WO2011132717A1 - Non-aqueous electrolyte for electrical device and secondary battery using same - Google Patents

Non-aqueous electrolyte for electrical device and secondary battery using same Download PDF

Info

Publication number
WO2011132717A1
WO2011132717A1 PCT/JP2011/059751 JP2011059751W WO2011132717A1 WO 2011132717 A1 WO2011132717 A1 WO 2011132717A1 JP 2011059751 W JP2011059751 W JP 2011059751W WO 2011132717 A1 WO2011132717 A1 WO 2011132717A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
mass
formula
ethylene carbonate
carbonate
Prior art date
Application number
PCT/JP2011/059751
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 伊藤
加藤 行浩
水谷 雅人
中村 武志
正規 内山
省子 大場
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Publication of WO2011132717A1 publication Critical patent/WO2011132717A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for electrical devices and a secondary battery using the same.
  • a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a cyclic carbonate solvent such as ethylene carbonate or propylene carbonate is used.
  • propylene carbonate has a high dielectric constant, dissolves electrolyte salts well, has a low melting point, and exhibits high ionic conductivity even at low temperatures. Therefore, it has well-balanced characteristics required as a non-aqueous solvent for electrolytes.
  • propylene carbonate decomposes on the surface of the graphite material during charging and sufficient cycle characteristics cannot be obtained. It was.
  • ethylene carbonate is used in place of propylene carbonate, but the melting point of ethylene carbonate is 36 ° C. and is solid at room temperature, so it is not used alone and is used by mixing with a low-melting non-aqueous solvent.
  • a low melting point non-aqueous solvent include chain carbonate solvents such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl butyl carbonate (Non-patent Document 1).
  • the non-aqueous electrolyte using the above mixed solvent has high ionic conductivity at low temperatures and good battery characteristics such as cycle characteristics and output characteristics, but the chain carbonate solvent is flammable and highly volatile.
  • Patent Document 1 a nonaqueous electrolytic solution containing ethylene carbonate, propylene carbonate, and polyethylene glycol dialkyl ether at a specific ratio.
  • Patent Document 1 a nonaqueous electrolytic solution containing ethylene carbonate, propylene carbonate, and polyethylene glycol dialkyl ether at a specific ratio.
  • Nonaqueous electrolytic solution composed of polyethylene glycol and a polyethylene glycol dialkyl ether having a specific number of moles of oxyethylene groups has been proposed (for example, Patent Document 2).
  • Batteries using this non-aqueous electrolyte have excellent cycle characteristics, but the idea of using ethylene carbonate dissolved in polyethylene glycol dialkyl ether with as few additional moles as possible is limited to safety and low-temperature ionization. The conductivity was insufficient.
  • a gel electrolyte in which a non-aqueous solvent is gelled with a polymer has been developed.
  • a gel electrolyte composed of a carbonate solvent and polyethylene glycol diacrylate has been proposed (for example, Patent Document 3).
  • the gel electrolyte has the effect of suppressing the fluidity and volatility of the carbonate-based solvent, so it can be expected to reduce the risk of the above problems to some extent.
  • a large amount of non-aqueous solvent needs to be blended, and the essential problems have not been solved.
  • a lithium ion secondary battery using a polymer electrolyte As a method for obtaining higher safety, a lithium ion secondary battery using a polymer electrolyte has been proposed.
  • the polymer electrolyte By using the polymer electrolyte, it becomes possible to greatly suppress the volatility of the electrolytic solution, so that the safety of the battery can be drastically improved.
  • a polymer electrolyte in which a specific alkali metal salt is contained in a polyethylene oxide polymer is widely known (for example, Patent Document 4).
  • Patent Document 4 there is a problem in that a battery having a practically sufficient charge / discharge output cannot be obtained due to extremely low ion conductivity at room temperature.
  • the present invention has been made in view of the above circumstances, and has a nonionic electrolyte for electric devices having good ion conductivity and high safety at low temperature, good output characteristics, good cycle characteristics, and excellent safety. It aims at providing the secondary battery which has the property.
  • the present invention is as follows.
  • R 1 and R 2 are hydrocarbon groups having 1 to 6 carbon atoms, A 1 O is an oxyethylene group, and n is an average added mole number of oxyethylene groups of 3 to 10.
  • C The nonaqueous electrolytic solution for an electric device described above, wherein the etherification rate of the compound represented by the formula (1) is 95% or more.
  • the non-aqueous electrolyte further contains an additive selected from unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite, and the blending ratio of the additive is a total of 100 parts by mass of the non-aqueous solvent.
  • E The said nonaqueous electrolyte for electrical devices in which a nonaqueous electrolyte contains the cyanoethyl group containing compound further shown by Formula (2).
  • R 3 and R 4 are each a hydrocarbon having 1 to 6 carbon atoms or a cyanoethyl group, and at least one of R 3 and R 4 is a cyanoethyl group.
  • a 2 O is an oxyethylene group
  • m is an oxyethylene group.
  • the average number of moles added is 1 to 10.
  • F The nonaqueous electrolytic device according to the above, wherein the nonaqueous electrolyte further contains silica fine particles, and the mixing ratio of the silica fine particles is 2 to 15 parts by mass of the silica fine particles with respect to 100 parts by mass in total of the nonaqueous solvent. Electrolytic solution.
  • the nonaqueous electrolytic solution for an electric device described above wherein the silica fine particles are those in which at least a part of silanol groups on the particle surface is modified with a hydrophobizing agent.
  • the non-aqueous electrolyte further includes a polymer of a compound having a radical polymerizable unsaturated double bond, and the blending ratio of the compounds having a radical polymerizable unsaturated double bond is 100 in total for the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution for an electric device described above, wherein the polymer of a compound having a radical polymerizable unsaturated double bond is 5 to 30 parts by mass with respect to part by mass.
  • a secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing cations, and an electrolyte layer that moves between the positive electrode and the negative electrode to move the cations, wherein the electrolyte layer is the electric device described above.
  • Secondary battery containing nonaqueous electrolyte for use.
  • the non-aqueous electrolyte and gel electrolyte for electrical devices of the present invention have good ion conductivity and high safety at low temperatures.
  • a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
  • FIG. 4 is a graph summarizing the relationship between the amount of polyoxyethylene compounds in the non-electrolytic solutions of Examples 1 to 4 and Comparative Examples 2 to 4 and ionic conductivity at ⁇ 20 ° C. It is a model perspective view which shows the structure of the battery for a test used by the Example and the comparative example.
  • the non-aqueous solvent used in the present invention is an organic solvent obtained by mixing a polyoxyethylene compound represented by the formula (1) and ethylene carbonate. Further, the nonaqueous electrolytic solution includes the nonaqueous solvent and an electrolyte salt.
  • R 1 and R 2 are each independently a hydrocarbon group having 1 to 6 carbon atoms, for example, a fatty group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group.
  • a ⁇ 1 > O in Formula (1) is an oxyethylene group.
  • n is the average number of moles of oxyethylene group added, and is 3 to 10, preferably 4 to 8.
  • n is in the range of 3 to 10
  • a nonaqueous electrolytic solution having good ionic conductivity at low temperature, good chemical stability, and excellent safety can be obtained.
  • a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
  • the polyoxyethylene compound having a hydrocarbon group at both ends represented by the formula (1) can be produced by a known method.
  • the production method is not particularly limited, but it is preferably produced by the method disclosed in Japanese Patent Application Laid-Open No. 2008-117762 from the viewpoint of the purity and moisture content of the obtained compound. That is, first, a monovalent alcohol having a hydrocarbon group having 1 to 6 carbon atoms as a starting material and an alkali catalyst or Lewis acid catalyst excluding alkali metal and alkaline earth metal hydroxide are added to a reaction vessel, and dry nitrogen is added.
  • the etherification rate represented by the following formula (1) is preferably 95% or more, more preferably 97% or more, and most preferably 98% or more, from the viewpoint of the cycle characteristics of the battery using the nonaqueous electrolytic solution. It is.
  • Equation (1) ⁇ 1-Hydroxyl value of polyoxyethylene compound represented by formula (1) / Hydroxyl value of polyethylene glycol monoalkyl ether ⁇ ⁇ 100 Formula (1) Note that the hydroxyl value used in the calculation of Equation (1) is a value measured in accordance with JIS-K-0070.
  • the alkali catalyst is a compound excluding alkali metal and alkaline earth metal hydroxide, specifically sodium, potassium, sodium potassium amalgam, sodium hydride, sodium methoxide, potassium methoxide, sodium. Examples thereof include ethoxide and potassium ethoxide. Also, a methanol solution of sodium methoxide, an ethanol solution of sodium ethoxide, or the like can be used.
  • the Lewis acid catalyst boron trifluoride, tin tetrachloride, or the like can be used.
  • Examples of the monovalent alcohol having a hydrocarbon group having 1 to 6 carbon atoms include aliphatic hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a phenyl group.
  • a compound having an alicyclic hydrocarbon group such as an aromatic hydrocarbon group or a cyclohexyl group and a hydroxyl group in the same molecule.
  • the nonaqueous electrolytic solution of the present invention may contain a compound represented by the formula (2).
  • R 3 and R 4 are a hydrocarbon group having 1 to 6 carbon atoms or a cyanoethyl group, and at least one of R 3 and R 4 is a cyanoethyl group.
  • Preferred hydrocarbon groups include, for example, an aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, an aromatic hydrocarbon group such as a phenyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • an aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group
  • an aromatic hydrocarbon group such as a phenyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • hydrocarbon groups having less than 4 carbon atoms are preferred, and methyl groups and ethyl groups are particularly preferred.
  • a 2 O is an oxyethylene group.
  • m is the average number of moles of oxyethylene group added, and is 1 to 10, preferably 1 to 6, and more preferably 1 to 4.
  • m in the formula (2) is in the range of 1 to 10, a nonaqueous electrolytic solution having good ionic conductivity at low temperatures, good chemical stability, and excellent safety can be obtained.
  • a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
  • the cyanoethyl group-containing compound represented by the formula (2) can be produced by a known method.
  • the production method is not particularly limited, but it is preferably produced by the method disclosed in Japanese Patent Application Laid-Open No. 2002-158039 from the viewpoint of the purity and water content of the resulting compound. That is, acrylonitrile is reacted dropwise with polyethylene glycol monoalkyl ether obtained in the production process of the compound represented by formula (1) or polyethylene glycol, which is a divalent alcohol, at 30 to 80 ° C. under an inert gas flow. It is obtained by.
  • the ethylene carbonate used in the present invention is not particularly limited as long as it is produced by a conventionally known method and used in a non-aqueous electrolyte of a lithium ion secondary battery.
  • ethylene glycol is used.
  • phosgene a method of condensing ethylene glycol and ethyl chloroformate, a method of reacting ethylene glycol and carbon dioxide, and a method of transesterification from a carbonate.
  • the melting point of the nonaqueous solvent obtained by mixing the polyoxyethylene compound represented by formula (1) and ethylene carbonate is such that the polyoxyethylene compound represented by formula (1) and ethylene carbonate
  • Non-aqueous electrolysis that has a specific effect of lowering the melting point of each simple substance and improving the ionic conductivity at low temperatures significantly higher than that of each simple substance, and having excellent low-temperature ionic conductivity and charge / discharge characteristics A liquid is obtained.
  • the non-aqueous electrolyte solution is excellent in safety.
  • a cyanoethyl group-containing compound represented by the formula (2) can be used.
  • the ratio is ⁇ of the polyoxyethylene compound represented by the formula (1)
  • Mass ⁇ / ⁇ mass of the cyanoethyl group-containing compound represented by formula (2) ⁇ 99/1 to 25/75, preferably 90/10 to 50/50, more preferably 85/15 to 60 / 40, more preferably in the range of 85/15 to 70/30.
  • the ratio of the compound represented by the formula (1), the compound represented by the formula (2) and the ethylene carbonate is ⁇ the mass of the polyoxyethylene compound represented by the formula (1) + the cyanoethyl represented by the formula (2).
  • Mass of group-containing compound ⁇ / (mass of ethylene carbonate) 75/25 to 52/48, and more preferably 65/35 to 53/47.
  • the electrolyte salt used in the present invention is not particularly limited as long as it is soluble in the ion conductive polymer electrolyte and is stable at the driving voltage of the battery.
  • the compound which consists of an anion is mentioned.
  • these electrolyte salts lithium hexafluorophosphate, lithium tetrafluoroborate, and lithium bisoxalate borate are preferable because of high ion conductivity.
  • the concentration of the electrolyte salt is preferably in the range of 0.01 to 5 mol, and more preferably in the range of 0.1 to 2 mol, with respect to 1 L of the nonaqueous solvent. When this value exceeds 5 mol, the viscosity is remarkably increased, and it becomes difficult to obtain sufficient ionic conductivity at low temperatures.
  • nonaqueous electrolytic solution of the present invention including the polyoxyethylene compound represented by the formula (1), ethylene carbonate and an electrolyte salt, and a conventionally known method may be used.
  • the formula (1 The nonoxygen electrolyte solution can be obtained by uniformly mixing and dispersing the polyoxyethylene compound, ethylene carbonate, and electrolyte salt represented by) using various kneaders and stirrers.
  • the non-aqueous electrolyte for electrical devices of the present invention may contain a compound known as an additive for non-aqueous electrolyte, such as unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite.
  • a compound known as an additive for non-aqueous electrolyte such as unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite.
  • unsaturated cyclic carbonate compounds such as vinylene carbonate, halogen-substituted cyclic carbonate compounds such as fluoroethylene carbonate and chloroethylene carbonate, 1,3-propane sultone, 1,2-propane sultone, 1,3-butane sultone, 1, Cyclic sulfonic acid compounds such as 4-butane sultone and 1,3-pentane sultone, cyclic sulfite compounds such as ethylene sulfite, vinyl ethylene sulfite, divinyl ethylene sulfite and propylene sulfite, and 12-crown-4 Crowne Ethers, benzene, and aromatic compounds such as toluene.
  • unsaturated cyclic carbonate compounds such as vinylene carbonate, halogen-substituted cyclic carbonate compounds such as fluoroethylene carbonate and chloroethylene carbonate, 1,3-propane sultone, 1,2-propane
  • additives vinylene carbonate, fluoroethylene carbonate, and ethylene sulfite are preferable, and the additive content is 0.1 to 20 parts by mass with respect to a total of 100 parts by mass of the nonaqueous solvent. Preferably there is.
  • a battery having good cycle characteristics is easily obtained.
  • the non-aqueous electrolyte for electric devices of the present invention may contain silica fine particles for the purpose of adjusting the fluidity by thickening the non-aqueous electrolyte in a paste form.
  • silica fine particles used are not particularly limited as long as they are electrochemically stable at the driving voltage of the battery, but silicon tetrachloride is burned in a high-temperature hydrogen flame because it can effectively thicken with a small amount of compounding.
  • the fumed silica obtained by this is preferable.
  • Aerosil (trade name) sold by Nippon Aerosil Co., Ltd. is preferably used.
  • the average primary particle diameter of the silica fine particles is preferably 5 nm to 40 nm, more preferably 5 nm to 30 nm, and most preferably 5 nm to 20 nm.
  • a nonaqueous electrolytic solution in which the silica fine particles are uniformly and stably dispersed tends to be easily obtained.
  • the surface of the silica fine particles is preferably treated with a hydrophobizing agent, and at least a part of silanol groups on the particle surface is preferably modified with the hydrophobizing agent.
  • a surface treatment method using a hydrophobizing agent a conventionally known gas phase method or liquid phase method may be used.
  • the type of hydrophobizing agent is not particularly limited. For example, chlorosilanes such as methyltrichlorosilane, ethyltrichlorosilane, propyltrichlorosilane, vinyltrichlorosilane, and phenyltrichlorosilane, polymerized silicon compounds such as dimethylpolysiloxane and silicone oil, methyltrichlorosilane.
  • alkoxysilanes such as methoxysilane, methyltriethoxysilane, t-butyltrimethoxysilane, octyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane.
  • alkoxysilanes are particularly preferable because they have a high thickening effect on the nonaqueous electrolyte and good dispersibility, and alkoxysilanes having an octyl group are particularly preferable.
  • the mixing ratio of the nonaqueous solvent and the silica fine particles in the nonaqueous electrolyte is silica with respect to a total of 100 parts by mass of the nonaqueous solvent.
  • the amount of fine particles is 2 to 15 parts by mass, and more preferably 3 to 15 parts by mass.
  • the nonaqueous electrolytic solution for an electric device of the present invention may contain a polymer of a compound having a radical polymerizable unsaturated double bond.
  • a polymer of a compound having a radical polymerizable unsaturated double bond With such a configuration, the fluidity and volatility of the non-aqueous electrolyte are suppressed, and even when the battery package is damaged due to external stress, it is difficult to leak to the outside. The safety of the battery using the battery is further improved.
  • the polymer of the compound having a radical polymerizable unsaturated double bond to be used is not particularly limited as long as it is a compound that is compatible with a non-aqueous electrolyte and does not completely separate into two layers.
  • Monovalents such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, etc.
  • polyhydric alcohol such as pentaerythritol tetra (meth) acrylate, alkyloxy Polyalkylene glycol (meth) acrylate Polyalkylene glycol di (meth) acrylate, glycerol tris (
  • Polyalkylene glycol derivatives 4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4-vinyl-4-methylethylene carbonate, 4-vinyl-5-methylethylene carbonate, 4-vinyl -Vinylethylene carbonates such as 4,5-dimethylethylene carbonate, 4-acryloxymethylethylene carbonate, 4,5-methylethylenecar Sulfonate, acryloxy methyl ethylene carbonate such as 4-methyl-4-acryloxy-methylethylene carbonate.
  • methyl (meth) acrylate, (meth) acrylonitrile, 4-vinylethylene carbonate, alkyloxypolyalkylene glycol (meth) acrylate, polyalkylene glycol di (meth) acrylate Is preferably used.
  • the polymer of the compound having the above-mentioned radical polymerizable unsaturated double bond may be used alone or in combination of two or more.
  • the blending ratio of the nonaqueous solvent and the polymer in the nonaqueous electrolytic solution is 5 to 30 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass in total of the nonaqueous solvent.
  • non-aqueous electrolyte when a polymer of a compound having a radical polymerizable unsaturated double bond is used in the non-aqueous electrolyte, there is no particular limitation on the method for producing the non-aqueous electrolyte, and a conventionally known method can be used. For example, it can be obtained by the following method.
  • a non-aqueous electrolyte can be obtained by polymerizing a non-aqueous solvent, a compound having a radically polymerizable unsaturated double bond, and an electrolyte salt uniformly mixed and dispersed using various kneaders and stirrers.
  • the polymerization method may be a conventionally known method such as ionic polymerization, radical polymerization, etc., and uses an energy such as visible light, ultraviolet light, electron beam, heat, etc., and appropriately polymerizes using a polymerization initiator or the like.
  • a non-aqueous electrolyte solution can be obtained.
  • a polymerization initiator may or may not be used, but it is preferable to use a thermal radical polymerization initiator from the viewpoint of workability and polymerization rate.
  • the radical polymerization initiator may be selected from commonly used organic peroxides and azo compounds, and is not particularly limited. Specific examples of the radical polymerization initiator include 3,5,5-trimethylhexanoyl peroxide.
  • Diacyl peroxides such as benzoyl peroxide, peroxydicarbonates such as di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, t-hexylperoxyneo Decanate, t-butyl peroxyneodecanate, t-hexyl peroxypivalate, t-butyl peroxypivalate, t-butyl peroxy 2-ethylhexanoate, t-butyl peroxy 3, 5, 5 -Peroxyesthetics such as trimethylhexanoate Peroxyketals such as 1,1-bis (t-butylperoxy) 3,3,5-
  • the radical polymerization initiator may be appropriately selected and used depending on the desired polymerization temperature and polymer composition, but is an indicator of decomposition temperature and decomposition rate for the purpose of not damaging members used in electrochemical devices.
  • the time half-life temperature is preferably 30 to 90 ° C.
  • the production of the polymer using the radical polymerization initiator is such that the polymerizable unsaturated double bond in the polymer is substantially within a temperature range of about ⁇ 10 ° C. with respect to the 10-hour half-life temperature of the used radical polymerization initiator.
  • the polymerization time may be adjusted as appropriate until it is completely eliminated.
  • the positive electrode for reversibly occluding and releasing cations in the secondary battery of the present invention is a lithium secondary battery formed by forming a positive electrode mixture containing a positive electrode active material, a conductive additive, and a binder on a current collector. Any known positive electrode may be used without particular limitation.
  • the positive electrode active material include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), layered lithium manganate (LiMnO 2 ), or LiMn x Ni that is a composite oxide containing a plurality of transition metals.
  • Examples of the material include conductive carbon materials such as acetylene black, ketjen black, graphite, carbon nanofiber, etc.
  • Examples of the binder include, for example, As the binder used in the electrode To the negative electrode include such inorganic compounds and various resins silicate or glass.
  • binder resin examples include alkane polymers such as polyethylene, polypropylene and poly-1,1-dimethylethylene, unsaturated polymers such as polybutadiene and polyisoprene, polystyrene, polymethylstyrene, polyvinylpyridine, Polymers having rings such as poly-N-vinylpyrrolidone, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide, etc.
  • alkane polymers such as polyethylene, polypropylene and poly-1,1-dimethylethylene
  • unsaturated polymers such as polybutadiene and polyisoprene
  • polystyrene polymethylstyrene
  • polyvinylpyridine Polymers having rings such as poly-N-vinylpyrrolidone, polymethyl methacrylate, polyethyl methacryl
  • Fluorine resins such as acrylic polymers, polyvinyl fluoride, polyvinylidene fluoride, and polytetrafluoroethylene, cyano group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide, and polymers such as polyvinyl acetate and polyvinyl alcohol Alkenyl alcohol polymers, polyvinyl chloride, halogen-containing polymers such as polyvinylidene chloride, conductive polymers such as polyaniline. Further, a mixture, modified product, derivative, random copolymer, alternating copolymer, graft copolymer, block copolymer, or the like of the above-described polymer can be used.
  • the composite material layer may contain a member that exhibits various functions, such as a conductive material and a reinforcing material, as necessary.
  • the conductive material is not particularly limited as long as it can be mixed with an active material in an appropriate amount to impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals. .
  • fluoroethylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7-dione, 12-crown-4-ether, etc. are used to increase the stability and life of the battery. it can.
  • various inorganic and organic spherical, plate-like, rod-like, and fibrous fillers can be used as the reinforcing material.
  • metal foil such as aluminum foil, copper foil, nickel foil, titanium foil, gold foil, and platinum foil is usually used, and it is used after roughening in advance to increase the adhesive strength of the composite material layer. It is preferable to do this.
  • a negative electrode or a metal foil or the like formed by forming a negative electrode mixture containing a negative electrode active material and a binder on a current collector such as a copper foil.
  • a conventionally known negative electrode for the secondary battery may be used without any particular limitation.
  • the negative electrode active material include those obtained by heat-treating graphitizable materials obtained from natural graphite, petroleum coke, coal pitch coke, and the like at a high temperature of 2500 ° C. or higher, mesophase carbon, amorphous carbon, carbon fiber, and the like.
  • a carbon-based material, lithium-titanium oxide (Li 4 Ti 5 O 12 or the like), a metal alloyed with lithium, or a material in which a metal is supported on the surface of carbon particles is used.
  • metals include lithium, aluminum, tin, silicon, indium, gallium, magnesium, and alloys thereof.
  • the metal or metal oxide can also be used as the negative electrode active material.
  • the binder for example, the same binder as that of the positive electrode can be used.
  • carbon-based materials and lithium-titanium oxides are preferable from the viewpoint of the cycle characteristics and safety of the obtained battery.
  • the method for producing the positive electrode and the negative electrode is not particularly limited, and may be performed using a conventionally known method for producing an electrode for a lithium secondary battery.
  • the method can also be produced by the following method.
  • a mixture containing an active material and a conductive material such as acetylene black is mixed with a solvent solution (dispersion) of a binder with a ball mill, a sand mill, a biaxial kneader or the like to obtain a slurry.
  • the solvent contained in the slurry is removed by heating, and the composite material is a porous material in which an active material and a conductive material such as acetylene black are bound together by a binder Form a layer.
  • the target electrode can be obtained by pressurizing the current collector and the composite material layer with a roll press or the like to bring them into close contact.
  • the solvent used in the slurry is not particularly limited as long as it is inert to the active material and can dissolve the binder, and may be any inorganic or organic solvent.
  • An example of a suitable solvent is N-methyl-2-pyrrolidone.
  • the method for producing the secondary battery of the present invention is not particularly limited and may be performed using a conventionally known method for producing a secondary battery.
  • the secondary battery may be produced by the following method. Prepared by placing an insulating layer such as a polyolefin microporous membrane or non-woven fabric between the positive electrode and the negative electrode, and pouring until the non-aqueous electrolyte is sufficiently infiltrated into the voids of the positive electrode, the negative electrode, and the insulator can do.
  • the non-aqueous electrolyte contains silica fine particles
  • the non-aqueous electrolyte is applied on the positive electrode / negative electrode mixture layer in advance, and then the positive electrode / negative electrode mixture layer is interposed through the insulating layer. It can also be produced by sticking together so that they face each other.
  • an insulating layer such as a polyolefin microporous film or a nonwoven fabric is disposed between the positive electrode and the negative electrode, It can also be prepared by polymerizing after pouring until the non-aqueous electrolyte is sufficiently infiltrated into the gap between the negative electrode and the insulator.
  • the application of the secondary battery of the present invention is not particularly limited, but for example, digital AV cameras, video cameras, portable audio players, portable liquid crystal televisions and other portable AV devices, notebook computers, mobile phones, electronic notebooks with communication functions, etc. It can be used in a wide range of fields such as portable information terminals, portable game devices, electric tools, electric bicycles, hybrid cars, electric cars, power storage systems, and the like.
  • Example of electrode preparation ⁇ Mn-based positive electrode> Lithium manganate powder (JGC Chemicals, Inc., trade name E06Z) which is a positive electrode active material, Acetylene black (trade name, manufactured by Electrochemical Industry Co., Ltd.) as a conductive additive Denka Black) and a polyvinylidene fluoride N-methylpyrrolidone 10 mass% solution (trade name KF1120, manufactured by Kureha Co., Ltd.) as a binder in a mass ratio of solid components excluding N-methylpyrrolidone is 90/5/5
  • the resulting mixture was kneaded with a planetary mixer while appropriately adjusting the viscosity by adding N-methylpyrrolidone to obtain a slurry dispersion solution.
  • the obtained dispersion solution was applied on an aluminum foil (thickness 20 ⁇ m) with a doctor blade to a thickness of 200 ⁇ m, and then dried at 100 ° C. for 5 hours under vacuum. After drying, after compression at room temperature so that the density of the positive electrode excluding the aluminum foil is 1.0 g / cm 3 using a desktop press machine, cut into a size of 40 ⁇ 60 mm and used as a current collecting tab Aluminum tabs of 4 ⁇ 40 ⁇ 0.1 mm were joined by ultrasonic welding to obtain a Mn-based positive electrode.
  • ⁇ Artificial graphite negative electrode> Artificial graphite powder (trade name MAG, manufactured by Hitachi Chemical Co., Ltd.) which is a negative electrode active material, acetylene black (trade name, Denka black, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a conductive additive, and Polyvinylidene fluoride N-methylpyrrolidone 10% by weight solution (trade name KF1120, manufactured by Kureha Co., Ltd.) as a binder is blended so that the mass ratio of the solid component excluding N-methylpyrrolidone is 90/5/5 Then, while appropriately adjusting the viscosity by adding N-methylpyrrolidone, the mixture was kneaded with a planetary mixer to obtain a slurry dispersion.
  • Artificial graphite powder (trade name MAG, manufactured by Hitachi Chemical Co., Ltd.) which is a negative electrode active material
  • acetylene black trade name, Denka black, manufactured by Denki Kagaku
  • the obtained dispersion solution was applied onto a copper foil with a doctor blade thickness of 60 ⁇ m and then dried at 100 ° C. for 5 hours under vacuum. After drying, after compression at room temperature using a desktop press machine, cut into 40 x 60 mm size, and 4 x 40 x 0.1 mm copper tabs as current collecting tabs were joined by ultrasonic welding to artificial graphite A negative electrode was obtained.
  • Example 1 In a glove box substituted with argon, 7.0 g of polyoxyethylene compound A (indicated as POE-A, molecular structure is shown in Table 1) and 3.0 g of ethylene carbonate (indicated by EC, manufactured by Kishida Chemical Co., Ltd.) In addition, after stirring until uniform, 1 mol of fluoroethylene carbonate (manufactured by Kanto Denka Kogyo Co., Ltd., expressed as FEC) and lithium hexafluorophosphate (made by Kishida Chemical Co., Ltd., expressed as LiPF 6 ) A non-aqueous electrolyte was obtained by stirring until the solution was uniformly dissolved.
  • fluoroethylene carbonate manufactured by Kanto Denka Kogyo Co., Ltd., expressed as FEC
  • LiPF 6 lithium hexafluorophosphate
  • Example 2 Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 6.5 g and the blending amount of ethylene carbonate was changed from 3.0 g to 3.5 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Example 3 Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 6.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 4.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Example 4 Except for changing the blending amount of the polyoxyethylene compound A of Example 1 from 7.0 g to 5.5 g and changing the blending amount of ethylene carbonate from 3.0 g to 4.5 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Example 5 Using polyoxyethylene compound B (indicated as POE-B, molecular structure is shown in Table 1) instead of polyoxyethylene compound A in Example 1, the blending amount was changed from 7.0 g to 6.0 g, The blending amount of ethylene carbonate was changed from 3.0 g to 4.0 g, and lithium bisoxalate borate (made by Kemetal Co., expressed as LiBOB) was used instead of lithium hexafluorophosphate, and vinylene carbonate was used instead of fluoroethylene carbonate.
  • a non-aqueous electrolyte solution was obtained in the same manner as in Example 1 except that (made by Kishida Chemical Co., Ltd., expressed as VC) was used.
  • Example 6 In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 6.0 g of the polyalkylene oxide compound A, and the mixture was stirred until uniform, then 0.3 g of vinylene carbonate, polyethylene glycol diacrylate (manufactured by NOF Corporation, 2.0 g of a product name (Blemmer ADE-400, expressed as PEGDA) and lithium bisoxalate borate were added so as to have a concentration of 1 mol / L, and stirred until uniformly dissolved to obtain a nonaqueous electrolytic solution.
  • a product name (Blemmer ADE-400, expressed as PEGDA)
  • lithium bisoxalate borate were added so as to have a concentration of 1 mol / L, and stirred until uniformly dissolved to obtain a nonaqueous electrolytic solution.
  • Example 7 A nonaqueous electrolytic solution was obtained using ethylene sulfite (made by Kishida Chemical Co., Ltd., expressed as ES) instead of the fluoroethylene carbonate of Example 3, and further silica fine particles (made by Nippon Aerosil Co., Ltd., product name Aerosil). R805) 1.0 g was added and kneaded until uniform with a rotation and revolution type stirrer to obtain a non-aqueous electrolyte of this example.
  • ethylene sulfite made by Kishida Chemical Co., Ltd., expressed as ES
  • silica fine particles made by Nippon Aerosil Co., Ltd., product name Aerosil
  • Example 8 In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 1.0 g of polyoxyethylene compound A and 1.0 g of a cyanoethyl group-containing compound (indicated as POE-CN-X, molecular structure is shown in Table 1). Then, 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added so as to have a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a nonaqueous electrolytic solution.
  • a cyanoethyl group-containing compound indicated as POE-CN-X, molecular structure is shown in Table 1.
  • Example 9 In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 5.0 g of polyoxyethylene compound A and 1.0 g of a cyanoethyl group-containing compound (denoted as POE-CN-Y, molecular structure is shown in Table 1). Then, 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added so as to have a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a nonaqueous electrolytic solution.
  • a cyanoethyl group-containing compound denoted as POE-CN-Y, molecular structure is shown in Table 1.
  • 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added so as to have a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a nonaqueous electrolytic solution.
  • Example 10 The blending amount of the polyoxyethylene compound A in Example 9 was changed from 5.0 g to 4.0 g, the blending amount of the cyanoethyl group-containing compound Y was changed from 1.0 g to 2.0 g, and the vinylene carbonate was changed to fluoro.
  • a nonaqueous electrolytic solution was obtained in the same manner as in Example 9 except that ethylene carbonate was used.
  • Example 10 is the same as Example 10 except that the amount of polyoxyethylene compound A in Example 10 is changed from 4.0 g to 3.0 g and the amount of cyanoethyl group-containing compound Y is changed from 2.0 g to 3.0 g. Similarly, a nonaqueous electrolytic solution was obtained.
  • Example 1 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the amount of polyoxyethylene compound A in Example 1 was changed from 7.0 g to 10.0 g and no ethylene carbonate was added. Since lithium hexafluorophosphate did not dissolve, a nonaqueous electrolytic solution could not be obtained.
  • Comparative Example 2 Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 8.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 2.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Example 3 Except for changing the blending amount of the polyoxyethylene compound A of Example 1 from 7.0 g to 5.0 g and changing the blending amount of ethylene carbonate from 3.0 g to 5.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Comparative Example 4 Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 4.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 6.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
  • Example 5 The same as Example 1 except that the polyoxyethylene compound A of Example 1 was not blended, the blending amount of ethylene carbonate was changed from 3.0 g to 10.0 g, and the preparation operation was performed while heating at 50 ° C. Thus, a non-aqueous electrolyte solution was produced, but a non-aqueous electrolyte solution could not be obtained because insoluble components were deposited after cooling to room temperature.
  • the mixture was heated for a period of time, and the nonaqueous electrolyte was gelled before use. These samples were placed in a thermostatic chamber set to ⁇ 20 ° C., AC impedance measurement was performed under conditions of a scanning frequency of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and the obtained Cole-Cole plot was compared with the X axis. Ionic conductivity was calculated using the intersection as a bulk resistance component.
  • Example 6 A polyolefin porous membrane (product name Celgard # 2400, manufactured by Celgard Co., Ltd.) processed to 50 ⁇ 70 mm with a Mn-based positive electrode and an artificial graphite negative electrode was sandwiched and produced in each Example and Comparative Example.
  • a battery was obtained by dropping a non-aqueous electrolyte so that the positive electrode, the porous membrane, and the negative electrode were sufficiently infiltrated, and then encapsulating the aluminum laminate film in an argon atmosphere (Examples 1 to 5, 7 to 11 and comparisons). Examples 2-4, 6-8).
  • a schematic perspective view of the produced battery is shown in FIG. In Example 6, the battery was heated with a hot plate at 80 ° C.
  • the discharge capacity per 1 g of the positive electrode active material obtained by the first discharge was defined as the initial discharge capacity. Also, charging / discharging under the above conditions is one cycle, charging / discharging is repeated 50 cycles, and the discharging capacity per 1 g of the positive electrode active material obtained by discharging at the 50th cycle is the final discharging capacity. The capacity maintenance rate was calculated. (Final discharge capacity / First discharge capacity) ⁇ 100 Formula (2)
  • ⁇ 100 ° C. standing test> The battery used in the measurement of the discharge capacity retention rate was left in a thermostat set at 100 ° C. for 3 hours and then cooled to room temperature. The appearance of the battery was visually observed according to the following evaluation criteria. did. ⁇ : No swelling or rupture, ⁇ : swelling or rupture.
  • the nonaqueous solvent used in Examples 1 to 4 showed a lower melting point than the polyoxyethylene compound alone (nonaqueous solvent in Comparative Example 1) or ethylene carbonate alone (nonaqueous solvent in Comparative Example 5). .
  • the non-aqueous electrolytes using these non-aqueous solvents show high ionic conductivity even at a low temperature of ⁇ 20 ° C., and in the evaluation of battery characteristics, a high discharge capacity maintenance rate of 80% or more at ⁇ 5 ° C.
  • no abnormalities such as blistering or rupture were observed even when left at 100 ° C., indicating that it has high ionic conductivity at low temperatures, good battery characteristics, and good safety. It was.
  • the non-aqueous electrolytes of Examples 5 to 7 were found to have high ionic conductivity at low temperature, good battery characteristics, and good safety.
  • the nonaqueous electrolytes of Examples 8 to 11 contain a cyanoethyl group-containing compound (indicated as POE-CN-X, Y in Table 2), nonaqueous electrolytes comprising a polyoxyethylene compound and ethylene carbonate It has been shown that it has excellent low-temperature ionic conductivity equal to or higher than that of a liquid and a high discharge capacity retention rate, and also has good safety.
  • the polyoxyethylene compound used in the nonaqueous electrolytic solution of Comparative Example 6 has a low chemical stability because the average number of added moles is less than the specified range of the present invention. Therefore, the discharge capacity maintenance rate was low, and swelling occurred in the 100 ° C. standing test.
  • (11) For the nonaqueous electrolytic solution of Comparative Example 7, PC and DEC were used instead of the mixed solvent of polyoxyethylene compound and ethylene carbonate. Since the chemical stability of PC is insufficient, the battery using the non-aqueous electrolyte of Comparative Example 7 has a reduced discharge capacity retention rate, and the use of DEC causes swelling in a 100 ° C. standing test. It was.
  • the nonaqueous electrolytic solution of Comparative Example 8 had an insufficient battery discharge capacity retention rate because the mass ratio of the polyoxyethylene compound and ethylene carbonate was outside the specified range of the present invention. (13) Since the nonaqueous electrolytic solution of Comparative Example 9 used only PEO having a molecular weight of 1 million, no nonaqueous electrolytic solution was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed are a non-aqueous electrolyte for electrical devices that has excellent ion conductivity and high stability at low temperatures, and a secondary battery that has excellent output characteristics and cycle characteristics and superior stability. The non-aqueous electrolyte for electrical devices is a non-aqueous electrolyte that includes an electrolyte salt and a non-aqueous solvent comprising a specific polyoxyethylene compound and an ethylene carbonate, wherein the mass ratio of the polyoxyethylene compound and the ethylene carbonate is in the range of (mass of polyoxyethylene compound)/(mass of ethylene carbonate) = 75/25 to 52/48. In addition, the secondary battery includes said non-aqueous electrolyte for electrical devices.

Description

電気デバイス用非水電解液及びそれを用いた二次電池Non-aqueous electrolyte for electric device and secondary battery using the same
 本発明は、電気デバイス用非水電解液及びそれを用いた二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte for electrical devices and a secondary battery using the same.
 近年、環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするため、特に、出力特性が顕著に低下する低温下での出力特性が求められている。さらに、長期間の使用に耐えうる良好なサイクル特性を有すること等も求められている。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性及びサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
In recent years, due to increasing environmental and energy problems, technology has been actively developed to realize a low-carbon society that reduces dependence on fossil fuels. Examples of such technology development include the development of low-emission vehicles such as hybrid electric vehicles and electric vehicles, the development of natural energy power generation systems such as solar power generation and wind power generation, and the efficient supply of power to reduce transmission loss There are various developments such as next-generation power grids.
One of the key devices required in common with these technologies is a battery, and such a battery requires a high energy density for downsizing the system. Further, in order to enable stable power supply regardless of the use environment temperature, in particular, output characteristics under a low temperature where output characteristics are remarkably lowered are required. Furthermore, it is required to have good cycle characteristics that can withstand long-term use. Therefore, replacement of conventional lead storage batteries, nickel-cadmium batteries, and nickel-hydrogen batteries with lithium ion secondary batteries having higher energy density, output characteristics, and cycle characteristics is rapidly progressing.
 このようなリチウムイオン二次電池の電解液は、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート系溶媒に電解質塩を溶解させた非水電解液が用いられている。なかでもプロピレンカーボネートは高誘電率を有し、電解質塩を良く溶かし、融点が低く低温下においても高いイオン伝導性を示すことから、電解液の非水溶媒として必要な特性をバランスよく備えている。しかし、電池の負極に結晶性の高い黒鉛系材料を用いた場合には、充電の際に黒鉛系材料の表面でプロピレンカーボネートが分解してしまい、十分なサイクル特性が得られないという問題があった。 As the electrolytic solution of such a lithium ion secondary battery, a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a cyclic carbonate solvent such as ethylene carbonate or propylene carbonate is used. Among these, propylene carbonate has a high dielectric constant, dissolves electrolyte salts well, has a low melting point, and exhibits high ionic conductivity even at low temperatures. Therefore, it has well-balanced characteristics required as a non-aqueous solvent for electrolytes. . However, when a highly crystalline graphite material is used for the negative electrode of the battery, there is a problem that propylene carbonate decomposes on the surface of the graphite material during charging and sufficient cycle characteristics cannot be obtained. It was.
 そこで、プロピレンカーボネートの替わりにエチレンカーボネートが用いられているが、エチレンカーボネートの融点は36℃であり室温では固体のため、単独で用いられることはなく、低融点の非水溶媒と混合して使用される。このような低融点の非水溶媒として、具体的には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート等の鎖状カーボネート系溶媒が挙げられる(非特許文献1)。前記の混合溶媒を用いた非水電解液は、低温下のイオン伝導性が高く、サイクル特性や出力特性等の電池特性も良好であるが、鎖状カーボネート系溶媒は可燃性で揮発性が高いため、例えば、電池が過充電・過放電や短絡等により異常に発熱した際、気化・分解によりガスを発生して電池が膨れたり、破裂・発火を引き起こしたり、短絡時に生じる火花で引火する等の危険性がある。そのため、電池特性と熱的な安定性を両立する非水電解液の開発が望まれている。 Therefore, ethylene carbonate is used in place of propylene carbonate, but the melting point of ethylene carbonate is 36 ° C. and is solid at room temperature, so it is not used alone and is used by mixing with a low-melting non-aqueous solvent. Is done. Specific examples of such a low melting point non-aqueous solvent include chain carbonate solvents such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl butyl carbonate (Non-patent Document 1). The non-aqueous electrolyte using the above mixed solvent has high ionic conductivity at low temperatures and good battery characteristics such as cycle characteristics and output characteristics, but the chain carbonate solvent is flammable and highly volatile. For example, when a battery overheats, overdischarges, or short-circuits, it generates heat due to vaporization or decomposition, causing the battery to swell, rupture or ignite, or ignite with a spark generated during a short-circuit. There is a danger of. For this reason, development of a non-aqueous electrolyte that satisfies both battery characteristics and thermal stability is desired.
 このような試みとして、特定の割合でエチレンカーボネートとプロピレンカーボネートとポリエチレングリコールジアルキルエーテルを含む非水電解液が提案されている(例えば特許文献1)。このような組成で非水電解液を構成することにより、非水電解液の安全性が改善されるが、プロピレンカーボネートを使用するため、黒鉛系の負極を用いた電池ではサイクル特性が不十分であった。 As such an attempt, a nonaqueous electrolytic solution containing ethylene carbonate, propylene carbonate, and polyethylene glycol dialkyl ether at a specific ratio has been proposed (for example, Patent Document 1). By configuring the non-aqueous electrolyte with such a composition, the safety of the non-aqueous electrolyte is improved. However, since propylene carbonate is used, the cycle characteristics are insufficient in a battery using a graphite-based negative electrode. there were.
 また、エチレンカーボネートと特定のオキシエチレン基の付加モル数を有するポリエチレングリコールジアルキルエーテルからなる非水電解液が提案されている(例えば特許文献2)。この非水電解液を用いた電池は、優れたサイクル特性を有するが、エチレンカーボネートを付加モル数が極力少ないポリエチレングリコールジアルキルエーテルで溶解して使用するという発想に留まり、安全性や低温でのイオン伝導性が不十分であった。 In addition, a nonaqueous electrolytic solution composed of polyethylene glycol and a polyethylene glycol dialkyl ether having a specific number of moles of oxyethylene groups has been proposed (for example, Patent Document 2). Batteries using this non-aqueous electrolyte have excellent cycle characteristics, but the idea of using ethylene carbonate dissolved in polyethylene glycol dialkyl ether with as few additional moles as possible is limited to safety and low-temperature ionization. The conductivity was insufficient.
 また、非水溶媒を高分子でゲル化したゲル状電解質の開発が行われている。このような試みとしては、例えば、カーボネート系溶媒とポリエチレングリコールジアクリレートからなるゲル状電解質が提案されている(例えば特許文献3)。ゲル状電解質は、カーボネート系溶媒の流動性や揮発性を抑制する効果があるので、上記の問題に対するリスクを多少低減する効果が期待できるが、低温下のイオン伝導度を得るためには、やはり多量の非水溶媒を配合する必要があり、本質的な問題の解決には至っていない。 Also, a gel electrolyte in which a non-aqueous solvent is gelled with a polymer has been developed. As such an attempt, for example, a gel electrolyte composed of a carbonate solvent and polyethylene glycol diacrylate has been proposed (for example, Patent Document 3). The gel electrolyte has the effect of suppressing the fluidity and volatility of the carbonate-based solvent, so it can be expected to reduce the risk of the above problems to some extent. A large amount of non-aqueous solvent needs to be blended, and the essential problems have not been solved.
 さらに高い安全性を得るための方法として、高分子電解質を用いたリチウムイオン二次電池が提案されている。高分子電解質を用いることで、電解液の揮発性を大幅に抑制することが可能になることから、電池の安全性を飛躍的に向上させることができる。このような試みとしては、例えば、ポリエチレンオキシド系高分子に特定のアルカリ金属塩を含有させた高分子電解質が広く知られている(例えば特許文献4)。しかし、常温におけるイオン伝導性が極めて低く、実用上十分な充放電出力を有する電池が得られないという問題があった。 As a method for obtaining higher safety, a lithium ion secondary battery using a polymer electrolyte has been proposed. By using the polymer electrolyte, it becomes possible to greatly suppress the volatility of the electrolytic solution, so that the safety of the battery can be drastically improved. As such an attempt, for example, a polymer electrolyte in which a specific alkali metal salt is contained in a polyethylene oxide polymer is widely known (for example, Patent Document 4). However, there is a problem in that a battery having a practically sufficient charge / discharge output cannot be obtained due to extremely low ion conductivity at room temperature.
日本国特開平1-128369号公報Japanese Laid-Open Patent Publication No. 1-128369 日本国特開平6-338348号公報Japanese Unexamined Patent Publication No. 6-338348 日本国特開平11-214038号公報Japanese Laid-Open Patent Publication No. 11-214038 日本国特開2006-134817号公報Japanese Unexamined Patent Publication No. 2006-134817
 本発明は、上記事情に鑑みてなされたものであり、低温での良好なイオン伝導性と高い安全性を有する電気デバイス用非水電解液と良好な出力特性、良好なサイクル特性、優れた安全性を有する二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a nonionic electrolyte for electric devices having good ion conductivity and high safety at low temperature, good output characteristics, good cycle characteristics, and excellent safety. It aims at providing the secondary battery which has the property.
 すなわち本発明は、以下に示されるものである。
(A)式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートからなる非水溶媒及び電解質塩を含む非水電解液であり、式(1)で示される化合物とエチレンカーボネートの質量比が、{式(1)で示される化合物の質量}/(エチレンカーボネートの質量)=75/25~52/48の範囲である、電気デバイス用非水電解液。
      RO-(AO)-R   ・・・(1)
(R1、R2は炭素数1~6の炭化水素基、AOはオキシエチレン基であり、nはオキシエチレン基の平均付加モル数で3~10である。)
(B)式(1)で示される化合物とエチレンカーボネートの質量比が、{式(1)で示される化合物の質量}/(エチレンカーボネートの質量)=65/35~53/47の範囲である、前記の電気デバイス用非水電解液。
(C)式(1)で示される化合物のエーテル化率が95%以上である、前記の電気デバイス用非水電解液。
(D)非水電解液が、さらに不飽和環状カーボネート、ハロゲン置換環状カーボネート、環状スルホン酸、環状亜硫酸エステルから選ばれる添加剤を含み、添加剤の配合割合が、非水溶媒の合計100質量部に対して添加剤が0.1~20質量部である、前記の電気デバイス用非水電解液。
(E)非水電解液が、さらに式(2)で示されるシアノエチル基含有化合物を含む、前記の電気デバイス用非水電解液。
      RO-(AO)-R   ・・・(2)
(R及びRは炭素数1~6の炭化水素又はシアノエチル基で、R、Rの少なくとも一方はシアノエチル基である。AOはオキシエチレン基であり、mはオキシエチレン基の平均付加モル数で1~10である。)
(F)非水電解液がさらにシリカ微粒子を含み、シリカ微粒子の配合割合が、非水溶媒の合計100質量部に対してシリカ微粒子が2~15質量部である、前記の電気デバイス用非水電解液。
(G)シリカ微粒子が、粒子表面のシラノール基の少なくとも一部が疎水化剤で修飾されているものである、前記の電気デバイス用非水電解液。
(H)非水電解液が、さらにラジカル重合性不飽和二重結合を有する化合物の重合体を含み、ラジカル重合性不飽和二重結合を有する化合物の配合割合が、非水電解液の合計100質量部に対してラジカル重合性不飽和二重結合を有する化合物の重合体が5~30質量部である、前記の電気デバイス用非水電解液。
(I)カチオンを吸蔵・放出することが可能な正極及び負極と、正極及び負極の間に介在してカチオンを移動させる電解質層とを有する二次電池であって、電解質層が前記の電気デバイス用非水電解液を含む、二次電池。
That is, the present invention is as follows.
(A) A non-aqueous electrolyte containing a polyoxyethylene compound represented by formula (1) and ethylene carbonate and an electrolyte salt, wherein the mass ratio of the compound represented by formula (1) and ethylene carbonate is {Mass of compound represented by formula (1)} / (Mass of ethylene carbonate) = 75/25 to 52/48 Nonaqueous electrolyte for electric devices.
R 1 O— (A 1 O) n —R 2 (1)
(R 1 and R 2 are hydrocarbon groups having 1 to 6 carbon atoms, A 1 O is an oxyethylene group, and n is an average added mole number of oxyethylene groups of 3 to 10.)
(B) The mass ratio of the compound represented by formula (1) to ethylene carbonate is {mass of compound represented by formula (1)} / (mass of ethylene carbonate) = 65/35 to 53/47. The non-aqueous electrolyte for electrical devices described above.
(C) The nonaqueous electrolytic solution for an electric device described above, wherein the etherification rate of the compound represented by the formula (1) is 95% or more.
(D) The non-aqueous electrolyte further contains an additive selected from unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite, and the blending ratio of the additive is a total of 100 parts by mass of the non-aqueous solvent. The non-aqueous electrolyte for an electric device described above, wherein the additive is 0.1 to 20 parts by mass relative to the above.
(E) The said nonaqueous electrolyte for electrical devices in which a nonaqueous electrolyte contains the cyanoethyl group containing compound further shown by Formula (2).
R 3 O— (A 2 O) m —R 4 (2)
(R 3 and R 4 are each a hydrocarbon having 1 to 6 carbon atoms or a cyanoethyl group, and at least one of R 3 and R 4 is a cyanoethyl group. A 2 O is an oxyethylene group, and m is an oxyethylene group. (The average number of moles added is 1 to 10.)
(F) The nonaqueous electrolytic device according to the above, wherein the nonaqueous electrolyte further contains silica fine particles, and the mixing ratio of the silica fine particles is 2 to 15 parts by mass of the silica fine particles with respect to 100 parts by mass in total of the nonaqueous solvent. Electrolytic solution.
(G) The nonaqueous electrolytic solution for an electric device described above, wherein the silica fine particles are those in which at least a part of silanol groups on the particle surface is modified with a hydrophobizing agent.
(H) The non-aqueous electrolyte further includes a polymer of a compound having a radical polymerizable unsaturated double bond, and the blending ratio of the compounds having a radical polymerizable unsaturated double bond is 100 in total for the non-aqueous electrolyte. The nonaqueous electrolytic solution for an electric device described above, wherein the polymer of a compound having a radical polymerizable unsaturated double bond is 5 to 30 parts by mass with respect to part by mass.
(I) A secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing cations, and an electrolyte layer that moves between the positive electrode and the negative electrode to move the cations, wherein the electrolyte layer is the electric device described above. Secondary battery containing nonaqueous electrolyte for use.
 本発明の電気デバイス用非水電解液及びゲル状電解質は、良好な低温下でのイオン伝導性と高い安全性を有する。またそれを用いた二次電池は、良好な出力特性、良好なサイクル特性、優れた安全性を有する電池となる。 The non-aqueous electrolyte and gel electrolyte for electrical devices of the present invention have good ion conductivity and high safety at low temperatures. In addition, a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
実施例1~4及び比較例2~4の非電解液におけるポリオキシエチレン化合物の量と、-20℃でのイオン伝導度の関係をまとめた図である。FIG. 4 is a graph summarizing the relationship between the amount of polyoxyethylene compounds in the non-electrolytic solutions of Examples 1 to 4 and Comparative Examples 2 to 4 and ionic conductivity at −20 ° C. 実施例、比較例で用いた試験用電池の構造を示す模式斜視図である。It is a model perspective view which shows the structure of the battery for a test used by the Example and the comparative example.
 [非水電解液]
 本発明で用いる非水溶媒とは、式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートを混合してなる有機溶媒である。また、非水電解液とは、前記非水溶媒と電解質塩を含むものである。
      RO-(AO)-R      (1)
 式(1)中、R1及びR2は、それぞれ独立に炭素数1~6の炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の脂肪族炭化水素基、フェニル基等の芳香族炭化水素基、シクロペンチル基、シクロヘキシル基等の脂環式炭化水素基が挙げられる。得られるイオン伝導性高分子電解質のイオン伝導性の点から、炭素数が4より小さい炭化水素基が好ましく、メチル基とエチル基が特に好ましい。
 また、式(1)中のAOは、オキシエチレン基である。nはオキシエチレン基の平均付加モル数であり、3~10であり、好ましくは4~8である。nが3~10の範囲にあると、低温下での良好なイオン伝導性、良好な化学的安定性及び優れた安全性を有する非水電解液が得られる。また、それを用いた二次電池は、良好な出力特性、良好なサイクル特性、優れた安全性を有する電池となる。
[Non-aqueous electrolyte]
The non-aqueous solvent used in the present invention is an organic solvent obtained by mixing a polyoxyethylene compound represented by the formula (1) and ethylene carbonate. Further, the nonaqueous electrolytic solution includes the nonaqueous solvent and an electrolyte salt.
R 1 O— (A 1 O) n —R 2 (1)
In the formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 6 carbon atoms, for example, a fatty group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group. And aromatic hydrocarbon groups such as aromatic hydrocarbon groups and phenyl groups, and alicyclic hydrocarbon groups such as cyclopentyl groups and cyclohexyl groups. From the viewpoint of ion conductivity of the resulting ion conductive polymer electrolyte, hydrocarbon groups having less than 4 carbon atoms are preferred, and methyl groups and ethyl groups are particularly preferred.
Moreover, A < 1 > O in Formula (1) is an oxyethylene group. n is the average number of moles of oxyethylene group added, and is 3 to 10, preferably 4 to 8. When n is in the range of 3 to 10, a nonaqueous electrolytic solution having good ionic conductivity at low temperature, good chemical stability, and excellent safety can be obtained. In addition, a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
[式(1)で示されるポリオキシエチレン化合物の製造]
 式(1)で示される両末端に炭化水素基を有するポリオキシエチレン化合物は、公知の方法によって製造できる。製造方法は、特に限定されないが、得られる化合物の純度と水分含有量の観点から、日本国特開2008-117762号公報に開示された方法で製造することが好ましい。すなわち、まず反応容器に出発原料となる炭素数1~6の炭化水素基を有する一価のアルコールとアルカリ金属及びアルカリ土類金属の水酸化物を除くアルカリ触媒あるいはルイス酸触媒を加え、乾燥窒素ガス雰囲気下で加圧状態にした後、50~150℃で攪拌しながらエチレンオキシドを連続的に添加し、付加重合することにより、原料であるポリエチレングリコールモノアルキルエーテルを得る。次いで、得られたポリエチレングリコールモノアルキルエーテルに水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を加え、モノハロゲン化炭化水素とのエーテル化反応を行うことにより、式(1)で示されるポリオキシエチレン化合物を得ることができる。この際、下記数式(1)で示されるエーテル化率は、非水電解液を用いた電池のサイクル特性の観点から、好ましくは95%以上、さらに好ましくは97%以上、最も好ましくは98%以上である。
{1-式(1)で示されるポリオキシエチレン化合物の水酸基価/ポリエチレングリコールモノアルキルエーテルの水酸基価}×100  数式(1)
 なお、数式(1)の計算に使用する水酸基価とは、JIS-K-0070に準拠して測定した値である。
[Production of polyoxyethylene compound represented by formula (1)]
The polyoxyethylene compound having a hydrocarbon group at both ends represented by the formula (1) can be produced by a known method. The production method is not particularly limited, but it is preferably produced by the method disclosed in Japanese Patent Application Laid-Open No. 2008-117762 from the viewpoint of the purity and moisture content of the obtained compound. That is, first, a monovalent alcohol having a hydrocarbon group having 1 to 6 carbon atoms as a starting material and an alkali catalyst or Lewis acid catalyst excluding alkali metal and alkaline earth metal hydroxide are added to a reaction vessel, and dry nitrogen is added. After being pressurized under a gas atmosphere, ethylene oxide is continuously added with stirring at 50 to 150 ° C., and addition polymerization is performed to obtain a polyethylene glycol monoalkyl ether as a raw material. Next, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to the obtained polyethylene glycol monoalkyl ether, and an etherification reaction with a monohalogenated hydrocarbon is carried out to obtain the formula (1). A polyoxyethylene compound can be obtained. At this time, the etherification rate represented by the following formula (1) is preferably 95% or more, more preferably 97% or more, and most preferably 98% or more, from the viewpoint of the cycle characteristics of the battery using the nonaqueous electrolytic solution. It is.
{1-Hydroxyl value of polyoxyethylene compound represented by formula (1) / Hydroxyl value of polyethylene glycol monoalkyl ether} × 100 Formula (1)
Note that the hydroxyl value used in the calculation of Equation (1) is a value measured in accordance with JIS-K-0070.
 前記のアルカリ触媒とは、アルカリ金属及びアルカリ土類金属の水酸化物を除く化合物のことで、具体的には、ナトリウム、カリウム、ナトリウムカリウムアマルガム、ナトリウムハイドライド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等を挙げることができる。また、ナトリウムメトキシドのメタノール溶液や、ナトリウムエトキシドのエタノール溶液等も用いることができる。前記のルイス酸触媒としては、三フッ化ホウ素や四塩化錫等を用いることができる。
 前記の炭素数1~6の炭化水素基を有する一価のアルコールとは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の脂肪族炭化水素基やフェニル基等の芳香族炭化水素基、シクロヘキシル基等の脂環式炭化水素基等と水酸基とを同一分子内に有する化合物である。
The alkali catalyst is a compound excluding alkali metal and alkaline earth metal hydroxide, specifically sodium, potassium, sodium potassium amalgam, sodium hydride, sodium methoxide, potassium methoxide, sodium. Examples thereof include ethoxide and potassium ethoxide. Also, a methanol solution of sodium methoxide, an ethanol solution of sodium ethoxide, or the like can be used. As the Lewis acid catalyst, boron trifluoride, tin tetrachloride, or the like can be used.
Examples of the monovalent alcohol having a hydrocarbon group having 1 to 6 carbon atoms include aliphatic hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a phenyl group. A compound having an alicyclic hydrocarbon group such as an aromatic hydrocarbon group or a cyclohexyl group and a hydroxyl group in the same molecule.
 本発明の非水電解液は、式(2)で示される化合物を含んでいても良い。
      RO-(AO)-R      (2)
 式(2)中、R及びRは、炭素数1~6の炭化水素基又はシアノエチル基であり、R、Rの少なくとも一方はシアノエチル基である。好ましい炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の脂肪族炭化水素基、フェニル基等の芳香族炭化水素基、シクロペンチル基、シクロヘキシル基等の脂環式炭化水素基が挙げられる。得られるイオン伝導性高分子電解質のイオン伝導性の点から、炭素数が4より小さい炭化水素基が好ましく、メチル基とエチル基が特に好ましい。
 AOは、オキシエチレン基である。
 mはオキシエチレン基の平均付加モル数であり、1~10であり、好ましくは1~6であり、より好ましくは1~4である。式(2)中のmが1~10の範囲にあると、低温下での良好なイオン伝導性、良好な化学的安定性及び優れた安全性を有する非水電解液が得られる。また、それを用いた二次電池は、良好な出力特性、良好なサイクル特性、優れた安全性を有する電池となる。
The nonaqueous electrolytic solution of the present invention may contain a compound represented by the formula (2).
R 3 O— (A 2 O) m —R 4 (2)
In the formula (2), R 3 and R 4 are a hydrocarbon group having 1 to 6 carbon atoms or a cyanoethyl group, and at least one of R 3 and R 4 is a cyanoethyl group. Preferred hydrocarbon groups include, for example, an aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, an aromatic hydrocarbon group such as a phenyl group, a cyclopentyl group, a cyclohexyl group, and the like. Of the alicyclic hydrocarbon group. From the viewpoint of ion conductivity of the resulting ion conductive polymer electrolyte, hydrocarbon groups having less than 4 carbon atoms are preferred, and methyl groups and ethyl groups are particularly preferred.
A 2 O is an oxyethylene group.
m is the average number of moles of oxyethylene group added, and is 1 to 10, preferably 1 to 6, and more preferably 1 to 4. When m in the formula (2) is in the range of 1 to 10, a nonaqueous electrolytic solution having good ionic conductivity at low temperatures, good chemical stability, and excellent safety can be obtained. In addition, a secondary battery using the battery has good output characteristics, good cycle characteristics, and excellent safety.
 [式(2)で示されるシアノエチル基含有化合物の製造]
 式(2)で示されるシアノエチル基含有化合物は、公知の方法によって製造できる。製造方法は、特に限定されないが、得られる化合物の純度と水分含有量の観点から、日本国特開2002-158039号公報に開示された方法で製造することが好ましい。すなわち、式(1)で示される化合物の製造過程で得られるポリエチレングリコールモノアルキルエーテルや2価のアルコールであるポリエチレングリコールに、30~80℃にて不活性ガス通気下でアクリロニトリルを滴下反応することで得られる。
[Production of cyanoethyl group-containing compound represented by formula (2)]
The cyanoethyl group-containing compound represented by the formula (2) can be produced by a known method. The production method is not particularly limited, but it is preferably produced by the method disclosed in Japanese Patent Application Laid-Open No. 2002-158039 from the viewpoint of the purity and water content of the resulting compound. That is, acrylonitrile is reacted dropwise with polyethylene glycol monoalkyl ether obtained in the production process of the compound represented by formula (1) or polyethylene glycol, which is a divalent alcohol, at 30 to 80 ° C. under an inert gas flow. It is obtained by.
 本発明に用いるエチレンカーボネートは、従来公知の方法で製造され、リチウムイオン二次電池の非水電解液に用いられているものであれば特に制限はなく、具体的な製造方法としては、エチレングリコールとホスゲンを反応させる方法、エチレングリコールとクロルギ酸エチルの縮合法、エチレングリコールと二酸化炭素を反応させる方法、炭酸エステルからのエステル交換法等を挙げることができる。 The ethylene carbonate used in the present invention is not particularly limited as long as it is produced by a conventionally known method and used in a non-aqueous electrolyte of a lithium ion secondary battery. As a specific production method, ethylene glycol is used. And phosgene, a method of condensing ethylene glycol and ethyl chloroformate, a method of reacting ethylene glycol and carbon dioxide, and a method of transesterification from a carbonate.
 式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートの比率は、質量比で{式(1)で示されるポリオキシエチレン化合物の質量}/(エチレンカーボネートの質量)=75/25~52/48の範囲であり、好ましくは、65/35~53/47の範囲である。質量比が前記の範囲にあると、式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートを混合してなる非水溶媒の融点が、式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートの各々単体での融点よりも低くなり、かつ低温でのイオン伝導性が各々単体よりも大きく向上するという特異的な効果を奏し、低温でのイオン伝導性と充放電特性に優れた非水電解液が得られる。また、揮発性が高い鎖状カーボネート系溶媒を使用しなくても良いため、安全性に優れた非水電解液となる。 The ratio between the polyoxyethylene compound represented by the formula (1) and the ethylene carbonate is {mass ratio of the polyoxyethylene compound represented by the formula (1)} / (mass of ethylene carbonate) = 75/25 to 52 / It is in the range of 48, preferably in the range of 65/35 to 53/47. When the mass ratio is in the above range, the melting point of the nonaqueous solvent obtained by mixing the polyoxyethylene compound represented by formula (1) and ethylene carbonate is such that the polyoxyethylene compound represented by formula (1) and ethylene carbonate Non-aqueous electrolysis that has a specific effect of lowering the melting point of each simple substance and improving the ionic conductivity at low temperatures significantly higher than that of each simple substance, and having excellent low-temperature ionic conductivity and charge / discharge characteristics A liquid is obtained. Moreover, since it is not necessary to use the highly volatile chain carbonate solvent, the non-aqueous electrolyte solution is excellent in safety.
 また、本発明においては、式(2)で示されるシアノエチル基含有化合物を用いることができる。その場合、式(1)で示されるポリオキシエチレン化合物と式(2)で示される化合物の質量比の合計を100とすると、その比率は、{式(1)で示されるポリオキシエチレン化合物の質量}/{式(2)で示されるシアノエチル基含有化合物の質量}=99/1~25/75の範囲であり、好ましくは90/10~50/50、より好ましくは85/15~60/40、さらに好ましくは85/15~70/30の範囲である。
 この際、式(1)で示される化合物、式(2)で示される化合物及びエチレンカーボネートの比率は、{式(1)で示されるポリオキシエチレン化合物の質量+式(2)で示されるシアノエチル基含有化合物の質量}/(エチレンカーボネートの質量)=75/25~52/48の範囲であり、より好ましくは65/35~53/47の範囲である。式(1)で示される化合物、式(2)で示される化合物及びエチレンカーボネートの質量比が前記の範囲にあると、式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートのみを用いた場合よりも、低温から高温まで優れたイオン伝導性が得られやすくなる傾向がある。この理由は、シアノエチル基の高い極性のために、後述する電解質塩の電離が促され、イオン伝導性に寄与するイオン種の数が増加するためと考えられる。
In the present invention, a cyanoethyl group-containing compound represented by the formula (2) can be used. In that case, assuming that the total mass ratio of the polyoxyethylene compound represented by the formula (1) and the compound represented by the formula (2) is 100, the ratio is {of the polyoxyethylene compound represented by the formula (1) Mass} / {mass of the cyanoethyl group-containing compound represented by formula (2)} = 99/1 to 25/75, preferably 90/10 to 50/50, more preferably 85/15 to 60 / 40, more preferably in the range of 85/15 to 70/30.
At this time, the ratio of the compound represented by the formula (1), the compound represented by the formula (2) and the ethylene carbonate is {the mass of the polyoxyethylene compound represented by the formula (1) + the cyanoethyl represented by the formula (2). Mass of group-containing compound} / (mass of ethylene carbonate) = 75/25 to 52/48, and more preferably 65/35 to 53/47. When the mass ratio of the compound represented by the formula (1), the compound represented by the formula (2) and the ethylene carbonate is within the above range, only the polyoxyethylene compound represented by the formula (1) and ethylene carbonate are used. It tends to be easier to obtain excellent ion conductivity from low temperature to high temperature. The reason for this is considered that ionization of the electrolyte salt described later is promoted due to the high polarity of the cyanoethyl group, and the number of ionic species contributing to ionic conductivity increases.
 本発明に用いる電解質塩は、イオン伝導性高分子電解質に可溶で電池の駆動電圧において安定なものならば、特に制限はないが、具体的には、Li、Na、K、Rb、Cs、Mg、Ca及びBa等の金属陽イオンと、塩素イオン、臭素イオン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオン、ビスオキサレートボレートイオン、低級脂肪族カルボン酸イオン等の陰イオンとからなる化合物が挙げられる。これらの電解質塩の中でも、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、リチウムビスオキサレートボレートが得られる非水電解液のイオン伝導性が高いため好ましい。
 電解質塩の濃度は、非水溶媒1Lに対して、0.01~5モルの範囲であることが好ましく、0.1~2モルの範囲であることがより好ましい。この値が5モルを超えると著しく粘度が上昇し、低温での十分なイオン伝導性が得られにくくなる。
The electrolyte salt used in the present invention is not particularly limited as long as it is soluble in the ion conductive polymer electrolyte and is stable at the driving voltage of the battery. Specifically, Li, Na, K, Rb, Cs, Metal cations such as Mg, Ca and Ba, chlorine ion, bromine ion, iodine ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, hexafluorophosphate ion, stearyl sulfonate ion, octyl sulfonate Ions, dodecylbenzenesulfonate ion, naphthalenesulfonate ion, dodecylnaphthalenesulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion, bisoxalate borate ion, lower aliphatic carboxylate ion, etc. The compound which consists of an anion is mentioned. Among these electrolyte salts, lithium hexafluorophosphate, lithium tetrafluoroborate, and lithium bisoxalate borate are preferable because of high ion conductivity.
The concentration of the electrolyte salt is preferably in the range of 0.01 to 5 mol, and more preferably in the range of 0.1 to 2 mol, with respect to 1 L of the nonaqueous solvent. When this value exceeds 5 mol, the viscosity is remarkably increased, and it becomes difficult to obtain sufficient ionic conductivity at low temperatures.
 式(1)で示されるポリオキシエチレン化合物、エチレンカーボネート及び電解質塩を含む本発明の非水電解液の製造方法について特に限定はなく、従来公知の方法を用いればよいが、例えば、式(1)で示されるポリオキシエチレン化合物、エチレンカーボネート及び電解質塩を各種の混練機や攪拌機を用いて均一に混合・分散することで非水電解液を得ることができる。 There is no particular limitation on the method for producing the nonaqueous electrolytic solution of the present invention including the polyoxyethylene compound represented by the formula (1), ethylene carbonate and an electrolyte salt, and a conventionally known method may be used. For example, the formula (1 The nonoxygen electrolyte solution can be obtained by uniformly mixing and dispersing the polyoxyethylene compound, ethylene carbonate, and electrolyte salt represented by) using various kneaders and stirrers.
 本発明の電気デバイス用非水電解液は、不飽和環状カーボネート、ハロゲン置換環状カーボネート、環状スルホン酸、環状亜硫酸エステル等、非水電解液の添加剤として公知の化合物を含んでも良く、具体的には、例えばビニレンカーボネート等の不飽和環状カーボネート化合物、フルオロエチレンカーボネート、クロロエチレンカーボネート等のハロゲン置換環状カーボネート化合物、1,3-プロパンスルトン、1,2-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、1,3-ペンパンスルトン等の環状スルホン酸系化合物、エチレンサルファイト、ビニルエチレンサルファイト、ジビニルエチレンサルファイト、プロピレンサルファイト等の環状亜硫酸エステル化合物、12-クラウン-4等のクラウンエーテル類、ベンゼン、トルエン等の芳香族化合物が挙げられる。これらの添加剤の中でも、ビニレンカーボネート、フルオロエチレンカーボネート、エチレンサルファイトが好ましく、さらに添加剤の配合割合は、非水溶媒の合計100質量部に対して添加剤が0.1~20質量部であることが好ましい。このような種類の添加剤を前記の配合割合で用いると、良好なサイクル特性を有する電池が得られやすくなる。 The non-aqueous electrolyte for electrical devices of the present invention may contain a compound known as an additive for non-aqueous electrolyte, such as unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite. For example, unsaturated cyclic carbonate compounds such as vinylene carbonate, halogen-substituted cyclic carbonate compounds such as fluoroethylene carbonate and chloroethylene carbonate, 1,3-propane sultone, 1,2-propane sultone, 1,3-butane sultone, 1, Cyclic sulfonic acid compounds such as 4-butane sultone and 1,3-pentane sultone, cyclic sulfite compounds such as ethylene sulfite, vinyl ethylene sulfite, divinyl ethylene sulfite and propylene sulfite, and 12-crown-4 Crowne Ethers, benzene, and aromatic compounds such as toluene. Among these additives, vinylene carbonate, fluoroethylene carbonate, and ethylene sulfite are preferable, and the additive content is 0.1 to 20 parts by mass with respect to a total of 100 parts by mass of the nonaqueous solvent. Preferably there is. When such a kind of additive is used in the above-described blending ratio, a battery having good cycle characteristics is easily obtained.
 本発明の電気デバイス用非水電解液は、非水電解液をペースト状に増粘させて、流動性を調整する目的で、シリカ微粒子を含んでいても良い。流動性を調整することにより、外的な応力により電池のパッケージが破損した場合でも外部に漏液しにくくなることから、非水電解液を用いた電池の安全性がさらに向上する。使用するシリカ微粒子は電池の駆動電圧において、電気化学的に安定であれば特に制限はないが、少量の配合で効果的に増粘できる点から、四塩化ケイ素を高温の水素炎中で燃焼することによって得られるフュームドシリカが好ましい。例えば日本アエロジル(株)が販売するアエロジル(商品名)等が好適に用いられる。
 シリカ微粒子の平均一次粒子径は5nm~40nmが好ましく、5nm~30nmであることがより好ましく、最も好ましくは5nm~20nmである。シリカ微粒子の粒子径が上記の範囲にあるとシリカ微粒子が均一で安定に分散した非水電解液が得られやすくなる傾向がある。
The non-aqueous electrolyte for electric devices of the present invention may contain silica fine particles for the purpose of adjusting the fluidity by thickening the non-aqueous electrolyte in a paste form. By adjusting the fluidity, even if the battery package is damaged due to external stress, it becomes difficult to leak outside, so that the safety of the battery using the non-aqueous electrolyte is further improved. The silica fine particles used are not particularly limited as long as they are electrochemically stable at the driving voltage of the battery, but silicon tetrachloride is burned in a high-temperature hydrogen flame because it can effectively thicken with a small amount of compounding. The fumed silica obtained by this is preferable. For example, Aerosil (trade name) sold by Nippon Aerosil Co., Ltd. is preferably used.
The average primary particle diameter of the silica fine particles is preferably 5 nm to 40 nm, more preferably 5 nm to 30 nm, and most preferably 5 nm to 20 nm. When the particle diameter of the silica fine particles is in the above range, a nonaqueous electrolytic solution in which the silica fine particles are uniformly and stably dispersed tends to be easily obtained.
 シリカ微粒子の表面は、疎水化剤により処理され、粒子表面のシラノール基の少なくとも一部が疎水化剤で修飾されていることが好ましい。疎水化剤による表面処理方法としては、従来公知の気相法あるいは液相法で行えばよい。疎水化剤の種類に特に限定ないが、例えばメチルトリクロロシラン、エチルトリクロロシラン、プロピルトリクロロシラン、ビニルトリクロロシラン、フェニルトリクロロシラン等のクロロシラン類、ジメチルポリシロキサン、シリコーンオイル等の重合珪素化合物、メチルトリメトキシシラン、メチルトリエトキシシラン、t-ブチルトリメトキシシラン、オクチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン類が挙げられる。これらの中でも特に、アルコキシシラン類が非水電解液の増粘効果が高く、分散性が良好なため好ましく、オクチル基を有するアルコキシシランが特に好ましい。
 シリカ微粒子を用いる場合、得られる非水電解液の流動性の観点から、前記非水電解液中の非水溶媒と前記シリカ微粒子の配合割合は、非水溶媒の合計100質量部に対してシリカ微粒子が2~15質量部であり、さらに好ましくは3~15質量部の範囲である。
The surface of the silica fine particles is preferably treated with a hydrophobizing agent, and at least a part of silanol groups on the particle surface is preferably modified with the hydrophobizing agent. As a surface treatment method using a hydrophobizing agent, a conventionally known gas phase method or liquid phase method may be used. The type of hydrophobizing agent is not particularly limited. For example, chlorosilanes such as methyltrichlorosilane, ethyltrichlorosilane, propyltrichlorosilane, vinyltrichlorosilane, and phenyltrichlorosilane, polymerized silicon compounds such as dimethylpolysiloxane and silicone oil, methyltrichlorosilane. Examples include alkoxysilanes such as methoxysilane, methyltriethoxysilane, t-butyltrimethoxysilane, octyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. Among these, alkoxysilanes are particularly preferable because they have a high thickening effect on the nonaqueous electrolyte and good dispersibility, and alkoxysilanes having an octyl group are particularly preferable.
When silica fine particles are used, from the viewpoint of fluidity of the obtained nonaqueous electrolyte, the mixing ratio of the nonaqueous solvent and the silica fine particles in the nonaqueous electrolyte is silica with respect to a total of 100 parts by mass of the nonaqueous solvent. The amount of fine particles is 2 to 15 parts by mass, and more preferably 3 to 15 parts by mass.
 本発明の電気デバイス用非水電解液は、ラジカル重合性不飽和二重結合を有する化合物の重合体を含んでいても良い。このような構成にすることで、非水電解液の流動性や揮発性が抑制され、外的な応力により電池のパッケージが破損した場合でも外部に漏液しにくくなることから、非水電解液を用いた電池の安全性がさらに向上する。
 使用するラジカル重合性不飽和二重結合を有する化合物の重合体としては、非水電解液と相容性を有し、完全2層分離しない化合物であれば特に制限はないが、例えば、スチレン、(メタ)アクリロニトリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート等の一価のアルコールの(メタ)アクリル酸エステル、グリセロール-1,3-ジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸エステル、アルキロキシポリアルキレングリコール(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、グリセロールトリス(ポリアルキレングリコール)エーテルトリメタクリレート、トリメチロールプロパントリス(ポリアルキレングリコール)エーテルトリ(メタ)アクリレート、ビスフェノールAポリアルキレンオキシド付加物グリシジルエーテル類等のポリアルキレングリコール誘導体、4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-ビニル-4-メチルエチレンカーボネート、4-ビニル-5-メチルエチレンカーボネート、4-ビニル-4,5-ジメチルエチレンカーボネート等のビニルエチレンカーボネート類、4-アクリルオキシメチルエチレンカーボネート、4,5-メチルエチレンカーボネート、4-メチル-4-アクリルオキシメチルエチレンカーボネート等のアクリルオキシメチルエチレンカーボネート類が挙げられる。中でも得られる非水電解液のイオン伝導性の観点から、メチル(メタ)アクリレート、(メタ)アクリロニトリル、4-ビニルエチレンカーボネート、アルキロキシポリアルキレングリコール(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレートを用いることが好ましい。また上記のラジカル重合性不飽和二重結合を有する化合物の重合体は、1種又は2種以上を併用しても良い。
 ラジカル重合性不飽和二重結合を有する化合物の重合体を用いる場合、得られる非水電解液のイオン伝導性の観点から、前記非水電解液中の非水溶媒と前記重合体の配合割合は、非水溶媒の合計100質量部に対してラジカル重合性不飽和二重結合を有する化合物の重合体が5~30質量部であり、さらに好ましくは5~20質量部の範囲である。
The nonaqueous electrolytic solution for an electric device of the present invention may contain a polymer of a compound having a radical polymerizable unsaturated double bond. With such a configuration, the fluidity and volatility of the non-aqueous electrolyte are suppressed, and even when the battery package is damaged due to external stress, it is difficult to leak to the outside. The safety of the battery using the battery is further improved.
The polymer of the compound having a radical polymerizable unsaturated double bond to be used is not particularly limited as long as it is a compound that is compatible with a non-aqueous electrolyte and does not completely separate into two layers. Monovalents such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, etc. (Meth) acrylic acid ester of alcohol, glycerol-1,3-diacrylate, trimethylolpropane tri (meth) acrylate, (meth) acrylic acid ester of polyhydric alcohol such as pentaerythritol tetra (meth) acrylate, alkyloxy Polyalkylene glycol (meth) acrylate Polyalkylene glycol di (meth) acrylate, glycerol tris (polyalkylene glycol) ether trimethacrylate, trimethylolpropane tris (polyalkylene glycol) ether tri (meth) acrylate, bisphenol A polyalkylene oxide adduct glycidyl ethers, etc. Polyalkylene glycol derivatives, 4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4-vinyl-4-methylethylene carbonate, 4-vinyl-5-methylethylene carbonate, 4-vinyl -Vinylethylene carbonates such as 4,5-dimethylethylene carbonate, 4-acryloxymethylethylene carbonate, 4,5-methylethylenecar Sulfonate, acryloxy methyl ethylene carbonate such as 4-methyl-4-acryloxy-methylethylene carbonate. Among them, from the viewpoint of ionic conductivity of the obtained non-aqueous electrolyte, methyl (meth) acrylate, (meth) acrylonitrile, 4-vinylethylene carbonate, alkyloxypolyalkylene glycol (meth) acrylate, polyalkylene glycol di (meth) acrylate Is preferably used. Moreover, the polymer of the compound having the above-mentioned radical polymerizable unsaturated double bond may be used alone or in combination of two or more.
In the case of using a polymer of a compound having a radically polymerizable unsaturated double bond, from the viewpoint of ionic conductivity of the obtained nonaqueous electrolytic solution, the blending ratio of the nonaqueous solvent and the polymer in the nonaqueous electrolytic solution is The polymer of the compound having a radically polymerizable unsaturated double bond is 5 to 30 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass in total of the nonaqueous solvent.
 本発明において、非水電解液にラジカル重合性不飽和二重結合を有する化合物の重合体を用いる場合には、非水電解液の製造方法に対して特に限定はなく、従来公知の方法を用いればよいが、例えば以下の方法により得ることができる。
 非水溶媒とラジカル重合性不飽和二重結合を有する化合物と電解質塩を各種の混練機や攪拌機を用いて均一に混合・分散した後、重合することで非水電解液を得ることができる。
 重合方法はイオン重合、ラジカル重合等、従来公知の方法を用いればよく、可視光、紫外線、電子線、熱等のエネルギーを使用し、適宜、重合開始剤などを用いて重合することにより、目的とする非水電解液を得ることができる。
 重合に際して、重合開始剤は使用しても、使用しなくても良いが、作業性や重合速度の観点から熱ラジカル重合開始剤を使用することが好ましい。
In the present invention, when a polymer of a compound having a radical polymerizable unsaturated double bond is used in the non-aqueous electrolyte, there is no particular limitation on the method for producing the non-aqueous electrolyte, and a conventionally known method can be used. For example, it can be obtained by the following method.
A non-aqueous electrolyte can be obtained by polymerizing a non-aqueous solvent, a compound having a radically polymerizable unsaturated double bond, and an electrolyte salt uniformly mixed and dispersed using various kneaders and stirrers.
The polymerization method may be a conventionally known method such as ionic polymerization, radical polymerization, etc., and uses an energy such as visible light, ultraviolet light, electron beam, heat, etc., and appropriately polymerizes using a polymerization initiator or the like. A non-aqueous electrolyte solution can be obtained.
In the polymerization, a polymerization initiator may or may not be used, but it is preferable to use a thermal radical polymerization initiator from the viewpoint of workability and polymerization rate.
 ラジカル重合開始剤としては、通常用いられる有機過酸化物やアゾ化合物から選択すれば良く、特に制限はないが、ラジカル重合開始剤の具体例としては、3,5,5-トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート等のパーオキシジカーボネート類、t-ヘキシルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート等のパーオキシエステル類、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキシ-2-メチルシクロヘキサン等のパーオキシケタール類、2,2’-アゾビス-イソブチロニトリル、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、2,2’-アゾビス-2,4-ジメチルバレロニトリル等のアゾ化合物等が挙げられる。
 上記のラジカル重合開始剤は、所望の重合温度と重合体の組成により適宜選択して用いれば良いが、電気化学デバイスに用いられる部材を損なわない目的から、分解温度及び分解速度の指標である10時間半減期温度の範囲として30~90℃のものが好ましい。ラジカル重合開始剤を用いた重合体の作製は、用いたラジカル重合開始剤の10時間半減期温度に対して±10℃程度の温度範囲で、重合体中の重合性不飽和二重結合が実質的に無くなるまで適宜重合時間を調整して行えば良い。
The radical polymerization initiator may be selected from commonly used organic peroxides and azo compounds, and is not particularly limited. Specific examples of the radical polymerization initiator include 3,5,5-trimethylhexanoyl peroxide. Diacyl peroxides such as benzoyl peroxide, peroxydicarbonates such as di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, t-hexylperoxyneo Decanate, t-butyl peroxyneodecanate, t-hexyl peroxypivalate, t-butyl peroxypivalate, t-butyl peroxy 2-ethylhexanoate, t- butyl peroxy 3, 5, 5 -Peroxyesthetics such as trimethylhexanoate Peroxyketals such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, di-t-butylperoxy-2-methylcyclohexane, 2,2′-azobis-iso Azo compounds such as butyronitrile, 1,1′-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis-2,4-dimethylvaleronitrile, etc. Can be mentioned.
The radical polymerization initiator may be appropriately selected and used depending on the desired polymerization temperature and polymer composition, but is an indicator of decomposition temperature and decomposition rate for the purpose of not damaging members used in electrochemical devices. The time half-life temperature is preferably 30 to 90 ° C. The production of the polymer using the radical polymerization initiator is such that the polymerizable unsaturated double bond in the polymer is substantially within a temperature range of about ± 10 ° C. with respect to the 10-hour half-life temperature of the used radical polymerization initiator. The polymerization time may be adjusted as appropriate until it is completely eliminated.
[正極及び負極]
 本発明の二次電池におけるカチオンを可逆的に吸蔵放出する正極は、正極活物質、導電助材、結着剤を含む正極合材を集電体上に製膜してなるリチウム二次電池用の正極として従来公知のものを用いれば良く、特に制限はない。前記の正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、層状マンガン酸リチウム(LiMnO)あるいは複数の遷移金属を配合した複合酸化物であるLiMnNiCo(x+y+z=1、0≦y<1、0≦z<1、0≦x<1)などの層状化合物、あるいは1種以上の遷移金属元素を置換したもの、あるいはマンガン酸リチウム(Li1+xMn2-x(ただしx=0~0.33)、Li1+xMn2-x-y(ただし、MはNi、Co、Cr、Cu、Fe、Al、Mgより選ばれた少なくとも1種の金属を含み、x=0~0.33、y=0~1.0、2-x-y>0)、LiMnO、LiMn、LiMnO、LiMn2-x(ただし、MはCo、Ni、Fe、Cr、Zn、Taより選ばれる少なくとも1種の金属を含み、x=0.01~0.1)、LiMnMO(ただし、MはFe、Co、Ni、Cu、Znより選ばれる少なくとも1種の金属である)、銅-リチウム酸化物(LiCuO)、鉄-リチウム酸化物(LiFe)、LiFePOあるいはLiV、V、Cu等のバナジウム酸化物、あるいはジスルフィド化合物、あるいはFe(MoO等を挙げることができる。前記の導電助材としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノファイバー等の導電性炭素材料を挙げることができる。前記の結着剤としては、例えば、正極と負極に用いるバインダーとしては、シリケートやガラスの様な無機化合物や各種の樹脂が挙げられる。
[Positive electrode and negative electrode]
The positive electrode for reversibly occluding and releasing cations in the secondary battery of the present invention is a lithium secondary battery formed by forming a positive electrode mixture containing a positive electrode active material, a conductive additive, and a binder on a current collector. Any known positive electrode may be used without particular limitation. Examples of the positive electrode active material include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), layered lithium manganate (LiMnO 2 ), or LiMn x Ni that is a composite oxide containing a plurality of transition metals. Layered compound such as y Co z O 2 (x + y + z = 1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ x <1), or one substituted with one or more transition metal elements, or lithium manganate (Li 1 + x Mn 2-x O 4 (where x = 0 to 0.33), Li 1 + x Mn 2-xy M y O 4 (where M is Ni, Co, Cr, Cu, Fe, Al, Mg) comprising at least one metal more selected, x = 0 ~ 0.33, y = 0 ~ 1.0,2-x-y> 0), LiMnO 3, LiMn 2 O 3, LiMnO 2, Li n 2-x M x O 2 ( however, M includes Co, Ni, Fe, Cr, Zn, at least one metal selected from Ta, x = 0.01 ~ 0.1) , Li 2 Mn 3 MO 8 (where M is at least one metal selected from Fe, Co, Ni, Cu, Zn), copper-lithium oxide (Li 2 CuO 2 ), iron-lithium oxide (LiFe 3 O 4) ), Vanadium oxides such as LiFePO 4 or LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7 , disulfide compounds, or Fe 2 (MoO 4 ) 3 . Examples of the material include conductive carbon materials such as acetylene black, ketjen black, graphite, carbon nanofiber, etc. Examples of the binder include, for example, As the binder used in the electrode To the negative electrode include such inorganic compounds and various resins silicate or glass.
 上記の結着材用の樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ-1,1-ジメチルエチレン等のアルカン系ポリマー、ポリブタジエン、ポリイソプレン等の不飽和ポリマー、ポリスチレン、ポリメチルスチレン、ポリビニルピリジン、ポリ-N-ビニルピロリドン等の環を有するポリマー、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド等のアクリル系ポリマー、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリアクリルニトリル、ポリビニリデンシアニド等のシアノ基含有ポリマー、ポリ酢酸ビニル、ポリビニルアルコール等のポリビニルアルコール系ポリマー、ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン含有ポリマー、ポリアニリン等の導電性ポリマー等が挙げられる。また、上記のポリマーの混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体などであっても使用できる。合材層は、活物質とバインダー以外に、必要に応じて、導電材料、補強材などの各種の機能を発現させる部材を含有させてもよい。導電材料としては、活物質に適量混合して導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。また、電池の安定性や寿命を高めるため、フルオロエチレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6-ジオキサスピロ[4,4]ノナン-2,7-ジオン、12-クラウン-4-エーテル等が使用できる。更に、補強材として、各種の無機及び有機の球状、板状、棒状、繊維状などのフィラーが使用できる。
 集電体としては、通常、アルミ箔、銅箔、ニッケル箔、チタン箔、金箔、白金箔などの金属箔が使用され、合材層の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。
Examples of the binder resin include alkane polymers such as polyethylene, polypropylene and poly-1,1-dimethylethylene, unsaturated polymers such as polybutadiene and polyisoprene, polystyrene, polymethylstyrene, polyvinylpyridine, Polymers having rings such as poly-N-vinylpyrrolidone, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid, polyacrylamide, etc. Fluorine resins such as acrylic polymers, polyvinyl fluoride, polyvinylidene fluoride, and polytetrafluoroethylene, cyano group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide, and polymers such as polyvinyl acetate and polyvinyl alcohol Alkenyl alcohol polymers, polyvinyl chloride, halogen-containing polymers such as polyvinylidene chloride, conductive polymers such as polyaniline. Further, a mixture, modified product, derivative, random copolymer, alternating copolymer, graft copolymer, block copolymer, or the like of the above-described polymer can be used. In addition to the active material and the binder, the composite material layer may contain a member that exhibits various functions, such as a conductive material and a reinforcing material, as necessary. The conductive material is not particularly limited as long as it can be mixed with an active material in an appropriate amount to impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals. . In addition, fluoroethylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7-dione, 12-crown-4-ether, etc. are used to increase the stability and life of the battery. it can. Furthermore, various inorganic and organic spherical, plate-like, rod-like, and fibrous fillers can be used as the reinforcing material.
As the current collector, metal foil such as aluminum foil, copper foil, nickel foil, titanium foil, gold foil, and platinum foil is usually used, and it is used after roughening in advance to increase the adhesive strength of the composite material layer. It is preferable to do this.
 本発明におけるリチウムを可逆的に吸蔵放出する負極としては、負極活物質と結着剤を含む負極合材を銅箔等の集電体に上に製膜してなる負極や金属箔等、リチウム二次電池用の負極として従来公知のものを用いれば良く、特に制限はない。
 負極活物質としては、例えば、天然黒鉛、石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの、メソフェースカーボン、あるいは非晶質炭素、炭素繊維等の炭素系材料、リチウム-チタン酸化物(LiTi12等)、リチウムと合金化する金属、あるいは炭素粒子表面に金属を担持させた材料等が用いられる。このような金属としては、例えば、リチウム、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウムとそれらの合金が挙げられる。また、該金属又は金属の酸化物も負極活物質として利用できる。前記の結着剤としては、例えば、前記の正極と同じ結着剤を用いることができる。このような負極活物質の中で、得られる電池のサイクル特性と安全性の観点から、炭素系材料とリチウム-チタン酸化物が好ましい。
As the negative electrode for reversibly occluding and releasing lithium in the present invention, a negative electrode or a metal foil or the like formed by forming a negative electrode mixture containing a negative electrode active material and a binder on a current collector such as a copper foil. A conventionally known negative electrode for the secondary battery may be used without any particular limitation.
Examples of the negative electrode active material include those obtained by heat-treating graphitizable materials obtained from natural graphite, petroleum coke, coal pitch coke, and the like at a high temperature of 2500 ° C. or higher, mesophase carbon, amorphous carbon, carbon fiber, and the like. A carbon-based material, lithium-titanium oxide (Li 4 Ti 5 O 12 or the like), a metal alloyed with lithium, or a material in which a metal is supported on the surface of carbon particles is used. Examples of such metals include lithium, aluminum, tin, silicon, indium, gallium, magnesium, and alloys thereof. The metal or metal oxide can also be used as the negative electrode active material. As the binder, for example, the same binder as that of the positive electrode can be used. Among such negative electrode active materials, carbon-based materials and lithium-titanium oxides are preferable from the viewpoint of the cycle characteristics and safety of the obtained battery.
 正極と負極の作製方法には特に制限は無く、従来公知のリチウム二次電池用電極の作製方法を用いて行えば良いが、例えば以下の方法で作製することもできる。活物質とアセチレンブラック等の導電材料を含む混合物を、バインダーの溶媒溶液(分散液)とボールミル、サンドミル、二軸混練機等により混合することでスラリーを得る。次いで、このスラリーを集電体上に塗布した後、加熱によりスラリーに含まれる溶剤を除去し、活物質とアセチレンブラック等の導電材料がバインターにより相互に結着された多孔質体である合材層を形成する。さらに集電体と合材層をロールプレス等により加圧して密着させることにより目的とする電極を得ることができる。
 スラリーに用いる溶媒は活物質に対して不活性であり且つバインダーを溶解し得る限り特に制限されず、無機又は有機の何れの溶剤であってもよい。好適な溶媒の一例としては、N-メチル-2-ピロリドンが挙げられる。
The method for producing the positive electrode and the negative electrode is not particularly limited, and may be performed using a conventionally known method for producing an electrode for a lithium secondary battery. For example, the method can also be produced by the following method. A mixture containing an active material and a conductive material such as acetylene black is mixed with a solvent solution (dispersion) of a binder with a ball mill, a sand mill, a biaxial kneader or the like to obtain a slurry. Next, after applying this slurry onto the current collector, the solvent contained in the slurry is removed by heating, and the composite material is a porous material in which an active material and a conductive material such as acetylene black are bound together by a binder Form a layer. Furthermore, the target electrode can be obtained by pressurizing the current collector and the composite material layer with a roll press or the like to bring them into close contact.
The solvent used in the slurry is not particularly limited as long as it is inert to the active material and can dissolve the binder, and may be any inorganic or organic solvent. An example of a suitable solvent is N-methyl-2-pyrrolidone.
[二次電池]
 本発明の二次電池の作製方法には、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば、以下の方法で作製することもできる。
 前記の正極と負極との間にポリオレフィン製微多孔膜や不織布等の絶縁層を配し、正極、負極及び絶縁体の空隙部分に非水電解液が十分に染込むまで注液することで作製することができる。また、非水電解液がシリカ微粒子を含む場合には、予め前記の正極と負極の合材層上に非水電解液を塗布した後、前記の絶縁層を介して正極と負極の合材層が対向するように張りあわせて作製することもできる。さらに、非水電解液がラジカル重合性不飽和二重結合を有する化合物を含む場合には、前記の正極と負極との間にポリオレフィン製微多孔膜や不織布等の絶縁層を配し、正極、負極及び絶縁体の空隙部分に非水電解液が十分に染込むまで注液した後、重合することで作製することもできる。
[Secondary battery]
The method for producing the secondary battery of the present invention is not particularly limited and may be performed using a conventionally known method for producing a secondary battery. For example, the secondary battery may be produced by the following method.
Prepared by placing an insulating layer such as a polyolefin microporous membrane or non-woven fabric between the positive electrode and the negative electrode, and pouring until the non-aqueous electrolyte is sufficiently infiltrated into the voids of the positive electrode, the negative electrode, and the insulator can do. When the non-aqueous electrolyte contains silica fine particles, the non-aqueous electrolyte is applied on the positive electrode / negative electrode mixture layer in advance, and then the positive electrode / negative electrode mixture layer is interposed through the insulating layer. It can also be produced by sticking together so that they face each other. Further, when the non-aqueous electrolyte contains a compound having a radically polymerizable unsaturated double bond, an insulating layer such as a polyolefin microporous film or a nonwoven fabric is disposed between the positive electrode and the negative electrode, It can also be prepared by polymerizing after pouring until the non-aqueous electrolyte is sufficiently infiltrated into the gap between the negative electrode and the insulator.
 本発明の二次電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、携帯電話、通信機能付き電子手帳等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリット自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。 The application of the secondary battery of the present invention is not particularly limited, but for example, digital AV cameras, video cameras, portable audio players, portable liquid crystal televisions and other portable AV devices, notebook computers, mobile phones, electronic notebooks with communication functions, etc. It can be used in a wide range of fields such as portable information terminals, portable game devices, electric tools, electric bicycles, hybrid cars, electric cars, power storage systems, and the like.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はこれに限定されるものではない。実施例及び比較例とも使用される原料、部材は、予備乾燥を行った。
 ○電極の作製例
<Mn系正極>:正極活物質であるマンガン酸リチウム粉末(日揮化学(株)、商品名E06Z)、導電助剤となるアセチレンブラック(電気化学工業(株)製、商品名デンカブラック)及び結着剤となるポリフッ化ビニリデン N-メチルピロリドン10質量%溶液((株)クレハ製、商品名KF1120)をN-メチルピロリドンを除いた固形成分の質量比で90/5/5になるよう配合し、適宜、N-メチルピロリドンを追加して粘度調整をしながら、プラネタリーミキサーで混練し、スラリー状の分散溶液を得た。得られた分散溶液をドクターブレードにより厚さ200μmでアルミニウム箔(厚さ20μm)上に塗布した後、真空下100℃で5時間乾燥した。乾燥終了後、卓上プレス機を用いてアルミ箔を除いた正極の密度が1.0g/cmになるように室温で圧縮してから、40×60mmの大きさに切り出し、集電用タブとして4×40×0.1mmのアルミタブを超音波溶接により接合しMn系正極を得た。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to this. The raw materials and members used in both the examples and comparative examples were pre-dried.
Example of electrode preparation <Mn-based positive electrode>: Lithium manganate powder (JGC Chemicals, Inc., trade name E06Z) which is a positive electrode active material, Acetylene black (trade name, manufactured by Electrochemical Industry Co., Ltd.) as a conductive additive Denka Black) and a polyvinylidene fluoride N-methylpyrrolidone 10 mass% solution (trade name KF1120, manufactured by Kureha Co., Ltd.) as a binder in a mass ratio of solid components excluding N-methylpyrrolidone is 90/5/5 The resulting mixture was kneaded with a planetary mixer while appropriately adjusting the viscosity by adding N-methylpyrrolidone to obtain a slurry dispersion solution. The obtained dispersion solution was applied on an aluminum foil (thickness 20 μm) with a doctor blade to a thickness of 200 μm, and then dried at 100 ° C. for 5 hours under vacuum. After drying, after compression at room temperature so that the density of the positive electrode excluding the aluminum foil is 1.0 g / cm 3 using a desktop press machine, cut into a size of 40 × 60 mm and used as a current collecting tab Aluminum tabs of 4 × 40 × 0.1 mm were joined by ultrasonic welding to obtain a Mn-based positive electrode.
<人造黒鉛負極>:負極活物質である人造黒鉛粉末(日立化成(株)製、商品名MAG)、導電助剤となるアセチレンブラック(電気化学工業(株)製、商品名デンカブラック)、及び結着剤となるポリフッ化ビニリデン N-メチルピロリドン10質量%溶液((株)クレハ製、商品名KF1120)をN-メチルピロリドンを除いた固形成分の質量比で90/5/5になるよう配合し、適宜、N-メチルピロリドンを追加して粘度調整をしながら、プラネタリーミキサーで混練し、スラリー状の分散溶液を得た。得られた分散溶液をドクターブレードにより厚さ60μmで銅箔上に塗布した後、真空下100℃で5時間乾燥した。乾燥終了後、卓上プレス機を用いて室温で圧縮してから、40×60mmの大きさに切り出し、集電用タブとして4×40×0.1mmの銅タブを超音波溶接により接合し人造黒鉛負極を得た。 <Artificial graphite negative electrode>: Artificial graphite powder (trade name MAG, manufactured by Hitachi Chemical Co., Ltd.) which is a negative electrode active material, acetylene black (trade name, Denka black, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a conductive additive, and Polyvinylidene fluoride N-methylpyrrolidone 10% by weight solution (trade name KF1120, manufactured by Kureha Co., Ltd.) as a binder is blended so that the mass ratio of the solid component excluding N-methylpyrrolidone is 90/5/5 Then, while appropriately adjusting the viscosity by adding N-methylpyrrolidone, the mixture was kneaded with a planetary mixer to obtain a slurry dispersion. The obtained dispersion solution was applied onto a copper foil with a doctor blade thickness of 60 μm and then dried at 100 ° C. for 5 hours under vacuum. After drying, after compression at room temperature using a desktop press machine, cut into 40 x 60 mm size, and 4 x 40 x 0.1 mm copper tabs as current collecting tabs were joined by ultrasonic welding to artificial graphite A negative electrode was obtained.
(実施例1)
 アルゴン置換したグローブボックス内で、ポリオキシエチレン化合物A(POE-Aと表記、分子構造を表1に示す)7.0gにエチレンカーボネート(キシダ化学(株)製、ECと表記)3.0gを加え、均一になるまで攪拌した後、フルオロエチレンカーボネート(関東電化工業(株)製、FECと表記)0.3gとヘキサフルオロリン酸リチウム(キシダ化学(株)製、LiPFと表記)を1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(実施例2)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから6.5gに変更し、エチレンカーボネートの配合量を3.0gから3.5gに変更した以外は、実施例1と同様にして非水電解液を得た。
(実施例3)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから6.0gに変更し、エチレンカーボネートの配合量を3.0gから4.0gに変更した以外は、実施例1と同様にして非水電解液を得た。
(実施例4)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから5.5gに変更し、エチレンカーボネートの配合量を3.0gから4.5gに変更した以外は、実施例1と同様にして非水電解液を得た。
Example 1
In a glove box substituted with argon, 7.0 g of polyoxyethylene compound A (indicated as POE-A, molecular structure is shown in Table 1) and 3.0 g of ethylene carbonate (indicated by EC, manufactured by Kishida Chemical Co., Ltd.) In addition, after stirring until uniform, 1 mol of fluoroethylene carbonate (manufactured by Kanto Denka Kogyo Co., Ltd., expressed as FEC) and lithium hexafluorophosphate (made by Kishida Chemical Co., Ltd., expressed as LiPF 6 ) A non-aqueous electrolyte was obtained by stirring until the solution was uniformly dissolved.
(Example 2)
Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 6.5 g and the blending amount of ethylene carbonate was changed from 3.0 g to 3.5 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
(Example 3)
Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 6.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 4.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
Example 4
Except for changing the blending amount of the polyoxyethylene compound A of Example 1 from 7.0 g to 5.5 g and changing the blending amount of ethylene carbonate from 3.0 g to 4.5 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
(実施例5)
 実施例1のポリオキシエチレン化合物Aの替わりにポリオキシエチレン化合物B(POE-Bと表記、分子構造を表1に示す)を用いて、配合量を7.0gから6.0gに変更し、エチレンカーボネートの配合量を3.0gから4.0gに変更し、ヘキサフルオロリン酸リチウムの替わりにリチウムビスオキサレートボレート(ケメタル社製、LiBOBと表記)を用い、フルオロエチレンカーボネートの替わりにビニレンカーボネート(キシダ化学(株)製、VCと表記)を用いた以外は、実施例1と同様にして非水電解液を得た。
(Example 5)
Using polyoxyethylene compound B (indicated as POE-B, molecular structure is shown in Table 1) instead of polyoxyethylene compound A in Example 1, the blending amount was changed from 7.0 g to 6.0 g, The blending amount of ethylene carbonate was changed from 3.0 g to 4.0 g, and lithium bisoxalate borate (made by Kemetal Co., expressed as LiBOB) was used instead of lithium hexafluorophosphate, and vinylene carbonate was used instead of fluoroethylene carbonate. A non-aqueous electrolyte solution was obtained in the same manner as in Example 1 except that (made by Kishida Chemical Co., Ltd., expressed as VC) was used.
(実施例6)
 アルゴン置換したグローブボックス内で、ポリアルキレンオキシド化合物A6.0gにエチレンカーボネート4.0gを加え、均一になるまで攪拌した後、ビニレンカーボネート0.3g、ポリエチレングリコールジアクリレート(日油(株)製、製品名ブレンマーADE-400、PEGDAと表記)2.0g及びリチウムビスオキサレートボレートを1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(Example 6)
In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 6.0 g of the polyalkylene oxide compound A, and the mixture was stirred until uniform, then 0.3 g of vinylene carbonate, polyethylene glycol diacrylate (manufactured by NOF Corporation, 2.0 g of a product name (Blemmer ADE-400, expressed as PEGDA) and lithium bisoxalate borate were added so as to have a concentration of 1 mol / L, and stirred until uniformly dissolved to obtain a nonaqueous electrolytic solution.
(実施例7)
 実施例3のフルオロエチレンカーボネートに替えてエチレンサルファイト(キシダ化学(株)製、ESと表記)を用いて非水電解液を得て、さらにシリカ微粒子(日本アエロジル(株)製、製品名アエロジルR805)1.0gを加え、自転公転型攪拌機により均一になるまで混練して本実施例の非水電解液を得た。
(実施例8)
 アルゴン置換したグローブボックス内で、ポリオキシエチレン化合物A5.0g、シアノエチル基含有化合物(POE-CN-Xと表記、分子構造を表1に示す)1.0gにエチレンカーボネート4.0gを加え、均一になるまで攪拌した後、ビニレンカーボネート0.3g及びヘキサフルオロリン酸リチウムを1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(Example 7)
A nonaqueous electrolytic solution was obtained using ethylene sulfite (made by Kishida Chemical Co., Ltd., expressed as ES) instead of the fluoroethylene carbonate of Example 3, and further silica fine particles (made by Nippon Aerosil Co., Ltd., product name Aerosil). R805) 1.0 g was added and kneaded until uniform with a rotation and revolution type stirrer to obtain a non-aqueous electrolyte of this example.
(Example 8)
In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 1.0 g of polyoxyethylene compound A and 1.0 g of a cyanoethyl group-containing compound (indicated as POE-CN-X, molecular structure is shown in Table 1). Then, 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added so as to have a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a nonaqueous electrolytic solution.
(実施例9)
 アルゴン置換したグローブボックス内で、ポリオキシエチレン化合物A5.0g、シアノエチル基含有化合物(POE-CN-Yと表記、分子構造を表1に示す)1.0gにエチレンカーボネート4.0gを加え、均一になるまで攪拌した後、ビニレンカーボネート0.3g及びヘキサフルオロリン酸リチウムを1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(実施例10)
 実施例9のポリオキシエチレン化合物Aの配合量を5.0gから4.0gに変更し、シアノエチル基含有化合物Yの配合量を1.0gから2.0gに変更し、ビニレンカーボネートに変えてフルオロエチレンカーボネートを用いた以外は、実施例9と同様にして非水電解液を得た。
(実施例11)
 実施例10のポリオキシエチレン化合物Aの配合量を4.0gから3.0gに変更し、シアノエチル基含有化合物Yの配合量を2.0gから3.0gに変更した以外は、実施例10と同様にして非水電解液を得た。
Example 9
In a glove box substituted with argon, 4.0 g of ethylene carbonate was added to 5.0 g of polyoxyethylene compound A and 1.0 g of a cyanoethyl group-containing compound (denoted as POE-CN-Y, molecular structure is shown in Table 1). Then, 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added so as to have a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a nonaqueous electrolytic solution.
(Example 10)
The blending amount of the polyoxyethylene compound A in Example 9 was changed from 5.0 g to 4.0 g, the blending amount of the cyanoethyl group-containing compound Y was changed from 1.0 g to 2.0 g, and the vinylene carbonate was changed to fluoro. A nonaqueous electrolytic solution was obtained in the same manner as in Example 9 except that ethylene carbonate was used.
(Example 11)
Example 10 is the same as Example 10 except that the amount of polyoxyethylene compound A in Example 10 is changed from 4.0 g to 3.0 g and the amount of cyanoethyl group-containing compound Y is changed from 2.0 g to 3.0 g. Similarly, a nonaqueous electrolytic solution was obtained.
(比較例1)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから10.0gに変更し、エチレンカーボネートを配合しなかった以外は、実施例1と同様にして非水電解液を作製したが、ヘキサフルオロリン酸リチウムが溶解しなかったため、非水電解液が得られなかった。
(比較例2)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから8.0gに変更し、エチレンカーボネートの配合量を3.0gから2.0gに変更した以外は、実施例1と同様にして非水電解液を得た。
(比較例3)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから5.0gに変更し、エチレンカーボネートの配合量を3.0gから5.0gに変更した以外は、実施例1と同様にして非水電解液を得た。
(比較例4)
 実施例1のポリオキシエチレン化合物Aの配合量を7.0gから4.0gに変更し、エチレンカーボネートの配合量を3.0gから6.0gに変更した以外は、実施例1と同様にして非水電解液を得た。
(Comparative Example 1)
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the amount of polyoxyethylene compound A in Example 1 was changed from 7.0 g to 10.0 g and no ethylene carbonate was added. Since lithium hexafluorophosphate did not dissolve, a nonaqueous electrolytic solution could not be obtained.
(Comparative Example 2)
Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 8.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 2.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
(Comparative Example 3)
Except for changing the blending amount of the polyoxyethylene compound A of Example 1 from 7.0 g to 5.0 g and changing the blending amount of ethylene carbonate from 3.0 g to 5.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
(Comparative Example 4)
Except that the blending amount of the polyoxyethylene compound A in Example 1 was changed from 7.0 g to 4.0 g and the blending amount of ethylene carbonate was changed from 3.0 g to 6.0 g, the same as in Example 1. A non-aqueous electrolyte was obtained.
(比較例5)
 実施例1のポリオキシエチレン化合物Aを配合せず、エチレンカーボネートの配合量を3.0gから10.0gに変更し、50℃で加熱しながら調製作業を行った以外は、実施例1と同様にして非水電解液を作製したが、室温まで冷却後に不溶成分が析出したため非水電解液は得られなかった。
(比較例6)
 実施例1のポリオキシエチレン化合物Aに替えてポリエチレンオキシド化合物C(POE-Cと表記、分子構造を表1に示す)を用いて、配合量を7.0gから6.0gに変更し、エチレンカーボネートの配合量を3.0gから4.0gに変更し、フルオロエチレンカーボネートに変えてエチレンサルファイトを用いた以外は、実施例1と同様にして非水電解液を得た。
(Comparative Example 5)
The same as Example 1 except that the polyoxyethylene compound A of Example 1 was not blended, the blending amount of ethylene carbonate was changed from 3.0 g to 10.0 g, and the preparation operation was performed while heating at 50 ° C. Thus, a non-aqueous electrolyte solution was produced, but a non-aqueous electrolyte solution could not be obtained because insoluble components were deposited after cooling to room temperature.
(Comparative Example 6)
Using polyethylene oxide compound C (indicated as POE-C, molecular structure shown in Table 1) instead of polyoxyethylene compound A in Example 1, the blending amount was changed from 7.0 g to 6.0 g, A nonaqueous electrolytic solution was obtained in the same manner as in Example 1 except that the amount of carbonate was changed from 3.0 g to 4.0 g, and ethylene sulfite was used instead of fluoroethylene carbonate.
(比較例7)
 アルゴン置換したグローブボックス内で、プロピレンカーボネート(キシダ化学(株)製、PCと表記)6.0gにジエチルカーボネート(キシダ化学(株)製、DECと表記)4.0gを加え、均一になるまで攪拌した後、ビニレンカーボネート0.3g、とヘキサフルオロリン酸リチウムを1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(比較例8)
 アルゴン置換したグローブボックス内で、エチレンカーボネート4.9g、プロピレンカーボネート4.9gにポリオキシエチレン化合物A0.2gを加え、均一になるまで攪拌した後、ビニレンカーボネート0.3g、とヘキサフルオロリン酸リチウムを1mol/Lの濃度になるように加え、均一に溶解するまで攪拌して非水電解液を得た。
(比較例9)
 アルゴン置換したグローブボックス内で、エチレンカーボネート(キシダ化学(株)製)4.0gに分子量100万のポリエチレンオキシド(アルドリッチ社製、PEOと表記)6.0gを加え、50℃に加温しながら均一になるまで攪拌し、さらにビニレンカーボネート0.3g、とヘキサフルオロリン酸リチウムを1mol/Lの濃度になるように加え攪拌したが、均一な非水電解液は得られなかった。
(Comparative Example 7)
In a glove box substituted with argon, add 4.0 g of diethyl carbonate (made by Kishida Chemical Co., Ltd., expressed as DEC) to 6.0 g of propylene carbonate (made by Kishida Chemical Co., Ltd., expressed as PC) until uniform. After stirring, 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added to a concentration of 1 mol / L, and the mixture was stirred until evenly dissolved to obtain a non-aqueous electrolyte.
(Comparative Example 8)
In a glove box substituted with argon, add 0.2 g of polyoxyethylene compound A to 4.9 g of ethylene carbonate and 4.9 g of propylene carbonate, and stir until uniform, then 0.3 g of vinylene carbonate and lithium hexafluorophosphate Was added to a concentration of 1 mol / L and stirred until it was uniformly dissolved to obtain a non-aqueous electrolyte.
(Comparative Example 9)
In a glove box substituted with argon, 6.0 g of polyethylene oxide having a molecular weight of 1,000,000 (produced by Aldrich, PEO) is added to 4.0 g of ethylene carbonate (manufactured by Kishida Chemical Co., Ltd.), and the mixture is heated to 50 ° C. The mixture was stirred until it was uniform, and 0.3 g of vinylene carbonate and lithium hexafluorophosphate were added and stirred to a concentration of 1 mol / L, but a uniform non-aqueous electrolyte was not obtained.
 ○評価方法
 上記にて得られた実施例1~11、比較例1~9の各非水電解液について、以下の方法により各種特性評価を行った。結果を表2、3及び図1に示す。
<非水溶媒の融点測定>各実施例及び比較例で使用した非水溶媒を、DSC(ティー・エイ・インスツルメント社製、商品名Q2000)を用いて、10℃/minの条件で-50℃まで冷却した後、10℃/minの条件で50℃まで昇温し、得られた融解ピークの頂点を融点とした。複数の融解ピークが得られた非水溶媒については、最も高温側の融解ピークの頂点を融点とした。
Evaluation Method Various characteristics of the non-aqueous electrolytes of Examples 1 to 11 and Comparative Examples 1 to 9 obtained above were evaluated by the following methods. The results are shown in Tables 2 and 3 and FIG.
<Measurement of Melting Point of Nonaqueous Solvent> The nonaqueous solvent used in each Example and Comparative Example was subjected to a condition of 10 ° C./min using DSC (trade name Q2000, manufactured by TA Instruments). After cooling to 50 ° C., the temperature was raised to 50 ° C. under the condition of 10 ° C./min, and the peak of the obtained melting peak was taken as the melting point. For the non-aqueous solvent in which a plurality of melting peaks were obtained, the highest melting point peak was taken as the melting point.
<イオン伝導度測定>アルゴン置換したグローブボックス内で、厚さ1mmのシリコンゴムシートに1×1cmの孔を切り抜き、孔の上下面を塞ぐ形でSUS304製の板状電極を配置した。次いで、前記孔部にシリンジを用いて各実施例及び比較例で作製した非水電解液を注液して、イオン伝導度測定用サンプルを作製した。(実施例1~5、7~11及び比較例2~4、6~8)また、実施例6の非水電解液から作製した前記イオン伝導度測定用サンプルは、ホットプレートにより80℃で1時間加熱し、非水電解液をゲル化して用いた。
 これらのサンプルを-20℃に設定した恒温槽に静置して、走査周波数1MHz~0.1Hz、印加電圧10mVの条件で交流インピーダンス測定を行い、得られたCole-ColeプロットのX軸との交点をバルク抵抗成分としてイオン伝導度を算出した。
<Ionic Conductivity Measurement> In a glove box substituted with argon, a 1 × 1 cm hole was cut out in a silicon rubber sheet having a thickness of 1 mm, and plate electrodes made of SUS304 were arranged so as to close the upper and lower surfaces of the hole. Subsequently, the non-aqueous electrolyte solution produced by each Example and the comparative example was injected into the said hole part using the syringe, and the sample for ion conductivity measurement was produced. (Examples 1 to 5, 7 to 11 and Comparative Examples 2 to 4 and 6 to 8) Further, the sample for measuring ionic conductivity prepared from the nonaqueous electrolytic solution of Example 6 was 1 at 80 ° C. by a hot plate. The mixture was heated for a period of time, and the nonaqueous electrolyte was gelled before use.
These samples were placed in a thermostatic chamber set to −20 ° C., AC impedance measurement was performed under conditions of a scanning frequency of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and the obtained Cole-Cole plot was compared with the X axis. Ionic conductivity was calculated using the intersection as a bulk resistance component.
 <放電容量維持率測定>Mn系正極と人造黒鉛負極で50×70mmに加工したポリオレフィン多孔質膜(セルガード(株)製、商品名セルガード#2400)を挟み込み、各実施例及び比較例で作製した非水電解液を正極、多孔質膜及び負極に充分に染み込むように滴下した後、アルゴン雰囲気下、アルミラミネートフィルムに封入することにより電池を得た(実施例1~5、7~11及び比較例2~4、6~8)。作成した電池の模式斜視図を図2に示す。また、実施例6は、前記の電池をホットプレートにより80℃で1時間加熱し、非水電解液をゲル化した電池を得た。次いで、-5℃に設定した恒温槽内に電池を設置し、充放電試験機(東洋システム(株)製、商品名TOSCAT3100)を用いて、3mA/cmの電流密度で充放電試験を行った。充放電条件を以下に記す。
 4.3Vまで定電流充電を行い、電圧が4.3Vに達してから5時間定電圧充電を行った。次いで、開回路状態で30分間保持した後、3.0Vになるまで定電流放電を行った。この際、最初の放電で得られた正極活物質1g当りの放電容量を初回放電容量とした。また、上記条件での充電・放電を1サイクルとして、充放電を50サイクル繰り返し、50サイクル目の放電で得られた正極活物質1g当りの放電容量を最終放電容量として、数式(2)より放電容量維持率を算出した。
 (最終放電容量/初回放電容量)×100    数式(2)
<Measurement of discharge capacity retention ratio> A polyolefin porous membrane (product name Celgard # 2400, manufactured by Celgard Co., Ltd.) processed to 50 × 70 mm with a Mn-based positive electrode and an artificial graphite negative electrode was sandwiched and produced in each Example and Comparative Example. A battery was obtained by dropping a non-aqueous electrolyte so that the positive electrode, the porous membrane, and the negative electrode were sufficiently infiltrated, and then encapsulating the aluminum laminate film in an argon atmosphere (Examples 1 to 5, 7 to 11 and comparisons). Examples 2-4, 6-8). A schematic perspective view of the produced battery is shown in FIG. In Example 6, the battery was heated with a hot plate at 80 ° C. for 1 hour to obtain a battery in which the nonaqueous electrolyte was gelled. Next, the battery was installed in a thermostatic chamber set to −5 ° C., and a charge / discharge test was performed at a current density of 3 mA / cm 2 using a charge / discharge tester (manufactured by Toyo System Co., Ltd., trade name TOSCAT3100). It was. The charge / discharge conditions are described below.
Constant current charging was performed up to 4.3 V, and constant voltage charging was performed for 5 hours after the voltage reached 4.3 V. Subsequently, after maintaining for 30 minutes in an open circuit state, constant current discharge was performed until it became 3.0V. At this time, the discharge capacity per 1 g of the positive electrode active material obtained by the first discharge was defined as the initial discharge capacity. Also, charging / discharging under the above conditions is one cycle, charging / discharging is repeated 50 cycles, and the discharging capacity per 1 g of the positive electrode active material obtained by discharging at the 50th cycle is the final discharging capacity. The capacity maintenance rate was calculated.
(Final discharge capacity / First discharge capacity) × 100 Formula (2)
<100℃放置試験>放電容量維持率の測定で使用した電池を、100℃に設定した恒温槽内に3時間放置してから室温まで冷却し、以下の評価基準で電池の外観を目視により観察した。○:膨れ、破裂なし、×:膨れ、破裂あり。 <100 ° C. standing test> The battery used in the measurement of the discharge capacity retention rate was left in a thermostat set at 100 ° C. for 3 hours and then cooled to room temperature. The appearance of the battery was visually observed according to the following evaluation criteria. did. ○: No swelling or rupture, ×: swelling or rupture.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表2、3及び図1に示した結果から以下のことが分かった。
(1) 実施例1~4に用いた非水溶媒は、ポリオキシエチレン化合物単独(比較例1の非水溶媒)又はエチレンカーボネート単独(比較例5の非水溶媒)よりも低い融点を示した。そして、これらの非水溶媒を用いた非水電解液は、-20℃の低温下においても高いイオン伝導度を示し、電池特性の評価では、-5℃で80%以上の高い放電容量維持率を示すと共に、100℃に放置しても膨れや破裂等の異常が一切認められなかったことから、低温での高いイオン伝導性、良好な電池特性及び良好な安全性を兼ね備えていることが分かった。 
From the results shown in Tables 2 and 3 and FIG.
(1) The nonaqueous solvent used in Examples 1 to 4 showed a lower melting point than the polyoxyethylene compound alone (nonaqueous solvent in Comparative Example 1) or ethylene carbonate alone (nonaqueous solvent in Comparative Example 5). . The non-aqueous electrolytes using these non-aqueous solvents show high ionic conductivity even at a low temperature of −20 ° C., and in the evaluation of battery characteristics, a high discharge capacity maintenance rate of 80% or more at −5 ° C. In addition, no abnormalities such as blistering or rupture were observed even when left at 100 ° C., indicating that it has high ionic conductivity at low temperatures, good battery characteristics, and good safety. It was.
(2) 比較例1に用いた非水溶媒は、ポリオキシエチレン化合物とエチレンカーボネートの混合溶媒ではないので、リチウム塩が溶解せずに非水電解液は得られなかった。
(3) 比較例2と3に用いた非水溶媒は、ポリオキシエチレン化合物とエチレンカーボネートの質量比が本発明の範囲を満たさない。そのため、非水溶媒の融点はポリオキシエチレン化合物単独(比較例1の非水溶媒)又はエチレンカーボネート単独(比較例5の非水溶媒)よりも低い値を示したが、これらの非水溶媒を用いた非水電解液は、-20℃の低温下で充分なイオン伝導度が得られず、電池特性の評価でも、-5℃で70%未満の低い放電容量維持率しか得られなかった。
(4) 比較例4で用いた非水溶媒は、ポリオキシエチレン化合物とエチレンカーボネートの質量比が本発明の範囲を満たさない。そのため、-20℃の低温下で充分なイオン伝導度が得られず、電池特性の評価でも、-5℃で70%未満の低い放電容量維持率しか得られなかった。
(5) 比較例5の非水溶媒は、ポリオキシエチレン化合物を含まず、エチレンカーボネートのみを溶媒とするため、常温で不溶成分が析出してしまい、均一な非水電解液が得られなかった。
(2) Since the non-aqueous solvent used in Comparative Example 1 was not a mixed solvent of a polyoxyethylene compound and ethylene carbonate, the lithium salt was not dissolved and a non-aqueous electrolyte was not obtained.
(3) In the nonaqueous solvent used in Comparative Examples 2 and 3, the mass ratio of the polyoxyethylene compound and ethylene carbonate does not satisfy the scope of the present invention. Therefore, although melting | fusing point of the non-aqueous solvent showed a lower value than the polyoxyethylene compound alone (the non-aqueous solvent of Comparative Example 1) or ethylene carbonate alone (the non-aqueous solvent of Comparative Example 5), The non-aqueous electrolyte used did not have sufficient ionic conductivity at a low temperature of −20 ° C., and only a low discharge capacity maintenance rate of less than 70% at −5 ° C. was obtained in the evaluation of battery characteristics.
(4) In the non-aqueous solvent used in Comparative Example 4, the mass ratio of the polyoxyethylene compound and ethylene carbonate does not satisfy the scope of the present invention. Therefore, sufficient ionic conductivity could not be obtained at a low temperature of −20 ° C., and the battery characteristics were evaluated only at a low discharge capacity maintenance rate of less than 70% at −5 ° C.
(5) Since the non-aqueous solvent of Comparative Example 5 does not contain a polyoxyethylene compound and uses only ethylene carbonate as a solvent, insoluble components are precipitated at room temperature, and a uniform non-aqueous electrolyte cannot be obtained. .
(6) 実施例1~4及び比較例2~4の非水電解液のイオン伝導度の測定結果に基づき、ポリオキシエチレン化合物A(POE-A)量と-20℃におけるイオン伝導度の関係を、図1にまとめた。図1から、ポリオキシエチレン化合物とエチレンカーボネートを本発明の範囲を満たす特定の質量比で混合することによって、イオン伝導度の極大値が得られることが分かった。
(7) 本発明によれば、高引火性の危険な非水溶媒を使用しなくても、低温でのイオン伝導性に優れ、良好な安全性を有する非水電解液を得ることができる。
(8) 実施例5~7の非水電解液は、低温での高いイオン伝導性、良好な電池特性及び良好な安全性を兼ね備えていることが分かった。
(9) 実施例8~11の非水電解液は、シアノエチル基含有化合物(表2中、POE-CN-X、Yと表記)を含むため、ポリオキシエチレン化合物とエチレンカーボネートからなる非水電解液と同等以上の、優れた低温のイオン伝導性と高い放電容量維持率を示し、良好な安全性も兼ね備えていることが分かった。
(6) Relationship between the amount of polyoxyethylene compound A (POE-A) and the ionic conductivity at −20 ° C. based on the measurement results of the ionic conductivities of the non-aqueous electrolytes of Examples 1 to 4 and Comparative Examples 2 to 4 Are summarized in FIG. From FIG. 1, it was found that the maximum value of the ionic conductivity can be obtained by mixing the polyoxyethylene compound and ethylene carbonate at a specific mass ratio that satisfies the scope of the present invention.
(7) According to the present invention, it is possible to obtain a nonaqueous electrolytic solution having excellent ion conductivity at low temperatures and good safety without using a highly flammable and dangerous nonaqueous solvent.
(8) The non-aqueous electrolytes of Examples 5 to 7 were found to have high ionic conductivity at low temperature, good battery characteristics, and good safety.
(9) Since the nonaqueous electrolytes of Examples 8 to 11 contain a cyanoethyl group-containing compound (indicated as POE-CN-X, Y in Table 2), nonaqueous electrolytes comprising a polyoxyethylene compound and ethylene carbonate It has been shown that it has excellent low-temperature ionic conductivity equal to or higher than that of a liquid and a high discharge capacity retention rate, and also has good safety.
(10) 比較例6の非水電解液に用いたポリオキシエチレン化合物は、平均付加モル数が本発明の規定範囲よりも少ないため、化学的安定性が低い。そのため放電容量維持率が低く、100℃放置試験で膨れが生じた。
(11) 比較例7の非水電解液には、ポリオキシエチレン化合物とエチレンカーボネートの混合溶媒の代わりにPCとDECを用いた。PCの化学的安定性が不十分であるため、比較例7の非水電解液を用いた電池は、放電容量維持率が低下し、DECを用いたことにより、100℃放置試験で膨れが生じた。
(12) 比較例8の非水電解液は、ポリオキシエチレン化合物とエチレンカーボネートの質量比が本発明の規定範囲を外れるため、電池の放電容量維持率が不十分であった。
(13) 比較例9の非水電解液は、分子量100万のPEOのみを用いたため、非水電解液が得られなかった。
(10) The polyoxyethylene compound used in the nonaqueous electrolytic solution of Comparative Example 6 has a low chemical stability because the average number of added moles is less than the specified range of the present invention. Therefore, the discharge capacity maintenance rate was low, and swelling occurred in the 100 ° C. standing test.
(11) For the nonaqueous electrolytic solution of Comparative Example 7, PC and DEC were used instead of the mixed solvent of polyoxyethylene compound and ethylene carbonate. Since the chemical stability of PC is insufficient, the battery using the non-aqueous electrolyte of Comparative Example 7 has a reduced discharge capacity retention rate, and the use of DEC causes swelling in a 100 ° C. standing test. It was.
(12) The nonaqueous electrolytic solution of Comparative Example 8 had an insufficient battery discharge capacity retention rate because the mass ratio of the polyoxyethylene compound and ethylene carbonate was outside the specified range of the present invention.
(13) Since the nonaqueous electrolytic solution of Comparative Example 9 used only PEO having a molecular weight of 1 million, no nonaqueous electrolytic solution was obtained.
 表2と3から明らかなように、本発明によれば、低温での高いイオン伝導性と熱的な安定性に優れた非水電解液が得られる。また、それを用いた二次電池は、良好な電池特性と安全性を兼ね備える。 As is clear from Tables 2 and 3, according to the present invention, a non-aqueous electrolyte excellent in high ionic conductivity and thermal stability at low temperatures can be obtained. Moreover, the secondary battery using the same has good battery characteristics and safety.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年4月22日付で出願された日本特許出願(特願2010-099263)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-099263) filed on Apr. 22, 2010, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
1 正極、2 負極、3 正極アルミ端子、4 負極ニッケル端子、5 アルミラミネートフィルム 1 positive electrode, 2 negative electrode, 3 positive electrode aluminum terminal, 4 negative nickel terminal, 5 aluminum laminate film

Claims (9)

  1.  式(1)で示されるポリオキシエチレン化合物とエチレンカーボネートからなる非水溶媒及び電解質塩を含む非水電解液であり、式(1)で示される化合物とエチレンカーボネートの質量比が、{式(1)で示される化合物の質量}/(エチレンカーボネートの質量)=75/25~52/48の範囲である、電気デバイス用非水電解液。
          RO-(AO)-R      (1)
    (R1、R2は炭素数1~6の炭化水素基、AOはオキシエチレン基であり、nはオキシエチレン基の平均付加モル数で3~10である。)
    A non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt composed of a polyoxyethylene compound represented by formula (1) and ethylene carbonate, and the mass ratio of the compound represented by formula (1) and ethylene carbonate is represented by {formula ( 1) The non-aqueous electrolyte for electrical devices in the range of mass of the compound represented by 1) / (mass of ethylene carbonate) = 75/25 to 52/48.
    R 1 O— (A 1 O) n —R 2 (1)
    (R 1 and R 2 are hydrocarbon groups having 1 to 6 carbon atoms, A 1 O is an oxyethylene group, and n is an average added mole number of oxyethylene groups of 3 to 10.)
  2.  式(1)で示される化合物とエチレンカーボネートの質量比が、{式(1)で示される化合物の質量}/(エチレンカーボネートの質量)=65/35~53/47の範囲である、請求項1に記載の電気デバイス用非水電解液。 The mass ratio of the compound represented by the formula (1) to ethylene carbonate is {mass of the compound represented by formula (1)} / (mass of ethylene carbonate) = 65/35 to 53/47. The non-aqueous electrolyte for electrical devices according to 1.
  3.  式(1)で示される化合物のエーテル化率が95%以上である、請求項1又は2に記載の電気デバイス用非水電解液。 The nonaqueous electrolytic solution for an electric device according to claim 1 or 2, wherein the etherification rate of the compound represented by the formula (1) is 95% or more.
  4.  非水電解液が、さらに不飽和環状カーボネート、ハロゲン置換環状カーボネート、環状スルホン酸、環状亜硫酸エステルから選ばれる添加剤を含み、添加剤の配合割合が、非水溶媒の合計100質量部に対して添加剤が0.1~20質量部である、請求項1~3のいずれか1項に記載の電気デバイス用非水電解液。 The non-aqueous electrolyte further contains an additive selected from unsaturated cyclic carbonate, halogen-substituted cyclic carbonate, cyclic sulfonic acid, and cyclic sulfite ester, and the blending ratio of the additive is 100 parts by mass in total of the non-aqueous solvent. The nonaqueous electrolytic solution for electric devices according to any one of claims 1 to 3, wherein the additive is 0.1 to 20 parts by mass.
  5.  非水電解液が、さらに式(2)で示されるシアノエチル基含有化合物を含む、請求項1~4のいずれか1項に記載の電気デバイス用非水電解液。
          RO-(AO)-R      (2)
    (R及びRは炭素数1~6の炭化水素又はシアノエチル基で、R、Rの少なくとも一方はシアノエチル基である。AOはオキシエチレン基であり、mはオキシエチレン基の平均付加モル数で1~10である。)
    The nonaqueous electrolytic solution for electric devices according to any one of claims 1 to 4, wherein the nonaqueous electrolytic solution further contains a cyanoethyl group-containing compound represented by the formula (2).
    R 3 O— (A 2 O) m —R 4 (2)
    (R 3 and R 4 are each a hydrocarbon having 1 to 6 carbon atoms or a cyanoethyl group, and at least one of R 3 and R 4 is a cyanoethyl group. A 2 O is an oxyethylene group, and m is an oxyethylene group. (The average number of moles added is 1 to 10.)
  6.  非水電解液がさらにシリカ微粒子を含み、シリカ微粒子の配合割合が、非水溶媒の合計100質量部に対してシリカ微粒子が2~15質量部である、請求項1~5のいずれか1項に記載の電気デバイス用非水電解液。 6. The non-aqueous electrolyte further includes silica fine particles, and the mixing ratio of the silica fine particles is 2 to 15 parts by mass of the silica fine particles with respect to 100 parts by mass of the total amount of the non-aqueous solvent. The non-aqueous electrolyte for electrical devices as described in 2.
  7.  シリカ微粒子が、粒子表面のシラノール基の少なくとも一部が、疎水化剤で修飾されているものである、請求項6に記載の電気デバイス用非水電解液。 The nonaqueous electrolytic solution for an electric device according to claim 6, wherein the silica fine particles are those in which at least a part of silanol groups on the particle surface is modified with a hydrophobizing agent.
  8.  非水電解液が、さらにラジカル重合性不飽和二重結合を有する化合物の重合体を含み、ラジカル重合性不飽和二重結合を有する化合物の配合割合が、非水電解液の合計100質量部に対してラジカル重合性不飽和二重結合を有する化合物の重合体が5~30質量部である、請求項1~7のいずれか1項に記載の電気デバイス用非水電解液。 The non-aqueous electrolyte further includes a polymer of a compound having a radical polymerizable unsaturated double bond, and the compounding ratio of the compound having a radical polymerizable unsaturated double bond is 100 parts by mass in total of the non-aqueous electrolyte. The nonaqueous electrolytic solution for an electric device according to any one of claims 1 to 7, wherein the polymer of the compound having a radical polymerizable unsaturated double bond is 5 to 30 parts by mass.
  9.  カチオンを吸蔵・放出することが可能な正極及び負極と、正極及び負極の間に介在してカチオンを移動させる電解質層とを有する二次電池であって、電解質層が請求項1~8のいずれか1項に記載の電気デバイス用非水電解液を含む、二次電池。 A secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing cations, and an electrolyte layer that moves between the positive electrode and the negative electrode to move cations, wherein the electrolyte layer is any one of claims 1 to 8. A secondary battery comprising the non-aqueous electrolyte for electrical devices according to claim 1.
PCT/JP2011/059751 2010-04-22 2011-04-20 Non-aqueous electrolyte for electrical device and secondary battery using same WO2011132717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010099263 2010-04-22
JP2010-099263 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011132717A1 true WO2011132717A1 (en) 2011-10-27

Family

ID=44834234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059751 WO2011132717A1 (en) 2010-04-22 2011-04-20 Non-aqueous electrolyte for electrical device and secondary battery using same

Country Status (2)

Country Link
JP (1) JP5633817B2 (en)
WO (1) WO2011132717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755273A3 (en) * 2013-01-11 2015-12-02 Politechnika Warszawska Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures
EP3595070A4 (en) * 2017-09-21 2020-02-26 LG Chem, Ltd. Polymer electrolyte and preparation method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605928B2 (en) * 2010-08-13 2014-10-15 エルジー・ケム・リミテッド Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
US10741879B2 (en) 2014-10-21 2020-08-11 Nec Corporation Secondary battery and production method therefor
WO2019059705A2 (en) * 2017-09-21 2019-03-28 주식회사 엘지화학 Polymer electrolyte and preparation method therefor
KR102346844B1 (en) * 2018-07-25 2022-01-03 주식회사 엘지에너지솔루션 Polymer electrolyte and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2005050707A (en) * 2003-07-29 2005-02-24 Sanyo Electric Co Ltd Nonaqueous solvent-based secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2201287B (en) * 1987-02-18 1990-09-26 Atomic Energy Authority Uk Solid state cell electrolyte
JPH11260405A (en) * 1998-03-10 1999-09-24 Yuasa Corp Solid electrolyte-type lithium secondary battery
US8889301B2 (en) * 2008-01-16 2014-11-18 Seeo, Inc. Gel polymer electrolytes for batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2005050707A (en) * 2003-07-29 2005-02-24 Sanyo Electric Co Ltd Nonaqueous solvent-based secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.TOBISHIMA ET AL.: "Glyme-based nonaqueous electrolytes for rechargeable lithium cells", ELECTROCHIMICA ACTA, vol. 49, 2004, pages 979 - 987 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755273A3 (en) * 2013-01-11 2015-12-02 Politechnika Warszawska Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures
EP3595070A4 (en) * 2017-09-21 2020-02-26 LG Chem, Ltd. Polymer electrolyte and preparation method therefor
US11387489B2 (en) 2017-09-21 2022-07-12 Lg Energy Solution, Ltd. Polymer electrolyte and preparation method therefor

Also Published As

Publication number Publication date
JP2011243568A (en) 2011-12-01
JP5633817B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP4364501B2 (en) Electrode plate, lithium battery using the same, and method for producing electrode plate
KR100589321B1 (en) An electrolyte for lithium secondary battery and a lithium secondary battery comprising the same
TWI422089B (en) Gel-type polymer electrolyte precursor and rechargeable cells employing the same
JP6492181B2 (en) Electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
KR100754378B1 (en) Organic electrolytic solution cotaining silane compound and lithium battery employing the same
Zhang et al. In situ generation of a soft–tough asymmetric composite electrolyte for dendrite-free lithium metal batteries
TW200832781A (en) Nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same
JP5633817B2 (en) Non-aqueous electrolyte for electric device and secondary battery using the same
JP5155278B2 (en) Ion conductive polymer electrolyte secondary battery
JP7055481B2 (en) Electrolyte for lithium secondary battery
JP7071022B2 (en) Electrolyte for lithium secondary battery
TW567625B (en) Non-aqueous electrolytic battery
WO2024045644A1 (en) Fluorine-containing polymer, preparation method therefor and use thereof, binder composition, secondary battery, and electric device
JP2022534952A (en) Copolymer for polymer electrolyte, gel polymer electrolyte containing the same, and lithium secondary battery
Ding et al. Non-flammable super-concentrated polymer electrolyte with “solvated ionic liquid” for lithium-ion batteries
JP2010251217A (en) Lithium secondary battery
JP2011090952A (en) Ionic conductive polymer electrolyte and secondary battery using the same
JP2023502319A (en) Semi-interpenetrating polymer networks as separators for alkaline metal batteries
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2012212516A (en) Nonaqueous electrolytic solution for electric device using polyfunctional poe compound
JP2023523124A (en) In situ polymerized hybrid polymer electrolytes for high voltage lithium batteries
KR20170120897A (en) Organic electrolytic solution and Lithium battery comprising organic electrolyte solution
JP2011181463A (en) Polymer electrolyte, secondary battery, and method of manufacturing secondary battery
JP2011090957A (en) Ionic conductive polymer composite electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772050

Country of ref document: EP

Kind code of ref document: A1