WO2024041276A1 - 光学玻璃、玻璃预制件、光学元件及光学仪器 - Google Patents

光学玻璃、玻璃预制件、光学元件及光学仪器 Download PDF

Info

Publication number
WO2024041276A1
WO2024041276A1 PCT/CN2023/108387 CN2023108387W WO2024041276A1 WO 2024041276 A1 WO2024041276 A1 WO 2024041276A1 CN 2023108387 W CN2023108387 W CN 2023108387W WO 2024041276 A1 WO2024041276 A1 WO 2024041276A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
optical glass
glass
optical
components
Prior art date
Application number
PCT/CN2023/108387
Other languages
English (en)
French (fr)
Inventor
孙伟
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2024041276A1 publication Critical patent/WO2024041276A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.85 to 1.91 and an Abbe number of 35 to 43, as well as glass preforms, optical elements and optical instruments made therefrom.
  • optical equipment such as digital cameras, camcorders and other photographic equipment, as well as image playback (projection) equipment such as projectors and projection TVs
  • image playback (projection) equipment such as projectors and projection TVs
  • the number of optical components such as lenses and prisms has made the overall optical system lighter and smaller.
  • high-refractive index glass or aspherical lenses are widely used to achieve miniaturization, ultra-thinness and wide-angle, which makes it easier to correct chromatic aberration while achieving lightweight and high-performance optical systems. Therefore, there is a large demand for optical glass with a refractive index of 1.85 to 1.91 and an Abbe number of 35 to 43.
  • optical glass with a refractive index of 1.85 to 1.91 and an Abbe number of 35 to 43 contains a large amount of Ta 2 O 5 .
  • CN101549954A discloses a glass with a refractive index of 1.85 to 1.91 and an Abbe number of 38 to 38. 42 optical glass containing 10 to 25% Ta 2 O 5 .
  • Ta 2 O 5 is a scarce metal component. The use of Ta 2 O 5 is extremely detrimental to product cost control. Therefore, reducing or not using Ta 2 O 5 in optical glass is the goal of optical glass research and development.
  • the technical problem to be solved by the present invention is to provide an optical glass with low raw material cost, a refractive index of 1.85-1.91, and an Abbe number of 35-43.
  • Optical glass the components of which are expressed in weight percentage, contain: SiO 2 : 1 to 18%; B 2 O 3 : 4 to 18%; La 2 O 3 : 35 to 60%; Y 2 O 3 : 6 to 30% ; ZrO 2 : 2 to 15%; Nb 2 O 5 : 2 to 18%.
  • the optical glass whose components are expressed in weight percent, also contains: Ta 2 O 5 : 0 to 5%; and/or Gd 2 O 3 : 0 to 10%; and/or TiO 2 : 0 ⁇ 8%; and/or RO: 0 ⁇ 8%; and/or Rn 2 O: 0 ⁇ 8%; and/or WO 3 : 0 ⁇ 5%; and/or ZnO: 0 ⁇ 8%; and/or Al 2 O 3 : 0 to 8%; and/or Yb 2 O 3 : 0 to 8%; and/or GeO 2 : 0 to 5%; and/or clarifier: 0 to 2%, as described RO is one or more of MgO, CaO, SrO, and BaO, Rn 2 O is one or more of Li 2 O, Na 2 O, and K 2 O, and the clarifier is Sb 2 O 3 , SnO, One or more of SnO 2 and CeO 2 .
  • RO is one or more of MgO, CaO, Sr
  • Optical glass the components of which are expressed in weight percentage, are SiO 2 : 1 to 18%; B 2 O 3 : 4 to 18%; La 2 O 3 : 35 to 60%; Y 2 O 3 : 6 to 30%; ZrO 2 : 2 ⁇ 15%; Nb 2 O 5 : 2 ⁇ 18%; Ta 2 O 5 : 0 ⁇ 5%; Gd 2 O 3 : 0 ⁇ 10%; TiO 2 : 0 ⁇ 8%; RO: 0 ⁇ 8%; Rn 2 O: 0 ⁇ 8%; WO 3 : 0 ⁇ 5%; ZnO: 0 ⁇ 8%; Al 2 O 3 : 0 ⁇ 8%; Yb 2 O 3 : 0 ⁇ 8%; GeO 2 : 0 ⁇ 5%; Clarifying agent: 0 ⁇ 2% composition, the RO is one or more of MgO, CaO, SrO, BaO, Rn 2 O is Li 2 O, Na 2 O, K 2 O One or more clarifiers are one or more of Sb 2 O 3 , SnO,
  • the components of the optical glass are expressed in weight percent, wherein: La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 45 to 75%, preferably La 2 O 3 +Y 2 O 3 + Gd 2 O 3 is 50 to 75%, more preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 55 to 70%, and even more preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 60% ⁇ 70%.
  • Y 2 O 3 /B 2 O 3 is 0.5 to 5.0, preferably Y 2 O 3 /B 2 O 3 is 0.6 to 3.0, more preferably Y 2 O 3 /B 2 O 3 is 0.7 to 2.5, and more preferably Y 2 O 3 /B 2 O 3 is 0.8 to 2.0.
  • the components of the optical glass are expressed in weight percent, wherein: Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is less than 1.0, preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.6 or less, more preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.5 or less, further preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.3 or less.
  • the components of the optical glass are expressed in weight percent, where: (La 2 O 3 +Y 2 O 3 )/ZrO 2 is 5.0 or more, preferably (La 2 O 3 +Y 2 O 3 )/ ZrO 2 is 6.0 to 20.0, (La 2 O 3 +Y 2 O 3 )/ZrO 2 is more preferably 7.0 to 15.0, and (La 2 O 3 +Y 2 O 3 )/ZrO 2 is still more preferably 7.5 to 10.0.
  • the components of the optical glass are expressed in weight percent, wherein: Ta 2 O 5 /Y 2 O 3 is 0.8 or less, preferably Ta 2 O 5 /Y 2 O 3 is 0.5 or less, and more preferably Ta 2 O 5 /Y 2 O 3 is 0.3 or less, and Ta 2 O 5 /Y 2 O 3 is more preferably 0.1 or less.
  • the components of the optical glass are expressed in weight percent, wherein: La 2 O 3 /Nb 2 O 5 is 2.0 to 20.0, preferably La 2 O 3 /Nb 2 O 5 is 3.0 to 15.0, more preferably La 2 O 3 /Nb 2 O 5 is 4.0 to 10.0, and more preferably La 2 O 3 /Nb 2 O 5 is 4.5 to 9.0.
  • the components of the optical glass are expressed in weight percent, wherein: Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.5 or less, preferably Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.3 or less, more preferably Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.2 or less, and more preferably Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.1 or less.
  • the components of the optical glass are expressed in weight percent, wherein: (TiO 2 +WO 3 )/Y 2 O 3 is 1.0 or less, preferably (TiO 2 +WO 3 )/Y 2 O 3 is 0.8
  • (TiO 2 +WO 3 )/Y 2 O 3 is more preferably 0.6 or less, and further preferably (TiO 2 +WO 3 )/Y 2 O 3 is 0.3 or less.
  • the components of the optical glass are expressed in weight percent, wherein: (Gd 2 O 3 +ZnO)/Y 2 O 3 is less than 1.0, preferably (Gd 2 O 3 +ZnO)/Y 2 O 3 It is 0.8 or less, more preferably (Gd 2 O 3 +ZnO)/Y 2 O 3 is 0.5 or less, and still more preferably (Gd 2 O 3 +ZnO)/Y 2 O 3 is 0.3 or less.
  • the components of the optical glass are expressed in weight percentage, wherein: SiO 2 : 3 to 15%, preferably SiO 2 : 4 to 10%; and/or B 2 O 3 : 5 to 15%, preferably B 2 O 3 : 7 to 13%; and/or La 2 O 3 : 38 to 56%, preferably La 2 O 3 : 41 to 54%; and/or Y 2 O 3 : 7 to 24%, preferably Y 2 O 3 : 8 to 22%, more preferably Y 2 O 3 : 11 to 22%; and/or ZrO 2 : 3 to 13%, preferably ZrO 2 : 4 to 10%; and/or Nb 2 O 5 : 4 to 10%.
  • the optical glass does not contain WO 3 ; and/or does not contain Ta 2 O 5 ; and/or does not contain RO; and/or does not contain Rn 2 O; and/or does not contain ZnO. ; and/or does not contain Al 2 O 3 ; and/or does not contain GeO 2
  • the RO is one or more of MgO, CaO, SrO, and BaO
  • Rn 2 O is Li 2 O, Na 2 O, One or more of K 2 O.
  • the components of the optical glass are expressed in weight percentage, and the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and Nb 2 O 5 is more than 86%.
  • the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and Nb 2 O 5 is preferably 88% or more, and more preferably SiO 2 , B 2 O 3 , La 2 O 3 , and Y 2 O 3 , ZrO 2 ,
  • the total content of Nb 2 O 5 is 90% or more, and the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Y 2 O 3 , ZrO 2 and Nb 2 O 5 is more preferably 95% or more.
  • the refractive index n d of the optical glass is 1.85 to 1.91, preferably 1.86 to 1.90, more preferably 1.875 to 1.895, and the Abbe number v d is 35 to 43, preferably 37 to 42, more preferably 38 ⁇ 41.
  • the density ⁇ of the optical glass is 5.10g/cm 3 or less, preferably 5.00g/cm 3 or less, more preferably 4.90g/cm 3 or less; and/or the thermal expansion coefficient ⁇ -30/70°C is 80 ⁇ 10 -7 /K or less, preferably 70 ⁇ 10 -7 /K or less, more preferably 65 ⁇ 10 -7 /K or less; and/or the water resistance stability D W is Category 2 or above, preferably Category 1 ; and/or the acid resistance stability D A is Category 2 or above, preferably Category 1; and/or ⁇ 70 is 400 nm or less, preferably ⁇ 70 is 390 nm or less, and more preferably ⁇ 70 is 385 nm or less; and/or ⁇ 5 is 360nm or less, preferably ⁇ 5 is 350nm or less, more preferably ⁇ 5 is 345nm or less; and/or weather resistance CR is Category 2 or above, preferably Category 1; and/or Knoop hardness H K is 650
  • Glass prefabricated parts are made of the above-mentioned optical glass.
  • Optical elements are made of the above-mentioned optical glass or the above-mentioned glass prefabricated parts.
  • An optical instrument contains the above-mentioned optical glass, and/or contains the above-mentioned optical element.
  • the beneficial effects of the present invention are: through reasonable component design, the present invention can obtain optical glass with desired refractive index and Abbe number at lower raw material costs.
  • optical glass of the present invention may be simply referred to as glass.
  • each component (ingredient) of the optical glass of the present invention is explained below.
  • the content and total content of each component are all expressed in weight percentage (wt%), that is, the content and total content of each component are expressed in weight percentage relative to the total amount of glass material converted into the composition of oxides.
  • the "composition converted into oxides” refers to the case where oxides, complex salts, hydroxides, etc. used as raw materials for the optical glass composition of the present invention decompose and convert into oxides when melted. , taking the total amount of the oxide as 100%.
  • SiO 2 has the function of adjusting optical constants, improving the chemical stability of glass, maintaining a viscosity suitable for molten glass, reducing abrasion and corrosion of refractory materials.
  • the above effects are achieved by containing more than 1% of SiO 2 , which is preferred
  • the content of SiO 2 is 3% or more, and more preferably the content of SiO 2 is 4% or more. If the content of SiO2 is too high, the melting difficulty of the glass will increase and the transition temperature will increase. Therefore, the upper limit of the SiO 2 content in the present invention is 18%, the preferred upper limit is 15%, and the more preferred upper limit is 10%.
  • B 2 O 3 can improve the meltability and devitrification resistance of glass, and is beneficial to reducing the transition temperature of glass.
  • the present invention achieves the above effects by containing more than 4% of B 2 O 3 , and preferably contains more than 5% of B 2 O 3 , and more preferably contains 7% or more of B 2 O 3 . If the content of B 2 O 3 is too high, the chemical stability of the glass will deteriorate, especially the water resistance, and the refractive index and light transmittance of the glass will decrease. Therefore, the content of B 2 O 3 is 18% or less, preferably 15% or less, and more preferably 13% or less.
  • La 2 O 3 is an active ingredient that increases the refractive index of glass, and has a significant effect on improving the chemical stability and devitrification resistance of glass. If its content is less than 35%, it is difficult to achieve the required optical constants; if the content is more than 60%, it will be difficult to achieve the required optical constants. On the contrary, the devitrification tendency of the glass increases and the thermal stability becomes worse. Therefore, the content of La 2 O 3 is limited to 35 to 60%, preferably 38 to 56%, and more preferably 41 to 54%.
  • the Y 2 O 3 can improve the refractive index and devitrification resistance of the glass and adjust the Young's modulus of the glass.
  • the present invention obtains the above effects by containing more than 6% of Y 2 O 3 ; if its content exceeds 30%, the glass's Chemical stability and weather resistance deteriorate. Therefore, the Y 2 O 3 content in the present invention is 6 to 30%, preferably 7 to 24%, more preferably 8 to 22%, and even more preferably 11 to 22%.
  • the ratio between the content of Y 2 O 3 and the content of B 2 O 3 is Y 2 O 3 /B 2 O 3 Controlling it within the range of 0.5 to 5.0 will help the glass obtain a suitable Young's modulus. Therefore, Y 2 O 3 /B 2 O 3 is preferably 0.5 to 5.0, and more preferably Y 2 O 3 /B 2 O 3 is 0.6 to 3.0. Furthermore, by controlling Y 2 O 3 /B 2 O 3 in the range of 0.7 to 2.5, it is helpful to further reduce the thermal expansion coefficient of the glass and optimize the bubble degree of the glass. Therefore, it is more preferable that Y 2 O 3 /B 2 O 3 is 0.7 to 2.5, and it is still more preferable that Y 2 O 3 /B 2 O 3 is 0.8 to 2.0.
  • Gd 2 O 3 can improve the refractive index and chemical stability of glass, but if its content is higher than 10%, the devitrification resistance and abrasion resistance of the glass will become worse. Therefore, the content of Gd 2 O 3 is 0 to 10%, preferably 0 to 8%, more preferably 0 to 5%, even more preferably 0 to 3%.
  • the ratio Gd 2 O 3 / (SiO 2 +B 2 O 3 ) between the content of Gd 2 O 3 and the total content of SiO 2 and B 2 O 3 SiO 2 + B 2 O 3 is controlled below 1.0, the density of the glass can be reduced and the bubble degree and abrasion of the glass can be optimized.
  • Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is preferably 1.0 or less, more preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.6 or less, and even more preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.5 or less, and more preferably Gd 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.3 or less.
  • La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 45 to 75%, more preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 50 to 75%, and even more preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 55 to 70%, and more preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 60 to 70%.
  • Yb 2 O 3 is also a component that gives glass high refractive and low dispersion properties. If its content exceeds 8%, the anti-crystallization properties of the glass will decrease. Therefore, the content of Yb 2 O 3 is 0 to 8%, preferably 0 to 5%, more preferably 0 to 3%, and further preferably does not contain Yb 2 O 3 .
  • ZrO 2 can improve the viscosity, hardness, refractive index and chemical stability of optical glass, and can also reduce the thermal expansion coefficient of the glass; when the content of ZrO 2 is too high, the devitrification resistance of the glass decreases, the melting difficulty increases, and the melting temperature rises , and lead to inclusions inside the glass and a decrease in light transmittance. Therefore, the content of ZrO 2 in the present invention is 2 to 15%, preferably 3 to 13%, and more preferably 4 to 10%.
  • ZrO 2 is controlled above 5.0, it is easier for the glass to obtain the desired Young's modulus, and it is beneficial to reduce the density of the glass. Therefore, (La 2 O 3 +Y 2 O 3 )/ZrO 2 is preferably 5.0 or more, and more preferably (La 2 O 3 +Y 2 O 3 )/ZrO 2 is 6.0 to 20.0. Further, control (La 2 O 3 +Y 2 O 3 ) /ZrO 2 in the range of 7.0 to 15.0 can further optimize the weather resistance and hardness of the glass. Therefore, (La 2 O 3 +Y 2 O 3 )/ZrO 2 is more preferably 7.0 to 15.0, and (La 2 O 3 +Y 2 O 3 )/ZrO 2 is still more preferably 7.5 to 10.0.
  • TiO 2 can increase the refractive index of glass, but too much content will greatly reduce the dispersion coefficient and increase the tendency of crystallization, and even cause the glass to be significantly colored. Therefore, the TiO 2 content is limited to 0 to 8%, preferably 0 to 5%, and more preferably 0 to 3%.
  • Ta 2 O 5 has the function of increasing the refractive index and improving the devitrification resistance of glass. However, if its content is too high, the thermal stability of the glass will decrease, the density will increase, and the optical constants will be difficult to control to the desired range; on the other hand, Compared with other ingredients, Ta 2 O 5 is very expensive, and its usage should be minimized from a practical and cost perspective. Therefore, the content of Ta 2 O 5 in the present invention is limited to 0 to 5%, preferably 0 to 2%, more preferably 0 to 1%, and further preferably does not contain Ta 2 O 5 .
  • controlling the ratio Ta 2 O 5 /Y 2 O 3 between the content of Ta 2 O 5 and the content of Y 2 O 3 below 0.8 can improve the chemical stability of the glass and make the glass obtain suitable Young's modulus to prevent light transmittance from decreasing. Therefore, it is preferable that Ta 2 O 5 /Y 2 O 3 is 0.8 or less, more preferably Ta 2 O 5 /Y 2 O 3 is 0.5 or less, still more preferably Ta 2 O 5 /Y 2 O 3 is 0.3 or less, and still more preferably Ta 2 O 5 /Y 2 O 3 is 0.1 or less.
  • Nb 2 O 5 is a high refractive and high dispersion component, which can improve the refractive index and devitrification resistance of glass and reduce the thermal expansion coefficient of glass.
  • the above effect is achieved by containing more than 2% of Nb 2 O 5.
  • Nb is preferred
  • the lower limit of the content of 2 O 5 is 4%, and a more preferable lower limit is 5%. If the content of Nb 2 O 5 exceeds 18%, the thermal stability and weather resistance of the glass will be reduced, and the light transmittance will decrease. Therefore, the upper limit of the content of Nb 2 O 5 in the present invention is 18%, preferably the upper limit is 15%, and more preferably The cap is 10%.
  • the ratio La 2 O 3 /Nb 2 O 5 between the content of La 2 O 3 and the content of Nb 2 O 5 is controlled in the range of 2.0 to 20.0 to improve the hardness of the glass while preventing light The transmittance is reduced and the glass obtains a suitable Young's modulus. Therefore, it is preferable that La 2 O 3 /Nb 2 O 5 is 2.0 to 20.0, more preferably La 2 O 3 /Nb 2 O 5 is 3.0 to 15.0, even more preferably La 2 O 3 /Nb 2 O 5 is 4.0 to 10.0, and even more preferably More preferably, La 2 O 3 /Nb 2 O 5 is 4.5 to 9.0.
  • the ratio Ta 2 O 5 / ( Nb 2 O 5 + Controlling Y 2 O 3 ) at 0.5 or less can improve the chemical stability of the glass while preventing a decrease in light transmittance. Therefore, it is preferable that Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.5 or less. Furthermore, by controlling Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) below 0.3, the weather resistance of the glass can be further improved and the abrasion degree of the glass can be optimized.
  • Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.3 or less, further preferably Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.2 or less, and still more preferably Ta 2 O 5 /(Nb 2 O 5 +Y 2 O 3 ) is 0.1 or less.
  • RO Alkaline earth metal oxide
  • RO is one or more of MgO, CaO, SrO, BaO
  • the RO content is limited to 0 to 8%, preferably 0 to 3%, and more preferably 0 to 2%. In some embodiments, it is further preferred not to contain RO.
  • Alkali metal oxide Rn 2 O (Rn 2 O is one or more of Li 2 O, Na 2 O, K 2 O) can reduce the transition temperature of glass, adjust the optical constants and high-temperature viscosity of glass, and improve the properties of glass. Melting property, but when its content is high, the devitrification resistance and chemical stability of the glass decrease. Therefore, the content of Rn 2 O in the present invention is 0 to 8%, preferably 0 to 3%, and more preferably 0 to 2%. In some embodiments, it is further preferred not to contain Rn 2 O.
  • WO 3 can improve the refractive index and mechanical strength of glass. If the content of WO 3 exceeds 5%, the thermal stability of the glass will decrease and the devitrification resistance will decrease. Therefore, the upper limit of the content of WO 3 is 5%, the preferred upper limit is 3%, and the more preferred upper limit is 2%. In some embodiments, it is further preferred not to contain WO 3 .
  • the ratio between the total content of TiO 2 and WO 3 , TiO 2 + WO 3 , and the content of Y 2 O 3 (TiO 2 + WO 3 )/Y 2 O 3 can be controlled below 1.0, which can improve Chemical stability and bubble content of glass. Therefore, (TiO 2 +WO 3 )/Y 2 O 3 is preferably 1.0 or less, and more preferably (TiO 2 +WO 3 )/Y 2 O 3 is 0.8 or less. Furthermore, controlling (TiO 2 +WO 3 )/Y 2 O 3 below 0.6 can further optimize the abrasion of glass and prevent the thermal expansion coefficient of glass from increasing. Therefore, (TiO 2 +WO 3 )/Y 2 O 3 is more preferably 0.6 or less, and still more preferably (TiO 2 +WO 3 )/Y 2 O 3 is 0.3 or less.
  • ZnO can adjust the refractive index and dispersion of glass, and reduce the high-temperature viscosity and transition temperature of glass. If the content of ZnO is too high, the difficulty of glass molding will increase and the crystallization resistance will deteriorate. Therefore, the ZnO content is 0 to 8%, preferably 0 to 4%, and more preferably 0 to 2%. In some embodiments, it is further preferred not to contain ZnO.
  • the ratio between the total content of Gd 2 O 3 and ZnO, Gd 2 O 3 + ZnO, and the content of Y 2 O 3 (Gd 2 O 3 + ZnO)/Y 2 O 3 is controlled at 1.0
  • the following can reduce the thermal expansion coefficient of glass and optimize the wear of glass. Therefore, (Gd 2 O 3 +ZnO)/Y 2 O 3 is preferably 1.0 or less, More preferably, (Gd 2 O 3 +ZnO)/Y 2 O 3 is 0.8 or less.
  • controlling (Gd 2 O 3 +ZnO)/Y 2 O 3 below 0.5 can make it easier for the glass to obtain a suitable Young's modulus and prevent the glass hardness from decreasing. Therefore, (Gd 2 O 3 +ZnO)/Y 2 O 3 is more preferably 0.5 or less, and still more preferably (Gd 2 O 3 +ZnO)/Y 2 O 3 is 0.3 or less.
  • Al 2 O 3 can improve the chemical stability of glass, but when its content exceeds 8%, the meltability and light transmittance of the glass become worse. Therefore, the content of Al 2 O 3 in the present invention is 0 to 8%, preferably 0 to 4%, and more preferably 0 to 2%. In some embodiments, it is further preferred not to contain Al 2 O 3 .
  • GeO 2 has the effect of increasing the refractive index and devitrification resistance, but if its content is too high, the chemical stability of the glass decreases; on the other hand, compared with other ingredients, GeO 2 is very expensive, both in terms of practicality and cost. Considering the perspective, its usage should be reduced as much as possible. Therefore, the content of GeO 2 in the present invention is limited to 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%, and even more preferably no GeO 2 is contained.
  • the clarification effect of the glass can be improved, and the bubble degree of the glass can be improved.
  • Clarification is preferred
  • the content of the clarifying agent is 0 to 1%, and the content of the clarifying agent is more preferably 0 to 0.5%. Since the component types and contents of the optical glass of the present invention are reasonably designed and its bubble degree is excellent, in some embodiments, it is further preferred not to contain a clarifier. When the Sb 2 O 3 content exceeds 2%, the clarification performance of the glass tends to decrease.
  • Sb 2 is preferred in the present invention.
  • the content of O 3 is 0 to 2%, more preferably 0 to 1%, still more preferably 0 to 0.5%, and still more preferably does not contain Sb 2 O 3 .
  • SnO and SnO 2 can also be used as clarifiers, but when their content exceeds 2%, the tendency of glass coloring increases, or when the glass is heated, softened and re-formed such as molding, Sn will become the starting point for crystal nucleation, resulting in Tendency to lose clarity.
  • the content of SnO 2 in the present invention is preferably 0 to 2%, more preferably 0 to 1%, even more preferably 0 to 0.5%, and even more preferably does not contain SnO 2 ; the content of SnO is preferably 0 to 2%, more preferably The content is preferably 0 to 1%, more preferably 0 to 0.5%, and still more preferably does not contain SnO.
  • the role and content ratio of CeO 2 are consistent with SnO 2 , and its content is preferably 0 to 2%, more preferably 0 to 1%, further preferably 0 to 0.5%, and even more preferably does not contain CeO 2 .
  • SiO 2 , B 2 O 3 , and La 2 are preferred.
  • the total content of O 3 , Y 2 O 3 , ZrO 2 , and Nb 2 O 5 is 86% or more, and SiO 2 , B 2 O 3 , La 2 O 3 , and The total content of Y 2 O 3 , ZrO 2 , and Nb 2 O 5 is 88% or more, and the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and Nb 2 O 5 is more preferred. It is 90% or more, and it is more preferable that the total content of SiO2 , B2O3 , La2O3 , Y2O3 , ZrO2 , and Nb2O5 is 95% or more.
  • the glass of the present invention even if oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained alone or in combination in small amounts, the glass will be colored, and in the visible light region Absorption occurs at specific wavelengths, thereby weakening the effect of improving the visible light transmittance of the present invention. Therefore, it is preferable that optical glass that requires transmittance in the visible light region does not actually contain it.
  • the oxides of Th, Cd, Tl, Os, Be and Se have been used as hazardous chemicals in recent years, and their use has tended to be controlled. They are not only used in the manufacturing process of glass, but also in the processing process and the disposal after productization. Measures are required. Therefore, when attaching importance to the impact on the environment, it is preferable that they are not actually contained except for unavoidable mixing. As a result, the optical glass does not actually contain substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special environmental countermeasures.
  • the optical glass of the present invention preferably does not contain As 2 O 3 and PbO.
  • Does not contain and “0%” recorded in this article means that the compound, molecule or element is not intentionally added as a raw material to the optical glass of the present invention; however, as a raw material and/or equipment for the production of optical glass, there will be certain Impurities or components that are not intentionally added may be contained in small or trace amounts in the final optical glass. This situation is also within the scope of protection of the patent of the present invention.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the methods specified in "GB/T 7962.1-2010".
  • the lower limit of the refractive index (n d ) of the optical glass of the present invention is 1.85, the preferred lower limit is 1.86, and the more preferred lower limit is 1.875.
  • the upper limit of the refractive index (n d ) of the optical glass of the present invention is 1.91, the preferred upper limit is 1.90, and the more preferred upper limit is 1.895.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 35, preferably The lower limit is 37, and a more preferable lower limit is 38.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 43, preferably the upper limit is 42, and more preferably the upper limit is 41.
  • the density ( ⁇ ) of optical glass is tested according to the method specified in "GB/T7962.20-2010".
  • the density ( ⁇ ) of the optical glass of the present invention is 5.10g/cm 3 or less, preferably 5.00g/cm 3 or less, and more preferably 4.90g/cm 3 or less.
  • the thermal expansion coefficient of optical glass ( ⁇ -30/70°C ) is tested according to the method specified in "GB/T7962.16-2010" -30 ⁇ 70°C data.
  • the thermal expansion coefficient ( ⁇ -30/70°C ) of the optical glass of the present invention is 80 ⁇ 10 -7 /K or less, preferably 70 ⁇ 10 -7 /K or less, and more preferably 65 ⁇ 10 -7 /K or less.
  • the water resistance stability (D W ) of the optical glass of the present invention is Category 2 or higher, preferably Category 1.
  • the acid resistance stability ( DA ) of the optical glass of the present invention is Category 2 or above, preferably Category 1.
  • the short-wave transmission spectral characteristics of the glass of the present invention are expressed in terms of coloration ( ⁇ 70 and ⁇ 5 ).
  • ⁇ 70 refers to the wavelength corresponding to when the glass transmittance reaches 70%.
  • ⁇ 70 is measured by measuring the spectral transmittance in the wavelength domain from 280 nm to 700 nm using glass with a thickness of 10 ⁇ 0.1 mm having two opposite planes parallel to each other and optically polished and showing a wavelength of 70% transmittance.
  • the so-called spectral transmittance or transmittance means that when light of intensity I in is vertically incident on the above-mentioned surface of the glass, it passes through the glass and passes from one
  • the quantity expressed by I out /I in when light with intensity I out is emitted from a plane and also includes the transmittance of the surface reflection loss on the above-mentioned surface of the glass.
  • the ⁇ 70 of the optical glass of the present invention is 400 nm or less, preferably the ⁇ 70 is 390 nm or less, and more preferably the ⁇ 70 is 385 nm or less.
  • the ⁇ 5 of the optical glass of the present invention is 360 nm or less, preferably the ⁇ 5 is 350 nm or less, and more preferably the ⁇ 5 is 345 nm or less.
  • the weather resistance (CR) test method of optical glass is as follows: Place the sample in a test box with a relative humidity of 90% in a saturated water vapor environment, and cycle at 40 to 50°C alternately every 1 hour for 15 cycles.
  • the weather resistance categories are divided according to the turbidity change before and after the sample is placed.
  • the weather resistance classification is shown in Table 1:
  • the weather resistance (CR) of the optical glass of the present invention is Category 2 or above, preferably Category 1.
  • the Knoop hardness (H K ) of the optical glass of the present invention is 650 ⁇ 10 7 Pa or above, preferably 660 ⁇ 10 7 Pa or above, more preferably 670 ⁇ 10 7 Pa or above, further preferably 680 ⁇ 10 7 Pa and above.
  • E Young’s modulus, Pa;
  • G is shear modulus, Pa
  • V T is the transverse wave velocity, m/s
  • V S is the longitudinal wave velocity, m/s
  • is the density of glass, g/cm 3 .
  • the lower limit of the Young's modulus (E) of the optical glass of the present invention is 11000 ⁇ 10 7 Pa
  • the preferred lower limit is 11500 ⁇ 10 7 Pa
  • the more preferred lower limit is 12000 ⁇ 10 7 Pa.
  • the upper limit of the Young's modulus (E) of the optical glass of the present invention is 14000 ⁇ 10 7 Pa
  • the preferred upper limit is 13500 ⁇ 10 7 Pa
  • the more preferred upper limit is 13000 ⁇ 10 7 Pa.
  • the degree of abrasion of optical glass refers to the value obtained by multiplying the ratio of the abrasion amount of the sample to the abrasion amount (volume) of the standard sample (H-K9 glass) by 100 under exactly the same conditions. Use The formula is expressed as follows:
  • V the volumetric wear of the sample being measured
  • V 0 standard sample volume wear amount
  • the lower limit of the degree of abrasion ( FA ) of the optical glass of the present invention is 70, preferably the lower limit is 80, and more preferably the lower limit is 85.
  • the upper limit of the abrasion degree ( FA ) of the optical glass of the present invention is 120, the preferred upper limit is 110, and the more preferred upper limit is 105.
  • the bubble degree of optical glass is tested according to the method specified in "GB/T7962.8-2010".
  • the bubble degree of the optical glass of the present invention is level A or above, preferably level A 0 or above, and more preferably level A 00 .
  • the manufacturing method of the optical glass of the present invention is as follows: the glass of the present invention is produced using conventional raw materials and processes, including but not limited to the use of oxides, hydroxides, complex salts (such as carbonates, nitrates, sulfates, etc.), boric acid, etc.
  • As raw materials after batching according to conventional methods, put the prepared charge into a smelting furnace (such as platinum or platinum alloy crucible) at 1200 ⁇ 1450°C for melting, and after clarification and homogenization, the result will be without bubbles and unfinished materials. A homogeneous molten glass of dissolved substances that is cast in a mold and annealed.
  • a smelting furnace such as platinum or platinum alloy crucible
  • direct drop molding, grinding processing, or compression molding such as hot press molding can be used to produce a glass preform from the optical glass produced. That is, molten optical glass can be directly precision drop-molded into a glass precision preform, or a glass preform can be produced by mechanical processing such as grinding and polishing, or a preform for press molding can be produced from optical glass. This preform is heat-pressed and then polished to produce a glass preform. It should be noted that the means for preparing glass preforms are not limited to the above-mentioned means.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention and use the preform to perform reheat press molding, precision stamping molding, etc. , making optical components such as lenses and prisms.
  • the glass preform and optical element of the present invention are both formed from the above-mentioned optical glass of the present invention.
  • the glass preform of the present invention has the excellent characteristics of optical glass; the optical element of the present invention has the excellent characteristics of optical glass, and can provide various lenses, prisms and other optical elements with high optical value.
  • lenses include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens with a spherical or aspherical lens surface.
  • optical elements formed by the optical glass of the present invention can be used to produce optical instruments such as photographic equipment, video recording equipment, projection equipment, display equipment, vehicle-mounted equipment and monitoring equipment.
  • optical glass manufacturing method described above is used to obtain optical glass having the composition shown in Tables 2 to 4.
  • characteristics of each glass were measured by the testing method described in the present invention, and the measurement results are shown in Tables 2 to 4.
  • Optical Glass Examples 1 to 24# The glass obtained in Optical Glass Examples 1 to 24# is used to produce concave meniscus lenses, convex meniscus lenses, double meniscus lenses, etc. Prefabricated parts for various lenses, prisms, etc., including convex lens, biconcave lens, plano-convex lens, plano-concave lens, etc.
  • the preforms obtained in the above glass preform embodiments are annealed to reduce the internal stress of the glass while fine-tuning the refractive index so that the refractive index and other optical properties reach required values.
  • each preform is ground and polished to produce various lenses and prisms such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses.
  • the surface of the obtained optical element can also be coated with an anti-reflective film.
  • optical elements produced by the above optical element embodiments can be used in, for example, imaging equipment, sensors, microscopes, medical technology, digital projection, communications, and optical communications through optical design and by using one or more optical elements to form optical components or optical assemblies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种光学玻璃,其组分以重量百分比表示,含有:SiO2:1~18%;B2O3:4~18%;La2O3:35~60%;Y2O3:6~30%;ZrO2:2~15%;Nb2O5:2~18%。通过合理的组分设计,本发明可以以较低的原料成本获得具有期望的折射率和阿贝数的光学玻璃。

Description

光学玻璃、玻璃预制件、光学元件及光学仪器 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.85~1.91,阿贝数为35~43的光学玻璃,以及由其制成的玻璃预制件、光学元件和光学仪器。
背景技术
近年来,随着光学***的数字化和高精密化的迅速发展,在数码相机、摄像机等摄影设备以及投影仪、投影电视等图像播放(投影)设备等光学设备中,对减少光学***中使用的透镜、棱镜等光学元件的个数,使光学***整体轻量化和小型化的要求越来越高。在光学***的设计中,广泛采用高折射率的玻璃或利用非球面透镜来实现小型化、超薄化和广角化,在实现光学***轻量化和高性能化的同时更容易实现色差的校正,因此,折射率为1.85~1.91,阿贝数为35~43的光学玻璃的需求较大。
现有技术中,折射率为1.85~1.91,阿贝数为35~43的光学玻璃都含有大量的Ta2O5,如CN101549954A公开的一种折射率为1.85~1.91、阿贝数为38~42的光学玻璃,其中含有10~25%的Ta2O5。Ta2O5是一种稀缺金属组分,Ta2O5的使用对产品成本的控制极其不利,因此在光学玻璃中降低或不使用Ta2O5,是光学玻璃研发的目标。
发明内容
本发明所要解决的技术问题是提供一种原料成本较低、折射率为1.85~1.91,阿贝数为35~43的光学玻璃。
本发明解决技术问题采用的技术方案是:
光学玻璃,其组分以重量百分比表示,含有:SiO2:1~18%;B2O3:4~18%;La2O3:35~60%;Y2O3:6~30%;ZrO2:2~15%;Nb2O5:2~18%。
进一步的,所述的光学玻璃,其组分以重量百分比表示,还含有:Ta2O5:0~5%;和/或Gd2O3:0~10%;和/或TiO2:0~8%;和/或RO:0~8%;和/或Rn2O:0~8%;和/或WO3:0~5%;和/或ZnO:0~8%;和/或Al2O3:0~8%;和/或Yb2O3:0~8%;和/或GeO2:0~5%;和/或澄清剂:0~2%,所述 RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
光学玻璃,其组分以重量百分比表示,由SiO2:1~18%;B2O3:4~18%;La2O3:35~60%;Y2O3:6~30%;ZrO2:2~15%;Nb2O5:2~18%;Ta2O5:0~5%;Gd2O3:0~10%;TiO2:0~8%;RO:0~8%;Rn2O:0~8%;WO3:0~5%;ZnO:0~8%;Al2O3:0~8%;Yb2O3:0~8%;GeO2:0~5%;澄清剂:0~2%组成,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:La2O3+Y2O3+Gd2O3为45~75%,优选La2O3+Y2O3+Gd2O3为50~75%,更优选La2O3+Y2O3+Gd2O3为55~70%,进一步优选La2O3+Y2O3+Gd2O3为60~70%。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:Y2O3/B2O3为0.5~5.0,优选Y2O3/B2O3为0.6~3.0,更优选Y2O3/B2O3为0.7~2.5,进一步优选Y2O3/B2O3为0.8~2.0。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:Gd2O3/(SiO2+B2O3)为1.0以下,优选Gd2O3/(SiO2+B2O3)为0.6以下,更优选Gd2O3/(SiO2+B2O3)为0.5以下,进一步优选Gd2O3/(SiO2+B2O3)为0.3以下。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(La2O3+Y2O3)/ZrO2为5.0以上,优选(La2O3+Y2O3)/ZrO2为6.0~20.0,更优选(La2O3+Y2O3)/ZrO2为7.0~15.0,进一步优选(La2O3+Y2O3)/ZrO2为7.5~10.0。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:Ta2O5/Y2O3为0.8以下,优选Ta2O5/Y2O3为0.5以下,更优选Ta2O5/Y2O3为0.3以下,进一步优选Ta2O5/Y2O3为0.1以下。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:La2O3/Nb2O5为2.0~20.0,优选La2O3/Nb2O5为3.0~15.0,更优选La2O3/Nb2O5为4.0~10.0,进一步优选La2O3/Nb2O5为4.5~9.0。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:Ta2O5/(Nb2O5+Y2O3)为0.5以下,优选Ta2O5/(Nb2O5+Y2O3)为0.3以下,更优选 Ta2O5/(Nb2O5+Y2O3)为0.2以下,进一步优选Ta2O5/(Nb2O5+Y2O3)为0.1以下。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(TiO2+WO3)/Y2O3为1.0以下,优选(TiO2+WO3)/Y2O3为0.8以下,更优选(TiO2+WO3)/Y2O3为0.6以下,进一步优选(TiO2+WO3)/Y2O3为0.3以下。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(Gd2O3+ZnO)/Y2O3为1.0以下,优选(Gd2O3+ZnO)/Y2O3为0.8以下,更优选(Gd2O3+ZnO)/Y2O3为0.5以下,进一步优选(Gd2O3+ZnO)/Y2O3为0.3以下。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:SiO2:3~15%,优选SiO2:4~10%;和/或B2O3:5~15%,优选B2O3:7~13%;和/或La2O3:38~56%,优选La2O3:41~54%;和/或Y2O3:7~24%,优选Y2O3:8~22%,更优选Y2O3:11~22%;和/或ZrO2:3~13%,优选ZrO2:4~10%;和/或Nb2O5:4~15%,优选Nb2O5:5~10%;和/或Ta2O5:0~2%,优选Ta2O5:0~1%;和/或Gd2O3:0~8%,优选Gd2O3:0~5%,更优选Gd2O3:0~3%;和/或TiO2:0~5%,优选TiO2:0~3%;和/或RO:0~3%,优选RO:0~2%;和/或Rn2O:0~3%,优选Rn2O:0~2%;和/或WO3:0~3%,优选WO3:0~2%;和/或ZnO:0~4%,优选ZnO:0~2%;和/或Al2O3:0~4%,优选Al2O3:0~2%;和/或Yb2O3:0~5%,优选Yb2O3:0~3%;和/或GeO2:0~3%,优选GeO2:0~1%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
进一步的,所述的光学玻璃,其组分中不含有WO3;和/或不含有Ta2O5;和/或不含有RO;和/或不含有Rn2O;和/或不含有ZnO;和/或不含有Al2O3;和/或不含有GeO2,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种。
进一步的,所述的光学玻璃,其组分以重量百分比表示,SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为86%以上,优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为88%以上,更优选SiO2、B2O3、La2O3、Y2O3、ZrO2、 Nb2O5的合计含量为90%以上,进一步优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为95%以上。
进一步的,所述的光学玻璃的折射率nd为1.85~1.91,优选为1.86~1.90,更优选为1.875~1.895,阿贝数vd为35~43,优选为37~42,更优选为38~41。
进一步的,所述的光学玻璃的密度ρ为5.10g/cm3以下,优选为5.00g/cm3以下,更优选为4.90g/cm3以下;和/或热膨胀系数α-30/70℃为80×10-7/K以下,优选为70×10-7/K以下,更优选为65×10-7/K以下;和/或耐水作用稳定性DW为2类以上,优选为1类;和/或耐酸作用稳定性DA为2类以上,优选为1类;和/或λ70为400nm以下,优选λ70为390nm以下,更优选λ70为385nm以下;和/或λ5为360nm以下,优选λ5为350nm以下,更优选λ5为345nm以下;和/或耐候性CR为2类以上,优选为1类;和/或努氏硬度HK为650×107Pa以上,优选为660×107Pa以上,更优选为670×107Pa以上,进一步优选为680×107Pa以上;和/或杨氏模量E为11000×107Pa~14000×107Pa,优选为11500×107Pa~13500×107Pa,更优选为12000×107Pa~13000×107Pa;和/或磨耗度FA为70~120,优选为80~110,更优选为85~105;和/或气泡度为A级以上,优选为A0级以上,更优选为A00级。
玻璃预制件,采用上述的光学玻璃制成。
光学元件,采用上述的光学玻璃制成,或采用上述的玻璃预制件制成。
光学仪器,含有上述的光学玻璃,和/或含有上述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明可以以较低的原料成本获得具有期望的折射率和阿贝数的光学玻璃。
具体实施方式
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨,在以下内容中,本发明光学玻璃有时候简称为玻璃。
[光学玻璃]
下面对本发明光学玻璃的各组分(成分)范围进行说明。在本发明中, 如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、总含量相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。
除非在具体情况下另外指出,本发明所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
SiO2具有调整光学常数,改善玻璃的化学稳定性、维持适于熔融玻璃的粘度、降低磨耗度和对耐火材料侵蚀的作用,本发明中通过含有1%以上的SiO2以获得上述效果,优选SiO2的含量为3%以上,更优选SiO2的含量为4%以上。若SiO2的含量过高,玻璃的熔融难度增加,转变温度升高。因此,本发明中SiO2的含量上限为18%,优选上限为15%,更优选上限为10%。
B2O3可提高玻璃的熔融性和耐失透性,有利于降低玻璃的转变温度,本发明通过含有4%以上的B2O3以获得上述效果,优选含有5%以上的B2O3,更优选含有7%以上的B2O3。若B2O3的含量过高,则玻璃的化学稳定性变差,尤其是耐水性变差,玻璃的折射率和光透过率下降。因此,B2O3的含量为18%以下,优选为15%以下,更优选为13%以下。
La2O3是提高玻璃折射率的有效成分,对改善玻璃的化学稳定性和耐失透性效果显著,若其含量不足35%,难以达到所需的光学常数;若含量高于60%,则玻璃的失透倾向反而增大,热稳定性变差。因此,La2O3的含量限定为35~60%,优选为38~56%,更优选为41~54%。
Y2O3可以提高玻璃的折射率和耐失透性,调整玻璃的杨氏模量,本发明通过含有6%以上的Y2O3以获得上述效果;若其含量超过30%,玻璃的化学稳定性和耐候性变差。因此,本发明中Y2O3含量为6~30%,优选为7~24%,更优选为8~22%,进一步优选为11~22%。
在一些实施方式中,将Y2O3的含量与B2O3的含量之间的比值Y2O3/B2O3 控制在0.5~5.0范围内,有利于玻璃获得适宜的杨氏模量。因此,优选Y2O3/B2O3为0.5~5.0,更优选Y2O3/B2O3为0.6~3.0。进一步的,通过将Y2O3/B2O3控制在0.7~2.5范围内,有利于进一步降低玻璃的热膨胀系数,优化玻璃的气泡度。因此,进一步优选Y2O3/B2O3为0.7~2.5,更进一步优选Y2O3/B2O3为0.8~2.0。
Gd2O3可以提高玻璃的折射率和化学稳定性,但若其含量高于10%,玻璃的耐失透性和磨耗度变差。因此,Gd2O3的含量为0~10%,优选为0~8%,更优选为0~5%,进一步优选为0~3%。
在一些实施方式中,将Gd2O3的含量与SiO2和B2O3的合计含量SiO2+B2O3之间的比值Gd2O3/(SiO2+B2O3)控制在1.0以下,可降低玻璃的密度,优化玻璃的气泡度和磨耗度。因此,优选Gd2O3/(SiO2+B2O3)为1.0以下,更优选Gd2O3/(SiO2+B2O3)为0.6以下,进一步优选Gd2O3/(SiO2+B2O3)为0.5以下,更进一步优选Gd2O3/(SiO2+B2O3)为0.3以下。
在一些实施方式中,通过将La2O3、Y2O3和Gd2O3的合计含量La2O3+Y2O3+Gd2O3控制在45~75%范围内,玻璃更易获得期望的折射率和阿贝数,并优化玻璃的耐失透性和耐候性。因此,优选La2O3+Y2O3+Gd2O3为45~75%,更优选La2O3+Y2O3+Gd2O3为50~75%,进一步优选La2O3+Y2O3+Gd2O3为55~70%,更进一步优选La2O3+Y2O3+Gd2O3为60~70%。
Yb2O3也是一种赋予玻璃高折射、低色散性能的组分,若其含量超过8%,玻璃的抗析晶性能下降。因此,Yb2O3的含量为0~8%,优选为0~5%,更优选为0~3%,进一步优选不含有Yb2O3
ZrO2可以提高光学玻璃的粘度、硬度、折射率和化学稳定性,还可以降低玻璃的热膨胀系数;当ZrO2的含量过高时,玻璃的耐失透性降低,熔化难度增加,熔炼温度上升,并导致玻璃内部出现夹杂物及光透过率下降。因此,本发明中ZrO2的含量为2~15%,优选为3~13%,更优选为4~10%。
在一些实施方式中,通过将La2O3和Y2O3的合计含量La2O3+Y2O3与ZrO2的含量之间的比值(La2O3+Y2O3)/ZrO2控制在5.0以上,玻璃较易获得期望的杨氏模量,并有利于降低玻璃的密度。因此,优选(La2O3+Y2O3)/ZrO2为5.0以上,更优选(La2O3+Y2O3)/ZrO2为6.0~20.0。进一步的,控制(La2O3+Y2O3) /ZrO2在7.0~15.0范围内,还可进一步优化玻璃的耐候性和硬度。因此,进一步优选(La2O3+Y2O3)/ZrO2在7.0~15.0,更进一步优选(La2O3+Y2O3)/ZrO2为7.5~10.0。
TiO2可以提高玻璃的折射率,但含量过高会大大降低色散系数并且增加析晶倾向,甚至会使玻璃明显着色。因此,TiO2含量限定为0~8%,优选为0~5%,更优选为0~3%。
Ta2O5具有提高折射率、提升玻璃耐失透性的作用,但若其含量过高,玻璃的热稳定性下降,密度增大,且光学常数难以控制到期望的范围;另一方面,与其他成分相比,Ta2O5的价格非常昂贵,从实用以及成本的角度考虑,应尽量减少其使用量。因此,本发明中Ta2O5的含量限定为0~5%,优选为0~2%,更优选为0~1%,进一步优选不含有Ta2O5
在一些实施方式中,将Ta2O5的含量与Y2O3的含量之间的比值Ta2O5/Y2O3控制在0.8以下,可提高玻璃的化学稳定性,使玻璃获得适宜的杨氏模量,防止光透过率降低。因此,优选Ta2O5/Y2O3为0.8以下,更优选Ta2O5/Y2O3为0.5以下,进一步优选Ta2O5/Y2O3为0.3以下,更进一步优选Ta2O5/Y2O3为0.1以下。
Nb2O5是高折射高色散组分,可以提高玻璃的折射率和耐失透性,降低玻璃的热膨胀系数,本发明中通过含有2%以上的Nb2O5以获得上述效果,优选Nb2O5的含量下限为4%,更优选下限为5%。若Nb2O5的含量超过18%,玻璃的热稳定性和耐候性降低,光透过率下降,因此本发明中Nb2O5的含量上限为18%,优选上限为15%,更优选上限为10%。
在一些实施方式中,将La2O3的含量与Nb2O5的含量之间的比值La2O3/Nb2O5控制在2.0~20.0范围内,在提高玻璃硬度的同时,防止光透过率降低,并使玻璃获得适宜的杨氏模量。因此,优选La2O3/Nb2O5为2.0~20.0,更优选La2O3/Nb2O5为3.0~15.0,进一步优选La2O3/Nb2O5为4.0~10.0,更进一步优选La2O3/Nb2O5为4.5~9.0。
在一些实施方式中,将Ta2O5的含量与Nb2O5和Y2O3的合计含量Nb2O5+Y2O3之间的比值Ta2O5/(Nb2O5+Y2O3)控制在0.5以下,可在提高玻璃化学稳定性的同时,防止光透过率降低,因此优选Ta2O5/(Nb2O5+Y2O3)为0.5以下。 进一步的,通过控制Ta2O5/(Nb2O5+Y2O3)在0.3以下,可进一步提高玻璃的耐候性,优化玻璃的磨耗度。因此,更优选Ta2O5/(Nb2O5+Y2O3)为0.3以下,进一步优选Ta2O5/(Nb2O5+Y2O3)为0.2以下,更进一步优选Ta2O5/(Nb2O5+Y2O3)为0.1以下。
碱土金属氧化物RO(RO为MgO、CaO、SrO、BaO中的一种或多种)可以调整玻璃的光学常数,优化玻璃的化学稳定性,但当其含量高时,玻璃的耐失透性降低。因此,RO含量限定为0~8%,优选为0~3%,更优选为0~2%。在一些实施方式中,进一步优选不含有RO。
碱金属氧化物Rn2O(Rn2O为Li2O、Na2O、K2O中的一种或多种)可以降低玻璃的转变温度,调整玻璃的光学常数和高温粘度,改善玻璃的熔融性,但其含量高时玻璃的耐失透性和化学稳定性降低。因此,本发明中Rn2O的含量为0~8%,优选为0~3%,更优选为0~2%。在一些实施方式中,进一步优选不含有Rn2O。
WO3可以提高玻璃的折射率和机械强度,若WO3的含量超过5%,玻璃的热稳定性下降,耐失透性降低。因此,WO3的含量上限为5%,优选上限为3%,更优选上限为2%。在一些实施方式中,进一步优选不含有WO3
在一些实施方式中,将TiO2和WO3的合计含量TiO2+WO3与Y2O3的含量之间的比值(TiO2+WO3)/Y2O3控制在1.0以下,可提高玻璃的化学稳定性和气泡度。因此,优选(TiO2+WO3)/Y2O3为1.0以下,更优选(TiO2+WO3)/Y2O3为0.8以下。进一步的,控制(TiO2+WO3)/Y2O3在0.6以下,还可进一步优化玻璃的磨耗度,防止玻璃热膨胀系数升高。因此,进一步优选(TiO2+WO3)/Y2O3为0.6以下,更进一步优选(TiO2+WO3)/Y2O3为0.3以下。
ZnO可以调整玻璃的折射率和色散,降低玻璃的高温粘度和转变温度。若ZnO的含量过高,玻璃成型难度增加,抗析晶性能变差。因此,ZnO的含量为0~8%,优选为0~4%,更优选为0~2%。在一些实施方式中,进一步优选不含有ZnO。
在一些实施方式中,通过将Gd2O3和ZnO的合计含量Gd2O3+ZnO与Y2O3的含量之间的比值(Gd2O3+ZnO)/Y2O3控制在1.0以下,可以降低玻璃的热膨胀系数,优化玻璃的磨耗度。因此,优选(Gd2O3+ZnO)/Y2O3为1.0以下, 更优选(Gd2O3+ZnO)/Y2O3为0.8以下。进一步的,控制(Gd2O3+ZnO)/Y2O3在0.5以下,可使玻璃更易获得适宜的杨氏模量,并防止玻璃硬度降低。因此,进一步优选(Gd2O3+ZnO)/Y2O3为0.5以下,更进一步优选(Gd2O3+ZnO)/Y2O3为0.3以下。
Al2O3可以改善玻璃的化学稳定性,但其含量超过8%时,玻璃的熔融性和光透过率变差。因此,本发明中Al2O3的含量为0~8%,优选为0~4%,更优选为0~2%。在一些实施方式中,进一步优选不含有Al2O3
GeO2具有提高折射率和耐失透性的作用,但若其含量过高,玻璃的化学稳定性下降;另一方面,与其他成分相比,GeO2的价格非常昂贵,从实用以及成本的角度考虑,应尽量减少其使用量。因此,本发明中GeO2的含量限定为0~5%,优选为0~3%,更优选为0~1%,进一步优选不含有GeO2
本发明中通过含有0~2%的Sb2O3、SnO、SnO2、CeO2中的一种或多种组分作为澄清剂,可以提高玻璃的澄清效果,提高玻璃的气泡度,优选澄清剂的含量为0~1%,更优选澄清剂的含量为0~0.5%。由于本发明光学玻璃的组分种类及含量设计合理,其气泡度优异,因此在一些实施方式中进一步优选不含有澄清剂。当Sb2O3含量超过2%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了熔制玻璃的铂金或铂合金器皿的腐蚀以及成型模具的恶化,因此本发明优选Sb2O3的含量为0~2%,更优选为0~1%,进一步优选为0~0.5%,更进一步优选不含有Sb2O3。SnO和SnO2也可以作为澄清剂,但当其含量超过2%时,则玻璃着色倾向增加,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本发明的SnO2的含量优选为0~2%,更优选为0~1%,进一步优选为0~0.5%,更进一步优选不含有SnO2;SnO的含量优选为0~2%,更优选为0~1%,进一步优选为0~0.5%,更进一步优选不含有SnO。CeO2的作用及含量比例与SnO2一致,其含量优选为0~2%,更优选为0~1%,进一步优选为0~0.5%,更进一步优选不含有CeO2
在一些实施方式中,为使本发明光学玻璃获得较低的热膨胀系数,较高的硬度和气泡度等级,以及适宜的磨耗度和杨氏模量,优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为86%以上,更优选SiO2、B2O3、La2O3、 Y2O3、ZrO2、Nb2O5的合计含量为88%以上,进一步优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为90%以上,更进一步优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为95%以上。
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
为了实现环境友好,本发明的光学玻璃优选不含有As2O3和PbO。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(nd)与阿贝数(νd)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的折射率(nd)的下限为1.85,优选下限为1.86,更优选下限为1.875。
在一些实施方式中,本发明光学玻璃的折射率(nd)的上限为1.91,优选上限为1.90,更优选上限为1.895。
在一些实施方式中,本发明光学玻璃的阿贝数(νd)的下限为35,优选 下限为37,更优选下限为38。
在一些实施方式中,本发明光学玻璃的阿贝数(νd)的上限为43,优选上限为42,更优选上限为41。
<密度>
光学玻璃的密度(ρ)按照《GB/T7962.20-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的密度(ρ)为5.10g/cm3以下,优选为5.00g/cm3以下,更优选为4.90g/cm3以下。
<热膨胀系数>
光学玻璃的热膨胀系数(α-30/70℃)按照《GB/T7962.16-2010》规定的方法测试-30~70℃的数据。
在一些实施方式中,本发明光学玻璃的热膨胀系数(α-30/70℃)为80×10-7/K以下,优选为70×10-7/K以下,更优选为65×10-7/K以下。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(DW)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(DW)为2类以上,优选为1类。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(DA)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(DA)为2类以上,优选为1类。
<着色度>
本发明玻璃的短波透射光谱特性用着色度(λ70和λ5)表示。λ70是指玻璃透射比达到70%时对应的波长。λ70的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率70%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度Iin的光,透过玻璃并从一个 平面射出强度Iout的光的情况下通过Iout/Iin表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ70的值小意味着玻璃自身的着色极少,光透过率高。
在一些实施方式中,本发明光学玻璃的λ70为400nm以下,优选λ70为390nm以下,更优选λ70为385nm以下。
在一些实施方式中,本发明光学玻璃的λ5为360nm以下,优选λ5为350nm以下,更优选λ5为345nm以下。
<耐候性>
光学玻璃的耐候性(CR)测试方法如下:将试样放置在相对湿度为90%的饱和水蒸气环境的测试箱内,在40~50℃每隔1h交替循环,循环15个周期。根据试样放置前后的浊度变化量来划分耐候性类别,耐候性分类情况如表1所示:
表1.
在一些实施方式中,本发明光学玻璃的耐候性(CR)为2类以上,优选为1类。
<努氏硬度>
光学玻璃的努氏硬度(HK)按《GB/T7962.18-2010》规定的测试方法进行测试。
在一些实施方式中,本发明光学玻璃的努氏硬度(HK)为650×107Pa以上,优选为660×107Pa以上,更优选为670×107Pa以上,进一步优选为680×107Pa以上。
<杨氏模量>
杨氏模量(E)采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。

G=VS 2ρ
式中:E为杨氏模量,Pa;
G为剪切模量,Pa;
VT为横波速度,m/s;
VS为纵波速度,m/s;
ρ为玻璃密度,g/cm3
在一些实施方式中,本发明光学玻璃的杨氏模量(E)的下限为11000×107Pa,优选下限为11500×107Pa,更优选下限为12000×107Pa。
在一些实施方式中,本发明光学玻璃的杨氏模量(E)的上限为14000×107Pa,优选上限为13500×107Pa,更优选上限为13000×107Pa。
<磨耗度>
光学玻璃的磨耗度(FA)是指在完全相同的条件下,试样的磨损量与标准试样(H-K9玻璃)的磨损量(体积)的比值乘以100后所得的数值,用公式表示如下:
FA=V/V0×100=(W/ρ)/(W00)×100
式中:V—被测样品体积磨耗量;
V0—标准样品体积磨耗量;
W—被测样品质量磨耗量;
W0—标准样品质量磨耗量;
ρ—被测样品密度;
ρ0—标准样品密度。
在一些实施方式中,本发明光学玻璃的磨耗度(FA)的下限为70,优选下限为80,更优选下限为85。
在一些实施方式中,本发明光学玻璃的磨耗度(FA)的上限为120,优选上限为110,更优选上限为105。
<气泡度>
光学玻璃的气泡度按《GB/T7962.8-2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的气泡度为A级以上,优选为A0级以上,更优选为A00级。
[光学玻璃的制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和工艺生产,包括但不限于使用氧化物、氢氧化物、复合盐(如碳酸盐、硝酸盐、硫酸盐等)、硼酸等为原料,按常规方法配料后,将配好的炉料投入到1200~1450℃的熔炼炉(如铂金或铂合金坩埚)中熔制,并且经澄清和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如直接滴料成型、或研磨加工的手段、或热压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对熔融光学玻璃进行直接精密滴料成型为玻璃精密预制件,或通过磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件。需要说明的是,制备玻璃预制件的手段不限于上述手段。
如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃所形成的光学元件可制作如照相设备、摄像设备、投影设备、显示设备、车载设备和监控设备等光学仪器。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表2~表4所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表2~表4中。
表2.

表3.


表4.

<玻璃预制件实施例>
将光学玻璃实施例1~24#所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。

Claims (20)

  1. 光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO2:1~18%;B2O3:4~18%;La2O3:35~60%;Y2O3:6~30%;ZrO2:2~15%;Nb2O5:2~18%。
  2. 根据权利要求1所述的光学玻璃,其特征在于,其组分以重量百分比表示,还含有:Ta2O5:0~5%;和/或Gd2O3:0~10%;和/或TiO2:0~8%;和/或RO:0~8%;和/或Rn2O:0~8%;和/或WO3:0~5%;和/或ZnO:0~8%;和/或Al2O3:0~8%;和/或Yb2O3:0~8%;和/或GeO2:0~5%;和/或澄清剂:0~2%,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
  3. 光学玻璃,其特征在于,其组分以重量百分比表示,由SiO2:1~18%;B2O3:4~18%;La2O3:35~60%;Y2O3:6~30%;ZrO2:2~15%;Nb2O5:2~18%;Ta2O5:0~5%;Gd2O3:0~10%;TiO2:0~8%;RO:0~8%;Rn2O:0~8%;WO3:0~5%;ZnO:0~8%;Al2O3:0~8%;Yb2O3:0~8%;GeO2:0~5%;澄清剂:0~2%组成,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
  4. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:La2O3+Y2O3+Gd2O3为45~75%,优选La2O3+Y2O3+Gd2O3为50~75%,更优选La2O3+Y2O3+Gd2O3为55~70%,进一步优选La2O3+Y2O3+Gd2O3为60~70%。
  5. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Y2O3/B2O3为0.5~5.0,优选Y2O3/B2O3为0.6~3.0,更优选Y2O3/B2O3为0.7~2.5,进一步优选Y2O3/B2O3为0.8~2.0。
  6. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Gd2O3/(SiO2+B2O3)为1.0以下,优选Gd2O3/(SiO2+B2O3)为0.6以下,更优选Gd2O3/(SiO2+B2O3)为0.5以下,进一步优选Gd2O3/(SiO2+B2O3)为0.3以下。
  7. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(La2O3+Y2O3)/ZrO2为5.0以上,优选(La2O3+Y2O3)/ZrO2为6.0~20.0,更优选(La2O3+Y2O3)/ZrO2为7.0~15.0,进一步优选(La2O3+Y2O3)/ZrO2为7.5~10.0。
  8. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Ta2O5/Y2O3为0.8以下,优选Ta2O5/Y2O3为0.5以下,更优选 Ta2O5/Y2O3为0.3以下,进一步优选Ta2O5/Y2O3为0.1以下。
  9. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:La2O3/Nb2O5为2.0~20.0,优选La2O3/Nb2O5为3.0~15.0,更优选La2O3/Nb2O5为4.0~10.0,进一步优选La2O3/Nb2O5为4.5~9.0。
  10. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Ta2O5/(Nb2O5+Y2O3)为0.5以下,优选Ta2O5/(Nb2O5+Y2O3)为0.3以下,更优选Ta2O5/(Nb2O5+Y2O3)为0.2以下,进一步优选Ta2O5/(Nb2O5+Y2O3)为0.1以下。
  11. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(TiO2+WO3)/Y2O3为1.0以下,优选(TiO2+WO3)/Y2O3为0.8以下,更优选(TiO2+WO3)/Y2O3为0.6以下,进一步优选(TiO2+WO3)/Y2O3为0.3以下。
  12. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(Gd2O3+ZnO)/Y2O3为1.0以下,优选(Gd2O3+ZnO)/Y2O3为0.8以下,更优选(Gd2O3+ZnO)/Y2O3为0.5以下,进一步优选(Gd2O3+ZnO)/Y2O3为0.3以下。
  13. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:SiO2:3~15%,优选SiO2:4~10%;和/或B2O3:5~15%,优选B2O3:7~13%;和/或La2O3:38~56%,优选La2O3:41~54%;和/或Y2O3:7~24%,优选Y2O3:8~22%,更优选Y2O3:11~22%;和/或ZrO2:3~13%,优选ZrO2:4~10%;和/或Nb2O5:4~15%,优选Nb2O5:5~10%;和/或Ta2O5:0~2%,优选Ta2O5:0~1%;和/或Gd2O3:0~8%,优选Gd2O3:0~5%,更优选Gd2O3:0~3%;和/或TiO2:0~5%,优选TiO2:0~3%;和/或RO:0~3%,优选RO:0~2%;和/或Rn2O:0~3%,优选Rn2O:0~2%;和/或WO3:0~3%,优选WO3:0~2%;和/或ZnO:0~4%,优选ZnO:0~2%;和/或Al2O3:0~4%,优选Al2O3:0~2%;和/或Yb2O3:0~5%,优选Yb2O3:0~3%;和/或GeO2:0~3%,优选GeO2:0~1%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种,澄清剂为Sb2O3、SnO、SnO2、CeO2中的一种或多种。
  14. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分中不含 有WO3;和/或不含有Ta2O5;和/或不含有RO;和/或不含有Rn2O;和/或不含有ZnO;和/或不含有Al2O3;和/或不含有GeO2,所述RO为MgO、CaO、SrO、BaO中的一种或多种,Rn2O为Li2O、Na2O、K2O中的一种或多种。
  15. 根据权利要求1~3任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为86%以上,优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为88%以上,更优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为90%以上,进一步优选SiO2、B2O3、La2O3、Y2O3、ZrO2、Nb2O5的合计含量为95%以上。
  16. 根据权利要求1~3任一所述的光学玻璃,其特征在于,所述光学玻璃的折射率nd为1.85~1.91,优选为1.86~1.90,更优选为1.875~1.895,阿贝数vd为35~43,优选为37~42,更优选为38~41。
  17. 根据权利要求1~3任一所述的光学玻璃,其特征在于,所述光学玻璃的密度ρ为5.10g/cm3以下,优选为5.00g/cm3以下,更优选为4.90g/cm3以下;和/或热膨胀系数α-30/70℃为80×10-7/K以下,优选为70×10-7/K以下,更优选为65×10-7/K以下;和/或耐水作用稳定性DW为2类以上,优选为1类;和/或耐酸作用稳定性DA为2类以上,优选为1类;和/或λ70为400nm以下,优选λ70为390nm以下,更优选λ70为385nm以下;和/或λ5为360nm以下,优选λ5为350nm以下,更优选λ5为345nm以下;和/或耐候性CR为2类以上,优选为1类;和/或努氏硬度HK为650×107Pa以上,优选为660×107Pa以上,更优选为670×107Pa以上,进一步优选为680×107Pa以上;和/或杨氏模量E为11000×107Pa~14000×107Pa,优选为11500×107Pa~13500×107Pa,更优选为12000×107Pa~13000×107Pa;和/或磨耗度FA为70~120,优选为80~110,更优选为85~105;和/或气泡度为A级以上,优选为A0级以上,更优选为A00级。
  18. 玻璃预制件,其特征在于,采用权利要求1~17任一所述的光学玻璃制成。
  19. 光学元件,其特征在于,采用权利要求1~17任一所述的光学玻璃制成,或采用权利要求18所述的玻璃预制件制成。
  20. 光学仪器,其特征在于,含有权利要求1~17任一所述的光学玻璃,和/或含有权利要求19所述的光学元件。
PCT/CN2023/108387 2022-08-26 2023-07-20 光学玻璃、玻璃预制件、光学元件及光学仪器 WO2024041276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211031173.0 2022-08-26
CN202211031173.0A CN117658448A (zh) 2022-08-26 2022-08-26 光学玻璃、玻璃预制件、光学元件及光学仪器

Publications (1)

Publication Number Publication Date
WO2024041276A1 true WO2024041276A1 (zh) 2024-02-29

Family

ID=90012434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108387 WO2024041276A1 (zh) 2022-08-26 2023-07-20 光学玻璃、玻璃预制件、光学元件及光学仪器

Country Status (3)

Country Link
CN (1) CN117658448A (zh)
TW (1) TW202408957A (zh)
WO (1) WO2024041276A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306732A (ja) * 2005-05-20 2005-11-04 Hoya Corp 光学ガラスおよび光学製品の製造方法
JP2006016293A (ja) * 2004-06-02 2006-01-19 Ohara Inc 光学ガラス
CN102674691A (zh) * 2012-05-08 2012-09-19 湖北新华光信息材料有限公司 光学玻璃
CN104150764A (zh) * 2013-05-14 2014-11-19 株式会社小原 光学玻璃及光学元件
JP2015059061A (ja) * 2013-09-18 2015-03-30 株式会社オハラ 光学ガラス及び光学素子
CN106927676A (zh) * 2017-02-22 2017-07-07 中国科学院上海光学精密机械研究所 高折射率低色散的重镧火石光学玻璃
JP2018052763A (ja) * 2016-09-27 2018-04-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN109264989A (zh) * 2018-09-28 2019-01-25 成都光明光电股份有限公司 光学玻璃、其预制件、光学元件和光学仪器
JP2019147725A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016293A (ja) * 2004-06-02 2006-01-19 Ohara Inc 光学ガラス
JP2005306732A (ja) * 2005-05-20 2005-11-04 Hoya Corp 光学ガラスおよび光学製品の製造方法
CN102674691A (zh) * 2012-05-08 2012-09-19 湖北新华光信息材料有限公司 光学玻璃
CN104150764A (zh) * 2013-05-14 2014-11-19 株式会社小原 光学玻璃及光学元件
JP2015059061A (ja) * 2013-09-18 2015-03-30 株式会社オハラ 光学ガラス及び光学素子
JP2018052763A (ja) * 2016-09-27 2018-04-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN106927676A (zh) * 2017-02-22 2017-07-07 中国科学院上海光学精密机械研究所 高折射率低色散的重镧火石光学玻璃
JP2019147725A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN109264989A (zh) * 2018-09-28 2019-01-25 成都光明光电股份有限公司 光学玻璃、其预制件、光学元件和光学仪器

Also Published As

Publication number Publication date
TW202408957A (zh) 2024-03-01
CN117658448A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
CN109650717B (zh) 光学玻璃
WO2022267751A1 (zh) 特殊色散光学玻璃
CN109721240B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
CN112159098A (zh) 光学玻璃、光学元件和光学仪器
CN115466051A (zh) 光学玻璃、玻璃预制件和光学元件
CN115286238A (zh) 光学玻璃
CN115504666A (zh) 光学玻璃和光学元件
CN115304274A (zh) 高折射高色散光学玻璃
CN112174517B (zh) 光学玻璃及光学元件
CN111320383A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2024041276A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN115448591B (zh) 光学玻璃、光学元件和光学仪器
WO2024041273A1 (zh) 光学玻璃、光学元件和光学仪器
WO2024041294A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041277A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041274A1 (zh) 光学玻璃、光学元件和光学仪器
CN109987838B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN115466052A (zh) 光学玻璃和光学元件
CN115231819A (zh) 高折射率光学玻璃
WO2023246559A1 (zh) 光学玻璃、光学元件和光学仪器
CN115304270A (zh) 光学玻璃、光学元件和光学仪器
CN115385570A (zh) 高折射率光学玻璃
CN115321814A (zh) 光学玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856366

Country of ref document: EP

Kind code of ref document: A1