WO2024041190A1 - 一种直线运动电磁机构、继电器、配电盒及通信设备 - Google Patents

一种直线运动电磁机构、继电器、配电盒及通信设备 Download PDF

Info

Publication number
WO2024041190A1
WO2024041190A1 PCT/CN2023/103853 CN2023103853W WO2024041190A1 WO 2024041190 A1 WO2024041190 A1 WO 2024041190A1 CN 2023103853 W CN2023103853 W CN 2023103853W WO 2024041190 A1 WO2024041190 A1 WO 2024041190A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
moving iron
permanent magnet
moving
magnet
Prior art date
Application number
PCT/CN2023/103853
Other languages
English (en)
French (fr)
Inventor
闫广超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041190A1 publication Critical patent/WO2024041190A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/38Part of main magnetic circuit shaped to suppress arcing between the contacts of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor

Definitions

  • Embodiments of the present application relate to the field of relay structure technology, and in particular to a linear motion electromagnetic mechanism, a relay, a distribution box and a communication device.
  • the power supply architecture usually adopts main power supply and backup power supply. When the main power supply fails, the relay quickly switches to the backup power supply and restores normal power supply.
  • the first solution is a snap-type electromagnetic mechanism as shown in Figure 1, which includes a base, an iron core 12, a coil 13, an upper yoke 14, a lower yoke 15, an armature 16, and a slider 17.
  • the iron core 12 passes through the coil 13.
  • the upper yoke 14 and the lower yoke 15 are both L-shaped and respectively located at both ends of the coil 13.
  • the armature 16 is located between the upper yoke 14 and the lower yoke 15 and is rotatably mounted on the base.
  • the slider 17 slides along a straight line and is arranged on the base.
  • the armature 16 is connected with a push arm 161 , and the push arm 161 matches the slot of the slider 17 .
  • the second solution is a multi-magnetic cavity electromagnetic mechanism as shown in Figure 2, which includes two or four magnetic field cavities 21, a transmission rod, a moving iron core 23, and a coil 24.
  • Each magnetic field cavity 21 includes two intervals.
  • a main permanent magnet 211 and two auxiliary permanent magnets 212 are distributed at intervals.
  • the two main permanent magnets 211 are magnetized in the same direction and are used to provide a magnetic field for the movement of the coil 24 .
  • the two auxiliary permanent magnets 212 are magnetized in opposite directions to provide holding force.
  • the magnetic field directions of the two main permanent magnets 211 in two adjacent magnetic field cavities 21 are opposite.
  • a moving iron core 23 is slidably provided in each magnetic field cavity 21, and all the moving iron cores 23 are connected to the transmission rod.
  • the two half-ring parts of the coil 24 are respectively provided in two adjacent magnetic field cavities 21 and fixed on the moving iron core 23 corresponding to the two magnetic field cavities 21 .
  • the energized coil 24 moves under ampere force to drive the movable iron core 23 and the transmission rod to move.
  • the transmission rod drives the movable contact piece to translate, so that the movable contact piece and the static contact piece come into contact or separate. Due to the large number of magnetic field cavities 21 in this multi-magnetic cavity electromagnetic mechanism, the overall structural thickness T2 is large.
  • Embodiments of the present application provide a linear motion electromagnetic mechanism, a relay, a distribution box and communication equipment, which solve the technical problem of the traditional relay having a large thickness and size.
  • the linear motion electromagnetic mechanism includes: a magnetic yoke, a first bipolar permanent magnet, a second bipolar permanent magnet and a driving assembly.
  • the yoke has a frame-shaped part.
  • the first bipolar permanent magnet and the second bipolar permanent magnet are respectively attached to the two opposite inner walls of the frame part.
  • the first bipolar permanent magnet has a first magnet part that is connected and has opposite magnetic conduction directions.
  • the second magnet part, the second bipolar permanent magnet has a third magnet part and a fourth magnet part that are connected and have opposite magnetic conduction directions.
  • the first magnet part and the third magnet part are spaced apart and have the same magnetic conduction direction
  • the second magnet part and the fourth magnet part are spaced apart and have the same magnetic conduction direction.
  • the driving assembly includes a movable frame, a coil, a first moving iron core and a second moving iron core; the movable frame can move back and forth in the vertical direction of the interface between the first magnet part and the second magnet part to drive the moving contact assembly move.
  • the coil is arranged on the movable frame.
  • the coil includes a connected first half ring part and a second half ring part.
  • the first half ring part is located between the first magnet part and the third magnet part.
  • the second half ring part is located between the second magnet part. between the first and fourth magnet parts.
  • the first moving iron core and the second moving iron core are both arranged on the movable frame.
  • the first moving iron core is located on the side of the first half ring facing away from the second half ring.
  • the second moving iron core is located on the second half ring. The side facing away from the first half ring.
  • the first bipolar permanent magnet and the second bipolar permanent magnet are respectively arranged on two opposite inner walls of the frame part of the yoke.
  • An opposite first parallel magnetic field and a second parallel magnetic field are formed between the magnet and the second bipolar permanent magnet.
  • the first half-ring part and the second half-ring part of the coil are placed in the first parallel magnetic field and the second parallel magnetic field respectively.
  • the two half-ring parts of the energized coil will receive the Ampere force in the same direction, and the coil will drive the movable frame to move in translation. , the coil is energized in both directions to make the movable frame move in both directions, realizing the switching work of the relay.
  • the first moving iron core and the second moving iron core are used to cooperate with the first bipolar permanent magnet and the second bipolar permanent magnet to form a closed magnetic force line when the movable frame is in the closing position or the opening position, forming a pair of moving frames.
  • the holding force of the frame is used to limit the position of the movable frame.
  • the linear motion electromagnetic mechanism of this application provides a bipolar magnetic field from a magnetic cavity.
  • the energized coil is subjected to ampere force in the bipolar magnetic field to drive the movable frame to translate.
  • the linear motion electromagnetic mechanism requires a relatively large amount of parts. Less, the overall structure thickness is smaller, and the structure is compact, which solves the problem in the traditional multi-magnetic cavity electromagnetic mechanism that a single magnetic cavity provides a single magnetic pole and it is difficult to reduce the volume.
  • the first moving iron core and the second moving iron core are located in the frame part, the first moving iron core is located between the first magnet part and the third magnet part, and the second moving iron core is located in between the second magnet part and the fourth magnet part.
  • the first moving iron core and the second moving iron core are arranged in the frame part of the magnetic yoke and respectively outside the two sides of the coil.
  • a certain gap will be formed between the first bipolar permanent magnet, the second bipolar permanent magnet, the magnetic yoke and the first moving iron core (the second moving iron core).
  • the magnetic lines form a holding force on the movable frame and limit the position of the movable frame.
  • the frame part includes a first section, a second section, a third section and a fourth section connected in sequence, the first bipolar permanent magnet is attached to the inner wall of the fourth section, and the second section
  • the bipolar permanent magnet is attached to the inner wall of the second section, the first section is arranged opposite to the first moving iron core, and the third section is arranged opposite to the second moving iron core; the first section corresponds to the first moving iron core.
  • the first opening, the third section has a second opening corresponding to the second moving iron core.
  • openings are provided in the frame portion of the yoke corresponding to the first moving iron core and the second moving iron core as magnetic isolation areas, so that more magnetic lines of force pass through the first moving iron core (or the second moving iron core).
  • Moving iron core in the closing position or the opening position, it forms a stronger holding force for the first moving iron core and the second moving iron core, reducing the vibration of the movable frame due to interference.
  • the driving assembly further includes a third moving iron core.
  • the third moving iron core is arranged on the movable frame.
  • the third moving iron core is located in the coil. Opposite sides of the third moving iron core face respectively.
  • the first bipolar is filled with permanent magnets and the second bipolar is filled with permanent magnets.
  • the driving assembly includes a third moving iron core located in the coil, the second section has a third opening corresponding to the interface between the third magnet part and the fourth magnet part, and the fourth section corresponds to A fourth opening is provided at the interface between the first magnet part and the second magnet part.
  • an opening is provided in the frame part of the yoke corresponding to the position of the third moving iron core, which serves as a magnetic isolation area and changes the direction of the magnetic lines of force, thereby forming a change in the third moving iron core when in the closing position or the opening position.
  • Strong holding force reduces the vibration of the movable frame due to interference.
  • the movable frame includes a coil frame, a first car body and a second car body.
  • the first car body and the second car body are respectively fixed at opposite ends of the coil frame, and the coils are arranged on the coil frame.
  • the first vehicle body is used to install the first moving iron core and part of the moving contact assembly
  • the second vehicle body is used to install the second moving iron core and part of the moving contact assembly.
  • the movable frame is configured as an assembly of multiple structural parts, making it easy to form and assemble.
  • Parts of movable contact assemblies are respectively provided on the first vehicle body and the second vehicle body, so that static contact assemblies corresponding to different movable contact assemblies are arranged at a predetermined distance apart.
  • the first vehicle body includes a first mounting arm and a first frame part connected to the first mounting arm, the first mounting arm has a first mounting groove for mounting the movable contact, and the A frame part is fixed on the coil frame, and the first moving iron core is fixed on the first frame part;
  • the second vehicle body includes a second mounting arm and a second frame portion connected to the second mounting arm.
  • the second mounting arm has a second mounting slot for mounting the movable contact, and the second frame portion is fixed on the coil frame.
  • the second moving iron core is fixed on the second frame part.
  • the vehicle body is configured as a mounting arm and a frame part.
  • the frame part can be used to install the moving iron core, and the frame part has good structural strength.
  • the car body is reliably connected to the coil frame through the frame, and the moving contact assembly is installed through the mounting arm.
  • the structure is simple and easy to assemble.
  • the magnetic yoke includes a U-shaped yoke and a top cover. Both ends of the top cover are respectively fixed to the two ends of the U-shaped yoke.
  • the first bipolar permanent magnet is attached to the inner wall of the top cover.
  • the second bipolar permanent magnet is attached to the inner wall of the U-shaped yoke.
  • the magnetic yoke is used to seal the magnetic field lines within a predetermined area to enhance the magnetic field.
  • the magnetic yoke is configured as a U-shaped yoke and a top cover, which is easy to form and assemble.
  • the U-shaped yoke and the top cover are positioned and assembled through the matching first boss and the first notch; and/or, the first bipolar permanent magnet is positioned between the first bipolar permanent magnet and the top cover.
  • the positioning assembly is positioned between the second bipolar permanent magnet and the U-shaped yoke through a matching third boss and a third slot. Positioning assembly.
  • the first bipolar permanent magnets and the second bipolar permanent magnets are arranged in multiple groups, the number of coils is multiple, the multiple coils are connected in series, and the multiple coils are distributed in multiple groups in a one-to-one correspondence. between the bipolar permanent magnet and the second bipolar permanent magnet.
  • this solution enables the movable frame to have greater output force to drive greater load movement, that is, drive more movable contact assemblies to move in translation.
  • the first moving iron core and the second moving iron core are located outside the frame part, the first moving iron core is located outside the same end of the first magnet part and the third magnet part, and the second moving iron core is located outside the frame part.
  • the moving iron core is located outside the same end of the second magnet part and the fourth magnet part; the first moving iron core is provided with a first holding permanent magnet, the second moving iron core is provided with a second holding permanent magnet, and the first holding permanent magnet is provided on the second moving iron core.
  • the magnetic conduction directions of the permanent magnet and the second holding permanent magnet are opposite.
  • the first moving iron core and the second moving iron core are arranged outside the frame part of the yoke to facilitate structural assembly.
  • the first moving iron core, the second moving iron core, the first holding permanent magnet and the second holding permanent magnet provide holding force for the relay.
  • the driving assembly further includes a third movable iron core, which is provided on the movable frame and located on the movable frame. In the coil, opposite sides of the third moving iron core face the first bipolar permanent magnet and the second bipolar permanent magnet respectively.
  • the third moving iron core connects the first bipolar permanent magnet and the second bipolar permanent magnet to increase the utilization of the magnetic field. After configuring the third movable iron core, it can form a greater holding force, more effectively reduce the vibration of the movable frame due to interference, improve operational reliability, and ensure reliable contact or contact between the movable contact assembly and the static contact assembly on the movable frame. separation.
  • embodiments of the present application provide a relay, including a base, one or more movable contact assemblies, one or more static contact assemblies, the above-mentioned linear motion electromagnetic mechanism, and one or more static contact assemblies.
  • One or more movable contact assemblies are disposed on the base, one or more movable contact assemblies are disposed on the movable frame, one or more movable contact assemblies and one or more static contact assemblies are disposed in one-to-one correspondence.
  • the relay provided in the embodiment of the present application is configured with the above-mentioned linear motion electromagnetic mechanism.
  • a magnetic cavity provides a bipolar magnetic field.
  • the energized coil is subjected to the Ampere force in the bipolar magnetic field to drive the movable frame to translate, driving the moving frame on the movable frame.
  • the contact assembly and the static contact assembly on the base perform opening and closing actions.
  • the linear motion electromagnetic mechanism is smaller in thickness and compact in structure.
  • each moving contact assembly includes a bracket, two moving reeds and multiple moving contacts.
  • a moving reed is provided on opposite sides of the bracket, and two moving reeds of each moving reed are provided. Each end is provided with a moving contact.
  • the moving reed is made of elastic material and has a certain elastic deformation ability. When the moving contact of the moving reed contacts the static contact assembly, the moving reed will elastically deform, reducing the occurrence of bounce and improving work reliability.
  • each moving contact assembly also includes two elastic pieces, one elastic piece is provided on opposite sides of the bracket, and the two moving spring pieces are arranged in one-to-one correspondence between the two elastic pieces facing away from the bracket. one side.
  • the two moving reeds are separated by a certain distance, which also improves the elastic deformation ability of the moving reed and further reduces the bounce of the moving reed.
  • each static contact assembly includes four static contact pieces, four static contacts and two arc-extinguishing permanent magnets; the static contact pieces are arranged in pairs, each pair of static contact pieces and a The moving reeds are set correspondingly.
  • the two moving reeds in the same moving contact assembly are located between two pairs of static contact pieces; each static contact piece is provided with a static contact, and the static contact and the moving contact correspond one to one.
  • Cooperation In the arrangement direction of the two moving reeds, an arc-extinguishing permanent magnet is provided between each two adjacent static contact pieces.
  • the static contact assembly and the movable contact assembly are arranged correspondingly, and each movable reed of the movable contact assembly corresponds to two of the stationary contact pieces of the static contact assembly.
  • the circuit is turned on.
  • the circuit is opened.
  • the arc extinguishing permanent magnet is used to quickly extinguish the arc when the static contact assembly and the moving contact assembly are separated.
  • embodiments of the present application provide a power distribution box, including a circuit board and the above-mentioned relay, and the relay and the circuit board are electrically connected.
  • the power distribution box can connect two power supplies and electrical equipment by connecting multiple movable contact components and static contact components on the relay. With contact or separation, it can realize switching of two power sources and supply power to electrical equipment.
  • embodiments of the present application provide a communication device, including an electrical device and the above-mentioned power distribution box, and the electrical device and the power distribution box are electrically connected. Realize the scenario of rapid switching of the backup power supply when the main power supply fails, thereby reducing the system power-off time, reducing data loss, and avoiding business losses.
  • Figure 1 is a schematic structural diagram of a traditional snap-type electromagnetic mechanism
  • Figure 2 is a schematic structural diagram of a traditional multi-magnetic cavity electromagnetic mechanism
  • Figure 3 is a three-dimensional assembly diagram of the linear motion electromagnetic mechanism provided by the embodiment of the present application.
  • Figure 4 is a three-dimensional exploded view of the relay provided by the embodiment of the present application.
  • Figure 5 is a top view of the relay of Figure 4 with the cover removed;
  • Figure 6 is a schematic assembly diagram of the yoke, the first bipolar permanent magnet and the second bipolar permanent magnet in the linear motion electromagnetic mechanism of Figure 3;
  • Figure 7 is a schematic structural diagram of the linear motion electromagnetic mechanism of Figure 3 in which the coil is arranged between the first bipolar permanent magnet and the second bipolar permanent magnet;
  • Figure 8 is a three-dimensional assembly view of the driving assembly in the linear motion electromagnetic mechanism of Figure 3;
  • Figure 9 is a three-dimensional assembly view of the partial structure of the coil and the movable frame in the drive assembly of Figure 8;
  • Figure 10 is an enlarged front view of the linear motion electromagnetic mechanism of Figure 3;
  • Figure 11 is a three-dimensional cross-sectional view along line A-A of the linear motion electromagnetic mechanism of Figure 3 after removing the movable contact assembly;
  • Figure 12 is an enlarged cross-sectional view along line A-A of Figure 3;
  • Figure 15 is a three-dimensional exploded view of the linear motion electromagnetic mechanism and moving contact assembly of Figure 3;
  • Figure 16 is an exploded perspective view of the linear motion electromagnetic mechanism of Figure 15;
  • Figure 17 is an enlarged top view of the linear motion electromagnetic mechanism of Figure 15;
  • Figure 18 is a perspective exploded view of the movable frame in the linear motion electromagnetic mechanism of Figure 15;
  • Figure 19 is a three-dimensional exploded view of the movable frame, the first moving iron core, and the second moving iron core of Figure 18;
  • Figure 20 is a three-dimensional exploded view of the magnetic yoke, the first bipolar permanent magnet, and the second bipolar permanent magnet in the linear motion electromagnetic mechanism of Figure 6;
  • Figure 21 is an exploded perspective view of the magnetic yoke in the linear motion electromagnetic mechanism of Figure 6;
  • Figure 22 is a three-dimensional exploded view of a linear motion electromagnetic mechanism provided by another embodiment of the present application.
  • Figure 23 is a three-dimensional exploded view of the magnetic yoke, the first bipolar permanent magnet, and the second bipolar permanent magnet in the linear motion electromagnetic mechanism of Figure 22;
  • Figure 24 is a three-dimensional assembly view of the magnetic yoke, the first bipolar permanent magnet, and the second bipolar permanent magnet of Figure 23;
  • Figure 25 is a partial structural schematic diagram of a linear motion electromagnetic mechanism provided by another embodiment of the present application.
  • Figure 26 is a schematic structural diagram of the relay of Figure 5 after the linear motion electromagnetic mechanism is removed;
  • Figure 27 is an exploded perspective view of the movable contact assembly in the relay of Figure 4.
  • Figure 28 is a schematic assembly diagram of the base and static contact assembly in the relay of Figure 26;
  • Figure 29 is an exploded perspective view of the relay of Figure 26;
  • Figure 30 is a schematic structural diagram of the cover in the relay of Figure 4.
  • Figure 31 is a schematic structural diagram of a power distribution box provided by an embodiment of the present application.
  • Figure 32 is an electrical schematic diagram of a three-phase four-wire dual power switching distribution box provided by an embodiment of the present application.
  • Figure 33 is an electrical schematic diagram of a communication device provided by an embodiment of the present application.
  • connection may be detachable.
  • the ground connection can also be a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • length The terms “length”, “width”, “top”, “bottom”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, The orientation or positional relationship indicated by “inside”, “outer”, etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • embodiments of the present application provide a linear motion electromagnetic mechanism 100, which can be used in a relay 1000.
  • the moving contact assembly 300 is installed on the linear motion electromagnetic mechanism 100, and the linear motion electromagnetic mechanism 100 drives the moving contact assembly 300.
  • the contact assembly 300 moves along a predetermined straight line to bring the movable contact assembly 300 and the fixed static contact assembly 400 into contact or separation.
  • the static contact assembly 400 is connected to different circuits. When one of the movable contact assembly 300 and the static contact assembly 400 is connected, switching between circuits can be realized.
  • One side of the relay 1000 is connected to the main power supply and the backup power supply, and the other side is connected to the electrical equipment to realize switching between the main power supply and the backup power supply.
  • the linear motion electromagnetic mechanism 100 includes: a yoke 110, a first bipolar permanent magnet 120, a second bipolar permanent magnet 130, and a driving assembly 140.
  • the yoke 110 has a frame portion 110a.
  • the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are respectively attached to the two opposite inner walls of the frame portion 110a.
  • the first bipolar permanent magnet 120 has a connected third magnet with opposite magnetic conduction directions.
  • the second bipolar permanent magnet 130 has a third magnet part 131 and a fourth magnet part 132 that are connected and have opposite magnetic conduction directions.
  • the first magnet part 121 and the third magnet part 131 are spaced apart and have the same magnetic conduction direction.
  • the second magnet part 122 and the fourth magnet part 132 are spaced apart and have the same magnetic conduction direction.
  • the driving assembly 140 includes a movable frame 141, a coil 142, a first moving iron core 143 and a second moving iron core 144; the movable frame 141 can interface between the first magnet part 121 and the second magnet part 122. Move back and forth in the vertical direction X to drive the moving contact assembly 300 to move.
  • the coil 142 is provided on the movable frame 141. Referring to FIG. 9, the coil 142 includes a connected first half ring part 1421 and a second half ring part 1422.
  • the first half ring part 1421 is located in the first magnet part 121 and the third magnet part 131.
  • the second half ring portion 1422 is located between the second magnet portion 122 and the fourth magnet portion 132 .
  • the first moving iron core 143 and the second moving iron core 144 are both disposed on the movable frame 141.
  • the first moving iron core 143 is located on the side of the first half-ring portion 1421 facing away from the second half-ring portion 1422.
  • the core 144 is located on a side of the second half-ring portion 1422 facing away from the first half-ring portion 1421 .
  • the first bipolar permanent magnet 120 (the second bipolar permanent magnet 130) may be an integral structure or an assembled structure.
  • Each bipolar permanent magnet has two magnet parts, and the magnetic conduction directions of the two magnet parts are opposite.
  • a bipolar permanent magnet can be a piece of permanent magnet that is charged with magnetism in opposite directions on both sides with the center line as the boundary.
  • first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are spaced apart to form adjacent first parallel magnetic fields 129 and second parallel magnetic fields 139 in the first direction X.
  • the magnetic fields of the first parallel magnetic field 129 and the second parallel magnetic field 139 have opposite directions.
  • This solution has high space utilization and compact structure.
  • the first direction X is the vertical direction of the interface between the two magnet parts of the first bipolar permanent magnet 120 (or the second bipolar permanent magnet 130).
  • Coil 142 may be a square coil, a racetrack coil, or other similarly shaped coils.
  • the first half ring portion 1421 and the second half ring portion 1422 are named for convenience of description, and can be understood as two parts split on the coil 142 along the axis of the coil 142 . In fact, the first half ring part 1421 and the second half ring part 1422 are an integral structure.
  • the first half ring part 1421 and the second half ring part 1422 of the coil 142 are respectively arranged in the first parallel magnetic field 129 and the second parallel magnetic field 139.
  • the current direction of the ring portion 1422 is opposite (in Figure 7, the current direction of the first half-ring portion 1421 is inward, and the current direction of the second half-ring portion 1422 is outward), while the first half-ring portion 1421 and the second half-ring portion 1422
  • the ampere force received is in the same direction (toward the left), driving one end of the coil 142 to translate along the first direction.
  • the coil 142 When the coil 142 is energized in the opposite direction, the ampere force received by the first half-ring portion 1421 and the second half-ring portion 1422 is in the same direction, driving the other end of the coil 142 to translate along the first direction. By energizing the coil 142 forward and reversely, the forward and reverse translation of the movable frame 141 is realized. With reference to Figures 4 and 5, the movable contact assembly 300 on the movable frame 141 is driven to move, and the movable contact assembly 300 and the static contact are realized. Contact or separation of components 400.
  • the upper and lower sides of the first magnet part 121 in the first bipolar permanent magnet 120 are S pole and N pole respectively, and the upper and lower sides of the second magnet part 122 are respectively The lower side is the N pole and S pole respectively.
  • the upper and lower sides of the third magnet part 131 in the second bipolar permanent magnet 130 are S pole and N pole respectively, and the upper and lower sides of the fourth magnet part 132 are N pole and S pole respectively.
  • a downward first parallel magnetic field 129 is formed between the first magnet part 121 and the third magnet part 131 .
  • a downward second parallel magnetic field 139 is formed between the second magnet part 122 and the fourth magnet part 132 .
  • the different magnet parts in the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 can also adopt other magnetization methods to achieve the first parallel magnetic field 129 and the second parallel magnetic field 129 distributed along the first direction X.
  • the magnetic field direction of the parallel magnetic field 139 only needs to be opposite.
  • the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are respectively disposed on both sides of the frame portion 110a of the yoke 110.
  • an opposite first parallel magnetic field 129 and a second parallel magnetic field 139 are formed between the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 .
  • the first half-ring portion 1421 and the second half-ring portion 1422 of the coil 142 are placed in the first parallel magnetic field 129 and the second parallel magnetic field 139 respectively.
  • the two half-ring portions of the energized coil 142 will receive the Ampere force in the same direction.
  • the coil 142 drives the movable frame 141 to move in translation, and the coil 142 is energized in two directions to cause the movable frame 141 to move in two directions, thereby realizing the switching work of the relay 1000.
  • the first moving iron core 143 and the second moving iron core 144 are used to connect the first bipolar permanent magnet 120 and the second bipolar permanent magnet when the movable frame 141 is in the closing position or the opening position. 130 cooperates to form closed magnetic force lines, forming a holding force on the movable frame 141 to limit the position of the movable frame 141.
  • the linear motion electromagnetic mechanism 100 of the present application provides a bipolar magnetic field from a magnetic cavity.
  • the energized coil 142 receives an Ampere force in the bipolar magnetic field to drive the movable frame 141 to translate.
  • the linear motion electromagnetic mechanism 100 parts use less, the overall structure thickness is smaller, and the structure is compact, solving the problem that a single magnetic cavity provides a single magnetic pole in the traditional multi-magnetic cavity electromagnetic mechanism and it is difficult to reduce the volume.
  • a relay with a traditional multi-magnetic cavity electromagnetic mechanism is about 30mm thick and needs to be configured with a 1U power distribution box, but a 0.5U power distribution box cannot be used.
  • the relay 1000 with the linear motion electromagnetic mechanism 100 of the embodiment of the present application can be made with a thickness T0 of about 13.5mm, which is about 55% smaller than the thickness of the traditional relay mentioned above, and can be assembled in a 0.5U power distribution system.
  • T0 is a unit that represents the external dimensions of the server and is the abbreviation of unit. The specific dimensions are determined by the American Electronics Industry Association.
  • the basic unit of thickness is 4.445cm, and 1U is 4.445cm.
  • the slider 17 slides along a straight line and is disposed on the base.
  • the push arm 161 on the armature 16 swings, and the push arm 161 drives the slider 17 to translate, thereby driving the movable contact piece 18 to translate, so that the movable contact piece 18 and the static contact piece 19 come into contact or separate.
  • the rotational motion of the push arm 161 is converted into a horizontal motion component and a vertical motion component. Only the horizontal motion component has an effect on the movement of the slider 17.
  • the effective motion distance conversion efficiency is low and there is a large energy consumption loss.
  • the slider 17 starts slowly and the coil 13 takes a long time to excite, making it difficult to achieve high-speed switching.
  • the wire diameter of coil 13 is too thin and the number of turns of coil 13 is too large, resulting in excessive internal inductance and resistance of coil 13.
  • the current rise rate of coil 13 is low, which is not conducive to high-speed switching of the relay. .
  • the linear motion electromagnetic mechanism 100 of the embodiment of the present application has first bipolar permanent magnets 120 and second bipolar permanent magnets 130 distributed at intervals.
  • the first parallel magnetic field 129 and the second parallel magnetic field 139 are formed therebetween.
  • the two parallel magnetic fields have greater magnetic induction intensity, and the number of turns of the coil 142 can be set smaller.
  • the energized coil 142 receives a large ampere force in the magnetic field, and the excitation time is short.
  • the main motion air gap remains unchanged, which can provide stable electromagnetic output, has a long motion stroke, has an output curve similar to the repulsion mechanism, has stable output and fast moving speed.
  • the relay 1000 with the linear motion electromagnetic mechanism 100 has a short switching time and can realize fast mechanical switching at the millisecond level (such as 3ms to 4ms) to realize an ultra-thin liquid-cooled heat dissipation power supply.
  • the switching time refers to the time from when the relay 1000 operates from path A to path B, from when the linear motion electromagnetic mechanism 100 starts to obtain an electrical signal to when path B stops bouncing and is completely closed.
  • Both the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are plate-shaped.
  • the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are spaced apart and attached to the two opposite inner walls of the frame portion 110a of the yoke 110, so that the overall structural thickness is small and the structures are in contact.
  • the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 may be arranged with equal lengths, that is, their dimensions in the vertical direction X of the interface between the two magnet parts of any bipolar permanent magnet are equal.
  • the interface between the first magnet part 121 and the second magnet part 122 in the first bipolar permanent magnet 120 is the interface between the third magnet part 131 and the fourth magnet part 132 in the second bipolar permanent magnet 130 .
  • the interface and the symmetry plane of the frame portion 110a are coplanar, forming a first parallel magnetic field 129 and a second parallel magnetic field 139 with similar spatial sizes in the first direction X.
  • the first moving iron core 143 and the second moving iron core 144 are located in the frame part 110 a, and the first moving iron core 143 is located in the first magnet part 121 and the third magnet part.
  • the second moving iron core 144 is located between the second magnet part 122 and the fourth magnet part 132 . Opposite sides of the first moving iron core 143 face the first magnet part 121 and the third magnet part 131 respectively, and opposite sides of the second moving iron core 144 face the second magnet part 122 and the fourth magnet part 132 respectively.
  • the first moving iron core 143 and the second moving iron core 144 are arranged inside the frame portion 110a of the yoke 110 and outside the two sides of the coil 142 respectively.
  • the first bipolar permanent magnet 120, the second bipolar permanent magnet 130, the magnetic yoke 110 and the first moving iron core 143 (the second moving iron core 144)
  • Certain magnetic force lines will be formed between them, thereby forming a holding force for the movable frame 141, limiting the position of the movable frame 141, reducing the vibration of the movable frame 141 due to interference, and thus making the movable contact assembly 300 on the movable frame 141 and the static one
  • the contact assembly 400 reliably contacts or separates.
  • the frame portion 110a in order to adjust the holding force of the movable frame 141 when it is in the closing position or the opening position, the frame portion 110a includes a first section 111, a second section 112, and a third section connected in sequence.
  • the first moving iron core 143 is arranged oppositely, and the third section 113 and the second moving iron core 144 are arranged oppositely;
  • the first section 111 has a first opening 1111 corresponding to the first moving iron core 143
  • the third section 113 corresponds to the second moving iron core 143.
  • the moving iron core 144 has a second opening 1131 .
  • openings are respectively provided in the frame portion 110a of the yoke 110 at positions corresponding to the first moving iron core 143 and the second moving iron core 144 as magnetic isolation areas.
  • the parallel reluctance of 143 (or the second moving iron core 144) at a predetermined position causes more magnetic lines of force to pass through the first moving iron core 143 (or the second moving iron core 144) instead of directly along the first section 111 or the second moving iron core 144.
  • the three sections 113 pass through, thereby forming a stronger holding force for the first moving iron core 143 and the second moving iron core 144 in the closing position or the opening position, thereby reducing the vibration of the movable frame 141 due to interference.
  • the magnetic resistance of the first section 111 of the magnetic yoke 110 can be increased, and the magnetic field lines will flow from the first opening 1111 Moving toward the first moving iron core 143 is equivalent to increasing the magnetic field lines passing through the first moving iron core 143 , thereby increasing the holding force.
  • the yoke 110 When the yoke 110 includes a connected U-shaped yoke 115 and a top cover 116, the first section 111, the second section 112 and the third section 113 connected in sequence are the U-shaped yoke 115, and the fourth section 114 is the top cover. 116. Providing openings on the two opposite arms of the U-shaped yoke 115 facilitates more magnetic lines of force to pass through the first moving iron core 143 or the second moving iron core 144 to form a stronger holding force.
  • the first opening 1111 may include a plurality of first sub-ports distributed in a straight line
  • the second opening 1131 may include a plurality of second sub-ports distributed in a straight line, which can also change the predetermined position of the yoke 110.
  • the magnetic resistance causes more magnetic lines of force to pass through the first moving iron core 143 or the second moving iron core 144 .
  • the first opening 1111 and the second opening 1131 may also be provided with only one.
  • the driving assembly 140 in order to provide greater holding force to reliably position the movable frame 141, the driving assembly 140 also includes a third moving iron core 147, and the third moving iron core 147 is provided on the movable frame. 141, the third moving iron core 147 is located in the coil 142, and the opposite sides of the third moving iron core 147 face the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 respectively.
  • a third moving iron core 147 is provided in the coil 142 and fixed on the movable frame 141 .
  • a closed magnetic circuit will be generated that sequentially passes through the first bipolar permanent magnet 120 , the third moving iron core 147 , the second bipolar permanent magnet 130 and the yoke 110 , connecting the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 to increase the utilization of the magnetic field.
  • a certain holding force can be formed on the movable frame 141 .
  • the third moving iron core 147 can be installed in the slot 1412 of the movable frame 141 .
  • the first section 111 of the yoke 110 has a first opening 1111 and the third section 113 has a second opening 1131 , the first
  • the moving iron core 143 is attached to the first section 111 of the magnetic yoke 110
  • the first section 111 and the fourth section 114 of the magnetic yoke 110 will pass through the first bipolar permanent magnet 120, the first moving iron core 143, and the magnetic yoke 110.
  • the first set of closed magnetic circuits will also generate a second set of closed magnetic circuits that sequentially pass through the second bipolar permanent magnet 130, the second section 112 and the first section 111 of the yoke 110, and the first moving iron core 143.
  • the holding force is provided by the above two sets of closed magnetic circuits.
  • a closed magnetic circuit is formed, which provides a force opposite to the holding force, thereby reducing the holding force.
  • the solution with the third moving iron core 147 can also produce better results when the second moving iron core 144 is attached to the third section 113 of the yoke 110 . Great holding power.
  • the second section 112 corresponds to the third opening 1121 at the interface between the third magnet part 131 and the fourth magnet part 132
  • the fourth section 114 corresponds to the fourth section 112 at the interface between the first magnet part 121 and the second magnet part 122 . Opening 1141.
  • an opening is provided in the frame portion 110a of the yoke 110 at a position corresponding to the third moving iron core 147 as a magnetic isolation area.
  • the third opening 1121 may include a plurality of third sub-ports distributed in a straight line
  • the fourth opening 1141 may include a plurality of fourth sub-ports distributed in a straight line, which can also change the predetermined position of the yoke 110.
  • the magnetic resistance changes the direction of the magnetic field lines to increase the holding force.
  • only one third opening 1121 and one fourth opening 1141 may be provided.
  • the first moving iron core 143 is attached to the first section of the yoke 110 111, there will be generated the second section 112, the first section 111 and the fourth section 114 of the first bipolar permanent magnet 120, the first moving iron core 143, the second bipolar permanent magnet 130 and the yoke 110.
  • a set of closed magnetic circuits which provide holding force. It will also produce a sequence that passes through the first bipolar permanent magnet 120, the fourth section 114 of the magnetic yoke 110, the first bipolar permanent magnet 120, the third moving iron core 147, the second bipolar permanent magnet 130, and the magnetic yoke.
  • the third section 113 of 110, the second bipolar permanent magnet 130, and the second moving iron core 144 are a set of closed magnetic circuits. This set of closed magnetic circuits provides a force opposite to the holding force, reducing the size of the holding force. .
  • the first moving iron core 143 is attached to the side of the yoke 110
  • the first segment is 111
  • the first set of closed magnetic circuits of the permanent magnet 120, the first moving iron core 143, and the first section 111 and the fourth section 114 of the yoke 110 will also generate a first set of closed magnetic circuits that pass through the second bipolar permanent magnet 130 and the yoke 110 in sequence.
  • the second section 112, the first section 111, and the second set of closed magnetic circuits of the first moving iron core 143 are examples of the first moving iron core 143.
  • the first bipolar permanent magnet 120 the third moving iron core 147, the second bipolar permanent magnet 130, the second section 112 and the first section 111 of the yoke 110, and the first moving iron core 143.
  • the third set of closed magnetic circuits of the first section 111 and the fourth section 114 of the yoke 110, and the holding force is provided by these three sets of closed magnetic circuits.
  • the solution in which the magnetic yoke 110 is not provided with openings the solution in which the magnetic yoke 110 is provided with openings has more magnetic lines of force and the resulting holding force is larger.
  • the solution in which the yoke 110 is provided with an opening can also produce greater retention when the second moving iron core 144 is attached to the third section 113 of the yoke 110 force.
  • the holding force provided at the opening or closing position is small.
  • the contact holding force ranges from 0.5 Newton (N) to 0.8N. time, it is difficult to provide greater holding power.
  • each magnetic field cavity 21 is configured with an auxiliary permanent magnet 212 to provide holding force. Since the magnetizing directions of some main permanent magnets 211 and auxiliary permanent magnets 212 are opposite, the overall structure is complex and assembly is difficult. The strength of the permanent magnet is poor, and the thin auxiliary permanent magnet 212 becomes a weak point in the overall mechanical strength, resulting in low reliability. If the auxiliary permanent magnet 212 is directly eliminated, the holding force requirement cannot be met, and retaining the auxiliary permanent magnet 212 will be detrimental to miniaturization of the overall structure.
  • the thickness T0 of the relay 1000 having the linear motion electromagnetic mechanism 100 is about 13.5 mm, and the thickness dimension is small.
  • the solution in which the yoke 110 is provided with the first opening 1111, the second opening 1131, the third opening 1121 and the third opening 1121 and is equipped with the first moving iron core 143, the second moving iron core 144 and the third moving iron core 147 can provide It has a holding force of more than 40 Newtons (N), a simple structure and high reliability.
  • the movable frame 141 When setting up the movable frame 141, refer to Figures 9, 15 and 16.
  • the movable frame 141 includes a coil frame 141a, a first car body 141b and a second car body 141c.
  • the first car body 141b and the second car body 141c are respectively fixed.
  • the coil 142 is provided on the coil frame 141a.
  • the first body 141b is used to install the first moving iron core 143 and part of the moving contact assembly 300.
  • the second body 141c is used to install the second Moving iron core 144 and part of moving contact assembly 300.
  • the movable frame 141 is configured to be assembled by multiple structural components, which is easy to form and assemble.
  • the first vehicle body 141b and the second vehicle body 141c are respectively arranged at both ends of the coil frame 141a, so that the coil frame 141a can smoothly drive the first vehicle body 141b and the second vehicle body 141c to translate, thereby causing the first vehicle body 141b or the second vehicle body 141c to translate.
  • the moving contact assembly 300 on the second vehicle body 141c can move reliably.
  • Part of the movable contact assemblies 300 are respectively provided on the first vehicle body 141b and the second vehicle body 141c, so that the corresponding static contact assemblies 400 of different movable contact assemblies 300 are arranged at a predetermined distance, making the structure easy to assemble and reliable in operation.
  • the magnetic yoke 110 includes a U-shaped yoke 115 and a top cover 116.
  • the coil 142 can be installed on the coil frame 141a first.
  • the first car body 141b and the second car body can be 141c is installed at both ends of the coil frame 141a, and then the coil frame 141a is installed in the U-shaped yoke 115, and finally the top cover 116 is installed on the U-shaped yoke 115, and the U-shaped yoke 115 and the top cover 116 form a frame Shape portion 110a.
  • the first car body 141b and the second car body 141c are respectively provided with two movable contact assemblies 300, and with four static contact assemblies 400, a three-phase four-wire AC dual power supply under a small relay can be realized Switching to achieve dual power switching of 4 normally open contacts and 4 normally closed contacts.
  • the first car body 141b and the second car body 141c can be configured with other numbers of movable contact assemblies 300, and with corresponding static contact assemblies 400, other dual power switching in small relays can be realized.
  • the first vehicle body 141b includes a first mounting arm 1413 and a first frame portion 1414 connected to the first mounting arm 1413.
  • a mounting arm 1413 has a first mounting groove 1413a for mounting the moving contact, the first frame part 1414 is fixed on the coil frame 141a, and the first moving iron core 143 is fixed on the first frame part 1414;
  • the second vehicle body 141c includes a second mounting arm 1415 and a second frame portion 1416 connected to the second mounting arm 1415.
  • the second mounting arm 1415 has a second mounting groove 1415a for mounting the movable contact.
  • the second frame portion Fixed to the coil bobbin 141a, the second moving iron core 144 is fixed to the second frame part 1416.
  • the vehicle body is configured as a mounting arm and a frame part.
  • the frame part can be used to install the moving iron core, and the frame part has good structural strength.
  • the vehicle body is reliably connected to the coil frame 141a through the frame, and the moving contact assembly 300 is installed through the mounting arm.
  • the structure is simple and easy to assemble.
  • the mounting arm can extend along the first direction X, and the structure is compact.
  • the coil frame 141a has a first positioning groove 1411.
  • the first frame part 1414 is connected to one end of the first mounting arm 1413.
  • the side of the first frame part 1414 facing away from the first mounting arm 1413 is inserted into the two first positioning slots 1411.
  • the first frame part 1414 and the coil frame 141a They can be connected through buckles 141e, hot melt, bonding, etc.
  • the assembly relationship between the second car body 141c and the coil frame 141a is similar and will not be described again.
  • the first moving iron core 143 can be installed in the assembly groove 141f of the first frame part 1414. Inside, both ends of the first moving iron core 143 can be inserted into the two holes 141g of the first frame part 1414. With reference to Figure 17, the first moving iron core 143 can be conveniently and reliably fixed on the first frame part 1414.
  • the assembly relationship between the second moving iron core 144 and the second moving iron core 144 is similar and will not be described again.
  • first vehicle body 141b and the second vehicle body 141 can also be configured in other structures, as long as the movable contact assembly 300 can be installed and the movable contact assembly 300 can be driven to translate.
  • the coil frame 141a, the first car body 141b and the second car body 141c in the movable frame 141 can also be an integrally formed structure, which can also realize the assembly of the coil 142 and multiple moving iron cores to meet the requirements of power supply.
  • the coil 142 drives the movable frame 141 to translate back and forth relative to the magnetic yoke 110 .
  • the magnetic yoke 110 When setting up the magnetic yoke 110, refer to Figures 20 and 21.
  • the magnetic yoke 110 includes a U-shaped yoke 115 and a top cover 116. The two ends of the top cover 116 are respectively fixed to the two ends of the U-shaped yoke 115.
  • the first bipolar The permanent magnet 120 is attached to the inner wall of the top cover 116
  • the second bipolar permanent magnet 130 is attached to the inner wall of the U-shaped yoke 115 .
  • the magnetic yoke 110 is used to seal the magnetic field lines within a predetermined area to enhance the magnetic field.
  • the magnetic yoke 110 is configured as a U-shaped yoke 115 and a top cover 116, which is easy to form and assemble. Both the U-shaped yoke 115 and the top cover 116 can be made of metal plates.
  • the U-shaped yoke 115 and the top cover 116 are connected by a matching first boss 1161. Positioning and assembly with the first notch 1151; positioning and assembly between the first bipolar permanent magnet 120 and the top cover 116 through the matching second boss 1162 and the second notch 123; the second bipolar permanent magnet 130 It is positioned and assembled with the U-shaped yoke 115 through the matching third boss 1152 and the third notch 133 .
  • the U-shaped yoke 115 and the top cover 116 are positioned and assembled through the matching first boss 1161 and the first notch 1151.
  • the U-shaped yoke 115 may have the first notch 1151 and the top cover 116 may have The first boss 1161 may also be the U-shaped yoke 115 having the first boss and the top cover 116 having the first notch.
  • the top cover 116 can be positioned on the U-shaped yoke 115, thereby improving assembly efficiency.
  • the space between the first bipolar permanent magnet 120 and the top cover 116 and the second bipolar permanent magnet 130 and the U-shaped yoke 115 can also be quickly positioned through matching bosses and notches. assembly.
  • the U-shaped yoke 115 and the top cover 116 can be connected by laser welding or other methods.
  • the first bipolar permanent magnet 120 and the top cover 116 can be connected through magnetic attraction, and the second bipolar permanent magnet 130 and the U-shaped yoke 115 can be connected through magnetic attraction.
  • glue for bonding and fixation, which reduces the generation of harmful gases that may corrode devices.
  • the yoke 110 includes a plurality of metal plates 117 , and the plurality of metal plates 117 surround the frame 110 a.
  • This method can also seal the magnetic lines of force within a predetermined area. , which plays the role of enhancing the magnetic field.
  • the yoke 110 can be implemented in many ways, such as four straight metal plates connected to form a frame, two L-shaped metal plates connected to form a frame, or one L-shaped metal plate and two L-shaped metal plates. Two straight metal plates are connected to form a frame-shaped part. It can be understood that the plurality of metal plates 117 can be positioned through matching bosses and notches, and connected through laser welding or other methods.
  • the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 are arranged in multiple groups, the number of coils 142 is multiple, the multiple coils 142 are connected in series, and the multiple coils 142 are distributed in one-to-one correspondence. between a plurality of sets of first bipolar permanent magnets 120 and second bipolar permanent magnets 130 .
  • This solution configures multiple sets of bipolar permanent magnets and coils 142 so that the movable frame 141 has greater output force to drive greater load movement, that is, drive more movable contact assemblies 300 to translate, making the linear motion electromagnetic mechanism 100 is suitable for switching three-phase four-wire 380V AC dual power supplies or other multi-wire power supplies.
  • a plurality of first bipolar permanent magnets 120 are arranged in sequence along the first direction X
  • a plurality of second bipolar permanent magnets 130 are arranged in sequence along the first direction X
  • the plurality of coils 142 are arranged in sequence along the first direction
  • the first direction X is the linear movement direction of the movable frame 141 .
  • a plurality of first bipolar permanent magnets 120 are arranged in sequence along the second direction Y
  • a plurality of second bipolar permanent magnets 130 are arranged in sequence along the second direction Y.
  • the plurality of coils 142 are arranged in sequence along the second direction Y, and are arranged corresponding to each group of the first bipolar permanent magnets 120 and the second bipolar permanent magnets 130 .
  • the second direction Y is perpendicular to the first direction X and the thickness direction of the relay respectively.
  • first bipolar permanent magnets 120 and second bipolar permanent magnets 130 are distributed along the third direction Z, and each group of first bipolar permanent magnets 120 and second bipolar permanent magnets 130 is A coil 142 is provided between them.
  • the third direction Z is the thickness direction of the relay.
  • the first moving iron core 143 and the second moving iron core 144 are located outside the frame part 110 a, and the first moving iron core 143 is located between the first magnet part 121 and the third magnet part 131 Outside the same end, the second moving iron core 144 is located outside the same end of the second magnet part 122 and the fourth magnet part 132; the first moving iron core 143 is provided with a first holding permanent magnet 145, and the second moving iron core 143 is provided with a first holding permanent magnet 145.
  • a second holding permanent magnet 146 is provided on 144, and the magnetic conduction directions of the first holding permanent magnet 145 and the second holding permanent magnet 146 are opposite.
  • the first moving iron core 143 and the second moving iron core 144 are arranged outside the frame portion 110a of the yoke 110 to facilitate structural assembly.
  • the first moving iron core 143 , the second moving iron core 144 , the first holding permanent magnet 145 and the second holding permanent magnet 146 provide holding force for the relay 1000 .
  • the energized coil 142 can drive the first moving iron core 143 , the second moving iron core 144 , the first holding permanent magnet 145 and the second holding permanent magnet 146 to move back and forth along the first direction X relative to the yoke 110 .
  • the magnetic yoke 110 includes the U-shaped yoke 115 and the top cover 116
  • the U-shaped yoke 115, the top cover 116 and the coil frame can be assembled first, and then the first moving iron core 143, the second moving iron core 144,
  • the first car body and the second car body solve the problem that the U-shaped yoke 115 and the top cover 116 need to be connected in the cavities of the first car body and the second car body, simplifying assembly.
  • the first moving iron core 143 is generally arranged in a U shape
  • the groove of the first moving iron core 143 faces the first section 111 of the yoke 110
  • the first holding permanent magnet 145 is provided at the groove position to provide a holding force. , making up for the reduced holding force due to the external placement of the first moving iron core 143 .
  • the second moving iron core 144 is generally arranged in a U shape.
  • the groove of the second moving iron core 144 faces the third section 113 of the yoke 110.
  • a second holding permanent magnet 146 is provided at the groove position to provide a holding force, making up for the The second moving iron core 144 is placed externally, thereby reducing the holding force.
  • the driving assembly 140 in order to provide greater holding force to reliably position the movable frame, also includes a third moving iron core 147.
  • the third moving iron core 147 is provided on the movable frame.
  • the moving iron core 147 is located in the coil 142, and the opposite sides of the third moving iron core 147 face the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 respectively.
  • a third moving iron core 147 is provided in the coil 142, and the third moving iron core 147 is fixed on the movable frame.
  • the first moving iron core 143 , the second moving iron core 144 , the third moving iron core 147 , the first holding permanent magnet 145 and the second holding permanent magnet 146 provide holding force for the relay 1000 .
  • the energized coil 142 can drive the first moving iron core 143 , the second moving iron core 144 , the third moving iron core 147 , the first holding permanent magnet 145 and the second holding permanent magnet 146 relative to the yoke 110 along the first direction.
  • X moves back and forth.
  • the third moving iron core 147 connects the first bipolar permanent magnet 120 and the second bipolar permanent magnet 130 to increase the utilization of the magnetic field.
  • a holding force can be formed for the movable frame.
  • a greater holding force can be formed, which can more effectively reduce the vibration of the movable frame due to interference, improve the operation reliability, and make the movable contact assembly and the static contact assembly on the movable frame Reliable contact or separation.
  • the third moving iron core 147 can be installed in the slot of the movable frame.
  • an embodiment of the present application provides a relay 1000, which includes a base 200, one or more movable contact assemblies 300, one or more static contact assemblies 400, and the above-mentioned linear motion electromagnetic mechanism 100, One or more static contact assemblies 400 are disposed on the base 200 , one or more movable contact assemblies 300 are disposed on the movable frame 141 , one or more movable contact assemblies 300 and one or more static contact assemblies 400 One-to-one correspondence relative settings.
  • the relay 1000 provided in the embodiment of the present application is configured with the above-mentioned linear motion electromagnetic mechanism 100.
  • a magnetic cavity provides a bipolar magnetic field.
  • the energized coil 142 receives Ampere force in the bipolar magnetic field to drive the movable frame 141 to translate and drive activities.
  • the moving contact assembly 300 on the frame 141 and the stationary contact assembly 400 on the base 200 perform opening and closing operations.
  • the linear motion electromagnetic mechanism 100 is smaller in thickness and compact in structure.
  • the relay 1000 can be used in switching scenarios between main power supply and backup power supply.
  • the dual-channel hybrid power supply scenario of high-security level communication equipment such as network data centers, public cloud servers, and switches can realize the scenario of rapid switching of the backup power supply when the main power supply fails, thus reducing the system power-off time and reducing the cost of the system. Data loss, avoid business loss.
  • the relay 1000 can turn on and off high-power power supplies of alternating current (AC) and high voltage direct current (HVDC), realize rapid switching of electric energy, and reduce power interruption time during the switching process.
  • the relay 1000 can have obvious physical break, and electrical Compared with electronic switches, they are safer.
  • the base 200 has a receiving groove 201, and the receiving groove 201 is used to install the linear motion electromagnetic mechanism 100.
  • the relay 1000 also includes a cover 500 installed on the base 200.
  • the cover 500 can cover the linear motion electromagnetic mechanism 100, the moving contact assembly 300, the static contact assembly 400 and other related components to protect these components.
  • Each moving contact assembly 300 includes a bracket 310, two moving springs 320 and a plurality of moving contacts 330.
  • a moving spring is provided on opposite sides of the bracket 310. pieces 320, and a moving contact 330 is provided at both ends of each moving spring piece 320.
  • the moving reed 320 is made of elastic material and has a certain elastic deformation ability. When the moving contact 330 of the moving reed 320 comes into contact with the static contact assembly 400, the moving reed 320 will elastically deform, reducing the occurrence of bounce and improving work reliability. .
  • the two moving reeds 320 in the moving contact assembly 300 adopt a split design, and are gas-insulated between them to achieve a reliable electrical gap.
  • the bracket 310 When assembling the bracket 310 and the moving reed 320, the bracket 310 has a positioning rod 311, the moving reed 320 has a type hole 321, the positioning rod 311 matches the cross section of the type hole 321, and the positioning rod 311 passes through the type hole 321
  • the circumferential position of the moving reed 320 is defined, so that the moving contact 330 on the moving reed 320 is maintained at a predetermined position.
  • the shaped hole 321 is a waist-shaped hole
  • the positioning rod 311 is configured in a shape that matches the waist-shaped hole.
  • the type hole 321 and the positioning rod 311 can also be set in other suitable shapes.
  • each movable contact assembly 300 further includes two elastic pieces 340.
  • One elastic piece 340 and two moving spring pieces are respectively provided on opposite sides of the bracket 310.
  • 320 are provided on the side of the two elastic pieces 340 facing away from the bracket 310 in one-to-one correspondence.
  • the elastic piece 340 can be configured as a bent structure, with one end of the elastic piece 340 abutting the bracket 310 and the other end abutting the moving spring 320 .
  • the positioning and assembly of the elastic piece 340 is achieved through the positioning rod 311 of the bracket 310 and the hole 341 of the elastic piece 340.
  • a gasket 350 can be provided on the side of each moving spring piece 320 facing away from the elastic piece 340.
  • the connection is reliable and the assembly is convenient.
  • the positioning hole of the bracket 310 cooperates with the hole 351 of the gasket 350 to assemble the gasket 350 on the moving spring 320 .
  • Each static contact assembly 400 includes four static contact pieces 410, four static contacts 420 and two arc-extinguishing permanent magnets 430; the static contact pieces 410 Pairs are arranged at intervals. Referring to Figure 3, each pair of static contact pieces 410 and a moving reed 320 are arranged correspondingly.
  • the two moving reeds 320 in the same moving contact assembly 300 are located between the two pairs of static contact pieces 410;
  • Each static contact 410 is provided with a static contact 420, and the static contacts 420 and the moving contacts 330 match one-to-one; in the arrangement direction of the two moving springs 320 (i.e., the first direction X), each phase
  • An arc-extinguishing permanent magnet 430 is disposed between two adjacent static contact pieces 410.
  • the stationary contact assembly 400 and the movable contact assembly 300 are arranged correspondingly, and each movable spring piece 320 of the movable contact assembly 300 corresponds to two of the stationary contact pieces 410 of the stationary contact assembly 400 .
  • the circuit is turned on.
  • the circuit is opened.
  • the static contact piece 410 can be made of a rigid material that is not easily deformed.
  • the static contact 420 can be riveted on the static contact piece 410 .
  • the arc-extinguishing permanent magnet 430 is used to quickly extinguish the arc when the static contact assembly 400 and the movable contact assembly 300 are separated.
  • the two adjacent static contact pieces 410 located at one end of the moving spring piece 320 can be an integrally formed structure for connecting with electrical equipment.
  • the integrally formed static contact pieces 410 are easy to form.
  • the two adjacent static contact pieces 410 located at the other end of the moving spring piece 320 are connected to the main power supply and the backup power supply respectively.
  • the base 200 is also provided with a plurality of pins 440 to facilitate access to power and electrical equipment.
  • the pin 440 can be made of a rigid material that is not easily deformed.
  • a plurality of pins 440 are provided at opposite ends of the base 200, so that the relay has a compact structure and is easy to wire.
  • the pin 440 and the static contact piece 410 can be connected through a wire 450.
  • the base 200 is configured with a total of 16 pins 440, including 12 power pins, 2 auxiliary contact pins and 2 coil pins.
  • a plurality of first plastic grids 210 can be provided on the base 200, and a plurality of first plastic grids 210 are spaced between each two adjacent static contact sheets 410. , used to quickly extinguish the arc when the static contact assembly 400 and the movable contact assembly 300 are separated.
  • a plurality of second plastic grids 510 can be provided on the bottom surface of the cover 500. A plurality of second plastic grids 510 are spaced between each two adjacent static contact sheets 410 for the static contact assembly 400. When separated from the movable contact assembly 300, the arc is quickly extinguished.
  • the relay 1000 further includes a guide member 220 installed on the base 200 .
  • the guide member 220 is used to guide the movable frame 141 to move in a predetermined direction.
  • the guide member 220 can be configured as a guide cover, which can be buckled on the upper side of the first body 141b (the second body 141c) of the movable frame 141.
  • the guide cover includes a transverse arm 221 and two vertical arms. 222, the two vertical arms 222 are respectively connected to both ends of the transverse arm 221.
  • the upper sides of the first vehicle body 141b and the second vehicle body 141c have limiting grooves 141d.
  • the first vehicle body 141b (the second vehicle body 141c) is slidably installed on the base 200.
  • the transverse arm 221 of the guide cover is buckled on the limiting groove 141d, and the two vertical arms 222 are arranged corresponding to the two opposite side walls of the vehicle body.
  • Two vertical arms 222 are connected to the base 200 to define the moving direction and range of the vehicle body.
  • an embodiment of the present application provides a power distribution box 2000, which includes a circuit board 2001 and the above-mentioned relay 1000.
  • the relay 1000 and the circuit board 2001 are electrically connected.
  • the power distribution box 2000 can connect two power sources and electrical equipment. By making the plurality of movable contact assemblies 300 and static contact assemblies 400 on the relay 1000 come into contact with or separate from each other, the two power sources can be switched and the power consumption can be switched. The device is powered.
  • the main power supply connected to the relay 1000 can be alternating current (AC), and the backup power supply connected can be a photovoltaic power supply or a high voltage direct current (HVDC) high-power power supply.
  • the relay 1000 can turn on and off multiple power sources, realize fast switching of electric energy, and reduce the power interruption time during the switching process.
  • the power distribution box 2000 can be used for switching single-phase dual-channel power supplies, and can also be used for switching three-phase four-wire dual power supplies as shown in Figure 32, and can also be used for high-power switching of other multi-wire dual-channel power supplies.
  • the power distribution box 2000 further includes a box body 2002, and the circuit board 2001 is installed in the box body 2002.
  • the circuit board 2001 may include a driver board and a power board.
  • the circuit board 2001 is provided with connectors.
  • the connectors may include two input power connectors 2003 and one output power connector 2004.
  • the two input power connectors 2003 are used to connect the main power supply and the backup power supply respectively.
  • the output power connector 2004 is used to connect electrical equipment.
  • an embodiment of the present application provides a communication device, which includes a powered device 3000 and the above-mentioned power distribution box 2000.
  • the powered device 3000 and the power distribution box 2000 are electrically connected.
  • the electrical equipment 3000 may be electrical equipment 3000 such as a network data center, a public cloud server, and a switch. Realize the scenario of quickly switching on and off the backup power supply 4002 when the main power supply 4001 loses power, thereby reducing the system power-down time, reducing data loss, and avoiding business losses.
  • one side of the relay 1000 in the power distribution box 2000 is connected to the main power supply 4001 and the backup power supply 4002, and the other side is connected to the electrical equipment 3000.
  • Automated control is realized through the detection and control system 2100.
  • the power supply is quickly switched to the backup power supply 4002.
  • the electrical equipment 3000 can also be configured with a backup battery 4003.
  • the backup battery 4003 may be a lead-acid battery or a lithium battery.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

本申请实施例提供了一种直线运动电磁机构(100)、继电器(1000)、配电盒(2000)及通信设备。直线运动电磁机构(100)中,将第一双极充永磁体(120)和第二双极充永磁体(130)分别设置在磁轭(110)的框状部(110a)的两个相对内壁上,在第一双极充永磁体(120)和第二双极充永磁体(130)之间形成反向的第一平行磁场(129)和第二平行磁场(139)。通电线圈(142)的两个半环部会受到同向的安培力,由线圈(142)带动活动架(141)平移运动,线圈(142)双向通电使活动架(141)双向移动,实现继电器(1000)的切换工作。第一动铁芯(143)和第二动铁芯(144)用于在活动架(141)位于合闸位或分闸位时,形成对活动架(141)的保持力以限定活动架(141)的位置。该直线运动电磁机构(100)由一个磁腔提供双极性磁场,通电线圈(142)在该双极性磁场中受安培力以驱动活动架(141)平移,零件用量较少,整体结构厚度更小。

Description

一种直线运动电磁机构、继电器、配电盒及通信设备
本申请要求于2022年08月26日提交国家知识产权局、申请号为202211034449.0、申请名称为“一种直线运动电磁机构、继电器、配电盒及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及继电器结构技术领域,尤其涉及一种直线运动电磁机构、继电器、配电盒及通信设备。
背景技术
相关技术中的通信设备,比如网络数据中心(internet data center,IDC),需要满足供电连续性以支撑设备的正常运行。通常采用主电源和备用电源的供电架构。在主电源发生故障时,通过继电器快速切换为备用电源,恢复正常供电。
传统的继电器有不同的方案。第一种方案是如图1所示的拍合式电磁机构,其包括底座、铁芯12、线圈13、上轭铁14、下轭铁15、衔铁16、滑块17,铁芯12穿过线圈13,上轭铁14和下轭铁15均呈L型并分别设于线圈13两端,衔铁16位于上轭铁14和下轭铁15之间并转动设置在底座上。滑块17沿直线滑动设置在底座上。衔铁16连接有推动臂161,推动臂161和滑块17的卡槽配合。在线圈13通电时,上轭铁14和下轭铁15之间会产生磁场,驱动衔铁16摆动,通过推动臂161带动滑块17平移,从而带动动触片18平移,使动触片18和静触片19接触或分离。该拍合式电磁机构由于零件数量多和布置关系,整体结构厚度T1较大。
第二种方案是如图2所示的多磁腔电磁机构,其包括两个或四个磁场腔体21、传输杆、动铁芯23、线圈24,每个磁场腔体21包括两个间隔分布主永磁体211和两个间隔分布的辅助永磁体212。两个主永磁体211的充磁方向相同,用于为线圈24运动提供磁场。两个辅助永磁体212的充磁方向相反,用于提供保持力。相邻两个磁场腔体21中两个主永磁体211的磁场方向相反,每个磁场腔体21内滑动设置有动铁芯23,所有动铁芯23连接在传输杆上。线圈24的两个半环部分分别设于相邻两个磁场腔体21,并固定在和两个磁场腔体21对应的动铁芯23上。在线圈24通电时,通电线圈24在安培力下移动,以带动动铁芯23和传输杆移动,传输杆带动动触片平移,使得动触片和静触片接触或分离。该多磁腔电磁机构由于磁场腔体21数量较多,整体结构厚度T2较大。
传统的继电器存在厚度尺寸较大,难以进一步减小厚度的技术问题。
发明内容
本申请实施例提供一种直线运动电磁机构、继电器、配电盒及通信设备,解决了传统的继电器厚度尺寸较大的技术问题。
本申请实施例采用如下技术方案:
第一方面,本申请实施例提供的直线运动电磁机构,包括:磁轭、第一双极充永磁体、第二双极充永磁体和驱动组件。磁轭具有框状部。第一双极充永磁体和第二双极充永磁体分别贴合于框状部的两个相对内壁上,第一双极充永磁体具有相连接且导磁方向相反的第一磁体部和第二磁体部,第二双极充永磁体具有相连接且导磁方向相反的第三磁体部和第四磁体部。第一磁体部和第三磁体部相间隔设置且导磁方向相同,第二磁体部和第四磁体部相间隔设置且导磁方向相同。驱动组件包括活动架、线圈、第一动铁芯和第二动铁芯;活动架能够在第一磁体部和第二磁体部之间分界面的垂直方向上来回移动,以带动动触头组件移动。线圈设于活动架,线圈包括相连接的第一半环部和第二半环部,第一半环部位于第一磁体部和第三磁体部之间,第二半环部位于第二磁体部和第四磁体部之间。第一动铁芯和第二动铁芯均设于活动架上,第一动铁芯位于第一半环部背对第二半环部的一侧,第二动铁芯位于第二半环部背对第一半环部的一侧。
本申请实施例提供的直线运动电磁机构,将第一双极充永磁体和第二双极充永磁体分别设置在磁轭的框状部的两个相对内壁上,在第一双极充永磁体和第二双极充永磁体之间形成反向的第一平行磁场和第二平行磁场。将线圈的第一半环部和第二半环部分别设于第一平行磁场和第二平行磁场中,通电线圈的两个半环部会受到同向的安培力,由线圈带动活动架平移运动,线圈双向通电使活动架双向移动,实现继电器的切换工作。第一动铁芯和第二动铁芯用于在活动架位于合闸位或分闸位时,和第一双极充永磁体和第二双极充永磁体配合形成闭合磁力线,形成对活动架的保持力以限定活动架的位置。相比于传统的继电器,本申请的直线运动电磁机构由一个磁腔提供双极性磁场,通电线圈在该双极性磁场中受安培力以驱动活动架平移,该直线运动电磁机构零件用量较少,整体结构厚度更小,结构紧凑,解决传统多磁腔电磁机构中由单个磁腔提供单个磁极而难以减小体积的问题。
在一种可选实现方式中,第一动铁芯和第二动铁芯均位于框状部内,第一动铁芯位于第一磁体部和第三磁体部之间,第二动铁芯位于第二磁体部和第四磁体部之间。
该方案中,将第一动铁芯和第二动铁芯布置在磁轭的框状部内并分别在线圈的两侧外部。在活动架处于合闸位或分闸位时,第一双极充永磁体、第二双极充永磁体、磁轭和第一动铁芯(第二动铁芯)之间会形成一定的磁力线,从而形成对活动架的保持力,限定活动架的位置。
在一种可选实现方式中,框状部包括依次连接的第一段、第二段、第三段和第四段,第一双极充永磁体和第四段的内壁贴合,第二双极充永磁体和第二段的内壁贴合,第一段和第一动铁芯相对设置,第三段和第二动铁芯相对设置;第一段对应于第一动铁芯处具有第一开口,第三段对应于第二动铁芯处具有第二开口。
该方案中,通过在磁轭的框状部对应第一动铁芯和第二动铁芯的位置分别设置开口,作为隔磁区域,使得更多的磁力线经过第一动铁芯(或第二动铁芯),在合闸位或分闸位时形成对第一动铁芯和第二动铁芯更强的保持力,降低活动架受到干扰而抖动的情况。
在一种可选实现方式中,驱动组件还包括第三动铁芯,第三动铁芯设于活动架上,第三动铁芯位于线圈内,第三动铁芯的相对两侧分别朝向第一双极充永磁体和第二双极充永磁体。
该方案中,在活动架处于合闸位或分闸位时,会产生依次经过第一双极充永磁体、第三动铁芯、第二双极充永磁体和磁轭的闭合磁路,将第一双极充永磁体和第二双极充永磁体联系起来,增加磁场的利用率。
在一种可选实现方式中,驱动组件包括位于线圈内的第三动铁芯,第二段对应于第三磁体部和第四磁体部之间分界面处具有第三开口,第四段对应于第一磁体部和第二磁体部之间分界面处具有第四开口。
该方案中,通过在磁轭的框状部对应第三动铁芯的位置设置开口,作为隔磁区域,改变磁力线的走向,在合闸位或分闸位时形成对第三动铁芯更强的保持力,降低活动架受到干扰而抖动的情况。
在一种可选实现方式中,活动架包括线圈架、第一车体和第二车体,第一车体和第二车体分别固定于线圈架的相对两端,线圈设于线圈架上,第一车体用于安装第一动铁芯和部分动触头组件,第二车体用于安装第二动铁芯和部分动触头组件。
该方案中,将活动架配置为多个结构件组装的方式,容易成型和装配。第一车体和第二车体上分别设置部分动触头组件,使得不同的动触头组件对应的静触头组件间隔预定距离布置。
在一种可选实现方式中,第一车体包括第一安装臂和连接于第一安装臂上的第一框部,第一安装臂具有用于安装动触头的第一安装槽,第一框部固定于线圈架上,第一动铁芯固定在第一框部上;
第二车体包括第二安装臂和连接于第二安装臂上的第二框部,第二安装臂具有用于安装动触头的第二安装槽,第二框部固定于线圈架上,第二动铁芯固定在第二框部上。
该方案中,将车体配置为安装臂和框部,框部可用于安装动铁芯,框部具有较好的结构强度。通过框部可靠地将车体连接在线圈架,通过安装臂来安装动触头组件,结构简单,容易装配。
在一种可选实现方式中,磁轭包括U型轭铁和顶盖,顶盖的两端分别固定于U型轭铁的两端,第一双极充永磁体和顶盖的内壁贴合,第二双极充永磁体和U型轭铁的内壁贴合。
该方案中,磁轭用于将磁力线封闭在预定区域内部,起到增强磁场作用。磁轭配置为U型轭铁和顶盖的装配方式,容易成型和装配。
在一种可选实现方式中,U型轭铁和顶盖之间通过相适配的第一凸台和第一槽口定位装配;和/或,第一双极充永磁体和顶盖之间通过相适配的第二凸台和第二槽口定位装配;和/或,第二双极充永磁体和U型轭铁之间通过相适配的第三凸台和第三槽口定位装配。
该方案中,两个结构件之间通过相适配的凸台和槽口,凸台能伸入槽口内,便于两个结构件的快速定位装配。
在一些实施例中,第一双极充永磁体和第二双极充永磁体设置为多组,线圈的数量为多个,多个线圈串联,多个线圈一一对应分布在多组第一双极充永磁体和第二双极充永磁体之间。
该方案通过配置多组双极充永磁体和线圈,使得活动架具有更大的输出力,以带动更大负载移动,即带动更多动触头组件平移。
在一种可选实现方式中,第一动铁芯和第二动铁芯均位于框状部外,第一动铁芯位于第一磁体部和第三磁体部的同一端部以外,第二动铁芯位于第二磁体部和第四磁体部的同一端部以外;第一动铁芯上设有第一保持永磁体,第二动铁芯上设有第二保持永磁体,第一保持永磁体和第二保持永磁体的导磁方向相反。
该方案中,将第一动铁芯和第二动铁芯设置在磁轭的框状部外,便于结构装配。第一动铁芯、第二动铁芯、第一保持永磁体和第二保持永磁体为继电器提供保持力。
在一种可选实现方式中,为了提供更大的保持力以使活动架可靠定位,驱动组件还包括第三动铁芯,第三动铁芯设于活动架上,第三动铁芯位于线圈内,第三动铁芯的相对两侧分别朝向第一双极充永磁体和第二双极充永磁体。
该方案中,第三动铁芯将第一双极充永磁体和第二双极充永磁体联系起来,增加磁场的利用率。配置第三动铁芯后,能形成更大的保持力,能更有效地降低活动架受到干扰而抖动,提升运行可靠性,使活动架上的动触头组件和静触头组件可靠接触或分离。
第二方面,本申请实施例提供一种继电器,包括底座、一个或多个动触头组件、一个或多个静触头组件,以及上述的直线运动电磁机构,一个或多个静触头组件设于底座上,一个或多个动触头组件设于活动架上,一个或多个动触头组件和一个或多个静触头组件一一对应相对设置。
本申请实施例提供的继电器,配置了上述直线运动电磁机构,由一个磁腔提供双极性磁场,通电线圈在该双极性磁场中受安培力以驱动活动架平移,带动活动架上的动触头组件和底座上的静触头组件进行分合闸动作。该直线运动电磁机构在厚度上更小,结构紧凑。
在一种可选实现方式中,每个动触头组件包括支架、两个动簧片和多个动触点,支架的相对两侧分别设有一个动簧片,每个动簧片的两端分别设置有一个动触点。
动簧片采用弹性材料制作,具有一定弹性变形能力,在动簧片的动触点和静触头组件接触时,动簧片会弹性变形,减少弹跳发生,提升工作可靠性。
在一种可选实现方式中,每个动触头组件还包括两个弹片,支架的相对两侧分别设有一个弹片,两个动簧片一一对应地设于两个弹片背对支架的一侧。
通过在每个动簧片和支架之间设置弹片,使得两个动簧片间隔一定距离,也提升了动簧片表现出的弹性变形能力,进一步降低动簧片的弹跳。
在一种可选实现方式中,每个静触头组件包括四个静触片、四个静触点和两个灭弧永磁体;静触片成对间隔设置,每对静触片和一个动簧片对应设置,同一个动触头组件中的两个动簧片位于两对静触片之间;每个静触片上均设有静触点,静触点和动触点一一对应配合;在两个动簧片的排布方向上,每相邻两个静触片之间均设有一个灭弧永磁体。
静触头组件和动触头组件对应设置,动触头组件的每个动簧片和静触头组件的其中两个静触片对应。在动簧片上的两个动触点和两个静触片上的静触点一一对应相接触时,电路导通。在两个动触点和对应静触点分离时,电路断开。灭弧永磁体用于静触头组件和动触头组件分离时快速灭弧。
第三方面,本申请实施例提供一种配电盒,包括电路板和上述的继电器,继电器和电路板电连接。该配电盒可连接两路电源和用电设备,通过使继电器上的多个动触头组件和静触头组件接 触或分离配合,可实现两路电源的切换并对用电设备供电。
第四方面,本申请实施例提供一种通信设备,包括用电设备和上述的配电盒,用电设备和配电盒电连接。实现在主电源掉电时,使备用电源快速投切的场景,从而减少***的掉电时间,降低数据丢失,避免业务损失。
附图说明
图1为传统的拍合式电磁机构的结构示意图;
图2为传统的多磁腔电磁机构的结构示意图;
图3为本申请实施例提供的直线运动电磁机构的立体装配图;
图4为本申请实施例提供的继电器的立体分解图;
图5为图4的继电器在拆下盖体后的俯视图;
图6为图3的直线运动电磁机构中的磁轭、第一双极充永磁体和第二双极充永磁体的装配示意图;
图7为图3的直线运动电磁机构中的线圈设置在第一双极充永磁体和第二双极充永磁体之间的结构示意图;
图8为图3的直线运动电磁机构中的驱动组件的立体装配图;
图9为图8的驱动组件中的线圈和活动架部分结构的立体装配图;
图10为图3的直线运动电磁机构的主视放大图;
图11为图3的直线运动电磁机构在拆下动触头组件后沿A-A线立体剖视图;
图12为图3的沿A-A线剖视放大图;
图13中的(a)、(b)分别为驱动组件在没配置第三动铁芯时和配置第三动铁芯时的磁场仿真图;
图14中的(a)、(b)分别为驱动组件在磁轭没设置开口时和在磁轭设置开口时的磁场仿真图;
图15为图3的直线运动电磁机构和动触头组件的立体分解图;
图16为图15的直线运动电磁机构的立体分解图;
图17为图15的直线运动电磁机构的俯视放大图;
图18为图15的直线运动电磁机构中的活动架的立体分解图;
图19为图18的活动架、第一动铁芯、第二动铁芯的立体分解图;
图20为图6的直线运动电磁机构中的磁轭、第一双极充永磁体、第二双极充永磁体的立体分解图;
图21为图6的直线运动电磁机构中的磁轭的立体分解图;
图22为本申请另一实施例提供的直线运动电磁机构的立体分解图;
图23为图22的直线运动电磁机构中的磁轭、第一双极充永磁体、第二双极充永磁体的立体分解图;
图24为图23的磁轭、第一双极充永磁体、第二双极充永磁体的立体装配图;
图25为本申请另一实施例提供的直线运动电磁机构的部分结构示意图;
图26为图5的继电器在拆下直线运动电磁机构后的结构示意图;
图27为图4的继电器中的动触头组件的立体分解图;
图28为图26的继电器中的底座和静触头组件的装配示意图;
图29为图26的继电器的立体分解图;
图30为图4的继电器中的盖体的结构示意图;
图31为本申请实施例提供的配电盒结构示意图;
图32为本申请实施例提供的三相四线双电源切换配电盒的电气原理图;
图33为本申请实施例提供的通信设备的电气原理图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特 征仅限于该实施方式。恰恰相反,结合实施方式作为申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参阅图3至图5,本申请实施例提供一种直线运动电磁机构100,可应用于继电器1000中,将动触头组件300安装在直线运动电磁机构100上,通过直线运动电磁机构100驱动动触头组件300沿预定直线运动,以使动触头组件300和固定的静触头组件400接触或分离。静触头组件400和不同的电路连接,在动触头组件300和静触头组件400的其中一路接通时,就能实现电路之间的切换。继电器1000的一侧连接主电源和备用电源,另一侧连接用电设备,可实现主电源和备用电源的切换。
参阅图3、图6、图7,本申请实施例提供的直线运动电磁机构100,包括:磁轭110、第一双极充永磁体120、第二双极充永磁体130和驱动组件140。磁轭110具有框状部110a。第一双极充永磁体120和第二双极充永磁体130分别贴合于框状部110a的两个相对内壁上,第一双极充永磁体120具有相连接且导磁方向相反的第一磁体部121和第二磁体部122,第二双极充永磁体130具有相连接且导磁方向相反的第三磁体部131和第四磁体部132。第一磁体部121和第三磁体部131相间隔设置且导磁方向相同,第二磁体部122和第四磁体部132相间隔设置且导磁方向相同。结合图8,驱动组件140包括活动架141、线圈142、第一动铁芯143和第二动铁芯144;活动架141能够在第一磁体部121和第二磁体部122之间分界面的垂直方向X上来回移动,以带动动触头组件300移动。线圈142设于活动架141,结合图9,线圈142包括相连接的第一半环部1421和第二半环部1422,第一半环部1421位于第一磁体部121和第三磁体部131之间,第二半环部1422位于第二磁体部122和第四磁体部132之间。第一动铁芯143和第二动铁芯144均设于活动架141上,第一动铁芯143位于第一半环部1421背对第二半环部1422的一侧,第二动铁芯144位于第二半环部1422背对第一半环部1421的一侧。
其中,第一双极充永磁体120(第二双极充永磁体130)可以是一体结构或组装结构。每个双极充永磁体具有两个磁体部,该两个磁体部的导磁方向相反。双极充永磁体可以是一块永磁体以中线为界在两侧分别充相反方向的磁性而成。
参阅图7,将第一双极充永磁体120和第二双极充永磁体130相间隔设置,可以在第一方向X上形成相邻的第一平行磁场129和第二平行磁场139,第一平行磁场129和第二平行磁场139的磁场方向相反。该方案对空间利用率较高,结构紧凑。第一方向X就是第一双极充永磁体120(或第二双极充永磁体130)的两个磁体部之间分界面的垂直方向。
线圈142可以是方形线圈、跑道线圈或其他类似形状的线圈。第一半环部1421和第二半环部1422是为了方便描述而取的名称,可以理解为在线圈142上经过线圈142的轴线劈开得到的两部分。实际上,第一半环部1421和第二半环部1422是一体结构。
将线圈142的第一半环部1421和第二半环部1422分别设置在第一平行磁场129和第二平行磁场139内,在对线圈142通电时,第一半环部1421和第二半环部1422的电流方向相反(在图7中,第一半环部1421电流方向朝内,第二半环部1422电流方向朝外),而第一半环部1421和第二半环部1422所受到的安培力方向相同(朝左),带动线圈142沿第一方向的其中一端平移。在线圈142反向通电时,第一半环部1421和第二半环部1422所受到的安培力方向相同,带动线圈142沿第一方向的另外一端平移。通过对线圈142正反向通电,实现活动架141的正反向平移,结合图4、图5,从而带动活动架141上的动触头组件300移动,实现动触头组件300和静触头组件400的接触或分离。
示例性的,在图7的实施例中,第一双极充永磁体120中的第一磁体部121的上侧和下侧分别是S极和N极,第二磁体部122的上侧和下侧分别是N极和S极。第二双极充永磁体130中的第三磁体部131的上侧和下侧分别是S极和N极,第四磁体部132的上侧和下侧分别是N极和S极。第一磁体部121和第三磁体部131之间形成向下的第一平行磁场129。第二磁体部122和第四磁体部132之间形成向下的第二平行磁场139。
可以理解的,第一双极充永磁体120和第二双极充永磁体130中的不同磁体部还可以采用其他充磁方式,实现沿第一方向X分布的第一平行磁场129和第二平行磁场139的磁场方向相反即可。
本申请实施例提供的直线运动电磁机构100,参阅图6、图7,将第一双极充永磁体120和第二双极充永磁体130分别设置在磁轭110的框状部110a的两个相对内壁上,在第一双极充永磁体120和第二双极充永磁体130之间形成反向的第一平行磁场129和第二平行磁场139。将线圈142的第一半环部1421和第二半环部1422分别设于第一平行磁场129和第二平行磁场139中,通电线圈142的两个半环部会受到同向的安培力,由线圈142带动活动架141平移运动,线圈142双向通电使活动架141双向移动,实现继电器1000的切换工作。结合图8,第一动铁芯143和第二动铁芯144用于在活动架141位于合闸位或分闸位时,和第一双极充永磁体120和第二双极充永磁体130配合形成闭合磁力线,形成对活动架141的保持力以限定活动架141的位置。相比于传统的继电器,本申请的直线运动电磁机构100由一个磁腔提供双极性磁场,通电线圈142在该双极性磁场中受安培力以驱动活动架141平移,该直线运动电磁机构100零件用量较少,整体结构厚度更小,结构紧凑,解决传统多磁腔电磁机构中由单个磁腔提供单个磁极而难以减小体积的问题。
示例性的,在同样的工艺水平下,一种具有传统多磁腔电磁机构的继电器厚度约为30mm,需要配置1U配电盒,而无法采用0.5U配电盒。结合图4,具有本申请实施例直线运动电磁机构100的继电器1000,继电器1000的厚度T0可以制作约为13.5mm,比上述传统继电器厚度尺寸减小了约55%,可装配在0.5U配电盒中。其中,U是一种表示服务器外部尺寸的单位,是unit的缩略语,具体尺寸由美国电子工业协会所决定。厚度以4.445cm为基本单位,1U就是4.445cm。
在如图1所示传统的拍合式电磁机构中,滑块17沿直线滑动设置在底座上。在线圈13通电时,衔铁16上的推动臂161摆动,通过推动臂161带动滑块17平移,以带动动触片18平移,使动触片18和静触片19接触或分离。将推动臂161的转动运动转化为水平运动分量和竖直运动分量,只有水平运动分量对滑块17移动有作用,有效运动距离转化效率较低,存在较大的能耗损失, 滑块17启动速度较慢,线圈13励磁时间较长,难以实现高速切换。而且,线圈13的线径过细,线圈13的匝数过多,导致线圈13内部电感和电阻过大,在使用电容放电驱动时,线圈13的电流上升率较低,不利于实现继电器的高速切换。
在同样的工艺水平下,相比于传统的继电器,本申请实施例的直线运动电磁机构100,参阅图7,在间隔分布的第一双极充永磁体120和第二双极充永磁体130之间形成第一平行磁场129和第二平行磁场139,两个平行磁场具有较大的磁感应强度,线圈142的匝数可以设置得较少。通电线圈142在磁场中受到较大的安培力,励磁时间较短。在线圈142的全运动行程内,主运动气隙保持不变,能够提供稳定的电磁输出,运动行程长,具有类似于斥力机构的出力曲线,出力稳定,移动速度较快。具有该直线运动电磁机构100的继电器1000,切换时间较短,可实现毫秒级(比如3ms至4ms)的快速机械切换,以实现超薄液冷散热电源。其中,切换时间是指继电器1000由A路到B路动作时,从直线运动电磁机构100开始获得电信号到B路终止弹跳完全闭合的时间。
在设置双极充永磁体时,参阅图6、图7,第一双极充永磁体120和第二双极充永磁体130均呈板状。第一双极充永磁体120和第二双极充永磁体130间隔设置,并贴合在磁轭110的框状部110a的两个相对内壁上,这样整体结构厚度尺寸较小,结构接触。
第一双极充永磁体120和第二双极充永磁体130可以等长设置,即两者在任一双极充永磁体的两个磁体部之间分界面的垂直方向X上的尺寸相等。第一双极充永磁体120中的第一磁体部121和第二磁体部122之间分界面,第二双极充永磁体130中的第三磁体部131和第四磁体部132之间分界面,以及框状部110a的对称面,三者共面设置,在第一方向X上形成空间大小接近的第一平行磁场129和第二平行磁场139。
在一些实施例中,参阅图10至图12,第一动铁芯143和第二动铁芯144均位于框状部110a内,第一动铁芯143位于第一磁体部121和第三磁体部131之间,第二动铁芯144位于第二磁体部122和第四磁体部132之间。第一动铁芯143的相对两侧分别朝向第一磁体部121和第三磁体部131,第二动铁芯144的相对两侧分别朝向第二磁体部122和第四磁体部132。
该方案中,将第一动铁芯143和第二动铁芯144布置在磁轭110的框状部110a内并分别在线圈142的两侧外部。在活动架141处于合闸位或分闸位时,第一双极充永磁体120、第二双极充永磁体130、磁轭110和第一动铁芯143(第二动铁芯144)之间会形成一定的磁力线,从而形成对活动架141的保持力,限定活动架141的位置,降低活动架141受到干扰而抖动的情况,进而使活动架141上的动触头组件300和静触头组件400可靠接触或分离。
在一些实施例中,参阅图6、图12,为了调整活动架141处于合闸位或分闸位时的保持力,框状部110a包括依次连接的第一段111、第二段112、第三段113和第四段114,第一双极充永磁体120和第四段114的内壁贴合,第二双极充永磁体130和第二段112的内壁贴合,第一段111和第一动铁芯143相对设置,第三段113和第二动铁芯144相对设置;第一段111对应于第一动铁芯143处具有第一开口1111,第三段113对应于第二动铁芯144处具有第二开口1131。
该方案中,通过在磁轭110的框状部110a对应第一动铁芯143和第二动铁芯144的位置分别设置开口,作为隔磁区域,通过改变磁轭110和第一动铁芯143(或第二动铁芯144)在预定位置的并联磁阻,使得更多的磁力线经过第一动铁芯143(或第二动铁芯144),而不是直接沿第一段111或第三段113经过,从而在合闸位或分闸位时形成对第一动铁芯143和第二动铁芯144更强的保持力,降低活动架141受到干扰而抖动的情况。比如,在第一动铁芯143和磁轭110贴合时,通过增大第一开口1111的长度,就能增加磁轭110第一段111的磁阻,磁力线就会从第一开口1111处向第一动铁芯143移动,相当于增大了经过第一动铁芯143的磁力线,从而使保持力增大。
在磁轭110包括相连接的U型轭铁115和顶盖116时,依次连接的第一段111、第二段112和第三段113就是U型轭铁115,第四段114是顶盖116。在U型轭铁115的两个相对臂上设置开口,利于更多磁力线经过第一动铁芯143或第二动铁芯144,形成更强的保持力。
其中,第一开口1111可以包括多个在一条直线上分布的第一子口,第二开口1131可以包括多个在一条直线上分布的第二子口,这样也能改变磁轭110在预定位置的磁阻,使得更多的磁力线经过第一动铁芯143或第二动铁芯144。此外,第一开口1111和第二开口1131也可以只设置 一个。
在一些实施例中,参阅图9、图12,为了提供更大的保持力以使活动架141可靠定位,驱动组件140还包括第三动铁芯147,第三动铁芯147设于活动架141上,第三动铁芯147位于线圈142内,第三动铁芯147的相对两侧分别朝向第一双极充永磁体120和第二双极充永磁体130。
该方案中,在线圈142内设置第三动铁芯147,并使第三动铁芯147固定在活动架141上。在活动架141处于合闸位或分闸位时,会产生依次经过第一双极充永磁体120、第三动铁芯147、第二双极充永磁体130和磁轭110的闭合磁路,将第一双极充永磁体120和第二双极充永磁体130联系起来,增加磁场的利用率。配置第一动铁芯143和第二动铁芯144后,能对活动架141形成一定的保持力。而在配置第三动铁芯147后,能形成更大的保持力,能更有效地降低活动架141受到干扰而抖动,提升运行可靠性,使活动架141上的动触头组件300和静触头组件400可靠接触或分离。第三动铁芯147可安装在活动架141的槽位1412中。
参阅图13中的(a),在驱动组件140没配置第三动铁芯,磁轭110的第一段111具有第一开口1111而第三段113具有第二开口1131的情况下,第一动铁芯143贴合于磁轭110的第一段111时,会产生依次经过第一双极充永磁体120、第一动铁芯143、磁轭110的第一段111和第四段114的第一组闭合磁路,还会产生依次经过第二双极充永磁体130、磁轭110的第二段112和第一段111、第一动铁芯143的第二组闭合磁路,保持力由以上两组闭合磁路提供。还会产生依次经过第一双极充永磁体120、磁轭110的第四段114、第三段113与第二段112、第二双极充永磁体130、第二动铁芯144的一组闭合磁路,该闭合磁路提供和保持力反向的作用力,减少了保持力大小。
参阅图13中的(b),在配置第三动铁芯147后,除了会产生上述第一组闭合磁路和第二组闭合磁路,还会产生依次经过“第一双极充永磁体120、第三动铁芯147、第二双极充永磁体130、磁轭110的第二段112和第一段111、第一动铁芯143、磁轭110的第一段111和第四段114”的第三组闭合磁路,保持力由这三组闭合磁路提供。相比于没有配置第三动铁芯147的方案,配置第三动铁芯147的方案,磁力线更多,所形成的保持力较大。在同样工艺下,配置第三动铁芯147的方案,保持力大小可提高70%。克服了传统电磁机构小型化情况下保持力较小难以提升的问题。
可以理解的,相比于没配置第三动铁芯的方案,配置第三动铁芯147的方案在第二动铁芯144贴合于磁轭110的第三段113时,也能产生更大的保持力。
在一些实施例中,参阅图12,为了进一步调整活动架141处于合闸位或分闸位时的保持力,在驱动组件140包括位于线圈142内的第三动铁芯147时,第二段112对应于第三磁体部131和第四磁体部132之间分界面处具有第三开口1121,第四段114对应于第一磁体部121和第二磁体部122之间分界面处具有第四开口1141。
该方案中,通过在磁轭110的框状部110a对应第三动铁芯147的位置设置开口,作为隔磁区域,通过改变磁轭110和第一双极充永磁体120(或第二双极充永磁体130)在预定位置的并联磁阻,改变磁力线的走向,在合闸位或分闸位时形成对第三动铁芯147更强的保持力,降低活动架141受到干扰而抖动的情况。
其中,第三开口1121可以包括多个在一条直线上分布的第三子口,第四开口1141可以包括多个在一条直线上分布的第四子口,这样也能改变磁轭110在预定位置的磁阻,改变磁力线的走向以增加保持力。此外,第三开口1121和第四开口1141也可以只设置一个。
参阅图14中的(a),在磁轭110没有设置第一开口、第二开口、第三开口和第四开口的情况下,第一动铁芯143贴合于磁轭110的第一段111时,会产生依次经过第一双极充永磁体120、第一动铁芯143、第二双极充永磁体130、磁轭110的第二段112、第一段111和第四段114的一组闭合磁路,这组闭合磁路提供保持力。还会产生依次经过第一双极充永磁体120、磁轭110的第四段114、第一双极充永磁体120、第三动铁芯147、第二双极充永磁体130、磁轭110的第三段113、第二双极充永磁体130、第二动铁芯144的一组闭合磁路,这组闭合磁路提供和保持力反向的作用力,减小了保持力大小。
参阅图14中的(b),在磁轭110设置第一开口1111、第二开口1131、第三开口1121和第四开口1141的情况下,第一动铁芯143贴合于磁轭110的第一段111时,会产生依次经过第一双极 充永磁体120、第一动铁芯143、磁轭110的第一段111和第四段114的第一组闭合磁路,还会产生依次经过第二双极充永磁体130、磁轭110的第二段112和第一段111、第一动铁芯143的第二组闭合磁路。还会产生依次经过第一双极充永磁体120、第三动铁芯147、第二双极充永磁体130、磁轭110的第二段112和第一段111、第一动铁芯143、磁轭110的第一段111和第四段114的第三组闭合磁路,保持力由这三组闭合磁路提供。相比于磁轭110没有设置开口的方案,磁轭110设置开口的方案,磁力线更多,所形成的保持力较大。
可以理解的,相比于磁轭110没有设置开口的方案,磁轭110设置开口的方案在第二动铁芯144贴合于磁轭110的第三段113时,也能产生更大的保持力。
在如图1所示的传统拍合式电磁机构中,在分闸位或合闸位提供的保持力较小,在目前工艺水平下,触点保持力范围在0.5牛顿(N)至0.8N之间,难以提供较大的保持力。
在如图2所示的传统多磁腔电磁机构中,每个磁场腔体21通过配置辅助永磁体212,以提供保持力。由于有些主永磁体211和辅助永磁体212的充磁方向相反,整体结构复杂,装配难度较大。永磁体的强度较差,较薄的辅助永磁体212成为整体机械强度的薄弱位置,可靠性较低。如果直接取消辅助永磁体212就不能满足保持力要求,保留辅助永磁体212会不利于整体结构小型化。
在本申请一个实施例中,具有该直线运动电磁机构100的继电器1000的厚度T0制作约为13.5mm,厚度尺寸较小。磁轭110设置第一开口1111、第二开口1131、第三开口1121和第三开口1121并配置第一动铁芯143、第二动铁芯144、第三动铁芯147的方案,可提供40牛顿(N)以上的保持力,而且结构简单,可靠性较高。
在设置活动架141时,参阅图9、图15、图16,活动架141包括线圈架141a、第一车体141b和第二车体141c,第一车体141b和第二车体141c分别固定于线圈架141a的相对两端,线圈142设于线圈架141a上,第一车体141b用于安装第一动铁芯143和部分动触头组件300,第二车体141c用于安装第二动铁芯144和部分动触头组件300。
该方案中,将活动架141配置为多个结构件组装的方式,容易成型和装配。第一车体141b和第二车体141c分别设置在线圈架141a的两端,便于线圈架141a平稳地带动第一车体141b和第二车体141c平移,进而使第一车体141b或第二车体141c上的动触头组件300可靠平移。第一车体141b和第二车体141c上分别设置部分动触头组件300,使得不同的动触头组件300对应的静触头组件400间隔预定距离布置,使得结构便于装配和工作可靠。
示例性的,磁轭110包括U型轭铁115和顶盖116,参阅图9,可先将线圈142安装在线圈架141a上,结合图16,再将第一车体141b和第二车体141c安装在线圈架141a的两端,然后将线圈架141a安装在U型轭铁115内,最后将顶盖116安装在U型轭铁115上,U型轭铁115和顶盖116围成框状部110a。
示例性的,参阅图15,第一车体141b和第二车体141c分别设置两个动触头组件300,配合四个静触头组件400,可实现小型继电器下三相四线交流电双电源切换,实现4个常开触点和4个常闭触点双电源的切换。在其他实施例中,第一车体141b和第二车体141c可配置其他数量的动触头组件300,配合相应的静触头组件400,可实现小型继电器下其他双电源切换。
在设置第一车体141b和第二车体141c时,参阅图16、图17,第一车体141b包括第一安装臂1413和连接于第一安装臂1413上的第一框部1414,第一安装臂1413具有用于安装动触头的第一安装槽1413a,第一框部1414固定于线圈架141a上,第一动铁芯143固定在第一框部1414上;
第二车体141c包括第二安装臂1415和连接于第二安装臂1415上的第二框部1416,第二安装臂1415具有用于安装动触头的第二安装槽1415a,第二框部固定于线圈架141a上,第二动铁芯144固定在第二框部1416上。
该方案中,将车体配置为安装臂和框部,框部可用于安装动铁芯,框部具有较好的结构强度。通过框部可靠地将车体连接在线圈架141a,通过安装臂来安装动触头组件300,结构简单,容易装配。其中,安装臂可以沿第一方向X延伸,结构紧凑。
在装配线圈架141a、第一车体141b和第二车体141c时,参阅图9、图16、图17、图18, 线圈架141a具有第一定位槽1411。第一框部1414连接于第一安装臂1413的一端,第一框部1414背对第一安装臂1413的一侧插设于两个第一定位槽1411,第一框部1414和线圈架141a之间可通过卡扣141e、热熔、粘接等方式连接。第二车体141c和线圈架141a的装配关系是类似的,不再赘述。
在装配车体和动铁芯时,参阅图19,以第一框部1414和第一动铁芯143的装配为例,第一动铁芯143可安装在第一框部1414的装配槽141f内,第一动铁芯143的两端可插设在第一框部1414的两个孔位141g,结合图17,第一动铁芯143能方便可靠固定在第一框部1414上。第二动铁芯144和第二动铁芯144的装配关系是类似的,不再赘述。
在另一些实施例中,第一车体141b和第二车体141还可以设置为其他结构,只要能安装动触头组件300,带动动触头组件300平移即可。
在另一些实施例中,活动架141中的线圈架141a、第一车体141b和第二车体141c还可以为一体成型结构,也能实现线圈142和多个动铁芯的装配,满足通电线圈142带动活动架141相对磁轭110来回平移。
在设置磁轭110时,参阅图20、图21,磁轭110包括U型轭铁115和顶盖116,顶盖116的两端分别固定于U型轭铁115的两端,第一双极充永磁体120和顶盖116的内壁贴合,第二双极充永磁体130和U型轭铁115的内壁贴合。
该方案中,磁轭110用于将磁力线封闭在预定区域内部,起到增强磁场作用。磁轭110配置为U型轭铁115和顶盖116的装配方式,容易成型和装配。U型轭铁115和顶盖116均可采用金属板件制作。
在装配第一双极充永磁体120、第二双极充永磁体130和磁轭110时,参阅图20,U型轭铁115和顶盖116之间通过相适配的第一凸台1161和第一槽口1151定位装配;第一双极充永磁体120和顶盖116之间通过相适配的第二凸台1162和第二槽口123定位装配;第二双极充永磁体130和U型轭铁115之间通过相适配的第三凸台1152和第三槽口133定位装配。
该方案中,两个结构件之间通过相适配的凸台和槽口,凸台能伸入槽口内,便于两个结构件的快速定位装配。比如,U型轭铁115和顶盖116之间通过相适配的第一凸台1161和第一槽口1151定位装配,可以是U型轭铁115具有第一槽口1151而顶盖116具有第一凸台1161,还可以是U型轭铁115具有第一凸台而顶盖116具有第一槽口。在装配时,将第一凸台1161对齐设置在第一槽口1151内,就能将顶盖116定位在U型轭铁115上,提升装配效率。类似的,第一双极充永磁体120和顶盖116之间,第二双极充永磁体130和U型轭铁115之间,也能通过相适配的凸台和槽口,快速定位装配。
U型轭铁115和顶盖116之间可通过激光焊接等方式连接。第一双极充永磁体120和顶盖116之间,第二双极充永磁体130和U型轭铁115之间可通过磁吸相连接。不需要采用胶水进行粘接固定,降低了可能腐蚀器件的有害气体产生。
在另一些实施例中,参阅图22至图24,磁轭110包括多个金属板件117,多个金属板件117围成框状部110a,这种方式也能将磁力线封闭在预定区域内部,起到增强磁场作用。磁轭110可以有多种实现方式,比如四个一字型金属板件相连接形成框状部,两个L型的金属板件相连接形成框状部,或者一个L型金属板件和两个一字型金属板件相连接形成框状部。可以理解的,多个金属板件117之间可通过相适配的凸台和槽口定位,并通过激光焊接等方式连接。
在一些实施例中,第一双极充永磁体120和第二双极充永磁体130设置为多组,线圈142的数量为多个,多个线圈142串联,多个线圈142一一对应分布在多组第一双极充永磁体120和第二双极充永磁体130之间。
该方案通过配置多组双极充永磁体和线圈142,使得活动架141具有更大的输出力,以带动更大负载移动,即带动更多动触头组件300平移,使得该直线运动电磁机构100适用于三相四线380V交流双电源或其他多线电源的切换。
示例性的,多个第一双极充永磁体120沿第一方向X依次排列,多个第二双极充永磁体130沿第一方向X依次排列。多个线圈142沿第一方向X依次排列,并和各组第一双极充永磁体120和第二双极充永磁体130对应设置。第一方向X就是活动架141的直线移动方向。
示例性的,多个第一双极充永磁体120沿第二方向Y依次排列,多个第二双极充永磁体130沿第二方向Y依次排列。多个线圈142沿第二方向Y依次排列,并和各组第一双极充永磁体120和第二双极充永磁体130对应设置。第二方向Y分别与第一方向X、继电器的厚度方向相垂直。
示例性的,多组第一双极充永磁体120和第二双极充永磁体130沿第三方向Z分布,每组第一双极充永磁体120和第二双极充永磁体130之间设置有线圈142。第三方向Z就是继电器的厚度方向。
在一些实施例中,参阅图25,第一动铁芯143和第二动铁芯144均位于框状部110a外,第一动铁芯143位于第一磁体部121和第三磁体部131的同一端部以外,第二动铁芯144位于第二磁体部122和第四磁体部132的同一端部以外;第一动铁芯143上设有第一保持永磁体145,第二动铁芯144上设有第二保持永磁体146,第一保持永磁体145和第二保持永磁体146的导磁方向相反。
该方案中,将第一动铁芯143和第二动铁芯144设置在磁轭110的框状部110a外,便于结构装配。第一动铁芯143、第二动铁芯144、第一保持永磁体145和第二保持永磁体146为继电器1000提供保持力。通电后的线圈142可带动第一动铁芯143、第二动铁芯144、第一保持永磁体145和第二保持永磁体146相对于磁轭110沿第一方向X来回移动。
在磁轭110包括U型轭铁115和顶盖116时,可以先将U型轭铁115、顶盖116和线圈架装配好,再装配第一动铁芯143、第二动铁芯144、第一车体和第二车体,解决了U型轭铁115和顶盖116要在第一车体和第二车体的空腔中进行连接的问题,简化装配。
示例性的,第一动铁芯143大致设置为U型,第一动铁芯143的凹槽朝向磁轭110的第一段111,在凹槽位置设置第一保持永磁体145以提供保持力,弥补了由于第一动铁芯143外置而减小的保持力。第二动铁芯144大致设置为U型,第二动铁芯144的凹槽朝向磁轭110的第三段113,在凹槽位置设置第二保持永磁体146以提供保持力,弥补了由于第二动铁芯144外置而减小的保持力。
在一些实施例中,参阅图25,为了提供更大的保持力以使活动架可靠定位,驱动组件140还包括第三动铁芯147,第三动铁芯147设于活动架上,第三动铁芯147位于线圈142内,第三动铁芯147的相对两侧分别朝向第一双极充永磁体120和第二双极充永磁体130。
该方案中,在线圈142内设置第三动铁芯147,并使第三动铁芯147固定在活动架上。第一动铁芯143、第二动铁芯144、第三动铁芯147、第一保持永磁体145和第二保持永磁体146为继电器1000提供保持力。通电后的线圈142可带动第一动铁芯143、第二动铁芯144、第三动铁芯147、第一保持永磁体145和第二保持永磁体146相对于磁轭110沿第一方向X来回移动。第三动铁芯147将第一双极充永磁体120和第二双极充永磁体130联系起来,增加磁场的利用率。配置第一动铁芯143和第二动铁芯144后,能对活动架形成保持力。而在配置第三动铁芯147后,能形成更大的保持力,能更有效地降低活动架受到干扰而抖动,提升运行可靠性,使活动架上的动触头组件和静触头组件可靠接触或分离。第三动铁芯147可安装在活动架的槽位中。
参阅图3至图5,本申请实施例提供一种继电器1000,包括底座200、一个或多个动触头组件300、一个或多个静触头组件400,以及上述的直线运动电磁机构100,一个或多个静触头组件400设于底座200上,一个或多个动触头组件300设于活动架141上,一个或多个动触头组件300和一个或多个静触头组件400一一对应相对设置。
本申请实施例提供的继电器1000,配置了上述直线运动电磁机构100,由一个磁腔提供双极性磁场,通电线圈142在该双极性磁场中受安培力以驱动活动架141平移,带动活动架141上的动触头组件300和底座200上的静触头组件400进行分合闸动作。该直线运动电磁机构100在厚度上更小,结构紧凑。
该继电器1000可用于主电源和备用电源的切换场景。比如,网络数据中心、公有云服务器和交换机等高安全等级通信设备的双路混合供电场景,实现在主电源掉电时,使备用电源快速投切的场景,从而减少***的掉电时间,降低数据丢失,避免业务损失。该继电器1000能实现交流电(alternating current,AC)和高压直流(high voltage direct current,HVDC)大功率电源的接通与断开,实现电能快速切换,减小切换过程的电力中断时间。该继电器1000能具有明显物理断口,与电力 电子开关相比,安全性更高。
在设置底座200时,参阅图26,底座200具有容纳槽201,容纳槽201用于安装直线运动电磁机构100。参阅图4,继电器1000还包括安装于底座200上的盖体500,盖体500能盖住直线运动电磁机构100、动触头组件300、静触头组件400等相关器件,以保护这些器件。
在设置动触头组件300时,参阅图27,每个动触头组件300包括支架310、两个动簧片320和多个动触点330,支架310的相对两侧分别设有一个动簧片320,每个动簧片320的两端分别设置有一个动触点330。动簧片320采用弹性材料制作,具有一定弹性变形能力,在动簧片320的动触点330和静触头组件400接触时,动簧片320会弹性变形,减少弹跳发生,提升工作可靠性。动触头组件300中的两个动簧片320采用分体设计,两者之间气体绝缘,实现可靠的电气间隙。
在装配支架310和动簧片320时,支架310具有定位杆311,动簧片320具有型孔321,定位杆311和型孔321的横截面相适配,定位杆311穿设在型孔321时限定了动簧片320的周向位置,使动簧片320上的动触点330保持在预定位置上。示例性的,型孔321为腰型孔,定位杆311设置为和腰型孔相适配的形状。此外,型孔321和定位杆311还可以设置为其他相适配的形状。
在一些实施例中,为了实现动触头组件300的低弹跳效果,每个动触头组件300还包括两个弹片340,支架310的相对两侧分别设有一个弹片340,两个动簧片320一一对应地设于两个弹片340背对支架310的一侧。通过在每个动簧片320和支架310之间设置弹片340,使得两个动簧片320间隔一定距离,也提升了动簧片320表现出的弹性变形能力,进一步降低动簧片320的弹跳。其中,弹片340可以设置为弯折结构,弹片340的一端抵设于支架310,另一端抵设于动簧片320。
在装配支架310和弹片340时,类似于支架310和动簧片320的装配关系,通过支架310的定位杆311和弹片340的型孔341实现弹片340的定位装配。
此外,每个动簧片320背向弹片340的一侧可以设置垫片350,结合图15,便于将一体的动触头组件300插设在活动架141中的第一车体141b的第一安装槽1413a(或第二车体141c的第二安装槽1415a)内,连接可靠,装配方便。类似的,支架310的定位孔和垫片350的型孔351配合,将垫片350装配在动簧片320上。
在设置静触头组件400时,参阅图28、图29,每个静触头组件400包括四个静触片410、四个静触点420和两个灭弧永磁体430;静触片410成对间隔设置,结合图3,每对静触片410和一个动簧片320对应设置,同一个动触头组件300中的两个动簧片320位于两对静触片410之间;每个静触片410上均设有静触点420,静触点420和动触点330一一对应配合;在两个动簧片320的排布方向(即第一方向X)上,每相邻两个静触片410之间均设有一个灭弧永磁体430。
静触头组件400和动触头组件300对应设置,动触头组件300的每个动簧片320和静触头组件400的其中两个静触片410对应。在动簧片320上的两个动触点330和两个静触片410上的静触点420一一对应相接触时,电路导通。在两个动触点330和对应静触点420分离时,电路断开。静触片410可采用不易发生形变的刚性材料制作。静触点420可铆接在静触片410上。灭弧永磁体430用于静触头组件400和动触头组件300分离时快速灭弧。
位于动簧片320的其中一端的相邻两个静触片410可以为一体成型结构,用于和用电设备连接,一体成型的静触片410容易成型。位于动簧片320另外一端的相邻两个静触片410分别与主电源和备用电源连接。
此外,底座200上还设置有多个引脚440,便于电源和用电设备接入。引脚440可采用不易发生形变的刚性材料制作。底座200的相对两端分别设置多个引脚440,这样使继电器结构紧凑,便于接线。引脚440和静触片410之间可通过导线450连接。示例性的,底座200共配置16个引脚440,包括12个功率引脚、2个辅助触点引脚和2个线圈引脚。
在装配静触片410、灭弧永磁体430和引脚440在底座200上时,底座200上可设置相应的槽口,实现不同结构的插接装配。
在一些实施例中,参阅图26、图28,底座200上可设置多个第一塑料栅片210,每相邻两个静触片410之间均间隔设有多个第一塑料栅片210,用于静触头组件400和动触头组件300分离时快速灭弧。参阅图30,盖体500的底面可设置多个第二塑料栅片510,每相邻两个静触片410之间均间隔设有多个第二塑料栅片510,用于静触头组件400和动触头组件300分离时快速灭弧。
在一些实施例中,参阅图4、图5,继电器1000还包括安装于底座200上的导向件220,导向件220用于导引活动架141沿预定方向移动。
示例性的,导向件220可以设置为导向盖,导向盖可以扣在活动架141的第一车体141b(第二车体141c)的上侧,导向盖包括横向臂221和两个竖向臂222,两个竖向臂222分别连接于横向臂221的两端。结合图8,第一车体141b和第二车体141c的上侧具有限位槽141d。第一车体141b(第二车体141c)滑动安装在底座200上,导向盖的横向臂221扣在限位槽141d上,两个竖向臂222对应车体的两个相对侧壁设置,两个竖向臂222连接在底座200上,从而限定了车体的移动方向和移动范围。
参阅图31,本申请实施例提供一种配电盒2000,包括电路板2001和上述的继电器1000,继电器1000和电路板2001电连接。
该配电盒2000可连接两路电源和用电设备,通过使继电器1000上的多个动触头组件300和静触头组件400接触或分离配合,可实现两路电源的切换并对用电设备供电。
示例性的,该继电器1000所连接的主电源可以是交流电(alternating current,AC),所连接的备用电源可以是光伏电源、高压直流(high voltage direct current,HVDC)大功率电源。该继电器1000能实现多路电源的接通与断开,实现电能快速切换,减小切换过程的电力中断时间。该配电盒2000可用于单相双路电源的切换,还能用于如图32所示的三相四线双电源的切换,还能用于其他多线双路电源的大功率切换。
在一些实施例中,参阅图31,配电盒2000还包括盒体2002,电路板2001安装于盒体2002。电路板2001可以包括驱动板和功率板。电路板2001上设有连接器。连接器可以包括两个输入电源连接器2003和一个输出电源连接器2004。两个输入电源连接器2003分别用于连接主电源和备用电源。输出电源连接器2004用于连接用电设备。
参阅图33,本申请实施例提供一种通信设备,包括用电设备3000和上述的配电盒2000,用电设备3000和配电盒2000电连接。其中,用电设备3000可以是网络数据中心、公有云服务器和交换机等用电设备3000。实现在主电源4001掉电时,使备用电源4002快速投切的场景,从而减少***的掉电时间,降低数据丢失,避免业务损失。
示例性的,配电盒2000中的继电器1000的一侧连接主电源4001和备用电源4002,另一侧连接用电设备3000。通过检测与控制***2100实现自动化控制,在检测出主电源4001掉电时,快速切换至备用电源4002供电。用电设备3000还可以配置备用电池4003,在检测出主电源4001掉电时,使备用电池4003和用电设备3000之间的电路接通,由备用电池4003和备用电源4002同时供电,提升设备运行可靠性。备用电池4003可以是铅酸电池或锂电池等。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种直线运动电磁机构,其特征在于,包括:磁轭、第一双极充永磁体、第二双极充永磁体和驱动组件;
    所述磁轭具有框状部;
    所述第一双极充永磁体和所述第二双极充永磁体分别贴合于所述框状部的两个相对内壁上,所述第一双极充永磁体具有相连接且导磁方向相反的第一磁体部和第二磁体部,所述第二双极充永磁体具有相连接且导磁方向相反的第三磁体部和第四磁体部;所述第一磁体部和所述第三磁体部相间隔设置且导磁方向相同,所述第二磁体部和所述第四磁体部相间隔设置且导磁方向相同;
    所述驱动组件包括活动架、线圈、第一动铁芯和第二动铁芯;所述活动架能够在所述第一磁体部和所述第二磁体部之间分界面的垂直方向上来回移动,以带动动触头组件移动;
    所述线圈设于所述活动架,所述线圈包括相连接的第一半环部和第二半环部,所述第一半环部位于所述第一磁体部和所述第三磁体部之间,所述第二半环部位于所述第二磁体部和所述第四磁体部之间;
    所述第一动铁芯和所述第二动铁芯均设于所述活动架上,所述第一动铁芯位于所述第一半环部背对所述第二半环部的一侧,所述第二动铁芯位于所述第二半环部背对所述第一半环部的一侧。
  2. 根据权利要求1所述的直线运动电磁机构,其特征在于,所述第一动铁芯和所述第二动铁芯均位于所述框状部内,所述第一动铁芯位于所述第一磁体部和所述第三磁体部之间,所述第二动铁芯位于所述第二磁体部和所述第四磁体部之间;
    或,所述第一动铁芯和所述第二动铁芯均位于所述框状部外,所述第一动铁芯位于所述第一磁体部和所述第三磁体部的同一端部以外,所述第二动铁芯位于所述第二磁体部和所述第四磁体部的同一端部以外;所述第一动铁芯上设有第一保持永磁体,所述第二动铁芯上设有第二保持永磁体,所述第一保持永磁体和所述第二保持永磁体的导磁方向相反。
  3. 根据权利要求1或2所述的直线运动电磁机构,其特征在于,所述驱动组件还包括第三动铁芯,所述第三动铁芯设于所述活动架上,所述第三动铁芯位于所述线圈内,所述第三动铁芯的相对两侧分别朝向所述第一双极充永磁体和所述第二双极充永磁体。
  4. 根据权利要求1至3任一项所述的直线运动电磁机构,其特征在于,所述框状部包括依次连接的第一段、第二段、第三段和第四段,所述第一双极充永磁体和所述第四段的内壁贴合,所述第二双极充永磁体和所述第二段的内壁贴合,所述第一段和所述第一动铁芯相对设置,所述第三段和所述第二动铁芯相对设置;
    所述第一段对应于所述第一动铁芯处具有第一开口,所述第三段对应于所述第二动铁芯处具有第二开口。
  5. 根据权利要求4所述的直线运动电磁机构,其特征在于,在所述驱动组件包括位于所述线圈内的第三动铁芯时,所述第二段对应于所述第三磁体部和所述第四磁体部之间分界面处具有第三开口,所述第四段对应于所述第一磁体部和所述第二磁体部之间分界面处具有第四开口。
  6. 根据权利要求1至5任一项所述的直线运动电磁机构,其特征在于,所述活动架包括线圈架、第一车体和第二车体,所述第一车体和所述第二车体分别固定于所述线圈架的相对两端,所述线圈设于所述线圈架上,所述第一车体用于安装第一动铁芯和部分动触头组件,所述第二车体用于安装第二动铁芯和部分动触头组件。
  7. 根据权利要求6所述的直线运动电磁机构,其特征在于,所述第一车体包括第一安装臂和连接于所述第一安装臂上的第一框部,所述第一安装臂具有用于安装动触头的第一安装槽,所述第一框部固定于所述线圈架上,所述第一动铁芯固定在所述第一框部上;
    所述第二车体包括第二安装臂和连接于所述第二安装臂上的第二框部,所述第二安装臂具有用于安装动触头的第二安装槽,所述第二框部固定于所述线圈架上,所述第二动铁芯固定在所述第二框部上。
  8. 根据权利要求1至7任一项所述的直线运动电磁机构,其特征在于,所述磁轭包括U型轭铁和顶盖,所述顶盖的两端分别固定于所述U型轭铁的两端,所述第一双极充永磁体和所述顶 盖的内壁贴合,所述第二双极充永磁体和所述U型轭铁的内壁贴合。
  9. 根据权利要求8所述的直线运动电磁机构,其特征在于,所述U型轭铁和所述顶盖之间通过相适配的第一凸台和第一槽口定位装配;
    和/或,所述第一双极充永磁体和所述顶盖之间通过相适配的第二凸台和第二槽口定位装配;
    和/或,所述第二双极充永磁体和所述U型轭铁之间通过相适配的第三凸台和第三槽口定位装配。
  10. 根据权利要求1至9任一项所述的直线运动电磁机构,其特征在于,所述第一双极充永磁体和所述第二双极充永磁体设置为多组,所述线圈的数量为多个,多个所述线圈串联,多个所述线圈一一对应分布在多组所述第一双极充永磁体和所述第二双极充永磁体之间。
  11. 一种继电器,其特征在于,包括底座、一个或多个动触头组件、一个或多个静触头组件,以及如权利要求1至10任一项所述的直线运动电磁机构,一个或多个所述静触头组件设于所述底座上,一个或多个所述动触头组件设于所述活动架上,一个或多个所述动触头组件和一个或多个所述静触头组件一一对应相对设置。
  12. 根据权利要求11所述的继电器,其特征在于,每个所述动触头组件包括支架、两个动簧片和多个动触点,所述支架的相对两侧分别设有一个所述动簧片,每个所述动簧片的两端分别设置有一个动触点。
  13. 根据权利要求12所述的继电器,其特征在于,每个所述动触头组件还包括两个弹片,所述支架的相对两侧分别设有一个弹片,两个所述动簧片一一对应地设于两个所述弹片背对所述支架的一侧。
  14. 根据权利要求12或13所述的继电器,其特征在于,每个所述静触头组件包括四个静触片、四个静触点和两个灭弧永磁体;
    所述静触片成对间隔设置,每对所述静触片和一个所述动簧片对应设置,同一个所述动触头组件中的两个所述动簧片位于两对所述静触片之间;
    每个所述静触片上均设有所述静触点,所述静触点和所述动触点一一对应配合;
    在两个所述动簧片的排布方向上,每相邻两个所述静触片之间均设有一个所述灭弧永磁体。
  15. 一种配电盒,其特征在于,包括电路板和如权利要求11至14任一项所述的继电器,所述继电器和所述电路板电连接。
  16. 一种通信设备,其特征在于,包括用电设备和如权利要求15所述的配电盒,所述用电设备和所述配电盒电连接。
PCT/CN2023/103853 2022-08-26 2023-06-29 一种直线运动电磁机构、继电器、配电盒及通信设备 WO2024041190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211034449.0A CN117672766A (zh) 2022-08-26 2022-08-26 一种直线运动电磁机构、继电器、配电盒及通信设备
CN202211034449.0 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024041190A1 true WO2024041190A1 (zh) 2024-02-29

Family

ID=90012369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103853 WO2024041190A1 (zh) 2022-08-26 2023-06-29 一种直线运动电磁机构、继电器、配电盒及通信设备

Country Status (2)

Country Link
CN (1) CN117672766A (zh)
WO (1) WO2024041190A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157493A (ja) * 2016-03-04 2017-09-07 三菱電機株式会社 電磁アクチュエータおよびそれを用いた電磁リレー
CN113192779A (zh) * 2021-05-13 2021-07-30 大连理工大学 双电源切换的继电器操动机构、切换拓扑结构及控制方法
CN215527608U (zh) * 2021-06-30 2022-01-14 上海良信电器股份有限公司 一种接触器的串联磁路结构
CN114597097A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 一种继电器
CN114927386A (zh) * 2022-06-09 2022-08-19 昆山国力源通新能源科技有限公司 可快速响应的直流接触器电磁驱动机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157493A (ja) * 2016-03-04 2017-09-07 三菱電機株式会社 電磁アクチュエータおよびそれを用いた電磁リレー
CN114597097A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 一种继电器
CN113192779A (zh) * 2021-05-13 2021-07-30 大连理工大学 双电源切换的继电器操动机构、切换拓扑结构及控制方法
CN215527608U (zh) * 2021-06-30 2022-01-14 上海良信电器股份有限公司 一种接触器的串联磁路结构
CN114927386A (zh) * 2022-06-09 2022-08-19 昆山国力源通新能源科技有限公司 可快速响应的直流接触器电磁驱动机构

Also Published As

Publication number Publication date
CN117672766A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US8330564B2 (en) Switching devices configured to control magnetic fields to maintain an electrical connection
JP5918424B2 (ja) 電磁接触器
WO2021258895A1 (zh) 一种直流接触器及车辆
US9053885B2 (en) Bistable high-performance miniature relay
JP7386336B2 (ja) 直流接触器及び車両
CN112309775B (zh) 一种直流接触器、配电盒、动力电池总成与车辆
JP2016072021A (ja) 接点装置
JP2016072020A (ja) 接点装置
JP5710984B2 (ja) 電磁接触器
US20230317391A1 (en) Relay
WO2024041190A1 (zh) 一种直线运动电磁机构、继电器、配电盒及通信设备
WO2008113245A1 (fr) Relais de verrouillage magnétique externe
CN215527608U (zh) 一种接触器的串联磁路结构
CN213845169U (zh) 磁保持继电器
JP2012199136A (ja) リレー装置
CN210120089U (zh) 一种可断开闭合电路的电表连接结构及包含其的电能表
CN216773148U (zh) 一种能够切换电路的磁保持继电器
CN219040365U (zh) 触头结构和继电器
CN216145561U (zh) 一种接触器的磁路结构
CN112614746B (zh) 磁保持磁路装置及直流接触器
CN218333625U (zh) 交流线圈继电器
WO2023108828A1 (zh) 一种使用可靠的继电器
WO2024114755A1 (zh) 继电器
CN220796597U (zh) 继电器
WO2023108827A1 (zh) 一种抗短路的继电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856281

Country of ref document: EP

Kind code of ref document: A1