WO2024048746A1 - Solid electrolyte, method for producing same, and power storage device - Google Patents

Solid electrolyte, method for producing same, and power storage device Download PDF

Info

Publication number
WO2024048746A1
WO2024048746A1 PCT/JP2023/031906 JP2023031906W WO2024048746A1 WO 2024048746 A1 WO2024048746 A1 WO 2024048746A1 JP 2023031906 W JP2023031906 W JP 2023031906W WO 2024048746 A1 WO2024048746 A1 WO 2024048746A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electron
compound
alkali metal
component
Prior art date
Application number
PCT/JP2023/031906
Other languages
French (fr)
Japanese (ja)
Inventor
悟 青山
朋子 仲野
秀樹 平岡
直彦 斎藤
研一 小柳津
歓 畠山
裕樹 足立
Original Assignee
東亞合成株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社, 学校法人早稲田大学 filed Critical 東亞合成株式会社
Publication of WO2024048746A1 publication Critical patent/WO2024048746A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • lithium ion secondary batteries As secondary batteries, various power storage devices such as nickel-hydrogen secondary batteries, lithium ion secondary batteries, sodium ion secondary batteries, and electric double layer capacitors have been put into practical use. Among these, lithium ion secondary batteries are used in a wide range of applications because of their high energy density and battery capacity.
  • a lithium ion secondary battery is a secondary battery that has a negative electrode, a positive electrode, and an electrolyte, and charges and discharges by moving lithium ions between the two electrodes via the electrolyte.
  • organic electrolytes have been mainly used as electrolytes.
  • solid electrolytes or gel electrolytes in place of organic electrolytes has been proposed as a technology to eliminate concerns about electrolyte leakage and short circuits inside batteries due to overcharging and overdischarging. ing.
  • the present inventors investigated and found that although the solid electrolyte disclosed in Patent Document 1 exhibits relatively high ionic conductivity at room temperature, when the ionic conductivity of the same solid electrolyte was measured multiple times under the same conditions, It was found that the variation in measured values (hereinafter also referred to as "variation in ionic conductivity”) was large. When there is a large variation in ionic conductivity in a solid electrolyte, there is concern that a secondary battery manufactured using the solid electrolyte will have unstable battery performance and be inferior in terms of quality assurance.
  • the present disclosure has been made in view of these circumstances, and its main purpose is to provide a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity.
  • the present inventors have discovered that in a solid electrolyte using a charge transfer complex, a compound having a phenylene oxide structure is used as an electron donating compound constituting the charge transfer complex, and We have discovered that by controlling the porosity of the electrolyte within a predetermined range, a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity can be obtained. According to the present disclosure, the following means are provided.
  • a solid comprising an electron-donating compound, an electron-accepting compound, and an alkali metal-containing compound, the electron-donating compound being a compound having a phenylene oxide structure, and having a porosity of 20% or less Electrolytes.
  • [4] The amount of the alkali metal-containing compound relative to the total amount of the molar amount of the electron donating compound (however, when the electron donating compound is a polymer, in monomer terms) and the molar amount of the electron accepting compound.
  • the electron-accepting compound is 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7 , 7,8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone and p-benzoquinone, any of the above [1] to [4] Solid electrolyte described in Crab. [6] The solid electrolyte according to any one of [1] to [5] above, wherein the alkali metal-containing compound contains an alkali metal salt.
  • the electron-donating compound is a polymer having a repeating unit represented by the above formula (1), and the electron-accepting compound is 2,3,5,6-tetrachloro-1,4- Benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone and p-benzoquinone -
  • An electricity storage device comprising the solid electrolyte according to any one of [1] to [8] above.
  • a method for producing a solid electrolyte according to any one of [1] to [8] above comprising: a powder composition containing the electron donating compound, the electron accepting compound, and the alkali metal-containing compound and heating a molded body obtained by molding the powdery composition at a temperature equal to or higher than the melting point of the alkali metal-containing compound.
  • a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity.
  • an electricity storage device such as a secondary battery or a capacitor
  • the solid electrolyte of the present disclosure (hereinafter also referred to as "the present solid electrolyte") is a solid electrolyte that utilizes a charge transfer complex, and includes an electron-donating compound (component (A)) and an electron-accepting compound (component (B)). component) and an alkali metal-containing compound (component (C)).
  • the present solid electrolyte is a solid electrolyte that utilizes a charge transfer complex, and includes an electron-donating compound (component (A)) and an electron-accepting compound (component (B)). component) and an alkali metal-containing compound (component (C)).
  • the solid electrolyte includes a compound having a phenylene oxide structure (hereinafter also referred to as a "phenylene oxide compound”) as an electron donating compound.
  • a phenylene oxide compound has a structure represented by the general formula: -(C 6 R 4 -O) n - (wherein R is the same or different and is a hydrogen atom or an alkyl group, and n is an integer of 1 or more. ) in its molecule.
  • R is an alkyl group
  • the number of carbon atoms in the alkyl group is preferably 1 or 2, more preferably 1.
  • n is 1 to 600.
  • phenylene oxide compounds include 2,6-dimethyl-1,4-phenylene oxide, 2,5-dimethyl-1,4-phenylene oxide, etc. as compounds where n in the above general formula is 1. It will be done.
  • a compound in which n is 2 or more hereinafter also referred to as a "polyphenylene oxide compound"
  • a polymer having a structure represented by the general formula: -(C 6 R 4 -O) n - as a repeating unit is used.
  • these electron-donating compounds polyphenylene oxide compounds are preferable because they can increase the ionic conductivity of the solid electrolyte and provide a solid electrolyte with excellent mechanical strength, durability, and heat resistance.
  • a polymer having a repeating unit represented by formula (1) is particularly preferred. (In formula (1), R 1 and R 2 are the same or different and are a hydrogen atom or an alkyl group.)
  • R 1 and R 2 in the above formula (1) are preferably a methyl group or an ethyl group, more preferably a methyl group, from the viewpoint of easy availability of materials.
  • the weight average molecular weight of component (A) is, for example, 1,000 to 100,000, preferably 2,000 to 70,000, and 5,000 to It is more preferably 70,000, even more preferably 10,000 to 70,000, even more preferably 20,000 to 70,000.
  • the polyphenylene oxide compound is available as a commercial product from, for example, Sigma-Aldrich.
  • the electron-donating compound one type may be used alone, or two or more types may be used in combination.
  • the electron-accepting compound may be any compound that can form a charge transfer complex with the electron-donating compound that is component (A).
  • electron-accepting compounds include quinone compounds, cyanide compounds, oxygen, ozone, iodine, sulfur trioxide, transition metal oxides (eg, manganese dioxide), and the like.
  • quinone compounds include 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ ), o-benzoquinone, m-benzoquinone, p-benzoquinone and the like.
  • cyanogen compounds include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE).
  • TCNQ 7,7,8,8-tetracyanoquinodimethane
  • TCNE tetracyanoethylene
  • the electron-accepting compound one type may be used alone, or two or more types may be used in combination.
  • quinone-based compounds and cyanide-based compounds can be used as electron-accepting compounds in that they easily form a charge transfer complex with the phenylene oxide compound, which is component (A), and a solid electrolyte with high ionic conductivity can be obtained.
  • TCNQ 8-tetracyanoquinodimethane
  • o-benzoquinone o-benzoquinone
  • m-benzoquinone m-benzoquinone
  • p-benzoquinone p-benzoquinone
  • the content of the electron-donating compound and the electron-accepting compound is determined based on the molar amount of the electron-donating compound (if the electron-donating compound is a polymer, calculated as a monomer).
  • the molar ratio of the compound is preferably 0.1 or more and 1.0 or less.
  • [molar amount of component (B)]/[molar amount of component (A)] is more preferably 0.15 or more, even more preferably 0.2 or more, and 0.25 The above is even more preferable.
  • the upper limit of [molar amount of component (B)]/[molar amount of component (A)] is more preferably 0.9 or less, and even more preferably 0.8 or less.
  • alkali metal-containing compound is not particularly limited as long as it is a compound that generates alkali metal ions.
  • alkali metal-containing compounds include lithium-containing compounds, sodium-containing compounds, potassium-containing compounds, and the like. Among these, lithium-containing compounds or sodium-containing compounds are preferred, and lithium-containing compounds are more preferred, in that they can improve the ionic conductivity of the solid electrolyte.
  • alkali metal-containing compound examples include alkali metal oxides, alkali metal hydroxides, alkali metal salts, and the like. Specific examples of these include lithium oxide, sodium oxide, potassium oxide, etc. as alkali metal oxides. Examples of alkali metal hydroxides include lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like.
  • the alkali metal-containing compound is preferably an alkali metal salt, and a lithium salt or Sodium salts are more preferred, and lithium salts are even more preferred.
  • the lithium salts bis(fluorosulfonyl)imide lithium, bis(trifluoromethanesulfonyl)imide lithium, or (fluorosulfonyl)(trifluoromethanesulfonyl)imide lithium is particularly preferable.
  • an alkali metal salt has a relatively low melting point
  • a powder composition containing the (A) component, the (B) component, and the (C) component can be molded. After that, when heating (annealing) the molded body to relieve residual stress to obtain a solid electrolyte, it is possible to obtain a solid electrolyte with a sufficiently small porosity without setting the temperature during annealing to an excessively high temperature. Electrolytes can be obtained.
  • variation in ionic conductivity refers to the fact that when the ionic conductivity of the same solid electrolyte is measured multiple times under the same conditions, the measured values do not match between the measurements and are distributed irregularly. Point.
  • the alkali metal-containing compound a compound having a melting point of 70°C or higher can be preferably used.
  • the melting point of the alkali metal-containing compound is preferably 80°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher.
  • the upper limit of the melting point of the alkali metal-containing compound is, for example, 350° C. or lower.
  • the melting point of the alkali metal-containing compound is preferably 300°C or lower, and preferably 280°C or lower, in that the variation in ionic conductivity in the solid electrolyte can be further reduced without setting the temperature during annealing to an excessively high temperature.
  • the temperature is more preferably 250°C or lower, even more preferably 230°C or lower.
  • the molecular weight of the alkali metal-containing compound is, for example, 500 or less, preferably 400 or less, more preferably 350 or less, even more preferably 300 or less, and even more preferably 250 or less.
  • the lower limit of the molecular weight of the alkali metal-containing compound is, for example, 20 or more, preferably 50 or more, more preferably 100 or more, and even more preferably 150 or more.
  • the content of the alkali metal-containing compound is determined based on the total molar amount of the electron-donating compound (if the electron-donating compound is a polymer, calculated as a monomer) and the electron-accepting compound.
  • [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is more preferably 0.05 or more, and 0.1 or more. More preferably, it is 0.2 or more, even more preferably 0.3 or more.
  • the upper limit of [mole amount of component (C)]/[mole amount of component (A) + molar amount of component (B)] is more preferably 0.9 or less, and 0.8 or less. is more preferable, even more preferably 0.7 or less, even more preferably 0.6 or less.
  • the alkali metal-containing compound one type may be used alone, or two or more types may be used in combination.
  • the content of component (A), component (B), and component (C) in this solid electrolyte is such that [molar amount of component (B)]/[molar amount of component (A)] is 0.1 or more and 1.0 or more. and [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is preferably 0.03 or more and 1.0 or less.
  • [molar amount of component (B)]/[molar amount of component (A)] is 0.1 or more and 1.0 or less
  • [(C ) It is more preferable that molar amount of component]/[molar amount of component (A) + molar amount of component (B)] is 0.2 or more and 0.8 or less
  • [molar amount of component (B)]/ [Molar amount of component (A)] is 0.1 or more and 1.0 or less
  • [Molar amount of component (C)]/[Molar amount of component (A) + Molar amount of component (B)] is more preferably 0.3 or more and 0.6 or less.
  • the present solid electrolyte further contains a component different from the above-mentioned (A) component, (B) component, and (C) component (hereinafter also referred to as "other components") within a range that does not impair the effects of the present disclosure. It's okay to stay.
  • Other components include a solvent (for example, an organic solvent, water, or a mixture of an organic solvent and water), a binder, and the like.
  • This solid electrolyte can be manufactured by using component (A), component (B), and component (C) as raw materials.
  • the method for manufacturing the present solid electrolyte is not particularly limited.
  • a preferred embodiment of the method for producing the present solid electrolyte includes a method including the following steps 1 and 2.
  • Step 1 Step of obtaining a powdery composition containing an electron-donating compound (component (A)), an electron-accepting compound (component (B)), and an alkali metal-containing compound (component (C))
  • Step 2 The above powdery composition Each step will be described in detail, starting from the step of heating the molded body obtained by molding the composition at a temperature equal to or higher than the melting point of the alkali metal-containing compound.
  • Step 1 The method for obtaining a powder composition (hereinafter also referred to as "powder composition P") containing component (A), component (B), and component (C) in Step 1 is not particularly limited.
  • powdery composition P can be obtained by simultaneously mixing component (A), component (B), and component (C), and pulverizing and/or heating the resulting mixture.
  • some of the components (A), (B), and (C) may be mixed, the resulting mixture is pulverized and/or heated, the remaining components are added, and then further pulverized and/or heated.
  • a powdery composition P may be obtained by doing so.
  • a preferred method for obtaining powdery composition P includes a method including the following steps 1-1 and 1-2.
  • Step 1-1 By mixing the (A) component and the (B) component, and pulverizing and heating the resulting mixture, obtain a powdery intermediate composition containing the (A) component and the (B) component.
  • Process Step 1-2 Mix the above intermediate composition and component (C), and grind and heat the resulting mixture to form a powder containing component (A), component (B), and component (C). Step of obtaining composition P
  • Step 1-1 heat treatment may be performed after pulverizing the mixture of components (A) and (B), or pulverization treatment may be performed after heating the mixture. From the viewpoint of uniformly mixing component (A) and component (B) and sufficiently forming a charge transfer complex, it is preferable to perform heat treatment after pulverization.
  • the method of pulverizing the mixture is not particularly limited, and dry pulverization, wet pulverization, low-temperature pulverization, etc. can be used. Further, the pulverization treatment is preferably performed using a pulverizer such as a ball mill, bead mill, or blender.
  • the temperature at which the mixture is heated is usually 120 to 320°C, preferably 150 to 300°C.
  • the heating time is, for example, 15 to 360 minutes.
  • the heat treatment for obtaining the intermediate composition may be performed only once, or may be performed multiple times. When heating is performed multiple times, the heating temperature and heating time each time may be the same or different.
  • the heat treatment in step 1-1 is usually performed under normal pressure, but may be performed under increased pressure or reduced pressure.
  • Step 1-2 heat treatment may be performed after pulverizing the mixture of the intermediate composition obtained in Step 1-1 above and component (C), or heat treatment may be performed after heating the mixture.
  • a pulverization treatment may also be performed. From the viewpoint of sufficiently melting component (C) and obtaining a composition in which components (A), (B), and (C) are uniformly mixed, it is preferable to perform heat treatment after pulverization.
  • the method for pulverizing the mixture is not particularly limited.
  • the temperature at which the mixture is heated can be appropriately set depending on the type of each component, but is usually 90 to 250°C, preferably 100 to 200°C.
  • the heating time is, for example, 5 to 120 minutes.
  • the heat treatment in step 1-2 is usually performed under normal pressure, but may be performed under increased pressure or reduced pressure.
  • Step 2 first, the powdered composition P obtained in step 1 is molded into a desired shape.
  • the method for molding the powdery composition P is not particularly limited, and known methods such as extrusion molding, injection molding, pressure molding, cast molding, mold cast molding, and tape molding can be employed. Among these, it is preferable to obtain a molded body by pressure molding the powder composition P, since the porosity of the obtained solid electrolyte can be made as small as possible.
  • the shape of the molded body is not particularly limited, and can be appropriately set depending on the shape of the electricity storage device to which it is applied.
  • the shape of the molded body is, for example, rectangular or circular.
  • the molded body of powdery composition P is heated at a temperature equal to or higher than the melting point of the alkali metal-containing compound.
  • annealing treatment By relieving residual stress through this heat treatment (annealing treatment), it is possible to stabilize the dimensional accuracy of the solid electrolyte and to suppress deformation such as distortion and cracking.
  • annealing temperature since the temperature during annealing treatment (hereinafter also referred to as "annealing temperature”) is set to a temperature higher than the melting point of the alkali metal-containing compound, the alkali metal-containing compound contained in the molded article melts, thereby causing , a solid electrolyte with sufficiently small porosity can be obtained.
  • the annealing temperature is preferably higher than the melting point of the alkali metal-containing compound. Specifically, the temperature is preferably 2°C or more higher than the melting point of the alkali metal-containing compound, more preferably 5°C or more higher, and even more preferably 7°C or more higher.
  • the upper limit of the annealing temperature may be, for example, 50° C. or lower relative to the melting point of the alkali metal-containing compound, taking into consideration the upper limit temperature setting of the heating device and the like.
  • the annealing treatment time is, for example, 1 to 24 hours, preferably 2 to 24 hours.
  • the temperature of the solid electrolyte may be lowered by rapidly cooling the solid electrolyte (for example, placing the solid electrolyte in a constant temperature bath at a low temperature (e.g., 25°C or less) for about 2 hours or shorter).
  • the temperature of the solid electrolyte may be lowered by gradually cooling the solid electrolyte (eg, slowly lowering it to room temperature over 3 to 48 hours). From the viewpoint of suppressing crystallization of the alkali metal-containing compound, it is preferable to lower the temperature of the solid electrolyte by the former (rapid cooling).
  • the temperature of the constant temperature bath is preferably 0 ° C. or lower, and more preferably -15 ° C. or lower. .
  • the crystallinity of the alkali metal-containing compound in the solid electrolyte is, for example, 50% or less, preferably 40% or less, and more preferably 30% or less.
  • the degree of crystallinity of the alkali metal-containing compound in the solid electrolyte is determined by the heat of fusion H1 per unit mass of the completely crystalline alkali metal-containing compound and the alkali metal-containing compound in the solid electrolyte using a differential scanning calorimeter.
  • the present solid electrolyte obtained as described above has the following characteristics.
  • the solid electrolyte has a porosity of 20% or less.
  • the porosity of the solid electrolyte exceeds 20%, variations in ionic conductivity increase, and the quality of the solid electrolyte and the electricity storage device manufactured using the same tends to become unstable.
  • the porosity of the solid electrolyte is preferably 18% or less, more preferably 16% or less, and even more preferably 15% or less.
  • the lower limit of the porosity of the solid electrolyte is not particularly limited.
  • the porosity of the solid electrolyte is 0% or more, may be 0.5% or more, may be 1% or more, or may be 2% or more.
  • the theoretical density (D') is a value calculated from the sum of the densities of components (A), (B), and (C) contained in the solid electrolyte multiplied by the mass ratio of each component. be.
  • the details of the method for calculating the porosity and density (D) follow the method described in Examples described below.
  • the porosity of the solid electrolyte can be adjusted by the temperature of the heat treatment (ie, annealing treatment) after mixing the components (A), (B), and (C) and molding the mixture into a desired shape.
  • This solid electrolyte exhibits high ionic conductivity at room temperature. Specifically, for a solid electrolyte with a thickness of approximately 300 ⁇ m (specifically, 300 ⁇ 30 ⁇ m), the ionic conductivity measured at 25°C using the AC impedance method is 3 ⁇ 10 ⁇ 7 S cm ⁇ 1 or more. It is preferable that From the viewpoint of obtaining a power storage device with excellent performance, the ionic conductivity under the same conditions is more preferably 5 ⁇ 10 -7 S cm -1 or more, and 8 ⁇ 10 -7 S cm -1 or more. It is even more preferable. The details of the method for measuring ionic conductivity follow the method described in Examples described later.
  • This solid electrolyte exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity. Therefore, by using the present solid electrolyte as an electrolyte of an electricity storage device, an electricity storage device with stable quality can be obtained.
  • the electricity storage device of the present disclosure includes the present solid electrolyte.
  • Examples of this device include secondary batteries and capacitors.
  • the present device is a secondary battery, one embodiment thereof is an all-solid-state battery, and a lithium ion secondary battery is preferable because it has excellent ionic conductivity.
  • a lithium ion secondary battery is a laminate that includes electrodes consisting of a positive electrode and a negative electrode, and a solid electrolyte, and the solid electrolyte is arranged between the positive electrode and the negative electrode so that the solid electrolyte and the electrode are in contact with each other.
  • the materials constituting the positive electrode and the negative electrode are not particularly limited, and can be appropriately selected and used from materials known as electrode materials for lithium ion secondary batteries.
  • a metal foil such as aluminum or stainless steel can be used as the positive electrode current collector.
  • As the negative electrode current collector metal foil such as copper foil or lithium foil can be used.
  • the solid electrolyte includes the above-mentioned component (A), component (B), and component (C).
  • the thickness of the solid electrolyte is not particularly limited, and can be appropriately set depending on the use of the secondary battery.
  • the thickness of the solid electrolyte is, for example, 5 to 500 ⁇ m.
  • the thickness of the solid electrolyte is preferably 5 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, and 5 to 100 ⁇ m in that a solid electrolyte with sufficiently small porosity can be obtained and the energy density of the electricity storage device can be further increased. is even more preferable.
  • the method for manufacturing a lithium ion secondary battery is not particularly limited, and any known method can be appropriately adopted depending on the battery structure and the like.
  • a laminate including a positive electrode, a solid electrolyte, and a negative electrode may be manufactured by sandwiching a solid electrolyte obtained by annealing a molded body of powdery composition P between a positive electrode and a negative electrode.
  • a laminate including a positive electrode, a solid electrolyte, and a negative electrode may be manufactured by storing the powdered composition P in a container so as to sandwich it between a positive electrode and a negative electrode, and subjecting the container to an annealing treatment.
  • a laminate including a positive electrode, a solid electrolyte, and a negative electrode is usually housed in a case and used as a secondary battery.
  • the present device is not limited to the above-mentioned configuration in which the ion-conducting carrier is a lithium ion, but may be a secondary battery that uses other ions such as sodium ions as a carrier, for example.
  • the device may also be a capacitor.
  • One embodiment of the capacitor includes a configuration in which the capacitor includes an anode body, a cathode body, and a solid electrolyte, and the solid electrolyte is disposed between the anode body and the cathode body so that the solid electrolyte and the electrode are in contact with each other.
  • the electricity storage device equipped with this solid electrolyte can be applied to various uses. Specifically, for example, various mobile devices such as mobile phones, computers, smartphones, game devices, and wearable terminals; various mobile devices such as electric cars, hybrid cars, robots, and drones; digital cameras, video cameras, music players, and electric It can be used as a power source for various electrical and electronic devices such as tools and home appliances.
  • various mobile devices such as mobile phones, computers, smartphones, game devices, and wearable terminals
  • various mobile devices such as electric cars, hybrid cars, robots, and drones
  • digital cameras, video cameras, music players, and electric It can be used as a power source for various electrical and electronic devices such as tools and home appliances.
  • Example 1 ⁇ Production and evaluation of solid electrolyte ⁇
  • Example 1 43 parts of poly(2,6-dimethyl-1,4-phenylene oxide (manufactured by Sigma-Aldrich, hereinafter also referred to as "PPO") and 57 parts of chloranil were roughly mixed in a mortar, and a ball mill (mini mill PULVERISETTE 23 manufactured by FRITSCH) was used. ; hereinafter simply referred to as a "ball mill”) at a frequency of 40 Hz for 30 minutes.
  • PPO poly(2,6-dimethyl-1,4-phenylene oxide
  • 57 parts of chloranil were roughly mixed in a mortar, and a ball mill (mini mill PULVERISETTE 23 manufactured by FRITSCH) was used. ; hereinafter simply referred to as a "ball mill”) at a frequency of 40 Hz for 30 minutes.
  • ball mill mini mill PULVERISETTE 23 manufactured by FRITSCH
  • the obtained crushed product was placed in a petri dish, covered with aluminum foil, and heated for 60 minutes on a hot plate (CHP-170DF manufactured by As One Corporation; hereinafter simply referred to as "hot plate”) set at 200 ° C. It was heated for 30 minutes on a hot plate set at 280°C.
  • the product CT-1 was obtained as a black powder (see Table 1).
  • “molar ratio (B)/(A)” represents the ratio of the molar amount of component (B) to the molar amount (monomer equivalent) of component (A).
  • LiFTFSI lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide
  • each of the solid electrolyte powder was filled into three sets of all-solid battery evaluation cells (KP-SolidCell manufactured by Hosen Co., Ltd.), and the cells were sealed with a torque of 20 N ⁇ m.
  • a disk made by SKD (diameter 1 cm) was used for the disk sandwiching the solid electrolyte powder.
  • Example 1 After the ionic conductivity measurement, the evaluation cell was disassembled and the solid electrolyte SE-1 obtained in Example 1 was taken out. The thickness (L) of the solid electrolyte SE-1 was measured using a film thickness meter (manufactured by Mitutoyo) and found to be 277 ⁇ m. Further, the density (D) of the solid electrolyte was determined using the following formula (3).
  • D M/(S ⁇ L) (3)
  • D is the density of the solid electrolyte (unit: g cm -3 )
  • M is the mass of the solid electrolyte (unit: g)
  • S is the contact area between the electrode and the solid electrolyte (unit: cm 2 )
  • L indicates the thickness of the solid electrolyte (unit: cm).
  • Table 2 shows the evaluation results of solid electrolyte SE-1.
  • molar ratio (C)/[(A)+(B)] is based on the total molar amount of component (A) (monomer equivalent) and component (B).
  • C) Represents the molar ratio of component.
  • Example 2 66 parts of PPO and 34 parts of chloranil were roughly mixed in a mortar and ground using a ball mill at a frequency of 40 Hz for 30 minutes. The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 2 was obtained as a black powder (see Table 1).
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • Example 2 The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 250° C. to produce solid electrolyte SE-2 (see Table 2).
  • the ionic conductivity and porosity of the solid electrolyte SE-2 were measured by the same operation as in Example 1. The results are shown in Table 2.
  • Examples 3, 4, 6, 7 and Comparative Example 1 The same operation as in Example 1 was carried out, except that the type of raw materials, the amount charged, and the annealing temperature were changed as shown in Tables 1 and 2 to produce the solid electrolyte, and the products CT-3, CT-4, After obtaining CT-6, CT-7, and CT-10, solid electrolytes SE-3, SE-4, SE-6, SE-7, and SE-10 were obtained. By the same operation as in Example 1, the ionic conductivity and porosity of solid electrolytes SE-3, SE-4, SE-6, SE-7, and SE-10 were measured. The results are shown in Table 2.
  • Example 5 69 parts of PPO and 31 parts of 7,7,8,8-tetracyanoquinodimethane (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., hereinafter also referred to as "TCNQ") were roughly mixed in a mortar and mixed at a frequency of 40 Hz using a ball mill. Milled for 30 minutes. The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 5 was obtained as a black powder (see Table 1).
  • LiFSI lithium bis(fluorosulfonyl)imide
  • Example 2 The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 160° C. to produce solid electrolyte SE-5 (see Table 2).
  • the ionic conductivity and porosity of the solid electrolyte SE-5 were measured by the same operation as in Example 1. The results are shown in Table 2.
  • Example 8 The same operation as in Example 2 was performed, except that the amount of raw materials charged was changed as shown in Tables 1 and 2 to produce the solid electrolyte. After obtaining the product CT-8, the solid electrolyte SE- I got 8. In addition, the ionic conductivity and porosity of the solid electrolyte SE-8 were measured by the same operation as in Example 2. The results are shown in Table 2.
  • Example 9 60 parts of PPO and 40 parts of chloranil were roughly mixed in a mortar and ground using a ball mill at a frequency of 40 Hz for 30 minutes. The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 9 was obtained as a black powder (see Table 1).
  • NaFSI sodium bis(fluorosulfonyl)imide
  • Example 2 The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 125° C. to produce solid electrolyte SE-9 (see Table 2).
  • the ionic conductivity and porosity of the solid electrolyte SE-9 were measured by the same operation as in Example 1. The results are shown in Table 2.
  • ⁇ PPO Poly(2,6-dimethyl-1,4-phenylene oxide) [manufactured by Sigma-Aldrich]
  • ⁇ Chloranil 2,3,5,6-tetrachloro-1,4-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
  • ⁇ DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
  • ⁇ TCNQ 7,7,8,8-tetracyanoquinodimethane [manufactured by Fujifilm Wako Pure Chemical Industries]
  • ⁇ BQ p-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
  • LiTFSI Lithium bis(trifluoromethanesulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.] melting point 232°C
  • ⁇ LiFSI Lithium bis(fluorosulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
  • melting point 140°C ⁇ NaFSI Sodium bis(fluorosulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.], melting point 106°C
  • Example 10 15 mg each of the solid electrolyte powder obtained in Example 1 was filled into three sets of all-solid battery evaluation cells (KP-SolidCell manufactured by Hosen Co., Ltd.), and the cells were sealed with a torque of 20 N ⁇ m. A disk made by SKD (diameter 1 cm) was used for the disk sandwiching the solid electrolyte powder.
  • the ionic conductivity and porosity of the solid electrolyte SE-11 were measured by the same operation as in Example 1.
  • the results of three measurements of ionic conductivity were 5 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 , 1 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 , and 4 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 . Further, as a result of evaluating the variation in ionic conductivity from the results of three measurements of ionic conductivity in the same manner as in Example 1, it was determined to be "A". Furthermore, as in Example 1, the porosity ( ⁇ ) of the solid electrolyte SE-11 was determined to be 12%.
  • [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B) is 0.3 or more and 0.6 or less.
  • the solid electrolytes of Examples 1 to 3 within the range showed better ionic conductivity.
  • the solid electrolyte of the present disclosure which contains a phenylene oxide compound as an electron donating compound, an electron accepting compound, and an alkali metal-containing compound and has a porosity of 20% or less, exhibits high ionic conductivity at room temperature. , and the variation in ionic conductivity was found to be small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

This solid electrolyte comprises an electron-donating compound, an electron-accepting compound, and an alkali metal-containing compound, wherein the electron-donating compound is a compound having a phenylene oxide structure, and the porosity of the solid electrolyte is 20% or less.

Description

固体電解質及びその製造方法、並びに蓄電デバイスSolid electrolyte and its manufacturing method, and power storage device
[関連出願の相互参照]
 本出願は、2022年9月2日に出願された日本特許出願番号2022-140045号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、固体電解質及びその製造方法、並びに蓄電デバイスに関する。
[Cross reference to related applications]
This application claims priority based on Japanese Patent Application No. 2022-140045 filed on September 2, 2022, and is incorporated herein by reference in its entirety.
The present disclosure relates to a solid electrolyte, a method for manufacturing the same, and a power storage device.
 二次電池としては、ニッケル水素二次電池、リチウムイオン二次電池、ナトリウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。中でも、リチウムイオン二次電池は、高いエネルギー密度や電池容量を有する点において、広範な用途で利用されている。 As secondary batteries, various power storage devices such as nickel-hydrogen secondary batteries, lithium ion secondary batteries, sodium ion secondary batteries, and electric double layer capacitors have been put into practical use. Among these, lithium ion secondary batteries are used in a wide range of applications because of their high energy density and battery capacity.
 リチウムイオン二次電池は、負極、正極及び電解質を有し、電解質を介して両極間でリチウムイオンを移動させることによって充放電を行う二次電池である。電解質としては、従来、有機電解液が主に用いられてきている。これに対し、近年、電解液の液漏れや、過充電・過放電による電池内部での短絡の懸念を払拭する技術として、有機電解液に代えて固体電解質又はゲル状電解質を用いることが提案されている。 A lithium ion secondary battery is a secondary battery that has a negative electrode, a positive electrode, and an electrolyte, and charges and discharges by moving lithium ions between the two electrodes via the electrolyte. Conventionally, organic electrolytes have been mainly used as electrolytes. In response, in recent years, the use of solid electrolytes or gel electrolytes in place of organic electrolytes has been proposed as a technology to eliminate concerns about electrolyte leakage and short circuits inside batteries due to overcharging and overdischarging. ing.
 固体電解質としては、室温でガラス状態にあるポリフェニレンスルフィドを酸化剤でドープして得られる電荷移動錯体と、イオン伝導のキャリアとなり得るイオン源を有する化合物(イオン化合物)との複合体が開発されている(例えば、特許文献1参照)。 As a solid electrolyte, a composite of a charge transfer complex obtained by doping polyphenylene sulfide, which is in a glass state at room temperature with an oxidizing agent, and a compound (ionic compound) having an ion source that can serve as a carrier for ion conduction has been developed. (For example, see Patent Document 1).
米国特許出願公開第2017/0005356号明細書US Patent Application Publication No. 2017/0005356
 本発明者らが検討したところ、特許文献1に開示されている固体電解質は、室温において比較的高いイオン伝導性を示すものの、同一の固体電解質のイオン伝導度を同一条件で複数回測定した場合の測定値のばらつき(以下では、「イオン伝導度のばらつき」ともいう。)が大きいことが分かった。固体電解質においてイオン伝導度のばらつきが大きい場合、その固体電解質を用いて製造された二次電池は電池性能が安定せず、品質保証の点で劣ることが懸念される。 The present inventors investigated and found that although the solid electrolyte disclosed in Patent Document 1 exhibits relatively high ionic conductivity at room temperature, when the ionic conductivity of the same solid electrolyte was measured multiple times under the same conditions, It was found that the variation in measured values (hereinafter also referred to as "variation in ionic conductivity") was large. When there is a large variation in ionic conductivity in a solid electrolyte, there is concern that a secondary battery manufactured using the solid electrolyte will have unstable battery performance and be inferior in terms of quality assurance.
 本開示はこのような事情に鑑みてなされたものであり、室温において高いイオン伝導性を示し、かつイオン伝導度のばらつきが小さい固体電解質を提供することを主たる目的とする。 The present disclosure has been made in view of these circumstances, and its main purpose is to provide a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity.
 本発明者らは、上記課題を解決するために鋭意検討した結果、電荷移動錯体を利用した固体電解質において、電荷移動錯体を構成する電子供与性化合物としてフェニレンオキシド構造を有する化合物を用い、かつ固体電解質の空隙率を所定範囲にすることで、室温において高いイオン伝導性を示し、かつイオン伝導度のばらつきが小さい固体電解質が得られることを見出した。本開示によれば以下の手段が提供される。 As a result of intensive studies to solve the above problems, the present inventors have discovered that in a solid electrolyte using a charge transfer complex, a compound having a phenylene oxide structure is used as an electron donating compound constituting the charge transfer complex, and We have discovered that by controlling the porosity of the electrolyte within a predetermined range, a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity can be obtained. According to the present disclosure, the following means are provided.
〔1〕 電子供与性化合物と、電子受容性化合物と、アルカリ金属含有化合物と、を含み、前記電子供与性化合物は、フェニレンオキシド構造を有する化合物であり、空隙率が20%以下である、固体電解質。 [1] A solid comprising an electron-donating compound, an electron-accepting compound, and an alkali metal-containing compound, the electron-donating compound being a compound having a phenylene oxide structure, and having a porosity of 20% or less Electrolytes.
〔2〕 前記電子供与性化合物は、下記式(1)で表される繰り返し単位を有する重合体である、上記〔1〕に記載の固体電解質。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R及びRは、同一又は異なって、水素原子又はアルキル基である。)
〔3〕 前記電子供与性化合物のモル量(ただし、前記電子供与性化合物が重合体の場合には単量体換算)に対する、前記電子受容性化合物のモル量の比率が0.1以上1.0以下である、上記〔1〕又は〔2〕に記載の固体電解質。
〔4〕 前記電子供与性化合物のモル量(ただし、前記電子供与性化合物が重合体の場合には単量体換算)と前記電子受容性化合物のモル量の合計量に対する、前記アルカリ金属含有化合物のモル量の比率が0.03以上1.0以下である、上記〔1〕~〔3〕のいずれかに記載の固体電解質。
[2] The solid electrolyte according to [1] above, wherein the electron donating compound is a polymer having a repeating unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(In formula (1), R 1 and R 2 are the same or different and are a hydrogen atom or an alkyl group.)
[3] The ratio of the molar amount of the electron-accepting compound to the molar amount of the electron-donating compound (however, when the electron-donating compound is a polymer, in monomer terms) is 0.1 or more; 1. 0 or less, the solid electrolyte according to [1] or [2] above.
[4] The amount of the alkali metal-containing compound relative to the total amount of the molar amount of the electron donating compound (however, when the electron donating compound is a polymer, in monomer terms) and the molar amount of the electron accepting compound. The solid electrolyte according to any one of [1] to [3] above, wherein the molar ratio of is 0.03 or more and 1.0 or less.
〔5〕 前記電子受容性化合物が、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、o-ベンゾキノン、m-ベンゾキノン及びp-ベンゾキノンからなる群より選択される少なくとも1種を含む、上記〔1〕~〔4〕のいずれかに記載の固体電解質。
〔6〕 前記アルカリ金属含有化合物がアルカリ金属塩を含む、上記〔1〕~〔5〕のいずれかに記載の固体電解質。
〔7〕 前記アルカリ金属含有化合物がリチウム含有化合物を含む、上記〔1〕~〔6〕のいずれかに記載の固体電解質。
〔8〕 前記電子供与性化合物は、上記式(1)で表される繰り返し単位を有する重合体であり、前記電子受容性化合物は、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、o-ベンゾキノン、m-ベンゾキノン及びp-ベンゾキノンからなる群より選択される少なくとも1種を含み、前記アルカリ金属含有化合物はアルカリ金属塩を含む、上記〔1〕~〔7〕のいずれかに記載の固体電解質。
[5] The electron-accepting compound is 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7 , 7,8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone and p-benzoquinone, any of the above [1] to [4] Solid electrolyte described in Crab.
[6] The solid electrolyte according to any one of [1] to [5] above, wherein the alkali metal-containing compound contains an alkali metal salt.
[7] The solid electrolyte according to any one of [1] to [6] above, wherein the alkali metal-containing compound contains a lithium-containing compound.
[8] The electron-donating compound is a polymer having a repeating unit represented by the above formula (1), and the electron-accepting compound is 2,3,5,6-tetrachloro-1,4- Benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone and p-benzoquinone - The solid electrolyte according to any one of [1] to [7] above, which contains at least one member selected from the group consisting of benzoquinone, and wherein the alkali metal-containing compound contains an alkali metal salt.
〔9〕 上記〔1〕~〔8〕のいずれかに記載の固体電解質を備える、蓄電デバイス。
〔10〕 上記〔1〕~〔8〕のいずれかに記載の固体電解質の製造方法であって、前記電子供与性化合物、前記電子受容性化合物及び前記アルカリ金属含有化合物を含む粉状組成物を得る工程と、前記粉状組成物を成形して得られた成形体を、前記アルカリ金属含有化合物の融点以上の温度で加熱する工程と、を含む、固体電解質の製造方法。
〔11〕 前記成形体は、前記粉状組成物を加圧成形することにより得られる、上記〔10〕に記載の固体電解質の製造方法。
[9] An electricity storage device comprising the solid electrolyte according to any one of [1] to [8] above.
[10] A method for producing a solid electrolyte according to any one of [1] to [8] above, comprising: a powder composition containing the electron donating compound, the electron accepting compound, and the alkali metal-containing compound and heating a molded body obtained by molding the powdery composition at a temperature equal to or higher than the melting point of the alkali metal-containing compound.
[11] The method for producing a solid electrolyte according to [10] above, wherein the molded body is obtained by pressure molding the powdery composition.
 本開示によれば、室温において高いイオン伝導性を示し、かつイオン伝導度のばらつきが小さい固体電解質を得ることができる。このような本開示の固体電解質を二次電池やキャパシタ等の蓄電デバイスの電解質として用いることにより、電解質の固体化による安全性確保と、電池性能とを兼ね備える蓄電デバイスを得ることができる。 According to the present disclosure, it is possible to obtain a solid electrolyte that exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity. By using such a solid electrolyte of the present disclosure as an electrolyte of an electricity storage device such as a secondary battery or a capacitor, it is possible to obtain an electricity storage device that combines safety by solidification of the electrolyte and battery performance.
 以下、本開示について詳しく説明する。 Hereinafter, the present disclosure will be explained in detail.
≪固体電解質≫
 本開示の固体電解質(以下、「本固体電解質」ともいう。)は、電荷移動錯体を利用した固体電解質であり、電子供与性化合物((A)成分)と、電子受容性化合物((B)成分)と、アルカリ金属含有化合物((C)成分)とを含む複合体である。以下ではまず、本固体電解質に含まれる各成分について説明する。
≪Solid electrolyte≫
The solid electrolyte of the present disclosure (hereinafter also referred to as "the present solid electrolyte") is a solid electrolyte that utilizes a charge transfer complex, and includes an electron-donating compound (component (A)) and an electron-accepting compound (component (B)). component) and an alkali metal-containing compound (component (C)). First, each component contained in the present solid electrolyte will be explained below.
<(A)成分:電子供与性化合物>
 本固体電解質は、電子供与性化合物として、フェニレンオキシド構造を有する化合物(以下、「フェニレンオキシド化合物」ともいう。)を含む。フェニレンオキシド化合物は、一般式:-(C-O)-で示される構造(ただし、Rは、同一又は異なって、水素原子又はアルキル基であり、nは1以上の整数である。)を分子内に有する化合物である。Rがアルキル基である場合、当該アルキル基の炭素数は1又は2が好ましく、1がより好ましい。nは、例えば1~600である。
<(A) component: electron donating compound>
The solid electrolyte includes a compound having a phenylene oxide structure (hereinafter also referred to as a "phenylene oxide compound") as an electron donating compound. A phenylene oxide compound has a structure represented by the general formula: -(C 6 R 4 -O) n - (wherein R is the same or different and is a hydrogen atom or an alkyl group, and n is an integer of 1 or more. ) in its molecule. When R is an alkyl group, the number of carbon atoms in the alkyl group is preferably 1 or 2, more preferably 1. For example, n is 1 to 600.
 フェニレンオキシド化合物の具体例としては、上記一般式中のnが1である化合物として、2,6-ジメチル-1,4-フェニレンオキシド、2,5-ジメチル-1,4-フェニレンオキシド等が挙げられる。また、nが2以上である化合物(以下、「ポリフェニレンオキシド化合物」ともいう。)としては、一般式:-(C-O)-で示される構造を繰り返し単位として有する重合体が挙げられる。電子供与性化合物は、固体電解質のイオン伝導性を高くでき、また機械的強度や耐久性、耐熱性に優れた固体電解質を得ることができる点において、これらのうち、ポリフェニレンオキシド化合物が好ましく、下記式(1)で表される繰り返し単位を有する重合体が特に好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びRは、同一又は異なって、水素原子又はアルキル基である。)
Specific examples of phenylene oxide compounds include 2,6-dimethyl-1,4-phenylene oxide, 2,5-dimethyl-1,4-phenylene oxide, etc. as compounds where n in the above general formula is 1. It will be done. In addition, as a compound in which n is 2 or more (hereinafter also referred to as a "polyphenylene oxide compound"), a polymer having a structure represented by the general formula: -(C 6 R 4 -O) n - as a repeating unit is used. Can be mentioned. Among these electron-donating compounds, polyphenylene oxide compounds are preferable because they can increase the ionic conductivity of the solid electrolyte and provide a solid electrolyte with excellent mechanical strength, durability, and heat resistance. A polymer having a repeating unit represented by formula (1) is particularly preferred.
Figure JPOXMLDOC01-appb-C000004
(In formula (1), R 1 and R 2 are the same or different and are a hydrogen atom or an alkyl group.)
 上記式(1)中のR及びRは、材料の入手容易性の観点から、メチル基又はエチル基であることが好ましく、メチル基であることがより好ましい。 R 1 and R 2 in the above formula (1) are preferably a methyl group or an ethyl group, more preferably a methyl group, from the viewpoint of easy availability of materials.
 (A)成分としてポリフェニレンオキシド化合物を用いる場合、(A)成分の重量平均分子量は、例えば1,000~100,000であり、2,000~70,000であることが好ましく、5,000~70,000であることがより好ましく、10,000~70,000であることが更に好ましく、20,000~70,000であることがより更に好ましい。なお、ポリフェニレンオキシド化合物は、例えばシグマ-アルドリッチ社等から市販品として入手可能である。電子供与性化合物としては1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 When using a polyphenylene oxide compound as component (A), the weight average molecular weight of component (A) is, for example, 1,000 to 100,000, preferably 2,000 to 70,000, and 5,000 to It is more preferably 70,000, even more preferably 10,000 to 70,000, even more preferably 20,000 to 70,000. Note that the polyphenylene oxide compound is available as a commercial product from, for example, Sigma-Aldrich. As the electron-donating compound, one type may be used alone, or two or more types may be used in combination.
<(B)成分:電子受容性化合物>
 電子受容性化合物は、(A)成分である電子供与性化合物と電荷移動錯体を形成可能な化合物であればよい。電子受容性化合物の具体例としては、キノン系化合物、シアン系化合物、酸素、オゾン、ヨウ素、三酸化硫黄、遷移金属酸化物(例えば二酸化マンガン)等が挙げられる。これらのうち、キノン系化合物の具体例としては、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、o-ベンゾキノン、m-ベンゾキノン、p-ベンゾキノン等が挙げられる。シアン系化合物としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)、テトラシアノエチレン(TCNE)等が挙げられる。なお、電子受容性化合物としては1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<(B) component: electron-accepting compound>
The electron-accepting compound may be any compound that can form a charge transfer complex with the electron-donating compound that is component (A). Specific examples of electron-accepting compounds include quinone compounds, cyanide compounds, oxygen, ozone, iodine, sulfur trioxide, transition metal oxides (eg, manganese dioxide), and the like. Among these, specific examples of quinone compounds include 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ ), o-benzoquinone, m-benzoquinone, p-benzoquinone and the like. Examples of cyanogen compounds include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE). In addition, as the electron-accepting compound, one type may be used alone, or two or more types may be used in combination.
 (A)成分であるフェニレンオキシド化合物と電荷移動錯体を形成しやすく、イオン伝導性が高い固体電解質を得ることができる点において、電子受容性化合物は上記の中でも、キノン系化合物及びシアン系化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。これらの中でも特に、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、o-ベンゾキノン、m-ベンゾキノン及びp-ベンゾキノンからなる群より選択される少なくとも1種を含むことが好ましい。 Among the above electron-accepting compounds, quinone-based compounds and cyanide-based compounds can be used as electron-accepting compounds in that they easily form a charge transfer complex with the phenylene oxide compound, which is component (A), and a solid electrolyte with high ionic conductivity can be obtained. It is preferable to include at least one selected from the group consisting of: Among these, 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7,7,8, It is preferable to contain at least one member selected from the group consisting of 8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone, and p-benzoquinone.
 本固体電解質において、電子供与性化合物及び電子受容性化合物の含有量は、電子供与性化合物のモル量(ただし、電子供与性化合物が重合体の場合には単量体換算)に対する、電子受容性化合物のモル量の比率(〔(B)成分のモル量〕/〔(A)成分のモル量〕)が、0.1以上1.0以下となる量とすることが好ましい。〔(B)成分のモル量〕/〔(A)成分のモル量〕を上記範囲とすることにより、イオン伝導性により優れた固体電解質を得ることができる。こうした観点から、〔(B)成分のモル量〕/〔(A)成分のモル量〕は、0.15以上であることがより好ましく、0.2以上であることが更に好ましく、0.25以上であることがより更に好ましい。〔(B)成分のモル量〕/〔(A)成分のモル量〕の上限については、0.9以下がより好ましく、0.8以下が更に好ましい。 In this solid electrolyte, the content of the electron-donating compound and the electron-accepting compound is determined based on the molar amount of the electron-donating compound (if the electron-donating compound is a polymer, calculated as a monomer). The molar ratio of the compound ([molar amount of component (B)]/[molar amount of component (A)]) is preferably 0.1 or more and 1.0 or less. By setting [molar amount of component (B)]/[molar amount of component (A)] within the above range, a solid electrolyte with better ionic conductivity can be obtained. From this point of view, [molar amount of component (B)]/[molar amount of component (A)] is more preferably 0.15 or more, even more preferably 0.2 or more, and 0.25 The above is even more preferable. The upper limit of [molar amount of component (B)]/[molar amount of component (A)] is more preferably 0.9 or less, and even more preferably 0.8 or less.
<(C)成分:アルカリ金属含有化合物>
 アルカリ金属含有化合物は、アルカリ金属イオンを生じる化合物であればよく、特に限定されない。アルカリ金属含有化合物の具体例としては、リチウム含有化合物、ナトリウム含有化合物、カリウム含有化合物等が挙げられる。これらのうち、固体電解質のイオン伝導性をより良好にできる点において、リチウム含有化合物又はナトリウム含有化合物が好ましく、リチウム含有化合物がより好ましい。
<(C) component: alkali metal-containing compound>
The alkali metal-containing compound is not particularly limited as long as it is a compound that generates alkali metal ions. Specific examples of alkali metal-containing compounds include lithium-containing compounds, sodium-containing compounds, potassium-containing compounds, and the like. Among these, lithium-containing compounds or sodium-containing compounds are preferred, and lithium-containing compounds are more preferred, in that they can improve the ionic conductivity of the solid electrolyte.
 アルカリ金属含有化合物としては、アルカリ金属の酸化物、アルカリ金属の水酸化物、アルカリ金属塩等が挙げられる。これらの具体例としては、アルカリ金属の酸化物として、酸化リチウム、酸化ナトリウム、酸化カリウム等が挙げられる。アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ金属塩としては、例えば、LiCO、LiBr、LiCl、LiI、LiSCN、LiBF、LiAsF、LiClO、CHCOOLi、CFCOOLi、LiCFSO、LiPF、LiC(CFSO、ビス(フルオロスルホニル)イミドリチウム(Li(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(Li(CFSO)、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド=リチウム等のリチウム塩;これらのリチウム塩のアニオンと、リチウム以外のアルカリ金属(例えば、ナトリウムやカリウム等)との塩が挙げられる。 Examples of the alkali metal-containing compound include alkali metal oxides, alkali metal hydroxides, alkali metal salts, and the like. Specific examples of these include lithium oxide, sodium oxide, potassium oxide, etc. as alkali metal oxides. Examples of alkali metal hydroxides include lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like. Examples of alkali metal salts include Li 2 CO 3 , LiBr, LiCl, LiI, LiSCN, LiBF 4 , LiAsF 6 , LiClO 4 , CH 3 COOLi, CF 3 COOLi, LiCF 3 SO 3 , LiPF 6 , LiC(CF 3 SO 2 ) 3 , bis(fluorosulfonyl)imidolithium (Li + (FSO 2 ) 2 N ), bis(trifluoromethanesulfonyl) imidolithium (Li + (CF 3 SO 2 ) 2 N ), (fluorosulfonyl) Lithium salts such as (trifluoromethanesulfonyl)imide=lithium; salts of the anions of these lithium salts and alkali metals other than lithium (for example, sodium, potassium, etc.) can be mentioned.
 空隙率を十分に小さくでき、これによりイオン伝導度のばらつきが小さい固体電解質を簡便な方法により得ることができる点において、アルカリ金属含有化合物は、上記のうち、アルカリ金属塩が好ましく、リチウム塩又はナトリウム塩がより好ましく、リチウム塩が更に好ましい。また、イオンの解離性が高い点において、リチウム塩の中でも特に、ビス(フルオロスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム又は(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド=リチウムが好ましい。 Among the above, the alkali metal-containing compound is preferably an alkali metal salt, and a lithium salt or Sodium salts are more preferred, and lithium salts are even more preferred. In addition, in terms of high ion dissociation properties, among the lithium salts, bis(fluorosulfonyl)imide lithium, bis(trifluoromethanesulfonyl)imide lithium, or (fluorosulfonyl)(trifluoromethanesulfonyl)imide lithium is particularly preferable.
 なお、アルカリ金属塩は融点が比較的低いため、(C)成分としてアルカリ金属塩を用いる構成によれば、(A)成分、(B)成分及び(C)成分を含む粉状組成物を成形した後に、残留応力を緩和するために成形体を加熱(アニール処理)して固体電解質を得る場合に、アニール処理時の温度を過度に高温に設定しなくても、空隙率が十分に小さい固体電解質を得ることができる。本明細書において、イオン伝導度のばらつきとは、同一の固体電解質のイオン伝導度を同一条件で複数回測定した場合に、測定値が測定回の間で一致せず不規則に分布することを指す。 In addition, since an alkali metal salt has a relatively low melting point, according to a configuration in which an alkali metal salt is used as the (C) component, a powder composition containing the (A) component, the (B) component, and the (C) component can be molded. After that, when heating (annealing) the molded body to relieve residual stress to obtain a solid electrolyte, it is possible to obtain a solid electrolyte with a sufficiently small porosity without setting the temperature during annealing to an excessively high temperature. Electrolytes can be obtained. In this specification, variation in ionic conductivity refers to the fact that when the ionic conductivity of the same solid electrolyte is measured multiple times under the same conditions, the measured values do not match between the measurements and are distributed irregularly. Point.
 アルカリ金属含有化合物としては、融点が70℃以上である化合物を好ましく使用できる。アルカリ金属含有化合物の融点は、80℃以上であることが好ましく、90℃以上であることがより好ましく、95℃以上であることが更に好ましい。アルカリ金属含有化合物の融点の上限については、例えば350℃以下である。アニール処理時の温度を過度に高温に設定しなくても固体電解質におけるイオン伝導度のばらつきをより小さくできる点において、アルカリ金属含有化合物は、融点が300℃以下であることが好ましく、280℃以下であることがより好ましく、250℃以下であることが更に好ましく、230℃以下であることがより更に好ましい。 As the alkali metal-containing compound, a compound having a melting point of 70°C or higher can be preferably used. The melting point of the alkali metal-containing compound is preferably 80°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher. The upper limit of the melting point of the alkali metal-containing compound is, for example, 350° C. or lower. The melting point of the alkali metal-containing compound is preferably 300°C or lower, and preferably 280°C or lower, in that the variation in ionic conductivity in the solid electrolyte can be further reduced without setting the temperature during annealing to an excessively high temperature. The temperature is more preferably 250°C or lower, even more preferably 230°C or lower.
 アルカリ金属含有化合物の分子量は、例えば500以下であり、400以下であることが好ましく、350以下であることがより好ましく、300以下であることがより更に好ましく、250以下であることが一層好ましい。アルカリ金属含有化合物の分子量の下限については、例えば20以上であり、50以上であることが好ましく、100以上であることがより好ましく、150以上であることが更に好ましい。アルカリ金属含有化合物の分子量を上記範囲とすることにより、アニール処理時の温度を適切な温度範囲内としながら、空隙率が十分に小さい固体電解質を得ることができる。 The molecular weight of the alkali metal-containing compound is, for example, 500 or less, preferably 400 or less, more preferably 350 or less, even more preferably 300 or less, and even more preferably 250 or less. The lower limit of the molecular weight of the alkali metal-containing compound is, for example, 20 or more, preferably 50 or more, more preferably 100 or more, and even more preferably 150 or more. By setting the molecular weight of the alkali metal-containing compound within the above range, it is possible to obtain a solid electrolyte with a sufficiently small porosity while keeping the temperature during annealing treatment within an appropriate temperature range.
 本固体電解質において、アルカリ金属含有化合物の含有量は、電子供与性化合物(ただし、電子供与性化合物が重合体の場合には単量体換算)と電子受容性化合物との合計のモル量に対するアルカリ金属含有化合物のモル量の比率(〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕)が、0.03以上1.0以下となる量とすることが好ましい。〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕が上記範囲であることにより、より良好なイオン伝導性を示す固体電解質を得ることができる。このような観点から、〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕は、0.05以上であることがより好ましく、0.1以上であることが更に好ましく、0.2以上であることがより更に好ましく、0.3以上であることが一層好ましい。〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕の上限については、0.9以下であることがより好ましく、0.8以下であることが更に好ましく、0.7以下であることがより更に好ましく、0.6以下であることが一層好ましい。なお、アルカリ金属含有化合物としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 In this solid electrolyte, the content of the alkali metal-containing compound is determined based on the total molar amount of the electron-donating compound (if the electron-donating compound is a polymer, calculated as a monomer) and the electron-accepting compound. An amount such that the ratio of molar amounts of the metal-containing compound ([molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)]) is 0.03 or more and 1.0 or less. It is preferable that When [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is within the above range, a solid electrolyte exhibiting better ionic conductivity can be obtained. . From this point of view, [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is more preferably 0.05 or more, and 0.1 or more. More preferably, it is 0.2 or more, even more preferably 0.3 or more. The upper limit of [mole amount of component (C)]/[mole amount of component (A) + molar amount of component (B)] is more preferably 0.9 or less, and 0.8 or less. is more preferable, even more preferably 0.7 or less, even more preferably 0.6 or less. In addition, as the alkali metal-containing compound, one type may be used alone, or two or more types may be used in combination.
 本固体電解質における(A)成分、(B)成分及び(C)成分の含有量は、〔(B)成分のモル量〕/〔(A)成分のモル量〕が0.1以上1.0以下であって、かつ〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕が0.03以上1.0以下であることが好ましい。より高いイオン伝導性を示す固体電解質を得る観点から、〔(B)成分のモル量〕/〔(A)成分のモル量〕が0.1以上1.0以下であって、かつ〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕が0.2以上0.8以下であることがより好ましく、〔(B)成分のモル量〕/〔(A)成分のモル量〕が0.1以上1.0以下であって、かつ〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕が0.3以上0.6以下であることが更に好ましい。 The content of component (A), component (B), and component (C) in this solid electrolyte is such that [molar amount of component (B)]/[molar amount of component (A)] is 0.1 or more and 1.0 or more. and [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is preferably 0.03 or more and 1.0 or less. From the viewpoint of obtaining a solid electrolyte exhibiting higher ionic conductivity, [molar amount of component (B)]/[molar amount of component (A)] is 0.1 or more and 1.0 or less, and [(C ) It is more preferable that molar amount of component]/[molar amount of component (A) + molar amount of component (B)] is 0.2 or more and 0.8 or less, and [molar amount of component (B)]/ [Molar amount of component (A)] is 0.1 or more and 1.0 or less, and [Molar amount of component (C)]/[Molar amount of component (A) + Molar amount of component (B)] is more preferably 0.3 or more and 0.6 or less.
<他の成分>
 本固体電解質は、本開示の効果を損なわない範囲において、上記の(A)成分、(B)成分及び(C)成分とは異なる成分(以下、「他の成分」ともいう。)を更に含んでいてもよい。他の成分としては、溶剤(例えば、有機溶媒、水、又は有機溶媒と水との混合液)、結合剤等が挙げられる。
<Other ingredients>
The present solid electrolyte further contains a component different from the above-mentioned (A) component, (B) component, and (C) component (hereinafter also referred to as "other components") within a range that does not impair the effects of the present disclosure. It's okay to stay. Other components include a solvent (for example, an organic solvent, water, or a mixture of an organic solvent and water), a binder, and the like.
<固体電解質の製造方法>
 本固体電解質は、(A)成分、(B)成分及び(C)成分を原料として用いることにより製造することができる。本固体電解質を製造する方法は特に限定されない。本固体電解質を製造する方法の好ましい一態様としては、以下の工程1及び工程2を含む方法が挙げられる。
 工程1:電子供与性化合物((A)成分)、電子受容性化合物((B)成分)及びアルカリ金属含有化合物((C)成分)を含む粉状組成物を得る工程
 工程2:上記粉状組成物を成形して得られた成形体を、アルカリ金属含有化合物の融点以上の温度で加熱する工程
以下、各工程について詳細に説明する。
<Method for producing solid electrolyte>
This solid electrolyte can be manufactured by using component (A), component (B), and component (C) as raw materials. The method for manufacturing the present solid electrolyte is not particularly limited. A preferred embodiment of the method for producing the present solid electrolyte includes a method including the following steps 1 and 2.
Step 1: Step of obtaining a powdery composition containing an electron-donating compound (component (A)), an electron-accepting compound (component (B)), and an alkali metal-containing compound (component (C)) Step 2: The above powdery composition Each step will be described in detail, starting from the step of heating the molded body obtained by molding the composition at a temperature equal to or higher than the melting point of the alkali metal-containing compound.
(工程1)
 工程1により(A)成分、(B)成分及び(C)成分を含む粉状組成物(以下、「粉状組成物P」とも表記する。)を得る方法は特に限定されない。工程1では、例えば、(A)成分、(B)成分及び(C)成分を同時に混合し、得られた混合物を粉砕及び/又は加熱することにより粉状組成物Pを得ることができる。また、(A)成分、(B)成分及び(C)成分のうち一部を混合し、得られた混合物を粉砕及び/又は加熱した後に残りの成分を加え、その後更に、粉砕及び/又は加熱することにより粉状組成物Pを得てもよい。粉状組成物Pを得るための好ましい方法としては、以下の工程1-1及び工程1-2を含む方法が挙げられる。
 工程1-1:(A)成分と(B)成分とを混合し、得られた混合物を粉砕及び加熱することにより、(A)成分及び(B)成分を含む粉状の中間組成物を得る工程
 工程1-2:上記中間組成物と(C)成分とを混合し、得られた混合物を粉砕及び加熱することにより、(A)成分、(B)成分及び(C)成分を含む粉状組成物Pを得る工程
(Step 1)
The method for obtaining a powder composition (hereinafter also referred to as "powder composition P") containing component (A), component (B), and component (C) in Step 1 is not particularly limited. In step 1, for example, powdery composition P can be obtained by simultaneously mixing component (A), component (B), and component (C), and pulverizing and/or heating the resulting mixture. Alternatively, some of the components (A), (B), and (C) may be mixed, the resulting mixture is pulverized and/or heated, the remaining components are added, and then further pulverized and/or heated. A powdery composition P may be obtained by doing so. A preferred method for obtaining powdery composition P includes a method including the following steps 1-1 and 1-2.
Step 1-1: By mixing the (A) component and the (B) component, and pulverizing and heating the resulting mixture, obtain a powdery intermediate composition containing the (A) component and the (B) component. Process Step 1-2: Mix the above intermediate composition and component (C), and grind and heat the resulting mixture to form a powder containing component (A), component (B), and component (C). Step of obtaining composition P
・工程1-1について
 工程1-1では、(A)成分と(B)成分との混合物を粉砕した後に加熱処理を行ってもよいし、混合物を加熱した後に粉砕処理を行ってもよい。(A)成分と(B)成分とを均一に混合して、電荷移動錯体の形成が十分に行われるようにする観点からすると、粉砕後に加熱処理を行うことが好ましい。混合物を粉砕する方法は特に限定されず、乾式粉砕、湿式粉砕、低温粉砕等により行うことができる。また、粉砕処理は、ボールミルやビーズミル、ブレンダー等の粉砕機を用いて行うことが好ましい。混合物を加熱する際の温度は、通常、120~320℃であり、150~300℃が好ましい。加熱時間は、例えば15~360分である。なお、中間組成物を得るための加熱処理は、1回のみ行ってもよいし、複数回行ってもよい。加熱を複数回行う場合、各回における加熱温度及び加熱時間は同一であってもよく、異なっていてもよい。工程1-1での加熱処理は通常、常圧下で行われるが、加圧下で行ってもよいし、減圧下で行ってもよい。
- Regarding Step 1-1 In Step 1-1, heat treatment may be performed after pulverizing the mixture of components (A) and (B), or pulverization treatment may be performed after heating the mixture. From the viewpoint of uniformly mixing component (A) and component (B) and sufficiently forming a charge transfer complex, it is preferable to perform heat treatment after pulverization. The method of pulverizing the mixture is not particularly limited, and dry pulverization, wet pulverization, low-temperature pulverization, etc. can be used. Further, the pulverization treatment is preferably performed using a pulverizer such as a ball mill, bead mill, or blender. The temperature at which the mixture is heated is usually 120 to 320°C, preferably 150 to 300°C. The heating time is, for example, 15 to 360 minutes. Note that the heat treatment for obtaining the intermediate composition may be performed only once, or may be performed multiple times. When heating is performed multiple times, the heating temperature and heating time each time may be the same or different. The heat treatment in step 1-1 is usually performed under normal pressure, but may be performed under increased pressure or reduced pressure.
・工程1-2について
 工程1-2では、上記工程1-1で得られた中間組成物と(C)成分との混合物を粉砕した後に加熱処理を行ってもよいし、混合物を加熱した後に粉砕処理を行ってもよい。(C)成分を十分に溶融させて(A)成分、(B)成分及び(C)成分が均一に混合された組成物を得る観点からすると、粉砕後に加熱処理を行うことが好ましい。混合物の粉砕方法については工程1-1と同様、特に限定されない。混合物を加熱する際の温度は、各成分の種類に応じて適宜設定され得るが、通常、90~250℃であり、100~200℃が好ましい。加熱時間は、例えば5~120分である。工程1-2での加熱処理は通常、常圧下で行われるが、加圧下で行ってもよいし、減圧下で行ってもよい。
- Regarding Step 1-2 In Step 1-2, heat treatment may be performed after pulverizing the mixture of the intermediate composition obtained in Step 1-1 above and component (C), or heat treatment may be performed after heating the mixture. A pulverization treatment may also be performed. From the viewpoint of sufficiently melting component (C) and obtaining a composition in which components (A), (B), and (C) are uniformly mixed, it is preferable to perform heat treatment after pulverization. As with step 1-1, the method for pulverizing the mixture is not particularly limited. The temperature at which the mixture is heated can be appropriately set depending on the type of each component, but is usually 90 to 250°C, preferably 100 to 200°C. The heating time is, for example, 5 to 120 minutes. The heat treatment in step 1-2 is usually performed under normal pressure, but may be performed under increased pressure or reduced pressure.
(工程2)
 工程2ではまず、工程1で得られた粉状組成物Pを所望の形状に成形する。粉状組成物Pの成形方法は特に限定されず、押出成形や射出成形、加圧成形、鋳込み成形、モールドキャスト成形、テープ成形等の公知の方法を採用することができる。これらのうち、得られる固体電解質の空隙率をできるだけ小さくできる点において、粉状組成物Pの加圧成形により成形体を得ることが好ましい。成形体の形状は特に限定されず、適用する蓄電デバイスの形状に応じて適宜設定され得る。成形体の形状は、例えば矩形状、円形状である。
(Step 2)
In step 2, first, the powdered composition P obtained in step 1 is molded into a desired shape. The method for molding the powdery composition P is not particularly limited, and known methods such as extrusion molding, injection molding, pressure molding, cast molding, mold cast molding, and tape molding can be employed. Among these, it is preferable to obtain a molded body by pressure molding the powder composition P, since the porosity of the obtained solid electrolyte can be made as small as possible. The shape of the molded body is not particularly limited, and can be appropriately set depending on the shape of the electricity storage device to which it is applied. The shape of the molded body is, for example, rectangular or circular.
 続いて、粉状組成物Pの成形体を、アルカリ金属含有化合物の融点以上の温度で加熱する。この加熱処理(アニール処理)により残留応力を緩和することにより、固体電解質の寸法精度の安定化や、歪み等の変形及び割れの抑制を図ることができる。また、アニール処理時の温度(以下、「アニール温度」ともいう。)をアルカリ金属含有化合物の融点以上の温度に設定しているため、成形体に含まれるアルカリ金属含有化合物が溶融し、これにより、空隙率が十分に小さい固体電解質を得ることができる。このような観点から、アニール温度は、アルカリ金属含有化合物の融点よりも高い温度とすることが好ましい。具体的には、アルカリ金属含有化合物の融点よりも2℃以上高い温度とすることが好ましく、5℃以上高い温度とすることがより好ましく、7℃以上高い温度とすることが更に好ましい。アニール温度の上限については、加熱装置の設定上限温度等を考慮して、例えば、アルカリ金属含有化合物の融点に対し50℃以下の温度としてもよい。アニール処理の時間は、例えば1~24時間であり、好ましくは2~24時間である。 Subsequently, the molded body of powdery composition P is heated at a temperature equal to or higher than the melting point of the alkali metal-containing compound. By relieving residual stress through this heat treatment (annealing treatment), it is possible to stabilize the dimensional accuracy of the solid electrolyte and to suppress deformation such as distortion and cracking. In addition, since the temperature during annealing treatment (hereinafter also referred to as "annealing temperature") is set to a temperature higher than the melting point of the alkali metal-containing compound, the alkali metal-containing compound contained in the molded article melts, thereby causing , a solid electrolyte with sufficiently small porosity can be obtained. From this point of view, the annealing temperature is preferably higher than the melting point of the alkali metal-containing compound. Specifically, the temperature is preferably 2°C or more higher than the melting point of the alkali metal-containing compound, more preferably 5°C or more higher, and even more preferably 7°C or more higher. The upper limit of the annealing temperature may be, for example, 50° C. or lower relative to the melting point of the alkali metal-containing compound, taking into consideration the upper limit temperature setting of the heating device and the like. The annealing treatment time is, for example, 1 to 24 hours, preferably 2 to 24 hours.
 加熱後は、固体電解質を急速に冷却する(例えば、固体電解質を低温(例えば25℃以下)の恒温槽に2時間程度又はそれよりも短い時間入れる)ことにより固体電解質の温度を低下させてもよいし、固体電解質を徐々に冷却する(例えば、3~48時間かけてゆっくりと室温まで下げる)ことにより固体電解質の温度を低下させてもよい。アルカリ金属含有化合物の結晶化を抑制する観点から、前者(急速冷却)により固体電解質の温度を低下させることが好ましい。急速冷却により固体電解質の温度を低下させる際、固体電解質を恒温槽に入れて冷却する場合には、恒温槽の温度を0℃以下とすることが好ましく、-15℃以下とすることがより好ましい。 After heating, the temperature of the solid electrolyte may be lowered by rapidly cooling the solid electrolyte (for example, placing the solid electrolyte in a constant temperature bath at a low temperature (e.g., 25°C or less) for about 2 hours or shorter). Alternatively, the temperature of the solid electrolyte may be lowered by gradually cooling the solid electrolyte (eg, slowly lowering it to room temperature over 3 to 48 hours). From the viewpoint of suppressing crystallization of the alkali metal-containing compound, it is preferable to lower the temperature of the solid electrolyte by the former (rapid cooling). When lowering the temperature of the solid electrolyte by rapid cooling, if the solid electrolyte is cooled by placing it in a constant temperature bath, the temperature of the constant temperature bath is preferably 0 ° C. or lower, and more preferably -15 ° C. or lower. .
 固体電解質中のアルカリ金属含有化合物の結晶化度は、例えば50%以下であり、40%以下であることが好ましく、30%以下であることがより好ましい。なお、固体電解質中のアルカリ金属含有化合物の結晶化度は、示差走査熱量計を用いて、完全結晶体のアルカリ金属含有化合物の単位質量あたりの融解熱量H及び固体電解質中のアルカリ金属含有化合物の単位質量あたりの融解熱量Hを測定し、次式から算出することができる。
 結晶化度=(H/H)×100  (%)
The crystallinity of the alkali metal-containing compound in the solid electrolyte is, for example, 50% or less, preferably 40% or less, and more preferably 30% or less. The degree of crystallinity of the alkali metal-containing compound in the solid electrolyte is determined by the heat of fusion H1 per unit mass of the completely crystalline alkali metal-containing compound and the alkali metal-containing compound in the solid electrolyte using a differential scanning calorimeter. The heat of fusion H2 per unit mass of can be measured and calculated from the following formula.
Crystallinity = (H 2 /H 1 ) x 100 (%)
<固体電解質の特性>
 上記のようにして得られた本固体電解質は以下の特性を有する。
<Characteristics of solid electrolyte>
The present solid electrolyte obtained as described above has the following characteristics.
(空隙率)
 本固体電解質は、空隙率が20%以下である。固体電解質の空隙率が20%を超えると、イオン伝導度のばらつきが大きくなり、固体電解質及びこれを用いて製造される蓄電デバイスの品質が不安定になりやすい。固体電解質におけるイオン伝導度のばらつきを小さくする観点から、固体電解質の空隙率は、18%以下であることが好ましく、16%以下であることがより好ましく、15%以下であることが更に好ましい。固体電解質の空隙率の下限については特に限定されない。固体電解質の空隙率は0%以上であり、0.5%以上であってもよく、1%以上であってもよく、2%以上であってもよい。
(porosity)
The solid electrolyte has a porosity of 20% or less. When the porosity of the solid electrolyte exceeds 20%, variations in ionic conductivity increase, and the quality of the solid electrolyte and the electricity storage device manufactured using the same tends to become unstable. From the viewpoint of reducing variations in ionic conductivity in the solid electrolyte, the porosity of the solid electrolyte is preferably 18% or less, more preferably 16% or less, and even more preferably 15% or less. The lower limit of the porosity of the solid electrolyte is not particularly limited. The porosity of the solid electrolyte is 0% or more, may be 0.5% or more, may be 1% or more, or may be 2% or more.
 なお、本明細書において、固体電解質の空隙率は、空隙率をφ(単位:%)、固体電解質の密度をD(単位:g・cm-3)、固体電解質の理論密度をD’(単位:g・cm-3)とした場合に、下記数式により表される。
 φ=(1-D/D’)×100
In this specification, the porosity of the solid electrolyte is expressed as φ (unit: %), density of the solid electrolyte as D (unit: g cm -3 ), and theoretical density of the solid electrolyte as D' (unit: %). :g·cm −3 ), it is expressed by the following formula.
φ=(1-D/D')×100
 空隙率の算出に用いる固体電解質の密度(D)は、固体電解質の質量(M、単位:g)、固体電解質と電極との接触面積(S、単位:cm)、固体電解質の厚み(L、単位:cm)を用いて下記数式により表すことができる。
 D=M/(S×L)
 また、理論密度(D’)は、固体電解質に含まれる(A)成分、(B)成分及び(C)成分の密度を各成分の質量比率で乗じた値の合計値により算出される値である。空隙率及び密度(D)の算出方法の詳細は、後述する実施例に記載の方法に従う。固体電解質の空隙率は、(A)成分、(B)成分及び(C)成分を混合して所望の形状に成形した後の加熱処理(すなわちアニール処理)の温度により調整することができる。
The density (D) of the solid electrolyte used to calculate the porosity is determined by the mass of the solid electrolyte (M, unit: g), the contact area between the solid electrolyte and the electrode (S, unit: cm 2 ), and the thickness of the solid electrolyte (L , unit: cm) can be expressed by the following formula.
D=M/(S×L)
The theoretical density (D') is a value calculated from the sum of the densities of components (A), (B), and (C) contained in the solid electrolyte multiplied by the mass ratio of each component. be. The details of the method for calculating the porosity and density (D) follow the method described in Examples described below. The porosity of the solid electrolyte can be adjusted by the temperature of the heat treatment (ie, annealing treatment) after mixing the components (A), (B), and (C) and molding the mixture into a desired shape.
(イオン伝導度)
 本固体電解質は、室温において高いイオン伝導性を示す。具体的には、厚み300μm程度(具体的には300±30μm)の固体電解質につき、交流インピーダンス法を用いて25℃で測定されるイオン伝導度が、3×10-7S・cm-1以上であることが好ましい。優れた性能の蓄電デバイスを得る観点から、同条件におけるイオン伝導度は、5×10-7S・cm-1以上であることがより好ましく、8×10-7S・cm-1以上であることが更に好ましい。イオン伝導度の測定方法の詳細は、後述する実施例に記載の方法に従う。
(ionic conductivity)
This solid electrolyte exhibits high ionic conductivity at room temperature. Specifically, for a solid electrolyte with a thickness of approximately 300 μm (specifically, 300±30 μm), the ionic conductivity measured at 25°C using the AC impedance method is 3×10 −7 S cm −1 or more. It is preferable that From the viewpoint of obtaining a power storage device with excellent performance, the ionic conductivity under the same conditions is more preferably 5 × 10 -7 S cm -1 or more, and 8 × 10 -7 S cm -1 or more. It is even more preferable. The details of the method for measuring ionic conductivity follow the method described in Examples described later.
 なお、本発明者らの検討結果によると、電荷移動錯体を用いた固体電解質では、固体電解質の厚みが大きいほど固体電解質の空隙率の影響を受けやすく、空隙率が高いとイオン伝導度が低くなり、またそのばらつきも大きくなる傾向がある。 According to the study results of the present inventors, in a solid electrolyte using a charge transfer complex, the larger the thickness of the solid electrolyte, the more susceptible it is to the porosity of the solid electrolyte, and the higher the porosity, the lower the ionic conductivity. There is also a tendency for the dispersion to become larger.
 本固体電解質は、室温において高いイオン伝導性を示しながら、イオン伝導度のばらつきが小さい。このため、本固体電解質を蓄電デバイスの電解質として用いることにより、安定した品質の蓄電デバイスを得ることができる。 This solid electrolyte exhibits high ionic conductivity at room temperature and has small variations in ionic conductivity. Therefore, by using the present solid electrolyte as an electrolyte of an electricity storage device, an electricity storage device with stable quality can be obtained.
≪蓄電デバイス≫
 本開示の蓄電デバイス(以下、「本デバイス」ともいう。)は本固体電解質を備える。本デバイスとしては、二次電池、キャパシタ等が挙げられる。本デバイスが二次電池である場合、その一態様は全固体電池であり、イオン伝導性に優れる点でリチウムイオン二次電池が好ましい。
≪Electricity storage device≫
The electricity storage device of the present disclosure (hereinafter also referred to as "the present device") includes the present solid electrolyte. Examples of this device include secondary batteries and capacitors. When the present device is a secondary battery, one embodiment thereof is an all-solid-state battery, and a lithium ion secondary battery is preferable because it has excellent ionic conductivity.
 本デバイスの一態様である全固体リチウムイオン二次電池について説明する。リチウムイオン二次電池は、正極及び負極からなる電極と、固体電解質とを備える積層体であり、固体電解質と電極とが接するように正極と負極との間に固体電解質が配置されている。正極及び負極を構成する材料は特に限定されず、リチウムイオン二次電池の電極材料として公知の材料から適宜選択して使用することができる。例えば、正極集電体としては、アルミニウム、ステンレス鋼等の金属箔を用いることができる。負極集電体としては、銅箔やリチウム箔等の金属箔を用いることができる。 An all-solid-state lithium ion secondary battery, which is one embodiment of this device, will be explained. A lithium ion secondary battery is a laminate that includes electrodes consisting of a positive electrode and a negative electrode, and a solid electrolyte, and the solid electrolyte is arranged between the positive electrode and the negative electrode so that the solid electrolyte and the electrode are in contact with each other. The materials constituting the positive electrode and the negative electrode are not particularly limited, and can be appropriately selected and used from materials known as electrode materials for lithium ion secondary batteries. For example, a metal foil such as aluminum or stainless steel can be used as the positive electrode current collector. As the negative electrode current collector, metal foil such as copper foil or lithium foil can be used.
 本開示のリチウムイオン二次電池において、固体電解質は、上述した(A)成分、(B)成分及び(C)成分を含む。固体電解質の厚みは特に限定されず、二次電池の用途等に応じて適宜設定できる。固体電解質の厚みは、例えば5~500μmである。空隙率が十分に小さい固体電解質を得ることができ、蓄電デバイスのエネルギー密度をより高めることができる点において、固体電解質の厚みは、5~300μmが好ましく、5~200μmがより好ましく、5~100μmが更に好ましい。 In the lithium ion secondary battery of the present disclosure, the solid electrolyte includes the above-mentioned component (A), component (B), and component (C). The thickness of the solid electrolyte is not particularly limited, and can be appropriately set depending on the use of the secondary battery. The thickness of the solid electrolyte is, for example, 5 to 500 μm. The thickness of the solid electrolyte is preferably 5 to 300 μm, more preferably 5 to 200 μm, and 5 to 100 μm in that a solid electrolyte with sufficiently small porosity can be obtained and the energy density of the electricity storage device can be further increased. is even more preferable.
 リチウムイオン二次電池を製造する方法は特に限定されず、電池構造等に応じて公知の方法を適宜採用することができる。例えば、粉状組成物Pの成形体をアニール処理して得られた固体電解質を正極と負極で挟み込むことにより、正極、固体電解質及び負極を備える積層体を製造してもよい。あるいは、粉状組成物Pを正極と負極で挟み込むようにして容器内に収容し、その収容体に対しアニール処理を施すことにより、正極、固体電解質及び負極を備える積層体を製造してもよい。正極、固体電解質及び負極を備える積層体は、通常、ケースに収容されて二次電池として使用される。 The method for manufacturing a lithium ion secondary battery is not particularly limited, and any known method can be appropriately adopted depending on the battery structure and the like. For example, a laminate including a positive electrode, a solid electrolyte, and a negative electrode may be manufactured by sandwiching a solid electrolyte obtained by annealing a molded body of powdery composition P between a positive electrode and a negative electrode. Alternatively, a laminate including a positive electrode, a solid electrolyte, and a negative electrode may be manufactured by storing the powdered composition P in a container so as to sandwich it between a positive electrode and a negative electrode, and subjecting the container to an annealing treatment. . A laminate including a positive electrode, a solid electrolyte, and a negative electrode is usually housed in a case and used as a secondary battery.
 なお、本デバイスは、イオン伝導のキャリアがリチウムイオンである上記構成に限らず、例えば、ナトリウムイオン等の他のイオンをキャリアとする二次電池であってもよい。また、本デバイスはキャパシタであってもよい。キャパシタの一態様としては、陽極体と陰極体と固体電解質とを備え、固体電解質と電極とが接するように陽極体と陰極体との間に固体電解質が配置された構成が挙げられる。 Note that the present device is not limited to the above-mentioned configuration in which the ion-conducting carrier is a lithium ion, but may be a secondary battery that uses other ions such as sodium ions as a carrier, for example. The device may also be a capacitor. One embodiment of the capacitor includes a configuration in which the capacitor includes an anode body, a cathode body, and a solid electrolyte, and the solid electrolyte is disposed between the anode body and the cathode body so that the solid electrolyte and the electrode are in contact with each other.
 本固体電解質を備える蓄電デバイスは種々の用途に適用することができる。具体的には、例えば、携帯電話機やパソコン、スマートフォン、ゲーム機器、ウェアラブル端末等の各種モバイル機器;電気自動車やハイブリッド車、ロボット、ドローン等の各種移動体;デジタルカメラ、ビデオカメラ、音楽プレーヤー、電動工具、家電製品等の各種電気・電子機器;等における動力源として使用することができる。 The electricity storage device equipped with this solid electrolyte can be applied to various uses. Specifically, for example, various mobile devices such as mobile phones, computers, smartphones, game devices, and wearable terminals; various mobile devices such as electric cars, hybrid cars, robots, and drones; digital cameras, video cameras, music players, and electric It can be used as a power source for various electrical and electronic devices such as tools and home appliances.
 以下、実施例に基づいて本開示を具体的に説明する。なお、本開示はこれらの実施例により限定されるものではない。以下において「部」及び「%」は、特に断らない限り、それぞれ「質量部」、「質量%」を意味する。 Hereinafter, the present disclosure will be specifically described based on Examples. Note that the present disclosure is not limited to these Examples. In the following, "parts" and "%" mean "parts by mass" and "% by mass", respectively, unless otherwise specified.
≪固体電解質の製造及び評価≫
[実施例1]
(固体電解質の製造)
 ポリ(2,6-ジメチル-1,4-フェニレンオキシド(シグマ-アルドリッチ社製、以下、「PPO」ともいう。)43部とクロラニル57部を乳鉢で粗混合し、ボールミル(FRITSCH社製ミニミルPULVERISETTE23;以下、単に「ボールミル」という。)を用いて周波数40Hzで30分間粉砕した。
 得られた粉砕物をシャーレに入れ、アルミホイルで蓋をし、200℃に設定されたホットプレート(アズワン社製CHP-170DF;以下、単に「ホットプレート」という。)で60分間加熱した後、280℃に設定されたホットプレートで30分間加熱した。生成物CT-1を黒色粉末として得た(表1参照)。なお、表1中、「モル比(B)/(A)」は、(A)成分のモル量(単量体換算)に対する(B)成分のモル量の比を表す。
≪Production and evaluation of solid electrolyte≫
[Example 1]
(Production of solid electrolyte)
43 parts of poly(2,6-dimethyl-1,4-phenylene oxide (manufactured by Sigma-Aldrich, hereinafter also referred to as "PPO") and 57 parts of chloranil were roughly mixed in a mortar, and a ball mill (mini mill PULVERISETTE 23 manufactured by FRITSCH) was used. ; hereinafter simply referred to as a "ball mill") at a frequency of 40 Hz for 30 minutes.
The obtained crushed product was placed in a petri dish, covered with aluminum foil, and heated for 60 minutes on a hot plate (CHP-170DF manufactured by As One Corporation; hereinafter simply referred to as "hot plate") set at 200 ° C. It was heated for 30 minutes on a hot plate set at 280°C. The product CT-1 was obtained as a black powder (see Table 1). In Table 1, "molar ratio (B)/(A)" represents the ratio of the molar amount of component (B) to the molar amount (monomer equivalent) of component (A).
 続いて、上記の生成物CT-1 70部に(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド=リチウム(富士フイルム和光純薬社製;以下、「LiFTFSI」ともいう。)30部を加え、乳鉢で粗混合し、ボールミルを用いて40Hzで60分間粉砕した後、150℃に設定されたホットプレートで10分間加熱し、LiFTFSIを溶融させた。冷却後、ボールミルを用いて40Hzで60分間粉砕し、固体電解質粉末を得た。 Subsequently, 30 parts of lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.; hereinafter also referred to as "LiFTFSI") was added to 70 parts of the above product CT-1, and the mixture was mixed in a mortar. After roughly mixing and pulverizing for 60 minutes at 40 Hz using a ball mill, the mixture was heated for 10 minutes on a hot plate set at 150° C. to melt LiFTFSI. After cooling, it was ground using a ball mill at 40 Hz for 60 minutes to obtain a solid electrolyte powder.
 さらに、上記固体電解質粉末を全固体電池評価セル(宝泉(株)製KP-SolidCell)3セットに各30mg充填し、20N・mのトルクで封止した。固体電解質粉末を挟む円盤にはSKD製(直径1cm)を使用した。
 上記評価セルを、110℃に設定されたホットプレート上で10時間加熱(アニール)した(アニール温度=110℃)。その後、25℃で2時間冷却し、固体電解質SE-1とした(表2参照)。
Furthermore, 30 mg each of the solid electrolyte powder was filled into three sets of all-solid battery evaluation cells (KP-SolidCell manufactured by Hosen Co., Ltd.), and the cells were sealed with a torque of 20 N·m. A disk made by SKD (diameter 1 cm) was used for the disk sandwiching the solid electrolyte powder.
The above evaluation cell was heated (annealed) for 10 hours on a hot plate set at 110°C (annealing temperature = 110°C). Thereafter, it was cooled at 25° C. for 2 hours to obtain solid electrolyte SE-1 (see Table 2).
(イオン伝導度の測定)
 測定には、電極間に交流(印加電圧は100mV)を印加して抵抗成分を測定する交流インピーダンス法を用いて、得られたコール・コールプロットの実数インピーダンス切片よりイオン伝導度を算出した。
 なお、測定にはインピーダンス・アナライザ(バイオロジック社製 SP-300)を用い、25℃で測定した。
 以上の操作全てについて、露点-60℃のドライルームで行った。
 下記数式(1)によりイオン伝導度(σ)を求めた結果、6×10-5S・cm-1、1×10-5S・cm-1、4×10-5S・cm-1であった。なお、表1中のイオン伝導度(σ)は、3回の測定結果の最高値である。
 σ=H/(R×S)  (1)
(数式(1)中、σはイオン伝導度(単位:S・cm-1)、Rは抵抗(単位:Ω)、Sは固体電解質膜の測定時の断面積(単位:cm)、Hは電極間距離(単位:cm)を示す。)
(Measurement of ionic conductivity)
For the measurement, an AC impedance method was used in which the resistance component was measured by applying AC (applied voltage: 100 mV) between the electrodes, and the ionic conductivity was calculated from the real impedance intercept of the resulting Cole-Cole plot.
Note that the measurement was performed at 25° C. using an impedance analyzer (SP-300 manufactured by Biologic Co., Ltd.).
All of the above operations were performed in a dry room with a dew point of -60°C.
As a result of calculating the ionic conductivity (σ) using the following formula (1), it is 6×10 −5 S・cm −1 , 1×10 −5 S・cm −1 , and 4×10 −5 S・cm −1 there were. Note that the ionic conductivity (σ) in Table 1 is the highest value of the three measurement results.
σ=H/(R×S) (1)
(In formula (1), σ is the ionic conductivity (unit: S cm -1 ), R is the resistance (unit: Ω), S is the cross-sectional area of the solid electrolyte membrane at the time of measurement (unit: cm 2 ), H indicates the distance between the electrodes (unit: cm).
(イオン伝導度のばらつきの評価)
 上記イオン伝導度の3回の測定結果から下記数式(2)により求めた値を、以下の基準に基づいて評価した結果、「A」と判断された。なお、以下のA及びBは、イオン伝導度のばらつきが小さく許容できる範囲であり、Cは、イオン伝導度のばらつきが許容できない程度に大きいことを意味する。
 s=σ(MAX)/σ(MIN)  (2)
(数式(2)中、σ(MAX)はイオン伝導度(単位:S・cm-1)の測定値の最大値、σ(MIN)は当該測定値の最小値を示す。)
 A:sが100未満
 B:sが100以上1,000未満
 C:sが1,000以上
(Evaluation of variation in ionic conductivity)
The value obtained from the three measurements of the ionic conductivity using the following mathematical formula (2) was evaluated based on the following criteria, and as a result, it was determined to be "A". Note that A and B below mean that the variation in ionic conductivity is small and within an allowable range, and C means that the variation in ionic conductivity is unacceptably large.
s=σ(MAX)/σ(MIN) (2)
(In formula (2), σ(MAX) indicates the maximum value of the measured value of ionic conductivity (unit: S cm -1 ), and σ(MIN) indicates the minimum value of the measured value.)
A: s is less than 100 B: s is 100 or more and less than 1,000 C: s is 1,000 or more
(空隙率の測定)
 イオン伝導度測定後の評価セルを分解して、実施例1で得られた固体電解質SE-1を取り出した。膜厚計(ミツトヨ社製)を用いて固体電解質SE-1の厚み(L)を測定した結果、277μmであった。また、下記数式(3)により、固体電解質の密度(D)を求めた。
 D=M/(S×L)  (3)
(数式(3)中、Dは固体電解質の密度(単位:g・cm-3)、Mは固体電解質の質量(単位:g)、Sは電極と固体電解質との接触面積(単位:cm)、Lは固体電解質の厚み(単位:cm)を示す。)
 固体電解質SE-1はM=0.030、S=0.785であり、上記数式(3)により求めた密度(D)は1.38(g・cm-3)であった。
(Measurement of porosity)
After the ionic conductivity measurement, the evaluation cell was disassembled and the solid electrolyte SE-1 obtained in Example 1 was taken out. The thickness (L) of the solid electrolyte SE-1 was measured using a film thickness meter (manufactured by Mitutoyo) and found to be 277 μm. Further, the density (D) of the solid electrolyte was determined using the following formula (3).
D=M/(S×L) (3)
(In formula (3), D is the density of the solid electrolyte (unit: g cm -3 ), M is the mass of the solid electrolyte (unit: g), and S is the contact area between the electrode and the solid electrolyte (unit: cm 2 ), L indicates the thickness of the solid electrolyte (unit: cm).)
The solid electrolyte SE-1 had M=0.030 and S=0.785, and the density (D) determined by the above formula (3) was 1.38 (g·cm −3 ).
 上記で得られた固体電解質SE-1の密度(D)から、下記数式(4)により固体電解質SE-1の空隙率(φ)を求めた結果、13%であった。
 φ=(1-D/D’)×100  (4)
(数式(4)中、φは空隙率(単位:%)、Dは固体電解質の密度(単位:g・cm-3)、D’は固体電解質の理論密度(固体電解質SE-1の理論密度は1.58、単位:g・cm-3)を示す。)
 なお、理論密度D’は、各成分((A)成分、(B)成分及び(C)成分)の密度を各成分の質量比率で乗じた値の合計値とした。
From the density (D) of the solid electrolyte SE-1 obtained above, the porosity (φ) of the solid electrolyte SE-1 was determined using the following formula (4), and was found to be 13%.
φ=(1-D/D')×100 (4)
(In formula (4), φ is the porosity (unit: %), D is the density of the solid electrolyte (unit: g cm -3 ), and D' is the theoretical density of the solid electrolyte (theoretical density of the solid electrolyte SE-1). is 1.58, unit: gcm -3 ).
The theoretical density D' was the total value of the density of each component ((A) component, (B) component, and (C) component) multiplied by the mass ratio of each component.
 固体電解質SE-1の評価結果を表2に示す。なお、表2中、「モル比(C)/〔(A)+(B)〕」は、(A)成分のモル量(単量体換算)と(B)成分のモル量の合計量に対する(C)成分のモル量の比を表す。 Table 2 shows the evaluation results of solid electrolyte SE-1. In Table 2, "molar ratio (C)/[(A)+(B)]" is based on the total molar amount of component (A) (monomer equivalent) and component (B). (C) Represents the molar ratio of component.
[実施例2]
 PPO66部とクロラニル34部を乳鉢で粗混合し、ボールミルを用いて周波数40Hzで30分間粉砕した。
 得られた粉砕物をシャーレに入れ、アルミホイルで蓋をし、200℃に設定されたホットプレートで60分間加熱した後、280℃に設定されたホットプレートで30分間加熱し、生成物CT-2を黒色粉末として得た(表1参照)。
 続いて、上記の生成物CT-2 50部にビス(トリフルオロメタンスルホニル)イミドリチウム(富士フイルム和光純薬社製;以下、「LiTFSI」ともいう。)50部を加え、乳鉢で粗混合し、ボールミルを用いて40Hzで60分間粉砕した後、250℃に設定されたホットプレートで10分間加熱し、LiTFSIを溶融させた。冷却後、ボールミルを用いて40Hzで60分間粉砕し、固体電解質粉末を得た。
 さらに、得られた固体電解質粉末を、実施例1と同様にして全固体電池評価セルに充填して封止した。上記評価セルにつき、アニール温度を250℃としたこと以外は実施例1と同様にしてアニールを行い、固体電解質SE-2を製造した(表2参照)。また、実施例1と同様の操作により、固体電解質SE-2のイオン伝導度及び空隙率を測定した。結果を表2に示す。
[Example 2]
66 parts of PPO and 34 parts of chloranil were roughly mixed in a mortar and ground using a ball mill at a frequency of 40 Hz for 30 minutes.
The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 2 was obtained as a black powder (see Table 1).
Subsequently, 50 parts of lithium bis(trifluoromethanesulfonyl)imide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.; hereinafter also referred to as "LiTFSI") was added to 50 parts of the above product CT-2, and roughly mixed in a mortar. After pulverizing for 60 minutes at 40 Hz using a ball mill, it was heated for 10 minutes on a hot plate set at 250° C. to melt LiTFSI. After cooling, it was ground using a ball mill at 40 Hz for 60 minutes to obtain a solid electrolyte powder.
Furthermore, the obtained solid electrolyte powder was filled into an all-solid-state battery evaluation cell and sealed in the same manner as in Example 1. The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 250° C. to produce solid electrolyte SE-2 (see Table 2). In addition, the ionic conductivity and porosity of the solid electrolyte SE-2 were measured by the same operation as in Example 1. The results are shown in Table 2.
[実施例3、4、6、7及び比較例1]
 原料の種類、仕込み量及びアニール温度を表1及び表2に記載した通り変更して固体電解質を製造した以外は、実施例1と同様の操作を行い、生成物CT-3、CT-4、CT-6、CT-7、CT-10を得た上で、固体電解質SE-3、SE-4、SE-6、SE-7、SE-10を得た。実施例1と同様の操作により、固体電解質SE-3、SE-4、SE-6、SE-7、SE-10のイオン伝導度及び空隙率を測定した。結果を表2に示す。
[Examples 3, 4, 6, 7 and Comparative Example 1]
The same operation as in Example 1 was carried out, except that the type of raw materials, the amount charged, and the annealing temperature were changed as shown in Tables 1 and 2 to produce the solid electrolyte, and the products CT-3, CT-4, After obtaining CT-6, CT-7, and CT-10, solid electrolytes SE-3, SE-4, SE-6, SE-7, and SE-10 were obtained. By the same operation as in Example 1, the ionic conductivity and porosity of solid electrolytes SE-3, SE-4, SE-6, SE-7, and SE-10 were measured. The results are shown in Table 2.
[実施例5]
 PPO69部と7,7,8,8-テトラシアノキノジメタン(富士フイルム和光純薬社製、以下、「TCNQ」ともいう。)31部を乳鉢で粗混合し、ボールミルを用いて周波数40Hzで30分間粉砕した。
 得られた粉砕物をシャーレに入れ、アルミホイルで蓋をし、200℃に設定されたホットプレートで60分間加熱した後、280℃に設定されたホットプレートで30分間加熱し、生成物CT-5を黒色粉末として得た(表1参照)。
 続いて、上記の生成物CT-5 80部にビス(フルオロスルホニル)イミドリチウム(富士フイルム和光純薬社製;以下、「LiFSI」ともいう。)20部を加え、乳鉢で粗混合し、ボールミルを用いて40Hzで60分間粉砕した後、180℃に設定されたホットプレートで10分間加熱し、LiFSIを溶融させた。冷却後、ボールミルを用いて40Hzで60分間粉砕し、固体電解質粉末を得た。
 さらに、得られた固体電解質粉末を、実施例1と同様にして全固体電池評価セルに充填して封止した。上記評価セルにつき、アニール温度を160℃としたこと以外は実施例1と同様にしてアニールを行い、固体電解質SE-5を製造した(表2参照)。また、実施例1と同様の操作により、固体電解質SE-5のイオン伝導度及び空隙率を測定した。結果を表2に示す。
[Example 5]
69 parts of PPO and 31 parts of 7,7,8,8-tetracyanoquinodimethane (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., hereinafter also referred to as "TCNQ") were roughly mixed in a mortar and mixed at a frequency of 40 Hz using a ball mill. Milled for 30 minutes.
The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 5 was obtained as a black powder (see Table 1).
Next, 20 parts of lithium bis(fluorosulfonyl)imide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.; hereinafter also referred to as "LiFSI") was added to 80 parts of the above product CT-5, roughly mixed in a mortar, and then milled in a ball mill. After pulverizing for 60 minutes at 40 Hz, the mixture was heated for 10 minutes on a hot plate set at 180° C. to melt LiFSI. After cooling, it was ground using a ball mill at 40 Hz for 60 minutes to obtain a solid electrolyte powder.
Furthermore, the obtained solid electrolyte powder was filled into an all-solid-state battery evaluation cell and sealed in the same manner as in Example 1. The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 160° C. to produce solid electrolyte SE-5 (see Table 2). In addition, the ionic conductivity and porosity of the solid electrolyte SE-5 were measured by the same operation as in Example 1. The results are shown in Table 2.
[実施例8]
 原料の仕込み量を表1及び表2に記載した通り変更して固体電解質を製造した以外は、実施例2と同様の操作を行い、生成物CT-8を得た上で、固体電解質SE-8を得た。また、実施例2と同様の操作により、固体電解質SE-8のイオン伝導度及び空隙率を測定した。結果を表2に示す。
[Example 8]
The same operation as in Example 2 was performed, except that the amount of raw materials charged was changed as shown in Tables 1 and 2 to produce the solid electrolyte. After obtaining the product CT-8, the solid electrolyte SE- I got 8. In addition, the ionic conductivity and porosity of the solid electrolyte SE-8 were measured by the same operation as in Example 2. The results are shown in Table 2.
[実施例9]
 PPO60部とクロラニル40部を乳鉢で粗混合し、ボールミルを用いて周波数40Hzで30分間粉砕した。
 得られた粉砕物をシャーレに入れ、アルミホイルで蓋をし、200℃に設定されたホットプレートで60分間加熱した後、280℃に設定されたホットプレートで30分間加熱し、生成物CT-9を黒色粉末として得た(表1参照)。
 続いて、上記の生成物CT-9 70部にビス(フルオロスルホニル)イミドナトリウム(富士フイルム和光純薬社製;以下、「NaFSI」という。)30部を加え、乳鉢で粗混合し、ボールミルを用いて40Hzで60分間粉砕した後、150℃に設定されたホットプレートで10分間加熱し、NaFSIを溶融させた。冷却後、ボールミルにより40Hzで60分間粉砕し、固体電解質粉末を得た。
 さらに、得られた固体電解質粉末を、実施例1と同様にして全固体電池評価セルに充填して封止した。上記評価セルにつき、アニール温度を125℃としたこと以外は実施例1と同様にしてアニールを行い、固体電解質SE-9を製造した(表2参照)。また、実施例1と同様の操作により、固体電解質SE-9のイオン伝導度及び空隙率を測定した。結果を表2に示す。
[Example 9]
60 parts of PPO and 40 parts of chloranil were roughly mixed in a mortar and ground using a ball mill at a frequency of 40 Hz for 30 minutes.
The obtained pulverized product was placed in a Petri dish, covered with aluminum foil, and heated on a hot plate set at 200°C for 60 minutes, then heated on a hot plate set at 280°C for 30 minutes, and the product CT- 9 was obtained as a black powder (see Table 1).
Next, 30 parts of sodium bis(fluorosulfonyl)imide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.; hereinafter referred to as "NaFSI") was added to 70 parts of the above product CT-9, roughly mixed in a mortar, and then milled in a ball mill. After grinding at 40 Hz for 60 minutes using a hot plate, the powder was heated for 10 minutes on a hot plate set at 150° C. to melt the NaFSI. After cooling, it was ground in a ball mill at 40 Hz for 60 minutes to obtain a solid electrolyte powder.
Furthermore, the obtained solid electrolyte powder was filled into an all-solid-state battery evaluation cell and sealed in the same manner as in Example 1. The above evaluation cell was annealed in the same manner as in Example 1 except that the annealing temperature was 125° C. to produce solid electrolyte SE-9 (see Table 2). In addition, the ionic conductivity and porosity of the solid electrolyte SE-9 were measured by the same operation as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1において用いた化合物の詳細を以下に示す。
・PPO:ポリ(2,6-ジメチル-1,4-フェニレンオキシド)〔シグマ-アルドリッチ社製〕
・クロラニル:2,3,5,6-テトラクロロ-1,4-ベンゾキノン〔富士フイルム和光純薬社製〕
・DDQ:2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン〔富士フイルム和光純薬社製〕
・TCNQ:7,7,8,8-テトラシアノキノジメタン〔富士フイルム和光純薬社製〕
・BQ:p-ベンゾキノン〔富士フイルム和光純薬社製〕
Details of the compounds used in Table 1 are shown below.
・PPO: Poly(2,6-dimethyl-1,4-phenylene oxide) [manufactured by Sigma-Aldrich]
・Chloranil: 2,3,5,6-tetrachloro-1,4-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
・DDQ: 2,3-dichloro-5,6-dicyano-p-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
・TCNQ: 7,7,8,8-tetracyanoquinodimethane [manufactured by Fujifilm Wako Pure Chemical Industries]
・BQ: p-benzoquinone [manufactured by Fujifilm Wako Pure Chemical Industries]
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2において用いた化合物の詳細を以下に示す。
・LiFTFSI:(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド=リチウム〔富士フイルム和光純薬社製〕、融点100℃
・LiTFSI:ビス(トリフルオロメタンスルホニル)イミドリチウム〔富士フイルム和光純薬社製〕、融点232℃
・LiFSI:ビス(フルオロスルホニル)イミドリチウム〔富士フイルム和光純薬社製〕、融点140℃
・NaFSI:ビス(フルオロスルホニル)イミドナトリウム〔富士フイルム和光純薬社製〕、融点106℃
Details of the compounds used in Table 2 are shown below.
・LiFTFSI: (fluorosulfonyl)(trifluoromethanesulfonyl)imide=lithium [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.], melting point 100°C
・LiTFSI: Lithium bis(trifluoromethanesulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.], melting point 232°C
・LiFSI: Lithium bis(fluorosulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.], melting point 140°C
・NaFSI: Sodium bis(fluorosulfonyl)imide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.], melting point 106°C
[実施例10]
 実施例1により得られた固体電解質粉末を全固体電池評価セル(宝泉(株)製KP-SolidCell)3セットに各15mg充填し、20N・mのトルクで封止した。固体電解質粉末を挟む円盤にはSKD製(直径1cm)を使用した。
 上記評価セルを、110℃に設定されたホットプレート上で20時間加熱(アニール)した(アニール温度=110℃)。その後、25℃で2時間冷却し、固体電解質SE-11とした。また、実施例1と同様の操作により、固体電解質SE-11のイオン伝導度及び空隙率を測定した。イオン伝導度の3回の測定結果は、5×10-4S・cm-1、1×10-3S・cm-1、4×10-4S・cm-1であった。また、イオン伝導度の3回の測定結果から実施例1と同様にイオン伝導度のばらつきを評価した結果、「A」と判断された。さらに、実施例1と同様に固体電解質SE-11の空隙率(φ)を求めた結果、12%であった。
[Example 10]
15 mg each of the solid electrolyte powder obtained in Example 1 was filled into three sets of all-solid battery evaluation cells (KP-SolidCell manufactured by Hosen Co., Ltd.), and the cells were sealed with a torque of 20 N·m. A disk made by SKD (diameter 1 cm) was used for the disk sandwiching the solid electrolyte powder.
The above evaluation cell was heated (annealed) for 20 hours on a hot plate set at 110°C (annealing temperature = 110°C). Thereafter, it was cooled at 25° C. for 2 hours to obtain solid electrolyte SE-11. In addition, the ionic conductivity and porosity of the solid electrolyte SE-11 were measured by the same operation as in Example 1. The results of three measurements of ionic conductivity were 5×10 −4 S·cm −1 , 1×10 −3 S·cm −1 , and 4×10 −4 S·cm −1 . Further, as a result of evaluating the variation in ionic conductivity from the results of three measurements of ionic conductivity in the same manner as in Example 1, it was determined to be "A". Furthermore, as in Example 1, the porosity (φ) of the solid electrolyte SE-11 was determined to be 12%.
[評価結果]
 上記の結果から明らかなように、空隙率が20%以下である実施例1~10の固体電解質は、室温においても高いイオン伝導性を示し、かつ、イオン伝導度のばらつきが小さかった。また、(C)成分に含まれるアルカリ金属の種類が異なる実施例1と実施例9とを比較すると、(C)成分としてリチウム含有化合物を用いた実施例1の固体電解質は、(C)成分としてナトリウム含有化合物を用いた実施例9の固体電解質よりも良好なイオン伝導性を示した。
[Evaluation results]
As is clear from the above results, the solid electrolytes of Examples 1 to 10 with a porosity of 20% or less exhibited high ionic conductivity even at room temperature and had small variations in ionic conductivity. Moreover, when comparing Example 1 and Example 9, which have different types of alkali metals contained in the (C) component, it is found that the solid electrolyte of Example 1 using a lithium-containing compound as the (C) component is It showed better ionic conductivity than the solid electrolyte of Example 9, which used a sodium-containing compound as the solid electrolyte.
 また、(C)成分に含まれるアルカリ金属の種類が同一である実施例1~8について、〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕の値とイオン伝導性との関係について見ると、〔(C)成分のモル量〕/〔(A)成分のモル量+(B)成分のモル量〕が0.3以上0.6以下の範囲内である実施例1~3の固体電解質は、より良好なイオン伝導性を示した。 Furthermore, for Examples 1 to 8 in which the type of alkali metal contained in component (C) is the same, [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B) Looking at the relationship between the value of ] and ionic conductivity, [molar amount of component (C)]/[molar amount of component (A) + molar amount of component (B)] is 0.3 or more and 0.6 or less. The solid electrolytes of Examples 1 to 3 within the range showed better ionic conductivity.
 以上の結果から、電子供与性化合物としてのフェニレンオキシド化合物、電子受容性化合物及びアルカリ金属含有化合物を含み、空隙率が20%以下である本開示の固体電解質は、室温において高いイオン伝導性を示し、かつ、イオン伝導度のばらつきが小さいことが明らかとなった。 From the above results, the solid electrolyte of the present disclosure, which contains a phenylene oxide compound as an electron donating compound, an electron accepting compound, and an alkali metal-containing compound and has a porosity of 20% or less, exhibits high ionic conductivity at room temperature. , and the variation in ionic conductivity was found to be small.
 本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、様々な変形例や均等範囲内の変形をも包含する。したがって、上記教示に照らして様々な組み合わせや形態、更には、それらに一要素のみ、それ以上、あるいはそれ以下を含む他の組み合わせや形態をも、本発明の範疇や思想範囲に入るものと理解されるべきである。 The present invention is not limited to the embodiments described above, and includes various modifications and equivalent modifications within the scope of the invention. Therefore, in light of the above teachings, it is understood that various combinations and forms, and furthermore, other combinations and forms that include only one element, more, or less, fall within the scope and scope of the present invention. It should be.

Claims (11)

  1.  電子供与性化合物と、
     電子受容性化合物と、
     アルカリ金属含有化合物と、
    を含み、
     前記電子供与性化合物は、フェニレンオキシド構造を有する化合物であり、
     空隙率が20%以下である、固体電解質。
    an electron-donating compound;
    an electron-accepting compound;
    an alkali metal-containing compound;
    including;
    The electron donating compound is a compound having a phenylene oxide structure,
    A solid electrolyte with a porosity of 20% or less.
  2.  前記電子供与性化合物は、下記式(1)で表される繰り返し単位を有する重合体である、請求項1に記載の固体電解質。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、同一又は異なって、水素原子又はアルキル基である。)
    The solid electrolyte according to claim 1, wherein the electron donating compound is a polymer having a repeating unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 and R 2 are the same or different and are a hydrogen atom or an alkyl group.)
  3.  前記電子供与性化合物のモル量(ただし、前記電子供与性化合物が重合体の場合には単量体換算)に対する、前記電子受容性化合物のモル量の比率が0.1以上1.0以下である、請求項1に記載の固体電解質。 The ratio of the molar amount of the electron-accepting compound to the molar amount of the electron-donating compound (however, when the electron-donating compound is a polymer, in monomer terms) is 0.1 or more and 1.0 or less. The solid electrolyte according to claim 1.
  4.  前記電子供与性化合物のモル量(ただし、前記電子供与性化合物が重合体の場合には単量体換算)と前記電子受容性化合物のモル量の合計量に対する、前記アルカリ金属含有化合物のモル量の比率が0.03以上1.0以下である、請求項1に記載の固体電解質。 The molar amount of the alkali metal-containing compound relative to the total molar amount of the electron-donating compound (however, in the case where the electron-donating compound is a polymer, in terms of monomer) and the molar amount of the electron-accepting compound. The solid electrolyte according to claim 1, wherein the ratio of is 0.03 or more and 1.0 or less.
  5.  前記電子受容性化合物が、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、o-ベンゾキノン、m-ベンゾキノン及びp-ベンゾキノンからなる群より選択される少なくとも1種を含む、請求項1に記載の固体電解質。 The electron accepting compound is 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7,7, The solid electrolyte according to claim 1, comprising at least one selected from the group consisting of 8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone, and p-benzoquinone.
  6.  前記アルカリ金属含有化合物がアルカリ金属塩を含む、請求項1に記載の固体電解質。 The solid electrolyte according to claim 1, wherein the alkali metal-containing compound includes an alkali metal salt.
  7.  前記アルカリ金属含有化合物がリチウム含有化合物を含む、請求項1に記載の固体電解質。 The solid electrolyte according to claim 1, wherein the alkali metal-containing compound includes a lithium-containing compound.
  8.  前記電子供与性化合物は、下記式(1)で表される繰り返し単位を有する重合体であり、
     前記電子受容性化合物は、2,3,5,6-テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、o-ベンゾキノン、m-ベンゾキノン及びp-ベンゾキノンからなる群より選択される少なくとも1種を含み、
     前記アルカリ金属含有化合物はアルカリ金属塩を含む、請求項1に記載の固体電解質。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R及びRは、同一又は異なって、水素原子又はアルキル基である。)
    The electron donating compound is a polymer having a repeating unit represented by the following formula (1),
    The electron-accepting compounds include 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 7,7, Containing at least one member selected from the group consisting of 8,8-tetracyanoquinodimethane (TCNQ), o-benzoquinone, m-benzoquinone and p-benzoquinone,
    The solid electrolyte according to claim 1, wherein the alkali metal-containing compound includes an alkali metal salt.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (1), R 1 and R 2 are the same or different and are a hydrogen atom or an alkyl group.)
  9.  請求項1~8のいずれか一項に記載の固体電解質を備える、蓄電デバイス。 An electricity storage device comprising the solid electrolyte according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の固体電解質の製造方法であって、
     前記電子供与性化合物、前記電子受容性化合物及び前記アルカリ金属含有化合物を含む粉状組成物を得る工程と、
     前記粉状組成物を成形して得られた成形体を、前記アルカリ金属含有化合物の融点以上の温度で加熱する工程と、
    を含む、固体電解質の製造方法。
    A method for producing a solid electrolyte according to any one of claims 1 to 8, comprising:
    Obtaining a powdery composition containing the electron-donating compound, the electron-accepting compound, and the alkali metal-containing compound;
    heating a molded body obtained by molding the powdery composition at a temperature equal to or higher than the melting point of the alkali metal-containing compound;
    A method for producing a solid electrolyte, including:
  11.  前記成形体は、前記粉状組成物を加圧成形することにより得られる、請求項10に記載の固体電解質の製造方法。 The method for producing a solid electrolyte according to claim 10, wherein the molded body is obtained by pressure molding the powder composition.
PCT/JP2023/031906 2022-09-02 2023-08-31 Solid electrolyte, method for producing same, and power storage device WO2024048746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140045 2022-09-02
JP2022-140045 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048746A1 true WO2024048746A1 (en) 2024-03-07

Family

ID=90097946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031906 WO2024048746A1 (en) 2022-09-02 2023-08-31 Solid electrolyte, method for producing same, and power storage device

Country Status (1)

Country Link
WO (1) WO2024048746A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522083A (en) * 2015-05-08 2018-08-09 イオニツク・マテリアルズ・インコーポレーテツド Solid ion conductive polymer material
JP2022515714A (en) * 2018-11-30 2022-02-22 イオニツク・マテリアルズ・インコーポレーテツド Batteries and electrodes with coated active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522083A (en) * 2015-05-08 2018-08-09 イオニツク・マテリアルズ・インコーポレーテツド Solid ion conductive polymer material
JP2022515714A (en) * 2018-11-30 2022-02-22 イオニツク・マテリアルズ・インコーポレーテツド Batteries and electrodes with coated active material

Similar Documents

Publication Publication Date Title
Che et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
CN110518277B (en) Solid electrolyte, method for preparing the same, and solid battery comprising the same
Judez et al. Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis (fluorosulfonyl) imide
KR20180036650A (en) Lithium metal battery with solid polymer electrolyte
KR102024889B1 (en) Semi-Interpenetrating Polymer Networks Polymer Electrolyte and All-Solid-State Battery comprising The Same
US20200365892A1 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
KR20130096258A (en) Niobium oxide compositions and methods for using same
JP2019515481A (en) Protective negative electrode for lithium metal battery, and lithium metal battery containing the same
JP6071938B2 (en) ALL SOLID SECONDARY BATTERY, SOLID ELECTROLYTE COMPOSITION AND BATTERY ELECTRODE SHEET USED FOR THE SAME, AND BATTERY ELECTRODE SHEET AND METHOD FOR PRODUCING ALL SOLID SOLID BATTERY
JP2018085331A (en) Polymer electrolyte, method for manufacturing the same, and lithium metal battery including the same
CN109546206B (en) Wide-temperature range type lithium ion battery composite solid electrolyte and preparation method thereof
JP2759479B2 (en) All-solid-state lithium secondary battery
KR102006717B1 (en) Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same
CN111048828A (en) Composite electrolyte, lithium metal battery including the same, and method of preparing the composite electrolyte
Tian et al. Solid electrolyte membranes prepared from poly (arylene ether sulfone)-g-poly (ethylene glycol) with various functional end groups for lithium-ion battery
WO2011132717A1 (en) Non-aqueous electrolyte for electrical device and secondary battery using same
JP6740350B2 (en) Solid electrolyte composition, solid electrolyte containing sheet and all solid state secondary battery, and solid electrolyte containing sheet and all solid state secondary battery manufacturing method
CN116072961B (en) Core-shell sulfide solid electrolyte, preparation method and all-solid-state battery
Gan et al. Solid‐State Batteries Based on Organic Cathode Materials
US11183709B2 (en) Polymer, electrolyte including the same, and lithium battery including the polymer
WO2024048746A1 (en) Solid electrolyte, method for producing same, and power storage device
JP2014041732A (en) Positive electrode active material, and secondary battery
Zhang et al. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries
CN113206292B (en) Polymer-based composite solid electrolyte and preparation method and application thereof
WO2014084182A1 (en) Electricity storage device, electrode used therein, and porous sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860508

Country of ref document: EP

Kind code of ref document: A1