WO2024043026A1 - Vehicular conductive circuit manufacturing method - Google Patents

Vehicular conductive circuit manufacturing method Download PDF

Info

Publication number
WO2024043026A1
WO2024043026A1 PCT/JP2023/028337 JP2023028337W WO2024043026A1 WO 2024043026 A1 WO2024043026 A1 WO 2024043026A1 JP 2023028337 W JP2023028337 W JP 2023028337W WO 2024043026 A1 WO2024043026 A1 WO 2024043026A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive circuit
conductive
porous layer
manufacturing
electroless plating
Prior art date
Application number
PCT/JP2023/028337
Other languages
French (fr)
Japanese (ja)
Inventor
典子 内山
森 長山
真一郎 竹本
孝邦 岩瀬
紘敬 三輪
義貴 上原
透 小瀬村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2024043026A1 publication Critical patent/WO2024043026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present invention relates to a method of manufacturing a conductive circuit for a vehicle.
  • Patent Document 1 discloses that after a copper fine particle layer made of copper fine particles is formed on a base material, electroless copper plating is applied, and copper crystals are uniformly grown on the copper fine particle layer to form wiring. discloses a technique for producing a conductive circuit.
  • An object of the present invention is to provide a method for manufacturing a conductive circuit for a vehicle, which allows wiring to be formed to have a large cross-sectional area on the order of square millimeters.
  • a method for manufacturing a conductive circuit for a vehicle is a method for manufacturing a conductive circuit for a vehicle by forming wiring made of a conductor on a base material, the method comprising: conductive particles, a binder, and a coating process of coating a conductive particle paste containing a liquid medium on the surface of a base material to form a film of the conductive particle paste on the base material, and curing the binder to form a film of the conductive particle paste on the base material.
  • the gist of the present invention is to include a plating step in which conductive particles dispersed inside the porous layer are connected to each other by a deposited metal to transform the porous layer into a wiring made of a conductor.
  • the method for manufacturing a conductive circuit for a vehicle according to the present invention allows wiring to be formed to have a large cross-sectional area on the order of square millimeters.
  • FIG. 3 is a schematic cross-sectional view illustrating each step of a method for manufacturing a conductive circuit for a vehicle according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view illustrating the structure of a vehicle conductive circuit manufactured by a method for manufacturing a vehicle conductive circuit according to an embodiment of the present invention.
  • the method for manufacturing a conductive circuit for a vehicle is a method for manufacturing a conductive circuit for a vehicle by forming wiring 3 made of a conductor on a base material 1. , a coating process, a curing process, and a plating process.
  • the coating step is a step of applying a conductive particle paste containing conductive particles 11, a binder, and a liquid medium to the surface of the base material 1 to form a film 2 of conductive particle paste on the base material 1. It is.
  • the binder and liquid medium in the film 2 of the conductive particle paste are indicated by the reference numeral 21.
  • the liquid medium is volatilized from the film 2 of the conductive particle paste by heat or the like, and the binder is cured, so that the film 2 of the conductive particle paste is formed into a porous structure having the conductive particles 11 and the hardening reaction product 13 of the binder.
  • electroless plating is performed by impregnating the porous layer 22 with an electroless plating solution. This is a step in which the dispersed conductive particles 11 are connected to each other to transform the porous layer 22 into the wiring 3 made of a conductor.
  • the plating deposited metal is deposited in the voids inside the porous layer 22, and the conductive particles 11 are connected to each other by the precipitated plating deposited metal, so that the porous layer 22 can be modified into a wiring 3 made of a conductor. Therefore, according to the method for manufacturing a conductive circuit for a vehicle, the wiring 3 is formed so as to have a large cross-sectional area on the square millimeter level (for example, the cross-sectional area of the wiring of a wire harness is 0.05 mm 2 or more and 100 mm 2 or less). Is possible.
  • the electrical resistance of the vehicle conductive circuit will be low, so the vehicle conductive circuit manufactured by the above-mentioned method for manufacturing a vehicle conductive circuit cannot carry a large current. It is possible to flow.
  • the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above is suitable as a conductive circuit for vehicle parts through which a large current flows, and can be used as a substitute for wire harnesses in vehicle parts. be able to. Therefore, by using the method for manufacturing a conductive circuit for a vehicle according to the present embodiment, various vehicle parts can be manufactured depending on the type, model, specifications, etc. of the vehicle.
  • the wiring 3 can be formed on the base material 1 by using a method of applying and/or impregnating a plating solution without immersing it in a plating solution such as an electroless plating solution.
  • the conductive circuit for a vehicle can be manufactured easily and inexpensively. For example, it becomes possible to manufacture conductive circuits using robots, which leads to a reduction in the number of man-hours. Furthermore, since the degree of freedom in the layout of the conductive circuit is increased, a wire harness is no longer required, leading to a reduction in the weight of the conductive circuit.
  • the method for manufacturing a conductive circuit for a vehicle according to the present embodiment does not require heat treatment at high temperature when forming the wiring 3 on the base material 1, even if the base material 1 is made of resin, Problems are less likely to occur during heat treatment. If heat treatment at a high temperature (for example, 200° C.) is required when forming the wiring 3 on the base material 1, there is a risk that the resin base material 1 will thermally shrink during the heat treatment. For example, by applying a conductive particle paste containing conductive particles, a binder, and a liquid medium to the surface of a base material to form a film of the conductive particle paste on the base material, and then performing heat treatment.
  • the vehicle conductive circuit manufactured by the method for manufacturing a vehicle conductive circuit described above has the following structure. An example will be explained with reference to FIG. As shown in FIG. 2, the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above includes a base material 1 and wiring 3 formed on the base material 1.
  • the wiring 3 is made of a conductor.
  • the conductor includes conductive particles 11 that have an average particle size of, for example, 1 ⁇ m or more and 50 ⁇ m or less and are made of metal, and particles that have a smaller average particle size than the conductive particles 11 and are electroless.
  • the plated metal particles 12 are made of a plated metal deposited by plating.
  • a plurality of conductive particles 11 are arranged in a dispersed state within the conductor, and plated metal particles 12 are arranged between the conductive particles 11 to connect the conductive particles 11 to each other. Furthermore, the surface of the conductor is coated with a plating metal film 14 made of a plating deposited metal deposited by electroless plating, forming the wiring 3.
  • the plated metal film 14 is formed by the plated metal deposited from the electroless plating solution when the binder is completely cured (crosslinked) and/or when a catalyst application process is provided between the curing process and the plating process.
  • the conductivity of the plating metal film 14 is improved by allowing current to flow through the plating metal film 14 as well as contributing to maintaining the shape of the wiring 3. If the porous layer 22 is easily impregnated with the electroless plating solution, such as when the hardening reaction product 13 of the binder is in a semi-hardened state (details will be described later), the plated metal film 14 may not be formed. Note that the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above does not need to include the plated metal film 14.
  • the cross-sectional area of the wiring 3 means the cross-sectional area of a cross section that occurs when the wiring 3 is cut along a plane perpendicular to the direction in which the wiring 3 extends on the surface of the base material 1.
  • the "large area on the square millimeter level” may be, for example, 0.05 mm 2 or more and 100 mm 2 or less.
  • "low electrical resistance" of a conductive circuit for a vehicle means, for example, that the volume resistivity is approximately equivalent to the volume resistivity of pure copper, 1.6 ⁇ 10 ⁇ 8 ⁇ m.
  • the average particle diameter of the conductive particles 11 is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 3 ⁇ m or more and 45 ⁇ m or less.
  • the average particle diameter of the conductive particles 11 is preferably large. However, if the average particle diameter of the conductive particles 11 is too large, the connection between the particles becomes almost a point contact, which may increase the electrical resistance of the conductor. If the average particle diameter of the conductive particles 11 is within the above numerical range, the electrical resistance of the vehicular conductive circuit tends to be low. It becomes possible to flow current.
  • the plating deposited metal arranged between the conductive particles 11 and connecting the conductive particles 11 does not need to be particles.
  • the average particle diameter of the plating deposited metal particles 12 is preferably smaller than the average particle diameter of the conductive particles 11, more preferably 1 nm or more and 100 nm or less, It is more preferably 30 nm or more and 40 nm or less.
  • the conductive particles 11 can be more effectively connected to each other via the plated metal particles 12. Since the plurality of conductive particles 11 dispersed within the conductor are electrically connected by the plating deposited metal particles 12, the conductive circuit for a vehicle manufactured by the above method for manufacturing a conductive circuit for a vehicle has a low electrical resistance. It is possible to flow a low and large current.
  • the conductor of the vehicle conductive circuit manufactured by the above method for manufacturing a vehicle conductive circuit has a structure in which a plurality of dispersed conductive particles 11 are connected by plating deposited metal particles 12. Therefore, the conductor may have voids.
  • the metal constituting the conductive particles 11 and the metal constituting the plating deposited metal particles 12 may be the same kind of metal or may be different kinds of metals.
  • the type of metal constituting the conductive particles 11 and the type of metal constituting the plating deposited metal particles 12 are not particularly limited, but include copper (Cu), nickel (Ni), and silver (Ag). At least one of these may be used. Among these metals, copper is preferred because of its low cost.
  • the plated deposited metal particles 12 that electrically connect the conductive particles 11 are in contact with the surface of the conductive particles 11; Part or all of the surface may be coated.
  • the cross-sectional area of the conductive particles 11 appears to be larger than when the conductive particles 11 are not coated. resistance becomes lower.
  • the film covering the surface of the conductive particles 11 is a single layer. It may be a structure or a multi-layer structure such as a two-layer structure.
  • the method of obtaining a structure in which a part or all of the surface of the conductive particles 11 is covered with the plating deposited metal particles 12 is not particularly limited, but for example, a plurality of conductive particles 11 may be coated electrolessly.
  • a structure can be obtained in which a part or all of the surface of the conductive particles 11 is covered with a film formed by arranging a plurality of plated metal particles 12. That is, when electroless plating is applied to a plurality of conductive particles 11, plating precipitated metal particles 12 having an average particle diameter of, for example, several tens of nanometers are generated on the surface of the conductive particles 11, and the resulting plating precipitated metal particles 12 becomes an aggregate and covers part or all of the surface of the conductive particles 11.
  • the thickness of the wiring 3 formed on the base material 1 is not particularly limited, but is preferably equal to or greater than the average particle diameter of the conductive particles 11, more preferably equal to or greater than 50 ⁇ m, and preferably equal to or greater than 0.1 mm. It is more preferable that it is above. Further, the width of the wiring 3 formed on the base material 1 is not particularly limited, but is preferably 1 mm or more, and more preferably 3 mm or more.
  • the material of the base material is not particularly limited, but resin, steel plate, painted steel plate, and painted aluminum plate can be used.
  • resins include polypropylene, polyethylene, ABS resin (acrylonitrile-butadiene-styrene copolymer), polyethylene terephthalate, and polyurethane.
  • the surface of the base material may be provided with recesses for accommodating the conductive particle paste.
  • a processing step may be included in which a recessed portion for accommodating the conductive particle paste is formed on the surface of the base material.
  • binder The type of binder is not particularly limited as long as it has the property of being hardened by heat, light, etc., and for example, thermosetting resins such as epoxy resins and phenol resins can be used. Alternatively, those containing flux components (oleic acid, carboxylic acid, etc.) can also be used.
  • the type of liquid medium is not particularly limited as long as it is possible to disperse the conductive particles and the binder, and examples thereof include water and organic solvents.
  • An example of an organic solvent is ethylene glycol.
  • the coating process is a process of coating the surface of the base material with the conductive particle paste to form a film of the conductive particle paste on the base material.
  • the method for applying the conductive particle paste is not particularly limited, it can be applied using a dispenser device, an inkjet device, or the like. Coating conditions are not particularly limited, and coating can be performed in an environment of normal temperature and pressure.
  • the curing step is a step in which the binder is cured to modify the film of conductive particle paste into a porous layer having a curing reactant of the conductive particles and the binder.
  • the method for curing the binder is not particularly limited, curing by heat is preferred in view of simultaneously volatilizing the liquid medium.
  • the curing temperature varies depending on the type of binder, it is preferably below the heat resistance temperature of the resin constituting the base material, and can be, for example, 80°C or higher and 120°C or lower.
  • the curing time is not particularly limited and varies depending on the curing temperature, but can be, for example, 5 min or more and 120 min or less.
  • the degree of curing it is possible to complete the curing reaction and obtain a completely cured product, but in order to obtain a completely cured product, the electroless plating solution, the acidic processing solution described below, and the alkaline processing solution will be inside the porous layer. Since there is a risk that the material will not penetrate sufficiently, it is preferable to leave it in a semi-cured state. In addition, if the cross-sectional area of the conductive circuit wiring is large, on the order of square millimeters, there is a risk that regions with low density of conductive particles will be created in the conductor, but by making it in a semi-cured state, this can be avoided. It is possible to sufficiently connect conductive particles even in large areas.
  • the binder is a thermosetting resin
  • the curing reaction of the thermosetting resin is not allowed to proceed until the curing reaction product is completely cured (crosslinked), and a semi-cured state (gelling) is achieved.
  • the curing reaction product can be brought into a semi-cured state by stopping at this state).
  • Electroless plating is performed by impregnating the porous layer with an electroless plating solution, and the conductive particles dispersed inside the porous layer are connected by the plating deposit metal precipitated from the electroless plating solution. This is a step of converting the porous layer into wiring made of a conductor.
  • the method of impregnating the porous layer with the electroless plating solution is not particularly limited, but there is no need to immerse the base material having the porous layer in the electroless plating solution.
  • a method of applying the electroless plating solution to the surface, a method of spraying the electroless plating solution onto the surface of the porous layer, and a method of injecting the electroless plating solution into the inside of the porous layer can be adopted.
  • the method of injecting the electroless plating solution into the inside of the porous layer can be performed using a nozzle that discharges the electroless plating solution. If you insert the discharge port of the nozzle that discharges the electroless plating solution into the porous layer and inject the electroless plating solution into the porous layer from the nozzle discharge port (dispenser type), the inside of the porous layer The electroless plating solution easily soaks into the surface.
  • the material of the nozzle is not particularly limited, it is preferable that the part of the nozzle that comes into contact with the electroless plating solution is made of resin. If it is made of metal, the reaction in which the plating deposit metal is deposited from the electroless plating solution is promoted, so there is a risk that the nozzle will be clogged by the plating deposit metal.
  • the temperature conditions for the plating process are not particularly limited, and the plating process can be performed at room temperature or at a temperature higher than room temperature.
  • the temperature is preferably 25°C or more and 95°C or less, and more preferably 25°C or more and 50°C or less.
  • the operation of impregnating the porous layer with an electroless plating solution and performing electroless plating may be repeated multiple times. That is, the plating process may be performed one time, but may be performed multiple times. By repeating the process a plurality of times, the amount of plating deposited metal increases, so that the conductive particles can be sufficiently connected to each other.
  • the viscosity of the electroless plating solution is lower than that of the electroless plating solution used in the previous operation. It is preferable to use an electroless plating solution with a high . If the viscosity of the electroless plating solution used initially is low, the electroless plating solution will easily penetrate into the porous layer. On the other hand, by increasing the viscosity of the electroless plating solution, leakage of the electroless plating solution from the porous layer can be suppressed.
  • the method for increasing the viscosity of the electroless plating solution is not particularly limited, a method of adding a thickener to the electroless plating solution may be adopted.
  • thickeners include agar, gelatin, and starch.
  • the viscosity of the electroless plating solution at 25° C. may be 0.1 mPa ⁇ s or more and 10 5 mPa ⁇ s or less so that it can be coated with a dispenser device, an inkjet device, or the like.
  • the method for manufacturing a conductive circuit for a vehicle according to the present embodiment may include an alkali treatment step of impregnating the porous layer with an alkaline treatment liquid between the curing step and the plating step. If the alkaline treatment step is carried out, the binder such as the thermosetting resin can be dissolved by the alkaline treatment liquid, so that a porous layer having a sufficient porous structure can be obtained.
  • the type of alkaline treatment liquid is not particularly limited, it may be a strong alkaline aqueous solution. Specific examples of strong alkalis include sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide.
  • the method for manufacturing a conductive circuit for a vehicle according to the present embodiment may include an acid treatment step of impregnating the porous layer with an acid treatment liquid between the curing step and the plating step.
  • an acid treatment step By carrying out the acid treatment step, the oxide film on the surface of the conductive particles can be removed, so that the catalyst described below can easily adhere to the surface of the conductive particles.
  • minute irregularities are formed on the surface of the conductive particles, so the surface of the conductive particles is activated and the plating deposit metal is easily deposited.
  • the type of acidic treatment liquid is not particularly limited, it can be an aqueous solution of a strong acid.
  • strong acids include nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), sulfamic acid (NH 2 HSO 3 ), phosphoric acid (H 3 PO 4 ), and hydrofluoric acid (HF). ), oxalic acid ((COOH) 2 ), tartaric acid ((CH(OH)COOH) 2 ), citric acid (C(OH)(CH 2 COOH) 2 COOH), formic acid (HCOOH), glycolic acid (HOCH 2 COOH) ), acetic acid (CH 3 COOH).
  • Either one of the alkali treatment step and the acid treatment step may be carried out, or both may be carried out.
  • the electrical resistance of the conductive circuit can be lowered.
  • the surface of the conductive particles can be impregnated with the electroless plating solution in an activated state. The effect of increasing the amount is produced.
  • a catalyst application step of applying a catalyst to the porous layer to promote a reaction in which plating deposited metal is deposited from an electroless plating solution may be provided.
  • a catalyst application step of applying a catalyst to the porous layer to promote a reaction in which plating deposited metal is deposited from an electroless plating solution may be provided.
  • a plating metal film 14 is formed on the surface of the conductor, and when it is in a semi-cured state, a catalyst is applied to the porous layer, so that electroless The amount of plating metal deposited from the plating solution increases.
  • the method of applying the catalyst to the porous layer is not particularly limited; for example, the catalyst may be introduced inside the porous layer, or a conductive particle paste containing a catalyst may be applied to the base material.
  • a porous layer may also be obtained.
  • catalysts include colloidal solutions containing metals. Specific examples of metals include palladium (Pd), copper (Cu), nickel (Ni), cobalt (Co), gold (Au), silver (Ag), rhodium (Rh), platinum (Pt), and indium (In). ) and tin (Sn).
  • Example 1 A paste containing copper powder (corresponding to conductive particles) with an average particle size of 3 ⁇ m, a binder, and a solvent (water, ethylene glycol monophenyl ether, triethanolamine, etc.) (atmospheric hardening manufactured by Namics Co., Ltd.) Copper paste XCH9207) was prepared. This paste was applied to the surface of the resin plate-shaped member as a base material using a dispenser device to form a paste film on the surface of the resin plate-shaped member (coating step). Then, the resin plate member on which the paste film was formed was placed in an air atmosphere and heated at a temperature of 120° C. for 120 minutes to dry the paste. By this heat treatment during drying, the curing reaction of the binder in the paste progressed, and the curing reaction product was completely cured (crosslinked) (curing step).
  • a solvent water, ethylene glycol monophenyl ether, triethanolamine, etc.
  • the resin constituting the resin plate member is a mixed resin material of polypropylene and acrylonitrile-butadiene-styrene copolymer.
  • the shape of the resin plate member is rectangular, and its dimensions are 150 mm long, 75 mm wide, and 3 mm thick.
  • the shape of the paste film is linear, and its dimensions are 100 mm in length, 4 mm in width, and 0.3 mm in thickness.
  • an electroless copper plating solution OPC Copper HFS manufactured by Okuno Pharmaceutical Co., Ltd. was prepared. That is, an electroless copper plating solution was prepared by mixing OPC Copper HFS-M, OPC Copper HFS-A, and OPC Copper HFS-C manufactured by Okuno Pharmaceutical Co., Ltd. at a mixing ratio of 150:60:4. did. The viscosity of the obtained electroless copper plating solution at 25° C. was 0.89 mPa ⁇ s. This electroless copper plating solution was applied to the surface of the dried paste film using an inkjet device, impregnated into the inside of the dried paste film, and left in an air atmosphere at 25°C for 120 minutes. Electroless copper plating was performed (plating process).
  • volume resistivity ( ⁇ m) Electrical resistance value ( ⁇ ) ⁇ Cross-sectional area of conductive circuit wiring (m 2 ) / Length of conductive circuit wiring (m)
  • Example 2 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the heat treatment conditions in the curing step were 120° C. and 20 minutes. As a result, the volume resistivity was 5.0 ⁇ 10 ⁇ 8 ⁇ m. Although the curing reaction of the binder in the paste progressed through the heat treatment in the curing step, the curing reaction product was not completely cured (not crosslinked) and was in a semi-cured state.
  • Example 3 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the heat treatment conditions in the curing step were 100° C. and 20 minutes. As a result, the volume resistivity was 6.0 ⁇ 10 ⁇ 7 ⁇ m. Although the curing reaction of the binder in the paste progressed through the heat treatment in the curing step, the curing reaction product was not completely cured (not crosslinked) and was in a semi-cured state.
  • Example 4 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process conditions were 60° C. and 120 min. As a result, the volume resistivity was 3.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 5 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process was repeated twice. The contents of the two plating steps are the same. As a result, the volume resistivity was 4.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 6 In the plating process, the volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the electroless copper plating solution was applied as follows. In other words, the electroless copper plating solution is applied by inserting the discharge port of a nozzle that discharges the electroless plating solution into the inside of the dried paste film, and injecting the electroless copper plating solution from the discharge port of the nozzle into the inside of the dried paste film. I did it. As a result, the volume resistivity was 4.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 7 The plating process was repeated twice, and the viscosity at 25°C of the electroless copper plating solution used for the first time was 0.89 mPa ⁇ s, and the viscosity at 25°C of the electroless copper plating solution used for the second time was 2000 mPa ⁇ s.
  • the volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that.
  • the viscosity of the electroless copper plating solution was adjusted by adding gelatin as a thickener. As a result, the volume resistivity was 2.5 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 8 A recess for accommodating the paste was provided on the surface of the resin plate-like member that was the base material, and the paste was applied in the recess to form a paste film in the same manner as in Example 1.
  • the volume resistivity of the conductive circuit of the test specimen was obtained. As a result, the volume resistivity was 3.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 9 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that an acid treatment step was performed between the curing step and the plating step. That is, the dried paste film was coated with an acidic treatment liquid using a dispenser device, left to stand for 5 minutes at room temperature to be impregnated, and then washed with water and dried.
  • the acidic treatment liquid is nitric acid with a concentration of 60% by mass. As a result, the volume resistivity was 2.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 10 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that an alkali treatment step was performed between the curing step and the plating step. That is, an alkaline treatment liquid was applied to the dried paste film using a dispenser device, and the paste was left at room temperature for 5 minutes to be impregnated, and then washed with water and dried.
  • the alkaline treatment liquid is an aqueous sodium hydroxide solution with a pH of 12. As a result, the volume resistivity was 3.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 11 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the alkali treatment step and acid treatment step were carried out in the stated order between the curing step and the plating step.
  • the contents of the alkali treatment step and acid treatment step are the same as in Examples 9 and 10, respectively.
  • the volume resistivity was 1.5 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 12 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the alkali treatment step, acid treatment step, and catalyst application step were performed in the stated order between the curing step and the plating step. .
  • the contents of the alkali treatment step and acid treatment step are the same as in Examples 9 and 10, respectively.
  • the catalyst application process is a process of applying a catalyst that promotes the reaction in which copper is deposited from the electroless copper plating solution.
  • the catalyst-containing solution is applied to the dried paste film using a dispenser device, and then the catalyst is applied in an air atmosphere.
  • the catalyst was applied to the dried paste film by leaving it at room temperature for 5 minutes for impregnation, then washing with water and drying.
  • the catalyst-containing liquid is Metalloid ML-450LV2 manufactured by Iox Co., Ltd. As a result, the volume resistivity was 1.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 13 In the coating process, the volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the paste was coated on the surface of the resin plate member using an inkjet device. As a result, the volume resistivity was 6.0 ⁇ 10 ⁇ 8 ⁇ m.
  • Example 1 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the heat treatment conditions in the curing step were 150° C. and 120 min, and the plating step was not performed. As a result, the volume resistivity was 1.8 ⁇ 10 ⁇ 8 ⁇ m. Further, since the temperature of the heat treatment in the curing step was high, the resin plate member melted due to the heat treatment.
  • Example 2 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process was not performed. As a result, the volume resistivity was 1.2 ⁇ 10 ⁇ 6 ⁇ m.
  • Example 3 The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the heat treatment conditions in the curing step were 100° C. and 120 min, and the plating step was not performed. As a result, the volume resistivity was 1.5 ⁇ 10 ⁇ 5 ⁇ m.
  • the results of Examples 1 to 13 and Comparative Examples 1 to 3 are summarized in Table 1.

Abstract

Provided is a vehicular conductive circuit manufacturing method which makes it possible to form a wiring so as to have a cross section area is at a square millimeter level. This vehicular conductive circuit manufacturing method is for manufacturing a conductive circuit for a vehicle by forming, on a substrate (1), a wiring (3) composed of a conductor, the method comprising: a coating step for forming a conductive particle paste film (2) on the substrate (1) by coating the surface of the substrate (1) with a conductive particle paste that contains conductive particles (11), a binder, and a liquid medium; a curing step for curing the binder to modify the conductive particle paste film (2) to a porous layer (22) having the conductive particles (11) and a cured reactant (13) of the binder; a plating step for performing electroless plating by impregnating the porous layer (22) with an electroless liquid, and binding together the conductive particles (11) dispersed in the porous layer (22) by means of plating deposition metal deposited from the electroless plating liquid, thereby modifying the porous layer (22) to the wiring (3) composed of a conductor.

Description

車両用導電回路の製造方法Method for manufacturing conductive circuit for vehicle
 本発明は車両用導電回路の製造方法に関する。 The present invention relates to a method of manufacturing a conductive circuit for a vehicle.
 自動車等の車両には、複数の電線の束、端子、コネクタで構成されたワイヤーハーネスが使用されており、電源供給や信号通信に用いられている。しかしながら、車両を製造する際にワイヤーハーネスを車両に取り付ける作業は、多くの工数を要するという問題があった。また、ワイヤーハーネスは、太く重く且つレイアウトの自由度が小さいという問題もあった。
 これらの問題を解決するため、ワイヤーハーネスをプリンテッドエレクトロニクス技術で形成した導電回路に置換する技術が提案されている。例えば、特許文献1には、銅微粒子からなる銅微粒子層を基材上に形成した後に無電解銅めっきを施し、銅微粒子層の上に銅の結晶を均一に成長させて配線を形成することにより、導電回路を作製する技術が開示されている。
2. Description of the Related Art Vehicles such as automobiles use wire harnesses made up of bundles of electric wires, terminals, and connectors, and are used for power supply and signal communication. However, there is a problem in that the work of attaching the wire harness to the vehicle when manufacturing the vehicle requires a large number of man-hours. Further, the wire harness has the problem that it is thick and heavy, and the degree of freedom in layout is small.
In order to solve these problems, a technique has been proposed in which the wire harness is replaced with a conductive circuit formed using printed electronics technology. For example, Patent Document 1 discloses that after a copper fine particle layer made of copper fine particles is formed on a base material, electroless copper plating is applied, and copper crystals are uniformly grown on the copper fine particle layer to form wiring. discloses a technique for producing a conductive circuit.
日本国特許公開公報 2020年第43234号Japanese Patent Publication No. 43234, 2020
 車両用部品に設けられる導電回路には大電流が流されるが、導電回路の電気抵抗を低くして大電流を流すためには、導電回路の配線の断面積を平方ミリメートル(mm2)レベルの大面積とする必要がある。したがって、車両用部品に設けられる導電回路の配線は、平方ミリメートルレベルの大きな断面積を有することが求められる。しかしながら、特許文献1に開示の技術は、厚さが数μm(例えば3μm)、幅が数μm(例えば5μm以下)で、断面積が平方ミクロンメートル(μm2)レベルである配線の作製に好適な技術であった。
 本発明は、平方ミリメートルレベルの大きな断面積を有するように配線を形成することが可能な車両用導電回路の製造方法を提供することを課題とする。
A large current is passed through conductive circuits installed in vehicle parts, but in order to lower the electrical resistance of the conductive circuit and allow the large current to flow, the cross-sectional area of the conductive circuit wiring must be reduced to a square millimeter (mm 2 ) level. It is necessary to have a large area. Therefore, the conductive circuit wiring provided in vehicle parts is required to have a large cross-sectional area on the order of square millimeters. However, the technique disclosed in Patent Document 1 is suitable for producing wiring having a thickness of several μm (e.g., 3 μm), a width of several μm (e.g., 5 μm or less), and a cross-sectional area on the square micrometer (μm 2 ) level. It was a great technique.
An object of the present invention is to provide a method for manufacturing a conductive circuit for a vehicle, which allows wiring to be formed to have a large cross-sectional area on the order of square millimeters.
 本発明の一態様に係る車両用導電回路の製造方法は、導電体で構成された配線を基材上に形成して車両用の導電回路を製造する方法であって、導電性粒子、バインダー、及び液状媒体を含有する導電性粒子ペーストを基材の表面に塗工して、基材上に導電性粒子ペーストの膜を形成する塗工工程と、バインダーを硬化させて、導電性粒子ペーストの膜を、導電性粒子及びバインダーの硬化反応物を有する多孔質層に変性する硬化工程と、多孔質層に無電解めっき液を含浸させて無電解めっきを行い、無電解めっき液から析出するめっき析出金属によって、多孔質層の内部に分散している導電性粒子同士を接続して、多孔質層を、導電体で構成された配線に変性するめっき工程と、を備えることを要旨とする。 A method for manufacturing a conductive circuit for a vehicle according to one aspect of the present invention is a method for manufacturing a conductive circuit for a vehicle by forming wiring made of a conductor on a base material, the method comprising: conductive particles, a binder, and a coating process of coating a conductive particle paste containing a liquid medium on the surface of a base material to form a film of the conductive particle paste on the base material, and curing the binder to form a film of the conductive particle paste on the base material. A curing step in which the film is modified into a porous layer having a curing reaction product of conductive particles and a binder, and plating in which the porous layer is impregnated with an electroless plating solution to perform electroless plating, and then deposited from the electroless plating solution. The gist of the present invention is to include a plating step in which conductive particles dispersed inside the porous layer are connected to each other by a deposited metal to transform the porous layer into a wiring made of a conductor.
 本発明に係る車両用導電回路の製造方法は、平方ミリメートルレベルの大きな断面積を有するように配線を形成することが可能である。 The method for manufacturing a conductive circuit for a vehicle according to the present invention allows wiring to be formed to have a large cross-sectional area on the order of square millimeters.
本発明の一実施形態に係る車両用導電回路の製造方法の各工程を説明する模式的断面図である。FIG. 3 is a schematic cross-sectional view illustrating each step of a method for manufacturing a conductive circuit for a vehicle according to an embodiment of the present invention. 本発明の一実施形態に係る車両用導電回路の製造方法によって製造された車両用導電回路の構造を説明する模式的断面図である。FIG. 1 is a schematic cross-sectional view illustrating the structure of a vehicle conductive circuit manufactured by a method for manufacturing a vehicle conductive circuit according to an embodiment of the present invention.
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described below. Note that this embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. Further, various changes or improvements can be made to this embodiment, and forms with such changes or improvements can also be included in the present invention.
 図1に示すように、本実施形態に係る車両用導電回路の製造方法は、導電体で構成された配線3を基材1上に形成して車両用の導電回路を製造する方法であって、塗工工程と硬化工程とめっき工程とを備えている。
 塗工工程は、導電性粒子11、バインダー、及び液状媒体を含有する導電性粒子ペーストを基材1の表面に塗工して、基材1上に導電性粒子ペーストの膜2を形成する工程である。なお、図1においては、導電性粒子ペーストの膜2中のバインダー及び液状媒体を符号21で示してある。
As shown in FIG. 1, the method for manufacturing a conductive circuit for a vehicle according to the present embodiment is a method for manufacturing a conductive circuit for a vehicle by forming wiring 3 made of a conductor on a base material 1. , a coating process, a curing process, and a plating process.
The coating step is a step of applying a conductive particle paste containing conductive particles 11, a binder, and a liquid medium to the surface of the base material 1 to form a film 2 of conductive particle paste on the base material 1. It is. In FIG. 1, the binder and liquid medium in the film 2 of the conductive particle paste are indicated by the reference numeral 21.
 硬化工程は、熱等によって導電性粒子ペーストの膜2から液状媒体を揮発させるとともにバインダーを硬化させて、導電性粒子ペーストの膜2を、導電性粒子11及びバインダーの硬化反応物13を有する多孔質層22に変性する工程である。
 めっき工程は、多孔質層22に無電解めっき液を含浸させて無電解めっきを行い、無電解めっき液から析出するめっき析出金属(例えばめっき析出金属粒子12)によって、多孔質層22の内部に分散している導電性粒子11同士を接続して、多孔質層22を、導電体で構成された配線3に変性する工程である。
In the curing process, the liquid medium is volatilized from the film 2 of the conductive particle paste by heat or the like, and the binder is cured, so that the film 2 of the conductive particle paste is formed into a porous structure having the conductive particles 11 and the hardening reaction product 13 of the binder. This is the process of changing into a quality layer 22.
In the plating process, electroless plating is performed by impregnating the porous layer 22 with an electroless plating solution. This is a step in which the dispersed conductive particles 11 are connected to each other to transform the porous layer 22 into the wiring 3 made of a conductor.
 上記の車両用導電回路の製造方法によれば、多孔質層22の内部の空隙にめっき析出金属が析出し、析出しためっき析出金属によって導電性粒子11同士が接続されるので、多孔質層22を、導電体で構成された配線3に変性することができる。そのため、上記の車両用導電回路の製造方法によれば、平方ミリメートルレベルの大きな断面積(例えば、ワイヤーハーネスの配線の断面積0.05mm2以上100mm2以下)を有するように配線3を形成することが可能である。配線3の断面積が平方ミリメートルレベルの大面積であると、車両用導電回路の電気抵抗が低くなるので、上記の車両用導電回路の製造方法によって製造された車両用導電回路は、大電流を流すことが可能である。 According to the above method for manufacturing a conductive circuit for a vehicle, the plating deposited metal is deposited in the voids inside the porous layer 22, and the conductive particles 11 are connected to each other by the precipitated plating deposited metal, so that the porous layer 22 can be modified into a wiring 3 made of a conductor. Therefore, according to the method for manufacturing a conductive circuit for a vehicle, the wiring 3 is formed so as to have a large cross-sectional area on the square millimeter level (for example, the cross-sectional area of the wiring of a wire harness is 0.05 mm 2 or more and 100 mm 2 or less). Is possible. If the cross-sectional area of the wiring 3 is large, on the order of square millimeters, the electrical resistance of the vehicle conductive circuit will be low, so the vehicle conductive circuit manufactured by the above-mentioned method for manufacturing a vehicle conductive circuit cannot carry a large current. It is possible to flow.
 そのため、上記の車両用導電回路の製造方法によって製造された車両用導電回路は、大電流が流される車両用部品向けの導電回路として好適であり、車両用部品においてワイヤーハーネスの代替品として使用することができる。よって、本実施形態に係る車両用導電回路の製造方法を用いれば、車両の種類、型式、仕様等に応じて、種々の車両用部品を製造することができる。 Therefore, the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above is suitable as a conductive circuit for vehicle parts through which a large current flows, and can be used as a substitute for wire harnesses in vehicle parts. be able to. Therefore, by using the method for manufacturing a conductive circuit for a vehicle according to the present embodiment, various vehicle parts can be manufactured depending on the type, model, specifications, etc. of the vehicle.
 また、無電解めっき液等のめっき液に浸漬することなく、めっき液を塗布及び/又は含浸させる方法を用いることによって基材1上に配線3を形成することができるので、本実施形態に係る車両用導電回路の製造方法によれば、車両用導電回路を安価に且つ容易に製造することができる。例えば、ロボットを用いて導電回路を製造することが可能となるので、工数の低減につながる。また、導電回路のレイアウトの自由度が高まるので、ワイヤーハーネスが不要となり、導電回路の軽量化につながるという効果もある。 Furthermore, the wiring 3 can be formed on the base material 1 by using a method of applying and/or impregnating a plating solution without immersing it in a plating solution such as an electroless plating solution. According to the method for manufacturing a conductive circuit for a vehicle, the conductive circuit for a vehicle can be manufactured easily and inexpensively. For example, it becomes possible to manufacture conductive circuits using robots, which leads to a reduction in the number of man-hours. Furthermore, since the degree of freedom in the layout of the conductive circuit is increased, a wire harness is no longer required, leading to a reduction in the weight of the conductive circuit.
 さらに、本実施形態に係る車両用導電回路の製造方法は、基材1上に配線3を形成する際に高温での熱処理を必要としないので、基材1が樹脂製であったとしても、熱処理時に問題が生じにくい。基材1上に配線3を形成する際に高温(例えば200℃)での熱処理を必要とする場合は、樹脂製の基材1が熱処理時に熱収縮するおそれがある。例えば、導電性粒子、バインダー、及び液状媒体を含有する導電性粒子ペーストを基材の表面に塗工して、基材上に導電性粒子ペーストの膜を形成した後に、熱処理を施すことによって、導電性粒子ペーストの膜を導電体で構成された配線に変性する技術が知られているが、熱処理温度は一般的な樹脂の耐熱温度よりも高い温度(例えば、150℃以上や200℃以上)であるため、樹脂製の基材が熱収縮するおそれがあった。 Furthermore, since the method for manufacturing a conductive circuit for a vehicle according to the present embodiment does not require heat treatment at high temperature when forming the wiring 3 on the base material 1, even if the base material 1 is made of resin, Problems are less likely to occur during heat treatment. If heat treatment at a high temperature (for example, 200° C.) is required when forming the wiring 3 on the base material 1, there is a risk that the resin base material 1 will thermally shrink during the heat treatment. For example, by applying a conductive particle paste containing conductive particles, a binder, and a liquid medium to the surface of a base material to form a film of the conductive particle paste on the base material, and then performing heat treatment. There is a known technology for modifying a film of conductive particle paste into wiring made of conductors, but the heat treatment temperature is higher than the heat resistance temperature of general resins (e.g., 150°C or higher or 200°C or higher). Therefore, there was a risk that the resin base material would shrink due to heat.
 上記の車両用導電回路の製造方法によって製造された車両用導電回路は、下記のような構造を有している。図2を参照しながら、一例を説明する。
 図2に示すように、上記の車両用導電回路の製造方法によって製造された車両用導電回路は、基材1と、基材1上に形成された配線3と、を備えている。配線3は導電体で構成されている。そして、この導電体は、平均粒子径が例えば1μm以上50μm以下の粒子であり且つ金属で構成されている導電性粒子11と、導電性粒子11よりも平均粒子径が小さい粒子であり且つ無電解めっきにより析出しためっき析出金属で構成されているめっき析出金属粒子12と、を有している。複数の導電性粒子11が導電体内に分散した状態で配されており、めっき析出金属粒子12は、導電性粒子11同士の間に配され、導電性粒子11同士を接続している。さらに、導電体の表面には、無電解めっきにより析出しためっき析出金属で構成されているめっき金属膜14が被覆されており、配線3を形成している。
The vehicle conductive circuit manufactured by the method for manufacturing a vehicle conductive circuit described above has the following structure. An example will be explained with reference to FIG.
As shown in FIG. 2, the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above includes a base material 1 and wiring 3 formed on the base material 1. The wiring 3 is made of a conductor. The conductor includes conductive particles 11 that have an average particle size of, for example, 1 μm or more and 50 μm or less and are made of metal, and particles that have a smaller average particle size than the conductive particles 11 and are electroless. The plated metal particles 12 are made of a plated metal deposited by plating. A plurality of conductive particles 11 are arranged in a dispersed state within the conductor, and plated metal particles 12 are arranged between the conductive particles 11 to connect the conductive particles 11 to each other. Furthermore, the surface of the conductor is coated with a plating metal film 14 made of a plating deposited metal deposited by electroless plating, forming the wiring 3.
 めっき金属膜14は、バインダーを完全に硬化(架橋結合)した場合、及び/又は、硬化工程とめっき工程の間に触媒付与工程を備えた場合に、無電解めっき液から析出しためっき析出金属によって形成されたものであり、めっき金属膜14にも電流が流れることで導電性が向上すると共に、配線3の形状維持に寄与するという作用を有する。バインダーの硬化反応物13を半硬化状態とした場合(詳細は後述する)など、無電解めっき液が多孔質層22に含浸しやすい場合には、めっき金属膜14は形成されない場合がある。なお、上記の車両用導電回路の製造方法によって製造された車両用導電回路は、めっき金属膜14を備えていなくてもよい。 The plated metal film 14 is formed by the plated metal deposited from the electroless plating solution when the binder is completely cured (crosslinked) and/or when a catalyst application process is provided between the curing process and the plating process. The conductivity of the plating metal film 14 is improved by allowing current to flow through the plating metal film 14 as well as contributing to maintaining the shape of the wiring 3. If the porous layer 22 is easily impregnated with the electroless plating solution, such as when the hardening reaction product 13 of the binder is in a semi-hardened state (details will be described later), the plated metal film 14 may not be formed. Note that the vehicular conductive circuit manufactured by the method for manufacturing a vehicular conductive circuit described above does not need to include the plated metal film 14.
 なお、配線3の断面積とは、基材1の表面上に延びる配線3の延伸方向に直交する平面で配線3を切断した場合に生じる断面の断面積を意味する。また、「平方ミリメートルレベルの大面積」は、例えば、0.05mm2以上100mm2以下としてもよい。さらに、車両用導電回路の「電気抵抗が低い」は、例えば、純銅の体積抵抗率1.6×10-8Ω・mとほぼ同等の体積抵抗率であることを意味する。
 導電性粒子11の平均粒子径は、1μm以上50μm以下であることが好ましく、3μm以上45μm以下であることがより好ましい。
Note that the cross-sectional area of the wiring 3 means the cross-sectional area of a cross section that occurs when the wiring 3 is cut along a plane perpendicular to the direction in which the wiring 3 extends on the surface of the base material 1. Further, the "large area on the square millimeter level" may be, for example, 0.05 mm 2 or more and 100 mm 2 or less. Furthermore, "low electrical resistance" of a conductive circuit for a vehicle means, for example, that the volume resistivity is approximately equivalent to the volume resistivity of pure copper, 1.6×10 −8 Ω·m.
The average particle diameter of the conductive particles 11 is preferably 1 μm or more and 50 μm or less, more preferably 3 μm or more and 45 μm or less.
 配線3を構成する導電体において、主に導電性粒子11中を電流が流れるので、導電性粒子11の平均粒子径は大きい方が好ましい。ただし、導電性粒子11の平均粒子径が大きすぎると、粒子間の接続がほぼ点接触となり、導電体の電気抵抗が高くなるおそれがある。導電性粒子11の平均粒子径が上記の数値範囲内であれば、車両用導電回路の電気抵抗が低くなりやすいので、上記の車両用導電回路の製造方法によって製造された車両用導電回路に大電流を流すことが可能となる。 In the conductor constituting the wiring 3, current mainly flows through the conductive particles 11, so the average particle diameter of the conductive particles 11 is preferably large. However, if the average particle diameter of the conductive particles 11 is too large, the connection between the particles becomes almost a point contact, which may increase the electrical resistance of the conductor. If the average particle diameter of the conductive particles 11 is within the above numerical range, the electrical resistance of the vehicular conductive circuit tends to be low. It becomes possible to flow current.
 また、導電性粒子11同士の間に配され導電性粒子11同士を接続するめっき析出金属は、粒子である必要はない。ただし、めっき析出金属が粒子である場合には、めっき析出金属粒子12の平均粒子径は、導電性粒子11の平均粒子径よりも小さいことが好ましく、1nm以上100nm以下であることがより好ましく、30nm以上40nm以下であることがさらに好ましい。 Further, the plating deposited metal arranged between the conductive particles 11 and connecting the conductive particles 11 does not need to be particles. However, when the plating deposited metal is a particle, the average particle diameter of the plating deposited metal particles 12 is preferably smaller than the average particle diameter of the conductive particles 11, more preferably 1 nm or more and 100 nm or less, It is more preferably 30 nm or more and 40 nm or less.
 めっき析出金属粒子12の平均粒子径が上記の数値範囲内であれば、めっき析出金属粒子12を介して導電性粒子11同士をより効果的に接続することができる。導電体内に分散している複数の導電性粒子11がめっき析出金属粒子12によって電気的に接続されているため、上記の車両用導電回路の製造方法によって製造された車両用導電回路は電気抵抗が低く、大電流を流すことが可能となる。 If the average particle diameter of the plated metal particles 12 is within the above numerical range, the conductive particles 11 can be more effectively connected to each other via the plated metal particles 12. Since the plurality of conductive particles 11 dispersed within the conductor are electrically connected by the plating deposited metal particles 12, the conductive circuit for a vehicle manufactured by the above method for manufacturing a conductive circuit for a vehicle has a low electrical resistance. It is possible to flow a low and large current.
 なお、上記の車両用導電回路の製造方法によって製造された車両用導電回路の導電体は、分散している複数の導電性粒子11がめっき析出金属粒子12によって接続されている構造を有しているため、導電体は空隙を有している場合がある。
 導電性粒子11を構成する金属とめっき析出金属粒子12を構成する金属は、同種の金属であってもよいし、異種の金属であってもよい。また、導電性粒子11を構成する金属の種類とめっき析出金属粒子12を構成する金属の種類は、特に限定されるものではないが、銅(Cu)、ニッケル(Ni)、及び銀(Ag)のうちの少なくとも1種であってもよい。これらの金属の中では、低コストであることから銅が好ましい。
Note that the conductor of the vehicle conductive circuit manufactured by the above method for manufacturing a vehicle conductive circuit has a structure in which a plurality of dispersed conductive particles 11 are connected by plating deposited metal particles 12. Therefore, the conductor may have voids.
The metal constituting the conductive particles 11 and the metal constituting the plating deposited metal particles 12 may be the same kind of metal or may be different kinds of metals. Further, the type of metal constituting the conductive particles 11 and the type of metal constituting the plating deposited metal particles 12 are not particularly limited, but include copper (Cu), nickel (Ni), and silver (Ag). At least one of these may be used. Among these metals, copper is preferred because of its low cost.
 さらに、導電性粒子11同士を電気的に接続するめっき析出金属粒子12は、導電性粒子11の表面に接しているが、導電性粒子11に接するめっき析出金属粒子12によって、導電性粒子11の表面の一部又は全部が被覆されていてもよい。導電性粒子11の表面がめっき析出金属粒子12によって被覆されていると、被覆されていない場合と比較して、見かけ上、導電性粒子11の断面積が大きくなるので、車両用導電回路の電気抵抗が低くなる。
 複数のめっき析出金属粒子12が並んで形成される膜によって、導電性粒子11の表面の一部又は全部が被覆されている場合は、導電性粒子11の表面を被覆する上記膜は、1層構造であってもよいし、2層構造等の複数層構造であってもよい。
Furthermore, the plated deposited metal particles 12 that electrically connect the conductive particles 11 are in contact with the surface of the conductive particles 11; Part or all of the surface may be coated. When the surface of the conductive particles 11 is coated with the plated metal particles 12, the cross-sectional area of the conductive particles 11 appears to be larger than when the conductive particles 11 are not coated. resistance becomes lower.
When a part or all of the surface of the conductive particles 11 is covered with a film formed by arranging a plurality of plated metal particles 12, the film covering the surface of the conductive particles 11 is a single layer. It may be a structure or a multi-layer structure such as a two-layer structure.
 めっき析出金属粒子12によって導電性粒子11の表面の一部又は全部が被覆されている構造を得る方法は、特に限定されるものではないが、例えば、複数の導電性粒子11に対して無電解めっきを施すことにより、複数のめっき析出金属粒子12が並んで形成される膜によって導電性粒子11の表面の一部又は全部が被覆されている構造を得ることができる。すなわち、複数の導電性粒子11に対して無電解めっきを施すと、導電性粒子11の表面に平均粒子径が例えば数十nmのめっき析出金属粒子12が生成し、生成しためっき析出金属粒子12が集合体となって導電性粒子11の表面の一部又は全部を被覆することとなる。 The method of obtaining a structure in which a part or all of the surface of the conductive particles 11 is covered with the plating deposited metal particles 12 is not particularly limited, but for example, a plurality of conductive particles 11 may be coated electrolessly. By plating, a structure can be obtained in which a part or all of the surface of the conductive particles 11 is covered with a film formed by arranging a plurality of plated metal particles 12. That is, when electroless plating is applied to a plurality of conductive particles 11, plating precipitated metal particles 12 having an average particle diameter of, for example, several tens of nanometers are generated on the surface of the conductive particles 11, and the resulting plating precipitated metal particles 12 becomes an aggregate and covers part or all of the surface of the conductive particles 11.
 基材1上に形成された配線3の厚さは特に限定されるものではないが、導電性粒子11の平均粒子径以上であることが好ましく、50μm以上であることがより好ましく、0.1mm以上であることがさらに好ましい。
 また、基材1上に形成された配線3の幅は特に限定されるものではないが、1mm以上であることが好ましく、3mm以上であることがより好ましい。
The thickness of the wiring 3 formed on the base material 1 is not particularly limited, but is preferably equal to or greater than the average particle diameter of the conductive particles 11, more preferably equal to or greater than 50 μm, and preferably equal to or greater than 0.1 mm. It is more preferable that it is above.
Further, the width of the wiring 3 formed on the base material 1 is not particularly limited, but is preferably 1 mm or more, and more preferably 3 mm or more.
 以下、本実施形態に係る車両用導電回路の製造方法と上記の車両用導電回路の製造方法によって製造された車両用導電回路について、さらに詳細に説明する。
〔基材〕
 基材の材質は特に限定されるものではないが、樹脂、鋼板、塗装鋼板、塗装アルミ板を用いることができる。樹脂の例としては、ポリプロピレン、ポリエチレン、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、ポリエチレンテレフタレート、ポリウレタンが挙げられる。
 基材の表面には、導電性粒子ペーストを収容する凹部が設けられていてもよい。例えば、塗工工程の前に、導電性粒子ペーストを収容する凹部を基材の表面に形成する加工工程を備えていてもよい。凹部内に導電性粒子ペーストを塗工すれば、めっき工程において無電解めっき液の漏出を抑制することができる。
Hereinafter, the method for manufacturing a conductive circuit for a vehicle according to the present embodiment and the conductive circuit for a vehicle manufactured by the method for manufacturing a conductive circuit for a vehicle described above will be described in more detail.
〔Base material〕
The material of the base material is not particularly limited, but resin, steel plate, painted steel plate, and painted aluminum plate can be used. Examples of resins include polypropylene, polyethylene, ABS resin (acrylonitrile-butadiene-styrene copolymer), polyethylene terephthalate, and polyurethane.
The surface of the base material may be provided with recesses for accommodating the conductive particle paste. For example, before the coating step, a processing step may be included in which a recessed portion for accommodating the conductive particle paste is formed on the surface of the base material. By applying a conductive particle paste inside the recessed portions, leakage of the electroless plating solution can be suppressed during the plating process.
〔バインダー〕
 バインダーの種類は、熱、光等によって硬化する性質を有するならば特に限定されるものではないが、例えば、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を使用することができる。あるいは、フラックス成分(オレイン酸、カルボン酸等)を含有するものも使用可能である。
〔binder〕
The type of binder is not particularly limited as long as it has the property of being hardened by heat, light, etc., and for example, thermosetting resins such as epoxy resins and phenol resins can be used. Alternatively, those containing flux components (oleic acid, carboxylic acid, etc.) can also be used.
〔液状媒体〕
 液状媒体の種類は、導電性粒子とバインダーを分散させることが可能であれば特に限定されるものではないが、例えば、水、有機溶剤が挙げられる。有機溶剤の例としては、エチレングリコールが挙げられる。
〔塗工工程〕
 塗工工程は、導電性粒子ペーストを基材の表面に塗工して、基材上に導電性粒子ペーストの膜を形成する工程である。導電性粒子ペーストの塗工方法は特に限定されるものではないが、ディスペンサー装置、インクジェット装置等を用いて塗工することができる。塗工条件は特に限定されるものではなく、常温常圧の環境下で塗工を行うことができる。
[Liquid medium]
The type of liquid medium is not particularly limited as long as it is possible to disperse the conductive particles and the binder, and examples thereof include water and organic solvents. An example of an organic solvent is ethylene glycol.
[Coating process]
The coating process is a process of coating the surface of the base material with the conductive particle paste to form a film of the conductive particle paste on the base material. Although the method for applying the conductive particle paste is not particularly limited, it can be applied using a dispenser device, an inkjet device, or the like. Coating conditions are not particularly limited, and coating can be performed in an environment of normal temperature and pressure.
〔硬化工程〕
 硬化工程は、バインダーを硬化させて、導電性粒子ペーストの膜を、導電性粒子及びバインダーの硬化反応物を有する多孔質層に変性する工程である。バインダーを硬化させる方法は特に限定されるものではないが、液状媒体の揮発を同時に行うことを考えると、熱による硬化が好ましい。
[Curing process]
The curing step is a step in which the binder is cured to modify the film of conductive particle paste into a porous layer having a curing reactant of the conductive particles and the binder. Although the method for curing the binder is not particularly limited, curing by heat is preferred in view of simultaneously volatilizing the liquid medium.
 硬化温度は、バインダーの種類によって異なるが、基材を構成する樹脂の耐熱温度以下であることが好ましく、例えば、80℃以上120℃以下とすることができる。硬化時間は特に限定されるものではなく、硬化温度によっても異なるが、例えば、5min以上120min以下とすることができる。 Although the curing temperature varies depending on the type of binder, it is preferably below the heat resistance temperature of the resin constituting the base material, and can be, for example, 80°C or higher and 120°C or lower. The curing time is not particularly limited and varies depending on the curing temperature, but can be, for example, 5 min or more and 120 min or less.
 また、硬化の程度については、硬化反応を完結させて完全な硬化物としてもよいが、完全な硬化物とすると、無電解めっき液や後述する酸性処理液、アルカリ性処理液が多孔質層の内部に十分に浸透しないおそれがあるので、半硬化状態とすることが好ましい。また、導電回路の配線の断面積を平方ミリメートルレベルの大面積とすると、導電体中に導電性粒子の存在密度が低い領域が生成するおそれがあるが、半硬化状態とすることによって、そのような領域でも導電性粒子同士を十分に接続することが可能である。
 バインダーが熱硬化性樹脂である場合であれば、硬化工程において、熱硬化性樹脂の硬化反応を、硬化反応物が完全に硬化(架橋結合)するまでは進行させず、半硬化状態(ゲル化状態)で停止させることにより、硬化反応物を半硬化状態とすることができる。
Regarding the degree of curing, it is possible to complete the curing reaction and obtain a completely cured product, but in order to obtain a completely cured product, the electroless plating solution, the acidic processing solution described below, and the alkaline processing solution will be inside the porous layer. Since there is a risk that the material will not penetrate sufficiently, it is preferable to leave it in a semi-cured state. In addition, if the cross-sectional area of the conductive circuit wiring is large, on the order of square millimeters, there is a risk that regions with low density of conductive particles will be created in the conductor, but by making it in a semi-cured state, this can be avoided. It is possible to sufficiently connect conductive particles even in large areas.
If the binder is a thermosetting resin, in the curing process, the curing reaction of the thermosetting resin is not allowed to proceed until the curing reaction product is completely cured (crosslinked), and a semi-cured state (gelling) is achieved. The curing reaction product can be brought into a semi-cured state by stopping at this state).
〔めっき工程〕
 めっき工程は、多孔質層に無電解めっき液を含浸させて無電解めっきを行い、無電解めっき液から析出するめっき析出金属によって、多孔質層の内部に分散している導電性粒子同士を接続して、多孔質層を、導電体で構成された配線に変性する工程である。
[Plating process]
In the plating process, electroless plating is performed by impregnating the porous layer with an electroless plating solution, and the conductive particles dispersed inside the porous layer are connected by the plating deposit metal precipitated from the electroless plating solution. This is a step of converting the porous layer into wiring made of a conductor.
 多孔質層に無電解めっき液を含浸させる方法は特に限定されるものではないが、多孔質層を有する基材を無電解めっき液に浸漬する必要は無く、無電解めっき液を多孔質層の表面に塗布する方法、無電解めっき液を多孔質層の表面に噴霧する方法、無電解めっき液を多孔質層の内部に注入する方法を採用することができる。 The method of impregnating the porous layer with the electroless plating solution is not particularly limited, but there is no need to immerse the base material having the porous layer in the electroless plating solution. A method of applying the electroless plating solution to the surface, a method of spraying the electroless plating solution onto the surface of the porous layer, and a method of injecting the electroless plating solution into the inside of the porous layer can be adopted.
 無電解めっき液を多孔質層の内部に注入する方法は、無電解めっき液を吐出するノズルを用いて行うことができる。無電解めっき液を吐出するノズルの吐出口を多孔質層の内部に差し込んで、ノズルの吐出口から多孔質層の内部に無電解めっき液を注入すれば(ディスペンサー式)、多孔質層の内部に無電解めっき液が染み込みやすい。 The method of injecting the electroless plating solution into the inside of the porous layer can be performed using a nozzle that discharges the electroless plating solution. If you insert the discharge port of the nozzle that discharges the electroless plating solution into the porous layer and inject the electroless plating solution into the porous layer from the nozzle discharge port (dispenser type), the inside of the porous layer The electroless plating solution easily soaks into the surface.
 ノズルの材質は特に限定されるものではないが、ノズルの無電解めっき液と接する部分は樹脂で構成されていることが好ましい。金属で構成されていると、無電解めっき液からめっき析出金属が析出する反応が促進されるので、めっき析出金属によりノズルが詰まるおそれがある。 Although the material of the nozzle is not particularly limited, it is preferable that the part of the nozzle that comes into contact with the electroless plating solution is made of resin. If it is made of metal, the reaction in which the plating deposit metal is deposited from the electroless plating solution is promoted, so there is a risk that the nozzle will be clogged by the plating deposit metal.
 めっき工程の温度条件は特に限定されるものではなく、常温又は常温よりも高い温度で行うことができる。無電解めっき液の温度が高いほど、無電解めっき液からのめっき析出金属の析出量が多くなることと、無電解めっき液の温度が低い方が、無電解めっき液の温度管理が容易であることを考慮すると、25℃以上95℃以下とすることが好ましく、25℃以上50℃以下とすることがより好ましい。 The temperature conditions for the plating process are not particularly limited, and the plating process can be performed at room temperature or at a temperature higher than room temperature. The higher the temperature of the electroless plating solution, the greater the amount of plating metal deposited from the electroless plating solution, and the lower the temperature of the electroless plating solution, the easier the temperature control of the electroless plating solution. Considering this, the temperature is preferably 25°C or more and 95°C or less, and more preferably 25°C or more and 50°C or less.
 めっき工程においては、多孔質層に無電解めっき液を含浸させて無電解めっきを行う操作を、複数回繰り返し行ってもよい。すなわち、めっき工程の実施回数は、1回でも差し支えないが、複数回としてもよい。複数回とすることにより、めっき析出金属の析出量が多くなるので、導電性粒子同士を十分に接続することが可能である。 In the plating step, the operation of impregnating the porous layer with an electroless plating solution and performing electroless plating may be repeated multiple times. That is, the plating process may be performed one time, but may be performed multiple times. By repeating the process a plurality of times, the amount of plating deposited metal increases, so that the conductive particles can be sufficiently connected to each other.
 多孔質層に無電解めっき液を含浸させて無電解めっきを行う操作を複数回繰り返し行うに際して、2回目以降の操作においては、1つ前の回の操作において使用した無電解めっき液よりも粘度の高い無電解めっき液を使用することが好ましい。初期に使用する無電解めっき液を低粘度とすれば、無電解めっき液が多孔質層に染み込みやすい。一方、無電解めっき液の粘度を上げることにより、多孔質層から無電解めっき液が漏出することを抑制することができる。 When performing electroless plating by impregnating a porous layer with an electroless plating solution multiple times, in the second and subsequent operations, the viscosity of the electroless plating solution is lower than that of the electroless plating solution used in the previous operation. It is preferable to use an electroless plating solution with a high . If the viscosity of the electroless plating solution used initially is low, the electroless plating solution will easily penetrate into the porous layer. On the other hand, by increasing the viscosity of the electroless plating solution, leakage of the electroless plating solution from the porous layer can be suppressed.
 無電解めっき液の粘度を高くする方法は特に限定されるものではないが、無電解めっき液に増粘剤を添加する方法を採用してもよい。増粘剤の例としては、寒天、ゼラチン、澱粉が挙げられる。
 無電解めっき液の25℃における粘度は、ディスペンサー装置、インクジェット装置等で塗布可能なように、0.1mPa・s以上105mPa・s以下としてもよい。
Although the method for increasing the viscosity of the electroless plating solution is not particularly limited, a method of adding a thickener to the electroless plating solution may be adopted. Examples of thickeners include agar, gelatin, and starch.
The viscosity of the electroless plating solution at 25° C. may be 0.1 mPa·s or more and 10 5 mPa·s or less so that it can be coated with a dispenser device, an inkjet device, or the like.
〔アルカリ処理工程〕
 本実施形態に係る車両用導電回路の製造方法においては、硬化工程とめっき工程の間に、多孔質層にアルカリ性処理液を含浸させるアルカリ処理工程を備えていてもよい。アルカリ処理工程を実施すれば、アルカリ性処理液によって熱硬化性樹脂等のバインダーを溶解することができるので、十分な多孔質構造を有する多孔質層を得ることができる。アルカリ性処理液の種類は特に限定されるものではないが、強アルカリの水溶液とすることができる。強アルカリの具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウムが挙げられる。
[Alkali treatment process]
The method for manufacturing a conductive circuit for a vehicle according to the present embodiment may include an alkali treatment step of impregnating the porous layer with an alkaline treatment liquid between the curing step and the plating step. If the alkaline treatment step is carried out, the binder such as the thermosetting resin can be dissolved by the alkaline treatment liquid, so that a porous layer having a sufficient porous structure can be obtained. Although the type of alkaline treatment liquid is not particularly limited, it may be a strong alkaline aqueous solution. Specific examples of strong alkalis include sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide.
〔酸処理工程〕
 本実施形態に係る車両用導電回路の製造方法においては、硬化工程とめっき工程の間に、多孔質層に酸性処理液を含浸させる酸処理工程を備えていてもよい。酸処理工程を実施することにより、導電性粒子の表面の酸化膜を除去することができるので、後述する触媒が導電性粒子の表面に付着しやすくなる。また、酸処理工程を実施することにより、導電性粒子の表面に微小な凹凸が形成されるので、導電性粒子の表面が活性化されてめっき析出金属が析出しやすくなる。
[Acid treatment process]
The method for manufacturing a conductive circuit for a vehicle according to the present embodiment may include an acid treatment step of impregnating the porous layer with an acid treatment liquid between the curing step and the plating step. By carrying out the acid treatment step, the oxide film on the surface of the conductive particles can be removed, so that the catalyst described below can easily adhere to the surface of the conductive particles. Further, by carrying out the acid treatment step, minute irregularities are formed on the surface of the conductive particles, so the surface of the conductive particles is activated and the plating deposit metal is easily deposited.
 酸性処理液の種類は特に限定されるものではないが、強酸の水溶液とすることができる。強酸の具体例としては、硝酸(HNO3)、硫酸(H2SO4)、塩酸(HCl)、スルファミン酸(NH2HSO3)、リン酸(H3PO4)、フッ化水素酸(HF)、シュウ酸((COOH)2)、酒石酸((CH(OH)COOH)2)、クエン酸(C(OH)(CH2COOH)2COOH)、ギ酸(HCOOH)、グリコール酸(HOCH2COOH)、酢酸(CH3COOH)が挙げられる。これらの中では、塩酸、硫酸、及び硝酸のうち少なくとも1種を用いることが好ましい。 Although the type of acidic treatment liquid is not particularly limited, it can be an aqueous solution of a strong acid. Specific examples of strong acids include nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), sulfamic acid (NH 2 HSO 3 ), phosphoric acid (H 3 PO 4 ), and hydrofluoric acid (HF). ), oxalic acid ((COOH) 2 ), tartaric acid ((CH(OH)COOH) 2 ), citric acid (C(OH)(CH 2 COOH) 2 COOH), formic acid (HCOOH), glycolic acid (HOCH 2 COOH) ), acetic acid (CH 3 COOH). Among these, it is preferable to use at least one of hydrochloric acid, sulfuric acid, and nitric acid.
 アルカリ処理工程と酸処理工程は、いずれか一方のみを実施してもよいし、両方を実施してもよい。アルカリ処理工程と酸処理工程の両方を実施する場合には、酸処理工程をアルカリ処理工程の後に行うことが好ましい。アルカリ処理工程と酸処理工程の両方を実施することにより、導電回路の電気抵抗をより低くすることができる。また、酸処理工程をアルカリ処理工程の後に行うことにより、導電性粒子の表面が活性化された状態で無電解めっき液を含浸させることができるため、無電解めっき液からのめっき析出金属の析出量が多くなるという効果が奏される。 Either one of the alkali treatment step and the acid treatment step may be carried out, or both may be carried out. When carrying out both the alkali treatment step and the acid treatment step, it is preferable to perform the acid treatment step after the alkali treatment step. By performing both the alkali treatment step and the acid treatment step, the electrical resistance of the conductive circuit can be lowered. In addition, by performing the acid treatment step after the alkali treatment step, the surface of the conductive particles can be impregnated with the electroless plating solution in an activated state. The effect of increasing the amount is produced.
〔触媒付与工程〕
 本実施形態に係る車両用導電回路の製造方法においては、硬化工程とめっき工程の間に、無電解めっき液からめっき析出金属が析出する反応を促進する触媒を多孔質層に付与する触媒付与工程を備えていてもよい。バインダーの硬化反応物を完全に硬化させた場合には、導電体の表面にめっき金属膜14が形成され、半硬化状態とした場合には、多孔質層に触媒が付与されるため、無電解めっき液からのめっき析出金属の析出量が多くなる。
[Catalyst application process]
In the method for manufacturing a conductive circuit for a vehicle according to the present embodiment, between the curing step and the plating step, a catalyst application step of applying a catalyst to the porous layer to promote a reaction in which plating deposited metal is deposited from an electroless plating solution. may be provided. When the curing reaction product of the binder is completely cured, a plating metal film 14 is formed on the surface of the conductor, and when it is in a semi-cured state, a catalyst is applied to the porous layer, so that electroless The amount of plating metal deposited from the plating solution increases.
 触媒を多孔質層に付与する方法は特に限定されるものではなく、例えば、多孔質層の内部に触媒を導入してもよいし、触媒を添加した導電性粒子ペーストを基材に塗工して多孔質層を得てもよい。
 触媒の例としては、金属を含有するコロイド溶液が挙げられる。金属の具体例としては、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、金(Au)、銀(Ag)、ロジウム(Rh)、白金(Pt)、インジウム(In)、錫(Sn)が挙げられる。
The method of applying the catalyst to the porous layer is not particularly limited; for example, the catalyst may be introduced inside the porous layer, or a conductive particle paste containing a catalyst may be applied to the base material. A porous layer may also be obtained.
Examples of catalysts include colloidal solutions containing metals. Specific examples of metals include palladium (Pd), copper (Cu), nickel (Ni), cobalt (Co), gold (Au), silver (Ag), rhodium (Rh), platinum (Pt), and indium (In). ) and tin (Sn).
 以下に実施例及び比較例を示して、本発明をより具体的に説明する。
〔実施例1〕
 平均粒子径が3μmである銅粉(導電性粒子に相当する)と、バインダーと、溶剤(水、エチレングリコールモノフェニルエーテル、トリエタノールアミン等)とを含有するペースト(ナミックス株式会社製の大気硬化用銅ペーストXCH9207)を用意した。このペーストを、ディスペンサー装置を用いて、基材である樹脂製板状部材の表面に塗工して、樹脂製板状部材の表面上にペースト膜を形成した(塗工工程)。そして、ペースト膜を形成した樹脂製板状部材を空気雰囲気下に置き、温度120℃で120min加熱してペーストの乾燥を行った。この乾燥時の熱処理によって、ペースト中のバインダーの硬化反応が進行し、硬化反応物は完全に硬化(架橋結合)した(硬化工程)。
The present invention will be explained in more detail by showing Examples and Comparative Examples below.
[Example 1]
A paste containing copper powder (corresponding to conductive particles) with an average particle size of 3 μm, a binder, and a solvent (water, ethylene glycol monophenyl ether, triethanolamine, etc.) (atmospheric hardening manufactured by Namics Co., Ltd.) Copper paste XCH9207) was prepared. This paste was applied to the surface of the resin plate-shaped member as a base material using a dispenser device to form a paste film on the surface of the resin plate-shaped member (coating step). Then, the resin plate member on which the paste film was formed was placed in an air atmosphere and heated at a temperature of 120° C. for 120 minutes to dry the paste. By this heat treatment during drying, the curing reaction of the binder in the paste progressed, and the curing reaction product was completely cured (crosslinked) (curing step).
 樹脂製板状部材を構成する樹脂は、ポリプロピレンとアクリロニトリル-ブタジエン-スチレン共重合体との混合樹脂材料である。樹脂製板状部材の形状は長方形状であり、その寸法は、縦150mm、横75mm、厚さ3mmである。ペースト膜の形状は線状であり、その寸法は、長さ100mm、幅4mm、厚さ0.3mmである。 The resin constituting the resin plate member is a mixed resin material of polypropylene and acrylonitrile-butadiene-styrene copolymer. The shape of the resin plate member is rectangular, and its dimensions are 150 mm long, 75 mm wide, and 3 mm thick. The shape of the paste film is linear, and its dimensions are 100 mm in length, 4 mm in width, and 0.3 mm in thickness.
 次に、奥野製薬工業株式会社製の無電解銅めっき液OPCカッパーHFSを用意した。すなわち、奥野製薬工業株式会社製のOPCカッパーHFS-M、OPCカッパーHFS-A、OPCカッパーHFS-Cの3液を150:60:4の混合比で混合して、無電解銅めっき液を調製した。得られた無電解銅めっき液の25℃における粘度は、0.89mPa・sであった。この無電解銅めっき液を、インクジェット装置を用いて、乾燥させたペースト膜の表面に塗布して、乾燥させたペースト膜の内部に含浸させ、そのまま空気雰囲気下において25℃で120分間放置して無電解銅めっきを行った(めっき工程)。 Next, an electroless copper plating solution OPC Copper HFS manufactured by Okuno Pharmaceutical Co., Ltd. was prepared. That is, an electroless copper plating solution was prepared by mixing OPC Copper HFS-M, OPC Copper HFS-A, and OPC Copper HFS-C manufactured by Okuno Pharmaceutical Co., Ltd. at a mixing ratio of 150:60:4. did. The viscosity of the obtained electroless copper plating solution at 25° C. was 0.89 mPa·s. This electroless copper plating solution was applied to the surface of the dried paste film using an inkjet device, impregnated into the inside of the dried paste film, and left in an air atmosphere at 25°C for 120 minutes. Electroless copper plating was performed (plating process).
 無電解銅めっきの結果、ペースト膜の内部に分散している上記銅粉の表面上に、平均粒子径が35nmである銅粒子(めっき析出金属粒子に相当する)が析出し、上記銅粉の表面の全部が、無電解銅めっき液から析出した銅粒子の集合体によって被覆された。析出した銅粒子によって上記銅粉同士が電気的に接続されるため、乾燥したペースト膜は導電体となった。これにより、導電体で構成された配線が樹脂製板状部材の表面上に形成されることとなり、導電回路が得られた。無電解銅めっきが終了したら、樹脂製板状部材を水洗し乾燥した。これにより、導電回路を備える試験体が得られた。 As a result of electroless copper plating, copper particles (corresponding to plating deposited metal particles) with an average particle diameter of 35 nm are deposited on the surface of the copper powder dispersed inside the paste film, and The entire surface was covered with aggregates of copper particles deposited from the electroless copper plating solution. Since the copper powders were electrically connected to each other by the deposited copper particles, the dried paste film became a conductor. As a result, wiring made of a conductor was formed on the surface of the resin plate member, and a conductive circuit was obtained. After electroless copper plating was completed, the resin plate member was washed with water and dried. As a result, a test body including a conductive circuit was obtained.
 次に、得られた試験体の導電回路の抵抗値を測定した。抵抗値の測定は、ケースレーインスツルメンツ社製のナノボルトメータ2182Aとケースレーインスツルメンツ社製の6221型AC/DC電流発生装置を使用して行った。ソース電源±100mA、測定電流100mAの条件で、線状の配線の両端間の電気抵抗値を4端子法にて測定した。そして、その測定結果を下記式に代入して、体積抵抗率を算出した。その結果、体積抵抗率は4.9×10-7Ω・mであった。
   体積抵抗率(Ω・m)=電気抵抗値(Ω)×導電回路の配線の断面積(m2)/導電回路の配線の長さ(m)
Next, the resistance value of the conductive circuit of the obtained test piece was measured. The resistance value was measured using a Keithley Instruments nanovoltmeter 2182A and a Keithley Instruments model 6221 AC/DC current generator. The electrical resistance value between both ends of the linear wiring was measured by a four-terminal method under the conditions of a source power source of ±100 mA and a measurement current of 100 mA. Then, the measurement results were substituted into the following formula to calculate the volume resistivity. As a result, the volume resistivity was 4.9×10 −7 Ω·m.
Volume resistivity (Ω・m) = Electrical resistance value (Ω) × Cross-sectional area of conductive circuit wiring (m 2 ) / Length of conductive circuit wiring (m)
〔実施例2〕
 硬化工程の熱処理の条件が120℃、20minである点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は5.0×10-8Ω・mであった。なお、硬化工程の熱処理によって、ペースト中のバインダーの硬化反応が進行するが、硬化反応物は完全には硬化しておらず(架橋結合しておらず)半硬化状態であった。
[Example 2]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the heat treatment conditions in the curing step were 120° C. and 20 minutes. As a result, the volume resistivity was 5.0×10 −8 Ω·m. Although the curing reaction of the binder in the paste progressed through the heat treatment in the curing step, the curing reaction product was not completely cured (not crosslinked) and was in a semi-cured state.
〔実施例3〕
 硬化工程の熱処理の条件が100℃、20minである点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は6.0×10-7Ω・mであった。なお、硬化工程の熱処理によって、ペースト中のバインダーの硬化反応が進行するが、硬化反応物は完全には硬化しておらず(架橋結合しておらず)半硬化状態であった。
[Example 3]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the heat treatment conditions in the curing step were 100° C. and 20 minutes. As a result, the volume resistivity was 6.0×10 −7 Ω·m. Although the curing reaction of the binder in the paste progressed through the heat treatment in the curing step, the curing reaction product was not completely cured (not crosslinked) and was in a semi-cured state.
〔実施例4〕
 めっき工程の条件が60℃、120minである点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は3.0×10-8Ω・mであった。
〔実施例5〕
 めっき工程を2回繰り返し行った点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。2回のめっき工程の内容は同一である。その結果、体積抵抗率は4.0×10-8Ω・mであった。
[Example 4]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process conditions were 60° C. and 120 min. As a result, the volume resistivity was 3.0×10 −8 Ω·m.
[Example 5]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process was repeated twice. The contents of the two plating steps are the same. As a result, the volume resistivity was 4.0×10 −8 Ω·m.
〔実施例6〕
 めっき工程において、無電解銅めっき液の塗布を、以下のようにして行った点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。すなわち、無電解めっき液を吐出するノズルの吐出口を、乾燥させたペースト膜の内部に差し込んで、ノズルの吐出口から乾燥させたペースト膜の内部に無電解銅めっき液を注入することによって塗布を行った。その結果、体積抵抗率は4.0×10-8Ω・mであった。
[Example 6]
In the plating process, the volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the electroless copper plating solution was applied as follows. In other words, the electroless copper plating solution is applied by inserting the discharge port of a nozzle that discharges the electroless plating solution into the inside of the dried paste film, and injecting the electroless copper plating solution from the discharge port of the nozzle into the inside of the dried paste film. I did it. As a result, the volume resistivity was 4.0×10 −8 Ω·m.
〔実施例7〕
 めっき工程を2回繰り返し行い、1回目に使用した無電解銅めっき液の25℃における粘度が0.89mPa・sで、2回目に使用した無電解銅めっき液の25℃における粘度が2000mPa・sである点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。無電解銅めっき液の粘度は、増粘剤としてゼラチンを添加することによって調整した。その結果、体積抵抗率は2.5×10-8Ω・mであった。
[Example 7]
The plating process was repeated twice, and the viscosity at 25°C of the electroless copper plating solution used for the first time was 0.89 mPa・s, and the viscosity at 25°C of the electroless copper plating solution used for the second time was 2000 mPa・s. The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that. The viscosity of the electroless copper plating solution was adjusted by adding gelatin as a thickener. As a result, the volume resistivity was 2.5×10 −8 Ω·m.
〔実施例8〕
 基材である樹脂製板状部材の表面に、ペーストを収容する凹部が設けられており、該凹部内にペーストを塗工してペースト膜を形成した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は3.0×10-8Ω・mであった。
[Example 8]
A recess for accommodating the paste was provided on the surface of the resin plate-like member that was the base material, and the paste was applied in the recess to form a paste film in the same manner as in Example 1. The volume resistivity of the conductive circuit of the test specimen was obtained. As a result, the volume resistivity was 3.0×10 −8 Ω·m.
〔実施例9〕
 硬化工程とめっき工程の間に酸処理工程を実施した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。すなわち、ディスペンサー装置を用いて、乾燥させたペースト膜に酸性処理液を塗布し、常温で5分間放置して含浸させた後に、水洗し乾燥した。酸性処理液は、濃度60質量%の硝酸である。その結果、体積抵抗率は2.0×10-8Ω・mであった。
[Example 9]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that an acid treatment step was performed between the curing step and the plating step. That is, the dried paste film was coated with an acidic treatment liquid using a dispenser device, left to stand for 5 minutes at room temperature to be impregnated, and then washed with water and dried. The acidic treatment liquid is nitric acid with a concentration of 60% by mass. As a result, the volume resistivity was 2.0×10 −8 Ω·m.
〔実施例10〕
 硬化工程とめっき工程の間にアルカリ処理工程を実施した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。すなわち、ディスペンサー装置を用いて、乾燥させたペースト膜にアルカリ性処理液を塗布し、常温で5分間放置して含浸させた後に、水洗し乾燥した。アルカリ性処理液は、pH12の水酸化ナトリウム水溶液である。その結果、体積抵抗率は3.0×10-8Ω・mであった。
[Example 10]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that an alkali treatment step was performed between the curing step and the plating step. That is, an alkaline treatment liquid was applied to the dried paste film using a dispenser device, and the paste was left at room temperature for 5 minutes to be impregnated, and then washed with water and dried. The alkaline treatment liquid is an aqueous sodium hydroxide solution with a pH of 12. As a result, the volume resistivity was 3.0×10 −8 Ω·m.
〔実施例11〕
 硬化工程とめっき工程の間にアルカリ処理工程及び酸処理工程をこの記載順で実施した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。アルカリ処理工程と酸処理工程の内容については、それぞれ実施例9、10と同様である。その結果、体積抵抗率は1.5×10-8Ω・mであった。
[Example 11]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the alkali treatment step and acid treatment step were carried out in the stated order between the curing step and the plating step. The contents of the alkali treatment step and acid treatment step are the same as in Examples 9 and 10, respectively. As a result, the volume resistivity was 1.5×10 −8 Ω·m.
〔実施例12〕
 硬化工程とめっき工程の間にアルカリ処理工程、酸処理工程、及び触媒付与工程をこの記載順で実施した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。アルカリ処理工程と酸処理工程の内容については、それぞれ実施例9、10と同様である。触媒付与工程は、無電解銅めっき液から銅が析出する反応を促進する触媒を付与する工程であるが、ディスペンサー装置を用いて、乾燥させたペースト膜に触媒含有液を塗布し、空気雰囲気下において常温で5分間放置して含浸させた後に、水洗し乾燥することによって、乾燥させたペースト膜に触媒を付与した。触媒含有液は、株式会社イオックス製のメタロイドML-450LV2である。その結果、体積抵抗率は1.0×10-8Ω・mであった。
[Example 12]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the alkali treatment step, acid treatment step, and catalyst application step were performed in the stated order between the curing step and the plating step. . The contents of the alkali treatment step and acid treatment step are the same as in Examples 9 and 10, respectively. The catalyst application process is a process of applying a catalyst that promotes the reaction in which copper is deposited from the electroless copper plating solution.The catalyst-containing solution is applied to the dried paste film using a dispenser device, and then the catalyst is applied in an air atmosphere. The catalyst was applied to the dried paste film by leaving it at room temperature for 5 minutes for impregnation, then washing with water and drying. The catalyst-containing liquid is Metalloid ML-450LV2 manufactured by Iox Co., Ltd. As a result, the volume resistivity was 1.0×10 −8 Ω·m.
〔実施例13〕
 塗工工程において、インクジェット装置を用いてペーストを樹脂製板状部材の表面に塗工した点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は6.0×10-8Ω・mであった。
[Example 13]
In the coating process, the volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the paste was coated on the surface of the resin plate member using an inkjet device. As a result, the volume resistivity was 6.0×10 −8 Ω·m.
〔比較例1〕
 硬化工程の熱処理の条件が150℃、120minである点と、めっき工程を実施していない点以外は、実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は1.8×10-8Ω・mであった。また、硬化工程の熱処理の温度が高いため、熱処理によって樹脂製板状部材が溶融した。
〔比較例2〕
 めっき工程を実施していない点以外は実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は1.2×10-6Ω・mであった。
[Comparative example 1]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the heat treatment conditions in the curing step were 150° C. and 120 min, and the plating step was not performed. As a result, the volume resistivity was 1.8×10 −8 Ω·m. Further, since the temperature of the heat treatment in the curing step was high, the resin plate member melted due to the heat treatment.
[Comparative example 2]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1 except that the plating process was not performed. As a result, the volume resistivity was 1.2×10 −6 Ω·m.
〔比較例3〕
 硬化工程の熱処理の条件が100℃、120minである点と、めっき工程を実施していない点以外は、実施例1と同様にして、試験体の導電回路の体積抵抗率を得た。その結果、体積抵抗率は1.5×10-5Ω・mであった。
 実施例1~13及び比較例1~3の結果を、表1にまとめて示す。
[Comparative example 3]
The volume resistivity of the conductive circuit of the test piece was obtained in the same manner as in Example 1, except that the heat treatment conditions in the curing step were 100° C. and 120 min, and the plating step was not performed. As a result, the volume resistivity was 1.5×10 −5 Ω·m.
The results of Examples 1 to 13 and Comparative Examples 1 to 3 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
    1・・・基材
    2・・・導電性粒子ペーストの膜
    3・・・配線
   11・・・導電性粒子
   12・・・めっき析出金属粒子
   13・・・バインダーの硬化反応物
   14・・・めっき金属膜
   21・・・バインダー及び液状媒体
   22・・・多孔質層
DESCRIPTION OF SYMBOLS 1... Base material 2... Film of conductive particle paste 3... Wiring 11... Conductive particles 12... Plating deposited metal particles 13... Hardening reaction product of binder 14... Plating Metal film 21... Binder and liquid medium 22... Porous layer

Claims (13)

  1.  導電体で構成された配線を基材上に形成して車両用の導電回路を製造する方法であって、
     導電性粒子、バインダー、及び液状媒体を含有する導電性粒子ペーストを前記基材の表面に塗工して、前記基材上に前記導電性粒子ペーストの膜を形成する塗工工程と、
     前記バインダーを硬化させて、前記導電性粒子ペーストの膜を、前記導電性粒子及び前記バインダーの硬化反応物を有する多孔質層に変性する硬化工程と、
     前記多孔質層に無電解めっき液を含浸させて無電解めっきを行い、前記無電解めっき液から析出するめっき析出金属によって、前記多孔質層の内部に分散している前記導電性粒子同士を接続して、前記多孔質層を、導電体で構成された配線に変性するめっき工程と、
    を備える車両用導電回路の製造方法。
    A method for manufacturing a conductive circuit for a vehicle by forming wiring made of a conductor on a base material, the method comprising:
    a coating step of applying a conductive particle paste containing conductive particles, a binder, and a liquid medium to the surface of the base material to form a film of the conductive particle paste on the base material;
    a curing step of curing the binder to modify the film of the conductive particle paste into a porous layer having a curing reactant of the conductive particles and the binder;
    Electroless plating is performed by impregnating the porous layer with an electroless plating solution, and the conductive particles dispersed inside the porous layer are connected to each other by a plating deposited metal precipitated from the electroless plating solution. a plating step of modifying the porous layer into a wiring made of a conductor;
    A method of manufacturing a conductive circuit for a vehicle, comprising:
  2.  前記バインダーは、前記硬化工程において硬化反応が進行する硬化性樹脂であり、前記硬化工程においては、前記硬化性樹脂の硬化反応を、硬化反応物が完全に硬化するまでは進行させず、半硬化状態で停止させる請求項1に記載の車両用導電回路の製造方法。 The binder is a curable resin in which a curing reaction proceeds in the curing step, and in the curing step, the curing reaction of the curable resin is not allowed to proceed until the curing reaction product is completely cured, and is semi-cured. 2. The method of manufacturing a conductive circuit for a vehicle according to claim 1, wherein the method comprises stopping the conductive circuit for a vehicle.
  3.  前記めっき工程において前記無電解めっきを常温又は常温よりも高い温度で行う請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, wherein in the plating step, the electroless plating is performed at room temperature or a temperature higher than room temperature.
  4.  前記めっき工程において、前記多孔質層に前記無電解めっき液を含浸させて前記無電解めっきを行う操作を、複数回繰り返し行う請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, wherein in the plating step, the operation of impregnating the porous layer with the electroless plating solution and performing the electroless plating is repeated multiple times.
  5.  前記操作を複数回繰り返し行うに際して、2回目以降の前記操作においては、1つ前の回の前記操作において使用した無電解めっき液よりも粘度の高い無電解めっき液を使用する請求項4に記載の車両用導電回路の製造方法。 According to claim 4, when the operation is repeated a plurality of times, in the second and subsequent operations, an electroless plating solution having a higher viscosity than the electroless plating solution used in the previous operation is used. A method for manufacturing a conductive circuit for a vehicle.
  6.  前記めっき工程においては、前記無電解めっき液を吐出するノズルの吐出口を、前記多孔質層の内部に差し込んで、前記ノズルの吐出口から前記多孔質層の内部に前記無電解めっき液を注入する請求項1又は請求項2に記載の車両用導電回路の製造方法。 In the plating step, a discharge port of a nozzle that discharges the electroless plating solution is inserted into the inside of the porous layer, and the electroless plating solution is injected into the porous layer from the discharge port of the nozzle. The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2.
  7.  前記ノズルの前記無電解めっき液と接する部分は樹脂で構成されている請求項6に記載の車両用導電回路の製造方法。 7. The method for manufacturing a conductive circuit for a vehicle according to claim 6, wherein a portion of the nozzle that comes into contact with the electroless plating solution is made of resin.
  8.  前記導電性粒子は銅粒子である請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, wherein the conductive particles are copper particles.
  9.  前記塗工工程の前に、前記導電性粒子ペーストを収容する凹部を前記基材の表面に形成する加工工程を備える請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, further comprising a processing step of forming a recessed portion for accommodating the conductive particle paste on the surface of the base material before the coating step.
  10.  前記硬化工程と前記めっき工程の間に、前記多孔質層にアルカリ性処理液を含浸させるアルカリ処理工程を備える請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, further comprising an alkaline treatment step of impregnating the porous layer with an alkaline treatment liquid between the curing step and the plating step.
  11.  前記硬化工程と前記めっき工程の間に、前記多孔質層に酸性処理液を含浸させる酸処理工程を備える請求項1又は請求項2に記載の車両用導電回路の製造方法。 The method for manufacturing a conductive circuit for a vehicle according to claim 1 or 2, further comprising an acid treatment step of impregnating the porous layer with an acid treatment liquid between the curing step and the plating step.
  12.  前記硬化工程と前記めっき工程の間に、前記多孔質層にアルカリ性処理液を含浸させるアルカリ処理工程と、前記多孔質層に酸性処理液を含浸させる酸処理工程と、を備え、前記酸処理工程は前記アルカリ処理工程の後に行う請求項1又は請求項2に記載の車両用導電回路の製造方法。 Between the curing step and the plating step, an alkali treatment step of impregnating the porous layer with an alkaline treatment liquid, and an acid treatment step of impregnating the porous layer with an acid treatment liquid, the acid treatment step 3. The method of manufacturing a conductive circuit for a vehicle according to claim 1, wherein step is performed after the alkali treatment step.
  13.  前記硬化工程と前記めっき工程の間に、前記無電解めっき液からめっき析出金属が析出する反応を促進する触媒を前記多孔質層に付与する触媒付与工程を備える請求項1又は請求項2に記載の車両用導電回路の製造方法。 3. The method according to claim 1, further comprising, between the curing step and the plating step, a catalyst providing step of providing the porous layer with a catalyst that promotes a reaction in which a plating deposited metal is deposited from the electroless plating solution. A method for manufacturing a conductive circuit for a vehicle.
PCT/JP2023/028337 2022-08-25 2023-08-02 Vehicular conductive circuit manufacturing method WO2024043026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134155 2022-08-25
JP2022134155 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024043026A1 true WO2024043026A1 (en) 2024-02-29

Family

ID=90013033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028337 WO2024043026A1 (en) 2022-08-25 2023-08-02 Vehicular conductive circuit manufacturing method

Country Status (1)

Country Link
WO (1) WO2024043026A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293952A (en) * 1996-04-26 1997-11-11 Kyocera Corp Manufacture of wiring board
JP2001073157A (en) * 1999-09-08 2001-03-21 Sony Corp Electroless plating method and device therefor
JP2005302842A (en) * 2004-04-07 2005-10-27 Toshiba Corp Toner for wiring board preparation and manufacturing method of wiring board using the same
WO2005102709A1 (en) * 2004-04-23 2005-11-03 Hewlett-Packard Development Company, L.P. Inkjet print cartridge
JP2006332553A (en) * 2005-05-30 2006-12-07 Fujifilm Holdings Corp Method of manufacturing wiring substrate, discharge head, and image forming apparatus
JP2011012312A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Electroless plating treatment method and electroless plating material
WO2014132961A1 (en) * 2013-03-01 2014-09-04 戸田工業株式会社 Method of producing conductive coating film, and conductive coating film
JP2016025329A (en) * 2014-07-24 2016-02-08 学校法人福岡大学 Printed wiring board and method of manufacturing the same
WO2020004624A1 (en) * 2018-06-29 2020-01-02 株式会社マテリアル・コンセプト Circuit board and production method therefor, and electronic component and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293952A (en) * 1996-04-26 1997-11-11 Kyocera Corp Manufacture of wiring board
JP2001073157A (en) * 1999-09-08 2001-03-21 Sony Corp Electroless plating method and device therefor
JP2005302842A (en) * 2004-04-07 2005-10-27 Toshiba Corp Toner for wiring board preparation and manufacturing method of wiring board using the same
WO2005102709A1 (en) * 2004-04-23 2005-11-03 Hewlett-Packard Development Company, L.P. Inkjet print cartridge
JP2006332553A (en) * 2005-05-30 2006-12-07 Fujifilm Holdings Corp Method of manufacturing wiring substrate, discharge head, and image forming apparatus
JP2011012312A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Electroless plating treatment method and electroless plating material
WO2014132961A1 (en) * 2013-03-01 2014-09-04 戸田工業株式会社 Method of producing conductive coating film, and conductive coating film
JP2016025329A (en) * 2014-07-24 2016-02-08 学校法人福岡大学 Printed wiring board and method of manufacturing the same
WO2020004624A1 (en) * 2018-06-29 2020-01-02 株式会社マテリアル・コンセプト Circuit board and production method therefor, and electronic component and production method therefor

Similar Documents

Publication Publication Date Title
KR101247431B1 (en) Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
CN100537677C (en) Method for manufacturing printed circuit board using ag-pd alloy nanoparticles
US9676969B2 (en) Composition set, conductive substrate and method of producing the same, and conductive adhesive composition
US3099608A (en) Method of electroplating on a dielectric base
US4735676A (en) Method for forming electric circuits on a base board
KR100678533B1 (en) Conductive powder and method for preparing the same
KR20010039599A (en) Conductive powder and making process
JP2006303368A (en) Manufacturing method of circuit board
CN103619128B (en) Preparing method of flexible circuit board based on ink-jet printing technique
KR900003158B1 (en) Method for producing electric circuits an a base board
JP2016199779A (en) Modified metal nanoparticle, manufacturing method therefor, modified metal nano ink and wiring layer formation method
WO2024043026A1 (en) Vehicular conductive circuit manufacturing method
KR101416579B1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
KR101520412B1 (en) Flexible printed circuit board by laser processing and printing process, and method for manufacturing the same
Ryspayeva et al. Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallization
CN114231092A (en) Copper conductive ink, flexible substrate and preparation method of flexible substrate
JP4875595B2 (en) Synthetic resin spring with conductive circuit
JP3784368B2 (en) Circuit board and manufacturing method thereof
JPH03264678A (en) Copper powder for conductive paste
JP2001026880A (en) Formation of conductor pattern
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP2004323885A (en) Electroless plating method
JPH0669632A (en) Manufacture of printed wiring board
KR100679072B1 (en) Method for treatment of substrate surface, method for manufacturing substrate, and substrate
JPH06103816A (en) Conductive filler consisting of palladium-coated metal powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855855

Country of ref document: EP

Kind code of ref document: A1