WO2024043032A1 - Conductive substrate and touch panel - Google Patents

Conductive substrate and touch panel Download PDF

Info

Publication number
WO2024043032A1
WO2024043032A1 PCT/JP2023/028431 JP2023028431W WO2024043032A1 WO 2024043032 A1 WO2024043032 A1 WO 2024043032A1 JP 2023028431 W JP2023028431 W JP 2023028431W WO 2024043032 A1 WO2024043032 A1 WO 2024043032A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
layer
group
conductive substrate
silver
Prior art date
Application number
PCT/JP2023/028431
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 中川
智史 田中
亜矢 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024043032A1 publication Critical patent/WO2024043032A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a conductive substrate and a touch panel.
  • Conductive substrates having conductive thin wires are widely used in various applications such as touch panels, solar cells, and EL (electro luminescence) elements.
  • touch panels solar cells
  • EL electro luminescence
  • the mounting rate of touch panels on mobile phones and mobile game devices has increased, and the demand for conductive substrates for capacitive touch panels capable of multi-point detection is rapidly expanding.
  • Patent Document 1 describes an electrode having a plurality of repeating units consisting of an image unit having a conductive pattern made of metal, a peripheral wiring part connected to the conductive pattern, and a non-conductive part that makes it impossible to connect adjacent image units.
  • Techniques related to the manufacturing method of pattern sheets are disclosed, and methods for forming conductive patterns and peripheral wiring portions include a printing method, a photolithography method, and a method using a silver salt photosensitive material as a conductive material precursor. has been done.
  • Patent Document 2 discloses a technique related to a laminate that prevents migration of a metallic silver pattern in a high temperature and high humidity environment and improves an increase in resistance value of the metallic silver pattern due to sulfur components in the atmosphere.
  • Such a touch panel includes a conductive substrate and various members mounted around the conductive substrate. Cushioning materials, adhesives, and the like used in these peripheral members may contain sulfur-containing compounds. Further, sulfur components such as H 2 S and SO 2 are also present in the environment in which the touch panel is used.
  • S 8 corrosive sulfur
  • the conductive layer has a conductive thin wire portion containing metal, having a shielding layer on the conductive layer,
  • the shielding layer includes a compound represented by formula (1), formula (2), formula (3), formula (4), or formula (5) described below,
  • a conductive substrate, wherein the content of the compound per area of the shielding layer is 0.01 to 8.0 ⁇ g/cm 2 .
  • the present invention it is possible to provide a conductive substrate in which the conductive thin wire portion has excellent sulfidation resistance and color change over time is suppressed.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conductive substrate of the present invention.
  • FIG. 3 is a plan view showing an example of a mesh pattern of the conductive layer of the conductive substrate of the present invention.
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the “content” of the component means the total content of the two or more types of components.
  • “g” and “mg” represent “mass g” and “mass mg”, respectively.
  • polymer or “polymer compound” means a compound having a weight average molecular weight of 2000 or more.
  • the weight average molecular weight is defined as a polystyrene equivalent value measured by GPC (Gel Permeation Chromatography).
  • GPC Gel Permeation Chromatography
  • the conductive substrate according to the present invention includes a base material, a conductive layer disposed on the base material, and a shielding layer on the conductive layer.
  • the conductive layer has a conductive thin wire portion and a transparent insulating portion adjacent to the conductive thin wire portion.
  • the conductive thin wire portion contains metal, and the transparent insulating portion does not contain metal.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conductive substrate according to the present invention.
  • the conductive substrate 10 shown in FIG. 1 includes a base material 12 and a conductive layer 14 disposed on the surface of the base material 12.
  • the conductive layer 14 includes a thin conductive wire portion 16 and a transparent insulating portion 18 adjacent to the thin conductive wire portion 16 .
  • FIG. 1 shows two conductive thin wire portions 16 extending in a direction perpendicular to the plane of the paper, the arrangement form and number of conductive thin wire portions 16 are not particularly limited.
  • a shielding layer (not shown) is provided on the conductive layer 14.
  • the type of the base material is not particularly limited as long as it can support the photosensitive layer and the conductive thin wire portion, and examples thereof include a plastic substrate, a glass substrate, and a metal substrate, with a plastic substrate being preferred.
  • a flexible base material is preferable since the resulting conductive member has excellent bendability.
  • Examples of the flexible base material include the above-mentioned plastic substrate.
  • the thickness of the base material is not particularly limited, and is often 25 to 500 ⁇ m. Note that when the conductive substrate is applied to a touch panel and the surface of the base material is used as a touch surface, the thickness of the base material may exceed 500 ⁇ m.
  • Materials constituting the base material include polyethylene terephthalate (PET) (258°C), polycycloolefin (134°C), polycarbonate (250°C), acrylic film (128°C), polyethylene naphthalate (269°C), polyethylene ( 135°C), polypropylene (163°C), polystyrene (230°C), polyvinyl chloride (180°C), polyvinylidene chloride (212°C), and triacetyl cellulose (290°C), etc. Certain resins are preferred, with PET, polycycloolefin, or polycarbonate being more preferred. Among these, PET is particularly preferred because it has excellent adhesion to the conductive thin wire portion.
  • the numerical value in parentheses above is the melting point or glass transition temperature.
  • the total light transmittance of the base material is preferably 85 to 100%.
  • the total light transmittance is measured using "Plastics - How to determine total light transmittance and total light reflectance" specified in JIS (Japanese Industrial Standard) K 7375:2008.
  • An undercoat layer may be disposed on the surface of the base material.
  • the undercoat layer preferably contains a specific polymer described below. When this undercoat layer is used, the adhesion of the conductive layer described later to the base material is further improved.
  • the method for forming the undercoat layer is not particularly limited, and examples thereof include a method in which a composition for forming an undercoat layer containing a specific polymer, which will be described later, is applied onto a base material and, if necessary, a heat treatment is performed.
  • the undercoat layer forming composition may contain a solvent as necessary.
  • the type of solvent is not particularly limited, and examples include solvents used in the photosensitive layer forming composition described below.
  • the composition for forming an undercoat layer containing a specific polymer a latex containing particles of a specific polymer may be used.
  • the thickness of the undercoat layer is not particularly limited, and is preferably 0.02 to 0.3 ⁇ m, more preferably 0.03 to 0.2 ⁇ m, in terms of better adhesion of the conductive layer to the base material.
  • the conductive layer has a conductive thin wire portion and a transparent insulating portion. That is, on the surface of the base material of the conductive substrate, a conductive thin wire portion containing metal and a transparent insulating portion not containing metal are arranged as a conductive layer.
  • the arrangement of the conductive thin wire portion and the transparent insulating portion in the conductive layer is not particularly limited.
  • the conductive layer may have a pattern formed by conductive thin wire portions and transparent insulating portions.
  • the patterns are not particularly limited, and include, for example, triangles such as equilateral triangles, isosceles triangles, and right triangles, quadrilaterals such as squares, rectangles, rhombuses, parallelograms, and trapezoids, (regular) hexagons, and (regular) octagons. It is preferably a (regular) n-gon such as a square, a circle, an ellipse, a star, or a geometric figure that is a combination of these shapes, and more preferably a mesh shape (mesh pattern).
  • FIG. 2 is a plan view showing an example of a mesh pattern that the conductive layer has.
  • the mesh shape refers to a shape composed of intersecting conductive thin wire portions 16 and transparent insulating portions 18, each including a plurality of non-thin wire portions (lattice) 20 spaced apart from each other. intend.
  • the non-thin line portion 20 has a square shape with one side length L, but the non-thin line portion of the mesh pattern may have other shapes, such as a polygonal shape ( For example, it may be a triangle, a quadrilateral (diamond, rectangle, etc.), a hexagon, or a random polygon.
  • the shape of the side may be a curved shape other than a straight line, or may be an arc shape.
  • an arcuate shape for example, two opposing sides may have an outwardly convex arcuate shape, and the other two opposing sides may have an inwardly convex arcuate shape.
  • each side may have a wavy line shape in which an outwardly convex circular arc and an inwardly convex circular arc are continuous.
  • the shape of each side may be a sine curve.
  • the length L of one side of the non-thin wire portion 20 is not particularly limited, but is preferably 1500 ⁇ m or less, more preferably 1300 ⁇ m or less, and even more preferably 1000 ⁇ m or less.
  • the lower limit of the length L is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 80 ⁇ m or more. If the length of one side of the non-thin line part is within the above range, it is possible to maintain good transparency, and when the conductive substrate is attached to the front of the display device, the display can be viewed without discomfort. can do.
  • the aperture ratio of the mesh pattern formed by the conductive thin wire portions is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
  • the upper limit is not particularly limited, but may be less than 100%.
  • the aperture ratio means the ratio (area ratio) of the area occupied by the transparent insulating part to the entire area occupied by the mesh pattern in the area where the mesh pattern of the conductive substrate is formed.
  • the thickness of the conductive layer is not particularly limited, but is preferably 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.0 ⁇ m.
  • the thickness of the conductive layer is determined by selecting five arbitrary points corresponding to the thickness of one conductive thin wire part using a scanning electron microscope, and calculating the arithmetic mean value of the parts corresponding to the thickness of the five points. Therefore, it is required.
  • the conductive thin wire portion is a portion that ensures the conductive properties of the conductive substrate by containing metal.
  • the metal is selected from the group consisting of silver (metallic silver), copper (metallic copper), gold (metallic gold), nickel (metallic nickel), and palladium (metallic palladium) because of its superior conductive properties.
  • One or more metals or mixtures thereof are preferred, single silver or a mixture of silver and copper is more preferred, and single silver is even more preferred.
  • the conductive thin wire portion is intended to be a thin wire-shaped region integrally formed of a material containing metal.
  • the silver halide-free layer formed in Step H, which will be described later, and the protective layer, which will be formed in Step I, which will be described later are different from the thin wire-shaped metal-containing layer (silver halide-free layer) formed in Step A and Step B, which will be described later. Containing layer) together with the conductive thin wire portion.
  • the conductive thin wire portion may or may not be electrically connected to a member external to the conductive substrate.
  • a portion of the conductive thin wire portion may be a dummy electrode electrically insulated from the outside.
  • the metal contained in the conductive thin wire portion is usually in the form of solid particles.
  • the average particle diameter of the metal is preferably 10 to 1000 nm, more preferably 10 to 200 nm, in equivalent sphere diameter.
  • the equivalent sphere diameter is the diameter of spherical particles having the same volume, and the average particle diameter of metal particles is obtained as the average value obtained by measuring the equivalent sphere diameters of 100 objects and arithmetic averaging them. It will be done.
  • the shape of the metal particles is not particularly limited, and examples include shapes such as spherical, cubic, tabular, octahedral, and dodecahedral. Further, the metal particles may be partially or entirely bonded by fusion.
  • the conductive thin wire portion may have a structure in which a plurality of metals are dispersed in a polymer compound described below, or metal particles may aggregate in the polymer compound and exist as an aggregate. Further, at least some of the plurality of metals included in the conductive thin wire portion may be bonded to each other by a metal derived from metal ions used in a plating process to be described later.
  • the metal content in the conductive thin wire portion is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 , and 5.0 to 15.0 g/m 2 in terms of better conductivity of the conductive substrate. is more preferable.
  • the conductive thin wire portion may contain a polymer compound in addition to metal.
  • the type of polymer compound contained in the conductive thin wire portion is not particularly limited, and known polymer compounds can be used. Among these, polymer compounds different from gelatin (hereinafter also referred to as "specific polymers") are preferred in that they can form a silver-containing layer with better strength and a conductive thin wire portion.
  • the type of specific polymer is not particularly limited as long as it is different from gelatin, and preferably a polymer that is not decomposed by proteolytic enzymes or oxidizing agents that decompose gelatin, which will be described later.
  • Specific polymers include hydrophobic polymers (water-insoluble polymers), such as (meth)acrylic resins, styrene resins, vinyl resins, polyolefin resins, polyester resins, polyurethane resins, At least one resin selected from the group consisting of polyamide resin, polycarbonate resin, polydiene resin, epoxy resin, silicone resin, cellulose polymer, and chitosan polymer, or comprising these resins Examples include copolymers consisting of monomers.
  • the specific polymer has a reactive group that reacts with a crosslinking agent described below. It is preferable that the specific polymer is in the form of particles. That is, it is preferable that the conductive thin wire portion contains particles of a specific polymer.
  • a polymer (copolymer) represented by the following general formula (1) is preferable.
  • A, B, C, and D each represent a repeating unit represented by the following general formulas (A) to (D).
  • R 11 represents a methyl group or a halogen atom, and preferably a methyl group, a chlorine atom, or a bromine atom.
  • p represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
  • R 12 represents a methyl group or an ethyl group, preferably a methyl group.
  • R 13 represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • L represents a divalent linking group, and is preferably a group represented by the following general formula (2).
  • X 1 represents an oxygen atom or -NR 30 -.
  • R 30 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group, each of which may have a substituent (eg, a halogen atom, a nitro group, and a hydroxyl group).
  • R 30 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (e.g., methyl group, ethyl group, n-butyl group, and n-octyl group), or an acyl group (e.g., acetyl group, and benzoyl group) is preferred.
  • X 1 is preferably an oxygen atom or -NH-.
  • X 2 represents an alkylene group, an arylene group, an alkylene arylene group, an arylene alkylene group, or an alkylene arylene alkylene group, and these groups include -O-, -S-, -CO-, -COO-, -NH -, -SO 2 -, -N(R 31 )-, -N(R 31 )SO 2 -, etc. may be inserted in the middle.
  • R 31 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • X 2 is dimethylene group, trimethylene group, tetramethylene group, o-phenylene group, m-phenylene group, p-phenylene group, -CH 2 CH 2 OCOCH 2 CH 2 -, or -CH 2 CH 2 OCO ( C 6 H 4 )- is preferred.
  • r represents 0 or 1.
  • q represents 0 or 1, preferably 0.
  • R 14 represents an alkyl group, an alkenyl group, or an alkynyl group, preferably an alkyl group having 5 to 50 carbon atoms, more preferably an alkyl group having 5 to 30 carbon atoms, and further an alkyl group having 5 to 20 carbon atoms.
  • R 15 represents a hydrogen atom, a methyl group, an ethyl group, a halogen atom, or -CH 2 COOR 16 , preferably a hydrogen atom, a methyl group, a halogen atom, or -CH 2 COOR 16 ; , or -CH 2 COOR 16 is more preferred, and a hydrogen atom is even more preferred.
  • R 16 represents a hydrogen atom or an alkyl group having 1 to 80 carbon atoms, and may be the same as or different from R 14 , and the carbon number of R 16 is preferably 1 to 70, more preferably 1 to 60.
  • x, y, z, and w represent the molar ratio of each repeating unit.
  • x is 3 to 60 mol%, preferably 3 to 50 mol%, and more preferably 3 to 40 mol%.
  • y is 30 to 96 mol%, preferably 35 to 95 mol%, and more preferably 40 to 90 mol%.
  • z is 0.5 to 25 mol%, preferably 0.5 to 20 mol%, and more preferably 1 to 20 mol%.
  • w is 0.5 to 40 mol%, preferably 0.5 to 30 mol%.
  • x is preferably 3 to 40 mol%
  • y is 40 to 90 mol%
  • z is 0.5 to 20 mol%
  • w is 0.5 to 10 mol%.
  • the polymer represented by the general formula (1) is preferably a polymer represented by the following general formula (2).
  • the polymer represented by the general formula (1) may contain repeating units other than the repeating units represented by the above-mentioned general formulas (A) to (D).
  • monomers for forming other repeating units include acrylic acid esters, methacrylic acid esters, vinyl esters, olefins, crotonic acid esters, itaconic acid diesters, maleic acid diesters, and fumaric acid diesters.
  • examples include acrylamides, unsaturated carboxylic acids, allyl compounds, vinyl ethers, vinyl ketones, vinyl heterocyclic compounds, glycidyl esters, and unsaturated nitriles. These monomers are also described in paragraphs 0010 to 0022 of Japanese Patent No. 3754745.
  • the polymer represented by general formula (1) preferably contains a repeating unit represented by general formula (E).
  • L E represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 2 to 6 carbon atoms, and even more preferably an alkylene group having 2 to 4 carbon atoms.
  • a polymer represented by the following general formula (3) is particularly preferable.
  • a1, b1, c1, d1, and e1 represent the molar ratio of each repeating unit, a1 is 3 to 60 (mol%), b1 is 30 to 95 (mol%), and c1 is 0.5 ⁇ 25 (mol%), d1 represents 0.5 to 40 (mol%), and e1 represents 1 to 10 (mol%).
  • the preferable range of a1 is the same as the above-mentioned preferable range of x
  • the preferable range of b1 is the same as the above-mentioned preferable range of y
  • the preferable range of c1 is the same as the above-mentioned preferable range of z
  • the preferable range of d1 is the same as the above-mentioned preferable range of y.
  • the preferred range is the same as the preferred range for w described above.
  • e1 is 1 to 10 mol%, preferably 2 to 9 mol%, and more preferably 2 to 8 mol%.
  • the specific polymer can be synthesized with reference to, for example, Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
  • the weight average molecular weight of the specific polymer is not particularly limited, and is preferably 1,000 to 1,000,000, more preferably 2,000 to 750,000, and even more preferably 3,000 to 500,000.
  • the conductive thin wire portion may contain other materials than the above-mentioned materials, if necessary.
  • antistatic agents for example, antistatic agents, nucleation accelerators, spectral sensitizing dyes, surfactants, antifoggants, hardeners, black spot prevention agents, as described in paragraphs 0220 to 0241 of JP-A-2009-004348.
  • agents for example, agents, redox compounds, monomethine compounds, and dihydroxybenzenes.
  • the photosensitive layer may contain physical development nuclei.
  • the conductive thin wire portion may contain a crosslinking agent used for crosslinking the above-mentioned specific polymers. By including the crosslinking agent, crosslinking between the specific polymers progresses, and the metals in the conductive thin wire portion are kept connected to each other.
  • the line width Wa of the conductive thin wire portion is preferably less than 5.0 ⁇ m, more preferably 2.5 ⁇ m or less, and even more preferably 2.0 ⁇ m or less, since the conductive thin wire portion is difficult to be visually recognized.
  • the lower limit is not particularly limited, it is preferably 0.5 ⁇ m or more, and more preferably 1.2 ⁇ m or more, since the conductivity of the conductive thin wire portion is more excellent.
  • the line width of the conductive thin wire portion refers to the total length of the conductive thin wire portion in the direction along the surface of the base material and perpendicular to the direction in which the conductive thin wire portion extends.
  • the line width Wa of the conductive thin wire portion described above is determined by selecting five arbitrary points corresponding to the line width of one conductive thin wire portion using a scanning electron microscope, and calculating the arithmetic average of the line widths of the five points. Let the value be the line width Wa.
  • the thickness T of the conductive thin wire portion is not particularly limited, but is preferably 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.0 ⁇ m.
  • the thickness T of the conductive thin wire portion described above can be measured according to the method for measuring the thickness of a conductive layer.
  • the wire resistance value of the conductive thin wire portion is preferably less than 200 ⁇ /mm. Among these, from the viewpoint of operability when used as a touch panel, it is more preferably less than 100 ⁇ /mm, and even more preferably less than 60 ⁇ /mm.
  • the wire resistance value is the resistance value measured by the four-probe method divided by the distance between the measurement terminals. More specifically, after disconnecting both ends of any one conductive thin wire part constituting the mesh pattern and separating it from the mesh pattern, four microprobes (A, B, C, D) (Co., Ltd.
  • the conductive layer has a transparent insulating portion adjacent to the conductive thin wire portion. As shown in FIG. 1, the conductive thin wire portion and the transparent insulating portion are arranged side by side in the in-plane direction on the surface of the substrate.
  • the transparent insulating portion is a region that does not contain conductive metal and does not exhibit conductivity.
  • the expression that the transparent insulating part "does not contain metal” means that the metal content in the transparent insulating part is 0.1% by mass or less based on the total mass of the transparent insulating part.
  • the metal content in the transparent insulating part is preferably 0.05% by mass or less based on the total mass of the transparent insulating part.
  • transparent means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more.
  • the average transmittance of the visible light of the transparent insulating portion is preferably 90% or more.
  • the upper limit is not particularly limited, and is, for example, 99% or less. Transmittance can be measured using a spectrophotometer.
  • the transparent insulating part contains a polymer compound as a main component.
  • the polymer compound contained in the transparent insulating part include those contained in the conductive thin wire part, and specific polymers are preferable. Among these, it is more preferable to include the same polymer compound (preferably a specific polymer) contained in the conductive thin wire portion.
  • the expression that the transparent insulating part "contains a polymer compound as a main component" means that the content of the polymer compound is 50% by mass or more based on the total mass of the transparent insulating part.
  • the content of the polymer compound in the transparent insulating part is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass.
  • the method for forming the transparent insulating portion is not particularly limited, and for example, in the method for manufacturing a conductive substrate described below, an unexposed portion may be formed by performing an exposure treatment in which a silver halide-containing photosensitive layer is exposed in a pattern. Then, by performing a development process on the unexposed area, a transparent insulating part containing a polymer compound as a main component is formed. In addition, by performing a treatment to remove gelatin as necessary, a transparent insulating portion containing a specific polymer as a main component is formed.
  • the conductive substrate may include other members in addition to the base material described above, the conductive thin wire portion, and the shielding layer described below.
  • Other members that may be included in the conductive substrate include a conductive portion having a different configuration from the conductive thin wire portion described above.
  • the conductive substrate according to the present invention has a shielding layer on the conductive layer.
  • the shielding layer may or may not be in direct contact with the conductive layer.
  • the shielding layer may contain components derived from the water-based resin composition.
  • the aqueous resin composition refers to a composition that has the property of solidifying when the aqueous solvent contained in the composition is removed.
  • Types of resins contained in general water-based resin compositions include forced emulsification resins made by forcibly emulsifying polymers (resins) that do not have emulsifying properties or water solubility using surfactants, etc., and polymers that have self-emulsifying properties. Examples include self-emulsifying resins in which (resins) are emulsified and dispersed, and water-soluble resins in which water-soluble polymers (resins) are dissolved.
  • Forced emulsifying resin and self-emulsifying resin refer to resins in which the resin is in a dispersed state having a particle size at the stage of composition.
  • the water-soluble resin refers to a resin in which the resin does not have a particle size and is in a dissolved state at the stage of a composition.
  • the aqueous solvent refers to a dispersion medium whose main component is water, and the content of water contained in the solvent is preferably 40 to 100% by mass, more preferably 50 to 100% by mass.
  • Solvents other than water contained in the aqueous solvent include alcohols such as methanol, ethanol, and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, glycol ethers such as N-methylpyrrolidone (NMP), tetrahydrofuran, and butyl cellosolve. Solvents having water solubility, such as the following, are preferably used.
  • the water-based resin composition contains a surfactant, ammonia, triethylamine, and N,N-dimethylethanol.
  • the dispersion may contain several mass % of amines such as amines based on the total mass of the dispersion (aqueous resin composition).
  • water-based resin compositions include water-based resin compositions containing polyester resins, polyolefin resins, acrylic resins, polyurethane resins, and the like as polymers.
  • the shielding layer include a shielding layer having any structure selected from polyester (ester), polyolefin (olefin), acrylic resin (acrylic), and polyurethane (urethane). Among these, it is preferable that the shielding layer has a structure selected from acrylic and urethane, since the effects of the present invention are more excellent.
  • Acrylic resin is a resin containing as a polymerization component a monomer having at least one group selected from an acryloyl group and a methacryloyl group. It is preferable that the total mass of repeating units formed by polymerizing a monomer having at least one group is more than 50% by mass.
  • a monomer having at least one group selected from an acryloyl group and a methacryloyl group will be appropriately referred to as a "(meth)acrylic monomer.”
  • Acrylic resins are obtained by homopolymerizing (meth)acrylic monomers or copolymerizing them with other monomers.
  • the acrylic resin is a copolymer of a (meth)acrylic monomer and another monomer
  • the other monomer to be copolymerized with the (meth)acrylic monomer may be a monomer having a carbon-carbon double bond;
  • the monomer may have a bond selected from a bond and a urethane bond.
  • the copolymer of the (meth)acrylic monomer and other monomer may be a random copolymer, a block copolymer, or a graft copolymer.
  • Acrylic resins include polymers obtained by homopolymerizing (meth)acrylic monomers or copolymerizing with other monomers in polyester solutions or polyester dispersions, and (meth)acrylic monomers in polyurethane solutions or polyurethane dispersions.
  • (meth)acrylic monomers are homopolymerized or copolymerized with other monomers in a solution or dispersion of a polymer other than acrylic resin, such as a polymer obtained by homopolymerization or copolymerization with other monomers. Mixtures of the resulting polymers containing other polymers such as polyester resins and urethane resins may also be included.
  • (meth)acrylic monomers that can be used to synthesize acrylic resins.
  • Representative (meth)acrylic monomers include (meth)acrylic acid; hydroxyalkyl (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; ) Acrylate; Alkyl (meth)acrylate such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, lauryl (meth)acrylate; (meth)acrylamide; diacetone acrylamide, N N-substituted acrylamides such as -methylol acrylamide; (meth)acrylonitrile; silicon-containing (meth)acrylic monomers such as ⁇ -methacryloxypropyltrimethoxysilane; and the like.
  • a commercially available product may be used as the aqueous resin composition containing an acrylic resin.
  • Commercially available products include Jurimer (registered trademark) ET-410 (manufactured by Toagosei Kagaku Co., Ltd.), Aquabrid AS-563A (trade name: manufactured by Daicel Finechem Co., Ltd.), and Bonron (registered trademark) XPS-002. (manufactured by Mitsui Chemicals, Inc.).
  • Polyurethane resin is a general term for polymers having urethane bonds in the main chain, and is usually a reaction product of diisocyanate and polyol.
  • diisocyanates that can be used in the synthesis of polyurethane resins include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI).
  • TDI toluene diisocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthalene diisocyanate
  • TODI tolidine diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • polyols that can be used in the synthesis
  • polyurethane resins obtained by subjecting a polyurethane resin obtained by the reaction of diisocyanate and polyol to chain extension treatment to increase the molecular weight may be used.
  • Diisocyanates, polyols, and chain extension treatments mentioned regarding polyurethane resins are described in detail in, for example, the "Polyurethane Handbook" (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1986); The description of the polyurethane resin and its raw materials can be applied to the present invention depending on the purpose.
  • a commercially available product may be used as the aqueous resin composition containing the polyurethane resin.
  • Commercially available products include Superflex (registered trademark) 470, 210, 150HS, 150HF, 830HS, Elastron (registered trademark) H-3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and Hydran (registered trademark) AP-20. , AP-40F, WLS-210 (manufactured by DIC Corporation), Takerac (registered trademark) W-6061, WS-5100, WS-4000, WSA-5920, and Orester (registered trademark) UD-350 (All of the above are manufactured by Mitsui Chemicals, Inc.).
  • polyester resin examples include compounds obtained by reacting polyhydric carboxylic acids and polyhydric alcohols.
  • polyhydric carboxylic acids include aliphatic dicarboxylic acids (oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, alkenylsuccinic acid, adipic acid, sebacic acid, etc.) ), alicyclic dicarboxylic acids (such as cyclohexanedicarboxylic acid), aromatic dicarboxylic acids (such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid) and their anhydrides, or their lower grades (e.g., carbon number 1 to 5) alkyl esters.
  • polyhydric carboxylic acids include aliphatic dicarboxylic acids (oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, ita
  • aliphatic dicarboxylic acids are preferred as the polycarboxylic acids from the viewpoint of dispersibility or solubility in aqueous media.
  • One type of polyhydric carboxylic acid may be used alone, or two or more types may be used in combination.
  • polyhydric alcohols examples include aliphatic diols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl glycol, etc.), alicyclic diols (cyclohexanediol, cyclohexanedimethanol, and dihydric alcohols such as hydrogenated bisphenol A), aromatic diols (ethylene oxide adducts of bisphenol A, propylene oxide adducts of bisphenol A, etc.), glycerin, trimethylolpropane, pentaerythritol, etc. Examples include trihydric or higher alcohols. Among these, aliphatic diols are preferred as polyhydric alcohols from the viewpoint of dispersibility or solubility in aqueous media. One type of polyhydric alcohol may be used alone, or two or more types may be used in combination.
  • aqueous resin composition containing the polyester resin one synthesized by a known synthesis method or a commercially available product may be used.
  • Commercially available products include, for example, “Pluscoat Z-687”, “Z-690”, “Z-221", “Z-446", “Z-561”, and “Z-450” manufactured by Gooh Kagaku Kogyo Co., Ltd. ”, “Z-565”, “Z-850”, “Z-3308”, “RZ-105”, “RZ-570”, “Z-730”, “RZ-142”, manufactured by Takamatsu Yushi Co., Ltd.
  • Products sold under product names such as "Pess Resin A-110", “A-124GP”, "A-520", “A-640", “A-680”, and "Hydran HW350” manufactured by DIC Corporation can be mentioned.
  • the shielding layer further includes a compound represented by formula (1), (2), (3), (4), or (5) described below.
  • the shielding layer contains a compound represented by formula (1), (2), (3), (4), or (5) (hereinafter also referred to as "specific compound").
  • R 1 is each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a group having 1 to 6 carbon atoms. 6 alkoxy group, a thioalkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxy group.
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group.
  • R 3 is a hydrogen atom or a C 1-6 group which may have at least one substituent selected from the group consisting of a hydroxyl group, a carboxy group, and an amino group. Represents an alkyl group.
  • the shielding layer contains a specific compound, the sulfidation resistance of the conductive thin wire portion is improved. More specifically, as mentioned above, in conductive substrates mounted on electronic devices such as touch panels, sulfur compounds originating from surrounding members or the surrounding environment penetrate into the conductive layer and cause the conductive thin wires to swell. It is thought that the conductivity of the conductive thin wire portion decreases as a result of reacting with the thin metal wire in the conductive wire portion to form sulfide.
  • the shielding layer contains a specific compound
  • the sulfur compound that penetrates into the shielding layer from the outside reacts with and combines with the specific compound, which is presumed to improve the sulfidation resistance of the thin metal wire in the conductive thin wire section. be done.
  • the content of the specific compound per area of the shielding layer is within a specific range, while the metal wire exhibits sulfidation resistance, the decomposition reaction and diffusion of the specific compound over time are suppressed, and the color discoloration over time is suppressed. It is assumed that taste changes are suppressed.
  • the fact that the conductive thin wire portion has excellent sulfurization resistance is also referred to as "the effect of the present invention is excellent.”
  • R 1 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom, a methyl group, an ethyl group, or a phenyl group, since the effects of the present invention are more excellent.
  • R 2 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom, since the effects of the present invention are more excellent.
  • R 3 a hydrogen atom is preferable.
  • Specific compounds represented by formula (1) include, for example, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-ethyl-1,3,4-thiadiazole-2-thiol, 5-( propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole-2-thiol, 5-amino-1,3,4-thiadiazole-2-thiol , and 5-(methylthio)-1,3,4-thiadiazole-2-thiol.
  • 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, or 5-phenyl-1,3, 4-thiadiazole-2-thiol is preferred, and 5-methyl-1,3,4-thiadiazole-2-thiol is more preferred.
  • Specific compounds represented by formula (2) include 3-mercapto-1H-1,2,4-triazole, 2-methyl-1,2,4-triazole-3-thiol, 5-amino-1,2 , 4-triazole-3-thiol, 5-methyl-1,2,4-triazole-3-thiol, and 5-ethyl-1,2,4-triazole-3-thiol.
  • 3-mercapto-1H-1,2,4-triazole is preferred.
  • Specific compounds represented by formula (3) include 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 4,5 -dimethyl-1,2,4-triazole-3-thiol, 4-amino-1,2,4-triazol-3-thiol, 5-mercapto-4H-1,2,4-triazol-3-ol, 4 -Ethyl-1,2,4-triazole-3-thiol, 5-ethyl-1,2,4-triazole-3-thiol, 4-amino-5-methyl-1,2,4-triazole-3-thiol , 5-amino-4-methyl-1,2,4-triazole-3-thiol, 5-mercapto-4-methyl-1,2,4-triazol-3-ol, 5-ethyl-4-methyl-1 , 2,4-triazole-3-thiol, 3-isopropyl-1,2,2,
  • 3-methyl-4H-1,2,4-triazole-5-thiol and 4-methyl-1,2,4-triazole-3-thiol are preferred.
  • Specific compounds represented by formula (4) include, for example, 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-ethyl-2-mercaptobenzimidazole, and 5-methoxy-2-mercaptobenzimidazole.
  • 5-ethoxy-2-mercaptobenzimidazole, 5-chloro-2-mercaptobenzimidazole, 5-amino-2-mercaptobenzimidazole, 5-nitro-2-mercaptobenzimidazole, and 2-mercapto-5-benzo Examples include sodium imidazole sulfonate.
  • 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-ethyl-2-mercaptobenzimidazole, 5-methoxy-2-mercaptobenzimidazole, 5-ethoxy-2-mercaptobenzimidazole, or , 5-chloro-2-mercaptobenzimidazole are preferred, and 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, or 5-methoxy-2-mercaptobenzimidazole is more preferred.
  • Examples of the compound represented by formula (5) include 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, 2,2'-(4-methyl-1H-benzotriazole-1- ylmethylimino)bisethanol, 2,2'-(5-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol, 1-(1',2'-dicarboxyethyl)benzotriazole, 1-( Examples include 2,3-dicarboxypropyl)benzotriazole, 5-carboxybenzotriazole, 5,6-dimethylbenzotriazole, and 5-aminobenzotriazole. Among these, 1,2,3-benzotriazole or 5-methylbenzotriazole is preferred.
  • examples of the proton tautomer of the compound represented by formula (1) include a compound represented by formula (1a) below.
  • the specific compound herein includes the compound represented by formula (1) as well as the proton tautomer of the compound represented by formula (1) represented by formula (1a). shall be held.
  • R 1 in formula (1a) is the same as R 1 in formula (1) above.
  • some compounds represented by formula (1) react with metals such as silver constituting the metal wiring in the conductive thin wire portion, and the sulfur atoms of the thiol group react with metals such as silver instead of hydrogen atoms. It is assumed that there is a compound that binds.
  • Such a compound formed by bonding the compound represented by formula (1) to a metal is not included in either the compounds represented by formula (1) or the specified compounds, and is not reactive with sulfur compounds. Since it is low, it is considered that it does not contribute to improving sulfidation resistance.
  • examples of the proton tautomer of the compound represented by formula (4) include a compound represented by formula (4a) below.
  • the specific compound herein includes the compound represented by formula (4) as well as the proton tautomer of the compound represented by formula (4) represented by formula (4a). shall be held.
  • R 1 in formula (4a) is the same as R 1 in formula (4) above.
  • some compounds represented by formula (4) react with metals such as silver constituting the metal wiring in the conductive thin wire portion, and the sulfur atoms of the thiol group react with metals such as silver instead of hydrogen atoms. It is assumed that there is a compound that binds.
  • Such a compound formed by bonding the compound represented by formula (4) to a metal is not included in either the compound represented by formula (4) or the specified compounds, and is also not reactive with sulfur compounds. Since it is low, it is considered that it does not contribute to improving sulfidation resistance.
  • the shielding layer contains a compound represented by formula (5) in order to obtain better effects of the present invention.
  • the number of specific compounds contained in the shielding layer may be one, or two or more.
  • the content of the specific compound contained in the shielding layer is 0.01 ⁇ g/cm 2 or more per area of the shielding layer, preferably 0.05 ⁇ g/cm 2 or more, and 0.1 ⁇ g per area of the shielding layer, so that the effect of the present invention is more excellent. /cm 2 or more is more preferable.
  • the upper limit of the content of the specific compound is 8.0 ⁇ g/cm 2 or less per area of the shielding layer, and 5.0 ⁇ g/cm 2 or less per area of the shielding layer, which is more effective in suppressing color change of the conductive substrate after long-term storage. cm 2 or less is preferable, and 1.0 ⁇ g/cm 2 or less is more preferable.
  • the content of the specific compound contained in the shielding layer can be measured by immersing the conductive substrate having the shielding layer in a solvent, extracting the specific compound, and then quantifying the content of the specific compound in the solvent.
  • a detailed method for measuring the content of the specific compound will be described in the Examples below.
  • the shielding layer may contain compounds other than the specific compound.
  • examples include benzimidazole, benzoxazole, benzothiazole, 2-mercaptobenzimidazole, sodium 2-mercapto-5-benzimidazole sulfonate, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole.
  • benzimidazole, benzoxazole, or benzothiazole is preferred.
  • Other compounds are preferably those that suppress the decomposition of the specific compound, and more preferably those that stabilize the specific compound by forming electrostatic interactions with the specific compound such as hydrogen bonds and ⁇ - ⁇ interactions. preferable.
  • the mixing ratio when the specific compound and the above-mentioned other compounds are used together may be arbitrarily adjusted as long as the content of the specific compound contained in the conductive layer is within the above-mentioned content range.
  • the ratio of the content of other compounds to the content of the specific compound is preferably 0.01 to 200 in terms of mass ratio, more preferably 0.1 to 20, and even more preferably 0.5 to 10.
  • the content of other compounds other than the specific compound can be measured according to the method described as a method for measuring the content of the specific compound.
  • the thickness of the shielding layer in the present invention is not particularly limited, and is preferably 0.01 to 20 ⁇ m.
  • a wiring pattern for extraction is often crimped onto the protective layer via an ACF (anisotropic conductive film); Since the diameter of the conductive particles contained in the film is 10 to 20 ⁇ m, if the shielding layer is thick, the conductive particles may not be able to contact the conductive thin wire portion, making it difficult to extract electrical signals. Therefore, the thickness of the shielding layer is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably less than 1 ⁇ m. Further, in order to obtain better effects of the present invention, the thickness of the shielding layer is preferably 100 nm or more.
  • the shielding layer may be formed by applying a coating liquid containing a specific compound and an aqueous resin composition that becomes a binder resin upon solidification onto the conductive layer and drying the coating liquid.
  • a coating method is preferred as a method for forming the shielding layer.
  • a coating liquid for forming a shielding layer is prepared, and the coating liquid for forming a shielding layer is applied onto the conductive layer using a known method such as a dip coater, die coater, slit coater, bar coater, or gravure coater.
  • the drying process removes the aqueous solvent of the aqueous resin composition and solidifies it.
  • the drying process is a process of supplying drying air to the shielding layer.
  • the average wind speed of the drying air is preferably 5 to 30 m/sec, more preferably 7 to 25 m/sec, and even more preferably 9 to 20 m/sec or less.
  • the drying air temperature is preferably 50°C to 200°C, more preferably 70°C to 150°C, even more preferably 90°C to 120°C.
  • the drying time is preferably 30 seconds to 300 seconds, more preferably 60 seconds to 180 seconds.
  • the method for manufacturing the conductive substrate is not particularly limited as long as the conductive substrate having the above-mentioned configuration can be manufactured, and a known method may be employed. For example, a method of exposing and developing using silver halide, forming a metal-containing layer on the entire surface of the support, and then removing a part of the metal-containing layer using a resist pattern to form a thin line-shaped metal-containing layer. and a method in which a thin line-shaped metal-containing layer is formed by discharging a composition containing a metal and a resin onto a substrate using a known printing method such as inkjet printing.
  • a method for manufacturing a conductive substrate includes steps A to D and Q, which will be described later, in this order.
  • steps A to D and Q which will be described later, in this order.
  • a method for manufacturing a conductive substrate having steps A to D and a step Q will be described in detail, but the method for manufacturing a conductive substrate according to the present invention is not limited to the following manufacturing method.
  • step A a silver halide-containing photosensitive layer (hereinafter also referred to as "photosensitive layer”) containing silver halide, gelatin, and a specific polymer (a polymer compound different from gelatin) is formed on a base material.
  • photosensitive layer a silver halide-containing photosensitive layer
  • a specific polymer a polymer compound different from gelatin
  • the halogen atom contained in the silver halide may be any of a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, or a combination of these may be used.
  • silver halide mainly composed of silver chloride, silver bromide or silver iodide is preferred, and silver halide mainly composed of silver chloride or silver bromide is more preferred.
  • silver chlorobromide, silver iodochlorobromide, and silver iodobromide are also preferably used.
  • silver halide mainly composed of silver chloride refers to silver halide in which the molar fraction of chloride ions to all halide ions in the silver halide composition is 50% or more.
  • This silver halide mainly composed of silver chloride may contain bromide ions and/or iodide ions in addition to chloride ions.
  • Silver halide is usually in the form of solid particles, and the average particle diameter of silver halide is preferably 10 to 1000 nm in equivalent sphere diameter, more preferably 10 to 200 nm, and the resistance value of the conductive thin wire portion in a moist heat environment A range of 50 to 150 nm is more preferable in that the change in is smaller.
  • the spherical equivalent diameter is the diameter of spherical particles having the same volume.
  • the "equivalent sphere diameter" used as the average particle diameter of the silver halide mentioned above is an average value, which is the arithmetic average of 100 equivalent sphere diameters of silver halide.
  • the shape of the silver halide grains is not particularly limited, and examples thereof include spherical, cubic, tabular (hexagonal tabular, triangular tabular, quadrilateral tabular, etc.), octahedral, and tetradecahedral.
  • octahedral octahedral
  • tetradecahedral tetradecahedral
  • gelatin The type of gelatin is not particularly limited, and examples thereof include lime-treated gelatin and acid-treated gelatin. Further, gelatin hydrolysates, gelatin enzymatically decomposed products, gelatin modified with amino groups and/or carboxy groups (phthalated gelatin, acetylated gelatin), etc. may be used.
  • the photosensitive layer contains the above-mentioned specific polymer.
  • this specific polymer By including this specific polymer in the photosensitive layer, the strength of the conductive thin wire portion and the transparent insulating portion formed from the photosensitive layer is further improved.
  • the method for forming the photosensitive layer containing the above-mentioned components in Step A is not particularly limited, but from the viewpoint of productivity, a composition for forming a photosensitive layer containing silver halide, gelatin, and a specific polymer is coated on the base material.
  • a preferred method is to form a photosensitive layer on a substrate by bringing it into contact with the substrate.
  • the composition for forming a photosensitive layer contains the above-mentioned silver halide, gelatin, and specific polymer. Note that, if necessary, the specific polymer may be contained in the composition for forming a photosensitive layer in the form of particles.
  • the composition for forming a photosensitive layer may contain a solvent as necessary. Examples of the solvent include water, organic solvents (for example, alcohols, ketones, amides, sulfoxides, esters, and ethers), ionic liquids, and mixed solvents thereof.
  • the method of bringing the composition for forming a photosensitive layer into contact with the base material is not particularly limited. Examples include a method of dipping the base material. Note that after the above-mentioned treatment, a drying treatment may be performed as necessary.
  • the photosensitive layer formed by the above procedure contains silver halide, gelatin, and a specific polymer.
  • the content of silver halide in the photosensitive layer is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 in terms of silver, and 5.0 to 15 g/m 2 in terms of silver, since the conductive substrate has better conductivity. .0 g/m 2 is more preferred.
  • Silver conversion means that the mass of silver produced by reducing all the silver halide is converted.
  • the content of the specific polymer in the photosensitive layer is not particularly limited, and is preferably 0.04 to 2.0 g/m2, and 0.08 to 0.40 g/ m2 , since the conductivity of the conductive substrate is better. m 2 is more preferable, and 0.10 to 0.40 g/m 2 is even more preferable.
  • Step B is a step of exposing the photosensitive layer to light and then developing it to form a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer.
  • Exposure may be carried out in a pattern.
  • a method of exposing through a mask having a mesh-like opening pattern there is a method of exposing through a mask having a mesh-like opening pattern, and a method of exposing with laser light.
  • An example is a method of scanning and exposing in a mesh pattern.
  • the type of light used during exposure is not particularly limited as long as it can form a latent image on the silver halide, and examples include visible light, ultraviolet light, and X-rays.
  • the development method is not particularly limited, and examples thereof include known methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
  • a developer is usually used.
  • the type of developer is not particularly limited, and examples thereof include PQ (phenidone hydroquinone) developer, MQ (metol hydroquinone) developer, and MAA (methol ascorbic acid) developer.
  • This step may further include a fixing treatment performed for the purpose of removing and stabilizing silver halide in unexposed areas.
  • the fixing process is performed simultaneously with and/or after the development.
  • the fixing treatment method is not particularly limited, and examples thereof include methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
  • a fixing solution is usually used.
  • the type of fixer is not particularly limited, and for example, the fixer described in "Chemistry of Photography" (written by Sasai, published by Photo Industry Publishing Co., Ltd.), p. 321 can be mentioned.
  • a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer is formed, and an insulating layer that does not contain metallic silver and contains gelatin and a specific polymer is formed. It is formed.
  • An example of a method for adjusting the width of the silver-containing layer is a method of adjusting the opening width of a mask used during exposure.
  • the exposure area can be adjusted by setting the opening width of the mask to 1.0 ⁇ m or more and less than 5.0 ⁇ m.
  • the width of the silver-containing layer to be formed can also be adjusted by adjusting the exposure amount.
  • the width of the area where the latent image is formed can be adjusted by increasing the exposure amount more than usual. That is, the line width of the conductive thin line portion can be adjusted by adjusting the exposure amount. Furthermore, when using laser light, the exposure area can be adjusted by adjusting the focusing range and/or scanning range of the laser light.
  • the width of the silver-containing layer is preferably 1.0 ⁇ m or more and less than 5.0 ⁇ m, and more preferably 2.0 ⁇ m or less since the formed conductive thin wire portion is difficult to be visually recognized.
  • the silver-containing layer obtained by the above procedure is in the form of a thin line, and the width of the silver-containing layer refers to the length (width) of the silver-containing layer in the direction perpendicular to the direction in which the thin line-shaped silver-containing layer extends. means.
  • Step C is a step in which the silver-containing layer and the insulating layer (hereinafter, both are also referred to as "silver-containing layer etc.") obtained in Step B are subjected to heat treatment.
  • the silver-containing layer and the insulating layer hereinafter, both are also referred to as "silver-containing layer etc.”
  • the heat treatment method is not particularly limited, and examples include a method of bringing superheated steam into contact with the silver-containing layer, etc., and a method of heating with a temperature adjustment device (e.g., a heater).
  • a temperature adjustment device e.g., a heater
  • the superheated steam may be superheated steam or a mixture of superheated steam and other gas.
  • the contact time between the superheated steam and the silver-containing layer is not particularly limited, and is preferably 10 to 70 seconds.
  • the amount of superheated steam supplied is preferably 500 to 600 g/m 3 , and the temperature of superheated steam is preferably 100 to 160°C (preferably 100 to 120°C) at 1 atmosphere.
  • the heating conditions in the method of heating the silver-containing layer etc. with a temperature adjustment device are preferably heating at 100 to 200 °C (preferably 100 to 150 °C) for 1 to 240 minutes (preferably 60 to 150 minutes).
  • Step D is a step of removing gelatin in the silver-containing layer etc. obtained in Step C. By performing this step, gelatin is removed from the silver-containing layer, etc., and a space is formed inside the silver-containing layer, etc.
  • the method for removing gelatin is not particularly limited, and examples include a method using a protease (hereinafter also referred to as "Method 1") and a method of decomposing and removing gelatin using an oxidizing agent (hereinafter referred to as "Method 2"). ).
  • the protease used in Method 1 includes known plant or animal enzymes that can hydrolyze proteins such as gelatin.
  • proteolytic enzymes include pepsin, rennin, trypsin, chymotrypsin, cathepsin, papain, ficin, thrombin, renin, collagenase, bromelain, and bacterial protease, with trypsin, papain, ficin, or bacterial protease being preferred.
  • the procedure in method 1 may be any method as long as it brings the silver-containing layer etc. into contact with the above-mentioned proteolytic enzyme. ).
  • the contact method include a method in which the silver-containing layer, etc.
  • the content of the protease in the enzyme solution is not particularly limited, and is preferably 0.05 to 20% by mass, and 0.5 to 20% by mass based on the total amount of the enzyme solution, since the degree of gelatin decomposition and removal can be easily controlled. 10% by mass is more preferred.
  • the enzyme solution often contains water.
  • the enzyme solution may contain other additives (for example, a pH buffer, an antibacterial compound, a wetting agent, and a preservative) as necessary.
  • the pH of the enzyme solution is selected to maximize the enzyme's function, and is preferably between 5 and 9.
  • the temperature of the enzyme solution is preferably a temperature at which the action of the enzyme is enhanced. Specifically, the temperature is preferably 20 to 45°C.
  • a cleaning treatment of cleaning the obtained silver-containing layer and the like with warm water may be performed.
  • the cleaning method is not particularly limited, and a method of bringing the silver-containing layer, etc. into contact with hot water is preferable; for example, a method of immersing the silver-containing layer, etc. in hot water, and a method of applying hot water on the silver-containing layer, etc. are preferable.
  • the optimum temperature of the hot water is selected depending on the type of proteolytic enzyme used, and from the viewpoint of productivity, it is preferably 20 to 80°C, more preferably 40 to 60°C.
  • the contact time (cleaning time) between hot water and the silver-containing layer, etc. is not particularly limited, and from the viewpoint of productivity, it is preferably 1 to 600 seconds, more preferably 30 to 360 seconds.
  • the oxidizing agent used in method 2 may be any oxidizing agent that can decompose gelatin, and preferably has a standard electrode potential of +1.5 V or more.
  • the standard electrode potential herein refers to the standard electrode potential (25° C., E0) relative to a standard hydrogen electrode in an aqueous solution of an oxidizing agent.
  • oxidizing agents include persulfuric acid, percarbonic acid, perphosphoric acid, hypoperchloric acid, peracetic acid, metachloroperbenzoic acid, hydrogen peroxide, perchloric acid, periodic acid, potassium permanganate,
  • Examples include ammonium persulfate, ozone, hypochlorous acid or its salts, but from the viewpoint of productivity and economy, hydrogen peroxide (standard electrode potential: 1.76V), hypochlorous acid or its salts are preferable. , sodium hypochlorite is more preferred.
  • the procedure in Method 2 may be a method of bringing the silver-containing layer etc. into contact with the above-mentioned oxidizing agent, for example, a treatment liquid containing the silver-containing layer etc. and the oxidizing agent (hereinafter also referred to as "oxidizing agent liquid").
  • oxidizing agent liquid a treatment liquid containing the silver-containing layer etc. and the oxidizing agent
  • Examples of the contact method include a method in which the silver-containing layer, etc. is immersed in an oxidizing agent solution, and a method in which the oxidizing agent solution is applied onto the silver-containing layer, etc.
  • the type of solvent contained in the oxidizing agent liquid is not particularly limited, and examples include water and organic solvents.
  • the method for manufacturing a conductive substrate may include a step E in which the silver-containing layer obtained in step D is subjected to a plating treatment. By performing this step, the space inside the silver-containing layer formed by removing gelatin is filled with metal (plated metal), and the conductivity of the conductive thin wire portion can be improved.
  • the type of plating treatment is not particularly limited, but includes electroless plating (chemical reduction plating or displacement plating) and electrolytic plating, with electroless plating being preferred.
  • electroless plating a known electroless plating technique is used.
  • the plating treatment include silver plating treatment, copper plating treatment, nickel plating treatment, and cobalt plating treatment, and silver plating treatment or copper plating treatment is preferable because the conductivity of the conductive thin wire portion is better. , silver plating treatment is more preferred.
  • the components contained in the plating solution used in the plating process are not particularly limited, but usually include 1. in addition to a solvent (for example, water).
  • Metal ions for plating 2. reducing agent, 3.
  • the plating bath may contain known additives such as a plating bath stabilizer.
  • the type of metal ion for plating contained in the plating solution can be appropriately selected depending on the type of metal to be deposited, and examples thereof include silver ion, copper ion, nickel ion, and cobalt ion.
  • the above-mentioned plating procedure is not particularly limited, and may be any method that brings the silver-containing layer into contact with the plating solution.For example, a method of immersing the silver-containing layer in the plating solution, One method is to apply it to the surface.
  • the contact time between the silver-containing layer and the plating solution is not particularly limited, and is preferably from 20 seconds to 30 minutes from the viewpoint of better conductivity of the conductive thin wire portion and productivity.
  • the method for manufacturing a conductive substrate may include a step F in which the silver-containing layer obtained in the above step is further subjected to a smoothing treatment.
  • the method of smoothing treatment is not particularly limited, and for example, a calendar treatment step in which a base material having a silver-containing layer or the like is passed between at least a pair of rolls under pressure is preferred.
  • calender process the smoothing process using a calender roll will be referred to as calender process.
  • Rolls used for calendering include plastic rolls and metal rolls, with plastic rolls being preferred from the viewpoint of wrinkle prevention.
  • the pressure between the rolls is not particularly limited, and is preferably 2 MPa or more, more preferably 4 MPa or more, and preferably 120 MPa or less. Note that the pressure between the rolls can be measured using Prescale (for high pressure) manufactured by Fujifilm Corporation.
  • the temperature of the smoothing treatment is not particularly limited, and is preferably 10 to 100°C, more preferably 10 to 50°C.
  • the method for manufacturing a conductive substrate may include a step G of subjecting the silver-containing layer etc. obtained in the above steps to a heat treatment. By carrying out this step, a conductive thin wire portion with better conductivity can be obtained.
  • the method of heat-treating the conductive thin wire portion is not particularly limited, and examples include the method described in Step C.
  • the method for producing a conductive substrate may include, before Step A, Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material.
  • Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material.
  • a silver halide-free layer is formed between the substrate and the silver halide-containing photosensitive layer.
  • This silver halide-free layer plays the role of a so-called antihalation layer and also contributes to improving the adhesion between the conductive layer and the base material.
  • the silver halide-free layer contains the above-mentioned gelatin and specific polymer. On the other hand, the silver halide-free layer does not contain silver halide.
  • the ratio of the mass of the specific polymer to the mass of gelatin (mass of specific polymer/mass of gelatin) in the silver halide-free layer is not particularly limited, and is preferably 0.1 to 5.0, and 1. More preferably 0 to 3.0.
  • the content of the specific polymer in the silver halide-free layer is not particularly limited, and is often 0.03 g/m 2 or more. 2 or more is preferred.
  • the upper limit is not particularly limited, but is often 1.63 g/m 2 or less.
  • the method of forming the silver halide-free layer is not particularly limited, and for example, a method of applying a layer-forming composition containing gelatin and a specific polymer onto a base material and subjecting it to a heat treatment as necessary is available. Can be mentioned.
  • the composition for forming a silver halide-free layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
  • the thickness of the silver halide-free layer is not particularly limited, and is often 0.05 ⁇ m or more, preferably more than 1.0 ⁇ m, more preferably 1.5 ⁇ m or more, since the adhesion of the conductive thin wire portion is better. . Although the upper limit is not particularly limited, it is preferably less than 3.0 ⁇ m.
  • the method for producing a conductive substrate may include step I of forming a protective layer containing gelatin and a specific polymer on the silver halide-containing photosensitive layer.
  • a protective layer By providing a protective layer, the scratch prevention and mechanical properties of the photosensitive layer can be improved.
  • the ratio of the mass of the specific polymer to the mass of gelatin in the protective layer is not particularly limited, and is preferably greater than 0 and less than or equal to 2.0, and more than 0 and less than or equal to 1.0. More preferred.
  • the content of the specific polymer in the protective layer is not particularly limited, and is preferably more than 0 g/m 2 and 0.3 g/m 2 or less, and more preferably 0.005 to 0.1 g/m 2 .
  • the method of forming the layer is not particularly limited, and for example, a method of applying a protective layer-forming composition containing gelatin and a specific polymer onto a silver halide-containing photosensitive layer and subjecting it to a heat treatment if necessary can be used. Can be mentioned.
  • the composition for forming a protective layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
  • the thickness of the protective layer is not particularly limited, and is preferably 0.03 to 0.3 ⁇ m, more preferably 0.075 to 0.20 ⁇ m.
  • Step H, Step A, and Step I described above may be performed simultaneously by simultaneous multilayer coating.
  • the method for manufacturing a conductive substrate includes a step P of bringing a specific compound into contact with the conductive layer formed on the above-mentioned base material to produce a conductive substrate in which the conductive layer contains the specific compound.
  • the method of bringing the conductive layer into contact with the specific compound is not particularly limited, and examples include a method of immersing the base material on which the conductive layer is formed in a treatment solution containing the specific compound, and a method of bringing the conductive layer into contact with the specific compound. Examples include a method of coating the surface of a base material on which a conductive layer is formed.
  • the treatment liquid containing the above specific compound is preferably a solution obtained by dissolving the specific compound in a solvent.
  • the type of solvent used is not particularly limited, and examples include the solvents used in the photosensitive layer forming composition described above.
  • the content of the specific compound in the above-mentioned treatment liquid may be determined as appropriate depending on the amount of the specific compound to be contained in the intended conductive layer and the treatment conditions, but the content is 0.0000% based on the total mass of the treatment liquid. 0.01 to 2% by mass is preferred, and 0.1 to 0.5% by mass is more preferred.
  • the temperature of the treatment liquid when it is brought into contact with the conductive layer is, for example, 25 to 60°C.
  • the contact time between the specific compound and the conductive layer is not particularly limited, but is preferably 0.1 to 10 minutes, more preferably 0.2 to 3 minutes.
  • the method for manufacturing a conductive substrate includes a step Q of forming a shielding layer on the conductive layer formed on the above-mentioned base material, and producing the conductive substrate of the present invention in which the shielding layer contains a specific compound.
  • the method for forming the shielding layer is not particularly limited, and examples thereof include a method of applying a composition for forming a shielding layer onto the conductive layer and subjecting it to drying treatment or heat treatment as necessary. The details of the coating method and drying process are as described above.
  • the composition for forming a shielding layer is not particularly limited as long as it is a composition that can form a shielding layer containing a predetermined amount of the above-mentioned specific compound, and examples thereof include the above-mentioned coating liquid for forming a shielding layer.
  • the conductive substrate obtained as described above can be applied to various uses, such as touch panels (or touch panel sensors), semiconductor chips, various electric wiring boards, FPC (Flexible Printed Circuits), COF (Chip on Film), It can be applied to applications such as TAB (Tape Automated Bonding), antennas, multilayer wiring boards, and motherboards.
  • the present conductive substrate is preferably used for a touch panel (capacitive touch panel).
  • the conductive thin wire portion described above can effectively function as a detection electrode.
  • display panels used in combination with the conductive substrate include, for example, liquid crystal panels and OLED (Organic Light Emitting Diode) panels, and combinations with OLED panels are preferred.
  • the conductive substrate may have a conductive part having a different configuration from the conductive layer, in addition to the conductive layer having the conductive thin wire part.
  • This conductive part may be electrically connected to the above-described thin conductive wire part for conduction.
  • Examples of the conductive portion include peripheral wiring having a function of applying a voltage to the conductive thin wire portion described above, and alignment marks for adjusting the position of a member laminated with the conductive substrate.
  • this conductive substrate other than those mentioned above include, for example, electromagnetic shielding that blocks electromagnetic waves such as radio waves and microwaves (ultra-high frequency waves) generated from electronic devices such as personal computers and workstations, and prevents static electricity. It will be done.
  • electromagnetic shield can be used not only for personal computers but also for electronic equipment such as video imaging equipment and electronic medical equipment.
  • This conductive substrate can also be used for transparent heating elements.
  • the present conductive substrate may be used in the form of a laminate having the conductive substrate and other members such as an adhesive sheet and a release sheet during handling and transportation.
  • the release sheet functions as a protective sheet to prevent scratches on the conductive substrate during transportation of the laminate.
  • the conductive substrate may be handled in the form of a composite body including, for example, a conductive substrate, an adhesive sheet, and a protective layer in this order.
  • the present invention is basically configured as described above. Although the conductive substrate of the present invention has been described in detail, the present invention is not limited to the above-described embodiments, and various improvements or changes may be made without departing from the gist of the present invention.
  • Example 1 [Preparation of silver halide emulsion] To the following liquid 1 maintained at 38°C and pH 4.5, an amount equivalent to 90% of each of the following liquids 2 and 3 was added simultaneously over 20 minutes while stirring the liquid 1 to obtain 0.16 ⁇ m core particles. was formed. Next, the following liquids 4 and 5 were added to the obtained solution over 8 minutes, and the remaining 10% of the following liquids 2 and 3 were added over 2 minutes to grow the core particles to 0.21 ⁇ m. I let it happen. Furthermore, 0.15 g of potassium iodide was added to the obtained solution and aged for 5 minutes to complete particle formation.
  • the emulsion was adjusted to pH 6.4 and pAg 7.5, and 2.5 g of gelatin, 10 mg of sodium benzenethiosulfonate, 3 mg of sodium benzenethiosulfinate, 15 mg of sodium thiosulfate, and 10 mg of chloroauric acid were added. Chemical sensitization was performed at 55°C to obtain optimal sensitivity. Thereafter, 100 mg of 1,3,3a,7-tetraazaindene as a stabilizer and 100 mg of Proxel (trade name, manufactured by ICI Co., Ltd.) as a preservative were further added to the obtained emulsion.
  • Proxel trade name, manufactured by ICI Co., Ltd.
  • the final emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size (equivalent sphere diameter). It was a silver chlorobromide cubic grain emulsion with a particle diameter of 200 nm and a coefficient of variation of 9%.
  • composition for forming photosensitive layer contains 1,3,3a,7-tetraazaindene (1.2 ⁇ 10 ⁇ 4 mol/mol Ag), hydroquinone (1.2 ⁇ 10 ⁇ 2 mol/mol Ag), and citric acid (3.0 mol/mol Ag). x10 -4 mol/mol Ag), 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt (0.90 g/mol Ag), and a trace amount of hardening agent, and the composition I got something. Next, the pH of the composition was adjusted to 5.6 using citric acid.
  • a dispersion consisting of a polymer represented by the following (P-1) (hereinafter also referred to as "polymer 1”) and dialkylphenyl PEO (PEO is an abbreviation for polyethylene oxide) sulfate ester is added to the above composition.
  • Polymer latex containing agent and water ratio of mass of dispersant to mass of polymer 1 (mass of dispersant/mass of polymer 1, unit: g/g) is 0.02, solid content content is 22% by mass
  • the ratio of the mass of polymer 1 to the total mass of gelatin in the composition mass of polymer 1/mass of gelatin, unit g/g
  • the ratio of the mass of gelatin to the mass of silver derived from silver halide is 0. It was 11. Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Corporation) was added as a crosslinking agent. The amount of the crosslinking agent added was adjusted so that the amount of the crosslinking agent in the silver halide-containing photosensitive layer described below was 0.09 g/m 2 .
  • a composition for forming a photosensitive layer was prepared as described above. Note that Polymer 1 was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
  • undercoat layer The above-mentioned polymer latex was applied to the surface of a base material made of a polyethylene terephthalate film ("rolled long film manufactured by Fuji Film Corporation") with a thickness of 40 ⁇ m to provide an undercoat layer with a thickness of 0.05 ⁇ m.
  • This treatment was performed roll-to-roll, and the following treatments (steps) were similarly performed roll-to-roll. Note that the roll width at this time was 1 m and the length was 1000 m.
  • a protective layer containing a silver halide-free layer-forming composition prepared by mixing the above-mentioned polymer latex and gelatin, the above-mentioned photosensitive layer-forming composition, and a mixture of polymer latex and gelatin is applied.
  • a layer-forming composition was simultaneously coated in multiple layers to form a silver halide-free layer, a silver halide-containing photosensitive layer, and a protective layer on the undercoat layer.
  • the thickness of the silver halide-free layer is 2.0 ⁇ m
  • the mixing mass ratio of polymer 1 and gelatin in the silver halide-free layer (polymer 1/gelatin) is 2/1.
  • the content of molecule 1 was 1.3 g/ m2 .
  • the thickness of the silver halide-containing photosensitive layer is 2.5 ⁇ m, and the mixing mass ratio of polymer 1 and gelatin in the silver halide-containing photosensitive layer (polymer 1/gelatin) is 0.25/1.
  • the content of polymer 1 was 0.19 g/m 2 .
  • the thickness of the protective layer is 0.15 ⁇ m, the mixing mass ratio of polymer 1 and gelatin in the protective layer (polymer 1/gelatin) is 0.1/1, and the content of polymer 1 is It was 0.015g/ m2 .
  • sample B After exposure, the obtained sample was developed with a developer described below, and further developed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film Corporation). Thereafter, the sample was rinsed with pure water at 25°C and dried, and the sample had a conductive layer including a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion was formed in a comb-shaped pattern. Sample A was obtained, and sample B had a conductive layer including a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion was formed in a mesh pattern. In sample B, a conductive mesh pattern area with a size of 21.0 cm x 29.7 cm was formed.
  • composition of developer The following compounds are contained in 1 liter (L) of developer solution. Hydroquinone 0.037mol/L N-methylaminophenol 0.016mol/L Sodium metaborate 0.140mol/L Sodium hydroxide 0.360mol/L Sodium bromide 0.031mol/L Potassium metabisulfite 0.187mol/L
  • the obtained above-mentioned sample was immersed in warm water at 50°C for 180 seconds. After this, the water was removed using an air shower and the material was allowed to air dry.
  • Step C1 The sample obtained in step B1 was carried into a superheated steam treatment tank at 110° C., and left to stand for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
  • proteolytic enzyme aqueous solution 40° C.
  • the sample was taken out from the proteolytic enzyme aqueous solution and washed by immersing it in warm water (liquid temperature: 50°C) for 120 seconds. After this, the water was removed using an air shower, and the sample was air-dried.
  • the protease aqueous solution used was prepared according to the following procedure. Triethanolamine and sulfuric acid were added to an aqueous solution (proteolytic enzyme concentration: 0.5% by mass) of a proteolytic enzyme (Bioplase 30L manufactured by Nagase ChemteX) to adjust the pH to 8.5.
  • step D1 The sample obtained in step D1 was carried into a superheated steam treatment tank at 110° C., and left standing for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
  • Coating liquid 1 for forming a shielding layer was prepared by mixing at the following blending ratio. (Composition of coating liquid 1 for forming shielding layer) ⁇ Water 27.93 parts by mass ⁇ Aquabrid AS-563A (solid content 28%, manufactured by Daicel FineChem Co., Ltd.) 25.62 parts by mass ⁇ 3-Mercapto-1,2,4-triazole (Fujifilm Wako Pure Chemical Industries, Ltd.) 0.07 parts by mass of an aqueous solution containing 1% by mass of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 46.38 parts by mass
  • Apply coating liquid 1 for forming a shielding layer was applied using a wire bar so that the average thickness after drying was 0.5 ⁇ m, and dried at 100° C. for 1 minute to form a shielding layer. Through the above steps, a sample having a mesh pattern electrode was produced.
  • Examples 2 to 17, Comparative Examples 1 to 2 Except for changing the type and amount of 3-mercapto-1,2,4-triazole or Aquabrid AS-563A as the coating liquid for forming the shielding layer in the above step Q1 as shown in Table 1 below.
  • Each sample of conductive substrate was prepared according to the procedure described in Example 1.
  • Example 18 [Process E1] The sample obtained in step D1 of Example 1 was immersed in a plating solution (30° C.) having the following composition for 5 minutes. The sample was taken out from the plating solution and washed by immersing it in warm water (50° C.) for 120 seconds. The composition of the plating solution (total volume 1200 ml) was as follows. The pH of the plating solution was 9.9, which was adjusted by adding a predetermined amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • composition of plating solution ⁇ AgNO3 2.1g ⁇ Sodium sulfite 86g ⁇ Sodium thiosulfate pentahydrate 60g ⁇ Aron T-50 (manufactured by Toagosei Co., Ltd., solid content concentration 40%) 36g ⁇ Methylhydroquinone 13g ⁇ Prescribed amount of potassium carbonate ⁇ Remaining water
  • step Q1 a sample of a conductive substrate was produced according to the procedure described in Example 1, except that the sample obtained in step E1 above was used instead of the sample obtained in step D1.
  • Example 19 In the above step E1, a conductive substrate sample was prepared according to the same procedure as in Example 18, except that the sample obtained in Step D1 of Example 15 was used instead of the sample obtained in Step D1 of Example 1. Created.
  • the sulfidation resistance of each conductive substrate produced in Examples and Comparative Examples was evaluated by the following method.
  • the resistance value (R0) of the sample having the fabricated mesh pattern electrode was measured.
  • the electrical resistance (unit: k ⁇ ) between terminals at a distance of 4 cm was measured for each sample using an Agilent 34405A multimeter device.
  • a petri dish containing each conductive substrate and sulfur powder (500 g) was placed in a desiccator (inner dimensions 310 x 330 x 420 mm 3 ), and the desiccator was placed in a constant temperature bath. After heating the constant temperature bath at 70° C.
  • the resistance value (R1) of the sample was measured using the method described above.
  • A Resistance change rate is 30% or less.
  • B+ Resistance change rate is more than 30% and less than 40%.
  • B- Resistance change rate is more than 40% and less than 50%.
  • C Resistance change rate exceeds 50%.
  • the sample subjected to the storage test was returned to room temperature, and the b * value (b * 1) of the surface of the sample on the conductive layer side was measured again using a reflection densitometer.
  • A ⁇ b * is 1.0 or less.
  • B ⁇ b * is more than 1.0 and less than 2.0.
  • C ⁇ b * exceeds 2.0.
  • Table 1 below shows the presence or absence of plating treatment (step E1) in the production of the conductive substrate, the composition of the shielding layer contained in the conductive substrate, the type and content of specific compounds, and the sulfidation resistance and color change ⁇ b * The results of each evaluation are shown below.
  • Example 1 and Examples 4 to 6 it was confirmed that sulfidation resistance is better when the shielding layer has a structure selected from acrylic and urethane. From a comparison of Example 1 and Examples 7 to 11, it was confirmed that the sulfidation resistance was better when the compound content per area of the shielding layer was 0.1 ⁇ g/cm 2 or more. From a comparison of Example 1 and Examples 12 and 13, it was confirmed that the sulfidation resistance was better when the thickness of the shielding layer was 1 ⁇ m or less. Comparison of Examples 1 to 3 and Examples 14 to 17 confirmed that when the specific compound contained the compound represented by formula (5), color change over time could be further suppressed.
  • Conductive substrate 12 Base material 14
  • Conductive layer 16 Conductive thin wire portion 18

Abstract

The present invention addresses the problem of providing a conductive substrate which has excellent sulfurization resistance in a conductive thin wire part and has suppressed color change over time. The conductive substrate according to the present invention has a base material and a conductive layer disposed on the base material, wherein the conductive layer has a conductive thin wire part containing a metal, and a shielding layer is provided on the conductive layer and includes a compound represented by a predetermined formula.

Description

導電性基板、タッチパネルConductive substrate, touch panel
 本発明は、導電性基板およびタッチパネルに関する。 The present invention relates to a conductive substrate and a touch panel.
 導電性細線(導電性を示す細線状の配線)を有する導電性基板は、タッチパネル、太陽電池、および、EL(エレクトロルミネッセンス:Electro luminescence)素子等種々の用途に幅広く利用されている。特に、近年、携帯電話および携帯ゲーム機器へのタッチパネルの搭載率が上昇しており、多点検出が可能な静電容量方式のタッチパネル用の導電性基板の需要が急速に拡大している。 Conductive substrates having conductive thin wires (thin wire-like wiring exhibiting conductivity) are widely used in various applications such as touch panels, solar cells, and EL (electro luminescence) elements. In particular, in recent years, the mounting rate of touch panels on mobile phones and mobile game devices has increased, and the demand for conductive substrates for capacitive touch panels capable of multi-point detection is rapidly expanding.
 例えば、特許文献1には、金属からなる導通パターンと該導通パターンと接続した周辺配線部を有する画像単位と、隣り合う画像単位を接続不能とする非導電部からなる繰り返し単位を複数個有する電極パターンシートの製造方法に関する技術が開示されており、導通パターンおよび周辺配線部の形成方法として、印刷方式、フォトリソグラフィー方式、および、銀塩写真感光材料を導電性材料前駆体として用いる方法などが記載されている。
 また、特許文献2には、金属銀パターンの高温高湿環境下におけるマイグレーションを防止し、かつ大気中の硫黄成分による金属銀パターンの抵抗値上昇を改善する積層体に関する技術が開示されている。
For example, Patent Document 1 describes an electrode having a plurality of repeating units consisting of an image unit having a conductive pattern made of metal, a peripheral wiring part connected to the conductive pattern, and a non-conductive part that makes it impossible to connect adjacent image units. Techniques related to the manufacturing method of pattern sheets are disclosed, and methods for forming conductive patterns and peripheral wiring portions include a printing method, a photolithography method, and a method using a silver salt photosensitive material as a conductive material precursor. has been done.
Moreover, Patent Document 2 discloses a technique related to a laminate that prevents migration of a metallic silver pattern in a high temperature and high humidity environment and improves an increase in resistance value of the metallic silver pattern due to sulfur components in the atmosphere.
特開2015-133239号公報Japanese Patent Application Publication No. 2015-133239 特開2020-026043号公報JP2020-026043A
 このようなタッチパネルには、導電性基板とともに、その周辺に様々な部材が搭載されている。それら周辺部材に使用されているクッション材および接着剤等には、硫黄含有化合物が混入していることがある。また、タッチパネルの使用環境中にもHSおよびSO等の硫黄成分が存在している。
 本発明者は、特許文献2を参照しながら導電性細線を有する導電性基板について検討した結果、より長期使用を想定してより腐食性の高い硫黄(S)ガス雰囲気下では、配線を構成する金属細線の硫化反応が生じることにより、配線の導電性が低下し、タッチパネルの感度低下および動作不良等の故障が引き起こされるという問題があることを知見した。
 また、上記のような導電性細線を有する導電性基板は、経時による色味変化が抑制されていることも求められる。
Such a touch panel includes a conductive substrate and various members mounted around the conductive substrate. Cushioning materials, adhesives, and the like used in these peripheral members may contain sulfur-containing compounds. Further, sulfur components such as H 2 S and SO 2 are also present in the environment in which the touch panel is used.
As a result of studying conductive substrates having thin conductive wires with reference to Patent Document 2, the present inventor found that wiring can be configured in a more corrosive sulfur (S 8 ) gas atmosphere assuming longer-term use. It has been found that the conductivity of the wiring decreases due to the sulfurization reaction of the thin metal wires, which causes problems such as decreased sensitivity and malfunction of the touch panel.
Further, the conductive substrate having the conductive thin wires as described above is also required to suppress changes in color over time.
 本発明は、上記実情に鑑みて、導電性細線部の硫化耐性に優れ、かつ、経時による色味変化が抑制されている導電性基板を提供することを課題とする。 In view of the above-mentioned circumstances, it is an object of the present invention to provide a conductive substrate that has excellent sulfidation resistance in the conductive thin wire portion and suppresses color change over time.
 本発明者は、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive study on the above-mentioned problem, the present inventor found that the above-mentioned problem can be solved by the following configuration.
 〔1〕 基材と、
 上記基材上に配置された導電性層と、を有する導電性基板であって、
 上記導電性層が、金属を含む導電性細線部を有し、
 上記導電性層上に遮蔽層を有し、
 上記遮蔽層が後述する式(1)、式(2)、式(3)、式(4)、または式(5)で表される化合物を含み、
 上記遮蔽層の面積あたりの上記化合物の含有量が、0.01~8.0μg/cmである、導電性基板。
 〔2〕 上記遮蔽層がアクリルおよびウレタンから選ばれるいずれかの構造を有する、〔1〕に記載の導電性基板。
 〔3〕 上記Rが、水素原子、炭素数1~6のアルキル基、または、フェニル基を表す、〔1〕または〔2〕に記載の導電性基板。
 〔4〕 上記化合物が、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1H-1,2,4-トリアゾール、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、2-メルカプトベンゾイミダゾール、5-メチル-2-メルカプトベンゾイミダゾール、5-メトキシ-2-メルカプトベンゾイミダゾール、1,2,3-ベンゾトリアゾール、および、5-メチルベンゾトリアゾールからなる群より選択される少なくとも1つを含む、〔1〕~〔3〕のいずれか1つに記載の導電性基板。
 〔5〕 上記遮蔽層の面積あたりの上記化合物の含有量が0.01μg/cm以上1μg/cm以下である、〔1〕~〔4〕のいずれか1つに記載の導電性基板。
 〔6〕 上記遮蔽層の厚みが、100nm~1μmである、〔1〕~〔5〕のいずれか1つに記載の導電性基板。
 〔7〕 上記金属が銀を含む、〔1〕~〔6〕のいずれか1つに記載の導電性基板。
 〔8〕 上記導電性細線によって形成されたメッシュパターンを有する、〔1〕~〔7〕のいずれか1つに記載の導電性基板。
 〔9〕 〔1〕~〔8〕のいずれか1つに記載の導電性基板を有する、タッチパネル。
[1] Base material and
A conductive substrate having a conductive layer disposed on the base material,
The conductive layer has a conductive thin wire portion containing metal,
having a shielding layer on the conductive layer,
The shielding layer includes a compound represented by formula (1), formula (2), formula (3), formula (4), or formula (5) described below,
A conductive substrate, wherein the content of the compound per area of the shielding layer is 0.01 to 8.0 μg/cm 2 .
[2] The conductive substrate according to [1], wherein the shielding layer has a structure selected from acrylic and urethane.
[3] The conductive substrate according to [1] or [2], wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
[4] The above compound is 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1 , 3,4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2 , 4-triazole-3-thiol, 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-methoxy-2-mercaptobenzimidazole, 1,2,3-benzotriazole, and 5-methylbenzo The conductive substrate according to any one of [1] to [3], which contains at least one selected from the group consisting of triazoles.
[5] The conductive substrate according to any one of [1] to [4], wherein the content of the compound per area of the shielding layer is 0.01 μg/cm 2 or more and 1 μg/cm 2 or less.
[6] The conductive substrate according to any one of [1] to [5], wherein the shielding layer has a thickness of 100 nm to 1 μm.
[7] The conductive substrate according to any one of [1] to [6], wherein the metal contains silver.
[8] The conductive substrate according to any one of [1] to [7], which has a mesh pattern formed by the conductive thin wires.
[9] A touch panel comprising the conductive substrate according to any one of [1] to [8].
 本発明によれば、導電性細線部の硫化耐性に優れ、かつ、経時による色味変化が抑制されている導電性基板を提供できる。 According to the present invention, it is possible to provide a conductive substrate in which the conductive thin wire portion has excellent sulfidation resistance and color change over time is suppressed.
本発明の導電性基板の構成の一例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conductive substrate of the present invention. 本発明の導電性基板の導電性層が有するメッシュパターンの一例を示す平面図である。FIG. 3 is a plan view showing an example of a mesh pattern of the conductive layer of the conductive substrate of the present invention.
 以下、図面を参照しながら、本発明の導電性基板について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされるものであり、本発明はそのような実施形態に制限されない。また、以下に示す図は、本発明を説明するための例示的なものであり、以下に示す図によって本発明は制限されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において、「g」および「mg」は、「質量g」および「質量mg」をそれぞれ表す。
 本明細書において、「高分子」または「高分子化合物」は、重量平均分子量が2000以上である化合物を意味する。ここで、重量平均分子量は、GPC(Gel Permeation Chromatography)測定によるポリスチレン換算値として定義される。
 本明細書において、具体的な数値で表された角度、並びに、「平行」、「垂直」および「直交」等の角度に関する表記は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
Hereinafter, the conductive substrate of the present invention will be described in detail with reference to the drawings.
The description of the constituent elements described below is based on typical embodiments of the present invention, and the present invention is not limited to such embodiments. Moreover, the figures shown below are illustrative for explaining the present invention, and the present invention is not limited by the figures shown below.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In this specification, when two or more types of a certain component are present, the "content" of the component means the total content of the two or more types of components.
In this specification, "g" and "mg" represent "mass g" and "mass mg", respectively.
As used herein, "polymer" or "polymer compound" means a compound having a weight average molecular weight of 2000 or more. Here, the weight average molecular weight is defined as a polystyrene equivalent value measured by GPC (Gel Permeation Chromatography).
In this specification, angles expressed as specific numerical values and expressions related to angles such as "parallel,""perpendicular," and "perpendicular" are generally accepted in the relevant technical field, unless otherwise specified. Includes error range.
The term "organic group" as used herein refers to a group containing at least one carbon atom.
[導電性基板]
 本発明に係る導電性基板は、基材と、基材上に配置された導電性層とを有し、導電層上に遮蔽層を有する。導電性層は、導電性細線部と、導電性細線部に隣接する透明絶縁部とを有する。導電性細線部は金属を含み、透明絶縁部は金属を含まない。
[Conductive substrate]
The conductive substrate according to the present invention includes a base material, a conductive layer disposed on the base material, and a shielding layer on the conductive layer. The conductive layer has a conductive thin wire portion and a transparent insulating portion adjacent to the conductive thin wire portion. The conductive thin wire portion contains metal, and the transparent insulating portion does not contain metal.
 図1は、本発明に係る導電性基板の構成の一例を示す模式的断面図である。
 図1に示す導電性基板10は、基材12と、基材12の表面上に配置された導電性層14とを有する。導電性層14は、導電性細線部16と、導電性細線部16に隣接する透明絶縁部18とで構成されている。なお、図1では、紙面に対して垂直方向に延びる導電性細線部16が2つ示されているが、導電性細線部16の配置形態、および、その数は特に制限されない。導電性層14上に、図示されない遮蔽層を有する。
FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conductive substrate according to the present invention.
The conductive substrate 10 shown in FIG. 1 includes a base material 12 and a conductive layer 14 disposed on the surface of the base material 12. The conductive layer 14 includes a thin conductive wire portion 16 and a transparent insulating portion 18 adjacent to the thin conductive wire portion 16 . Although FIG. 1 shows two conductive thin wire portions 16 extending in a direction perpendicular to the plane of the paper, the arrangement form and number of conductive thin wire portions 16 are not particularly limited. A shielding layer (not shown) is provided on the conductive layer 14.
〔基材〕
 基材は、感光性層および導電性細線部を支持できる部材であれば、その種類は特に制限されず、プラスチック基板、ガラス基板および金属基板が挙げられ、プラスチック基板が好ましい。
 基材としては、得られる導電性部材の折り曲げ性に優れる点で、可撓性を有する基材が好ましい。可撓性を有する基材としては、上記プラスチック基板が挙げられる。
 基材の厚みは特に制限されず、25~500μmの場合が多い。なお、導電性基板をタッチパネルに応用する際に、基材表面をタッチ面として用いる場合は、基材の厚みは500μmを超えていてもよい。
〔Base material〕
The type of the base material is not particularly limited as long as it can support the photosensitive layer and the conductive thin wire portion, and examples thereof include a plastic substrate, a glass substrate, and a metal substrate, with a plastic substrate being preferred.
As the base material, a flexible base material is preferable since the resulting conductive member has excellent bendability. Examples of the flexible base material include the above-mentioned plastic substrate.
The thickness of the base material is not particularly limited, and is often 25 to 500 μm. Note that when the conductive substrate is applied to a touch panel and the surface of the base material is used as a touch surface, the thickness of the base material may exceed 500 μm.
 基材を構成する材料としては、ポリエチレンテレフタレート(PET)(258℃)、ポリシクロオレフィン(134℃)、ポリカーボネート(250℃)、アクリルフィルム(128℃)、ポリエチレンナフタレート(269℃)、ポリエチレン(135℃)、ポリプロピレン(163℃)、ポリスチレン(230℃)、ポリ塩化ビニル(180℃)、ポリ塩化ビニリデン(212℃)、および、トリアセチルセルロース(290℃)等の融点が約290℃以下である樹脂が好ましく、PET、ポリシクロオレフィン、または、ポリカーボネートがより好ましい。なかでも、導電性細線部との密着性が優れることから、PETが特に好ましい。上記の( )内の数値は融点またはガラス転移温度である。
 基材の全光線透過率は、85~100%が好ましい。全光線透過率は、JIS(日本工業規格) K 7375:2008に規定される「プラスチック-全光線透過率および全光線反射率の求め方」を用いて測定される。
Materials constituting the base material include polyethylene terephthalate (PET) (258°C), polycycloolefin (134°C), polycarbonate (250°C), acrylic film (128°C), polyethylene naphthalate (269°C), polyethylene ( 135℃), polypropylene (163℃), polystyrene (230℃), polyvinyl chloride (180℃), polyvinylidene chloride (212℃), and triacetyl cellulose (290℃), etc. Certain resins are preferred, with PET, polycycloolefin, or polycarbonate being more preferred. Among these, PET is particularly preferred because it has excellent adhesion to the conductive thin wire portion. The numerical value in parentheses above is the melting point or glass transition temperature.
The total light transmittance of the base material is preferably 85 to 100%. The total light transmittance is measured using "Plastics - How to determine total light transmittance and total light reflectance" specified in JIS (Japanese Industrial Standard) K 7375:2008.
 基材の表面上には、下塗り層が配置されていてもよい。
 下塗り層は、後述する特定高分子を含むことが好ましい。この下塗り層を用いると、後述する導電性層の基材に対する密着性がより向上する。
 下塗り層の形成方法は特に制限されず、例えば、後述する特定高分子を含む下塗り層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。下塗り層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。溶媒の種類は特に制限されず、後述する感光性層形成用組成物で使用される溶媒が例示される。また、特定高分子を含む下塗り層形成用組成物として、特定高分子の粒子を含むラテックスを使用してもよい。
 下塗り層の厚みは特に制限されず、導電層の基材に対する密着性がより優れる点で、0.02~0.3μmが好ましく、0.03~0.2μmがより好ましい。
An undercoat layer may be disposed on the surface of the base material.
The undercoat layer preferably contains a specific polymer described below. When this undercoat layer is used, the adhesion of the conductive layer described later to the base material is further improved.
The method for forming the undercoat layer is not particularly limited, and examples thereof include a method in which a composition for forming an undercoat layer containing a specific polymer, which will be described later, is applied onto a base material and, if necessary, a heat treatment is performed. The undercoat layer forming composition may contain a solvent as necessary. The type of solvent is not particularly limited, and examples include solvents used in the photosensitive layer forming composition described below. Further, as the composition for forming an undercoat layer containing a specific polymer, a latex containing particles of a specific polymer may be used.
The thickness of the undercoat layer is not particularly limited, and is preferably 0.02 to 0.3 μm, more preferably 0.03 to 0.2 μm, in terms of better adhesion of the conductive layer to the base material.
〔導電性層〕
 導電性層は、導電性細線部と透明絶縁部とを有する。即ち、導電性基板の基材の表面上には、導電性層として、金属を含む導電性細線部と、金属を含まない透明絶縁部が配置されている。
[Conductive layer]
The conductive layer has a conductive thin wire portion and a transparent insulating portion. That is, on the surface of the base material of the conductive substrate, a conductive thin wire portion containing metal and a transparent insulating portion not containing metal are arranged as a conductive layer.
 導電性層における導電性細線部および透明絶縁部の配置は特に制限されない。
 導電性層は、導電性細線部および透明絶縁部によって形成されたパターンを有してもよい。そのパターンは特に制限されず、例えば、正三角形、二等辺三角形および直角三角形等の三角形、正方形、長方形、菱形、平行四辺形、および、台形等の四角形、(正)六角形および(正)八角形等の(正)n角形、円、楕円、星形、並びに、これらの図形を組み合わせた幾何学図形であることが好ましく、メッシュ状(メッシュパターン)であることがより好ましい。
The arrangement of the conductive thin wire portion and the transparent insulating portion in the conductive layer is not particularly limited.
The conductive layer may have a pattern formed by conductive thin wire portions and transparent insulating portions. The patterns are not particularly limited, and include, for example, triangles such as equilateral triangles, isosceles triangles, and right triangles, quadrilaterals such as squares, rectangles, rhombuses, parallelograms, and trapezoids, (regular) hexagons, and (regular) octagons. It is preferably a (regular) n-gon such as a square, a circle, an ellipse, a star, or a geometric figure that is a combination of these shapes, and more preferably a mesh shape (mesh pattern).
 図2は、導電性層が有するメッシュパターンの一例を示す平面図である。
 メッシュ状とは、図2に示すように、交差する導電性細線部16と、透明絶縁部18とにより構成され、それぞれが互いに離間している複数の非細線部(格子)20を含む形状を意図する。図2において、非細線部20は、一辺の長さがLである正方形の形状を有しているが、メッシュパターンの非細線部は、他の形状であってもよく、例えば、多角形状(例えば、三角形、四角形(ひし形、長方形等)、六角形、および、ランダムな多角形)であってもよい。また、辺の形状は、直線以外の湾曲した形状であってもよいし、円弧状であってもよい。円弧状とする場合は、例えば、対向する二辺については、外方に凸の円弧状とし、他の対向する二辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
FIG. 2 is a plan view showing an example of a mesh pattern that the conductive layer has.
As shown in FIG. 2, the mesh shape refers to a shape composed of intersecting conductive thin wire portions 16 and transparent insulating portions 18, each including a plurality of non-thin wire portions (lattice) 20 spaced apart from each other. intend. In FIG. 2, the non-thin line portion 20 has a square shape with one side length L, but the non-thin line portion of the mesh pattern may have other shapes, such as a polygonal shape ( For example, it may be a triangle, a quadrilateral (diamond, rectangle, etc.), a hexagon, or a random polygon. Further, the shape of the side may be a curved shape other than a straight line, or may be an arc shape. In the case of an arcuate shape, for example, two opposing sides may have an outwardly convex arcuate shape, and the other two opposing sides may have an inwardly convex arcuate shape. Further, each side may have a wavy line shape in which an outwardly convex circular arc and an inwardly convex circular arc are continuous. Of course, the shape of each side may be a sine curve.
 非細線部20の一辺の長さLは特に制限されないが、1500μm以下が好ましく、1300μm以下がより好ましく、1000μm以下が更に好ましい。長さLの下限値は特に制限されないが、5μm以上が好ましく、30μm以上がより好ましく、80μm以上が更に好ましい。非細線部の一辺の長さが上述の範囲である場合には、更に透明性も良好に保つことが可能であり、導電性基板を表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。 The length L of one side of the non-thin wire portion 20 is not particularly limited, but is preferably 1500 μm or less, more preferably 1300 μm or less, and even more preferably 1000 μm or less. The lower limit of the length L is not particularly limited, but is preferably 5 μm or more, more preferably 30 μm or more, and even more preferably 80 μm or more. If the length of one side of the non-thin line part is within the above range, it is possible to maintain good transparency, and when the conductive substrate is attached to the front of the display device, the display can be viewed without discomfort. can do.
 可視光透過率の点から、導電性細線部により形成されるメッシュパターンの開口率は、90%以上が好ましく、95%以上がより好ましく、99%以上が更に好ましい。上限は特に制限されないが、100%未満が挙げられる。
 開口率とは、導電性基板のメッシュパターンが形成された領域において、透明絶縁部が占める領域のメッシュパターンが占める領域全体に対する割合(面積比)を意味する。
From the viewpoint of visible light transmittance, the aperture ratio of the mesh pattern formed by the conductive thin wire portions is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more. The upper limit is not particularly limited, but may be less than 100%.
The aperture ratio means the ratio (area ratio) of the area occupied by the transparent insulating part to the entire area occupied by the mesh pattern in the area where the mesh pattern of the conductive substrate is formed.
 導電性層の厚みは特に制限されないが、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。
 導電性層の厚みは、走査型電子顕微鏡を用いて、1本の導電性細線部の厚みに相当する任意の5箇所を選択し、5箇所の厚みに相当する部分の算術平均値を算出することにより、求められる。
The thickness of the conductive layer is not particularly limited, but is preferably 0.5 to 3.0 μm, more preferably 1.0 to 2.0 μm.
The thickness of the conductive layer is determined by selecting five arbitrary points corresponding to the thickness of one conductive thin wire part using a scanning electron microscope, and calculating the arithmetic mean value of the parts corresponding to the thickness of the five points. Therefore, it is required.
<導電性細線部>
 導電性細線部は、金属を含むことにより導電性基板の導電特性を担保する部分である。
 金属としては、導電特性がより優れる点で、銀(金属銀)、銅(金属銅)、金(金属金)、ニッケル(金属ニッケル)、および、パラジウム(金属パラジウム)からなる群より選択される1つ以上の金属またはこれらの混合物が好ましく、銀単体、または、銀と銅の混合物がより好ましく、銀単体が更に好ましい。
<Conductive thin wire part>
The conductive thin wire portion is a portion that ensures the conductive properties of the conductive substrate by containing metal.
The metal is selected from the group consisting of silver (metallic silver), copper (metallic copper), gold (metallic gold), nickel (metallic nickel), and palladium (metallic palladium) because of its superior conductive properties. One or more metals or mixtures thereof are preferred, single silver or a mixture of silver and copper is more preferred, and single silver is even more preferred.
 本明細書において、導電性細線部は、金属を含む材料で一体的に形成された細線状の領域を意図する。例えば、後述する工程Hにより形成されるハロゲン化銀不含有層、および、後述する工程Iにより形成される保護層は、後述する工程Aおよび工程Bにより形成される細線状の金属含有層(銀含有層)とともに、導電性細線部を構成する。
 また、導電性細線部は、導電性基板の外部の部材と電気的に接続していてもよく、電気的に接続していなくてもよい。導電性細線部の一部は、外部と電気的に絶縁されたダミー電極であってもよい。
In this specification, the conductive thin wire portion is intended to be a thin wire-shaped region integrally formed of a material containing metal. For example, the silver halide-free layer formed in Step H, which will be described later, and the protective layer, which will be formed in Step I, which will be described later, are different from the thin wire-shaped metal-containing layer (silver halide-free layer) formed in Step A and Step B, which will be described later. Containing layer) together with the conductive thin wire portion.
Further, the conductive thin wire portion may or may not be electrically connected to a member external to the conductive substrate. A portion of the conductive thin wire portion may be a dummy electrode electrically insulated from the outside.
 導電性細線部に含まれる金属は、通常、固体粒子状である。金属の平均粒子径は、球相当径で10~1000nmが好ましく、10~200nmがより好ましい。なお、球相当径とは、同じ体積を有する球形粒子の直径であり、金属粒子の平均粒子径は、100個の対象物の球相当径を測定して、それらを算術平均した平均値として得られる。
 金属粒子の形状は特に制限されず、例えば、球状、立方体状、平板状、八面体状、および、十四面体状等の形状が挙げられる。また、金属粒子が融着により一部または全体にわたって結合していてもよい。
 導電性細線部は、複数の金属が後述する高分子化合物中に分散してなる構造を有してもよく、高分子化合物中で金属粒子が凝集して凝集体として存在してもよい。また、導電性細線部に含まれる複数の金属の少なくとも一部同士が、後述するめっき処理に用いる金属イオンに由来する金属によって接合されていてもよい。
 導電性細線部における金属の含有量は特に制限されず、導電性基板の導電性がより優れる点で、3.0~20.0g/mが好ましく、5.0~15.0g/mがより好ましい。
The metal contained in the conductive thin wire portion is usually in the form of solid particles. The average particle diameter of the metal is preferably 10 to 1000 nm, more preferably 10 to 200 nm, in equivalent sphere diameter. Note that the equivalent sphere diameter is the diameter of spherical particles having the same volume, and the average particle diameter of metal particles is obtained as the average value obtained by measuring the equivalent sphere diameters of 100 objects and arithmetic averaging them. It will be done.
The shape of the metal particles is not particularly limited, and examples include shapes such as spherical, cubic, tabular, octahedral, and dodecahedral. Further, the metal particles may be partially or entirely bonded by fusion.
The conductive thin wire portion may have a structure in which a plurality of metals are dispersed in a polymer compound described below, or metal particles may aggregate in the polymer compound and exist as an aggregate. Further, at least some of the plurality of metals included in the conductive thin wire portion may be bonded to each other by a metal derived from metal ions used in a plating process to be described later.
The metal content in the conductive thin wire portion is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 , and 5.0 to 15.0 g/m 2 in terms of better conductivity of the conductive substrate. is more preferable.
 導電性細線部は、金属に加えて高分子化合物を含んでいてもよい。
 導電性細線部に含まれる高分子化合物の種類は特に制限されず、公知の高分子化合物が使用できる。なかでも、強度がより優れる銀含有層および導電性細線部を形成できる点で、ゼラチンとは異なる高分子化合物(以下、「特定高分子」とも記載する。)が好ましい。
 特定高分子の種類はゼラチンと異なれば特に制限されず、後述するゼラチンを分解する、タンパク質分解酵素または酸化剤で分解しない高分子が好ましい。
 特定高分子としては、疎水性高分子(非水溶性高分子)が挙げられ、例えば、(メタ)アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリジエン系樹脂、エポキシ系樹脂、シリコーン系樹脂、セルロース系重合体、および、キトサン系重合体からなる群から選ばれる少なくともいずれかの樹脂、または、これらの樹脂を構成する単量体からなる共重合体等が挙げられる。
 また、特定高分子は、後述する架橋剤と反応する反応性基を有することが好ましい。
 特定高分子は、粒子状であることが好ましい。つまり、導電性細線部は、特定高分子の粒子を含むことが好ましい。
The conductive thin wire portion may contain a polymer compound in addition to metal.
The type of polymer compound contained in the conductive thin wire portion is not particularly limited, and known polymer compounds can be used. Among these, polymer compounds different from gelatin (hereinafter also referred to as "specific polymers") are preferred in that they can form a silver-containing layer with better strength and a conductive thin wire portion.
The type of specific polymer is not particularly limited as long as it is different from gelatin, and preferably a polymer that is not decomposed by proteolytic enzymes or oxidizing agents that decompose gelatin, which will be described later.
Specific polymers include hydrophobic polymers (water-insoluble polymers), such as (meth)acrylic resins, styrene resins, vinyl resins, polyolefin resins, polyester resins, polyurethane resins, At least one resin selected from the group consisting of polyamide resin, polycarbonate resin, polydiene resin, epoxy resin, silicone resin, cellulose polymer, and chitosan polymer, or comprising these resins Examples include copolymers consisting of monomers.
Moreover, it is preferable that the specific polymer has a reactive group that reacts with a crosslinking agent described below.
It is preferable that the specific polymer is in the form of particles. That is, it is preferable that the conductive thin wire portion contains particles of a specific polymer.
 特定高分子としては、以下の一般式(1)で表される高分子(共重合体)が好ましい。
  一般式(1): -(A)-(B)-(C)-(D)
 なお、一般式(1)中、A、B、C、およびDはそれぞれ、下記一般式(A)~(D)で表される繰り返し単位を表す。
As the specific polymer, a polymer (copolymer) represented by the following general formula (1) is preferable.
General formula (1): -(A) x -(B) y -(C) z -(D) w -
In addition, in the general formula (1), A, B, C, and D each represent a repeating unit represented by the following general formulas (A) to (D).
 R11は、メチル基またはハロゲン原子を表し、メチル基、塩素原子、または、臭素原子が好ましい。pは0~2の整数を表し、0または1が好ましく、0がより好ましい。
 R12は、メチル基またはエチル基を表し、メチル基が好ましい。
 R13は、水素原子またはメチル基を表し、水素原子が好ましい。Lは、2価の連結基を表し、下記一般式(2)で表される基が好ましい。
 一般式(2):-(CO-X)r-X
 一般式(2)中、Xは、酸素原子または-NR30-を表す。ここでR30は、水素原子、アルキル基、アリール基、または、アシル基を表し、それぞれ置換基(例えば、ハロゲン原子、ニトロ基、および、ヒドロキシル基)を有してもよい。R30としては、水素原子、炭素数1~10のアルキル基(例えば、メチル基、エチル基、n-ブチル基、および、n-オクチル基)、または、アシル基(例えば、アセチル基、および、ベンゾイル基)が好ましい。Xとしては、酸素原子または-NH-が好ましい。
 Xは、アルキレン基、アリーレン基、アルキレンアリーレン基、アリーレンアルキレン基、または、アルキレンアリーレンアルキレン基を表し、これらの基には-O-、-S-、-CO-、-COO-、-NH-、-SO-、-N(R31)-、または、-N(R31)SO-等が途中に挿入されてもよい。R31は、炭素数1~6の直鎖状または分岐鎖状のアルキル基を表す。Xとしては、ジメチレン基、トリメチレン基、テトラメチレン基、o-フェニレン基、m-フェニレン基、p-フェニレン基、-CHCHOCOCHCH-、または、-CHCHOCO(C)-が好ましい。
 rは0または1を表す。
 qは0または1を表し、0が好ましい。
R 11 represents a methyl group or a halogen atom, and preferably a methyl group, a chlorine atom, or a bromine atom. p represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
R 12 represents a methyl group or an ethyl group, preferably a methyl group.
R 13 represents a hydrogen atom or a methyl group, preferably a hydrogen atom. L represents a divalent linking group, and is preferably a group represented by the following general formula (2).
General formula (2): -(CO-X 1 ) r-X 2 -
In general formula (2), X 1 represents an oxygen atom or -NR 30 -. Here, R 30 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group, each of which may have a substituent (eg, a halogen atom, a nitro group, and a hydroxyl group). R 30 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (e.g., methyl group, ethyl group, n-butyl group, and n-octyl group), or an acyl group (e.g., acetyl group, and benzoyl group) is preferred. X 1 is preferably an oxygen atom or -NH-.
X 2 represents an alkylene group, an arylene group, an alkylene arylene group, an arylene alkylene group, or an alkylene arylene alkylene group, and these groups include -O-, -S-, -CO-, -COO-, -NH -, -SO 2 -, -N(R 31 )-, -N(R 31 )SO 2 -, etc. may be inserted in the middle. R 31 represents a linear or branched alkyl group having 1 to 6 carbon atoms. X 2 is dimethylene group, trimethylene group, tetramethylene group, o-phenylene group, m-phenylene group, p-phenylene group, -CH 2 CH 2 OCOCH 2 CH 2 -, or -CH 2 CH 2 OCO ( C 6 H 4 )- is preferred.
r represents 0 or 1.
q represents 0 or 1, preferably 0.
 R14は、アルキル基、アルケニル基、または、アルキニル基を表し、炭素数5~50のアルキル基が好ましく、炭素数5~30のアルキル基がより好ましく、炭素数5~20のアルキル基が更に好ましい。
 R15は、水素原子、メチル基、エチル基、ハロゲン原子、または、-CHCOOR16を表し、水素原子、メチル基、ハロゲン原子、または、-CHCOOR16が好ましく、水素原子、メチル基、または、-CHCOOR16がより好ましく、水素原子が更に好ましい。
 R16は、水素原子または炭素数1~80のアルキル基を表し、R14と同じでも異なってもよく、R16の炭素数は1~70が好ましく、1~60がより好ましい。
R 14 represents an alkyl group, an alkenyl group, or an alkynyl group, preferably an alkyl group having 5 to 50 carbon atoms, more preferably an alkyl group having 5 to 30 carbon atoms, and further an alkyl group having 5 to 20 carbon atoms. preferable.
R 15 represents a hydrogen atom, a methyl group, an ethyl group, a halogen atom, or -CH 2 COOR 16 , preferably a hydrogen atom, a methyl group, a halogen atom, or -CH 2 COOR 16 ; , or -CH 2 COOR 16 is more preferred, and a hydrogen atom is even more preferred.
R 16 represents a hydrogen atom or an alkyl group having 1 to 80 carbon atoms, and may be the same as or different from R 14 , and the carbon number of R 16 is preferably 1 to 70, more preferably 1 to 60.
 一般式(1)中、x、y、z、およびwは各繰り返し単位のモル比率を表す。
 xは、3~60モル%であり、3~50モル%が好ましく、3~40モル%がより好ましい。
 yは、30~96モル%であり、35~95モル%が好ましく、40~90モル%がより好ましい。
 zは、0.5~25モル%であり、0.5~20モル%が好ましく、1~20モル%がより好ましい。
 wは、0.5~40モル%であり、0.5~30モル%が好ましい。
 一般式(1)において、xは3~40モル%、yは40~90モル%、zは0.5~20モル%、wは0.5~10モル%の場合が好ましい。
In general formula (1), x, y, z, and w represent the molar ratio of each repeating unit.
x is 3 to 60 mol%, preferably 3 to 50 mol%, and more preferably 3 to 40 mol%.
y is 30 to 96 mol%, preferably 35 to 95 mol%, and more preferably 40 to 90 mol%.
z is 0.5 to 25 mol%, preferably 0.5 to 20 mol%, and more preferably 1 to 20 mol%.
w is 0.5 to 40 mol%, preferably 0.5 to 30 mol%.
In the general formula (1), x is preferably 3 to 40 mol%, y is 40 to 90 mol%, z is 0.5 to 20 mol%, and w is 0.5 to 10 mol%.
 一般式(1)で表される高分子としては、下記一般式(2)で表される高分子が好ましい。 The polymer represented by the general formula (1) is preferably a polymer represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(2)中、x、y、zおよびwは、上述の定義の通りである。 In general formula (2), x, y, z and w are as defined above.
 一般式(1)で表される高分子は、上述の一般式(A)~(D)で表される繰り返し単位以外の他の繰り返し単位を含んでもよい。
 他の繰り返し単位を形成するためのモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、オレフィン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アクリルアミド類、不飽和カルボン酸類、アリル化合物、ビニルエーテル類、ビニルケトン類、ビニル異節環化合物、グリシジルエステル類、および、不飽和ニトリル類が挙げられる。これらのモノマーとしては、特許第3754745号公報の段落0010~0022にも記載されている。疎水性の観点から、アクリル酸エステル類またはメタクリル酸エステル類が好ましく、ヒドロキシアルキルメタクリレートまたはヒドロキシアルキルアクリレートがより好ましい。
 一般式(1)で表される高分子は、一般式(E)で表される繰り返し単位を含むことが好ましい。
The polymer represented by the general formula (1) may contain repeating units other than the repeating units represented by the above-mentioned general formulas (A) to (D).
Examples of monomers for forming other repeating units include acrylic acid esters, methacrylic acid esters, vinyl esters, olefins, crotonic acid esters, itaconic acid diesters, maleic acid diesters, and fumaric acid diesters. Examples include acrylamides, unsaturated carboxylic acids, allyl compounds, vinyl ethers, vinyl ketones, vinyl heterocyclic compounds, glycidyl esters, and unsaturated nitriles. These monomers are also described in paragraphs 0010 to 0022 of Japanese Patent No. 3754745. From the viewpoint of hydrophobicity, acrylic esters or methacrylic esters are preferred, and hydroxyalkyl methacrylates or hydroxyalkyl acrylates are more preferred.
The polymer represented by general formula (1) preferably contains a repeating unit represented by general formula (E).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上述の式中、Lはアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2~6のアルキレン基がより好ましく、炭素数2~4のアルキレン基が更に好ましい。 In the above formula, L E represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 2 to 6 carbon atoms, and even more preferably an alkylene group having 2 to 4 carbon atoms.
 一般式(1)で表される高分子としては、下記一般式(3)で表される高分子が特に好ましい。 As the polymer represented by the general formula (1), a polymer represented by the following general formula (3) is particularly preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上述の式中、a1、b1、c1、d1、およびe1は各繰り返し単位のモル比率を表し、a1は3~60(モル%)、b1は30~95(モル%)、c1は0.5~25(モル%)、d1は0.5~40(モル%)、e1は1~10(モル%)を表す。
 a1の好ましい範囲は上述のxの好ましい範囲と同じであり、b1の好ましい範囲は上述のyの好ましい範囲と同じであり、c1の好ましい範囲は上述のzの好ましい範囲と同じであり、d1の好ましい範囲は上述のwの好ましい範囲と同じである。
 e1は、1~10モル%であり、2~9モル%が好ましく、2~8モル%がより好ましい。
In the above formula, a1, b1, c1, d1, and e1 represent the molar ratio of each repeating unit, a1 is 3 to 60 (mol%), b1 is 30 to 95 (mol%), and c1 is 0.5 ~25 (mol%), d1 represents 0.5 to 40 (mol%), and e1 represents 1 to 10 (mol%).
The preferable range of a1 is the same as the above-mentioned preferable range of x, the preferable range of b1 is the same as the above-mentioned preferable range of y, the preferable range of c1 is the same as the above-mentioned preferable range of z, and the preferable range of d1 is the same as the above-mentioned preferable range of y. The preferred range is the same as the preferred range for w described above.
e1 is 1 to 10 mol%, preferably 2 to 9 mol%, and more preferably 2 to 8 mol%.
 特定高分子は、例えば、特許第3305459号公報および特許第3754745号公報等を参照して合成できる。
 特定高分子の重量平均分子量は特に制限されず、1000~1000000が好ましく、2000~750000がより好ましく、3000~500000が更に好ましい。
The specific polymer can be synthesized with reference to, for example, Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
The weight average molecular weight of the specific polymer is not particularly limited, and is preferably 1,000 to 1,000,000, more preferably 2,000 to 750,000, and even more preferably 3,000 to 500,000.
 導電性細線部には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。
 例えば、特開2009-004348号公報の段落0220~0241に記載されるような、帯電防止剤、造核促進剤、分光増感色素、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤、レドックス化合物、モノメチン化合物、および、ジヒドロキシベンゼン類も挙げられる。更には、感光性層には、物理現像核が含まれていてもよい。
 また、導電性細線部には、上述の特定高分子同士を架橋するために使用される架橋剤が含まれていてもよい。架橋剤が含まれることにより、特定高分子間での架橋が進行し、導電性細線部中の金属同士の連結が保たれる。
The conductive thin wire portion may contain other materials than the above-mentioned materials, if necessary.
For example, antistatic agents, nucleation accelerators, spectral sensitizing dyes, surfactants, antifoggants, hardeners, black spot prevention agents, as described in paragraphs 0220 to 0241 of JP-A-2009-004348. Also included are agents, redox compounds, monomethine compounds, and dihydroxybenzenes. Furthermore, the photosensitive layer may contain physical development nuclei.
Further, the conductive thin wire portion may contain a crosslinking agent used for crosslinking the above-mentioned specific polymers. By including the crosslinking agent, crosslinking between the specific polymers progresses, and the metals in the conductive thin wire portion are kept connected to each other.
 導電性細線部の線幅Waは、導電性細線部が視認されにくい点から、5.0μm未満が好ましく、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。下限は特に制限されないが、導電性細線部の導電性がより優れる点から、0.5μm以上が好ましく、1.2μm以上がより好ましい。なお、導電性細線部の線幅とは、基材の表面に沿った方向のうち、導電性細線部が延在する方向に対して直交する方向における導電性細線部の全長を意味する。
 上述の導電性細線部の線幅Waは、走査型電子顕微鏡を用いて、1本の導電性細線部の線幅に相当する任意の5箇所を選択し、5箇所の線幅相当の算術平均値を線幅Waとする。
The line width Wa of the conductive thin wire portion is preferably less than 5.0 μm, more preferably 2.5 μm or less, and even more preferably 2.0 μm or less, since the conductive thin wire portion is difficult to be visually recognized. Although the lower limit is not particularly limited, it is preferably 0.5 μm or more, and more preferably 1.2 μm or more, since the conductivity of the conductive thin wire portion is more excellent. Note that the line width of the conductive thin wire portion refers to the total length of the conductive thin wire portion in the direction along the surface of the base material and perpendicular to the direction in which the conductive thin wire portion extends.
The line width Wa of the conductive thin wire portion described above is determined by selecting five arbitrary points corresponding to the line width of one conductive thin wire portion using a scanning electron microscope, and calculating the arithmetic average of the line widths of the five points. Let the value be the line width Wa.
 導電性細線部の厚みTは特に制限されないが、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。
 上述の導電性細線部の厚みTは、導電性層の厚みの測定方法に準じて測定できる。
The thickness T of the conductive thin wire portion is not particularly limited, but is preferably 0.5 to 3.0 μm, more preferably 1.0 to 2.0 μm.
The thickness T of the conductive thin wire portion described above can be measured according to the method for measuring the thickness of a conductive layer.
 導電性細線部の線抵抗値は、200Ω/mm未満であることが好ましい。なかでも、タッチパネルとして用いた際の操作性の点から、100Ω/mm未満であることがより好ましく、60Ω/mm未満が更に好ましい。
 線抵抗値とは、4探針法で測定した抵抗値を測定端子間距離で除したものである。より具体的には、メッシュパターンを構成する任意の1本の導電性細線部の両端を断線させてメッシュパターンから切り離した後に、4本(A、B、C、D)のマイクロプローブ(株式会社マイクロサポート製タングステンプローブ(直径0.5μm))を該切り離された導電性細線部に接触させて、最外プローブA、Dにソースメーター(KEITHLEY製ソースメーター 2400型汎用ソースメーター)を用いて内部プローブB、C間の電圧Vが5mVになるよう定電流Iを印加し、抵抗値Ri=V/Iを測定し、得られた抵抗値RiをB、C間距離で除して線抵抗値を求める。
The wire resistance value of the conductive thin wire portion is preferably less than 200Ω/mm. Among these, from the viewpoint of operability when used as a touch panel, it is more preferably less than 100 Ω/mm, and even more preferably less than 60 Ω/mm.
The wire resistance value is the resistance value measured by the four-probe method divided by the distance between the measurement terminals. More specifically, after disconnecting both ends of any one conductive thin wire part constituting the mesh pattern and separating it from the mesh pattern, four microprobes (A, B, C, D) (Co., Ltd. A tungsten probe made by Micro Support (diameter 0.5 μm)) was brought into contact with the separated conductive thin wire section, and a source meter (source meter 2400 type general purpose source meter made by KEITHLEY) was used to measure the inside of the outermost probes A and D. Apply a constant current I so that the voltage V between probes B and C becomes 5 mV, measure the resistance value Ri = V/I, and divide the obtained resistance value Ri by the distance between B and C to obtain the line resistance value. seek.
<透明絶縁部>
 導電性層は、導電性細線部に隣接する透明絶縁部を有する。図1に示すように、導電性細線部と透明絶縁部とは、基板の表面上において面内方向に並んで配置されている。
 透明絶縁部は、導電性の金属を含まず、導電性を示さない領域である。ここで、透明絶縁部が「金属を含まない」とは、透明絶縁部における金属の含有量が、透明絶縁部の総質量に対して0.1質量%以下であることを意味する。透明絶縁部における金属の含有量は、透明絶縁部の総質量に対して0.05質量%以下が好ましい。
 また、本明細書において「透明」とは、波長400~700nmの可視光の平均透過率が80%以上であることを意味する。透明絶縁部の上記可視光の平均透過率は、90%以上が好ましい。上限値は特に制限されず、例えば99%以下である。透過率は、分光光度計を用いて測定できる。
<Transparent insulation part>
The conductive layer has a transparent insulating portion adjacent to the conductive thin wire portion. As shown in FIG. 1, the conductive thin wire portion and the transparent insulating portion are arranged side by side in the in-plane direction on the surface of the substrate.
The transparent insulating portion is a region that does not contain conductive metal and does not exhibit conductivity. Here, the expression that the transparent insulating part "does not contain metal" means that the metal content in the transparent insulating part is 0.1% by mass or less based on the total mass of the transparent insulating part. The metal content in the transparent insulating part is preferably 0.05% by mass or less based on the total mass of the transparent insulating part.
Furthermore, in this specification, "transparent" means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more. The average transmittance of the visible light of the transparent insulating portion is preferably 90% or more. The upper limit is not particularly limited, and is, for example, 99% or less. Transmittance can be measured using a spectrophotometer.
 透明絶縁部は、高分子化合物を主成分として含むことが好ましい。
 透明絶縁部に含まれる高分子化合物としては、導電性細線部に含まれる高分子化合物が挙げられ、特定高分子が好ましい。なかでも、導電性細線部に含まれる高分子化合物(好ましくは特定高分子)と同じ高分子化合物を含むことがより好ましい。
 透明絶縁部が高分子化合物を「主成分として含む」とは、高分子化合物の含有量が透明絶縁部の総質量に対して50質量%以上であることを意味する。透明絶縁部における高分子化合物の含有量は、90質量%以上が好ましく、95質量%以上がより好ましい。上限値は特に制限されず、100質量%であってよい。
It is preferable that the transparent insulating part contains a polymer compound as a main component.
Examples of the polymer compound contained in the transparent insulating part include those contained in the conductive thin wire part, and specific polymers are preferable. Among these, it is more preferable to include the same polymer compound (preferably a specific polymer) contained in the conductive thin wire portion.
The expression that the transparent insulating part "contains a polymer compound as a main component" means that the content of the polymer compound is 50% by mass or more based on the total mass of the transparent insulating part. The content of the polymer compound in the transparent insulating part is preferably 90% by mass or more, more preferably 95% by mass or more. The upper limit is not particularly limited and may be 100% by mass.
 透明絶縁部の形成方法は、特に制限されず、例えば、後述する導電性基板の製造方法において、ハロゲン化銀含有感光性層をパターン状に露光する露光処理を施すことにより未露光部を形成し、続いて未露光部に対して現像処理を実施することにより、高分子化合物を主成分とする透明絶縁部が形成される。また、必要に応じてゼラチンを除去する処理を実施することにより、特定高分子を主成分とする透明絶縁部が形成される。 The method for forming the transparent insulating portion is not particularly limited, and for example, in the method for manufacturing a conductive substrate described below, an unexposed portion may be formed by performing an exposure treatment in which a silver halide-containing photosensitive layer is exposed in a pattern. Then, by performing a development process on the unexposed area, a transparent insulating part containing a polymer compound as a main component is formed. In addition, by performing a treatment to remove gelatin as necessary, a transparent insulating portion containing a specific polymer as a main component is formed.
<他の部材>
 導電性基板は、上述の基材、導電性細線部、および、後述する遮蔽層以外に他の部材を有してもよい。
 導電性基板が有してもよい他の部材としては、上述した導電性細線部とは構成が異なる導電部が挙げられる。
<Other parts>
The conductive substrate may include other members in addition to the base material described above, the conductive thin wire portion, and the shielding layer described below.
Other members that may be included in the conductive substrate include a conductive portion having a different configuration from the conductive thin wire portion described above.
〔遮蔽層〕
 本発明に係る導電性基板は、導電性層上に遮蔽層を有する。遮蔽層は、導電性層上に直接接していてもよく、直接接していなくてもよい。
[Shielding layer]
The conductive substrate according to the present invention has a shielding layer on the conductive layer. The shielding layer may or may not be in direct contact with the conductive layer.
 本発明において、遮蔽層は水系樹脂組成物に由来する成分を含んでもよい。
 ここで、水系樹脂組成物とは、組成物が含む水系溶媒が除去されることにより、固化する性質を有する組成物をいうものとする。一般的な水系樹脂組成物に含まれる樹脂の種類としては、乳化性・水溶性を有しないポリマー(樹脂)を界面活性剤などを用いて強制乳化させた強制乳化樹脂、自己乳化性を有するポリマー(樹脂)を乳化・分散させた自己乳化性樹脂、および、水溶性を有するポリマー(樹脂)を溶解させた水溶性樹脂などが挙げられる。強制乳化樹脂および自己乳化性樹脂は、組成物の段階で樹脂が粒子径を有した分散状態である樹脂をいう。また、水溶性樹脂とは、組成物の段階で樹脂が粒子径を有さずに溶解状態である樹脂をいう。
 水系溶媒とは、主成分が水である分散媒のことであり、溶媒中に含まれる水の含有量は、40~100質量%が好ましく、50~100質量%がより好ましい。水系溶媒に含まれる水以外の溶媒としては、メタノール、エタノール、および、イソプロピルアルコール等のアルコール類、アセトンおよびメチルエチルケトン等のケトン類、N-メチルピロリドン(NMP)、テトラヒドロフラン、並びに、ブチルセロソルブ等のグリコールエーテル類等、水に溶解性を有する溶剤が好ましく用いられる。
 また、水系樹脂組成物におけるポリマーの分散安定性、塗布性、乾燥後の皮膜特性向上のために、水系樹脂組成物は、界面活性剤、アンモニア、並びに、トリエチルアミン、および、N,N-ジメチルエタノールアミン等のアミン類を分散物(水系樹脂組成物)の全質量に対して数質量%含んでもよい。
 水系樹脂組成物の具体例としては、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、および、ポリウレタン樹脂などをポリマーとして含む水系樹脂組成物が挙げられる。すなわち、遮蔽層としては、例えば、ポリエステル(エステル)、ポリオレフィン(オレフィン)、アクリル樹脂(アクリル)、および、ポリウレタン(ウレタン)から選択されるいずれかの構造を有する遮蔽層が挙げられる。なかでも、本発明の効果がより優れる点で、遮蔽層は、アクリルおよびウレタンから選択されるいずれかの構造を有することが好ましい。
In the present invention, the shielding layer may contain components derived from the water-based resin composition.
Here, the aqueous resin composition refers to a composition that has the property of solidifying when the aqueous solvent contained in the composition is removed. Types of resins contained in general water-based resin compositions include forced emulsification resins made by forcibly emulsifying polymers (resins) that do not have emulsifying properties or water solubility using surfactants, etc., and polymers that have self-emulsifying properties. Examples include self-emulsifying resins in which (resins) are emulsified and dispersed, and water-soluble resins in which water-soluble polymers (resins) are dissolved. Forced emulsifying resin and self-emulsifying resin refer to resins in which the resin is in a dispersed state having a particle size at the stage of composition. Moreover, the water-soluble resin refers to a resin in which the resin does not have a particle size and is in a dissolved state at the stage of a composition.
The aqueous solvent refers to a dispersion medium whose main component is water, and the content of water contained in the solvent is preferably 40 to 100% by mass, more preferably 50 to 100% by mass. Solvents other than water contained in the aqueous solvent include alcohols such as methanol, ethanol, and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, glycol ethers such as N-methylpyrrolidone (NMP), tetrahydrofuran, and butyl cellosolve. Solvents having water solubility, such as the following, are preferably used.
In addition, in order to improve the dispersion stability, coating properties, and film properties of the polymer in the water-based resin composition, the water-based resin composition contains a surfactant, ammonia, triethylamine, and N,N-dimethylethanol. The dispersion (aqueous resin composition) may contain several mass % of amines such as amines based on the total mass of the dispersion (aqueous resin composition).
Specific examples of water-based resin compositions include water-based resin compositions containing polyester resins, polyolefin resins, acrylic resins, polyurethane resins, and the like as polymers. That is, examples of the shielding layer include a shielding layer having any structure selected from polyester (ester), polyolefin (olefin), acrylic resin (acrylic), and polyurethane (urethane). Among these, it is preferable that the shielding layer has a structure selected from acrylic and urethane, since the effects of the present invention are more excellent.
(アクリル樹脂)
 アクリル樹脂は、アクリロイル基およびメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを重合成分として含む樹脂であり、アクリル樹脂の総質量を100質量%とした場合に、アクリロイル基およびメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを重合させて形成される繰り返し単位の総質量が50質量%を超える樹脂であることが好ましい。ここで、アクリロイル基およびメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを、以下、適宜、「(メタ)アクリルモノマー」と称する。
(acrylic resin)
Acrylic resin is a resin containing as a polymerization component a monomer having at least one group selected from an acryloyl group and a methacryloyl group. It is preferable that the total mass of repeating units formed by polymerizing a monomer having at least one group is more than 50% by mass. Hereinafter, a monomer having at least one group selected from an acryloyl group and a methacryloyl group will be appropriately referred to as a "(meth)acrylic monomer."
 アクリル樹脂は、(メタ)アクリルモノマーを単独重合するかまたは他のモノマーと共重合させて得られる。
 アクリル樹脂が(メタ)アクリルモノマーと他のモノマーとの共重合体である場合、(メタ)アクリルモノマーと共重合させる他のモノマーは、炭素-炭素二重結合を有するモノマーであればよく、エステル結合およびウレタン結合から選択される結合を有するモノマーであってもよい。
 (メタ)アクリルモノマーと他のモノマーとの共重合体としては、ランダム共重合体、ブロック共重合体、および、グラフト共重合体のいずれであってもよい。
Acrylic resins are obtained by homopolymerizing (meth)acrylic monomers or copolymerizing them with other monomers.
When the acrylic resin is a copolymer of a (meth)acrylic monomer and another monomer, the other monomer to be copolymerized with the (meth)acrylic monomer may be a monomer having a carbon-carbon double bond; The monomer may have a bond selected from a bond and a urethane bond.
The copolymer of the (meth)acrylic monomer and other monomer may be a random copolymer, a block copolymer, or a graft copolymer.
 アクリル樹脂には、ポリエステル溶液またはポリエステル分散液中で、(メタ)アクリルモノマーを単独重合または他のモノマーと共重合して得られたポリマー、ポリウレタン溶液またはポリウレタン分散液中で、(メタ)アクリルモノマーを単独重合または他のモノマーと共重合して得られたポリマー等の、アクリル樹脂以外の他のポリマー溶液または分散液中で、(メタ)アクリルモノマーを単独重合または他のモノマーと共重合して得られたポリマーであって、ポリエステル樹脂、ウレタン樹脂等の他のポリマーを含む混合物が含まれてもよい。 Acrylic resins include polymers obtained by homopolymerizing (meth)acrylic monomers or copolymerizing with other monomers in polyester solutions or polyester dispersions, and (meth)acrylic monomers in polyurethane solutions or polyurethane dispersions. (meth)acrylic monomers are homopolymerized or copolymerized with other monomers in a solution or dispersion of a polymer other than acrylic resin, such as a polymer obtained by homopolymerization or copolymerization with other monomers. Mixtures of the resulting polymers containing other polymers such as polyester resins and urethane resins may also be included.
 アクリル樹脂の合成に使用しうる(メタ)アクリルモノマーの具体例としては、特に限定はない。代表的な(メタ)アクリルモノマーとして、例えば、(メタ)アクリル酸;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリルアミド;ジアセトンアクリルアミド、N-メチロールアクリルアミド等のN-置換アクリルアミド;(メタ)アクリロニトリル;γ-メタクリロキシプロピルトリメトキシシラン等の珪素含有(メタ)アクリルモノマー等が挙げられる。 There are no particular limitations on specific examples of (meth)acrylic monomers that can be used to synthesize acrylic resins. Representative (meth)acrylic monomers include (meth)acrylic acid; hydroxyalkyl (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; ) Acrylate; Alkyl (meth)acrylate such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, lauryl (meth)acrylate; (meth)acrylamide; diacetone acrylamide, N N-substituted acrylamides such as -methylol acrylamide; (meth)acrylonitrile; silicon-containing (meth)acrylic monomers such as γ-methacryloxypropyltrimethoxysilane; and the like.
 アクリル樹脂を含む水系樹脂組成物としては、市販品を用いてもよい。市販品としては、ジュリマー(登録商標)ET-410(東亜合成化学(株)製)、アクアブリッドAS-563A(商品名:ダイセルファインケム(株)製)、および、ボンロン(登録商標)XPS-002(三井化学(株)製)などが挙げられる。 A commercially available product may be used as the aqueous resin composition containing an acrylic resin. Commercially available products include Jurimer (registered trademark) ET-410 (manufactured by Toagosei Kagaku Co., Ltd.), Aquabrid AS-563A (trade name: manufactured by Daicel Finechem Co., Ltd.), and Bonron (registered trademark) XPS-002. (manufactured by Mitsui Chemicals, Inc.).
(ポリウレタン樹脂)
 ポリウレタン樹脂は、主鎖にウレタン結合を有するポリマーの総称であり、通常、ジイソシアネートとポリオールとの反応生成物である。
 ポリウレタン樹脂の合成に用いうるジイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、ヘキサメチレンジイソシアネート(HDI)、および、イソホロンジイソシアネート(IPDI)等が挙げられる。
 ポリウレタン樹脂の合成に用いうるポリオールとしては、エチレングリコール、プロピレングリコール、グリセリン、および、ヘキサントリオール等が挙げられる。
(Polyurethane resin)
Polyurethane resin is a general term for polymers having urethane bonds in the main chain, and is usually a reaction product of diisocyanate and polyol.
Examples of diisocyanates that can be used in the synthesis of polyurethane resins include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI). can be mentioned.
Examples of polyols that can be used in the synthesis of polyurethane resins include ethylene glycol, propylene glycol, glycerin, and hexanetriol.
 一般的なポリウレタン樹脂に加え、ジイソシアネートとポリオールの反応によって得られたポリウレタン樹脂に対し、鎖延長処理を施して分子量を増大させたポリウレタン樹脂を使用してもよい。
 ポリウレタン樹脂に関して述べたジイソシアネート、ポリオール、および鎖延長処理については、例えば「ポリウレタンハンドブック」(岩田敬治編、日刊工業新聞社、昭和62年発行)に詳細に記載されており、「ポリウレタンハンドブック」に記載のポリウレタン樹脂およびその原料に係る記載は、目的に応じて本発明に適用しうる。
In addition to general polyurethane resins, polyurethane resins obtained by subjecting a polyurethane resin obtained by the reaction of diisocyanate and polyol to chain extension treatment to increase the molecular weight may be used.
Diisocyanates, polyols, and chain extension treatments mentioned regarding polyurethane resins are described in detail in, for example, the "Polyurethane Handbook" (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1986); The description of the polyurethane resin and its raw materials can be applied to the present invention depending on the purpose.
 ポリウレタン樹脂を含む水系樹脂組成物としては、市販品を用いてもよい。市販品としては、スーパーフレックス(登録商標)470、210、150HS、150HF、830HS、エラストロン(登録商標)H-3(以上、第一工業製薬(株)製)、ハイドラン(登録商標)AP-20、AP-40F、WLS-210(以上、DIC(株)製)、タケラック(登録商標)W-6061、WS-5100、WS-4000、WSA-5920、および、オレスター(登録商標)UD-350(以上、三井化学(株)製)が挙げられる。 A commercially available product may be used as the aqueous resin composition containing the polyurethane resin. Commercially available products include Superflex (registered trademark) 470, 210, 150HS, 150HF, 830HS, Elastron (registered trademark) H-3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and Hydran (registered trademark) AP-20. , AP-40F, WLS-210 (manufactured by DIC Corporation), Takerac (registered trademark) W-6061, WS-5100, WS-4000, WSA-5920, and Orester (registered trademark) UD-350 (All of the above are manufactured by Mitsui Chemicals, Inc.).
 (ポリエステル樹脂)
 ポリエステル樹脂は、例えば、多価カルボン酸と多価アルコールとの反応により得られる化合物が挙げられる。
 多価カルボン酸としては、例えば、脂肪族ジカルボン酸(シュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アルケニルコハク酸、アジピン酸、および、セバシン酸など)、脂環式ジカルボン酸(シクロヘキサンジカルボン酸など)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸、フタル酸、および、ナフタレンジカルボン酸など)並びにこれらの無水物、またはこれらの低級(例えば、炭素数1~5)アルキルエステルが挙げられる。これらの中でも、多価カルボン酸としては、水性媒体に対する分散性または溶解性の観点から、脂肪族ジカルボン酸が好ましい。多価カルボン酸は、1種を単独で使用してもよく、2種以上を併用してもよい。
(polyester resin)
Examples of polyester resins include compounds obtained by reacting polyhydric carboxylic acids and polyhydric alcohols.
Examples of polyhydric carboxylic acids include aliphatic dicarboxylic acids (oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, alkenylsuccinic acid, adipic acid, sebacic acid, etc.) ), alicyclic dicarboxylic acids (such as cyclohexanedicarboxylic acid), aromatic dicarboxylic acids (such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid) and their anhydrides, or their lower grades (e.g., carbon number 1 to 5) alkyl esters. Among these, aliphatic dicarboxylic acids are preferred as the polycarboxylic acids from the viewpoint of dispersibility or solubility in aqueous media. One type of polyhydric carboxylic acid may be used alone, or two or more types may be used in combination.
 多価アルコールとしては、脂肪族ジオール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、および、ネオペンチルグリコールなど)、脂環式ジオール(シクロヘキサンジオール、シクロヘキサンジメタノール、および、水添ビスフェノールAなど)、芳香族ジオール(ビスフェノールAのエチレンオキサイド付加物、および、ビスフェノールAのプロピレンオキサイド付加物など)等の2価のアルコール、並びに、グリセリン、トリメチロールプロパン、および、ペンタエリスリトール等の3価以上のアルコールなどが挙げられる。これらの中でも、多価アルコールとしては、水性媒体に対する分散性または溶解性の観点から、脂肪族ジオールが好ましい。多価アルコールは、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of polyhydric alcohols include aliphatic diols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl glycol, etc.), alicyclic diols (cyclohexanediol, cyclohexanedimethanol, and dihydric alcohols such as hydrogenated bisphenol A), aromatic diols (ethylene oxide adducts of bisphenol A, propylene oxide adducts of bisphenol A, etc.), glycerin, trimethylolpropane, pentaerythritol, etc. Examples include trihydric or higher alcohols. Among these, aliphatic diols are preferred as polyhydric alcohols from the viewpoint of dispersibility or solubility in aqueous media. One type of polyhydric alcohol may be used alone, or two or more types may be used in combination.
 ポリエステル樹脂を含む水系樹脂組成物としては、公知の合成方法により合成されたものまたは市販品を用いてもよい。市販品としては、例えば、互応化学工業株式会社製の「プラスコートZ-687」、「Z-690」、「Z-221」、「Z-446」、「Z-561」、「Z-450」、「Z-565」、「Z-850」、「Z-3308」、「RZ-105」、「RZ-570」、「Z-730」、「RZ-142」、高松油脂株式会社製の「ペスレジンA-110」、「A-124GP」、「A-520」、「A-640」、「A-680」、DIC株式会社製の「ハイドランHW350」などの製品名で販売されているものが挙げられる。 As the aqueous resin composition containing the polyester resin, one synthesized by a known synthesis method or a commercially available product may be used. Commercially available products include, for example, "Pluscoat Z-687", "Z-690", "Z-221", "Z-446", "Z-561", and "Z-450" manufactured by Gooh Kagaku Kogyo Co., Ltd. ”, “Z-565”, “Z-850”, “Z-3308”, “RZ-105”, “RZ-570”, “Z-730”, “RZ-142”, manufactured by Takamatsu Yushi Co., Ltd. Products sold under product names such as "Pess Resin A-110", "A-124GP", "A-520", "A-640", "A-680", and "Hydran HW350" manufactured by DIC Corporation can be mentioned.
 また、遮蔽層は、更に、後述する式(1)、(2)、(3)、(4)、または(5)で表される化合物を含む。 In addition, the shielding layer further includes a compound represented by formula (1), (2), (3), (4), or (5) described below.
<特定化合物>
 遮蔽層は、式(1)、(2)、(3)、(4)、または(5)で表される化合物(以下、「特定化合物」ともいう。)を含む。
<Specific compound>
The shielding layer contains a compound represented by formula (1), (2), (3), (4), or (5) (hereinafter also referred to as "specific compound").
 式(1)、(2)、(3)、(4)、および(5)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、炭素数1~6のアルコキシ基、炭素数1~3のチオアルキル基、アミノ基、水酸基、または、カルボキシ基を表す。式(2)および(3)中、Rは、水素原子、炭素数1~6のアルキル基、または、アミノ基を表す。式(5)中、Rは、水素原子、または、水酸基、カルボキシ基、および、アミノ基からなる群から選択される少なくとも1種の置換基を有していてもよい炭素数1~6のアルキル基を表す。 In formulas (1), (2), (3), (4), and (5), R 1 is each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a group having 1 to 6 carbon atoms. 6 alkoxy group, a thioalkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxy group. In formulas (2) and (3), R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group. In formula (5), R 3 is a hydrogen atom or a C 1-6 group which may have at least one substituent selected from the group consisting of a hydroxyl group, a carboxy group, and an amino group. Represents an alkyl group.
 本発明に係る導電性基板は、遮蔽層が特定化合物を含むことにより、導電性細線部の硫化耐性が向上する。より具体的には、上記のとおり、タッチパネル等の電子機器に搭載された導電性基板において、その周辺の部材または周囲の環境に由来する硫黄化合物は、導電性層内に浸透し、導電性細線部の金属細線と反応して硫化物を形成する結果、導電性細線部の導電性が低減すると考えられる。それに対して、遮蔽層が特定化合物を含む場合、外部から遮蔽層内に浸透した硫黄化合物が特定化合物と反応して結合するため、導電性細線部において金属細線の硫化耐性が向上するものと推測される。
 また、遮蔽層の面積当たりの特定化合物の含有量が特定範囲内であることにより、金属細線の硫化耐性を示しながらも、特定化合物の経時に伴う分解反応および拡散等が抑制され、経時による色味変化が抑制されるものと推測される。
 以下、本明細書において、導電性細線部の硫化耐性が優れることを「本発明の効果が優れる」とも記載する。
In the conductive substrate according to the present invention, since the shielding layer contains a specific compound, the sulfidation resistance of the conductive thin wire portion is improved. More specifically, as mentioned above, in conductive substrates mounted on electronic devices such as touch panels, sulfur compounds originating from surrounding members or the surrounding environment penetrate into the conductive layer and cause the conductive thin wires to swell. It is thought that the conductivity of the conductive thin wire portion decreases as a result of reacting with the thin metal wire in the conductive wire portion to form sulfide. On the other hand, when the shielding layer contains a specific compound, the sulfur compound that penetrates into the shielding layer from the outside reacts with and combines with the specific compound, which is presumed to improve the sulfidation resistance of the thin metal wire in the conductive thin wire section. be done.
In addition, because the content of the specific compound per area of the shielding layer is within a specific range, while the metal wire exhibits sulfidation resistance, the decomposition reaction and diffusion of the specific compound over time are suppressed, and the color discoloration over time is suppressed. It is assumed that taste changes are suppressed.
Hereinafter, in this specification, the fact that the conductive thin wire portion has excellent sulfurization resistance is also referred to as "the effect of the present invention is excellent."
 Rとしては、本発明の効果がより優れる点で、水素原子、炭素数1~6のアルキル基、または、フェニル基が好ましく、水素原子、メチル基、エチル基、または、フェニル基がより好ましい。
 Rとしては、本発明の効果がより優れる点で、水素原子または炭素数1~6のアルキル基が好ましく、水素原子がより好ましい。
 Rとしては、水素原子が好ましい。
R 1 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom, a methyl group, an ethyl group, or a phenyl group, since the effects of the present invention are more excellent. .
R 2 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom, since the effects of the present invention are more excellent.
As R 3 , a hydrogen atom is preferable.
 式(1)で表される特定化合物としては、例えば、5-メチル-1、3、4-チアジアゾール-2-チオール、5-エチル-1、3、4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1、3、4-チアジアゾール-2-チオール、5-フェニル-1、3、4-チアジアゾール-2-チオール、5-アミノ-1、3、4-チアジアゾール-2-チオール、および、5-(メチルチオ)-1、3、4-チアジアゾール-2-チオールが挙げられる。
 なかでも、5-メチル-1、3、4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1、3、4-チアジアゾール-2-チオール、または5-フェニル-1、3、4-チアジアゾール-2-チオールが好ましく、5-メチル-1、3、4-チアジアゾール-2-チオールがより好ましい。
 式(2)で表される特定化合物としては、3-メルカプト-1H-1,2,4-トリアゾール、2-メチル-1,2,4-トリアゾール-3-チオール、5-アミノ-1,2,4-トリアゾール-3-チオール、5-メチル-1,2,4-トリアゾール-3-チオール、および、5-エチル-1,2,4-トリアゾール-3-チオールが挙げられる。
 なかでも、3-メルカプト-1H-1,2,4-トリアゾールが好ましい。
 式(3)で表される特定化合物としては、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、4,5-ジメチル-1,2,4-トリアゾール-3-チオール、4-アミノ-1,2,4-トリアゾール-3-チオール、5-メルカプト-4H-1,2,4-トリアゾール-3-オール、4-エチル-1,2,4-トリアゾール-3-チオール、5-エチル-1,2,4-トリアゾール-3-チオール、4-アミノ-5-メチル-1,2,4-トリアゾール-3-チオール、5-アミノ-4-メチル-1,2,4-トリアゾール-3-チオール、5-メルカプト-4-メチル-1,2,4-トリアゾール-3-オール、5-エチル-4-メチル-1,2,4-トリアゾール-3-チオール、3-イソプロピル-1,2,4-トリアゾール-5-チオール、4-エチル-5-メチル-1,2,4-トリアゾール-3-チオール、5-プロピル-1,2,4-トリアゾール-3-チオール、および、4-アミノ-5-エチル-1,2,4-トリアゾール-3-チオールが挙げられる。
 なかでも、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオールが好ましい。
 式(4)で表される特定化合物としては、例えば、2-メルカプトベンゾイミダゾール、5-メチル-2-メルカプトベンゾイミダゾール、5-エチル-2-メルカプトベンゾイミダゾール、5-メトキシ-2-メルカプトベンゾイミダゾール、5-エトキシ-2-メルカプトベンゾイミダゾール、5-クロロ-2-メルカプトベンゾイミダゾール、5-アミノ-2-メルカプトベンゾイミダゾール、5-ニトロ-2-メルカプトベンゾイミダゾール、および、2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウムが挙げられる。
 なかでも、2-メルカプトベンゾイミダゾール、5-メチル-2-メルカプトベンゾイミダゾール、5-エチル-2-メルカプトベンゾイミダゾール、5-メトキシ-2-メルカプトベンゾイミダゾール、5-エトキシ-2-メルカプトベンゾイミダゾール、または、5-クロロ-2-メルカプトベンゾイミダゾールが好ましく、2-メルカプトベンゾイミダゾール、5-メチル-2-メルカプトベンゾイミダゾール、または、5-メトキシ-2-メルカプトベンゾイミダゾールがより好ましい。
 式(5)で表される化合物としては、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、4-メチルベンゾトリアゾール、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノール、2,2’-(5-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノール、1-(1’,2’-ジカルボキシエチル)ベンゾトリアゾール、1-(2,3-ジカルボキシプロピル)ベンゾトリアゾール、5-カルボキシベンゾトリアゾール、5,6-ジメチルベンゾトリアゾール、および、5-アミノベンゾトリアゾールが挙げられる。
 なかでも、1,2,3-ベンゾトリアゾールまたは5-メチルベンゾトリアゾールが好ましい。
Specific compounds represented by formula (1) include, for example, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-ethyl-1,3,4-thiadiazole-2-thiol, 5-( propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole-2-thiol, 5-amino-1,3,4-thiadiazole-2-thiol , and 5-(methylthio)-1,3,4-thiadiazole-2-thiol.
Among them, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, or 5-phenyl-1,3, 4-thiadiazole-2-thiol is preferred, and 5-methyl-1,3,4-thiadiazole-2-thiol is more preferred.
Specific compounds represented by formula (2) include 3-mercapto-1H-1,2,4-triazole, 2-methyl-1,2,4-triazole-3-thiol, 5-amino-1,2 , 4-triazole-3-thiol, 5-methyl-1,2,4-triazole-3-thiol, and 5-ethyl-1,2,4-triazole-3-thiol.
Among them, 3-mercapto-1H-1,2,4-triazole is preferred.
Specific compounds represented by formula (3) include 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 4,5 -dimethyl-1,2,4-triazole-3-thiol, 4-amino-1,2,4-triazol-3-thiol, 5-mercapto-4H-1,2,4-triazol-3-ol, 4 -Ethyl-1,2,4-triazole-3-thiol, 5-ethyl-1,2,4-triazole-3-thiol, 4-amino-5-methyl-1,2,4-triazole-3-thiol , 5-amino-4-methyl-1,2,4-triazole-3-thiol, 5-mercapto-4-methyl-1,2,4-triazol-3-ol, 5-ethyl-4-methyl-1 , 2,4-triazole-3-thiol, 3-isopropyl-1,2,4-triazole-5-thiol, 4-ethyl-5-methyl-1,2,4-triazole-3-thiol, 5-propyl -1,2,4-triazole-3-thiol and 4-amino-5-ethyl-1,2,4-triazole-3-thiol.
Among these, 3-methyl-4H-1,2,4-triazole-5-thiol and 4-methyl-1,2,4-triazole-3-thiol are preferred.
Specific compounds represented by formula (4) include, for example, 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-ethyl-2-mercaptobenzimidazole, and 5-methoxy-2-mercaptobenzimidazole. , 5-ethoxy-2-mercaptobenzimidazole, 5-chloro-2-mercaptobenzimidazole, 5-amino-2-mercaptobenzimidazole, 5-nitro-2-mercaptobenzimidazole, and 2-mercapto-5-benzo Examples include sodium imidazole sulfonate.
Among them, 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-ethyl-2-mercaptobenzimidazole, 5-methoxy-2-mercaptobenzimidazole, 5-ethoxy-2-mercaptobenzimidazole, or , 5-chloro-2-mercaptobenzimidazole are preferred, and 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, or 5-methoxy-2-mercaptobenzimidazole is more preferred.
Examples of the compound represented by formula (5) include 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, 2,2'-(4-methyl-1H-benzotriazole-1- ylmethylimino)bisethanol, 2,2'-(5-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol, 1-(1',2'-dicarboxyethyl)benzotriazole, 1-( Examples include 2,3-dicarboxypropyl)benzotriazole, 5-carboxybenzotriazole, 5,6-dimethylbenzotriazole, and 5-aminobenzotriazole.
Among these, 1,2,3-benzotriazole or 5-methylbenzotriazole is preferred.
 なお、式(1)で表される化合物のプロトン互変異性体として、下記式(1a)で表される化合物が挙げられる。本明細書における特定化合物は、特に言及しない限り、式(1)で表される化合物とともに、式(1a)に代表される式(1)で表される化合物のプロトン互変異性体をも含むものとする。 Incidentally, examples of the proton tautomer of the compound represented by formula (1) include a compound represented by formula (1a) below. Unless otherwise specified, the specific compound herein includes the compound represented by formula (1) as well as the proton tautomer of the compound represented by formula (1) represented by formula (1a). shall be held.
 式(1a)におけるRは、上記式(1)におけるRと同じである。
 一方、式(1)で表される化合物の中には、導電性細線部において金属配線を構成する銀等の金属と反応し、チオール基の硫黄原子が水素原子の代わりに銀等の金属と結合する化合物が存在すると推測される。このような式(1)で表される化合物が金属に結合してなる化合物は、式(1)で表される化合物および特定化合物のいずれにも含まれず、また、硫黄化合物との反応性が低いため、硫化耐性の向上にも寄与しないと考えられる。
R 1 in formula (1a) is the same as R 1 in formula (1) above.
On the other hand, some compounds represented by formula (1) react with metals such as silver constituting the metal wiring in the conductive thin wire portion, and the sulfur atoms of the thiol group react with metals such as silver instead of hydrogen atoms. It is assumed that there is a compound that binds. Such a compound formed by bonding the compound represented by formula (1) to a metal is not included in either the compounds represented by formula (1) or the specified compounds, and is not reactive with sulfur compounds. Since it is low, it is considered that it does not contribute to improving sulfidation resistance.
 なお、式(4)で表される化合物のプロトン互変異性体として、下記式(4a)で表される化合物が挙げられる。本明細書における特定化合物は、特に言及しない限り、式(4)で表される化合物とともに、式(4a)に代表される式(4)で表される化合物のプロトン互変異性体をも含むものとする。 Incidentally, examples of the proton tautomer of the compound represented by formula (4) include a compound represented by formula (4a) below. Unless otherwise specified, the specific compound herein includes the compound represented by formula (4) as well as the proton tautomer of the compound represented by formula (4) represented by formula (4a). shall be held.
 式(4a)におけるRは、上記式(4)におけるRと同じである。
 一方、式(4)で表される化合物の中には、導電性細線部において金属配線を構成する銀等の金属と反応し、チオール基の硫黄原子が水素原子の代わりに銀等の金属と結合する化合物が存在すると推測される。このような式(4)で表される化合物が金属に結合してなる化合物は、式(4)で表される化合物および特定化合物のいずれにも含まれず、また、硫黄化合物との反応性が低いため、硫化耐性の向上にも寄与しないと考えられる。
R 1 in formula (4a) is the same as R 1 in formula (4) above.
On the other hand, some compounds represented by formula (4) react with metals such as silver constituting the metal wiring in the conductive thin wire portion, and the sulfur atoms of the thiol group react with metals such as silver instead of hydrogen atoms. It is assumed that there is a compound that binds. Such a compound formed by bonding the compound represented by formula (4) to a metal is not included in either the compound represented by formula (4) or the specified compounds, and is also not reactive with sulfur compounds. Since it is low, it is considered that it does not contribute to improving sulfidation resistance.
 本発明の効果がより優れる点で、遮蔽層は、式(5)で表される化合物を含むことが好ましい。 It is preferable that the shielding layer contains a compound represented by formula (5) in order to obtain better effects of the present invention.
 遮蔽層に含まれる特定化合物は、1種のみであってもよく、2種以上であってもよい。
 遮蔽層に含まれる特定化合物の含有量は、本発明の効果がより優れる点で、遮蔽層の面積あたり0.01μg/cm以上であり、0.05μg/cm以上が好ましく、0.1μg/cm以上がより好ましい。
 特定化合物の含有量の上限値は、長期保管後の導電性基板の色味変化を抑制する効果がより優れる点で、遮蔽層の面積あたり8.0μg/cm以下であり、5.0μg/cm以下が好ましく、1.0μg/cm以下がより好ましい。
The number of specific compounds contained in the shielding layer may be one, or two or more.
The content of the specific compound contained in the shielding layer is 0.01 μg/cm 2 or more per area of the shielding layer, preferably 0.05 μg/cm 2 or more, and 0.1 μg per area of the shielding layer, so that the effect of the present invention is more excellent. /cm 2 or more is more preferable.
The upper limit of the content of the specific compound is 8.0 μg/cm 2 or less per area of the shielding layer, and 5.0 μg/cm 2 or less per area of the shielding layer, which is more effective in suppressing color change of the conductive substrate after long-term storage. cm 2 or less is preferable, and 1.0 μg/cm 2 or less is more preferable.
 遮蔽層に含まれる特定化合物の含有量は、遮蔽層を有する導電性基板を溶媒に浸漬し、特定化合物を抽出した後、溶媒中の特定化合物の含有量を定量することにより、測定できる。特定化合物の含有量の詳しい測定方法は、後述する実施例に記載する。 The content of the specific compound contained in the shielding layer can be measured by immersing the conductive substrate having the shielding layer in a solvent, extracting the specific compound, and then quantifying the content of the specific compound in the solvent. A detailed method for measuring the content of the specific compound will be described in the Examples below.
 遮蔽層は、特定化合物以外のその他の化合物を含んでいてもよい。例えば、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、2-メルカプトベンゾイミダゾール、2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウム、2-メルカプトベンゾオキサゾール、および、2-メルカプトベンゾチアゾールが挙げられる。
 なかでも、ベンゾイミダゾール、ベンゾオキサゾール、または、ベンゾチアゾールが好ましい。
 その他の化合物としては特定化合物の分解を抑制するものが好ましく、例えば特定化合物と水素結合、π-π相互作用などの静電的な相互作用をすることにより、特定化合物を安定化するものがより好ましい。
 特定化合物と上記その他の化合物を併用する場合の混合比は、導電性層中に含まれる特定化合物の含有量が上述の含有量の範囲ならば、任意に調整してよい。特定化合物の含有量に対するその他の化合物の含有量の比率は、質量比で0.01~200が好ましく、質量比は0.1~20がより好ましく、0.5~10がさらに好ましい。
 特定化合物以外のその他の化合物の含有量は、特定化合物の含有量の測定方法として記載する方法に従って測定できる。
The shielding layer may contain compounds other than the specific compound. Examples include benzimidazole, benzoxazole, benzothiazole, 2-mercaptobenzimidazole, sodium 2-mercapto-5-benzimidazole sulfonate, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole.
Among these, benzimidazole, benzoxazole, or benzothiazole is preferred.
Other compounds are preferably those that suppress the decomposition of the specific compound, and more preferably those that stabilize the specific compound by forming electrostatic interactions with the specific compound such as hydrogen bonds and π-π interactions. preferable.
The mixing ratio when the specific compound and the above-mentioned other compounds are used together may be arbitrarily adjusted as long as the content of the specific compound contained in the conductive layer is within the above-mentioned content range. The ratio of the content of other compounds to the content of the specific compound is preferably 0.01 to 200 in terms of mass ratio, more preferably 0.1 to 20, and even more preferably 0.5 to 10.
The content of other compounds other than the specific compound can be measured according to the method described as a method for measuring the content of the specific compound.
 本発明における遮蔽層の厚みは特に制限されず、0.01~20μmが好ましい。本発明の導電性基板から電気信号を引き出す際、保護層上にACF(異方性導電膜)を介し、引き出し用の配線パターンが圧着される場合が多いが、一般的に該異方性導電膜に含まれる導電性粒子の直径は10~20μmであるため、遮蔽層が厚いと、導電性粒子が導電性細線部に接触できず、電気信号を取り出すことが困難になる場合がある。このため、遮蔽層の厚みは10μm以下であることが好ましく、1μm以下であることがより好ましく、1μm未満であることがさらに好ましい。
 また、本発明の効果がより優れる点で、遮蔽層の厚みは、100nm以上であることが好ましい。
The thickness of the shielding layer in the present invention is not particularly limited, and is preferably 0.01 to 20 μm. When extracting electrical signals from the conductive substrate of the present invention, a wiring pattern for extraction is often crimped onto the protective layer via an ACF (anisotropic conductive film); Since the diameter of the conductive particles contained in the film is 10 to 20 μm, if the shielding layer is thick, the conductive particles may not be able to contact the conductive thin wire portion, making it difficult to extract electrical signals. Therefore, the thickness of the shielding layer is preferably 10 μm or less, more preferably 1 μm or less, and even more preferably less than 1 μm.
Further, in order to obtain better effects of the present invention, the thickness of the shielding layer is preferably 100 nm or more.
 本発明の導電性基板における、遮蔽層の形成工程について説明する。
 遮蔽層は、特定化合物と、固化することによりバインダー樹脂となる水系樹脂組成物とを含む塗布液を導電層上に塗布して乾燥させることにより形成してもよい。
The formation process of the shielding layer in the conductive substrate of the present invention will be explained.
The shielding layer may be formed by applying a coating liquid containing a specific compound and an aqueous resin composition that becomes a binder resin upon solidification onto the conductive layer and drying the coating liquid.
 遮蔽層の形成方法としては、塗布法が好ましい。遮蔽層形成用の塗布液を調製し、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等の公知の方法を利用して、導電層上に遮蔽層形成用の塗布液を塗布する。 A coating method is preferred as a method for forming the shielding layer. A coating liquid for forming a shielding layer is prepared, and the coating liquid for forming a shielding layer is applied onto the conductive layer using a known method such as a dip coater, die coater, slit coater, bar coater, or gravure coater.
 遮蔽層形成用の塗布液を塗布した後には、遮蔽層を乾燥させる工程(乾燥工程)を設けることが好ましい。乾燥工程により、水系樹脂組成物の水系溶媒が除去され、固化する。
 乾燥工程は、遮蔽層に乾燥風を供給する工程である。
 乾燥風の平均風速は、5~30m/秒であることが好ましく、7~25m/秒であることがより好ましく、9~20m/秒以下であることがさらに好ましい。
 乾燥風温度は、50℃~200℃であることが好ましく、70℃~150℃であることがより好ましく、90℃~120℃であることがさらに好ましい。
 乾燥時間は、30秒~300秒であることが好ましく、60秒~180秒であることがより好ましい。
After applying the coating liquid for forming the shielding layer, it is preferable to provide a step of drying the shielding layer (drying step). The drying process removes the aqueous solvent of the aqueous resin composition and solidifies it.
The drying process is a process of supplying drying air to the shielding layer.
The average wind speed of the drying air is preferably 5 to 30 m/sec, more preferably 7 to 25 m/sec, and even more preferably 9 to 20 m/sec or less.
The drying air temperature is preferably 50°C to 200°C, more preferably 70°C to 150°C, even more preferably 90°C to 120°C.
The drying time is preferably 30 seconds to 300 seconds, more preferably 60 seconds to 180 seconds.
〔導電性基板の製造方法〕
 次に、導電性基板の製造方法について説明する。
 導電性基板の製造方法は、上述した構成の導電性基板が製造できれば特に制限されず、公知の方法が採用される。例えば、ハロゲン化銀を用いて露光および現像を行う方法、支持体の全面に金属含有層を形成した後、レジストパターンを用いて金属含有層の一部を除去して、細線状の金属含有層を形成する方法、並びに、金属および樹脂を含む組成物をインクジェット等の公知の印刷方法により基材上に吐出して細線状の金属含有層を形成する方法が挙げられる。
 なかでも、生産性および導電性細線部の導電性がより優れる点で、ハロゲン化銀を用いて露光および現像を行う方法が好ましい。具体的には、後述する工程A~工程Dおよび工程Qをこの順に有する導電性基板の製造方法が挙げられる。
 以下、工程A~工程Dおよび工程Qを有する導電性基板の製造方法について詳述するが、本発明に係る導電性基板の製造方法は、下記の製造方法に制限されない。
[Method for manufacturing conductive substrate]
Next, a method for manufacturing the conductive substrate will be described.
The method for manufacturing the conductive substrate is not particularly limited as long as the conductive substrate having the above-mentioned configuration can be manufactured, and a known method may be employed. For example, a method of exposing and developing using silver halide, forming a metal-containing layer on the entire surface of the support, and then removing a part of the metal-containing layer using a resist pattern to form a thin line-shaped metal-containing layer. and a method in which a thin line-shaped metal-containing layer is formed by discharging a composition containing a metal and a resin onto a substrate using a known printing method such as inkjet printing.
Among these, a method in which exposure and development are performed using silver halide is preferred in terms of productivity and superior conductivity of the conductive thin wire portion. Specifically, a method for manufacturing a conductive substrate includes steps A to D and Q, which will be described later, in this order.
Hereinafter, a method for manufacturing a conductive substrate having steps A to D and a step Q will be described in detail, but the method for manufacturing a conductive substrate according to the present invention is not limited to the following manufacturing method.
<工程A>
 工程Aは、基材上に、ハロゲン化銀とゼラチンと特定高分子(ゼラチンとは異なる高分子化合物)とを含むハロゲン化銀含有感光性層(以下、「感光性層」ともいう。)を形成する工程である。本工程により、後述する露光処理が施される感光性層付き基材が製造される。
 まず、工程Aで使用される材料および部材について詳述し、その後、工程Aの手順について詳述する。
 なお、工程Aで使用される基材、および、特定高分子については上述の通りである。
<Process A>
In step A, a silver halide-containing photosensitive layer (hereinafter also referred to as "photosensitive layer") containing silver halide, gelatin, and a specific polymer (a polymer compound different from gelatin) is formed on a base material. This is the process of forming. Through this step, a base material with a photosensitive layer to which the exposure treatment described below is performed is manufactured.
First, the materials and members used in step A will be explained in detail, and then the procedure of step A will be explained in detail.
Note that the base material and specific polymer used in Step A are as described above.
(ハロゲン化銀)
 ハロゲン化銀に含まれるハロゲン原子は、塩素原子、臭素原子、ヨウ素原子およびフッ素原子のいずれであってもよく、これらを組み合わせでもよい。例えば、塩化銀、臭化銀またはヨウ化銀を主体としたハロゲン化銀が好ましく、塩化銀または臭化銀を主体としたハロゲン化銀がより好ましい。なお、塩臭化銀、ヨウ塩臭化銀またはヨウ臭化銀も、好ましく用いられる。
 ここで、例えば、「塩化銀を主体としたハロゲン化銀」とは、ハロゲン化銀組成中、全ハロゲン化物イオンに占める塩化物イオンのモル分率が50%以上のハロゲン化銀をいう。この塩化銀を主体としたハロゲン化銀は、塩化物イオンのほかに、臭化物イオンおよび/またはヨウ化物イオンを含んでいてもよい。
(silver halide)
The halogen atom contained in the silver halide may be any of a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, or a combination of these may be used. For example, silver halide mainly composed of silver chloride, silver bromide or silver iodide is preferred, and silver halide mainly composed of silver chloride or silver bromide is more preferred. Note that silver chlorobromide, silver iodochlorobromide, and silver iodobromide are also preferably used.
Here, for example, "silver halide mainly composed of silver chloride" refers to silver halide in which the molar fraction of chloride ions to all halide ions in the silver halide composition is 50% or more. This silver halide mainly composed of silver chloride may contain bromide ions and/or iodide ions in addition to chloride ions.
 ハロゲン化銀は、通常、固体粒子状であり、ハロゲン化銀の平均粒子径は、球相当径で10~1000nmが好ましく、10~200nmがより好ましく、湿熱環境下において導電性細線部の抵抗値の変化がより小さい点で、50~150nmが更に好ましい。
 なお、球相当径とは、同じ体積を有する球形粒子の直径である。
 上述のハロゲン化銀の平均粒子径として用いられる「球相当径」は平均値であり、100個のハロゲン化銀の球相当径を測定して、それらを算術平均したものである。
Silver halide is usually in the form of solid particles, and the average particle diameter of silver halide is preferably 10 to 1000 nm in equivalent sphere diameter, more preferably 10 to 200 nm, and the resistance value of the conductive thin wire portion in a moist heat environment A range of 50 to 150 nm is more preferable in that the change in is smaller.
Note that the spherical equivalent diameter is the diameter of spherical particles having the same volume.
The "equivalent sphere diameter" used as the average particle diameter of the silver halide mentioned above is an average value, which is the arithmetic average of 100 equivalent sphere diameters of silver halide.
 ハロゲン化銀の粒子の形状は特に制限されず、例えば、球状、立方体状、平板状(6角平板状、三角形平板状、4角形平板状等)、八面体状、および、14面体状等の形状が挙げられる。 The shape of the silver halide grains is not particularly limited, and examples thereof include spherical, cubic, tabular (hexagonal tabular, triangular tabular, quadrilateral tabular, etc.), octahedral, and tetradecahedral. One example is the shape.
(ゼラチン)
 ゼラチンの種類は特に制限されず、例えば、石灰処理ゼラチン、および、酸処理ゼラチンが挙げられる。また、ゼラチンの加水分解物、ゼラチンの酵素分解物、並びに、アミノ基および/またはカルボキシ基で修飾されたゼラチン(フタル化ゼラチン、および、アセチル化ゼラチン)等を用いてもよい。
(gelatin)
The type of gelatin is not particularly limited, and examples thereof include lime-treated gelatin and acid-treated gelatin. Further, gelatin hydrolysates, gelatin enzymatically decomposed products, gelatin modified with amino groups and/or carboxy groups (phthalated gelatin, acetylated gelatin), etc. may be used.
 感光性層には、上述の特定高分子が含まれる。この特定高分子が感光性層に含まれることにより、感光性層より形成される導電性細線部および透明絶縁部の強度がより向上する。 The photosensitive layer contains the above-mentioned specific polymer. By including this specific polymer in the photosensitive layer, the strength of the conductive thin wire portion and the transparent insulating portion formed from the photosensitive layer is further improved.
(工程Aの手順)
 工程Aにおいて上述の成分を含む感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀とゼラチンと特定高分子とを含む感光性層形成用組成物を基材上に接触させ、基材上に感光性層を形成する方法が好ましい。
 以下に、この方法で使用される感光性層形成用組成物の形態について詳述し、その後、工程の手順について詳述する。
(Procedure of process A)
The method for forming the photosensitive layer containing the above-mentioned components in Step A is not particularly limited, but from the viewpoint of productivity, a composition for forming a photosensitive layer containing silver halide, gelatin, and a specific polymer is coated on the base material. A preferred method is to form a photosensitive layer on a substrate by bringing it into contact with the substrate.
Below, the form of the composition for forming a photosensitive layer used in this method will be explained in detail, and then the steps of the process will be explained in detail.
(感光性層形成用組成物に含まれる材料)
 感光性層形成用組成物には、上述したハロゲン化銀とゼラチンと特定高分子とが含まれる。なお、必要に応じて、特定高分子は粒子状の形態で感光性層形成用組成物中に含まれていてもよい。
 感光性層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。
 溶媒としては、水、有機溶剤(例えば、アルコール類、ケトン類、アミド類、スルホキシド類、エステル類およびエーテル類)、イオン性液体、並びに、これらの混合溶媒が挙げられる。
(Materials included in the photosensitive layer forming composition)
The composition for forming a photosensitive layer contains the above-mentioned silver halide, gelatin, and specific polymer. Note that, if necessary, the specific polymer may be contained in the composition for forming a photosensitive layer in the form of particles.
The composition for forming a photosensitive layer may contain a solvent as necessary.
Examples of the solvent include water, organic solvents (for example, alcohols, ketones, amides, sulfoxides, esters, and ethers), ionic liquids, and mixed solvents thereof.
 感光性層形成用組成物と基材とを接触させる方法は特に制限されず、例えば、感光性層形成用組成物を基材上に塗布する方法、および、感光性層形成用組成物中に基材を浸漬する方法等が挙げられる。
 なお、上述の処理後、必要に応じて、乾燥処理を実施してもよい。
The method of bringing the composition for forming a photosensitive layer into contact with the base material is not particularly limited. Examples include a method of dipping the base material.
Note that after the above-mentioned treatment, a drying treatment may be performed as necessary.
(ハロゲン化銀含有感光性層)
 上述の手順により形成された感光性層には、ハロゲン化銀とゼラチンと特定高分子とが含まれる。
 感光性層中におけるハロゲン化銀の含有量は特に制限されず、導電性基板の導電性がより優れる点で、銀換算で3.0~20.0g/mが好ましく、5.0~15.0g/mがより好ましい。銀換算とは、ハロゲン化銀が全て還元されて生成される銀の質量に換算したことを意味する。
 感光性層中における特定高分子の含有量は特に制限されず、導電性基板の導電性がより優れる点で、0.04~2.0g/mが好ましく、0.08~0.40g/mがより好ましく、0.10~0.40g/mが更に好ましい。
(Silver halide-containing photosensitive layer)
The photosensitive layer formed by the above procedure contains silver halide, gelatin, and a specific polymer.
The content of silver halide in the photosensitive layer is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 in terms of silver, and 5.0 to 15 g/m 2 in terms of silver, since the conductive substrate has better conductivity. .0 g/m 2 is more preferred. Silver conversion means that the mass of silver produced by reducing all the silver halide is converted.
The content of the specific polymer in the photosensitive layer is not particularly limited, and is preferably 0.04 to 2.0 g/m2, and 0.08 to 0.40 g/ m2 , since the conductivity of the conductive substrate is better. m 2 is more preferable, and 0.10 to 0.40 g/m 2 is even more preferable.
<工程B>
 工程Bは、感光性層を露光した後、現像処理して、金属銀とゼラチンと特定高分子とを含む細線状の銀含有層を形成する工程である。
<Process B>
Step B is a step of exposing the photosensitive layer to light and then developing it to form a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer.
 感光性層に露光処理を施すことにより、露光領域において潜像が形成される。
 露光はパターン状に実施してもよく、例えば、後述する導電性細線部からなるメッシュパターンを得るためには、メッシュ状の開口パターンを有するマスクを介して、露光する方法、および、レーザー光を走査してメッシュ状に露光する方法が挙げられる。
 露光の際に使用される光の種類は特に制限されず、ハロゲン化銀に潜像を形成できるものであればよく、例えば、可視光線、紫外線、および、X線が挙げられる。
By exposing the photosensitive layer to light, a latent image is formed in the exposed area.
Exposure may be carried out in a pattern. For example, in order to obtain a mesh pattern consisting of conductive thin wire portions, which will be described later, there is a method of exposing through a mask having a mesh-like opening pattern, and a method of exposing with laser light. An example is a method of scanning and exposing in a mesh pattern.
The type of light used during exposure is not particularly limited as long as it can form a latent image on the silver halide, and examples include visible light, ultraviolet light, and X-rays.
 露光された感光性層に現像処理を施すことにより、露光領域(潜像が形成された領域)では、金属銀が析出する。
 現像処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる公知の方法が挙げられる。
 現像処理では、通常、現像液を用いる。現像液の種類は特に制限されず、例えば、PQ(phenidone hydroquinone)現像液、MQ(Metol hydroquinone)現像液、および、MAA(メトール・アスコルビン酸)現像液が挙げられる。
By performing a development treatment on the exposed photosensitive layer, metallic silver is precipitated in the exposed area (the area where the latent image is formed).
The development method is not particularly limited, and examples thereof include known methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
In the development process, a developer is usually used. The type of developer is not particularly limited, and examples thereof include PQ (phenidone hydroquinone) developer, MQ (metol hydroquinone) developer, and MAA (methol ascorbic acid) developer.
 本工程は、未露光部分のハロゲン化銀を除去して安定化させる目的で行われる定着処理を更に有してもよい。
 定着処理は、現像と同時および/または現像の後に実施される。定着処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる方法が挙げられる。
 定着処理では、通常、定着液を用いる。定着液の種類は特に制限されず、例えば、「写真の化学」(笹井著、株式会社写真工業出版社)p321記載の定着液が挙げられる。
This step may further include a fixing treatment performed for the purpose of removing and stabilizing silver halide in unexposed areas.
The fixing process is performed simultaneously with and/or after the development. The fixing treatment method is not particularly limited, and examples thereof include methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
In the fixing process, a fixing solution is usually used. The type of fixer is not particularly limited, and for example, the fixer described in "Chemistry of Photography" (written by Sasai, published by Photo Industry Publishing Co., Ltd.), p. 321 can be mentioned.
 上述の処理を実施することにより、金属銀とゼラチンと特定高分子とを含む、細線状の銀含有層が形成されるとともに、金属銀を含まず、ゼラチンと特定高分子とを含む絶縁層が形成される。
 銀含有層の幅を調整する方法としては、例えば、露光時に使用されるマスクの開口幅を調整する方法が挙げられる。例えば、マスクの開口幅を1.0μm以上5.0μm未満にすることにより、露光領域を調整できる。
 また、露光時にマスクを使用する際には、露光量を調整することにより、形成される銀含有層の幅を調整することもできる。例えば、マスクの開口幅が目標とする銀含有層の幅よりも狭い場合には、露光量を通常よりも増加させることにより、潜像が形成される領域の幅を調整できる。すなわち、露光量により、導電性細線部の線幅を調整できる。
 更に、レーザー光を用いる場合は、レーザー光の集光範囲および/または走査範囲を調整することにより、露光領域を調整できる。
By carrying out the above treatment, a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer is formed, and an insulating layer that does not contain metallic silver and contains gelatin and a specific polymer is formed. It is formed.
An example of a method for adjusting the width of the silver-containing layer is a method of adjusting the opening width of a mask used during exposure. For example, the exposure area can be adjusted by setting the opening width of the mask to 1.0 μm or more and less than 5.0 μm.
Moreover, when using a mask during exposure, the width of the silver-containing layer to be formed can also be adjusted by adjusting the exposure amount. For example, when the opening width of the mask is narrower than the target width of the silver-containing layer, the width of the area where the latent image is formed can be adjusted by increasing the exposure amount more than usual. That is, the line width of the conductive thin line portion can be adjusted by adjusting the exposure amount.
Furthermore, when using laser light, the exposure area can be adjusted by adjusting the focusing range and/or scanning range of the laser light.
 銀含有層の幅は、1.0μm以上5.0μm未満が好ましく、形成される導電性細線部が視認されにくい点から、2.0μm以下がより好ましい。
 なお、上述の手順によって得られる銀含有層は細線状であり、銀含有層の幅とは細線状の銀含有層が延在する方向に直交する方向における銀含有層の長さ(幅)を意味する。
The width of the silver-containing layer is preferably 1.0 μm or more and less than 5.0 μm, and more preferably 2.0 μm or less since the formed conductive thin wire portion is difficult to be visually recognized.
The silver-containing layer obtained by the above procedure is in the form of a thin line, and the width of the silver-containing layer refers to the length (width) of the silver-containing layer in the direction perpendicular to the direction in which the thin line-shaped silver-containing layer extends. means.
<工程C>
 工程Cは、工程Bで得られた銀含有層および絶縁層(以下、両者を「銀含有層等」ともいう。)に対して加熱処理を施す工程である。本工程を実施することにより、銀含有層等中の特定高分子間での融着が進行し、銀含有層等の強度が向上する。
<Process C>
Step C is a step in which the silver-containing layer and the insulating layer (hereinafter, both are also referred to as "silver-containing layer etc.") obtained in Step B are subjected to heat treatment. By carrying out this step, fusion between specific polymers in the silver-containing layer, etc. progresses, and the strength of the silver-containing layer, etc. improves.
 加熱処理の方法は特に制限されず、銀含有層等に過熱蒸気を接触させる方法、および、温度調整装置(例えば、ヒーター)で加熱する方法が挙げられ、銀含有層等と過熱蒸気とを接触させる方法が好ましい。 The heat treatment method is not particularly limited, and examples include a method of bringing superheated steam into contact with the silver-containing layer, etc., and a method of heating with a temperature adjustment device (e.g., a heater). The preferred method is to
 過熱蒸気としては、過熱水蒸気でもよいし、過熱水蒸気に他のガスを混合させたものでもよい。
 過熱蒸気と銀含有層等との接触時間は特に制限されず、10~70秒間が好ましい。
 過熱蒸気の供給量は、500~600g/mが好ましく、過熱蒸気の温度は、1気圧で100~160℃(好ましくは100~120℃)が好ましい。
The superheated steam may be superheated steam or a mixture of superheated steam and other gas.
The contact time between the superheated steam and the silver-containing layer is not particularly limited, and is preferably 10 to 70 seconds.
The amount of superheated steam supplied is preferably 500 to 600 g/m 3 , and the temperature of superheated steam is preferably 100 to 160°C (preferably 100 to 120°C) at 1 atmosphere.
 温度調整装置で銀含有層等を加熱する方法における加熱条件としては、100~200℃(好ましくは100~150℃)で1~240分間(好ましくは60~150分間)加熱する条件が好ましい。 The heating conditions in the method of heating the silver-containing layer etc. with a temperature adjustment device are preferably heating at 100 to 200 °C (preferably 100 to 150 °C) for 1 to 240 minutes (preferably 60 to 150 minutes).
<工程D>
 工程Dは、工程Cで得られた銀含有層等中のゼラチンを除去する工程である。本工程を実施することにより、銀含有層等からゼラチンが除去され、銀含有層等の内部に空間が形成される。
<Process D>
Step D is a step of removing gelatin in the silver-containing layer etc. obtained in Step C. By performing this step, gelatin is removed from the silver-containing layer, etc., and a space is formed inside the silver-containing layer, etc.
 ゼラチンを除去する方法は特に制限されず、例えば、タンパク質分解酵素を用いる方法(以下、「方法1」ともいう。)、および、酸化剤を用いてゼラチンを分解除去する方法(以下、「方法2」ともいう。)が挙げられる。 The method for removing gelatin is not particularly limited, and examples include a method using a protease (hereinafter also referred to as "Method 1") and a method of decomposing and removing gelatin using an oxidizing agent (hereinafter referred to as "Method 2"). ).
 方法1において用いられるタンパク質分解酵素としては、ゼラチン等のタンパク質を加水分解できる植物性または動物性酵素で公知の酵素が挙げられる。
 タンパク質分解酵素としては、例えば、ペプシン、レンニン、トリプシン、キモトリプシン、カテプシン、パパイン、フィシン、トロンビン、レニン、コラゲナーゼ、ブロメライン、および、細菌プロテアーゼが挙げられ、トリプシン、パパイン、フィシン、または、細菌プロテアーゼが好ましい。
 方法1における手順としては、銀含有層等と上述のタンパク質分解酵素とを接触させる方法であればよく、例えば、銀含有層等とタンパク質分解酵素を含む処理液(以下、「酵素液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層等を酵素液中に浸漬させる方法、および、銀含有層等上に酵素液を塗布する方法が挙げられる。
 酵素液中におけるタンパク質分解酵素の含有量は特に制限されず、ゼラチンの分解除去の程度が制御しやすい点で、酵素液全量に対して、0.05~20質量%が好ましく、0.5~10質量%がより好ましい。
 酵素液には、上述のタンパク質分解酵素に加え、水が含まれることが多い。
 酵素液には、必要に応じて、他の添加剤(例えば、pH緩衝剤、抗菌性化合物、湿潤剤、および、保恒剤)が含まれていてもよい。
 酵素液のpHは、酵素の働きが最大限得られるように選ばれるが、5~9が好ましい。
 酵素液の温度は、酵素の働きが高まる温度が好ましい。具体的には20~45℃が好ましい。
The protease used in Method 1 includes known plant or animal enzymes that can hydrolyze proteins such as gelatin.
Examples of proteolytic enzymes include pepsin, rennin, trypsin, chymotrypsin, cathepsin, papain, ficin, thrombin, renin, collagenase, bromelain, and bacterial protease, with trypsin, papain, ficin, or bacterial protease being preferred. .
The procedure in method 1 may be any method as long as it brings the silver-containing layer etc. into contact with the above-mentioned proteolytic enzyme. ). Examples of the contact method include a method in which the silver-containing layer, etc. is immersed in an enzyme solution, and a method in which the enzyme solution is applied onto the silver-containing layer, etc.
The content of the protease in the enzyme solution is not particularly limited, and is preferably 0.05 to 20% by mass, and 0.5 to 20% by mass based on the total amount of the enzyme solution, since the degree of gelatin decomposition and removal can be easily controlled. 10% by mass is more preferred.
In addition to the above-mentioned proteolytic enzymes, the enzyme solution often contains water.
The enzyme solution may contain other additives (for example, a pH buffer, an antibacterial compound, a wetting agent, and a preservative) as necessary.
The pH of the enzyme solution is selected to maximize the enzyme's function, and is preferably between 5 and 9.
The temperature of the enzyme solution is preferably a temperature at which the action of the enzyme is enhanced. Specifically, the temperature is preferably 20 to 45°C.
 なお、必要に応じて、酵素液での処理後に、得られた銀含有層等を温水にて洗浄する洗浄処理を実施してもよい。
 洗浄方法は特に制限されず、銀含有層等と温水とを接触させる方法が好ましく、例えば、温水中に銀含有層等を浸漬する方法、および、銀含有層等上に温水を塗布する方法が挙げられる。
 温水の温度は使用されるタンパク質分解酵素の種類に応じて適宜最適な温度が選択され、生産性の点から、20~80℃が好ましく、40~60℃がより好ましい。
 温水と銀含有層等との接触時間(洗浄時間)は特に制限されず、生産性の点から、1~600秒間が好ましく、30~360秒間がより好ましい。
Note that, if necessary, after the treatment with the enzyme solution, a cleaning treatment of cleaning the obtained silver-containing layer and the like with warm water may be performed.
The cleaning method is not particularly limited, and a method of bringing the silver-containing layer, etc. into contact with hot water is preferable; for example, a method of immersing the silver-containing layer, etc. in hot water, and a method of applying hot water on the silver-containing layer, etc. are preferable. Can be mentioned.
The optimum temperature of the hot water is selected depending on the type of proteolytic enzyme used, and from the viewpoint of productivity, it is preferably 20 to 80°C, more preferably 40 to 60°C.
The contact time (cleaning time) between hot water and the silver-containing layer, etc. is not particularly limited, and from the viewpoint of productivity, it is preferably 1 to 600 seconds, more preferably 30 to 360 seconds.
 方法2で用いられる酸化剤としては、ゼラチンを分解できる酸化剤であればよく、標準電極電位が+1.5V以上である酸化剤が好ましい。なお、ここで標準電極電位とは、酸化剤の水溶液中における標準水素電極に対する標準電極電位(25℃、E0)を意図する。
 上述の酸化剤としては、例えば、過硫酸、過炭酸、過リン酸、次過塩素酸、過酢酸、メタクロロ過安息香酸、過酸化水素水、過塩素酸、過ヨウ素酸、過マンガン酸カリウム、過硫酸アンモニウム、オゾン、次亜塩素酸またはその塩等が挙げられるが、生産性、経済性の観点で、過酸化水素水(標準電極電位:1.76V)、次亜塩素酸またはその塩が好ましく、次亜塩素酸ナトリウムがより好ましい。
The oxidizing agent used in method 2 may be any oxidizing agent that can decompose gelatin, and preferably has a standard electrode potential of +1.5 V or more. Note that the standard electrode potential herein refers to the standard electrode potential (25° C., E0) relative to a standard hydrogen electrode in an aqueous solution of an oxidizing agent.
Examples of the above-mentioned oxidizing agents include persulfuric acid, percarbonic acid, perphosphoric acid, hypoperchloric acid, peracetic acid, metachloroperbenzoic acid, hydrogen peroxide, perchloric acid, periodic acid, potassium permanganate, Examples include ammonium persulfate, ozone, hypochlorous acid or its salts, but from the viewpoint of productivity and economy, hydrogen peroxide (standard electrode potential: 1.76V), hypochlorous acid or its salts are preferable. , sodium hypochlorite is more preferred.
 方法2における手順としては、銀含有層等と上述の酸化剤とを接触させる方法であればよく、例えば、銀含有層等と酸化剤を含む処理液(以下、「酸化剤液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層等を酸化剤液中に浸漬させる方法、および、銀含有層等上に酸化剤液を塗布する方法が挙げられる。
 酸化剤液に含まれる溶媒の種類は特に制限されず、水、および、有機溶剤が挙げられる。
The procedure in Method 2 may be a method of bringing the silver-containing layer etc. into contact with the above-mentioned oxidizing agent, for example, a treatment liquid containing the silver-containing layer etc. and the oxidizing agent (hereinafter also referred to as "oxidizing agent liquid"). ). Examples of the contact method include a method in which the silver-containing layer, etc. is immersed in an oxidizing agent solution, and a method in which the oxidizing agent solution is applied onto the silver-containing layer, etc.
The type of solvent contained in the oxidizing agent liquid is not particularly limited, and examples include water and organic solvents.
<工程E>
 導電性基板の製造方法は、工程Dで得られた銀含有層に対してめっき処理を施す工程Eを有してもよい。本工程を実施することにより、ゼラチンを除去することにより形成された銀含有層の内部の空間に金属(めっき金属)を充填し、導電性細線部の導電性を向上させることができる。
<Process E>
The method for manufacturing a conductive substrate may include a step E in which the silver-containing layer obtained in step D is subjected to a plating treatment. By performing this step, the space inside the silver-containing layer formed by removing gelatin is filled with metal (plated metal), and the conductivity of the conductive thin wire portion can be improved.
 めっき処理の種類は特に制限されないが、無電解めっき(化学還元めっき、または、置換めっき)および電解めっきが挙げられ、無電解めっきが好ましい。無電解めっきとしては、公知の無電解めっき技術が用いられる。
 めっき処理としては、例えば、銀めっき処理、銅めっき処理、ニッケルめっき処理、および、コバルトめっき処理が挙げられ、導電性細線部の導電性がより優れる点で、銀めっき処理または銅めっき処理が好ましく、銀めっき処理がより好ましい。
The type of plating treatment is not particularly limited, but includes electroless plating (chemical reduction plating or displacement plating) and electrolytic plating, with electroless plating being preferred. As the electroless plating, a known electroless plating technique is used.
Examples of the plating treatment include silver plating treatment, copper plating treatment, nickel plating treatment, and cobalt plating treatment, and silver plating treatment or copper plating treatment is preferable because the conductivity of the conductive thin wire portion is better. , silver plating treatment is more preferred.
 めっき処理で用いられるめっき液に含まれる成分は特に制限されないが、通常、溶媒(例えば、水)の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)、4.pH調整剤が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤等、公知の添加剤が含まれていてもよい。
 めっき液に含まれるめっき用の金属イオンの種類は析出させたい金属種に応じて適宜選択でき、例えば、銀イオン、銅イオン、ニッケルイオン、および、コバルトイオンが挙げられる。
The components contained in the plating solution used in the plating process are not particularly limited, but usually include 1. in addition to a solvent (for example, water). Metal ions for plating, 2. reducing agent, 3. Additives (stabilizers) that improve the stability of metal ions; 4. Mainly contains pH adjusters. In addition to these, the plating bath may contain known additives such as a plating bath stabilizer.
The type of metal ion for plating contained in the plating solution can be appropriately selected depending on the type of metal to be deposited, and examples thereof include silver ion, copper ion, nickel ion, and cobalt ion.
 上述のめっき処理の手順は特に制限されず、銀含有層とめっき液とを接触させる方法であればよく、例えば、めっき液中に銀含有層を浸漬させる方法、および、めっき液を銀含有層に塗布する方法が挙げられる。
 銀含有層とめっき液との接触時間は特に制限されず、導電性細線部の導電性がより優れる点および生産性の点から、20秒間~30分間が好ましい。
The above-mentioned plating procedure is not particularly limited, and may be any method that brings the silver-containing layer into contact with the plating solution.For example, a method of immersing the silver-containing layer in the plating solution, One method is to apply it to the surface.
The contact time between the silver-containing layer and the plating solution is not particularly limited, and is preferably from 20 seconds to 30 minutes from the viewpoint of better conductivity of the conductive thin wire portion and productivity.
<工程F>
 導電性基板の製造方法は、上記の工程で得られた銀含有層等に、更に平滑化処理を施す工程Fを有してもよい。
<Process F>
The method for manufacturing a conductive substrate may include a step F in which the silver-containing layer obtained in the above step is further subjected to a smoothing treatment.
 平滑化処理の方法は特に制限されず、例えば、銀含有層等を有する基材を、少なくとも一対のロール間を加圧下で通過させるカレンダー処理工程が好ましい。以下、カレンダーロールを用いた平滑化処理をカレンダー処理と記す。
 カレンダー処理に用いられるロールとしては、プラスチックロール、および、金属ロールが挙げられ、シワ防止の点から、プラスチックロールが好ましい。
 ロール間の圧力は特に制限されず、2MPa以上が好ましく、4MPa以上がより好ましく、120MPa以下が好ましい。なお、ロール間の圧力は、富士フイルム株式会社製プレスケール(高圧用)を用いて測定できる。
 平滑化処理の温度は特に制限されず、10~100℃が好ましく、10~50℃がより好ましい。
The method of smoothing treatment is not particularly limited, and for example, a calendar treatment step in which a base material having a silver-containing layer or the like is passed between at least a pair of rolls under pressure is preferred. Hereinafter, the smoothing process using a calender roll will be referred to as calender process.
Rolls used for calendering include plastic rolls and metal rolls, with plastic rolls being preferred from the viewpoint of wrinkle prevention.
The pressure between the rolls is not particularly limited, and is preferably 2 MPa or more, more preferably 4 MPa or more, and preferably 120 MPa or less. Note that the pressure between the rolls can be measured using Prescale (for high pressure) manufactured by Fujifilm Corporation.
The temperature of the smoothing treatment is not particularly limited, and is preferably 10 to 100°C, more preferably 10 to 50°C.
<工程G>
 導電性基板の製造方法は、上記の工程で得られた銀含有層等に加熱処理を施す工程Gを有してもよい。本工程を実施することにより、導電性により優れる導電性細線部が得られる。
 導電性細線部に加熱処理を施す方法は特に制限されず、工程Cで述べた方法が挙げられる。
<Process G>
The method for manufacturing a conductive substrate may include a step G of subjecting the silver-containing layer etc. obtained in the above steps to a heat treatment. By carrying out this step, a conductive thin wire portion with better conductivity can be obtained.
The method of heat-treating the conductive thin wire portion is not particularly limited, and examples include the method described in Step C.
<工程H>
 導電性基板の製造方法は、工程Aの前に、基材上にゼラチンおよび特定高分子を含むハロゲン化銀不含有層を形成する工程Hを有してもよい。本工程を実施することにより、基材とハロゲン化銀含有感光性層との間にハロゲン化銀不含有層が形成される。このハロゲン化銀不含有層は、いわゆるアンチハレーション層の役割を果たすと共に、導電性層と基材との密着性向上に寄与する。
 ハロゲン化銀不含有層には、上述したゼラチンと特定高分子とが含まれる。一方、ハロゲン化銀不含有層には、ハロゲン化銀が含まれない。
 ハロゲン化銀不含有層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0.1~5.0が好ましく、1.0~3.0がより好ましい。
 ハロゲン化銀不含有層中の特定高分子の含有量は特に制限されず、0.03g/m以上の場合が多く、導電性細線部の密着性がより優れる点で、1.0g/m以上が好ましい。上限は特に制限されないが、1.63g/m以下の場合が多い。
<Process H>
The method for producing a conductive substrate may include, before Step A, Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material. By carrying out this step, a silver halide-free layer is formed between the substrate and the silver halide-containing photosensitive layer. This silver halide-free layer plays the role of a so-called antihalation layer and also contributes to improving the adhesion between the conductive layer and the base material.
The silver halide-free layer contains the above-mentioned gelatin and specific polymer. On the other hand, the silver halide-free layer does not contain silver halide.
The ratio of the mass of the specific polymer to the mass of gelatin (mass of specific polymer/mass of gelatin) in the silver halide-free layer is not particularly limited, and is preferably 0.1 to 5.0, and 1. More preferably 0 to 3.0.
The content of the specific polymer in the silver halide-free layer is not particularly limited, and is often 0.03 g/m 2 or more. 2 or more is preferred. The upper limit is not particularly limited, but is often 1.63 g/m 2 or less.
 ハロゲン化銀不含有層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含有する層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
 ハロゲン化銀不含有層形成用組成物には、必要に応じて溶媒が含まれていてもよい。溶媒の種類は、上述した感光性層形成用組成物で使用される溶媒が例示される。
 ハロゲン化銀不含有層の厚みは特に制限されず、0.05μm以上の場合が多く、導電性細線部の密着性がより優れる点で、1.0μm超が好ましく、1.5μm以上がより好ましい。上限は特に制限されないが、3.0μm未満であることが好ましい。
The method of forming the silver halide-free layer is not particularly limited, and for example, a method of applying a layer-forming composition containing gelatin and a specific polymer onto a base material and subjecting it to a heat treatment as necessary is available. Can be mentioned.
The composition for forming a silver halide-free layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
The thickness of the silver halide-free layer is not particularly limited, and is often 0.05 μm or more, preferably more than 1.0 μm, more preferably 1.5 μm or more, since the adhesion of the conductive thin wire portion is better. . Although the upper limit is not particularly limited, it is preferably less than 3.0 μm.
<工程I>
 導電性基板の製造方法は、工程Aの後で工程Bの前に、ハロゲン化銀含有感光性層上にゼラチンと特定高分子とを含む保護層を形成する工程Iを有してもよい。保護層を設けることにより、感光性層の擦り傷防止および力学特性を改良できる。
 保護層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0超2.0以下が好ましく、0超1.0以下がより好ましい。
 また、保護層中の特定高分子の含有量は特に制限されず、0g/m超0.3g/m以下が好ましく、0.005~0.1g/mがより好ましい。
<Step I>
After step A and before step B, the method for producing a conductive substrate may include step I of forming a protective layer containing gelatin and a specific polymer on the silver halide-containing photosensitive layer. By providing a protective layer, the scratch prevention and mechanical properties of the photosensitive layer can be improved.
The ratio of the mass of the specific polymer to the mass of gelatin in the protective layer (mass of specific polymer/mass of gelatin) is not particularly limited, and is preferably greater than 0 and less than or equal to 2.0, and more than 0 and less than or equal to 1.0. More preferred.
Further, the content of the specific polymer in the protective layer is not particularly limited, and is preferably more than 0 g/m 2 and 0.3 g/m 2 or less, and more preferably 0.005 to 0.1 g/m 2 .
 層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含む保護層形成用組成物をハロゲン化銀含有感光性層上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
 保護層形成用組成物には、必要に応じて溶媒が含まれていてもよい。溶媒の種類は、上述した感光性層形成用組成物で使用される溶媒が例示される。
 保護層の厚みは特に制限されず、0.03~0.3μmが好ましく、0.075~0.20μmがより好ましい。
The method of forming the layer is not particularly limited, and for example, a method of applying a protective layer-forming composition containing gelatin and a specific polymer onto a silver halide-containing photosensitive layer and subjecting it to a heat treatment if necessary can be used. Can be mentioned.
The composition for forming a protective layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
The thickness of the protective layer is not particularly limited, and is preferably 0.03 to 0.3 μm, more preferably 0.075 to 0.20 μm.
 なお、上述した工程H、工程Aおよび工程Iは、同時重層塗布によって同時に実施してもよい。 Note that Step H, Step A, and Step I described above may be performed simultaneously by simultaneous multilayer coating.
<工程P>
 導電性基板の製造方法は、上記の基材上に形成された導電性層に特定化合物を接触させ、導電性層に特定化合物が含まれている導電性基板を作製する工程Pを有してもよい。
 導電性層と特定化合物とを接触させる方法は特に制限されず、例えば、特定化合物を含む処理液中に導電性層が形成された基材を浸漬する方法、および、特定化合物を含む処理液を導電性層が形成された基材の表面に塗布する方法が挙げられる。
 工程Pを実施し、特定化合物が導電性層を構成する導電性細線部および透明絶縁部に浸透および吸着させることにより、導電性細線部の硫化耐性が向上する。
<Process P>
The method for manufacturing a conductive substrate includes a step P of bringing a specific compound into contact with the conductive layer formed on the above-mentioned base material to produce a conductive substrate in which the conductive layer contains the specific compound. Good too.
The method of bringing the conductive layer into contact with the specific compound is not particularly limited, and examples include a method of immersing the base material on which the conductive layer is formed in a treatment solution containing the specific compound, and a method of bringing the conductive layer into contact with the specific compound. Examples include a method of coating the surface of a base material on which a conductive layer is formed.
By carrying out step P and causing the specific compound to permeate and adsorb into the conductive thin wire portion and the transparent insulating portion constituting the conductive layer, the sulfidation resistance of the conductive thin wire portion is improved.
 上記の特定化合物を含む処理液は、特定化合物を溶媒に溶解させてなる溶液であることが好ましい。使用される溶媒の種類は特に制限されず、上述した感光性層形成用組成物で使用される溶媒が挙げられる。
 上記の処理液における特定化合物の含有量は、目的とする導電性層に含有させる特定化合物の量、および、処理条件に応じて適宜すればよいが、処理液の総質量に対して、0.01~2質量%が好ましく、0.1~0.5質量%がより好ましい。
 上記処理液を導電性層に接触させる際の処理液の温度は、例えば、25~60℃である。
 特定化合物と導電性層との接触時間は特に制限されないが、0.1~10分間が好ましく、0.2~3分間がより好ましい。
The treatment liquid containing the above specific compound is preferably a solution obtained by dissolving the specific compound in a solvent. The type of solvent used is not particularly limited, and examples include the solvents used in the photosensitive layer forming composition described above.
The content of the specific compound in the above-mentioned treatment liquid may be determined as appropriate depending on the amount of the specific compound to be contained in the intended conductive layer and the treatment conditions, but the content is 0.0000% based on the total mass of the treatment liquid. 0.01 to 2% by mass is preferred, and 0.1 to 0.5% by mass is more preferred.
The temperature of the treatment liquid when it is brought into contact with the conductive layer is, for example, 25 to 60°C.
The contact time between the specific compound and the conductive layer is not particularly limited, but is preferably 0.1 to 10 minutes, more preferably 0.2 to 3 minutes.
<工程Q>
 導電性基板の製造方法は、上記の基材上に形成された導電性層上に遮蔽層を形成し、遮蔽層が特定化合物を含む本発明の導電性基板を作製する工程Qを有する。
 遮蔽層の形成方法は特に制限されず、例えば、遮蔽層形成用組成物を導電性層上に塗布して、必要に応じて乾燥処理または加熱処理を施す方法が挙げられる。
 上記塗布方法および乾燥処理の詳細は、上述した通りである。
 遮蔽層形成用組成物は、上述した特定化合物を所定の量含む遮蔽層が形成できる組成物であれば特に制限されず、例えば、上述した遮蔽層形成用の塗布液が挙げられる。
 工程Qを実施し、特定化合物を含む遮蔽層を形成することにより、導電性細線部の硫化耐性が向上する。
<Process Q>
The method for manufacturing a conductive substrate includes a step Q of forming a shielding layer on the conductive layer formed on the above-mentioned base material, and producing the conductive substrate of the present invention in which the shielding layer contains a specific compound.
The method for forming the shielding layer is not particularly limited, and examples thereof include a method of applying a composition for forming a shielding layer onto the conductive layer and subjecting it to drying treatment or heat treatment as necessary.
The details of the coating method and drying process are as described above.
The composition for forming a shielding layer is not particularly limited as long as it is a composition that can form a shielding layer containing a predetermined amount of the above-mentioned specific compound, and examples thereof include the above-mentioned coating liquid for forming a shielding layer.
By performing Step Q and forming a shielding layer containing a specific compound, the sulfidation resistance of the conductive thin wire portion is improved.
〔導電性基板の用途〕
 上述のようにして得られた導電性基板は、種々の用途に適用でき、タッチパネル(または、タッチパネルセンサー)、半導体チップ、各種電気配線板、FPC(Flexible Printed Circuits)、COF(Chip on Film)、TAB(Tape Automated Bonding)、アンテナ、多層配線基板、および、マザーボード等の用途に適用できる。なかでも、本導電性基板は、タッチパネル(静電容量式タッチパネル)に用いることが好ましい。
 本導電性基板を有するタッチパネルにおいて、上述した導電性細線部は、検出電極として有効に機能し得る。本導電性基板をタッチパネルに用いる場合、導電性基板と組み合わせて使用する表示パネルとしては、例えば、液晶パネル、および、OLED(Organic Light Emitting Diode)パネルが挙げられ、OLEDパネルとの組合せが好ましい。
[Applications of conductive substrate]
The conductive substrate obtained as described above can be applied to various uses, such as touch panels (or touch panel sensors), semiconductor chips, various electric wiring boards, FPC (Flexible Printed Circuits), COF (Chip on Film), It can be applied to applications such as TAB (Tape Automated Bonding), antennas, multilayer wiring boards, and motherboards. Among these, the present conductive substrate is preferably used for a touch panel (capacitive touch panel).
In the touch panel having the present conductive substrate, the conductive thin wire portion described above can effectively function as a detection electrode. When the present conductive substrate is used in a touch panel, display panels used in combination with the conductive substrate include, for example, liquid crystal panels and OLED (Organic Light Emitting Diode) panels, and combinations with OLED panels are preferred.
 なお、導電性基板は、導電性細線部を有する導電性層とは別に、導電性層とは構成が異なる導電部を有してもよい。この導電部は、上述した導電性細線部と電気的に接続して、導通していてもよい。導電部としては、例えば、上述した導電性細線部に電圧を印加する機能を有する周辺配線、および、導電性基板と積層する部材の位置を調整するアライメントマーク等が挙げられる。 Note that the conductive substrate may have a conductive part having a different configuration from the conductive layer, in addition to the conductive layer having the conductive thin wire part. This conductive part may be electrically connected to the above-described thin conductive wire part for conduction. Examples of the conductive portion include peripheral wiring having a function of applying a voltage to the conductive thin wire portion described above, and alignment marks for adjusting the position of a member laminated with the conductive substrate.
 本導電性基板の上記以外の用途としては、例えば、パーソナルコンピュータおよびワークステーション等の電子機器から発生する電波およびマイクロ波(極超短波)等の電磁波を遮断し、かつ静電気を防止する電磁波シールドが挙げられる。このような電磁波シールドは、パーソナルコンピュータ本体以外に、映像撮影機器および電子医療機器等の電子機器にも使用できる。
 本導電性基板は、透明発熱体にも使用できる。
Applications of this conductive substrate other than those mentioned above include, for example, electromagnetic shielding that blocks electromagnetic waves such as radio waves and microwaves (ultra-high frequency waves) generated from electronic devices such as personal computers and workstations, and prevents static electricity. It will be done. Such an electromagnetic shield can be used not only for personal computers but also for electronic equipment such as video imaging equipment and electronic medical equipment.
This conductive substrate can also be used for transparent heating elements.
 本導電性基板は、取り扱い時および搬送時において、導電性基板と、粘着シートおよび剥離シート等の他の部材とを有する積層体の形態で用いられてもよい。剥離シートは、積層体の搬送時に、導電性基板における傷の発生を防止するための保護シートとして機能する。
 また、導電性基板は、例えば、導電性基板、粘着シートおよび保護層をこの順で有する複合体の形態で取り扱われてもよい。
The present conductive substrate may be used in the form of a laminate having the conductive substrate and other members such as an adhesive sheet and a release sheet during handling and transportation. The release sheet functions as a protective sheet to prevent scratches on the conductive substrate during transportation of the laminate.
Further, the conductive substrate may be handled in the form of a composite body including, for example, a conductive substrate, an adhesive sheet, and a protective layer in this order.
 本発明は、基本的に以上のように構成されるものである。本発明の導電性基板について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更を行ってもよい。 The present invention is basically configured as described above. Although the conductive substrate of the present invention has been described in detail, the present invention is not limited to the above-described embodiments, and various improvements or changes may be made without departing from the gist of the present invention.
 以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below with reference to Examples. Note that the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below.
[実施例1]
〔ハロゲン化銀乳剤の調製〕
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を、1液を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて、得られた溶液に下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、核粒子を0.21μmまで成長させた。さらに、得られた溶液にヨウ化カリウム0.15gを加え、5分間熟成し、粒子形成を終了した。
[Example 1]
[Preparation of silver halide emulsion]
To the following liquid 1 maintained at 38°C and pH 4.5, an amount equivalent to 90% of each of the following liquids 2 and 3 was added simultaneously over 20 minutes while stirring the liquid 1 to obtain 0.16 μm core particles. was formed. Next, the following liquids 4 and 5 were added to the obtained solution over 8 minutes, and the remaining 10% of the following liquids 2 and 3 were added over 2 minutes to grow the core particles to 0.21 μm. I let it happen. Furthermore, 0.15 g of potassium iodide was added to the obtained solution and aged for 5 minutes to complete particle formation.
 1液:
   水                    750ml
   ゼラチン                  8.6g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300ml
   硝酸銀                   150g
 3液:
   水                    300ml
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    5ml
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液)  7ml
 4液:
   水                    100ml
   硝酸銀                    50g
 5液:
   水                    100ml
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
1 liquid:
750ml water
Gelatin 8.6g
Sodium chloride 3g
1,3-dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
2 liquid:
300ml water
Silver nitrate 150g
3 liquid:
300ml water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridate(III) (0.005% KCl 20% aqueous solution) 5ml
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 7ml
4 liquid:
100ml water
Silver nitrate 50g
5 liquid:
100ml water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
 その後、常法に従ってフロキュレーション法によって水洗した。具体的には、上述の得られた溶液の温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、得られた溶液から上澄み液を約3リットル除去した(第1水洗)。次に、上澄み液を除去した溶液に、3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、得られた溶液から上澄み液を3リットル除去した(第2水洗)。第2水洗と同じ操作をさらに1回繰り返して(第3水洗)、水洗および脱塩工程を終了した。水洗および脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン2.5g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgおよび塩化金酸10mgを加え、55℃にて最適感度を得るように化学増感を施した。その後、さらに、得られた乳剤に、安定剤として1,3,3a,7-テトラアザインデン100mg、および、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径(球相当径)200nm、変動係数9%の塩臭化銀立方体粒子乳剤であった。 Thereafter, it was washed with water using the flocculation method according to a conventional method. Specifically, the temperature of the solution obtained above was lowered to 35° C., and the pH was lowered using sulfuric acid until silver halide precipitated (pH was in the range of 3.6±0.2). Next, about 3 liters of supernatant liquid was removed from the obtained solution (first water washing). Next, 3 liters of distilled water was added to the solution from which the supernatant liquid had been removed, and then sulfuric acid was added until the silver halide precipitated. Again, 3 liters of supernatant liquid was removed from the obtained solution (second water washing). The same operation as the second water washing was repeated once more (third water washing) to complete the water washing and desalting process. After washing with water and desalting, the emulsion was adjusted to pH 6.4 and pAg 7.5, and 2.5 g of gelatin, 10 mg of sodium benzenethiosulfonate, 3 mg of sodium benzenethiosulfinate, 15 mg of sodium thiosulfate, and 10 mg of chloroauric acid were added. Chemical sensitization was performed at 55°C to obtain optimal sensitivity. Thereafter, 100 mg of 1,3,3a,7-tetraazaindene as a stabilizer and 100 mg of Proxel (trade name, manufactured by ICI Co., Ltd.) as a preservative were further added to the obtained emulsion. The final emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size (equivalent sphere diameter). It was a silver chlorobromide cubic grain emulsion with a particle diameter of 200 nm and a coefficient of variation of 9%.
〔感光性層形成用組成物の調製〕
 上述の乳剤に1,3,3a,7-テトラアザインデン(1.2×10-4モル/モルAg)、ハイドロキノン(1.2×10-2モル/モルAg)、クエン酸(3.0×10-4モル/モルAg)、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩(0.90g/モルAg)、および、微量の硬膜剤を添加し、組成物を得た。次に、クエン酸を用いて組成物のpHを5.6に調整した。
 上述の組成物に、下記(P-1)で表される高分子(以下、「高分子1」ともいう。)とジアルキルフェニルPEO(PEOはポリエチレンオキシドの略号である。)硫酸エステルからなる分散剤と水とを含有するポリマーラテックス(高分子1の質量に対する分散剤の質量の比(分散剤の質量/高分子1の質量、単位はg/g)が0.02であって、固形分含有量が22質量%である。)を、組成物中のゼラチンの合計質量に対する、高分子1の質量の比(高分子1の質量/ゼラチンの質量、単位g/g)が0.25/1となるように添加して、ポリマーラテックス含有組成物を得た。ここで、ポリマーラテックス含有組成物において、ハロゲン化銀由来の銀の質量に対するゼラチンの質量の比(ゼラチンの質量/ハロゲン化銀由来の銀の質量、単位はg/gである。)は0.11であった。
 さらに、架橋剤としてEPOXY RESIN DY 022(商品名:ナガセケムテックス株式会社製)を添加した。なお、架橋剤の添加量は、後述するハロゲン化銀含有感光性層中における架橋剤の量が0.09g/mとなるように調整した。
 以上のようにして感光性層形成用組成物を調製した。
 なお、高分子1は、特許第3305459号公報および特許第3754745号公報を参照して合成した。
[Preparation of composition for forming photosensitive layer]
The above emulsion contains 1,3,3a,7-tetraazaindene (1.2×10 −4 mol/mol Ag), hydroquinone (1.2×10 −2 mol/mol Ag), and citric acid (3.0 mol/mol Ag). x10 -4 mol/mol Ag), 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt (0.90 g/mol Ag), and a trace amount of hardening agent, and the composition I got something. Next, the pH of the composition was adjusted to 5.6 using citric acid.
A dispersion consisting of a polymer represented by the following (P-1) (hereinafter also referred to as "polymer 1") and dialkylphenyl PEO (PEO is an abbreviation for polyethylene oxide) sulfate ester is added to the above composition. Polymer latex containing agent and water (ratio of mass of dispersant to mass of polymer 1 (mass of dispersant/mass of polymer 1, unit: g/g) is 0.02, solid content content is 22% by mass), and the ratio of the mass of polymer 1 to the total mass of gelatin in the composition (mass of polymer 1/mass of gelatin, unit g/g) is 0.25/ 1 to obtain a polymer latex-containing composition. Here, in the polymer latex-containing composition, the ratio of the mass of gelatin to the mass of silver derived from silver halide (mass of gelatin/mass of silver derived from silver halide, unit: g/g) is 0. It was 11.
Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Corporation) was added as a crosslinking agent. The amount of the crosslinking agent added was adjusted so that the amount of the crosslinking agent in the silver halide-containing photosensitive layer described below was 0.09 g/m 2 .
A composition for forming a photosensitive layer was prepared as described above.
Note that Polymer 1 was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
〔下塗り層の形成〕
 厚み40μmのポリエチレンテレフタレートフィルム(「富士フイルム株式会社製ロール状の長尺フィルム」)からなる基材の表面に上述のポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。この処理はロール・トゥ・ロールで行い、以下の各処理(工程)もこれと同様にロール・トゥ・ロールで行った。なお、このときのロール幅は1m、長さは1000mであった。
[Formation of undercoat layer]
The above-mentioned polymer latex was applied to the surface of a base material made of a polyethylene terephthalate film ("rolled long film manufactured by Fuji Film Corporation") with a thickness of 40 μm to provide an undercoat layer with a thickness of 0.05 μm. This treatment was performed roll-to-roll, and the following treatments (steps) were similarly performed roll-to-roll. Note that the roll width at this time was 1 m and the length was 1000 m.
〔工程H1、工程A1、工程I1〕
 次に、下塗り層上に、上述のポリマーラテックスとゼラチンとを混合したハロゲン化銀不含有層形成用組成物と、上述の感光性層形成用組成物と、ポリマーラテックスとゼラチンとを混合した保護層形成用組成物とを、同時重層塗布し、下塗り層上にハロゲン化銀不含有層と、ハロゲン化銀含有感光性層と、保護層とを形成した。
 なお、ハロゲン化銀不含有層の厚みは2.0μmであり、ハロゲン化銀不含有層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は2/1であり、高分子1の含有量は1.3g/mであった。
 また、ハロゲン化銀含有感光性層の厚みは2.5μmであり、ハロゲン化銀含有感光性層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.25/1であり、高分子1の含有量は0.19g/mであった。
 また、保護層の厚みは0.15μmであり、保護層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.1/1であり、高分子1の含有量は0.015g/mであった。
[Step H1, Step A1, Step I1]
Next, on the undercoat layer, a protective layer containing a silver halide-free layer-forming composition prepared by mixing the above-mentioned polymer latex and gelatin, the above-mentioned photosensitive layer-forming composition, and a mixture of polymer latex and gelatin is applied. A layer-forming composition was simultaneously coated in multiple layers to form a silver halide-free layer, a silver halide-containing photosensitive layer, and a protective layer on the undercoat layer.
The thickness of the silver halide-free layer is 2.0 μm, and the mixing mass ratio of polymer 1 and gelatin in the silver halide-free layer (polymer 1/gelatin) is 2/1. The content of molecule 1 was 1.3 g/ m2 .
The thickness of the silver halide-containing photosensitive layer is 2.5 μm, and the mixing mass ratio of polymer 1 and gelatin in the silver halide-containing photosensitive layer (polymer 1/gelatin) is 0.25/1. The content of polymer 1 was 0.19 g/m 2 .
Further, the thickness of the protective layer is 0.15 μm, the mixing mass ratio of polymer 1 and gelatin in the protective layer (polymer 1/gelatin) is 0.1/1, and the content of polymer 1 is It was 0.015g/ m2 .
〔工程B1〕
 作製した上述の感光性層に、格子状のフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した(以下、「メッシュパターン電極」ともいう。)。フォトマスクとしてはパターン形成用のマスクを用いており、図2に示すような格子を形成する単位正方格子の線幅は1.2μm、格子(開口部)の一辺の長さLは600μmになるようにした。
[Process B1]
The photosensitive layer prepared above was exposed to parallel light using a high-pressure mercury lamp as a light source through a grid-shaped photomask (hereinafter also referred to as "mesh pattern electrode"). A pattern-forming mask is used as the photomask, and the line width of the unit square lattice that forms the lattice shown in Figure 2 is 1.2 μm, and the length L of one side of the lattice (opening) is 600 μm. I did it like that.
 露光後、得られたサンプルに対して、後述する現像液で現像し、さらに定着液(商品名:CN16X用N3X-R:富士フイルム株式会社製)を用いて現像処理を行った。その後、25℃の純水でリンスし、乾燥して、金属銀を含む導電性細線部および透明絶縁部を含む導電性層を有し、導電性細線部がくし型パターン状に形成されてなるサンプルAと、金属銀を含む導電性細線部および透明絶縁部を含む導電性層を有し、導電性細線部がメッシュパターン状に形成されてなるサンプルBを得た。サンプルBにおいては、21.0cm×29.7cmの大きさの導電性メッシュパターン領域が形成されていた。 After exposure, the obtained sample was developed with a developer described below, and further developed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film Corporation). Thereafter, the sample was rinsed with pure water at 25°C and dried, and the sample had a conductive layer including a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion was formed in a comb-shaped pattern. Sample A was obtained, and sample B had a conductive layer including a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion was formed in a mesh pattern. In sample B, a conductive mesh pattern area with a size of 21.0 cm x 29.7 cm was formed.
(現像液の組成)
 現像液1リットル(L)中に、以下の化合物が含まれる。
    ハイドロキノン          0.037mol/L
    N-メチルアミノフェノール    0.016mol/L
    メタホウ酸ナトリウム       0.140mol/L
    水酸化ナトリウム         0.360mol/L
    臭化ナトリウム          0.031mol/L
    メタ重亜硫酸カリウム       0.187mol/L
(Composition of developer)
The following compounds are contained in 1 liter (L) of developer solution.
Hydroquinone 0.037mol/L
N-methylaminophenol 0.016mol/L
Sodium metaborate 0.140mol/L
Sodium hydroxide 0.360mol/L
Sodium bromide 0.031mol/L
Potassium metabisulfite 0.187mol/L
 得られた上述のサンプルを、50℃の温水中に180秒間浸漬させた。この後、エアシャワーで水を切り、自然乾燥させた。 The obtained above-mentioned sample was immersed in warm water at 50°C for 180 seconds. After this, the water was removed using an air shower and the material was allowed to air dry.
〔工程C1〕
 工程B1で得られたサンプルを、110℃の過熱水蒸気処理槽に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
[Step C1]
The sample obtained in step B1 was carried into a superheated steam treatment tank at 110° C., and left to stand for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
〔工程D1〕
 工程C1で得られたサンプルを、タンパク質分解酵素水溶液(40℃)に30秒間浸漬した。サンプルをタンパク質分解酵素水溶液から取り出し、サンプルを温水(液温:50℃)に120秒間浸漬して、洗浄した。この後、エアシャワーで水を切り、サンプルを自然乾燥させた。
 なお、使用したタンパク質分解酵素水溶液は、以下の手順に従って調製した。
 タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼ30L)の水溶液(タンパク質分解酵素の濃度:0.5質量%)に、トリエタノールアミンおよび硫酸を加えてpHを8.5に調整した。
[Process D1]
The sample obtained in step C1 was immersed in a proteolytic enzyme aqueous solution (40° C.) for 30 seconds. The sample was taken out from the proteolytic enzyme aqueous solution and washed by immersing it in warm water (liquid temperature: 50°C) for 120 seconds. After this, the water was removed using an air shower, and the sample was air-dried.
The protease aqueous solution used was prepared according to the following procedure.
Triethanolamine and sulfuric acid were added to an aqueous solution (proteolytic enzyme concentration: 0.5% by mass) of a proteolytic enzyme (Bioplase 30L manufactured by Nagase ChemteX) to adjust the pH to 8.5.
〔工程G1〕
 工程D1で得られたサンプルを、110℃の過熱水蒸気処理槽内に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
[Process G1]
The sample obtained in step D1 was carried into a superheated steam treatment tank at 110° C., and left standing for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
〔工程Q1〕
 遮蔽層形成用塗布液1を以下の配合比にて混合することにより調製した。
(遮蔽層形成用塗布液1の組成)
・水 27.93質量部
・アクアブリッドAS-563A(固形分濃度28%、ダイセルファインケム(株)製) 25.62質量部
・3-メルカプト-1,2,4-トリアゾール(富士フイルム和光純薬株式会社製)を1質量%含む水溶液   0.07質量部
・エタノール(富士フイルム和光純薬株式会社製)      46.38質量部
 工程G1で得られたサンプルの上に、遮蔽層形成用塗布液1を、ワイヤーバーを用いて、乾燥後の平均厚みが0.5μmとなるように塗布し、100℃で1分間乾燥させて遮蔽層を形成した。
 上記工程により、メッシュパターン電極を有するサンプルを作製した。
[Process Q1]
Coating liquid 1 for forming a shielding layer was prepared by mixing at the following blending ratio.
(Composition of coating liquid 1 for forming shielding layer)
・Water 27.93 parts by mass ・Aquabrid AS-563A (solid content 28%, manufactured by Daicel FineChem Co., Ltd.) 25.62 parts by mass ・3-Mercapto-1,2,4-triazole (Fujifilm Wako Pure Chemical Industries, Ltd.) 0.07 parts by mass of an aqueous solution containing 1% by mass of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 46.38 parts by mass On the sample obtained in step G1, apply coating liquid 1 for forming a shielding layer. was applied using a wire bar so that the average thickness after drying was 0.5 μm, and dried at 100° C. for 1 minute to form a shielding layer.
Through the above steps, a sample having a mesh pattern electrode was produced.
[実施例2~17、比較例1~2]
 上記工程Q1において遮蔽層形成用塗布液として、3-メルカプト-1,2,4-トリアゾールあるいはアクアブリッドAS-563Aを後述する表1の通りになるように種類および量を変更した以外は、実施例1に記載の手順に従って導電性基板のサンプルをそれぞれ作製した。
[Examples 2 to 17, Comparative Examples 1 to 2]
Except for changing the type and amount of 3-mercapto-1,2,4-triazole or Aquabrid AS-563A as the coating liquid for forming the shielding layer in the above step Q1 as shown in Table 1 below. Each sample of conductive substrate was prepared according to the procedure described in Example 1.
[実施例18]
〔工程E1〕
 実施例1の工程D1で得られたサンプルを、下記の組成のめっき液(30℃)に5分間浸漬した。サンプルをめっき液から取り出し、温水(50℃)に120秒間浸漬して、洗浄した。
 めっき液(全量1200ml)の組成は、以下の通りであった。なお、めっき液のpHは9.9であり、炭酸カリウム(富士フイルム和光純薬株式会社製)を所定量加えることにより調整した。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
[Example 18]
[Process E1]
The sample obtained in step D1 of Example 1 was immersed in a plating solution (30° C.) having the following composition for 5 minutes. The sample was taken out from the plating solution and washed by immersing it in warm water (50° C.) for 120 seconds.
The composition of the plating solution (total volume 1200 ml) was as follows. The pH of the plating solution was 9.9, which was adjusted by adding a predetermined amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
(めっき液の組成)
・AgNO           2.1g
・亜硫酸ナトリウム        86g
・チオ硫酸ナトリウム五水和物   60g
・アロンT-50(東亞合成(株)製、固形分濃度40%)  36g
・メチルヒドロキノン       13g
・炭酸カリウム          所定量
・水               残部
(Composition of plating solution)
AgNO3 2.1g
・Sodium sulfite 86g
・Sodium thiosulfate pentahydrate 60g
・Aron T-50 (manufactured by Toagosei Co., Ltd., solid content concentration 40%) 36g
・Methylhydroquinone 13g
・Prescribed amount of potassium carbonate ・Remaining water
 工程Q1において、工程D1で得られたサンプルに代えて上記の工程E1で得られたサンプルを用いること以外は実施例1に記載の手順に従って、導電性基板のサンプルを作製した。 In step Q1, a sample of a conductive substrate was produced according to the procedure described in Example 1, except that the sample obtained in step E1 above was used instead of the sample obtained in step D1.
[実施例19]
 上記工程E1において、実施例1の工程D1で得られたサンプルに替えて実施例15の工程D1で得られたサンプルを用いること以外は、実施例18と同様の手順に従って導電性基板のサンプルを作製した。
[Example 19]
In the above step E1, a conductive substrate sample was prepared according to the same procedure as in Example 18, except that the sample obtained in Step D1 of Example 15 was used instead of the sample obtained in Step D1 of Example 1. Created.
[測定および評価]
〔特定化合物の定量〕
 実施例および比較例で作製された各導電性基板に含まれる特定化合物の含有量を、以下の方法で定量した。
 作製されたサンプルを1cm×1cmのサイズにカットした。15枚のカットされたサンプルを100mLのエタノール(温度30℃)中に浸漬し、24時間静置することにより、サンプルに含まれる特定化合物を抽出した。
 エタノール溶液からサンプルを取り出した後、抽出された特定化合物を含むエタノール溶液を、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography-Mass Spectrometry)法により下記の測定条件で測定し、絶対検量線法にて特定化合物を定量した。
 後述する表1に、各サンプルに含まれる特定化合物の含有量(単位:μg/cm)を示す。
 なお、各導電性基板の作製に用いた上記の厚み40μmのポリエチレンテレフタレートフィルムについて、上記の方法でフィルムに含まれる特定化合物の定量を実施したところ、特定化合物の含有量は検出限界以下であった。
[Measurement and evaluation]
[Quantification of specific compounds]
The content of the specific compound contained in each conductive substrate produced in Examples and Comparative Examples was determined by the following method.
The prepared sample was cut into a size of 1 cm x 1 cm. The 15 cut samples were immersed in 100 mL of ethanol (temperature: 30° C.) and allowed to stand for 24 hours to extract specific compounds contained in the samples.
After taking out the sample from the ethanol solution, the ethanol solution containing the extracted specific compound was measured using the high performance liquid chromatography (HPLC) method under the following measurement conditions, and the absolute calibration curve method was used. The specific compound was quantified.
Table 1, which will be described later, shows the content (unit: μg/cm 2 ) of the specific compound contained in each sample.
In addition, when the above-mentioned 40 μm thick polyethylene terephthalate film used for producing each conductive substrate was quantified for the specific compound contained in the film using the above method, the content of the specific compound was below the detection limit. .
(HPLC測定条件)
 カラム:ODS(Octadecyl Silyl)カラム(4.6mm×50mm)(シーエルサイエンス株式会社製「InertSustain AQ-C18」)
 溶離液:0.1%リン酸水溶液/0.1%リン酸アセトニトリル(混合比:50/50)
 流 速:0.7mL/min
 検出器:フォトダイオードアレイ
 試料注入量:10μL
(HPLC measurement conditions)
Column: ODS (Octadecyl Silyl) column (4.6 mm x 50 mm) (“InertSustain AQ-C18” manufactured by CL Sciences Co., Ltd.)
Eluent: 0.1% phosphoric acid aqueous solution/0.1% phosphoric acid acetonitrile (mixing ratio: 50/50)
Flow rate: 0.7mL/min
Detector: Photodiode array Sample injection volume: 10μL
〔硫化耐性〕
 実施例および比較例で作製された各導電性基板の硫化耐性を、以下の方法で評価した。
 作製されたメッシュパターン電極を有するサンプルの抵抗値(R0)を測定した。測定では、各サンプルについて、Agilent 34405Aマルチメータ装置を用いて距離4cmの端子間の電気抵抗(単位:kΩ)を測定した。
 次いで、各導電性基板と硫黄粉(500g)を入れたシャーレをデシケーター(内寸法310×330×420mm)内に設置し、デシケーターごと恒温槽に投入した。恒温槽を70℃で72時間加熱した後、上記の方法でサンプルの抵抗値(R1)を測定した。
 測定された抵抗値から、抵抗変化率=(R1/R0-1)×100[%]の式により抵抗変化率を算出した。算出された抵抗変化率から、以下の基準に従って各サンプルの硫化耐性を評価した。硫化耐性の評価がAまたはB(B+またはB-)であれば、実用上問題ないと考えられる。
[Sulfidation resistance]
The sulfidation resistance of each conductive substrate produced in Examples and Comparative Examples was evaluated by the following method.
The resistance value (R0) of the sample having the fabricated mesh pattern electrode was measured. In the measurement, the electrical resistance (unit: kΩ) between terminals at a distance of 4 cm was measured for each sample using an Agilent 34405A multimeter device.
Next, a petri dish containing each conductive substrate and sulfur powder (500 g) was placed in a desiccator (inner dimensions 310 x 330 x 420 mm 3 ), and the desiccator was placed in a constant temperature bath. After heating the constant temperature bath at 70° C. for 72 hours, the resistance value (R1) of the sample was measured using the method described above.
The resistance change rate was calculated from the measured resistance value using the formula: resistance change rate=(R1/R0-1)×100[%]. From the calculated resistance change rate, the sulfidation resistance of each sample was evaluated according to the following criteria. If the sulfurization resistance is evaluated as A or B (B+ or B-), it is considered that there is no problem in practical use.
(硫化耐性評価基準)
「A」:抵抗変化率が30%以下。
「B+」:抵抗変化率が30%超40%以下。
「B-」:抵抗変化率が40%超50%以下。
「C」:抵抗変化率が50%超。
(Sulfidation resistance evaluation criteria)
"A": Resistance change rate is 30% or less.
"B+": Resistance change rate is more than 30% and less than 40%.
"B-": Resistance change rate is more than 40% and less than 50%.
"C": Resistance change rate exceeds 50%.
〔色味変化Δb
 実施例および比較例で作製された各導電性基板の色味変化Δbを、以下の方法で評価した。
 作製されたメッシュパターン電極を有するサンプルを3cm×3cmにカットし、反射濃度計(Gretag Macbeth製「SpectroEye(登録商標)LT」)を用いて、カットされたサンプルの導電性層側の表面のb値(b0)を測定した。なおb値は、L表色系における指数の1つであり、b値が正方向に大きくなるほど、黄色味が強くなる。
 次いで、カットされたサンプルに対して、温度60℃、湿度90RH%の環境下で10日間静置した。保管試験を行ったサンプルを室温に戻し、再び反射濃度計を用いてサンプルの導電性層側の表面のb値(b1)を測定した。
 保管試験前後のb値の変化量(Δb)を、Δb=b1-b0の式を用いて計算した。Δbが0に近いほど、経時による導電性基板の色味変化が少なく、実際の使用において問題が起こり難い。色味の評価がAまたはBであれば、実用上問題ないと考えられる。
[Color change Δb * ]
The color change Δb * of each conductive substrate produced in Examples and Comparative Examples was evaluated by the following method.
The prepared sample having the mesh pattern electrode was cut into 3 cm x 3 cm, and using a reflection densitometer ("SpectroEye (registered trademark) LT" manufactured by Gretag Macbeth), the b of the surface of the conductive layer side of the cut sample was measured. * Value (b * 0) was measured. Note that the b * value is one of the indices in the L * a * b * color system, and the larger the b * value in the positive direction, the stronger the yellowish tinge.
Next, the cut samples were allowed to stand for 10 days in an environment with a temperature of 60° C. and a humidity of 90 RH%. The sample subjected to the storage test was returned to room temperature, and the b * value (b * 1) of the surface of the sample on the conductive layer side was measured again using a reflection densitometer.
The amount of change in b * value (Δb * ) before and after the storage test was calculated using the formula Δb * =b * 1−b * 0. The closer Δb * is to 0, the less the change in color of the conductive substrate over time occurs, and problems are less likely to occur in actual use. If the color evaluation is A or B, it is considered that there is no problem in practical use.
(色味評価基準)
「A」:Δbが1.0以下。
「B」:Δbが1.0超2.0以下。
「C」:Δbが2.0超。
(Color evaluation criteria)
"A": Δb * is 1.0 or less.
"B": Δb * is more than 1.0 and less than 2.0.
"C": Δb * exceeds 2.0.
 下記表1に、導電性基板の作製におけるめっき処理(工程E1)の実施の有無、導電性基板に含まれる遮蔽層組成、特定化合物の種類および含有量、並びに、硫化耐性および色味変化Δbの各評価結果を示す。 Table 1 below shows the presence or absence of plating treatment (step E1) in the production of the conductive substrate, the composition of the shielding layer contained in the conductive substrate, the type and content of specific compounds, and the sulfidation resistance and color change Δb * The results of each evaluation are shown below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1に示すように、本発明の導電性基板によれば、所望の効果が得られることが確認された。 As shown in Table 1, it was confirmed that the desired effects could be obtained with the conductive substrate of the present invention.
 実施例1および実施例4~6の比較より、遮蔽層が、アクリルおよびウレタンから選択されるいずれかの構造を有する場合、硫化耐性がより優れることが確認された。
 実施例1および実施例7~11の比較より、遮蔽層の面積あたりの化合物の含有量が、0.1μg/cm以上である場合、硫化耐性がより優れることが確認された。
 実施例1および実施例12~13の比較より、遮蔽層の膜厚が、1μm以下である場合、硫化耐性がより優れることが確認された。
 実施例1~3および実施例14~17の比較より、特定化合物が、式(5)で表される化合物を含む場合、経時に伴う色味変化がより抑制できることが確認された。
From a comparison of Example 1 and Examples 4 to 6, it was confirmed that sulfidation resistance is better when the shielding layer has a structure selected from acrylic and urethane.
From a comparison of Example 1 and Examples 7 to 11, it was confirmed that the sulfidation resistance was better when the compound content per area of the shielding layer was 0.1 μg/cm 2 or more.
From a comparison of Example 1 and Examples 12 and 13, it was confirmed that the sulfidation resistance was better when the thickness of the shielding layer was 1 μm or less.
Comparison of Examples 1 to 3 and Examples 14 to 17 confirmed that when the specific compound contained the compound represented by formula (5), color change over time could be further suppressed.
10 導電性基板
12 基材
14 導電性層
16 導電性細線部
18 透明絶縁部
20 非細線部
10 Conductive substrate 12 Base material 14 Conductive layer 16 Conductive thin wire portion 18 Transparent insulating portion 20 Non-thin wire portion

Claims (9)

  1.  基材と、
     前記基材上に配置された導電性層と、を有する導電性基板であって、
     前記導電性層が、金属を含む導電性細線部を有し、
     前記導電性層上に遮蔽層を有し、
     前記遮蔽層が下記式(1)、下記式(2)、下記式(3)、下記式(4)、または下記式(5)で表される化合物を含み、
     前記遮蔽層の面積あたりの前記化合物の含有量が、0.01~8.0μg/cmである、導電性基板。
    Figure JPOXMLDOC01-appb-C000001
     式(1)、式(2)、式(3)、式(4)、および式(5)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、炭素数1~6のアルコキシ基、炭素数1~3のチオアルキル基、アミノ基、水酸基、または、カルボキシ基を表す。式(2)および式(3)中、Rは、水素原子、炭素数1~6のアルキル基、または、アミノ基を表す。式(5)中、Rは、水素原子、または、カルボキシ基、水酸基、および、アミノ基からなる群から選択される少なくとも1種の置換基を有していてもよい炭素数1~6のアルキル基を表す。
    base material and
    A conductive substrate having a conductive layer disposed on the base material,
    The conductive layer has a conductive thin wire portion containing metal,
    a shielding layer on the conductive layer;
    The shielding layer contains a compound represented by the following formula (1), the following formula (2), the following formula (3), the following formula (4), or the following formula (5),
    A conductive substrate, wherein the content of the compound per area of the shielding layer is 0.01 to 8.0 μg/cm 2 .
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), formula (2), formula (3), formula (4), and formula (5), R 1 is each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, Represents an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxy group. In formulas (2) and (3), R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group. In formula (5), R 3 is a hydrogen atom or a C 1-6 group which may have at least one substituent selected from the group consisting of a carboxy group, a hydroxyl group, and an amino group. Represents an alkyl group.
  2.  前記遮蔽層がアクリルおよびウレタンから選ばれるいずれかの構造を有する、請求項1に記載の導電性基板。 The conductive substrate according to claim 1, wherein the shielding layer has a structure selected from acrylic and urethane.
  3.  前記Rが、水素原子、炭素数1~6のアルキル基、または、フェニル基を表す、請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  4.  前記化合物が、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1H-1,2,4-トリアゾール、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、2-メルカプトベンゾイミダゾール、5-メチル-2-メルカプトベンゾイミダゾール、5-メトキシ-2-メルカプトベンゾイミダゾール、1,2,3-ベンゾトリアゾール、および、5-メチルベンゾトリアゾールからなる群より選択される少なくとも1つを含む、請求項1または2に記載の導電性基板。 The above compound is 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3, 4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4- Consisting of triazole-3-thiol, 2-mercaptobenzimidazole, 5-methyl-2-mercaptobenzimidazole, 5-methoxy-2-mercaptobenzimidazole, 1,2,3-benzotriazole, and 5-methylbenzotriazole The conductive substrate according to claim 1 or 2, comprising at least one selected from the group.
  5.  前記遮蔽層の面積あたりの前記化合物の含有量が0.01μg/cm以上1μg/cm以下である、請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein the content of the compound per area of the shielding layer is 0.01 μg/cm 2 or more and 1 μg/cm 2 or less.
  6.  前記遮蔽層の厚みが、100nm~1μmである、請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein the thickness of the shielding layer is 100 nm to 1 μm.
  7.  前記金属が銀を含む、請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein the metal contains silver.
  8.  前記導電性細線によって形成されたメッシュパターンを有する、請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, having a mesh pattern formed by the conductive thin wires.
  9.  請求項1または2に記載の導電性基板を有する、タッチパネル。 A touch panel comprising the conductive substrate according to claim 1 or 2.
PCT/JP2023/028431 2022-08-25 2023-08-03 Conductive substrate and touch panel WO2024043032A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-134348 2022-08-25
JP2022134348 2022-08-25
JP2023-107170 2023-06-29
JP2023107170 2023-06-29

Publications (1)

Publication Number Publication Date
WO2024043032A1 true WO2024043032A1 (en) 2024-02-29

Family

ID=90013017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028431 WO2024043032A1 (en) 2022-08-25 2023-08-03 Conductive substrate and touch panel

Country Status (1)

Country Link
WO (1) WO2024043032A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109022A (en) * 2006-10-27 2008-05-08 Fujifilm Corp Light-transmitting conductive electromagnetic wave shield film and method for manufacturing the same
JP2009188360A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Electronic circuit and method of manufacturing the same
WO2013128963A1 (en) * 2012-02-28 2013-09-06 富士フイルム株式会社 Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel
JP2015022397A (en) * 2013-07-17 2015-02-02 富士フイルム株式会社 Layered body for touch panel, and touch panel
JP2023035785A (en) * 2021-08-31 2023-03-13 富士フイルム株式会社 Conductive substrate and touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109022A (en) * 2006-10-27 2008-05-08 Fujifilm Corp Light-transmitting conductive electromagnetic wave shield film and method for manufacturing the same
JP2009188360A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Electronic circuit and method of manufacturing the same
WO2013128963A1 (en) * 2012-02-28 2013-09-06 富士フイルム株式会社 Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel
JP2015022397A (en) * 2013-07-17 2015-02-02 富士フイルム株式会社 Layered body for touch panel, and touch panel
JP2023035785A (en) * 2021-08-31 2023-03-13 富士フイルム株式会社 Conductive substrate and touch panel

Similar Documents

Publication Publication Date Title
JP5990493B2 (en) Manufacturing method of conductive sheet, conductive sheet
WO2014156827A1 (en) Conductive sheet, manufacturing method therefor, and touch panel
WO2020158494A1 (en) Method for producing conductive substrate, and conductive substrate
JP2019152898A (en) Conductive sheet for touch panel, manufacturing method of conductive sheet for touch panel and touch panel
WO2024043032A1 (en) Conductive substrate and touch panel
JP2023035785A (en) Conductive substrate and touch panel
JP6267109B2 (en) Conductive film manufacturing method and conductive film
JP6364555B2 (en) Manufacturing method of conductive film, conductive film, and touch panel
WO2023228927A1 (en) Conductive substrate and touch panel
JP7352619B2 (en) Touch panel and touch panel manufacturing method
WO2023120109A1 (en) Conductive substrate, and method for manufacturing conductive substrate
WO2023120297A1 (en) Conductive substrate and conductive substrate manufacturing method
US11581106B1 (en) Conductive substrate and touch panel
JP7324299B2 (en) Plating solution, plating set, manufacturing method of conductive substrate
WO2022215465A1 (en) Conductive substrate
JP2016020459A (en) Manufacturing method of conductive film with adhesive layer and conductive film
WO2023210425A1 (en) Conductive substrate
WO2023210488A1 (en) Electroconductive substrate production method
JP7292500B2 (en) Conductive film, touch panel, photosensitive resin composition, and method for producing conductive film
JP2020017381A (en) Method for producing conductive film
JP2021163735A (en) Method for producing conductive member
JP2019109720A (en) Method for manufacturing conductive sheet for touch panel
JP2023034082A (en) Production method of electrically-conductive board and electrically-conductive board
JP2021057158A (en) Conductive film
JP2023080680A (en) Conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857146

Country of ref document: EP

Kind code of ref document: A1