WO2024048995A1 - 히트 펌프 시스템 및 그 제어 방법 - Google Patents

히트 펌프 시스템 및 그 제어 방법 Download PDF

Info

Publication number
WO2024048995A1
WO2024048995A1 PCT/KR2023/010287 KR2023010287W WO2024048995A1 WO 2024048995 A1 WO2024048995 A1 WO 2024048995A1 KR 2023010287 W KR2023010287 W KR 2023010287W WO 2024048995 A1 WO2024048995 A1 WO 2024048995A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
water
temperature
water heat
Prior art date
Application number
PCT/KR2023/010287
Other languages
English (en)
French (fr)
Inventor
김태일
이석호
장민
한상윤
장석현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220126609A external-priority patent/KR20240032592A/ko
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2024048995A1 publication Critical patent/WO2024048995A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the disclosed invention relates to a heat pump system and a control method thereof, and relates to a heat pump-type system capable of supplying hot water through heat exchange and a control method thereof.
  • Heat pumps perform cooling, heating (Air to Air), and water supply (Air to Water) using heat generated and recovered during the cycle of compression, condensation, and evaporation of refrigerant.
  • a multi-type cooling and heating device using a heat pump method (hereinafter referred to as an 'air conditioning system') is composed of an outdoor unit, an indoor unit, and a hydro unit, and transfers heat from the heat pump to the indoor air. It is used for floor heating, cooling and heating of indoor air, etc.
  • the outdoor unit exchanges heat with air through an evaporator and the temperature of the internal air is adjusted to the user's needs through a condenser of the indoor unit.
  • the EHS (Eco Heating/cooling Solution) system exchanges heat with the air in the outdoor unit, but heat exchanges the refrigerant and water through a heat exchanger inside the indoor or outdoor unit to adjust the water temperature to suit the user's needs. It supplies.
  • the EHS system is divided into a mono system that has both an evaporator and a condenser in the outdoor unit, and a split system that has an evaporator in the outdoor unit and a condenser on the indoor side.
  • the supplied water is used for underfloor heating, radiators, domestic hot water, and fan coils. It is used as a unit, etc.
  • the water temperature may drop below the freezing temperature, causing freezing of the heat exchanger.
  • One aspect of the disclosed invention is that when the heat exchanger operates abnormally, such as when the risk of freezing of the heat exchanger is detected due to a malfunction of the flow path switching valve, the outdoor fan and expansion valve are controlled to control the outdoor fan and expansion valve when the system is stopped and restarted.
  • a heat pump system and its control method that can allow a heat exchanger to operate normally by operating normally.
  • a heat pump system includes a compressor that compresses a refrigerant; a refrigerant-water heat exchanger in which heat is exchanged between the compressed refrigerant and water; an expansion valve that expands the refrigerant condensed in the refrigerant-water heat exchanger; an outdoor heat exchanger in which heat is exchanged between the refrigerant expanded in the expansion valve and outdoor air; an outdoor fan provided adjacent to the outdoor heat exchanger; A condensation temperature sensor that detects the temperature of the refrigerant condensed in the refrigerant-water heat exchanger; An inlet temperature sensor that detects the temperature of water entering the refrigerant-water heat exchanger; A water outlet temperature sensor that detects the temperature of water heat exchanged in the refrigerant-water heat exchanger; and determining whether the refrigerant-water heat exchanger is in an abnormal state based on detection results of the condensation temperature sensor, the inlet temperature sensor, and the outlet temperature sensor, and based on the abnormal state of the refrigerant-
  • the control unit may determine that the refrigerant-water heat exchanger operates normally when the detected temperature of the condensed refrigerant is higher than the inlet temperature and the sensed outlet temperature is higher than the detected inlet temperature.
  • the control unit may control the opening degree of the expansion valve to be equal to or greater than the first opening degree based on the abnormal state of the refrigerant-water heat exchanger.
  • the control unit may determine whether the refrigerant-water heat exchanger is in an abnormal state based on detection results of the condensation temperature sensor, the inlet temperature sensor, and the outlet temperature sensor after controlling the compressor, the outdoor fan, and the expansion valve.
  • the control unit may determine whether the temperature detected by the condensation temperature sensor exceeds a predetermined temperature when the refrigerant-water heat exchanger is in an abnormal state.
  • the control unit when it is determined that the temperature detected by the condensation temperature sensor exceeds a predetermined temperature, controls the outdoor fan to rotate at a rotation speed higher than the reference rotation speed, and the expansion valve rotates at a second opening degree or more. It can be controlled as much as possible.
  • the control unit controls the outdoor fan to rotate at a rotation speed higher than the standard rotation speed, and when a predetermined time has elapsed after controlling the expansion valve to open at a second opening degree or higher, turns off the compressor and the outdoor fan. You can.
  • the control unit when it is determined that the pressure detected by the high pressure sensor exceeds the predetermined pressure, controls the outdoor fan to rotate at a rotation speed higher than the reference rotation speed, and the expansion valve opens at a second opening degree or more. It can be controlled as much as possible.
  • the control unit controls the outdoor fan to rotate at a rotation speed higher than the standard rotation speed, and when a predetermined time has elapsed after controlling the expansion valve to open at a second opening degree or higher, turns off the compressor and the outdoor fan. You can.
  • a method of controlling a heat pump system includes: detecting the temperature of a refrigerant condensed in a refrigerant-water heat exchanger; detecting the temperature of water entering the refrigerant-water heat exchanger; detecting the temperature of water heat exchanged in the refrigerant-water heat exchanger; determine whether the refrigerant-water heat exchanger is in an abnormal state based on the detection results of the plurality of temperatures; turning off the compressor and outdoor fan when it is determined that the refrigerant-water heat exchanger is in an abnormal state; It may include turning on the compressor when the outdoor fan is turned off.
  • Determining whether the refrigerant-water heat exchanger is in an abnormal state is determined by determining that the temperature of the detected condensed refrigerant is higher than the temperature of the water entering the heat exchanger and the temperature of the water through which the detected heat exchange occurred is the temperature of the water entering the detected heat exchanger. If the temperature is higher than the water temperature, it may include determining that the refrigerant-water heat exchanger is operating normally.
  • the method may further include determining whether the temperature detected by the condensation temperature sensor exceeds a predetermined temperature when the refrigerant-water heat exchanger is in an abnormal state.
  • the method may further include determining whether the detected high pressure of the refrigerant exceeds a predetermined pressure.
  • the flow path is switched by controlling the outdoor fan and expansion valve when restarting the system after stopping.
  • FIG. 1 is a diagram illustrating the configuration of a heat pump system according to an embodiment.
  • Figure 2 is a diagram showing the flow of refrigerant during a heating operation of a heat pump system according to an embodiment.
  • Figure 3 is a diagram showing the flow of refrigerant during cooling operation of a heat pump system according to an embodiment.
  • Figure 4 is a diagram showing the structure of a flow path switching valve.
  • Figure 5 is a diagram showing a control block diagram of a heat pump system according to an embodiment.
  • FIG. 6 is a diagram illustrating a plurality of sensors included in a heat pump system according to an embodiment.
  • FIG. 7 is a flowchart showing detecting an abnormal state of a refrigerant-water heat exchanger and controlling a heat pump system based on the abnormal state according to an embodiment.
  • FIG. 8 is a flowchart showing re-determination of whether the refrigerant-water heat exchanger operates normally after the control according to FIG. 7.
  • Figure 9 is a diagram showing a control block diagram of a heat pump system according to an embodiment.
  • FIG. 10 is a flowchart of a control method of a heat pump system for protecting the heat pump system based on condensation temperature according to an embodiment.
  • Figure 11 is a diagram showing a control block diagram of a heat pump system according to another embodiment.
  • FIG. 12 is a flowchart of a heat pump system control method for protecting the heat pump system based on high pressure according to another embodiment.
  • first”, “second”, etc. used in this specification may be used to describe various components, but the components are not limited by the terms, and the terms It is used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • the term “and/or” includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • FIG. 1 is a diagram illustrating the configuration of a heat pump system according to an embodiment.
  • Heat pump system 1 may include a compressor 102, a refrigerant-water heat exchanger 112, an expansion valve 110, an outdoor heat exchanger 108, a flow path diverter valve 106, and an accumulator 104. there is.
  • the compressor 102 compresses the low-temperature, low-pressure refrigerant sucked in through the inlet side 102a to form high-temperature, high-pressure refrigerant, and then discharges the high-temperature, high-pressure refrigerant through the outlet side 102b.
  • the compressor 102 may be configured as an inverter compressor whose compression capacity varies depending on the input frequency, or may be configured as a combination of a plurality of constant-speed compressors with a constant compression capacity.
  • the inlet side 102a of the compressor 102 is connected to the accumulator 104, and the outlet side 102b of the compressor 102 is connected to the flow path switching valve 106.
  • the flow path switching valve 106 is also connected to the accumulator 104.
  • the accumulator 104 may be installed between the inlet side 102a of the compressor 102 and the flow path switching valve 106.
  • the accumulator 104 temporarily stores the mixture of oil and refrigerant, and separates the non-vaporized liquid refrigerant to prevent the liquid refrigerant from being sucked into the compressor 102. By doing so, damage to the compressor 102 can be prevented.
  • the gas refrigerant separated from the accumulator 104 is sucked into the inlet side 102a of the compressor 102.
  • the flow path switching valve 106 may be configured as a four-way valve, and switches the flow of refrigerant discharged from the compressor 102 according to the operation mode (cooling or heating), thereby forming a refrigerant flow path necessary for operation in the corresponding mode.
  • the flow path switching valve 106 includes a first port 106a connected to the outlet side 102b of the compressor 100, a second port 106b connected to the outdoor heat exchanger 108, and a refrigerant-water heat exchanger. It may have a third port 106c connected to the exchanger 112 side, and a fourth port 106d connected to the accumulator 104, which is the inlet side 102a of the compressor 100.
  • the outdoor heat exchanger 108 operates as a condenser in cooling mode and as an evaporator in heating mode.
  • a first expansion valve 110 is connected to one side of the outdoor heat exchanger 108.
  • An outdoor fan 109 may be installed in the outdoor heat exchanger 108 to increase heat exchange efficiency between the refrigerant and outdoor air.
  • the expansion valve 110 may be configured as an electronic expansion valve, and can expand the refrigerant, control the flow rate of the refrigerant, and block the flow of the refrigerant when necessary.
  • the expansion valve 110 may be replaced with an expansion device of another structure that performs this function.
  • a plurality of heat exchange plates through which the refrigerant passes and heat exchange plates through which water passes are installed alternately, and heat exchange is performed between the heat exchange plates through which the refrigerant passes and the heat exchange plates through which the water passes.
  • Cold/hot water is produced through the system.
  • the refrigerant compressed in the compressor 102 may be delivered to the refrigerant-water heat exchanger 112.
  • the cold water/hot water generated in the refrigerant-water heat exchanger 112 is provided to the water tank, fan coil unit, floor cooling/heating device, etc. and is used for cold/hot water supply and cooling/heating.
  • Figure 2 is a diagram showing the flow of refrigerant during a heating operation of a heat pump system according to an embodiment.
  • the control unit 10 operates the flow path switching valve 106 to create a refrigerant flow path in which the first port (106a) and the third port (106c) are connected, and the second port (106b) and the fourth port (106d) are connected. can be formed.
  • the refrigerant discharged from the compressor 102 may flow into the refrigerant-water heat exchanger 112 through the flow path switching valve 106.
  • the refrigerant flowing into the refrigerant-water heat exchanger 112 flows to the outdoor heat exchanger 108 through the hot water heat exchanger 112.
  • the refrigerant that has passed through the outdoor heat exchanger 108 can be sucked back into the compressor 102 through the flow path switching valve 106.
  • the heat pump system (1) is compressor (102) ⁇ flow path switching valve (106) ⁇ hot water heat exchanger (112) ⁇ expansion valve (110) ⁇ outdoor heat exchanger (108) ⁇ flow path switching valve (106) ⁇ accumulator. Heating operation can be performed by configuring a refrigerant cycle that circulates in the order of (104) ⁇ compressor (102).
  • the heat pump system 1 of the present invention may further include a subcooling heat exchanger 114.
  • the supercooling heat exchanger 114 may be located between the refrigerant-water heat exchanger 112 and the expansion valve 110 to flow refrigerant to the compressor 102.
  • the compressor 102 can perform two-stage refrigerant compression.
  • the compressor 102 includes a first compression section where the refrigerant that has passed through the refrigerant-water heat exchanger 112 is introduced and compressed, the refrigerant that has passed through the first compression section, the refrigerant-water heat exchanger 112, and the expansion valve 110. ) may include a second compression section in which the refrigerant branched and injected from the supercooling heat exchanger 114 located between the refrigerants flows in and is compressed.
  • refrigerant injection into the compressor 102 according to the supercooling heat exchanger 114 can be achieved by extracting the refrigerant that has passed through the refrigerant-water heat exchanger 112 and injecting only the vapor refrigerant into the injection port of the compressor 102. .
  • the compressor 102 can additionally compress not only the refrigerant that has passed through the refrigerant-water heat exchanger 112 according to the existing cycle, but also the refrigerant that is branched and injected from the supercooling heat exchanger 114.
  • the efficiency of the compressor 102 can be improved by supplying vapor refrigerant to the injection port of the compressor 102, and the capacity of the condenser can be increased by increasing the flow rate of the refrigerant on the condenser side.
  • efficient operation can be performed by further securing the degree of subcooling of the refrigerant on the discharge side in the refrigerant-water heat exchanger (112, internal heat exchanger).
  • Figure 3 is a diagram showing the flow of refrigerant during cooling operation of a heat pump system according to an embodiment.
  • the control unit 10 operates the flow path switching valve 106 to create a refrigerant flow path in which the first port (106a) and the second port (106b) are connected, and the third port (106c) and the fourth port (106d) are connected.
  • the refrigerant discharged from the compressor 102 flows to the indoor unit through the flow path switching valve 106 and the outdoor heat exchanger 108.
  • the outdoor heat exchanger 108 operates as a condenser.
  • the refrigerant flowing into the indoor unit passes through the refrigerant-water heat exchanger 112, and the refrigerant passing through the refrigerant-water heat exchanger 112 is sucked into the compressor 102 again through the flow path switching valve 106.
  • the heat pump system (1) is compressor (102) ⁇ flow path switching valve (106) ⁇ outdoor heat exchanger (108) ⁇ hot water heat exchanger (112) ⁇ flow path switching valve (106) ⁇ accumulator (104) ⁇ compressor ( 102) Cooling operation can be performed by configuring a refrigerant cycle that circulates in order.
  • Figure 4 is a diagram showing the structure of a flow path switching valve.
  • the heating and cooling operations of the heat pump system 1 can be controlled according to the operation of the flow path switching valve 106.
  • the pilot valve 107 applies pressure to the slider in the flow path switching valve 106 to control the position of the slider to switch the flow path. You can.
  • the temperature of the water passing through the refrigerant-water heat exchanger 112 falls below the freezing temperature, causing freezing of the water, and freezing of the refrigerant-water heat exchanger 112 may occur due to the freezing of the water.
  • FIG. 5 is a diagram illustrating a control block diagram of a heat pump system according to an embodiment
  • FIG. 6 is a diagram illustrating a plurality of sensors included in the heat pump system according to an embodiment.
  • FIG. 7 is a flowchart showing detecting an abnormal state of the refrigerant-water heat exchanger and controlling the heat pump system based on this
  • FIG. 8 shows a process to determine again whether the refrigerant-water heat exchanger operates normally after control according to FIG. 7. This is a flowchart showing what to do.
  • the heat pump system 1 may include a compressor 102, a refrigerant-water heat exchanger 112, an outdoor heat exchanger 108, an outdoor fan 109, an expansion valve 110, and a control unit 10,
  • the control unit 10 may include a processor 11 and a memory 12.
  • the heat pump system 1 may further include a condensation temperature sensor 120, an outlet temperature sensor 122, and an inlet temperature sensor 126.
  • the condensation temperature sensor 120 is a refrigerant-water heat exchanger ( 112), the temperature of the condensed refrigerant can be detected as it exchanges heat with water in the process of passing through it.
  • the outlet water temperature sensor 122 can detect the temperature of water heat-exchanged in the process of passing through the refrigerant-water heat exchanger 112.
  • the inlet temperature sensor 126 can detect the temperature of water flowing into the refrigerant-water heat exchanger 112 before heat exchange with the refrigerant in the refrigerant-water heat exchanger 112.
  • Compressor 102 compresses the refrigerant, and a refrigerant-water heat exchanger can perform heat exchange between the compressed refrigerant and incoming water.
  • the expansion valve 110 may expand the refrigerant condensed through the refrigerant-water heat exchanger 112.
  • the outdoor heat exchanger 108 performs heat exchange between the refrigerant expanded in the expansion valve and outdoor air, and this outdoor heat exchanger 108 includes an outdoor fan 109 to increase heat exchange efficiency between the refrigerant and outdoor air. Can be installed.
  • the control unit 10 includes a memory 12 that stores control programs and control data for controlling the expansion valve 110, the outdoor fan 109, and the compressor 102, and the control program and control data stored in the memory 12. It may include a processor 11 that generates a control signal according to .
  • the memory 12 and the processor 11 may be provided integrally or may be provided separately.
  • the memory 12 can store temperature and pressure detected by various sensors, and can store programs and data for controlling the expansion valve 110, outdoor fan 109, and compressor 102.
  • the memory 12 may include volatile memory such as Static Random Access Memory (S-RAM) or Dynamic Random Access Memory (D-Lab) for temporarily storing data.
  • volatile memory such as Static Random Access Memory (S-RAM) or Dynamic Random Access Memory (D-Lab) for temporarily storing data.
  • non-volatile memory such as Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), and Electrically Erasable Programmable Read Only Memory (EEPROM) for long-term storage of data. It can be included.
  • the processor 11 may include various logic circuits and operation circuits, process data according to a program provided from the memory 12, and generate control signals according to the processing results.
  • control unit 10 may determine whether the refrigerant-water heat exchanger is in an abnormal state based on the detection results of the condensation temperature sensor, the water inlet temperature sensor, and the outlet temperature sensor (701).
  • the flow path switching of the flow path switching valve 106 may not be properly formed, such as in winter when the outdoor temperature is low. You can.
  • the temperature of the condensed refrigerant detected by the condensation temperature sensor 120 is higher than the water temperature detected by the water intake temperature sensor (example 703), and the water outlet temperature detected by the water outlet temperature sensor is higher than the water temperature detected by the water water temperature sensor. If it is higher than the temperature (example of 705), it can be determined that the refrigerant-water heat exchanger 112 is operating normally.
  • the temperature of the condensed refrigerant detected by the condensation temperature sensor 120 is lower than the inlet temperature detected by the inlet temperature sensor (No in 703), or the outlet temperature detected by the outlet temperature sensor is lower than the inlet temperature detected by the inlet temperature sensor. If it is lower than the temperature (No in 705), it can be determined that the refrigerant-water heat exchanger 112 is operating abnormally.
  • the control unit 10 may turn off the compressor and the outdoor fan based on the abnormal state of the refrigerant-water heat exchanger 112 (707).
  • the compressor 102 and the outdoor fan 109 are installed to protect the heat pump system 1. can be turned off.
  • the viscosity of foreign substances generated in the pilot valve 107 in the flow path switching valve 106 weakens and pressure is applied, thereby allowing the foreign substances in the pilot valve 107 to be removed.
  • the existing cooling operation flow path can be changed to a heating operation flow path.
  • first port (106a) and the second port (106b) are connected, and the third port (106c) and the fourth port (106d) are connected. ) is connected, and the second port (106b) and the fourth port (106d) can be changed to be connected to form a heating operation refrigerant flow path.
  • the control unit 10 may control the opening degree of the expansion valve 110 to be greater than or equal to the first opening degree based on the abnormal state of the refrigerant-water heat exchanger 112 (711).
  • the first opening degree may mean an opening degree of 20% based on the maximum opening degree of the expansion valve 110. It is not limited to this and may be set at an appropriate ratio to resolve the abnormal state of the refrigerant-water heat exchanger 112.
  • the internal high pressure can be increased by controlling the opening degree of the expansion valve 110 to be greater than or equal to the first opening degree.
  • the viscosity of foreign substances generated in the pilot valve 107 in the flow path switching valve 106 weakens and pressure is applied, thereby allowing the foreign substances in the pilot valve 107 to be removed.
  • the existing cooling operation flow path can be changed to a heating operation flow path.
  • control unit 10 may determine whether the refrigerant-water heat exchanger 112 is operating normally and control the expansion valve 110, the outdoor fan 109, and the compressor 102 according to the determination result.
  • control unit 10 controls the compressor 102, the outdoor fan 109, and the expansion valve 110, and then detects the detection results 801 of the condensation temperature sensor 120, the inlet temperature sensor, and the outlet temperature sensor. Based on this, it can be determined again whether the refrigerant-water heat exchanger 112 is in an abnormal state.
  • the temperature of the condensed refrigerant detected by the condensation temperature sensor 120 is higher than the water temperature detected by the water intake temperature sensor (example 803), and the water outlet temperature detected by the water outlet temperature sensor is higher than the water temperature detected by the water water temperature sensor. If it is higher than the temperature (example of 805), it can be determined that the refrigerant-water heat exchanger 112 is operating normally (807).
  • the temperature of the condensed refrigerant detected by the condensation temperature sensor 120 is the intake temperature. If it is higher than the value obtained by subtracting the first constant from the inlet temperature detected by the sensor, and the outlet water temperature detected by the outlet temperature sensor is higher than the value obtained by subtracting the second constant from the inlet temperature detected by the inlet temperature sensor, the refrigerant-water heat exchanger (112) It can be determined that it is operating normally.
  • the first constant and the second constant may be constants determined based on the deviation between the actual temperature and the sensed temperature and the optimal condensation temperature.
  • the temperature of the condensed refrigerant detected by the condensation temperature sensor 120 is lower than the inlet temperature detected by the inlet temperature sensor (No in 805), or the outlet temperature detected by the outlet temperature sensor is lower than the inlet temperature detected by the inlet temperature sensor. If it is low (No in 807), it is determined that the refrigerant-water heat exchanger 112 is operating abnormally, and control to be described later can be performed.
  • FIG. 9 is a control block diagram of a heat pump system according to an embodiment
  • FIG. 10 is a flowchart of a control method of a heat pump system for protecting the heat pump system based on condensation temperature according to an embodiment. It is a drawing.
  • the refrigerant-water heat exchanger 112 is determined to be in an abnormal state even after controlling the outdoor fan 109 and the expansion valve 110 of the control unit 10, the operation of the heat pump system 1 must be stopped. A need may arise.
  • control unit 10 can determine whether the temperature detected by the condensation temperature sensor 120 exceeds a predetermined temperature.
  • the predetermined temperature may be set to an appropriate temperature to protect the heat pump system 1 by preventing damage to the heat pump system 1.
  • control unit 10 determines that the temperature detected by the condensation temperature sensor 120 exceeds the predetermined temperature (example 1001), the control unit 10 controls the outdoor fan 109 to rotate at a rotation speed higher than the reference rotation speed. (1003), the expansion valve 110 can be controlled to have an opening degree equal to or higher than the second opening degree (1005).
  • the reference rotation speed and second opening degree may be appropriate rotation speed and opening degree values that can protect the heat pump system 1 by lowering the high pressure inside the heat pump system 1.
  • the internal high pressure can be reduced to protect the heat pump system 1.
  • control unit 10 determines that the internal high pressure has sufficiently decreased, it can turn off the operation of the compressor 102 and the outdoor fan 109.
  • FIG. 11 is a control block diagram of a heat pump system according to another embodiment
  • FIG. 12 is a flowchart of a control method of a heat pump system for protecting the heat pump system based on high pressure according to another embodiment. It is a drawing.
  • the heat pump system 1 may further include a high pressure sensor 130 that detects the high pressure of the refrigerant compressed in the compressor 102.
  • control unit 10 may determine whether the high pressure sensed by the high pressure sensor 130 exceeds a predetermined pressure.
  • the predetermined pressure may be set to an appropriate pressure to protect the heat pump system 1 by preventing damage to the heat pump system 1.
  • control unit 10 determines that the high pressure detected by the high pressure sensor 130 exceeds the predetermined pressure (example of 1201), the control unit 10 controls the outdoor fan 109 to rotate at a rotation speed higher than the reference rotation speed. (1203), and the expansion valve 110 can be controlled to open the second opening degree or higher (1205).
  • the internal high pressure can be reduced to protect the heat pump system 1.
  • control unit 10 determines that the internal high pressure has sufficiently decreased, it can turn off the operation of the compressor 102 and the outdoor fan 109.
  • the outdoor fan and expansion valve are controlled when the system is stopped and restarted.
  • the heat exchanger can be operated normally.
  • the disclosed embodiments may be implemented in the form of a recording medium that stores instructions executable by a computer. Instructions may be stored in the form of program code, and when executed by a processor, may create program modules to perform operations of the disclosed embodiments.
  • the recording medium may be implemented as a computer-readable recording medium.
  • Computer-readable recording media include all types of recording media storing instructions that can be decoded by a computer. For example, there may be read only memory (ROM), random access memory (RAM), magnetic tape, magnetic disk, flash memory, and optical data storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic tape magnetic tape
  • magnetic disk magnetic disk
  • flash memory optical data storage devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

개시된 발명의 일 측면에 따른 히트 펌프 시스템은, 냉매를 압축하는 압축기; 상기 압축된 냉매와 물 사이의 열 교환이 이루어지는 냉매-물 열 교환기; 상기 냉매-물 열 교환기에서 응축된 냉매를 팽창시키는 팽창 밸브; 상기 팽창 밸브에서 팽창된 냉매와 실외 공기 사이의 열 교환이 이루어지는 실외 열 교환기; 상기 실외 열 교환기와 인접하게 마련되는 실외 팬; 및 상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 상기 압축기와 상기 실외 팬을 오프시키고, 상기 실외 팬의 오프 상태에서 상기 압축기를 온시키는 제어부;를 포함할 수 있다.

Description

히트 펌프 시스템 및 그 제어 방법
개시된 발명은 히트 펌프 시스템 및 그 제어 방법에 관한 것으로, 열 교환을 통해 온수를 공급할 수 있는 히트 펌프 방식의 시스템 및 그 제어 방법에 관한 발명이다.
일반적으로, 열은 고온 측에서 저온 측으로는 자연스럽게 이동하지만, 저온 측에서 고온 측으로 열을 이동시키려면 외부에서 어떤 작용을 가하여야 한다. 이것이 히트 펌프의 원리이다. 히트 펌프는 냉매의 압축과 응축 및 증발의 순환 과정에서 발생 및 회수되는 열을 이용하여 냉, 난방(Air to Air) 및 물 공급(Air to Water)을 수행한다.
히트 펌프 방식을 이용한 멀티형 냉난방 장치(이하, '공기 조화 시스템'이라 한다)는, 실외기(Outdoor Unit), 실내기(Indoor Unit), 하이드로 유닛(Hydro Unit)으로 구성되어, 히트 펌프의 열을 실내의 바닥 난방이나 실내 공기의 냉난방 등에 이용한다.
종래 에어컨의 히트 펌프 시스템은 난방운전 시 실외기는 증발기를 통해 공기와 열 교환하고 실내기의 응축기를 통해 내부 공기를 사용자의 요구에 맞게 온도를 조정하였다.
EHS(Eco Heating/cooling Solution) 시스템은, 실외기는 공기와 열 교환하는 것은 동일하나 실내기 또는 실외기 내부의 열 교환기를 통해 냉매와 물(water)을 열 교환하여 사용자 요구에 맞는 물(water)온도로 공급해준다.
EHS 시스템은 난방 운전을 기준으로, 실외기에 증발기와 응축기를 모두 가지는 Mono 시스템과 실외기에 증발기 실내쪽에 응축기를 가지는 Split 시스템으로 구분되며, 공급된 물(Water)은 바닥난방, 라디에이터, 급탕, Fan Coil Unit 등으로 사용된다.
냉매와의 열 교환을 통해 냉수 또는 온수를 만드는 과정에서 물(water)온도가 동결 온도 이하로 떨어져 열 교환기의 동파가 발생할 수 있다.
종래에는 이러한 열 교환기의 동파를 방지하기 위하여 부동액 또는 동파 방지 밸브를 적용하거나, 온도 센서를 내장하여 동결 여부를 감지함으로써 동파를 방지하였다.
개시된 발명의 일 측면은 유로 전환 밸브의 오작동 등으로 열 교환기의 동파의 위험이 감지되는 등 열 교환기가 비정상 동작 하는 경우, 시스템을 정지 후 재가동함에 있어서 실외 팬과 팽창 밸브를 제어하여 유로 전환 밸브가 정상 동작하도록 함으로써 열 교환기가 정상 동작하도록 할 수 있는 히트 펌프 시스템 및 그 제어 방법을 제공한다.
개시된 발명의 일 측면에 따른 히트 펌프 시스템은, 냉매를 압축하는 압축기; 상기 압축된 냉매와 물 사이의 열 교환이 이루어지는 냉매-물 열 교환기; 상기 냉매-물 열 교환기에서 응축된 냉매를 팽창시키는 팽창 밸브; 상기 팽창 밸브에서 팽창된 냉매와 실외 공기 사이의 열 교환이 이루어지는 실외 열 교환기; 상기 실외 열 교환기와 인접하게 마련되는 실외 팬; 상기 냉매-물 열 교환기에서 응축된 냉매의 온도를 감지하는 응축 온도 센서; 상기 냉매-물 열 교환기로 들어가는 물의 온도를 감지하는 입수 온도 센서; 상기 냉매-물 열 교환기에서 열 교환이 이루어진 물의 온도를 감지하는 출수 온도 센서; 및 상기 응축 온도 센서, 입수 온도 센서 및 출수 온도 센서의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하고, 상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 상기 압축기와 상기 실외 팬을 오프시키고, 상기 실외 팬의 오프 상태에서 상기 압축기를 온시키는 제어부;를 포함할 수 있다.
상기 제어부는, 상기 감지된 응축된 냉매의 온도가 상기 입수 온도보다 높고 상기 감지된 출수 온도가 상기 감지된 입수 온도보다 높으면, 상기 냉매-물 열 교환기가 정상 동작하는 것으로 판단할 수 있다.
상기 제어부는, 상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 상기 팽창 밸브의 개도가 제1 개도 이상이 되도록 제어할 수 있다.
상기 제어부는, 상기 압축기, 실외 팬 및 팽창 밸브의 제어 이후 상기 응축 온도 센서, 입수 온도 센서 및 출수 온도 센서의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단할 수 있다.
상기 제어부는, 상기 냉매-물 열 교환기가 비정상 상태이면 상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는지 여부를 판단할 수 있다.
상기 제어부는, 상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는 것으로 판단되면, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어할 수 있다.
상기 제어부는, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시킬 수 있다.
상기 압축기에서 압축된 냉매의 고압 압력을 감지하는 고압 압력 센서;를 더 포함하고, 상기 제어부는, 상기 냉매-물 열 교환기가 비정상 상태이면 상기 고압 압력 센서에 의해 감지된 고압 압력이 미리 결정된 압력을 초과하는지 여부를 판단할 수 있다.
상기 제어부는, 상기 고압 압력 센서에 의해 감지된 압력이 미리 결정된 압력을 초과하는 것으로 판단되면, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어할 수 있다.
상기 제어부는, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시킬 수 있다.
개시된 발명의 일 측면에 따른 히트 펌프 시스템의 제어 방법은 냉매-물 열 교환기에서 응축된 냉매의 온도를 감지하고; 상기 냉매-물 열 교환기로 들어가는 물의 온도를 감지하고; 상기 냉매-물 열 교환기에서 열 교환이 이루어진 물의 온도를 감지하고; 상기 복수의 온도의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하고; 상기 냉매-물 열 교환기가 비정상 상태인 것으로 판단되면 압축기와 실외 팬을 오프시키고; 상기 실외 팬의 오프 상태에서 상기 압축기를 온시키는 것;을 포함할 수 있다.
상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하는 것은, 상기 감지된 응축된 냉매의 온도가 상기 열 교환기로 들어가는 물의 온도보다 높고 상기 감지된 열 교환이 이루어진 물의 온도가 상기 감지된 열 교환기로 들어가는 물의 온도보다 높으면, 상기 냉매-물 열 교환기가 정상 동작하는 것으로 판단하는 것을 포함할 수 있다.
상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 팽창 밸브의 개도가 제1 개도 이상이 되도록 제어하는 것;을 더 포함할 수 있다.
상기 압축기, 실외 팬 및 팽창 밸브의 제어 이후 상기 복수의 온도의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하는 것;을 더 포함할 수 있다.
상기 냉매-물 열 교환기가 비정상 상태이면 상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는지 여부를 판단하는 것;을 더 포함할 수 있다.
상기 감지된 응축된 냉매 온도가 미리 결정된 온도를 초과하는 것으로 판단되면, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어하는 것;을 더 포함할 수 있다.
상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시키는 것;을 더 포함할 수 있다.
상기 압축기에서 압축된 냉매의 고압 압력을 감지하고; 상기 냉매-물 열 교환기가 비정상 상태이면 상기 감지된 냉매의 고압 압력이 미리 결정된 압력을 초과하는지 여부를 판단하는 것;을 더 포함할 수 있다.
상기 감지된 냉매의 고압 압력이 미리 결정된 압력을 초과하는 것으로 판단되면, 상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어하는 것;을 더 포함할 수 있다.
상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시키는 것;을 더 포함할 수 있다.
개시된 발명의 일 측면에 따르면, 유로 전환 밸브의 오작동 등으로 열 교환기의 동파의 위험이 감지되는 등 열 교환기가 비정상 동작 하는 경우, 시스템을 정지 후 재가동함에 있어서 실외 팬과 팽창 밸브를 제어하여 유로 전환 밸브가 정상 동작하도록 함으로써 열 교환기가 정상 동작하도록 할 수 있다.
도 1은 일 실시예에 따른 히트 펌프 시스템의 구성도를 나타내는 도면이다.
도 2는 일 실시예에 따른 히트 펌프 시스템의 난방 운전 시 냉매의 흐름을 나타내는 도면이다.
도 3은 일 실시예에 따른 히트 펌프 시스템의 냉방 운전 시 냉매의 흐름을 나타내는 도면이다.
도 4는 유로 전환 밸브의 구조를 나타내는 도면이다.
도 5는 일 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이다.
도 6은 일 실시예에 따른 히트 펌프 시스템에 포함된 복수의 센서를 나타내는 도면이다.
도 7은 일 실시예에 따른 냉매-물 열 교환기의 비정상 상태를 감지하고 이에 기초하여 히트 펌프 시스템을 제어하는 것을 나타내는 순서도이다.
도 8은 도 7에 따른 제어 이후 냉매-물 열 교환기가 정상 동작하는지 다시 판단하는 것을 나타내는 순서도이다.
도 9는 일 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이다.
도 10은 일 실시예에 따른 응축 온도에 기초하여 히트 펌프 시스템을 보호하기 위한 히트 펌프 시스템의 제어 방법의 순서도를 나타내는 도면이다.
도 11은 다른 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이다.
도 12는 다른 실시예에 따른 고압 압력에 기초하여 히트 펌프 시스템을 보호하기 위한 히트 펌프 시스템의 제어 방법의 순서도를 나타내는 도면이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성요소를 나타낸다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서, 어떤 구성이 다른 구성과 "연결" 또는 "결합"되어 있다고 할 때, 이는 직접적으로 연결 또는 결합되어 있는 경우뿐 아니라, 간접적으로 연결 또는 결합되어 있는 경우를 포함한다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 설명한다.
도 1은 일 실시예에 따른 히트 펌프 시스템의 구성도를 나타내는 도면이다.
히트 펌프 시스템(1)은, 압축기(102), 냉매-물 열 교환기(112), 팽창 밸브(110), 실외 열 교환기(108), 유로 전환 밸브(106) 및 어큐뮬레이터(104)를 포함할 수 있다.
압축기(102)는 입구측(102a)를 통해 흡입되는 저온 저압의 냉매를 압축하여 고온 고압의 냉매를 형성한 후, 고온 고압의 냉매를 출구측(102b)을 통해 토출한다. 압축기(102)는 입력 주파수에 따라 압축 용량이 가변되는 인버터 압축기로 구성할 수도 있고, 압축 용량이 일정한 복수의 정속 압축기의 조합으로 구성할 수도 있다. 압축기(102)의 입구측(102a)은 어큐뮬레이터(104)에 연결되고, 압축기(102)의 출구측(102b)은 유로 전환 밸브(106)와 연결된다. 유로 전환 밸브(106)는 어큐뮬레이터(104)에도 연결된다.
어큐뮬레이터(104)는 압축기(102)의 입구측(102a)과 유로 전환 밸브(106) 사이에 설치될 수 있다. 어큐뮬레이터(104)는 유로 전환 밸브(106)를 통해 응축된 액냉매가 유입되면 오일과 냉매의 혼합물을 일시적으로 저장하고, 기화되지 않은 액냉매를 분리하여 액냉매가 압축기(102)로 흡입되는 것을 방지함으로써 압축기(102)의 손상을 방지할 수 있다. 어큐뮬레이터(104)에서 분리된 가스 냉매는 압축기(102)의 입구측(102a)으로 흡입된다.
유로 전환 밸브(106)는 사방 밸브로 구성될 수 있으며, 압축기(102)에서 토출되는 냉매의 흐름을 운전 모드(냉방 또는 난방)에 따라 전환함으로써, 해당 모드의 운전에 필요한 냉매 유로가 형성되도록 한다. 유로 전환 밸브(106)는 압축기(100)의 출구측(102b)에 연결되는 제1포트(106a)와, 실외 열교환기(108)측에 연결되는 제2포트(106b)와, 냉매-물 열 교환기(112)측에 연결되는 제3포트(106c)와, 압축기(100)의 입구측(102a)인 어큐뮬레이터(104)에 연결되는 제4포트(106d)를 가질 수 있다.
실외 열교환기(108)는 냉방 모드에서는 응축기로 동작하고, 난방 모드에서는 증발기로 동작한다. 실외 열교환기(108)의 일 측에는 제1팽창 밸브(110)가 연결된다. 실외 열교환기(108)에는 냉매와 실외 공기 사이의 열교환 효율을 높이기 위한 실외 팬(109)이 설치될 수 있다.
팽창 밸브(110)는 전자 팽창 밸브(Electronic Expansion Valve)로 구성될 수 있으며, 냉매를 팽창시키고 냉매의 유량을 조절하며 필요한 경우 냉매의 유동을 차단할 수 있다. 팽창 밸브(110)는 이러한 기능을 수행하는 다른 구조의 팽창 장치로 대체될 수도 있다.
급탕 열교환기(112) 내부에는 냉매가 통과하는 열 교환 판과 물이 통과하는 열 교환 판이 서로 교대로 다수 설치되며, 냉매가 통과하는 열 교환 판과 물이 통과하는 열 교환 판 사이의 열 교환을 통해 냉수/온수가 생성된다. 냉매-물 열 교환기(112)에는 압축기(102)에서 압축된 냉매가 전달될 수 있다. 냉매-물 열 교환기(112)에서 생성된 냉수/온수는 급수 탱크와, 팬 코일 유닛(fan coil unit), 바닥 냉방/난방 장치 등에 제공되어 냉수/온수 공급과 냉방/난방에 사용된다
도 2는 일 실시예에 따른 히트 펌프 시스템의 난방 운전 시 냉매의 흐름을 나타내는 도면이다.
제어부(10)는 유로 전환 밸브(106)를 동작시켜 제1포트(106a)와 제3포트(106c)가 연결되고, 제2포트(106b)와 제4포트(106d)가 연결되는 냉매 유로를 형성할 수 있다.
이에 따라, 압축기(102)에서 토출된 냉매는 유로 전환 밸브(106)를 거쳐 냉매-물 열 교환기(112)로 흐를 수 있다.
냉매-물 열 교환기(112)로 유입된 냉매는 급탕 열교환기(112)를 거쳐 실외 열교환기(108)로 흐른다. 실외 열교환기(108)를 통과한 냉매는 다시 유로 전환 밸브(106)를 거쳐 압축기(102)로 흡입될 수 있다.
이에 따라, 히트 펌프 시스템(1)은 압축기(102)→ 유로 전환 밸브(106)→ 급탕 열교환기(112)→ 팽창 밸브(110)→ 실외 열교환기(108)→ 유로 전환 밸브(106)→ 어큐뮬레이터(104)→ 압축기(102) 순으로 순환되는 냉매 사이클을 구성하여 난방 운전을 수행할 수 있다.
본 발명의 히트 펌프 시스템(1)은, 과냉각 열 교환기(114)를 더 포함할 수 있다.
과냉각 열 교환기(114)는, 냉매-물 열 교환기(112)와 팽창 밸브(110) 사이에 위치하여 압축기(102)로 냉매를 흐르게 할 수 있다.
즉, 이 경우 압축기(102)는 2단의 냉매 압축을 수행할 수 있다.
압축기(102)는 냉매-물 열 교환기(112)를 통과한 냉매가 유입되어 압축되는 제1압축부와, 제1압축부를 통과한 냉매와 냉매-물 열 교환기(112)와 상기 팽창 밸브(110) 사이에 위치한 과냉각 열 교환기(114)에서 분기되어 인젝션되는 냉매가 함께 유입되어 압축되는 제2압축부를 포함할 수 있다.
즉, 과냉각 열 교환기(114)에 따른 압축기(102)로의 냉매 인젝션은, 냉매-물 열 교환기(112)를 통과한 냉매를 뽑아내어 증기 냉매만 압축기(102)의 인젝션 포트에 주입하여 이루어질 수 있다.
이에 따라 압축기(102)는 기존의 사이클대로 냉매-물 열 교환기(112)를 통과한 냉매뿐만 아니라 과냉각 열 교환기(114)에서 분기되어 인젝션되는 냉매도 추가적으로 압축할 수 있다.
이에 따라 증기 냉매를 압축기(102)의 인젝션 포트에 공급함으로써 압축기(102)의 효율이 향상될 수 있고, 응축기 측 냉매의 유량을 증가시킴으로써 응축기의 용량을 증가시킬 수 있다. 또한, 냉매-물 열 교환기(112, 내부 열 교환기)에서 토출 측 냉매의 과냉도를 더욱 확보함으로써 효율적인 운전을 수행할 수 있다.
도 3은 일 실시예에 따른 히트 펌프 시스템의 냉방 운전 시 냉매의 흐름을 나타내는 도면이다.
제어부(10)는 유로 전환 밸브(106)를 동작시켜 제1포트(106a)와 제2포트(106b)가 연결되고, 제3포트(106c)와 제4포트(106d)가 연결되는 냉매 유로를 형성한다.
따라서, 압축기(102)에서 토출된 냉매는 유로 전환 밸브(106)와 실외 열교환기(108)를 거쳐 실내기로 흐른다. 이때의 실외 열교환기(108)는 응축기로 동작한다.
실내기로 유입된 냉매는 냉매-물 열 교환기(112)를 거치고, 냉매-물 열 교환기(112)를 통과한 냉매는 다시 유로 전환 밸브(106)를 거쳐 압축기(102)로 흡입된다.
이에 따라, 히트 펌프 시스템(1)은 압축기(102)→ 유로 전환 밸브(106)→ 실외 열교환기(108)→ 급탕 열교환기(112)→ 유로 전환 밸브(106)→ 어큐뮬레이터(104)→ 압축기(102) 순으로 순환되는 냉매 사이클을 구성하여 냉방 운전을 수행할 수 있다.
이상은 히트 펌프 시스템(1)의 기본 구성과 냉매의 흐름을 설명하였다.
도 4는 유로 전환 밸브의 구조를 나타내는 도면이다.
전술한 바와 같이 유로 전환 밸브(106)의 동작에 따라 히트 펌프 시스템(1)의 난방 운전과 냉방 운전을 제어할 수 있다.
구체적으로, 유로 전환 밸브(106) 내의 파일럿 밸브(107)에 전기적 신호를 입력하면, 파일럿 밸브(107)가 유로 전환 밸브(106) 내의 슬라이더에 압력을 가하여 슬라이더의 위치를 제어함으로써 유로를 전환할 수 있다.
이러한 파일럿 밸브(107) 내에 이물질 등이 생겨서 파일럿 밸브(107)가 가하는 압력이 슬라이더에 제대로 전달되지 않을 경우 유로 전환 상의 오류가 발생할 수 있다.
실외 온도가 낮은 겨울철 등에는, 실내 온도를 높이기 위하여 사용자 등은 히트 펌프 시스템(1)을 난방 동작하고자 하는 경우가 대부분인데 이에 따라 난방 운전을 위한 냉매 유로를 형성해야 함에도 압력이 전달되지 못해 유로 전환 밸브(106) 내의 제1포트(106a)와 제2포트(106b)가 연결되고, 제3포트(106c)와 제4포트(106d)가 연결되는 냉매 유로를 형성하게 되는 경우가 발생할 수 있다.
이 때 냉매-물 열 교환기(112)를 지나는 물(Water)의 온도가 동결 온도 이하로 떨어져 물의 동결이 발생하고, 물의 동결에 따른 냉매-물 열 교환기(112)의 동파가 발생할 수 있다.
따라서 유로 전환 밸브(106)의 정상 동작을 위하여 파일럿 밸브(107) 내의 이물질을 제거해야 할 필요가 있다.
냉매-물 열 교환기아래에서는 유로 전환 밸브(106)의 비정상 동작에 따른 냉매-물 열 교환기(112)의 비정상 상태를 해소하기 위해 히트 펌프 시스템(1) 내의 구성을 제어하는 과정에 대하여 상세히 설명한다.
도 5는 일 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이고, 도 6은 일 실시예에 따른 히트 펌프 시스템에 포함된 복수의 센서를 나타내는 도면이다.
또한, 도 7은 냉매-물 열 교환기의 비정상 상태를 감지하고 이에 기초하여 히트 펌프 시스템을 제어하는 것을 나타내는 순서도이고, 도 8은 도 7에 따른 제어 이후 냉매-물 열 교환기가 정상 동작하는지 다시 판단하는 것을 나타내는 순서도이다.
히트 펌프 시스템(1)은 압축기(102), 냉매-물 열 교환기(112), 실외 열 교환기(108), 실외 팬(109), 팽창 밸브(110) 및 제어부(10)를 포함할 수 있고, 제어부(10)는 프로세서(11)와 메모리(12)를 포함할 수 있다.
또한 히트 펌프 시스템(1)은, 응축 온도 센서(120), 출수 온도 센서(122), 입수 온도 센서(126)를 더 포함할 수 있다.응축 온도 센서(120)는, 냉매-물 열 교환기(112)를 통과하는 과정에서 물과 열을 교환하면서 응축된 냉매의 온도를 감지할 수 있다.
출수 온도 센서(122)는, 냉매-물 열 교환기(112)를 통과하는 과정에서 열 교환된 물의 온도를 감지할 수 있다.
입수 온도 센서(126)는 냉매-물 열 교환기(112)에서 냉매와 열 교환 되기 전 냉매-물 열 교환기(112)로 유입되는 물의 온도를 감지할 수 있다.
이러한 복수의 센서에 의해 감지된 각종 정보는 후술할 제어부(10)의 제어 과정에서 이용될 수 있으며 이에 대하여 구체적으로 설명한다.
압축기(102)는 냉매를 압축하고, 냉매-물 열 교환기는 압축된 냉매와 입수된 물 사이의 열 교환을 수행할 수 있다. 팽창 밸브(110)는 냉매-물 열 교환기(112)를 통과하여 응축된 냉매를 팽창시킬 수 있다.
실외 열 교환기(108)는 팽창 밸브에서 팽창된 냉매와 실외 공기 사이의 열 교환을 수행하고, 이러한 실외 열교환기(108)에는 냉매와 실외 공기 사이의 열 교환 효율을 높이기 위한 실외 팬(109)이 설치될 수 있다.
제어부(10)는, 팽창 밸브(110), 실외 팬(109) 및 압축기(102)를 제어하기 위한 제어 프로그램 및 제어 데이터를 기억하는 메모리(12)와 메모리(12)에 저장된 제어 프로그램 및 제어 데이터에 따라 제어 신호를 생성하는 프로세서(11)를 포함할 수 있다. 메모리(12)와 프로세서(11)는 일체로 마련되거나, 별도로 마련될 수 있다.
메모리(12)는 각종 센서에 의해 감지된 온도와 압력 등을 저장할 수 있고, 팽창 밸브(110), 실외 팬(109) 및 압축기(102)를 제어하기 위한 프로그램 및 데이터를 저장할 수 있다.
메모리(12)는 데이터를 일시적으로 기억하기 위한 S램(Static Random Access Memory, S-RAM), D랩(Dynamic Random Access Memory) 등의 휘발성 메모리를 포함할 수 있다. 또한, 메모리(12)는 데이터를 장기간 저장하기 위한 롬(Read Only Memory), 이피롬(Erasable Programmable Read Only Memory: EPROM), 이이피롬(Electrically Erasable Programmable Read Only Memory: EEPROM) 등의 비휘발성 메모리를 포함할 수 있다.
프로세서(11)는 각종 논리 회로와 연산 회로를 포함할 수 있으며, 메모리(12)로부터 제공된 프로그램에 따라 데이터를 처리하고, 처리 결과에 따라 제어 신호를 생성할 수 있다.
도 7을 참조하면, 제어부(10)는 응축 온도 센서, 입수 온도 센서 및 출수 온도 센서의 감지 결과에 기초하여 냉매-물 열 교환기의 비정상 상태 여부를 판단할 수 있다(701).
전술한 바와 같이 파일럿 밸브(107) 내의 이물질 등이 발생하여 유로 전환 밸브(106)의 유로 전환이 정상적으로 이루어지지 않는 경우, 실외 온도가 낮은 겨울철 등에 난방 운전을 위한 유로가 제대로 형성되지 못하는 경우가 발생할 수 있다.
이 때, 냉매-물 열 교환기(112)와 열 교환을 하는 물의 온도를 비교하여 냉매-물 열 교환기(112)의 정상 동작 여부를 판단할 수 있다.
구체적으로, 응축 온도 센서(120)가 감지한 응축된 냉매의 온도가 입수 온도 센서가 감지한 입수 온도보다 높고(703의 예), 출수 온도 센서가 감지한 출수 온도가 입수 온도 센서가 감지한 입수 온도보다 높으면(705의 예), 냉매-물 열 교환기(112)가 정상 동작하는 것으로 판단할 수 있다.
즉, 응축 온도 센서(120)가 감지한 응축된 냉매의 온도가 입수 온도 센서가 감지한 입수 온도보다 낮거나(703의 아니오), 출수 온도 센서가 감지한 출수 온도가 입수 온도 센서가 감지한 입수 온도보다 낮으면(705의 아니오), 냉매-물 열 교환기(112)가 비정상 동작하는 것으로 판단할 수 있다.
제어부(10)는 냉매-물 열 교환기(112)의 비정상 상태인 것에 기초하여 압축기와 실외 팬을 오프시킬 수 있다(707).
즉, 전술한 바와 같이 냉매-물 열 교환기(112)의 동파가 발생할 위험이 감지되는 등 비정상 상태인 것으로 판단되면, 히트 펌프 시스템(1)의 보호를 위하여 압축기(102)와 실외 팬(109)을 오프시킬 수 있다.
이후, 히트 펌프 시스템(1)을 재가동함에 있어서 실외 팬(109)을 오프시킨 상태에서 압축기(102)만을 온시킬 수 있다(709).
실외 팬(109)이 정지된 상태에서 압축기(102)만을 온 시킬 경우 실외 열교환기(108) 내부의 공기가 외부로 배출되는 양이 감소하고 온도가 증가함에 따라 내부 고압 압력이 증가할 수 있다.
온도 및 내부 고압 압력이 증가함에 따라 유로 전환 밸브(106) 내의 파일럿 밸브(107)에 발생한 이물질의 점성이 약해지고 압력이 가해짐으로써 파일럿 밸브(107) 내의 이물질이 제거될 수 있다.
파일럿 밸브(107) 내의 이물질이 제거되어 유로 전환 밸브(106) 내의 슬라이더에 압력이 정상적으로 가해지면서 기존의 냉방 운전 유로가 형성되어 있던 것을 난방 운전 유로로 변경할 수 있다.
즉, 제1포트(106a)와 제2포트(106b)가 연결되고, 제3포트(106c)와 제4포트(106d)가 연결되어 있는 상태를 제1포트(106a)와 제3포트(106c)가 연결되고, 제2포트(106b)와 제4포트(106d)가 연결된 상태로 변경하여 난방 운전 냉매 유로를 형성하도록 할 수 있다.
제어부(10)는 냉매-물 열 교환기(112)의 비정상 상태인 것에 기초하여 팽창 밸브(110)의 개도가 제1 개도 이상이 되도록 제어할 수 있다(711).
이 때 제1 개도는 팽창 밸브(110)의 최대 개도를 기준으로 20%의 개도를 의미할 수 있다. 이에 한정되는 것은 아니며 냉매-물 열 교환기(112)의 비정상 상태를 해소시키기 위한 적절한 비율로 설정될 수 있다.
팽창 밸브(110)의 개도가 제1 개도 이상이 되도록 제어함으로써 내부 고압 압력이 증가할 수 있다.
전술한 바와 같이 온도 및 내부 고압 압력이 증가함에 따라 유로 전환 밸브(106) 내의 파일럿 밸브(107)에 발생한 이물질의 점성이 약해지고 압력이 가해짐으로써 파일럿 밸브(107) 내의 이물질이 제거될 수 있다.
파일럿 밸브(107) 내의 이물질이 제거되어 유로 전환 밸브(106) 내의 슬라이더에 압력이 정상적으로 가해지면서 기존의 냉방 운전 유로가 형성되어 있던 것을 난방 운전 유로로 변경할 수 있다.
이후 제어부(10)는, 냉매-물 열 교환기(112)의 정상 동작 여부를 판단하여 판단 결과에 따라 팽창 밸브(110), 실외 팬(109) 및 압축기(102)를 제어할 수 있다.
도 8을 참조하면, 제어부(10)는 압축기(102), 실외 팬(109) 및 팽창 밸브(110)의 제어 이후 응축 온도 센서(120), 입수 온도 센서 및 출수 온도 센서의 감지 결과(801)에 기초하여 냉매-물 열 교환기(112)의 비정상 상태 여부를 다시 판단할 수 있다.
구체적으로, 응축 온도 센서(120)가 감지한 응축된 냉매의 온도가 입수 온도 센서가 감지한 입수 온도보다 높고(803의 예), 출수 온도 센서가 감지한 출수 온도가 입수 온도 센서가 감지한 입수 온도보다 높으면(805의 예), 냉매-물 열 교환기(112)가 정상 동작하는 것으로 판단할 수 있다(807).
이 때, 감지된 온도를 비교하고 판단함에 있어서 실제 온도와 감지된 온도의 편차 등의 요소로 인해 부정확한 결과가 도출될 수도 있으므로 응축 온도 센서(120)가 감지한 응축된 냉매의 온도가 입수 온도 센서가 감지한 입수 온도에서 제1 상수를 뺀 값보다 높고, 출수 온도 센서가 감지한 출수 온도가 입수 온도 센서가 감지한 입수 온도에서 제2 상수를 뺀 값보다 높으면 냉매-물 열 교환기(112)가 정상 동작하는 것으로 판단할 수 있다.
이 때 제1 상수 및 제2 상수는 실제 온도와 감지된 온도의 편차 및 최적 응축 온도에 기초하여 결정되는 상수일 수 있다.
응축 온도 센서(120)가 감지한 응축된 냉매의 온도가 입수 온도 센서가 감지한 입수 온도보다 낮거나(805의 아니오), 출수 온도 센서가 감지한 출수 온도가 입수 온도 센서가 감지한 입수 온도보다 낮으면(807의 아니오), 냉매-물 열 교환기(112)가 비정상 동작하는 것으로 판단하여 후술할 제어를 수행할 수 있다.
도 9는 일 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이고, 도 10은 일 실시예에 따른 응축 온도에 기초하여 히트 펌프 시스템을 보호하기 위한 히트 펌프 시스템의 제어 방법의 순서도를 나타내는 도면이다.
전술한 바와 같이 제어부(10)의 실외 팬(109) 및 팽창 밸브(110)의 제어 이후에도 냉매-물 열 교환기(112)가 비정상 상태인 것으로 판단되면 히트 펌프 시스템(1)의 작동을 정지해야 할 필요가 발생할 수 있다.
이 때, 실외 팬(109)의 정지 및 팽창 밸브(110)의 저개도 제어로 인해 내부의 고압 압력이 너무 높아지면 히트 펌프 시스템(1)의 손상이 발생할 수 있기 때문에 이러한 내부 고압 압력이 높은 것으로 감지되면 압력을 낮춰줄 필요가 있다.
이에 따라 제어부(10)는 응축 온도 센서(120)에 의해 감지된 온도가 미리 결정된 온도를 초과하는지 여부를 판단할 수 있다.
이 때 미리 결정된 온도는 히트 펌프 시스템(1)의 손상 등을 방지하여 히트 펌프 시스템(1)을 보호하기 위해 적절한 온도로 설정될 수 있다.
제어부(10)는, 응축 온도 센서(120)에 의해 감지된 온도가 미리 결정된 온도를 초과하는 것으로 판단되면(1001의 예), 실외 팬(109)이 기준 회전속도 이상의 회전 속도로 회전하도록 제어하고(1003), 팽창 밸브(110)가 제2 개도 이상의 개도가 되도록 제어할 수 있다(1005).
여기서 기준 회전 속도 및 제2 개도는 히트 펌프 시스템(1) 내부의 고압 압력을 낮춰 히트 펌프 시스템(1)을 보호할 수 있도록 하는 적절한 회전 속도 및 개도 값일 수 있다.
실외 팬(109)을 기준 회전 속도 이상의 회전 속도로 회전시키고 팽창 밸브(110)가 제2 개도 이상의 개도가 되도록 함으로써 내부 고압 압력을 감소시켜 히트 펌프 시스템(1)을 보호할 수 있다.
이후 제어부(10)는 내부 고압 압력이 충분히 감소한 것으로 판단하면 압축기(102) 및 실외 팬(109)의 동작을 오프시킬 수 있다.
이후 전술한 냉매-물 열 교환기(112)의 비정상 상태 해소를 위한 제어를 다시 수행할 수 있다.
도 11은 다른 실시예에 따른 히트 펌프 시스템의 제어 블록도를 나타내는 도면이고, 도 12는 다른 실시예에 따른 고압 압력에 기초하여 히트 펌프 시스템을 보호하기 위한 히트 펌프 시스템의 제어 방법의 순서도를 나타내는 도면이다.
히트 펌프 시스템(1)은 압축기(102)에서 압축된 냉매의 고압 압력을 감지하는 고압 압력 센서(130)를 더 포함할 수 있다.
도 9 및 10은 이러한 고압 압력 센서(130)가 별도로 포함되지 않은 경우 응축 온도 센서(120)를 이용하여 내부 고압 압력을 감지하였고, 본 실시예에서는 고압 압력을 직접 감지할 수 있는 고압 압력 센서(130)가 포함된 경우에 대해서 설명한다.
제어부(10)는 냉매-물 열 교환기(112)가 비정상 상태이면 고압 압력 센서(130)에 의해 감지된 고압 압력이 미리 결정된 압력을 초과하는지 여부를 판단할 수 있다.
이 때 미리 결정된 압력은 히트 펌프 시스템(1)의 손상 등을 방지하여 히트 펌프 시스템(1)을 보호하기 위해 적절한 압력으로 설정될 수 있다.
제어부(10)는, 고압 압력 센서(130)에 의해 감지된 고압 압력이 미리 결정된 압력을 초과하는 것으로 판단되면(1201의 예), 실외 팬(109)이 기준 회전속도 이상의 회전속도로 회전하도록 제어하고(1203), 팽창 밸브(110)가 제2 개도 이상의 개도가 되도록 제어할 수 있다(1205).
실외 팬(109)을 기준 회전속도 이상의 회전 속도로 회전시키고 팽창 밸브(110)가 제2 개도 이상의 개도가 되도록 함으로써 내부 고압 압력을 감소시켜 히트 펌프 시스템(1)을 보호할 수 있다.
이후 제어부(10)는 내부 고압 압력이 충분히 감소한 것으로 판단하면 압축기(102) 및 실외 팬(109)의 동작을 오프시킬 수 있다.
이후 전술한 냉매-물 열 교환기(112)의 비정상 상태 해소를 위한 제어를 다시 수행할 수 있다.
개시된 히트 펌프 시스템 및 그 제어 방법에 따르면, 유로 전환 밸브의 오작동 등으로 열 교환기의 동파의 위험이 감지되는 등 열 교환기가 비정상 동작 하는 경우, 시스템을 정지 후 재가동함에 있어서 실외 팬과 팽창 밸브를 제어하여 유로 전환 밸브가 정상 동작하도록 함으로써 열 교환기가 정상 동작하도록 할 수 있다.
한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어를 저장하는 기록매체의 형태로 구현될 수 있다. 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 프로그램 모듈을 생성하여 개시된 실시예들의 동작을 수행할 수 있다. 기록매체는 컴퓨터로 읽을 수 있는 기록매체로 구현될 수 있다.
컴퓨터가 읽을 수 있는 기록매체로는 컴퓨터에 의하여 해독될 수 있는 명령어가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래시 메모리, 광 데이터 저장장치 등이 있을 수 있다.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.

Claims (15)

  1. 냉매를 압축하는 압축기;
    상기 압축된 냉매와 물 사이의 열 교환이 이루어지는 냉매-물 열 교환기;
    상기 냉매-물 열 교환기에서 응축된 냉매를 팽창시키는 팽창 밸브;
    상기 팽창 밸브에서 팽창된 냉매와 실외 공기 사이의 열 교환이 이루어지는 실외 열 교환기;
    상기 실외 열 교환기와 인접하게 마련되는 실외 팬;
    상기 냉매-물 열 교환기에서 응축된 냉매의 온도를 감지하는 응축 온도 센서;
    상기 냉매-물 열 교환기로 들어가는 물의 온도를 감지하는 입수 온도 센서;
    상기 냉매-물 열 교환기에서 열 교환이 이루어진 물의 온도를 감지하는 출수 온도 센서; 및
    상기 응축 온도 센서, 입수 온도 센서 및 출수 온도 센서의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하고,
    상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 상기 압축기와 상기 실외 팬을 오프시키고, 상기 실외 팬의 오프 상태에서 상기 압축기를 온시키는 제어부;를 포함하는 히트 펌프 시스템.
  2. 제 1항에 있어서,
    상기 제어부는,
    상기 감지된 응축된 냉매의 온도가 상기 입수 온도보다 높고 상기 감지된 출수 온도가 상기 감지된 입수 온도보다 높으면, 상기 냉매-물 열 교환기가 정상 동작하는 것으로 판단하는 히트 펌프 시스템.
  3. 제 2항에 있어서,
    상기 제어부는,
    상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 상기 팽창 밸브의 개도가 제1 개도 이상이 되도록 제어하는 히트 펌프 시스템.
  4. 제 3항에 있어서,
    상기 제어부는,
    상기 압축기, 실외 팬 및 팽창 밸브의 제어 이후 상기 응축 온도 센서, 입수 온도 센서 및 출수 온도 센서의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하는 히트 펌프 시스템.
  5. 제 4항에 있어서,
    상기 제어부는,
    상기 냉매-물 열 교환기가 비정상 상태이면 상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는지 여부를 판단하는 히트 펌프 시스템.
  6. 제 5항에 있어서,
    상기 제어부는,
    상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는 것으로 판단되면,
    상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어하는 히트 펌프 시스템.
  7. 제 6항에 있어서,
    상기 제어부는,
    상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시키는 히트 펌프 시스템.
  8. 제 4항에 있어서,
    상기 압축기에서 압축된 냉매의 고압 압력을 감지하는 고압 압력 센서;를 더 포함하고,
    상기 제어부는,
    상기 냉매-물 열 교환기가 비정상 상태이면 상기 고압 압력 센서에 의해 감지된 고압 압력이 미리 결정된 압력을 초과하는지 여부를 판단하는 히트 펌프 시스템.
  9. 제 8항에 있어서,
    상기 제어부는,
    상기 고압 압력 센서에 의해 감지된 압력이 미리 결정된 압력을 초과하는 것으로 판단되면,
    상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어하는 히트 펌프 시스템.
  10. 제 9항에 있어서,
    상기 제어부는,
    상기 실외 팬이 기준 회전 속도 이상의 회전 속도로 회전하도록 제어하고, 상기 팽창 밸브가 제2 개도 이상의 개도가 되도록 제어한 이후 미리 결정된 시간이 경과하면, 상기 압축기 및 상기 실외 팬을 오프시키는 히트 펌프 시스템.
  11. 냉매-물 열 교환기에서 응축된 냉매의 온도를 감지하고;
    상기 냉매-물 열 교환기로 들어가는 물의 온도를 감지하고;
    상기 냉매-물 열 교환기에서 열 교환이 이루어진 물의 온도를 감지하고;
    상기 복수의 온도의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하고;
    상기 냉매-물 열 교환기가 비정상 상태인 것으로 판단되면 압축기와 실외 팬을 오프시키고;
    상기 실외 팬의 오프 상태에서 상기 압축기를 온시키는 것;을 포함하는 히트 펌프 시스템의 제어 방법.
  12. 제 11항에 있어서,
    상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하는 것은,
    상기 감지된 응축된 냉매의 온도가 상기 열 교환기로 들어가는 물의 온도보다 높고 상기 감지된 열 교환이 이루어진 물의 온도가 상기 감지된 열 교환기로 들어가는 물의 온도보다 높으면, 상기 냉매-물 열 교환기가 정상 동작하는 것으로 판단하는 것을 포함하는 히트 펌프 시스템의 제어 방법.
  13. 제 12항에 있어서,
    상기 냉매-물 열 교환기의 비정상 상태인 것에 기초하여 팽창 밸브의 개도가 제1 개도 이상이 되도록 제어하는 것;을 더 포함하는 히트 펌프 시스템의 제어 방법.
  14. 제 13항에 있어서,
    상기 압축기, 실외 팬 및 팽창 밸브의 제어 이후 상기 복수의 온도의 감지 결과에 기초하여 상기 냉매-물 열 교환기의 비정상 상태 여부를 판단하는 것;을 더 포함하는 히트 펌프 시스템의 제어 방법.
  15. 제 14항에 있어서,
    상기 냉매-물 열 교환기가 비정상 상태이면 상기 응축 온도 센서에 의해 감지된 온도가 미리 결정된 온도를 초과하는지 여부를 판단하는 것;을 더 포함하는 히트 펌프 시스템의 제어 방법.
PCT/KR2023/010287 2022-09-02 2023-07-18 히트 펌프 시스템 및 그 제어 방법 WO2024048995A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220111733 2022-09-02
KR10-2022-0111733 2022-09-02
KR1020220126609A KR20240032592A (ko) 2022-09-02 2022-10-04 히트 펌프 시스템 및 그 제어 방법
KR10-2022-0126609 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024048995A1 true WO2024048995A1 (ko) 2024-03-07

Family

ID=90098090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010287 WO2024048995A1 (ko) 2022-09-02 2023-07-18 히트 펌프 시스템 및 그 제어 방법

Country Status (1)

Country Link
WO (1) WO2024048995A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075962A (ja) * 2006-09-21 2008-04-03 Denso Corp ヒートポンプ式給湯装置
JP4078036B2 (ja) * 2001-02-20 2008-04-23 東芝キヤリア株式会社 ヒートポンプ給湯器
JP5601885B2 (ja) * 2010-05-31 2014-10-08 三菱重工業株式会社 ヒートポンプ式給湯・空調装置
CN110553439A (zh) * 2019-08-29 2019-12-10 浙江中广电器股份有限公司 一种空气源变频热泵(冷水)机组制冷启动防冻结的控制方法
KR102413701B1 (ko) * 2021-10-19 2022-06-27 주식회사 엠티에스 수유량 가변에 의해 출수온도가 고정된 온수를 생산하는 공기열원 히트펌프 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078036B2 (ja) * 2001-02-20 2008-04-23 東芝キヤリア株式会社 ヒートポンプ給湯器
JP2008075962A (ja) * 2006-09-21 2008-04-03 Denso Corp ヒートポンプ式給湯装置
JP5601885B2 (ja) * 2010-05-31 2014-10-08 三菱重工業株式会社 ヒートポンプ式給湯・空調装置
CN110553439A (zh) * 2019-08-29 2019-12-10 浙江中广电器股份有限公司 一种空气源变频热泵(冷水)机组制冷启动防冻结的控制方法
KR102413701B1 (ko) * 2021-10-19 2022-06-27 주식회사 엠티에스 수유량 가변에 의해 출수온도가 고정된 온수를 생산하는 공기열원 히트펌프 시스템

Similar Documents

Publication Publication Date Title
US20100236264A1 (en) Compressor motor control
WO2019194371A1 (ko) 공기조화시스템의 제어방법
WO2018147675A1 (ko) 냉동시스템
WO2019151815A1 (ko) 공기조화기
CN109297148B (zh) 热泵机组、其制冷启动低压保护方法、计算机设备和存储介质
JP4738237B2 (ja) 空気調和装置
WO2017057861A2 (ko) 공기조화 시스템
WO2021157820A1 (en) Air conditioner
WO2020209474A1 (en) Air conditioning apparatus
WO2011062349A1 (ko) 히트 펌프
EP3374704A1 (en) Air conditioner and control method thereof
WO2024048995A1 (ko) 히트 펌프 시스템 및 그 제어 방법
JP3445861B2 (ja) 空気調和機
JP3868265B2 (ja) 空気調和機
WO2023177092A1 (ko) 히트 펌프 시스템 및 그 제어 방법
WO2017142176A1 (en) Air conditioner and control method thereof
WO2022014984A1 (ko) 히트펌프 및 그 제어방법
WO2018151454A1 (ko) 공기조화기
KR20040034906A (ko) 멀티 공조기의 역상/결상 감지방법
JP2914020B2 (ja) 暖冷房機
WO2020013612A1 (ko) 공기 조화 시스템
JP4013471B2 (ja) 空気調和装置
KR20000073050A (ko) 공기조화기의 저압측 막힘 판단방법
JP3348465B2 (ja) 二元冷凍装置
WO2018143708A1 (ko) 공기조화기의 실외기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860677

Country of ref document: EP

Kind code of ref document: A1