二槽,所述第一槽和所述第二槽间隔设置并均穿过所述穿孔阵列,所述第一区域位于所述第一槽和所述第二槽之间。
  13. 根据权利要求10所述的雾化芯,其特征在于,所述第一区域上布置有电极,所述电极与所述第一区域电连接。
  14. 根据权利要求13所述的雾化芯,其特征在于,所述第一区域包括加热区和与所述加热区连接的接电区,所述接电区位于所述穿孔阵列外,所述加热区与所述穿孔阵列至少部分重叠,所述电极布置在所述接电区上。
  15. 根据权利要求14所述的雾化芯,其特征在于,所述第二区域设有第二绝缘槽,所述第二绝缘槽将所述第二区域划分为绝缘的第一子区和第二子区,所述第一子区对应于所述接电区,所述电极自所述接电区延伸至所述第一子区并遮盖至少部分所述第一子区。
  16. 根据权利要求14所述的雾化芯,其特征在于,所述加热区形成有刻痕,所述刻痕用于调节所述加热区位于两个所述电极之间的电阻。
  17. 一种雾化芯,其特征在于,所述雾化芯采用权利要求1-9任一项所述的方法制得。
  18. 一种雾化设备,其特征在于,包括权利要求10-16任一项所述的雾化芯。
PCT/CN2023/117759 2022-09-09 2023-09-08 雾化芯及其制造方法和雾化设备 WO2024051828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211104863.4 2022-09-09
CN202211104863.4A CN117694599A (zh) 2022-09-09 2022-09-09 雾化芯及其制造方法和雾化设备

Publications (1)

Publication Number Publication Date
WO2024051828A1 true WO2024051828A1 (zh) 2024-03-14

Family

ID=90143007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117759 WO2024051828A1 (zh) 2022-09-09 2023-09-08 雾化芯及其制造方法和雾化设备

Country Status (2)

Country Link
CN (1) CN117694599A (zh)
WO (1) WO2024051828A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174784A (ja) * 2017-04-11 2018-11-15 暮らし創研株式会社 喫煙具
CN109875125A (zh) * 2019-03-07 2019-06-14 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制作方法
US20220218023A1 (en) * 2021-01-13 2022-07-14 Sobota HnB Technologies LLC Vaporizer for smoking cigarettes with individual heater
CN114794565A (zh) * 2021-07-05 2022-07-29 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
CN218571391U (zh) * 2022-09-09 2023-03-07 上海琨纬科技有限公司 雾化芯和雾化设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174784A (ja) * 2017-04-11 2018-11-15 暮らし創研株式会社 喫煙具
CN109875125A (zh) * 2019-03-07 2019-06-14 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制作方法
US20220218023A1 (en) * 2021-01-13 2022-07-14 Sobota HnB Technologies LLC Vaporizer for smoking cigarettes with individual heater
CN114794565A (zh) * 2021-07-05 2022-07-29 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
CN218571391U (zh) * 2022-09-09 2023-03-07 上海琨纬科技有限公司 雾化芯和雾化设备

Also Published As

Publication number Publication date
CN117694599A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
CN108158040B (zh) 一种均匀发热的mems电子烟芯片及其制造方法
JP5792781B2 (ja) 金属ストリップ抵抗器とその製造方法
JP5925897B2 (ja) 半導体処理のためのダイオード平面ヒータゾーンを伴う加熱板、それを製造する方法、基板サポートアセンブリ、及び、半導体基板をプラズマ処理するための方法
JP2014528168A5 (ja) 半導体処理のためのダイオード平面ヒータゾーンを伴う加熱板、それを製造する方法、基板サポートアセンブリ、及び、半導体基板をプラズマ処理するための方法
JP2016207777A (ja) セラミックヒータ及び静電チャック
JP6513938B2 (ja) 静電チャックの製造方法
CN218571391U (zh) 雾化芯和雾化设备
JP2017201669A (ja) 加熱部材及び静電チャック
WO2018159687A1 (ja) ウエハ加熱装置
WO2024051828A1 (zh) 雾化芯及其制造方法和雾化设备
JP2023159868A (ja) 霧化コア、霧化器および電子霧化装置
TW200901236A (en) Chip resistor and method for fabricating the same
JP2016184642A (ja) 半導体製造装置用部材
US20030001719A1 (en) Resistors
JP5499518B2 (ja) 薄膜チップ抵抗器の製造方法
JP3209354B2 (ja) 熱溶断ヒユーズ及びその製造方法
CN211656413U (zh) 一种发热均匀的电热板及厚膜加热元件
JP2002203666A (ja) セラミックヒータおよびその製造方法
JP2013247336A (ja) 薄膜配線基板およびその製造方法
JPH11121149A (ja) 面状加熱装置
CN111194102A (zh) 一种发热均匀的电热板、其制备方法及厚膜加热元件
CN110680023A (zh) 电子烟雾化组件及其制备方法
TW571426B (en) Manufacturing method of non-optical etched thin film resistor
CN110655034A (zh) 一种陶瓷基微热板及其制备方法
TW200901238A (en) Chip resistor and method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862522

Country of ref document: EP

Kind code of ref document: A1