WO2024048768A1 - Laminated structure, element, electronic device, electronic apparatus, and system - Google Patents

Laminated structure, element, electronic device, electronic apparatus, and system Download PDF

Info

Publication number
WO2024048768A1
WO2024048768A1 PCT/JP2023/032027 JP2023032027W WO2024048768A1 WO 2024048768 A1 WO2024048768 A1 WO 2024048768A1 JP 2023032027 W JP2023032027 W JP 2023032027W WO 2024048768 A1 WO2024048768 A1 WO 2024048768A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated structure
metal
film
structure according
Prior art date
Application number
PCT/JP2023/032027
Other languages
French (fr)
Japanese (ja)
Inventor
健 木島
Original Assignee
株式会社Gaianixx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gaianixx filed Critical 株式会社Gaianixx
Publication of WO2024048768A1 publication Critical patent/WO2024048768A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a laminated structure, an electronic device, an electronic device, and a system.
  • PZT lead zirconate titanate
  • FeRAM magnetic memory
  • MEMS Micro Electro Mechanical Systems
  • An object of the present invention is to provide a laminated structure, element, electronic device, electronic equipment, and system that have excellent bending strength.
  • the present inventors discovered that a metal film made of a metal that undergoes martensitic transformation and is oriented in the (100) direction on a crystal substrate that is oriented in the (100) direction. They discovered that by successfully laminating a piezoelectric material and then depositing a piezoelectric film on top of it, a piezoelectric element with excellent bending strength could be created, and such an element could solve the above-mentioned conventional problems all at once. I discovered that it is something. Further, after obtaining the above knowledge, the present inventors conducted further studies and completed the present invention.
  • the laminated structure, element, electronic device, electronic equipment, and system of the present invention exhibits the effect of having excellent bending strength.
  • FIG. 1 is a diagram schematically showing an example of a preferred embodiment of a laminated structure of the present invention. It is a figure which shows the XRD diffraction pattern in an Example.
  • FIG. 3 is a diagram illustrating a test piece of an example product in a test example. It is a figure explaining the test piece of the comparative example product in a test example. It is a figure which shows the bending strength test result in a test example.
  • FIG. 1 is a diagram schematically showing a preferred embodiment of a MEMS transducer in the present invention.
  • FIG. 2 is a diagram schematically showing an example of a cross-sectional view of a part of a wafer including a piezoelectric actuator as a preferred application example of the present invention to a fluid ejection device.
  • 1 is a diagram schematically showing a film forming apparatus suitably used in Examples.
  • the laminated structure of the present invention is a laminated structure in which at least a first layer and a second layer are laminated on a crystal substrate, wherein the first layer is made of a metal compound film, and the The second layer is made of a metal film of a metal that undergoes martensitic transformation by heat treatment or processing, and the crystal substrate, the first layer, and the second layer are each oriented in substantially the same crystal axis direction.
  • the crystal axis direction is not particularly limited, but is preferably the (100) or (111) direction, and more preferably the (100) direction.
  • the metal is not particularly limited as long as it is a metal that undergoes martensitic transformation by heat treatment or processing, and may be any known metal.
  • the metal is usually contained in the metal film as a main component of the metal film.
  • the metals that undergo martensitic transformation include Fe-Cr-Ni, Fe, Fe-Ni, Fe-Ni-Co, Fe-Si, Fe-Cr, Fe-Mn, Fe-Mn-C, Fe- Mn-Ni, Fe-Mn-Cr, Fe-C, Fe-N, Fe-Ni-C, Fe-Cr-C, Fe-Cu-C, Fe-Si-C, Fe-Cr-Ni-C, Co, Co-Ni, Co-Fe, Mn-Cu, In-Tl, In-Tl-Li, Na, Zr, Tl, Hf, Ti, Ti-Al, Ti-Cu, Ti-Cr, Ti-Fe, Ti-Mn, Ti-Mo, Ti-V, Ti
  • the metal preferably contains Fe, Cr or Ni, more preferably contains Fe and Cr, and more preferably stainless steel. According to such a preferable range, better bending strength can be achieved.
  • the term "main component" may be used as long as the atomic ratio of the metal in the metal film is 0.5 or more. In the present invention, the atomic ratio of the metal to all metal elements in the metal film is preferably 0.7 or more, more preferably 0.8 or more.
  • the metal film is oriented in the (100) direction.
  • the above-mentioned "orientation in the (100) direction” is sufficient as long as the crystal orientation detected by X-ray diffraction is oriented in the (100) direction. It is sufficient if the peak ratio in the (100) direction is 50% or more with respect to all the peaks of the metal film, and preferably the peak ratio is 90% or more.
  • the thickness of the metal film is preferably 100 ⁇ m or less, and more preferably 1 ⁇ m to 10 ⁇ m. According to such a preferable range, it becomes more excellent as an intermediate film for crystal growth of a functional film.
  • the metal film is formed by forming a first layer of a metal compound film containing Hf and/or Zr in the (100) direction on a crystal substrate such as a Si substrate, and then forming a second layer. can be easily obtained by forming the metal film by crystal growth. This is a new finding by the present inventors.
  • the metal compound film is preferably an oxide or nitride containing Hf and/or Zr, more preferably a nitride containing Hf and/or Zr.
  • the crystal substrate (hereinafter also simply referred to as “substrate”) is not particularly limited, such as the substrate material, as long as it does not impede the purpose of the present invention, and may be any known crystal substrate. It may be an organic compound or an inorganic compound. In the present invention, it is preferable that the crystal substrate contains an inorganic compound. In the present invention, it is preferable that the substrate has crystals on part or all of its surface, and it is preferable that the substrate has crystals on all or part of its main surface on the crystal growth side. More preferably, a crystal substrate having crystals on the entire main surface on the crystal growth side is most preferable.
  • the crystal is not particularly limited as long as it does not impede the purpose of the present invention, and the crystal structure is also not particularly limited, but may be cubic, tetragonal, trigonal, hexagonal, orthorhombic, or monoclinic. It is preferable that the crystal be a crystal of a type, and a crystal oriented in (100) or (200) direction is more preferable. Further, the crystal substrate may have an off-angle, and examples of the off-angle include an off-angle of 0.2° to 12.0°. Here, the "off angle" refers to the angle between the substrate surface and the crystal growth plane.
  • the shape of the substrate is not particularly limited as long as it is plate-like and serves as a support for the epitaxial film.
  • the substrate is preferably a Si substrate, more preferably a crystalline Si substrate, and (100) Most preferably, it is a crystalline Si substrate oriented in the direction of .
  • the substrate material include, in addition to the Si substrate, one or more metals belonging to Groups 3 to 15 of the periodic table, or oxides of these metals.
  • the shape of the substrate is not particularly limited, and may be approximately circular (for example, circular, oval, etc.) or polygonal (for example, triangular, square, rectangular, pentagonal, hexagonal, heptagonal, octagonal, etc.). (eg, square, nonagonal, etc.), and various shapes can be suitably used.
  • a large-area substrate can be used, and by using such a large-area substrate, the area of the epitaxial film can be increased.
  • the crystal substrate has a flat surface, but the quality of crystal growth of the epitaxial film may be improved if the crystal substrate has an uneven shape on part or all of the surface. This is preferable because it can provide better results.
  • the above-mentioned crystal substrate having an uneven shape may be used as long as an uneven part consisting of a recess or a convex part is formed on a part or all of the surface. It is not limited, and it may be an uneven part consisting of a convex part, an uneven part consisting of a concave part, or an uneven part consisting of a convex part and a concave part.
  • the uneven portions may be formed from regular protrusions or recesses, or may be formed from irregular protrusions or recesses.
  • the uneven portions are formed periodically, and more preferably that they are patterned periodically and regularly.
  • the shape of the uneven portion is not particularly limited, and examples thereof include a stripe shape, a dot shape, a mesh shape, or a random shape, but in the present invention, a dot shape or a stripe shape is preferable, and a dot shape is more preferable. .
  • the pattern shape of the uneven portions may be a polygonal shape such as a triangle, a quadrilateral (for example, a square, a rectangle, or a trapezoid), a pentagon, or a hexagon.
  • the shape is circular or elliptical.
  • the lattice shape of the dots is a lattice shape such as a square lattice, an orthorhombic lattice, a triangular lattice, a hexagonal lattice, etc., and a triangular lattice shape is used. is more preferable.
  • the cross-sectional shape of the concave portion or convex portion of the uneven portion is not particularly limited, and includes, for example, a U-shape, a U-shape, an inverted U-shape, a wave shape, a triangle, a quadrilateral (for example, a square, a rectangle, a trapezoid, etc.). ), polygons such as pentagons and hexagons.
  • the thickness of the crystal substrate is not particularly limited, but is preferably 50 to 2000 ⁇ m, more preferably 100 to 1000 ⁇ m.
  • the piezoelectric layer is not particularly limited as long as it is made of a piezoelectric material.
  • the piezoelectric body may also be a known piezoelectric body, but in the present invention, it is preferable that the piezoelectric body contains Pb and Ti.
  • the semiconductor layer is not particularly limited as long as it is a semiconductor layer made of a semiconductor.
  • the semiconductor may be a known semiconductor, in the present invention, it is preferable that the semiconductor includes Si, SiC, GaN, or Ga 2 O 3 . Note that in this specification, the terms “film” and “layer” may be interchanged depending on the case or the situation.
  • the piezoelectric layer or the semiconductor layer be laminated on the second layer via a third layer and a fourth layer.
  • the third layer is preferably made of a metal different from the metal
  • the fourth layer is preferably made of a conductive metal oxide.
  • the metal in the third layer include gold, silver, platinum, palladium, silver-palladium, copper, nickel, and alloys thereof. It is preferable to contain a metal belonging to Group 11, and more preferably platinum.
  • the conductive metal oxide is not particularly limited as long as it does not impede the object of the present invention, and may be any known conductive metal oxide, but in the present invention preferably contains Sr and/or Ru, More preferably, it is an SRO film containing Sr and Ru.
  • the first layer, second layer, third layer, and fourth layer described above can all be laminated using a known film forming method.
  • the film forming means is vapor deposition (including MBE) or sputtering.
  • the thickness of each layer is not particularly limited, but is preferably 10 nm to 100 ⁇ m, more preferably 50 nm to 30 ⁇ m.
  • the metal film or laminated structure obtained as described above is suitably used for elements such as piezoelectric elements or semiconductor elements using known means.
  • the above-mentioned element is suitably used in an electronic device according to a conventional method.
  • various electronic devices can be constructed by connecting the laminated structure as a piezoelectric element to a power source or an electric/electronic circuit, mounting it on a circuit board, or packaging it.
  • the electronic device is preferably a piezoelectric device, and can be used, for example, as a piezoelectric device in electronic equipment such as an inkjet printer head, a microactuator, a gyroscope, and a motion sensor.
  • an amplifier and a rectifier circuit can be used for various sensors such as magnetic sensors. It can also be applied to constant-voltage driven memories, and for example, by connecting a power storage element and a rectifying power management circuit, it becomes an energy conversion device (energy harvester) that generates power from an external magnetic field or vibration.
  • the energy conversion device is used by being incorporated into a power supply system, wearable terminals (earphones/hearable devices, smart watches, smart glasses, smart contact lenses, cochlear implants, cardiac pacemakers, etc.).
  • the laminated structure can be used, for example, in smart glasses, AR headsets, MEMS mirrors for LiDAR systems, piezoelectric MEMS ultrasonic transducers (PMUT) for advanced medical applications, piezo heads for commercial and industrial 3D printers, etc. It is preferable to use
  • the electronic device is suitably used in electronic equipment according to a conventional method.
  • the electronic device can be applied to various electronic devices other than those described above, and more specifically includes, for example, a liquid ejection head, a liquid ejection device, a vibration wave motor, an optical device, a vibration device, an imaging device, Suitable examples include piezoelectric acoustic components and audio playback devices, audio recording devices, mobile phones, and various information terminals that include the piezoelectric acoustic components.
  • the electronic device is also applied to a system according to a conventional method, and such a system includes, for example, a sensor system.
  • Example 1 The crystal growth surface side of the Si substrate (100) was treated with RIE, and in the presence of nitrogen, the metal of the vapor deposition source was caused to thermally react with nitrogen using a vapor deposition method, and an HfZrN single crystal was formed on the Si substrate.
  • the conditions of the vapor deposition method during this film formation were as follows. Vapor deposition source: Hf, Zr Voltage: 3.5-4.75V Pressure: 3 ⁇ 10-2 to 6 ⁇ 10-2 Pa Substrate temperature: 450-700°C
  • FIG. 8 shows the evaporation film forming apparatus used in the evaporation of the HfZrN single crystal.
  • the film forming apparatus in FIG. 8 includes metal sources 1101a to 1101b, earths 1102a to 1102h, ICP electrodes 1103a to 1103b, cut filters 1104a to 1104b, DC power supplies 1105a to 1105b, RF power supplies 1106a to 1106b, lamps 1107a to 1107b, It includes at least an Ar source 1108, a reactive gas source 1109, a power source 1110, a substrate holder 1111, a substrate 1112, a cut filter 1113, an ICP ring 1114, a vacuum chamber 1115, and a rotating shaft 1116.
  • the ICP electrodes 1103a to 1103b in FIG. 8 have a substantially concave curved shape or a parabolic shape curved toward the center of the substrate 1112.
  • the substrate 1112 is locked onto the substrate holder 1111.
  • the rotation shaft 1116 is rotated using the power supply 1110 and a rotation mechanism (not shown), and the substrate 1112 is rotated.
  • the substrate 112 is heated by lamps 1107a to 1107b, and the inside of the vacuum chamber 1115 is evacuated to a vacuum or reduced pressure by a vacuum pump (not shown).
  • Ar gas is introduced into the vacuum chamber 1115 from the Ar source 1108, and the substrate is The surface of the substrate 1112 is cleaned by forming argon plasma on the substrate 1112.
  • Ar gas is introduced into the vacuum chamber 1115, and a reactive gas is also introduced using the reactive gas source 1109.
  • the lamps 1107a to 1107b which are lamp heaters, are alternately turned on and off to form a crystal growth film of better quality.
  • a SUS304 single crystal film was formed in the same manner as above except that Fe, Cr, and Ni were used as the metals of the vapor deposition source.
  • a metal film of platinum (Pt) was formed as a conductive film on the single crystal film of the crystalline metal oxide by sputtering.
  • the conditions at this time are shown below.
  • a PbTiO 3 film was formed as a piezoelectric film on the SRO film.
  • the obtained laminated structure had good adhesion and crystallinity.
  • the crystals of the crystal substrate of the laminated structure, the single crystal film of the crystalline metal oxide, and the conductive film were measured using an X-ray diffraction apparatus.
  • FIG. 2 shows the XRD measurement results.
  • a SUS304 single crystal film having good crystallinity was formed, and the crystallinity of the PbTiO 3 film, etc., was also good.
  • a cantilever beam with a micro element as shown in Figs. 3 and 4 was prepared using FIB FB2100 (manufactured by Hitachi High-Technologies), and its fracture strength characteristics were measured using a nanoindenter NanoTest Xtreme (manufactured by Micro Materials).
  • the fracture strength was evaluated, the result was as shown in Figure 5. From FIG. 5, the fracture strength of Si was approximately constant at about 1 GPa. Considering that the bending strength of Si single crystal bulk material is about 300 MPa (paper), it was found that the micromaterial has a large strength.
  • FIG. 6 shows an embodiment of an acoustic MEMS transducer constituting a MEMS microphone in which the laminated structure is preferably used in the present invention.
  • the MEMS transducer can constitute a sound emitting device (for example, a speaker, etc.).
  • the MEMS microphone configured with the acoustic MEMS transducer shown in FIG. 6 is a cantilever type MEMS microphone, and includes a Si substrate 21 having two cantilever beams 28A and 28B and a cavity 30. Each cantilever beam 28A, 28B is fixed to the substrate 21 at a respective end, and a gap 9 is provided between the cantilever beams 8A, 8B.
  • the cantilever beams 8A, 8B are formed, for example, by a laminated structure including a plurality of piezoelectric layers (PZT films) 26a, 26b, and a plurality of electrode layers, that is, Pt films 24a, 24b, 24c and SRO films 25a, 25b. , 25c, and 25d alternately.
  • PZT films piezoelectric layers
  • the Pt film 24a is provided on the SUS film 23, and the HfZrN film 23 is provided on the SUS film 23.
  • the use of the HfZrN film 23 provides excellent adhesion to the Si substrate and crystallinity, and further improves the crystallinity of multiple layers on it. Moreover, it also has better piezoelectric properties and durability.
  • FIG. 7 shows an example of application to a fluid ejection device that can be used in printing applications, particularly in the form of an inkjet print head, in which the laminated structure is suitably used in the present invention.
  • a fluid ejection device that can be used in printing applications, particularly in the form of an inkjet print head, in which the laminated structure is suitably used in the present invention.
  • the wafer in FIG. 7 includes a chamber 41 for containing a fluid. Chamber 41 is configured to receive fluid from a tank (not shown) via channel 40 . Further, the wafer in FIG.
  • the 10 includes a Si substrate 31, on which a HfZrN film 32 and a SUS film 33 are laminated, and faces a chamber 41.
  • a Si substrate 31 on which a HfZrN film 32 and a SUS film 33 are laminated, and faces a chamber 41.
  • the HfZrN film 32 by using the HfZrN film 32, it has better adhesion to the Si substrate and crystallinity than when using SiO2 , SiN, etc. Furthermore, it has improved piezoelectric properties and durability.
  • the HfZrN film 32 has, for example, a rectangular shape in a top view (not shown), and this shape may be any of, for example, a square, a rectangle, a rectangle with rounded corners, a parallelogram, etc. Good too.
  • the piezoelectric actuator further includes an insulating film 37 extending over the electrodes 34a and 35a, the piezoelectric film 36, and the electrodes 34b and 35b.
  • the insulating film 37 includes a dielectric material used for electrical insulation, and such dielectric material may be a known dielectric material, such as a SiO2 layer, a SiN layer, or an Al2O3 layer. .
  • the thickness of the insulating layer containing the insulating film as a constituent material is not particularly limited, but is preferably between about 10 nm and about 10 ⁇ m.
  • the conductive path 39 is provided on the insulating layer (insulating film) 37 and contacts the electrodes 34a and 35a and the electrodes 34b and 35b, respectively, allowing selective access during use.
  • the material constituting the conductive path may be a known conductive material, and a suitable example of such a conductive material is aluminum (Al).
  • the passivation layer 42 is provided on the insulating layer 37, the electrodes 34b and 35b, and the conductive path 39.
  • the passivation layer 42 may be made of a dielectric material used for passivation of the piezoelectric actuator, and such dielectric material is not particularly limited, and may be a known dielectric material. Suitable examples of the dielectric material include SiN and SION (silicon oxynitrate). The thickness of the passivation layer is not particularly limited, but is preferably between about 0.1 ⁇ m and about 3 ⁇ m. Further, a conductive pad 38 is similarly provided along the piezoelectric actuator and is electrically connected to the conductive path 39. Note that the passivation layer 42 functions as a barrier layer that protects the piezoelectric body from humidity and the like.
  • the metal film and laminated structure of the present invention are suitably used, for example, as electronic devices such as piezoelectric devices, and suitably used for electronic equipment, sensor systems, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

[Problem] To provide: a laminated structure with excellent bending strength; an element; an electronic device; an electronic apparatus; and a system. [Solution] This laminated structure is constituted of at least a first layer and a second layer that are layered onto a crystalline substrate. The first layer is made of a metallic compound film, and the second layer is made of a metal film of a metal that undergoes martensitic transformation by heat treatment or machining. The crystalline substrate, the first layer, and the second layer are aligned in roughly the same crystal axis direction. The laminated structure is used to manufacture a piezoelectric element or a semiconductor element.

Description

積層構造体、素子、電子デバイス、電子機器及びシステムLaminated structures, elements, electronic devices, electronic equipment and systems
 本発明は、積層構造体、電子デバイス、電子機器及びシステムに関する。 The present invention relates to a laminated structure, an electronic device, an electronic device, and a system.
 優れた圧電性、強誘電性を有するチタン酸ジルコン酸鉛(Pb(Zr,Ti)O)(以下、PZTともいう)からなる圧電体薄膜などが検討されており、圧電体薄膜は、不揮発性メモリ(FeRAM)等のメモリ素子、インクジェットヘッドや加速度センサ等のMEMS(Micro Electro Mechanical Systems)技術に応用されている。 Piezoelectric thin films made of lead zirconate titanate (Pb(Zr,Ti)O 3 ) (hereinafter also referred to as PZT), which has excellent piezoelectricity and ferroelectricity, are being studied. It is applied to memory elements such as magnetic memory (FeRAM), and MEMS (Micro Electro Mechanical Systems) technology such as inkjet heads and acceleration sensors.
 近年においては、(100)に配向したSi基板上に、(200)に配向したZrO膜等を介して、(200)に配向したPt膜を形成することで、Pt膜上に、良好な圧電特性を有する圧電体膜を成膜することが検討されている(特許文献1)。しかしながら、成膜時又は圧電素子としての使用時に、曲げ応力によって結晶基板等にクラックや割れなどが生じる問題があり、耐久性や長期使用においてまだまだ満足のいくものではなく、曲げ応力に強い圧電素子が待ち望まれていた。 In recent years, a (200) oriented Pt film is formed on a (100) oriented Si substrate via a (200) oriented ZrO 2 film, etc., thereby achieving a good quality on the Pt film. The formation of a piezoelectric film having piezoelectric properties has been studied (Patent Document 1). However, when forming a film or using it as a piezoelectric element, bending stress causes cracks and cracks in the crystal substrate, etc., and the durability and long-term use are still unsatisfactory. was eagerly awaited.
特開2015-154015号公報Japanese Patent Application Publication No. 2015-154015
 本発明は、曲げ強度に優れた積層構造体、素子、電子デバイス、電子機器及びシステムを提供することを目的とする。 An object of the present invention is to provide a laminated structure, element, electronic device, electronic equipment, and system that have excellent bending strength.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、(100)方向に配向している結晶基板上に、(100)方向に配向している、マルテンサイト変態する金属からなる金属膜の積層に成功し、さらに、その上に、圧電体膜を成膜すると、曲げ強度に優れた圧電素子が実現できることを知見し、このような素子が、上記した従来の問題を一挙に解決できるものであることを見出した。
 また、本発明者らは、上記知見を得た後、さらに検討を重ねて、本発明を完成させるに至った。
As a result of intensive studies to achieve the above object, the present inventors discovered that a metal film made of a metal that undergoes martensitic transformation and is oriented in the (100) direction on a crystal substrate that is oriented in the (100) direction. They discovered that by successfully laminating a piezoelectric material and then depositing a piezoelectric film on top of it, a piezoelectric element with excellent bending strength could be created, and such an element could solve the above-mentioned conventional problems all at once. I discovered that it is something.
Further, after obtaining the above knowledge, the present inventors conducted further studies and completed the present invention.
 すなわち、本発明は、以下の発明に関する。
[1] 結晶基板上に少なくとも第1の層及び第2の層がそれぞれ積層されている積層構造体であって、
 前記第1の層が、金属化合物膜からなり、
 前記第2の層が、熱処理又は加工によりマルテンサイト変態する金属の金属膜からなり、
 前記結晶基板、前記第1の層及び前記第2の層が、それぞれ略同一の結晶軸方向に配向していることを特徴とする積層構造体。
[2] 前記金属が、Feを含む前記[1]記載の積層構造体。
[3] 前記金属が、Crを含む前記[1]又は[2]に記載の積層構造体。
[4] 前記金属が、Niを含む前記[1]~[3]のいずれかに記載の積層構造体。
[5] 前記金属が、Fe及びCrを含む前記[1]~[4]のいずれかに記載の積層構造体。
[6] 前記金属が、ステンレスである前記[1]~[5]のいずれかに記載の積層構造体。
[7] 前記金属膜の膜厚が100μm以下である前記[1]~[6]のいずれかに記載の積層構造体。
[8] 前記金属膜の膜厚が1μm~10μmである前記[1]~[7]のいずれかに記載の積層構造体。
[9] 前記金属化合物膜がHf及び/又はZrを含む前記[1]~[8]のいずれかに記載の積層構造体。
[10] 前記金属化合物膜がHf及び/又はZrを含む酸化物又は窒化物からなる前記[1]~[9]のいずれかに記載の積層構造体。
[11] 前記結晶軸方向が(100)方向である前記[1]~[10]のいずれかに記載の積層構造体。
[12] 前記結晶基板がSi基板である前記[1]~[11]のいずれかに記載の積層構造体。
[13] 前記第2の層上に、第3の層及び第4の層を介して圧電体層又は半導体層が積層されており、前記第3の層が前記金属とは異なる金属からなり、前記第4の層が、導電性金属酸化物からなる前記[1]~[12]のいずれかに記載の積層構造体。
[14] 前記第3の層が、周期律表第10族又は第11族に属する金属を含む前記[13]記載の積層構造体。
[15] 前記導電性金属酸化物がSr及び/又はRuを含む前記[13]又は[14]に記載の積層構造体。
[16] 前記圧電体層が積層されており、前記圧電体層がPb及びTiを含む前記[13]~[15]のいずれかに記載の積層構造体。
[17] 積層構造体を含む素子であって、前記積層構造体が前記[1]~[16]のいずれかに記載の積層構造体であることを特徴とする素子。
[18] 圧電体素子又は半導体素子である前記[17]記載の素子。
[19] 素子を含む電子デバイスであって、前記素子が前記[17]又は[18]に記載の素子であることを特徴とする電子デバイス。
[20] 電子デバイスを含む電子機器であって、前記電子デバイスが、前記[19]記載の電子デバイスであることを特徴とする電子機器。
[21] 電子機器を含むシステムであって、前記電子機器が、前記[20]記載の電子機器であることを特徴とするシステム。
That is, the present invention relates to the following inventions.
[1] A laminated structure in which at least a first layer and a second layer are laminated on a crystal substrate,
the first layer is made of a metal compound film,
The second layer is made of a metal film of a metal that undergoes martensitic transformation by heat treatment or processing,
A laminated structure characterized in that the crystal substrate, the first layer, and the second layer are each oriented in substantially the same crystal axis direction.
[2] The laminated structure according to [1] above, wherein the metal contains Fe.
[3] The laminated structure according to [1] or [2], wherein the metal contains Cr.
[4] The laminated structure according to any one of [1] to [3] above, wherein the metal contains Ni.
[5] The laminate structure according to any one of [1] to [4] above, wherein the metal contains Fe and Cr.
[6] The laminated structure according to any one of [1] to [5] above, wherein the metal is stainless steel.
[7] The laminated structure according to any one of [1] to [6] above, wherein the metal film has a thickness of 100 μm or less.
[8] The laminated structure according to any one of [1] to [7], wherein the metal film has a thickness of 1 μm to 10 μm.
[9] The laminated structure according to any one of [1] to [8], wherein the metal compound film contains Hf and/or Zr.
[10] The laminated structure according to any one of [1] to [9], wherein the metal compound film is made of an oxide or nitride containing Hf and/or Zr.
[11] The laminated structure according to any one of [1] to [10], wherein the crystal axis direction is the (100) direction.
[12] The laminated structure according to any one of [1] to [11], wherein the crystal substrate is a Si substrate.
[13] A piezoelectric layer or a semiconductor layer is laminated on the second layer via a third layer and a fourth layer, and the third layer is made of a metal different from the metal, The laminated structure according to any one of [1] to [12], wherein the fourth layer is made of a conductive metal oxide.
[14] The laminate structure according to [13], wherein the third layer contains a metal belonging to Group 10 or Group 11 of the periodic table.
[15] The laminated structure according to [13] or [14], wherein the conductive metal oxide contains Sr and/or Ru.
[16] The laminated structure according to any one of [13] to [15], wherein the piezoelectric layer is laminated, and the piezoelectric layer contains Pb and Ti.
[17] An element including a laminated structure, wherein the laminated structure is the laminated structure according to any one of [1] to [16].
[18] The element according to [17], which is a piezoelectric element or a semiconductor element.
[19] An electronic device including an element, wherein the element is the element according to [17] or [18].
[20] An electronic device including an electronic device, wherein the electronic device is the electronic device described in [19] above.
[21] A system including an electronic device, wherein the electronic device is the electronic device described in [20] above.
 本発明の積層構造体、素子、電子デバイス、電子機器及びシステムは、曲げ強度に優れているという効果を奏する。 The laminated structure, element, electronic device, electronic equipment, and system of the present invention exhibits the effect of having excellent bending strength.
本発明の積層構造体の好適な実施態様の一例を模式的に示す図である。1 is a diagram schematically showing an example of a preferred embodiment of a laminated structure of the present invention. 実施例におけるXRD回折パターンを示す図である。It is a figure which shows the XRD diffraction pattern in an Example. 試験例における実施例品の試験片を説明する図である。FIG. 3 is a diagram illustrating a test piece of an example product in a test example. 試験例における比較例品の試験片を説明する図である。It is a figure explaining the test piece of the comparative example product in a test example. 試験例における曲げ強度試験結果を示す図である。It is a figure which shows the bending strength test result in a test example. 本発明においてMEMSトランスデューサの実施態様の好適な一例を模式的に示す図である。FIG. 1 is a diagram schematically showing a preferred embodiment of a MEMS transducer in the present invention. 本発明の流体排出装置への好適な適用例として、圧電アクチュエータを備えているウエハの一部の断面図の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a cross-sectional view of a part of a wafer including a piezoelectric actuator as a preferred application example of the present invention to a fluid ejection device. 実施例において好適に用いられる成膜装置を模式的に示す図である。1 is a diagram schematically showing a film forming apparatus suitably used in Examples.
 本発明の積層構造体は、結晶基板上に少なくとも第1の層及び第2の層がそれぞれ積層されている積層構造体であって、前記第1の層が、金属化合物膜からなり、前記第2の層が、熱処理又は加工によりマルテンサイト変態する金属の金属膜からなり、前記結晶基板、前記第1の層及び前記第2の層が、それぞれ略同一の結晶軸方向に配向していることを特長とする。また、前記結晶軸方向は、特に限定されないが、(100)又は(111)方向が好ましく、(100)方向がより好ましい。 The laminated structure of the present invention is a laminated structure in which at least a first layer and a second layer are laminated on a crystal substrate, wherein the first layer is made of a metal compound film, and the The second layer is made of a metal film of a metal that undergoes martensitic transformation by heat treatment or processing, and the crystal substrate, the first layer, and the second layer are each oriented in substantially the same crystal axis direction. Features: Further, the crystal axis direction is not particularly limited, but is preferably the (100) or (111) direction, and more preferably the (100) direction.
 前記金属は、熱処理又は加工によりマルテンサイト変態する金属であれば特に限定されず、公知の金属であってよい。前記金属は、通常前記金属膜の主成分として前記金属膜に含まれる。前記のマルテンサイト変態する金属としては、例えば、Fe-Cr-Ni、Fe、Fe-Ni、Fe-Ni-Co、Fe-Si、Fe-Cr、Fe-Mn、Fe-Mn-C、Fe-Mn-Ni、Fe-Mn-Cr、Fe-C、Fe-N、Fe-Ni-C、Fe-Cr-C、Fe-Cu-C、Fe-Si-C、Fe-Cr-Ni-C、Co、Co-Ni、Co-Fe、Mn-Cu、In-Tl、In-Tl-Li、Na、Zr、Tl、Hf、Ti、Ti-Al、Ti-Cu、Ti-Cr、Ti-Fe、Ti-Mn、Ti-Mo、Ti-V、Ti-Zr、Ti-Al-V、Zr-U、Cu-Al-Ni、Cu-Al、Ag-Cd、Au-Cd、Au-Cd-Cu、Li、Li-Mg、Cu-Zn、U、U-Cr、Hgなどが挙げられる。本発明においては、前記金属が、Fe、Cr又はNiを含むのが好ましく、Fe及びCrを含むのがより好ましく、ステンレスであるのがより好ましい。このような好ましい範囲によれば、曲げ強度をより優れたものとすることができる。なお、「主成分」とは、前記金属膜中の前記金属の原子比が0.5以上の割合であればそれでよい。本発明においては、前記金属膜中の全ての金属元素に対する前記金属の原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。 The metal is not particularly limited as long as it is a metal that undergoes martensitic transformation by heat treatment or processing, and may be any known metal. The metal is usually contained in the metal film as a main component of the metal film. Examples of the metals that undergo martensitic transformation include Fe-Cr-Ni, Fe, Fe-Ni, Fe-Ni-Co, Fe-Si, Fe-Cr, Fe-Mn, Fe-Mn-C, Fe- Mn-Ni, Fe-Mn-Cr, Fe-C, Fe-N, Fe-Ni-C, Fe-Cr-C, Fe-Cu-C, Fe-Si-C, Fe-Cr-Ni-C, Co, Co-Ni, Co-Fe, Mn-Cu, In-Tl, In-Tl-Li, Na, Zr, Tl, Hf, Ti, Ti-Al, Ti-Cu, Ti-Cr, Ti-Fe, Ti-Mn, Ti-Mo, Ti-V, Ti-Zr, Ti-Al-V, Zr-U, Cu-Al-Ni, Cu-Al, Ag-Cd, Au-Cd, Au-Cd-Cu, Examples include Li, Li-Mg, Cu-Zn, U, U-Cr, and Hg. In the present invention, the metal preferably contains Fe, Cr or Ni, more preferably contains Fe and Cr, and more preferably stainless steel. According to such a preferable range, better bending strength can be achieved. Note that the term "main component" may be used as long as the atomic ratio of the metal in the metal film is 0.5 or more. In the present invention, the atomic ratio of the metal to all metal elements in the metal film is preferably 0.7 or more, more preferably 0.8 or more.
 また、本発明においては、前記金属膜が(100)方向に配向しているのが好ましい。前記の「(100)方向に配向」とは、X線回折法により検出される結晶方位角が(100)方向に配向していればそれでよく、より具体的には、X線回折法により検出される前記金属膜の全ピークに対し、(100)方向のピーク比が50%以上であればそれでよく、好ましくは前記ピーク比が90%以上である。 Furthermore, in the present invention, it is preferable that the metal film is oriented in the (100) direction. The above-mentioned "orientation in the (100) direction" is sufficient as long as the crystal orientation detected by X-ray diffraction is oriented in the (100) direction. It is sufficient if the peak ratio in the (100) direction is 50% or more with respect to all the peaks of the metal film, and preferably the peak ratio is 90% or more.
 本発明においては、前記金属膜の膜厚が100μm以下であるのが好ましく、膜厚1μm~10μmであるのがより好ましい。このような好ましい範囲によれば、機能膜の結晶成長用中間膜として、より優れたものとなる。 In the present invention, the thickness of the metal film is preferably 100 μm or less, and more preferably 1 μm to 10 μm. According to such a preferable range, it becomes more excellent as an intermediate film for crystal growth of a functional film.
 前記金属膜は、例えばSi基板等の方向結晶基板上の(100)方向に、第1の層として、Hf及び/又はZrを含む金属化合物膜を結晶成長により成膜し、ついで第2の層として、前記金属膜を結晶成長により成膜することにより、容易に得ることができる。このようなことは本発明者らによる新知見である。前記金属化合物膜は、Hf及び/又はZrを含む酸化物又は窒化物であるのが好ましく、Hf及び/又はZrを含む窒化物であるのがより好ましい。 The metal film is formed by forming a first layer of a metal compound film containing Hf and/or Zr in the (100) direction on a crystal substrate such as a Si substrate, and then forming a second layer. can be easily obtained by forming the metal film by crystal growth. This is a new finding by the present inventors. The metal compound film is preferably an oxide or nitride containing Hf and/or Zr, more preferably a nitride containing Hf and/or Zr.
 前記結晶基板(以下、単に「基板」ともいう)は、基板材料等、本発明の目的を阻害しない限り特に限定されず、公知の結晶基板であってよい。有機化合物であってもよいし、無機化合物であってもよい。本発明においては、前記結晶基板が無機化合物を含んでいるのが好ましい。本発明においては、前記基板が、表面の一部または全部に結晶を有するものであるのが好ましく、結晶成長側の主面の全部または一部に結晶を有している結晶基板であるのがより好ましく、結晶成長側の主面の全部に結晶を有している結晶基板であるのが最も好ましい。前記結晶は、本発明の目的を阻害しない限り特に限定されず、結晶構造等も特に限定されないが、立方晶系、正方晶系、三方晶系、六方晶系、斜方晶系又は単斜晶系の結晶であるのが好ましく、(100)又は(200)に配向している結晶であるのがより好ましい。また、前記結晶基板は、オフ角を有していてもよく、前記オフ角としては、例えば、0.2°~12.0°のオフ角などが挙げられる。ここで、「オフ角」とは、基板表面と結晶成長面とのなす角度をいう。前記基板形状は、板状であって、前記エピタキシャル膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいが、本発明においては、前記基板が、Si基板であるのが好ましく、結晶性Si基板であるのがより好ましく、(100)に配向している結晶性Si基板であるのが最も好ましい。なお、前記基板材料としては、例えば、Si基板の他に周期律表第3族~第15族に属する1種若しくは2種以上の金属又はこれらの金属の酸化物等が挙げられる。前記基板の形状は、特に限定されず、略円形状(例えば、円形、楕円形など)であってもよいし、多角形状(例えば、三角形、正方形、長方形、五角形、六角形、七角形、八角形、九角形など)であってもよく、様々な形状を好適に用いることができる。また、本発明においては、大面積の基板を用いることもでき、このような大面積の基板を用いることによって、エピタキシャル膜の面積を大きくすることができる。 The crystal substrate (hereinafter also simply referred to as "substrate") is not particularly limited, such as the substrate material, as long as it does not impede the purpose of the present invention, and may be any known crystal substrate. It may be an organic compound or an inorganic compound. In the present invention, it is preferable that the crystal substrate contains an inorganic compound. In the present invention, it is preferable that the substrate has crystals on part or all of its surface, and it is preferable that the substrate has crystals on all or part of its main surface on the crystal growth side. More preferably, a crystal substrate having crystals on the entire main surface on the crystal growth side is most preferable. The crystal is not particularly limited as long as it does not impede the purpose of the present invention, and the crystal structure is also not particularly limited, but may be cubic, tetragonal, trigonal, hexagonal, orthorhombic, or monoclinic. It is preferable that the crystal be a crystal of a type, and a crystal oriented in (100) or (200) direction is more preferable. Further, the crystal substrate may have an off-angle, and examples of the off-angle include an off-angle of 0.2° to 12.0°. Here, the "off angle" refers to the angle between the substrate surface and the crystal growth plane. The shape of the substrate is not particularly limited as long as it is plate-like and serves as a support for the epitaxial film. Although it may be an insulating substrate or a semiconductor substrate, in the present invention, the substrate is preferably a Si substrate, more preferably a crystalline Si substrate, and (100) Most preferably, it is a crystalline Si substrate oriented in the direction of . In addition, examples of the substrate material include, in addition to the Si substrate, one or more metals belonging to Groups 3 to 15 of the periodic table, or oxides of these metals. The shape of the substrate is not particularly limited, and may be approximately circular (for example, circular, oval, etc.) or polygonal (for example, triangular, square, rectangular, pentagonal, hexagonal, heptagonal, octagonal, etc.). (eg, square, nonagonal, etc.), and various shapes can be suitably used. Further, in the present invention, a large-area substrate can be used, and by using such a large-area substrate, the area of the epitaxial film can be increased.
 また、本発明においては、前記結晶基板が平坦面を有するのが好ましいが、前記結晶基板が表面の一部または全部に凹凸形状を有しているのも、前記エピタキシャル膜の結晶成長の品質をより良好なものとし得るので、好ましい。前記の凹凸形状を有する結晶基板は、表面の一部または全部に凹部または凸部からなる凹凸部が形成されていればそれでよく、前記凹凸部は、凸部または凹部からなるものであれば特に限定されず、凸部からなる凹凸部であってもよいし、凹部からなる凹凸部であってもよいし、凸部および凹部からなる凹凸部であってもよい。また、前記凹凸部は、規則的な凸部または凹部から形成されていてもよいし、不規則な凸部または凹部から形成されていてもよい。本発明においては、前記凹凸部が周期的に形成されているのが好ましく、周期的かつ規則的にパターン化されているのがより好ましい。前記凹凸部の形状としては、特に限定されず、例えば、ストライプ状、ドット状、メッシュ状またはランダム状などが挙げられるが、本発明においては、ドット状またはストライプ状が好ましく、ドット状がより好ましい。また、凹凸部が周期的かつ規則的にパターン化されている場合には、前記凹凸部のパターン形状が、三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形状、円状、楕円状などの形状であるのが好ましい。なお、ドット状に凹凸部を形成する場合には、ドットの格子形状を、例えば正方格子、斜方格子、三角格子、六角格子などの格子形状にするのが好ましく、三角格子の格子形状にするのがより好ましい。前記凹凸部の凹部または凸部の断面形状としては、特に限定されないが、例えば、コの字型、U字型、逆U字型、波型、または三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形等が挙げられる。なお、前記結晶基板の厚さは、特に限定されないが、好ましくは、50~2000μmであり、より好ましくは100~1000μmである。 Further, in the present invention, it is preferable that the crystal substrate has a flat surface, but the quality of crystal growth of the epitaxial film may be improved if the crystal substrate has an uneven shape on part or all of the surface. This is preferable because it can provide better results. The above-mentioned crystal substrate having an uneven shape may be used as long as an uneven part consisting of a recess or a convex part is formed on a part or all of the surface. It is not limited, and it may be an uneven part consisting of a convex part, an uneven part consisting of a concave part, or an uneven part consisting of a convex part and a concave part. Furthermore, the uneven portions may be formed from regular protrusions or recesses, or may be formed from irregular protrusions or recesses. In the present invention, it is preferable that the uneven portions are formed periodically, and more preferably that they are patterned periodically and regularly. The shape of the uneven portion is not particularly limited, and examples thereof include a stripe shape, a dot shape, a mesh shape, or a random shape, but in the present invention, a dot shape or a stripe shape is preferable, and a dot shape is more preferable. . Further, when the uneven portions are patterned periodically and regularly, the pattern shape of the uneven portions may be a polygonal shape such as a triangle, a quadrilateral (for example, a square, a rectangle, or a trapezoid), a pentagon, or a hexagon. Preferably, the shape is circular or elliptical. In addition, when forming uneven portions in the form of dots, it is preferable that the lattice shape of the dots is a lattice shape such as a square lattice, an orthorhombic lattice, a triangular lattice, a hexagonal lattice, etc., and a triangular lattice shape is used. is more preferable. The cross-sectional shape of the concave portion or convex portion of the uneven portion is not particularly limited, and includes, for example, a U-shape, a U-shape, an inverted U-shape, a wave shape, a triangle, a quadrilateral (for example, a square, a rectangle, a trapezoid, etc.). ), polygons such as pentagons and hexagons. The thickness of the crystal substrate is not particularly limited, but is preferably 50 to 2000 μm, more preferably 100 to 1000 μm.
 前記圧電体層は、圧電体からなる圧電体層であれば特に限定されない。前記圧電体も公知の圧電体であってよいが、本発明においては、前記圧電体が、Pb及びTiを含むのが好ましい。また、前記半導体層は、半導体からなる半導体層であれば特に限定されない。前記半導体は公知の半導体であってよいが、本発明においては、前記半導体が、Si、SiC、GaN又はGaを含むのが好ましい。なお、本明細書中、「膜」及び「層」の各用語は、それぞれ場合によって、又は状況に応じて、互いに入れ替えてもよい。  The piezoelectric layer is not particularly limited as long as it is made of a piezoelectric material. The piezoelectric body may also be a known piezoelectric body, but in the present invention, it is preferable that the piezoelectric body contains Pb and Ti. Further, the semiconductor layer is not particularly limited as long as it is a semiconductor layer made of a semiconductor. Although the semiconductor may be a known semiconductor, in the present invention, it is preferable that the semiconductor includes Si, SiC, GaN, or Ga 2 O 3 . Note that in this specification, the terms "film" and "layer" may be interchanged depending on the case or the situation.
 また、本発明においては、前記第2の層上に、第3の層及び第4の層を介して前記圧電体層又は前記半導体層が積層するのが好ましい。前記第3の層は、前記金属とは異なる金属からなるのが好ましく、前記第4の層は、導電性金属酸化物からなるのが好ましい。前記第3の層における金属としては、例えば、金、銀、白金、パラジウム、銀パラジウム、銅、ニッケル、又はこれらの合金等が挙げられるが、本発明においては、周期律表第10族又は第11族に属する金属を含むのが好ましく、白金を含むのがより好ましい。 Furthermore, in the present invention, it is preferable that the piezoelectric layer or the semiconductor layer be laminated on the second layer via a third layer and a fourth layer. The third layer is preferably made of a metal different from the metal, and the fourth layer is preferably made of a conductive metal oxide. Examples of the metal in the third layer include gold, silver, platinum, palladium, silver-palladium, copper, nickel, and alloys thereof. It is preferable to contain a metal belonging to Group 11, and more preferably platinum.
 前記導電性金属酸化物は、本発明の目的を阻害しない限り特に限定されず、公知の導電性金属酸化物であってよいが、本発明においては、Sr及び/又はRuを含むのが好ましく、Sr及びRuを含むSRO膜であるのがより好ましい。 The conductive metal oxide is not particularly limited as long as it does not impede the object of the present invention, and may be any known conductive metal oxide, but in the present invention preferably contains Sr and/or Ru, More preferably, it is an SRO film containing Sr and Ru.
 前記の第1の層、第2の層、第3の層及び第4の層は、いずれも公知の成膜手段を用いて積層することができる。本発明においては、前記成膜手段が、蒸着(MBE含む)又はスパッタであるのが好ましい。各層のそれぞれの厚さは、特に限定されないが、好ましくは、10nm~100μmであり、より好ましくは50nm~30μmである。 The first layer, second layer, third layer, and fourth layer described above can all be laminated using a known film forming method. In the present invention, it is preferable that the film forming means is vapor deposition (including MBE) or sputtering. The thickness of each layer is not particularly limited, but is preferably 10 nm to 100 μm, more preferably 50 nm to 30 μm.
 以上のようにして得られた金属膜又は積層構造体は、公知の手段を用いて、圧電素子又は半導体素子等の素子に好適に用いられる。また、前記素子は、常法に従い、電子デバイスに好適に用いられる。例えば、前記積層構造体を、圧電素子として、電源や電気/電子回路と接続し、回路基板に搭載したり、パッケージしたりすることにより様々な電子デバイスを構成することができる。本発明においては、前記電子デバイスが、圧電デバイスであるのが好ましく、例えば、インクジェットプリンタヘッド、マイクロアクチュエータ、ジャイロスコープ、モーションセンサ等の電子機器における圧電デバイスとして利用可能である。また、例えば、増幅器と整流回路を接続しパッケージすれば、磁気センサなどの各種センサに利用可能である。また、定電圧駆動のメモリにも適用できるし、例えば、蓄電素子と整流電力管理回路を接続すれば、外部からの磁場や振動から電力を発電するエネルギー変換デバイス(エネルギーハーベスタ)となる。なお、前記エネルギー変換デバイスは、電源システムやウェアラブル端末(イヤホン/ヒアラブルデバイス、スマートウォッチ、スマートグラス(眼鏡)、スマートコンタクトレンズ、人工内耳、心臓ペースメーカーなど)などに組み込まれ利用される。本発明においては、前記積層構造体を、例えばスマートグラス、ARヘッドセット、LiDARシステム向けのMEMSミラー、先端医療向けの圧電MEMS超音波トランスデューサ(PMUT)、商工業用3Dプリンタ向けのピエゾヘッド等に用いることが好ましい。 The metal film or laminated structure obtained as described above is suitably used for elements such as piezoelectric elements or semiconductor elements using known means. Moreover, the above-mentioned element is suitably used in an electronic device according to a conventional method. For example, various electronic devices can be constructed by connecting the laminated structure as a piezoelectric element to a power source or an electric/electronic circuit, mounting it on a circuit board, or packaging it. In the present invention, the electronic device is preferably a piezoelectric device, and can be used, for example, as a piezoelectric device in electronic equipment such as an inkjet printer head, a microactuator, a gyroscope, and a motion sensor. Furthermore, for example, if an amplifier and a rectifier circuit are connected and packaged, it can be used for various sensors such as magnetic sensors. It can also be applied to constant-voltage driven memories, and for example, by connecting a power storage element and a rectifying power management circuit, it becomes an energy conversion device (energy harvester) that generates power from an external magnetic field or vibration. The energy conversion device is used by being incorporated into a power supply system, wearable terminals (earphones/hearable devices, smart watches, smart glasses, smart contact lenses, cochlear implants, cardiac pacemakers, etc.). In the present invention, the laminated structure can be used, for example, in smart glasses, AR headsets, MEMS mirrors for LiDAR systems, piezoelectric MEMS ultrasonic transducers (PMUT) for advanced medical applications, piezo heads for commercial and industrial 3D printers, etc. It is preferable to use
 前記電子デバイスは、常法に従い電子機器に好適に用いられる。前記電子機器としては、上記した電子機器以外にも様々な電子機器に適用可能であり、より具体的に例えば、液体吐出ヘッド、液体吐出装置、振動波モータ、光学機器、振動装置、撮像装置、圧電音響部品や該圧電音響部品を有する音声再生機器、音声録音機器、携帯電話、各種情報端末等が好適な例として挙げられる。 The electronic device is suitably used in electronic equipment according to a conventional method. The electronic device can be applied to various electronic devices other than those described above, and more specifically includes, for example, a liquid ejection head, a liquid ejection device, a vibration wave motor, an optical device, a vibration device, an imaging device, Suitable examples include piezoelectric acoustic components and audio playback devices, audio recording devices, mobile phones, and various information terminals that include the piezoelectric acoustic components.
 また、前記電子機器は、常法に従いシステムにも適用され、かかるシステムとしては、例えばセンサーシステム等が挙げられる。 Furthermore, the electronic device is also applied to a system according to a conventional method, and such a system includes, for example, a sensor system.
(実施例1)
 Si基板(100)の結晶成長面側をRIEで処理し、窒素の存在下、蒸着法にて、蒸着源の金属と、窒素とを熱反応させ、HfZrN単結晶をSi基板上に形成した。なお、この成膜時の蒸着法の各条件は次の通りであった。
 蒸着源 : Hf、Zr
 電圧 : 3.5~4.75V
 圧力 : 3×10-2~6×10-2Pa
 基板温度 : 450~700℃
(Example 1)
The crystal growth surface side of the Si substrate (100) was treated with RIE, and in the presence of nitrogen, the metal of the vapor deposition source was caused to thermally react with nitrogen using a vapor deposition method, and an HfZrN single crystal was formed on the Si substrate. The conditions of the vapor deposition method during this film formation were as follows.
Vapor deposition source: Hf, Zr
Voltage: 3.5-4.75V
Pressure: 3× 10-2 to 6× 10-2 Pa
Substrate temperature: 450-700℃
 HfZrN単結晶の蒸着において用いた蒸着成膜装置を図8に示す。図8の成膜装置は、ルツボに金属源1101a~1101b、アース1102a~1102h、ICP電極1103a~1103b、カットフィルター1104a~1104b、DC電源1105a~1105b、RF電源1106a~1106b、ランプ1107a~1107b、Ar源1108、反応性ガス源1109、電源1110、基板ホルダー1111、基板1112、カットフィルター1113、ICPリング1114、真空槽1115及び回転軸1116を少なくとも備えている。なお、図8のICP電極1103a~1103bは基板1112の中心側に湾曲した略凹曲面形状又はパラボラ形状を有している。 FIG. 8 shows the evaporation film forming apparatus used in the evaporation of the HfZrN single crystal. The film forming apparatus in FIG. 8 includes metal sources 1101a to 1101b, earths 1102a to 1102h, ICP electrodes 1103a to 1103b, cut filters 1104a to 1104b, DC power supplies 1105a to 1105b, RF power supplies 1106a to 1106b, lamps 1107a to 1107b, It includes at least an Ar source 1108, a reactive gas source 1109, a power source 1110, a substrate holder 1111, a substrate 1112, a cut filter 1113, an ICP ring 1114, a vacuum chamber 1115, and a rotating shaft 1116. Note that the ICP electrodes 1103a to 1103b in FIG. 8 have a substantially concave curved shape or a parabolic shape curved toward the center of the substrate 1112.
 図8に示すように、基板1112を基板ホルダー1111上に係止する。ついで、電源1110と回転機構(図示せず)とを用いて回転軸1116を回転させ、基板1112を回転させる。また、基板112をランプ1107a~1107bによって加熱し、真空ポンプ(図示せず)によって真空槽1115内を排気により真空又は減圧下にする。その後、真空槽1115内にAr源1108からArガスを導入し、DC電源1105a~1105b、RF電源1106a~1106b、ICP電極1103a~1103b、カットフィルター1104a~1104b、及びアース1102a~1102hを用いて基板1112上にアルゴンプラズマを形成することにより、基板1112の表面の清浄化を行う。 As shown in FIG. 8, the substrate 1112 is locked onto the substrate holder 1111. Next, the rotation shaft 1116 is rotated using the power supply 1110 and a rotation mechanism (not shown), and the substrate 1112 is rotated. Further, the substrate 112 is heated by lamps 1107a to 1107b, and the inside of the vacuum chamber 1115 is evacuated to a vacuum or reduced pressure by a vacuum pump (not shown). Thereafter, Ar gas is introduced into the vacuum chamber 1115 from the Ar source 1108, and the substrate is The surface of the substrate 1112 is cleaned by forming argon plasma on the substrate 1112.
 真空槽1115内にArガスを導入するとともに反応性ガス源1109を用いて反応性ガスを導入する。このとき、ランプヒーターであるランプ1107a~1107bのオンとオフとを交互に繰り返すことで、より良質な結晶成長膜を形成することができるように構成されている。 Ar gas is introduced into the vacuum chamber 1115, and a reactive gas is also introduced using the reactive gas source 1109. At this time, the lamps 1107a to 1107b, which are lamp heaters, are alternately turned on and off to form a crystal growth film of better quality.
 次に、蒸着源の金属として、Fe、Cr及びNiを用いたこと以外、上記と同様にして、SUS304単結晶膜を成膜した。 Next, a SUS304 single crystal film was formed in the same manner as above except that Fe, Cr, and Ni were used as the metals of the vapor deposition source.
 次に、結晶性金属酸化物の単結晶膜の上に、導電膜として、白金(Pt)の金属膜をスパッタリング法により形成した。この際の条件を、以下に示す。
 装置 : ULVAC社製スパッタリング装置QAM-4
 圧力 : 1.20×10-1Pa
 ターゲット : Pt
 電力 : 100W(DC)
 厚さ : 100nm
 基板温度 : 450~600℃
Next, a metal film of platinum (Pt) was formed as a conductive film on the single crystal film of the crystalline metal oxide by sputtering. The conditions at this time are shown below.
Equipment: Sputtering equipment QAM-4 manufactured by ULVAC
Pressure: 1.20× 10-1 Pa
Target: Pt
Power: 100W (DC)
Thickness: 100nm
Substrate temperature: 450-600℃
 次に、導電膜上に、SRO膜を、スパッタリング法により形成した。この際の条件を、以下に示す。
 装置 : ULVAC社製スパッタリング装置QAM-4
 パワー : 150W(RF)
 ガス : Ar
 圧力 : 1.8Pa
 基板温度 : 600℃
 厚さ : 20nm
Next, an SRO film was formed on the conductive film by sputtering. The conditions at this time are shown below.
Equipment: Sputtering equipment QAM-4 manufactured by ULVAC
Power: 150W (RF)
Gas: Ar
Pressure: 1.8Pa
Substrate temperature: 600℃
Thickness: 20nm
 次に、SRO膜上に、圧電膜として、PbTiO膜を成膜した。得られた積層構造体は、良好な密着性及び結晶性を有する積層構造体であった。また、積層構造体の結晶基板、結晶性金属酸化物の単結晶膜及び導電膜につき、X線回折装置を用いて、それぞれの結晶を測定した。図2に、XRD測定結果を示す。図2から明らかなように、良好な結晶性を有するSUS304単結晶膜が形成されており、PbTiO膜等の結晶性等も良好であった。 Next, a PbTiO 3 film was formed as a piezoelectric film on the SRO film. The obtained laminated structure had good adhesion and crystallinity. In addition, the crystals of the crystal substrate of the laminated structure, the single crystal film of the crystalline metal oxide, and the conductive film were measured using an X-ray diffraction apparatus. FIG. 2 shows the XRD measurement results. As is clear from FIG. 2, a SUS304 single crystal film having good crystallinity was formed, and the crystallinity of the PbTiO 3 film, etc., was also good.
(試験例)
 試験例として図3及び図4のような微小素子の片持ちはりをFIB FB2100 (日立ハイテクノロジーズ製)を用いて作製し、その破壊強度特性をナノインデンター NanoTest Xtreme(Micro Materials社製)にて破壊強度評価したところ図5のようになった。図5よりSiの破壊強度は約1GPa程度とほぼ一定値を示した。Si単結晶バルク材の曲げ強度が、300MPa程度(論文)であることを考えると、マイクロマテリアルでは大きな強度を持つことがわかった。さらにSUS304単結晶薄膜の場合は、破壊強度約5GPaと、Si単結晶の約5倍の曲げ強度を有していた。このことは、SUS304単結晶薄膜をMEMSデバイスの梁(可動部分、SOI基板の活性層相当)に用いることで、MEMSデバイスの変位量の大幅な改善に加えて、大幅な寿命特性の改善が期待できる。
(Test example)
As a test example, a cantilever beam with a micro element as shown in Figs. 3 and 4 was prepared using FIB FB2100 (manufactured by Hitachi High-Technologies), and its fracture strength characteristics were measured using a nanoindenter NanoTest Xtreme (manufactured by Micro Materials). When the fracture strength was evaluated, the result was as shown in Figure 5. From FIG. 5, the fracture strength of Si was approximately constant at about 1 GPa. Considering that the bending strength of Si single crystal bulk material is about 300 MPa (paper), it was found that the micromaterial has a large strength. Furthermore, in the case of the SUS304 single crystal thin film, it had a breaking strength of about 5 GPa, which is about 5 times the bending strength of the Si single crystal. This means that by using SUS304 single crystal thin film for the beams of MEMS devices (movable parts, equivalent to the active layer of SOI substrates), it is expected that not only the amount of displacement of the MEMS device will be significantly improved, but also the life characteristics will be significantly improved. can.
(適用例)
 得られた積層構造体の適用例を、以下、図を用いてより具体的に説明するが、本発明は、これら適用例に限定されるものではない。なお、本発明においては、特に断りがない限り、公知の手段を用いて、前記積層構造体から圧電デバイス等を製造することができる。
(Application example)
Application examples of the obtained laminated structure will be described in more detail below with reference to the drawings, but the present invention is not limited to these application examples. In the present invention, unless otherwise specified, piezoelectric devices and the like can be manufactured from the laminated structure using known means.
 図6は、本発明において前記積層構造体が好適に用いられるMEMSマイクロフォンを構成する音響MEMSトランスデューサの実施態様を示す。なお、前記MEMSトランスデューサは、音響放出機器(例えば、スピーカー等)を構成することができる。 FIG. 6 shows an embodiment of an acoustic MEMS transducer constituting a MEMS microphone in which the laminated structure is preferably used in the present invention. Note that the MEMS transducer can constitute a sound emitting device (for example, a speaker, etc.).
 図6の音響MEMSトランスデューサにて構成されるMEMSマイクロフォンは、カンチレバータイプのMEMSマイクロフォンを示しており、2つのカンチレバー・ビーム28A、28Bと空洞30とを有するSi基板21を備えている。各カンチレバー・ビーム28A、28Bは、それぞれの端部で基板21に固定されており、カンチレバー・ビーム8A、8Bの間には隙間9が設けられている。なお、カンチレバー・ビーム8A、8Bは、例えば、複数の圧電層(PZT膜)26a、26bを含む積層構造体によって形成され、複数の電極層すなわちPt膜24a、24b、24c及びSRO膜25a、25b、25c、25dと交互になっている。Pt膜24aは、SUS膜23上に設けられており、SUS膜23上には、HfZrN膜23が設けられている。SiOやSiN等を用いた場合に比べ、HfZrN膜23を用いると、Si基板との密着性及び結晶性に優れたものとなり、その上に複数の層に至るまで結晶性をより向上させることができ、さらには、圧電特性や耐久性にもより優れたものとなる。 The MEMS microphone configured with the acoustic MEMS transducer shown in FIG. 6 is a cantilever type MEMS microphone, and includes a Si substrate 21 having two cantilever beams 28A and 28B and a cavity 30. Each cantilever beam 28A, 28B is fixed to the substrate 21 at a respective end, and a gap 9 is provided between the cantilever beams 8A, 8B. Note that the cantilever beams 8A, 8B are formed, for example, by a laminated structure including a plurality of piezoelectric layers (PZT films) 26a, 26b, and a plurality of electrode layers, that is, Pt films 24a, 24b, 24c and SRO films 25a, 25b. , 25c, and 25d alternately. The Pt film 24a is provided on the SUS film 23, and the HfZrN film 23 is provided on the SUS film 23. Compared to the case of using SiO 2 or SiN, the use of the HfZrN film 23 provides excellent adhesion to the Si substrate and crystallinity, and further improves the crystallinity of multiple layers on it. Moreover, it also has better piezoelectric properties and durability.
 図7は、本発明において前記積層構造体が好適に用いられる印刷用途、特にインクジェットプリントヘッドの態様で使用することができる流体排出装置への適用例を示し、具体的には、電極層として、Pt膜34a、34b及びSRO膜35a、35bを含み、かつ圧電膜としてPZT膜36を含む圧電アクチュエータを備えているウエハの一部の断面図を示す。図7のウエハは、前記圧電アクチュエータの他に、流体を収容するためのチャンバー41を備えている。チャンバー41は、タンク(図示せず)から流路40を介して流体を取り込めるように構成されている。また、図10のウエハは、Si基板31を含み、その上に、HfZrN膜32及びSUS膜33が積層されており、チャンバー41に面している。図10では、HfZrN膜32を用いることにより、SiOやSiN等を用いた場合に比べ、Si基板との密着性及び結晶性により優れたものとしており、その上に複数の層に至るまで結晶性をより向上させており、さらには、圧電特性や耐久性にもより優れたものとなっている。なお、HfZrN膜32は、例えば、上面図(図示せず)において四角形の形状を有しており、かかる形状は、例えば、正方形、長方形、角が丸い長方形、平行四辺形等のいずれであってもよい。 FIG. 7 shows an example of application to a fluid ejection device that can be used in printing applications, particularly in the form of an inkjet print head, in which the laminated structure is suitably used in the present invention. Specifically, as an electrode layer, A cross-sectional view of a part of a wafer including a piezoelectric actuator including Pt films 34a, 34b and SRO films 35a, 35b and including a PZT film 36 as a piezoelectric film is shown. In addition to the piezoelectric actuator, the wafer in FIG. 7 includes a chamber 41 for containing a fluid. Chamber 41 is configured to receive fluid from a tank (not shown) via channel 40 . Further, the wafer in FIG. 10 includes a Si substrate 31, on which a HfZrN film 32 and a SUS film 33 are laminated, and faces a chamber 41. In FIG. 10, by using the HfZrN film 32, it has better adhesion to the Si substrate and crystallinity than when using SiO2 , SiN, etc. Furthermore, it has improved piezoelectric properties and durability. Note that the HfZrN film 32 has, for example, a rectangular shape in a top view (not shown), and this shape may be any of, for example, a square, a rectangle, a rectangle with rounded corners, a parallelogram, etc. Good too.
 SUS膜33の上には、Pt膜34a、SRO膜35a、圧電膜(PZT膜)36、SRO膜35b、及びPt膜34bが順に積層されており、圧電アクチュエータを構成している。また、前記圧電アクチュエータは、電極34a及び35a、圧電膜36、並びに電極34b及び35b上に延びる絶縁膜37をさらに備えている。絶縁膜37は、電気絶縁に使用される誘電体材料を含むが、かかる誘電体材料は公知の誘電体材料であってよく、例えばSiO層、SiN層又はAl層であってよい。なお、絶縁膜を構成材料として含む絶縁層の厚さは特に限定されないが、好ましくは、約10nm~約10μmの間の厚さである。また、導電路39は、絶縁層(絶縁膜)37上に設けられ、それぞれ電極34a及び35a並びに電極34b及び35bに接触し、使用時に選択的アクセスを可能にしている。なお、導電路の構成材料は、公知の導電材料であってよく、このような導電材料としては、例えば、アルミニウム(Al)等が好適な例として挙げられる。また、パッシベーション層42は、絶縁層37、電極34b及び35b、並びに導電路39上に設けられている。パッシベーション層42は、前記圧電アクチュエータのパッシベーションに使用される誘電体材料から構成されていればよく、かかる誘電体材料も特に限定されず、公知の誘電体材料であってよい。前記誘電体材料としては、例えば、SiNまたはSION(シリコンオキシナイトレート)等が好適な例として挙げられる。前記パッシベーション層の厚さは特に限定されないが、好ましくは約0.1μm~約3μmの間の厚さである。また、導電パッド38も同様に前記圧電アクチュエータに沿って設けられ、導電路39に電気的に接続されている。なお、パッシベーション層42は、圧電体を湿度等から守るバリア層として機能する。 On the SUS film 33, a Pt film 34a, an SRO film 35a, a piezoelectric film (PZT film) 36, an SRO film 35b, and a Pt film 34b are laminated in this order to constitute a piezoelectric actuator. The piezoelectric actuator further includes an insulating film 37 extending over the electrodes 34a and 35a, the piezoelectric film 36, and the electrodes 34b and 35b. The insulating film 37 includes a dielectric material used for electrical insulation, and such dielectric material may be a known dielectric material, such as a SiO2 layer, a SiN layer, or an Al2O3 layer. . Note that the thickness of the insulating layer containing the insulating film as a constituent material is not particularly limited, but is preferably between about 10 nm and about 10 μm. Further, the conductive path 39 is provided on the insulating layer (insulating film) 37 and contacts the electrodes 34a and 35a and the electrodes 34b and 35b, respectively, allowing selective access during use. Note that the material constituting the conductive path may be a known conductive material, and a suitable example of such a conductive material is aluminum (Al). Further, the passivation layer 42 is provided on the insulating layer 37, the electrodes 34b and 35b, and the conductive path 39. The passivation layer 42 may be made of a dielectric material used for passivation of the piezoelectric actuator, and such dielectric material is not particularly limited, and may be a known dielectric material. Suitable examples of the dielectric material include SiN and SION (silicon oxynitrate). The thickness of the passivation layer is not particularly limited, but is preferably between about 0.1 μm and about 3 μm. Further, a conductive pad 38 is similarly provided along the piezoelectric actuator and is electrically connected to the conductive path 39. Note that the passivation layer 42 functions as a barrier layer that protects the piezoelectric body from humidity and the like.
 本発明の金属膜及び積層構造体は、例えば圧電デバイス等の電子デバイスとして好適に用いられ、電子機器やセンサーシステム等に好適に用いられる。 The metal film and laminated structure of the present invention are suitably used, for example, as electronic devices such as piezoelectric devices, and suitably used for electronic equipment, sensor systems, and the like.
   1  結晶基板(Si基板)
   2  HfZrN膜
   3  SUS膜(FeCrNi膜)
   4  Pt膜
   5  SRO膜
   6  圧電体層(PbTiO膜)
  21  結晶基板(Si基板)
  22  HfZrN膜
  23  SUS膜
  24a Pt膜
  24b Pt膜
  24c Pt膜
  25a SRO膜
  25b SRO膜
  25c SRO膜
  25d SRO膜
  26a PZT膜
  26b PZT膜
  28A カンチレバー・ビーム
  28B カンチレバー・ビーム
  29  隙間
  30  空洞
  31  結晶基板(Si基板)
  32  HfZrN膜
  33  SUS膜
  34a Pt膜
  34b Pt膜
  35a SRO膜
  35b SRO膜
  36  PZT膜
  37  絶縁膜
  38  導電パッド
  39  導電路
  40  流路
  41  チャンバー
  42  パッシベーション層
1101a~101b 金属源
1102a~102j アース
1103a~103b ICP電極
1104a~104b カットフィルター
1105a~105b DC電源
1106a~106b RF電源
1107a~107b ランプ
1108  Ar源
1109  反応性ガス源
1110  電源
1111  基板ホルダー
1112  基板
1113  カットフィルター
1114  ICPリング
1115  真空槽
1116  回転軸
 
 
1 Crystal substrate (Si substrate)
2 HfZrN film 3 SUS film (FeCrNi film)
4 Pt film 5 SRO film 6 Piezoelectric layer (PbTiO film)
21 Crystal substrate (Si substrate)
22 HfZrN film 23 SUS film 24a Pt film 24b Pt film 24c Pt film 25a SRO film 25b SRO film 25c SRO film 25d SRO film 26a PZT film 26b PZT film 28A Cantilever beam 28B Cantilever beam 2 9 Gap 30 Cavity 31 Crystal substrate (Si substrate)
32 HfZrN film 33 SUS film 34a Pt film 34b Pt film 35a SRO film 35b SRO film 36 PZT film 37 Insulating film 38 Conductive pad 39 Conductive path 40 Flow path 41 Chamber 42 Passivation layer 1101a to 101b Metal source 1102a to 10 2j Earth 1103a-103b ICP Electrode 1104a to 104B Cut Filter 1105a -105B DC Power Supply 1106a -106B RF Power Supply 1107A -107B Ramp 1108 AR Source 1109 Reactive Gas Source 1110 Power Supply 1111 Base Plate Holder 1113 Cut Filter 1114 ICP Ring 1114 ICP Ring 1 115 vacant tank 1116 rotation axes

Claims (21)

  1.  結晶基板上に少なくとも第1の層及び第2の層がそれぞれ積層されている積層構造体であって、
     前記第1の層が、金属化合物膜からなり、
     前記第2の層が、熱処理又は加工によりマルテンサイト変態する金属の金属膜からなり、
     前記結晶基板、前記第1の層及び前記第2の層が、それぞれ略同一の結晶軸方向に配向していることを特徴とする積層構造体。
    A laminated structure in which at least a first layer and a second layer are laminated on a crystal substrate,
    the first layer is made of a metal compound film,
    The second layer is made of a metal film of a metal that undergoes martensitic transformation by heat treatment or processing,
    A laminated structure characterized in that the crystal substrate, the first layer, and the second layer are each oriented in substantially the same crystal axis direction.
  2.  前記金属が、Feを含む請求項1記載の積層構造体。 The laminated structure according to claim 1, wherein the metal contains Fe.
  3.  前記金属が、Crを含む請求項1又は2に記載の積層構造体。 The laminated structure according to claim 1 or 2, wherein the metal contains Cr.
  4.  前記金属が、Niを含む請求項1~3のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 3, wherein the metal contains Ni.
  5.  前記金属が、Fe及びCrを含む請求項1~4のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 4, wherein the metal contains Fe and Cr.
  6.  前記金属が、ステンレスである請求項1~5のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 5, wherein the metal is stainless steel.
  7.  前記金属膜の膜厚が100μm以下である請求項1~6のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 6, wherein the metal film has a thickness of 100 μm or less.
  8.  前記金属膜の膜厚が1μm~10μmである請求項1~7のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 7, wherein the metal film has a thickness of 1 μm to 10 μm.
  9.  前記金属化合物膜がHf及び/又はZrを含む請求項1~8のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 8, wherein the metal compound film contains Hf and/or Zr.
  10.  前記金属化合物膜がHf及び/又はZrを含む酸化物又は窒化物からなる請求項1~9のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 9, wherein the metal compound film is made of an oxide or nitride containing Hf and/or Zr.
  11.  前記結晶軸方向が(100)方向である請求項1~10のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 10, wherein the crystal axis direction is the (100) direction.
  12.  前記結晶基板がSi基板である請求項1~11のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 1 to 11, wherein the crystal substrate is a Si substrate.
  13.  前記第2の層上に、第3の層及び第4の層を介して圧電体層又は半導体層が積層されており、前記第3の層が前記金属とは異なる金属からなり、前記第4の層が、導電性金属酸化物からなる請求項1~12のいずれかに記載の積層構造体。 A piezoelectric layer or a semiconductor layer is laminated on the second layer via a third layer and a fourth layer, the third layer is made of a metal different from the metal, and the third layer is made of a metal different from the metal, The laminated structure according to any one of claims 1 to 12, wherein the layer comprises a conductive metal oxide.
  14.  前記第3の層が、周期律表第10族又は第11族に属する金属を含む請求項13記載の積層構造体。 The laminated structure according to claim 13, wherein the third layer contains a metal belonging to Group 10 or Group 11 of the periodic table.
  15.  前記導電性金属酸化物がSr及び/又はRuを含む請求項13又は14に記載の積層構造体。 The laminated structure according to claim 13 or 14, wherein the conductive metal oxide contains Sr and/or Ru.
  16.  前記圧電体層が積層されており、前記圧電体層がPb及びTiを含む請求項13~15のいずれかに記載の積層構造体。 The laminated structure according to any one of claims 13 to 15, wherein the piezoelectric layer is laminated, and the piezoelectric layer contains Pb and Ti.
  17.  積層構造体を含む素子であって、前記積層構造体が請求項1~16のいずれかに記載の積層構造体であることを特徴とする素子。 An element comprising a laminated structure, wherein the laminated structure is the laminated structure according to any one of claims 1 to 16.
  18.  圧電体素子又は半導体素子である請求項17記載の素子。 The element according to claim 17, which is a piezoelectric element or a semiconductor element.
  19.  素子を含む電子デバイスであって、前記素子が請求項17又は18に記載の素子であることを特徴とする電子デバイス。 An electronic device comprising an element, wherein the element is the element according to claim 17 or 18.
  20.  電子デバイスを含む電子機器であって、前記電子デバイスが、請求項19記載の電子デバイスであることを特徴とする電子機器。 An electronic device including an electronic device, wherein the electronic device is the electronic device according to claim 19.
  21.  電子機器を含むシステムであって、前記電子機器が、請求項20記載の電子機器であることを特徴とするシステム。
     
    A system including an electronic device, the electronic device being the electronic device according to claim 20.
PCT/JP2023/032027 2022-08-31 2023-08-31 Laminated structure, element, electronic device, electronic apparatus, and system WO2024048768A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022138859 2022-08-31
JP2022-138861 2022-08-31
JP2022-138860 2022-08-31
JP2022138861 2022-08-31
JP2022138860 2022-08-31
JP2022-138859 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048768A1 true WO2024048768A1 (en) 2024-03-07

Family

ID=90097965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032027 WO2024048768A1 (en) 2022-08-31 2023-08-31 Laminated structure, element, electronic device, electronic apparatus, and system

Country Status (1)

Country Link
WO (1) WO2024048768A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029109A (en) * 2010-07-23 2012-02-09 Nec Casio Mobile Communications Ltd Method of manufacturing vibration member and oscillation device
JP2014169466A (en) * 2013-03-01 2014-09-18 Yuutekku:Kk Orientation substrate, manufacturing method of oriented film substrate, sputtering device and multi-chamber device
WO2022168800A1 (en) * 2021-02-03 2022-08-11 国立大学法人 東京大学 Laminated structure and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029109A (en) * 2010-07-23 2012-02-09 Nec Casio Mobile Communications Ltd Method of manufacturing vibration member and oscillation device
JP2014169466A (en) * 2013-03-01 2014-09-18 Yuutekku:Kk Orientation substrate, manufacturing method of oriented film substrate, sputtering device and multi-chamber device
WO2022168800A1 (en) * 2021-02-03 2022-08-11 国立大学法人 東京大学 Laminated structure and method for producing same

Similar Documents

Publication Publication Date Title
US8864288B2 (en) Piezoelectric device, method of manufacturing piezoelectric device, and liquid ejection head
US9136459B2 (en) Piezoelectric device and method of manufacturing piezoelectric device
US7517063B2 (en) Piezoelectric element
US7083270B2 (en) Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
JP6627647B2 (en) Laminated film, electronic device substrate, electronic device, and method of manufacturing laminated film
US9401469B2 (en) Thin-film piezoelectric material element, method of manufacturing the same, head gimbal assembly, hard disk drive, ink jet head, variable focus lens and sensor
JP7012236B2 (en) Thin film structure and its manufacturing method
EP1503872B1 (en) Array of membrane ultrasound transducers
JP2008041921A (en) Piezoelectric thin film element and its manufacturing method, as well as ink jet head and ink jet-type recorder
WO2023145808A1 (en) Crystal, multilayer structure, electronic device, electronic instrument, and methods respectively for producing these products
JP4875827B2 (en) Piezoelectric thin film and manufacturing method thereof, piezoelectric element including the piezoelectric thin film, ink jet head using the piezoelectric element, and ink jet recording apparatus including the ink jet head
WO2024048768A1 (en) Laminated structure, element, electronic device, electronic apparatus, and system
JP2023109680A (en) Cristal film, laminate structure, electronic device, electronic unit and manufacturing methods thereof
JP2024068247A (en) Laminated structure, element, electronic device, electronic equipment and system
JP2024061965A (en) Self-supporting film, laminated structure, element, electronic device, electronic equipment and system
JP2024072007A (en) LAMINATED STRUCTURE, ELEMENT, ELECTRONIC DEVICE, ELECTRONIC APPARATUS AND SYSTEM
TW202418978A (en) Laminated structure, element, electronic device, electronic instrument and system
WO2023176757A1 (en) Piezoelectric body, laminate structure, electronic device, electronic apparatus, and methods for manufacturing same
WO2023176756A1 (en) Piezoelectric body, laminated structure, electronic device, electronic apparatus, and methods for manufacturing same
WO2023145807A1 (en) Electrode, laminated structure, electronic device, electronic equipment, and methods for producing same
WO2023145806A1 (en) Multilayer structure, electronic device, electronic apparatus and manufacturing method for same
JP2023134330A (en) Piezoelectric material, laminate structure, electronic device, electronic equipment and method for manufacturing them
WO2023176758A1 (en) Piezoelectric body, laminated structure, electronic device, electronic apparatus, and production methods for same
JP2007335489A (en) Piezoelectric material thin-film element, thin-film actuator, ink-jet head, and ink-jet recorder
JP2024081176A (en) Film forming equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860530

Country of ref document: EP

Kind code of ref document: A1