WO2024114755A1 - 继电器 - Google Patents

继电器 Download PDF

Info

Publication number
WO2024114755A1
WO2024114755A1 PCT/CN2023/135573 CN2023135573W WO2024114755A1 WO 2024114755 A1 WO2024114755 A1 WO 2024114755A1 CN 2023135573 W CN2023135573 W CN 2023135573W WO 2024114755 A1 WO2024114755 A1 WO 2024114755A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic conductor
push rod
rod mechanism
spring piece
magnetic
Prior art date
Application number
PCT/CN2023/135573
Other languages
English (en)
French (fr)
Inventor
何仲波
钟叔明
代文广
何峰
苏礼季
申昆明
Original Assignee
厦门宏发电力电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门宏发电力电器有限公司 filed Critical 厦门宏发电力电器有限公司
Publication of WO2024114755A1 publication Critical patent/WO2024114755A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/04Mounting complete relay or separate parts of relay on a base or inside a case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact

Definitions

  • the present invention relates to the technical field of electronic control devices, and in particular to a relay.
  • a relay is an electronic control device that has a control system (also known as an input circuit) and a controlled system (also known as an output circuit). It is usually used in automatic control circuits.
  • a relay is actually an "automatic switch” that uses a smaller current to control a larger current. Therefore, it plays the role of automatic regulation, safety protection, and circuit conversion in the circuit.
  • the relay contacts When the short-circuit load is very large, the relay contacts will bounce open due to the electrostatic repulsion generated by the short-circuit current. The instantaneous bounce of the contacts will cause the relay to burn or explode under the action of a strong electric arc.
  • relays are usually equipped with anti-short circuit structures to prevent contacts from bouncing.
  • a magnetic conductor is set inside the relay. Under the action of a short circuit current, the magnetic conductor is magnetized to form a closed-loop magnetic field to generate electromagnetic attraction, thereby preventing the repulsive force generated by the short circuit current from causing the moving spring to instantly bounce open, thereby avoiding the relay from burning or exploding.
  • the fixed arrangement of the magnetic conductor in the related art can only adapt to a single set of moving and static contacts, and cannot meet the anti-short circuit requirements of two or more sets of moving and static contacts.
  • An embodiment of the present invention provides a relay to meet the anti-short circuit requirements of two or more groups of moving and static contacts.
  • the relay of the embodiment of the present invention comprises a housing, at least one contact assembly, a push rod mechanism and at least one first magnetic conductor, wherein the housing is provided with a mounting portion; each of the contact assemblies comprises a static spring and a dynamic spring, wherein the static spring is fixedly connected to the housing, the dynamic spring is arranged in the housing, and the dynamic spring is arranged in the housing; the push rod mechanism is movable relative to the housing along the contact and separation direction of the contact assemblies, the dynamic spring is arranged on the push rod mechanism, and the push rod mechanism can drive the dynamic spring to move so that the dynamic spring contacts or separates from the corresponding static spring; wherein the mounting portion is located on one side of the push rod mechanism in a radial direction, and the radial direction is perpendicular to the movement direction of the push rod mechanism; the at least one first magnetic conductor corresponds one-to-one to the at least one dynamic spring of the at least one contact assembly, and the first magnetic conductor is fixedly connected to the mounting portion and is located on the side of
  • the housing includes a side wall, the side wall is located on one side of the push rod mechanism in a radial direction, and the mounting portion is formed on the side wall.
  • the side wall surrounds the push rod mechanism along a circumferential direction of the push rod mechanism.
  • the housing comprises:
  • An outer cover is connected to the base, wherein the outer cover and the base form a chamber for accommodating the contact assembly, the push rod mechanism and the first magnetic conductor; the base and/or the outer cover form the side wall.
  • the first magnetic conductor includes a connecting portion and a suspended portion, and the connecting portion is fixedly connected to the mounting portion;
  • a virtual plane perpendicular to the movement direction of the push rod mechanism is defined, the connecting part has a first orthographic projection on the virtual plane, the suspended part has a second orthographic projection on the virtual plane, and the movable spring has a third orthographic projection on the virtual plane, the first orthographic projection does not overlap with the third orthographic projection, and the second orthographic projection at least partially overlaps with the third orthographic projection.
  • the first magnetic conductor is a flat plate structure.
  • the first magnetic conductor is inserted into the mounting portion of the housing along an insertion direction, and the insertion direction is perpendicular to the movement direction of the push rod mechanism.
  • the mounting portion includes a first mounting hole, the first mounting hole passes through the inner surface and the outer surface of the housing, and the hole wall of the first mounting hole has a first positioning wall structure and a first gap wall structure;
  • the first magnetic conductor is inserted into the first mounting hole, and part of the outer wall surface of the first magnetic conductor abuts against the first positioning wall structure. There is a gap between part of the outer wall surface of the first magnetic conductor and the first gap wall structure, and the gap is filled with sealant.
  • a portion of the outer wall surface of the first magnetic conductor is interference-fitted with the first positioning wall structure.
  • the first positioning wall structure includes a first positioning wall and a second positioning wall, and the first positioning wall and the second positioning wall are arranged opposite to each other along the movement direction of the push rod mechanism.
  • the insertion direction of the first magnetic conductor is perpendicular to the length direction of the movable spring.
  • the static spring sheet is inserted into the housing along the insertion direction.
  • the housing further has a second mounting hole penetrating through the inner surface and the outer surface thereof, and the hole wall of the second mounting hole has a second positioning wall structure and a second gap wall structure;
  • the static spring piece is inserted into the second mounting hole, and part of the outer wall surface of the static spring piece abuts against the second positioning wall structure. There is a gap between part of the outer wall surface of the static spring piece and the second gap wall structure, and the gap is filled with sealant.
  • a portion of the outer wall surface of the static spring sheet is interference fit with the second positioning wall structure.
  • the second positioning wall structure includes a third positioning wall and a fourth positioning wall, and the third positioning wall and the fourth positioning wall are arranged opposite to each other along the movement direction of the push rod mechanism.
  • the relay further comprises at least one second magnetic conductor, the at least one second magnetic conductor corresponding to the at least one first magnetic conductor;
  • the second magnetic conductor is fixedly connected to a side of the movable spring piece facing away from the first magnetic conductor, so that a magnetic conductive loop is formed between the corresponding first magnetic conductor and the second magnetic conductor in the width direction of the movable spring piece.
  • the second magnetic conductor is U-shaped and covers the movable reed along the width direction of the movable reed.
  • the second magnetic conductor includes at least two sub-magnetic conductors, each of which is U-shaped;
  • the movable spring piece is provided with at least one through hole, at least two of the sub-magnetic conductors are connected to the side of the movable spring piece facing away from the first magnetic conductor, and the side portions of at least two of the sub-magnetic conductors pass through at least one through hole so as to be close to or contact the first magnetic conductor through the through hole, and form at least two independent magnetic conductive circuits in the width direction of the movable spring piece.
  • the mounting portion on the shell is located on one side of the push rod mechanism in the radial direction, wherein the radial direction is perpendicular to the movement direction of the push rod mechanism, so that the position where the first magnetic conductor is fixedly connected to the mounting portion is also located on one side of the push rod mechanism, that is, the position where the first magnetic conductor is connected to the mounting portion of the shell is not located above the moving spring sheet, so that after the shell is provided with multiple first magnetic conductors, each first magnetic conductor will not affect the movement of the push rod mechanism. Therefore, in the relay of this embodiment, multiple first magnetic conductors can be provided corresponding to multiple contact assemblies, so that each contact assembly is provided with an anti-short circuit structure.
  • FIG. 1 is a top view of a relay according to an embodiment of the present invention, wherein the outer cover is omitted.
  • FIG2 shows a cross-sectional view along the line A-A in FIG1.
  • FIG3 shows a cross-sectional view along the line B-B in FIG2 .
  • FIG. 4 is a schematic diagram showing the relative positions of the first orthographic projection, the second orthographic projection and the third orthographic projection on the virtual plane.
  • FIG5 shows a cross-sectional view along the line C-C in FIG2.
  • FIG. 6 shows a partial enlarged view of the X1 in FIG. 5 .
  • FIG. 7 shows a partial enlarged view of the X2 portion in FIG. 5 .
  • FIG8 is a schematic diagram showing the push rod, the yoke plate, the first magnetic conductor, the second magnetic conductor and the contact assembly after being assembled according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the first magnetic conductor, the second magnetic conductor and the contact assembly after being assembled according to the first embodiment of the present invention.
  • 10 and 11 are schematic diagrams showing two different perspectives of the assembled movable spring and the second magnetic conductor according to the second embodiment of the present invention.
  • FIGS. 12 and 13 are schematic diagrams showing two different viewing angles of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the third embodiment of the present invention, respectively.
  • FIG. 14 is a cross-sectional view taken along line D-D in FIG. 13 .
  • 15 and 16 are schematic diagrams showing two different viewing angles of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the fourth embodiment of the present invention, respectively.
  • FIG17 is a cross-sectional view taken along line E-E in FIG16 .
  • FIGS. 18 and 19 are schematic diagrams showing two different viewing angles of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the fifth embodiment of the present invention, respectively.
  • FIG20 is a cross-sectional view taken along line F-F in FIG19 .
  • 21 and 22 are schematic diagrams showing two different viewing angles of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the sixth embodiment of the present invention, respectively.
  • FIG23 shows a cross-sectional view taken along line G-G in FIG22 .
  • 24 and 25 are schematic diagrams showing two different viewing angles of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the seventh embodiment of the present invention, respectively.
  • FIG. 26 is a cross-sectional view taken along line H-H in FIG. 25 .
  • the reference numerals are described as follows: 1. Shell; 11. Mounting portion; 10. Base; 110. First mounting hole; 111. First positioning wall structure; 112. First gap wall structure; 113, first positioning wall; 114, second positioning wall; 120, second mounting hole; 121, second positioning wall structure; 122, second gap wall structure; 123, third positioning wall; 124, fourth positioning wall; 130, bottom plate; 140, side plate; 20, push rod mechanism; 210, push rod; 220, iron core; 30, magnetic circuit mechanism; 310, yoke structure; 311, yoke plate; 3111, through hole; 312, U-shaped yoke; 320, wire rack; 321, center hole; 330, coil; 340, permanent magnet; 40, contact assembly; 40a, first contact assembly; 40b, second contact assembly; 410, first moving spring; 411, first moving contact; 412, first moving spring body ;414, through hole;420, first static spring piece;421, first static spring body;422, first static contact;430, second dynamic spring piece;43
  • Figure 1 shows a top view of a relay according to an embodiment of the present invention, wherein the outer cover is omitted
  • Figure 2 shows a cross-sectional view along A-A in Figure 1
  • Figure 3 shows a cross-sectional view along B-B in Figure 2.
  • the relay according to the embodiment of the present invention comprises a housing 1, a push rod mechanism 20, a magnetic circuit mechanism 30 and a contact assembly 40.
  • the housing 1 is the outer shell of the relay.
  • the push rod mechanism 20, the magnetic circuit mechanism 30 and the contact assembly 40 are arranged in the housing 1, and the magnetic circuit mechanism 30 controls the contact contact or separation of the contact assembly 40 through the push rod mechanism 20.
  • the housing 1 may include a base 10 and an outer cover (not shown in the figure), wherein the outer cover is connected to the base 10 to form a chamber for accommodating the push rod mechanism 20 , the magnetic circuit mechanism 30 and the contact assembly 40 .
  • the magnetic circuit mechanism 30 includes a yoke structure 310, a bobbin 320 and a coil 330.
  • the yoke structure 310 forms a chamber, and the bobbin 320 and the coil 330 are both arranged in the chamber of the yoke structure 310.
  • the coil 330 is wound around the outer periphery of the bobbin 320 to form a magnetic control circuit.
  • the bobbin 320 is provided with a center hole 321 in the contact contact and separation direction of the contact assembly 40, and the center hole 321 is used for one end of the push rod mechanism 20 to pass through.
  • the yoke structure 310 includes a yoke plate 311 and a U-shaped yoke 312, and the yoke plate 311 and the U-shaped yoke 312 are connected to form a ring.
  • the yoke plate 311 is provided with a through hole 3111, and the through hole 3111 is used for the push rod mechanism 20 to pass through.
  • the yoke structure 310 may also include a cylindrical yoke and a yoke plate 311 , and the cylindrical yoke and the yoke plate 311 are connected to form a ring.
  • the magnetic circuit mechanism 30 further includes two permanent magnets 340, which are disposed on the wire frame 320 and located on both sides of the movement direction D3 of the push rod mechanism 20.
  • the two permanent magnets 340 form a magnetic circuit structure of magnetic retention, which is beneficial to reduce electricity costs, extend service life, and improve stability.
  • the push rod mechanism 20 is movable relative to the base 10 along the contact contact or separation direction of the contact assembly 40.
  • the push rod mechanism 20 includes a push rod 210 and an iron core 220, and the iron core 220 is connected to the push rod 210.
  • the iron core 220 can move along the contact contact or separation direction under the action of the magnetic control circuit formed by the coil 330, thereby driving the push rod 210 to move, so as to control the contact contact or separation of the contact assembly 40.
  • the contact assembly 40 includes a moving reed (410, 430) and a stationary reed (420, 440).
  • the stationary reed (420, 440) is fixedly mounted on the base 10, and the moving reed (410, 430) is arranged in the housing 1.
  • the moving reed (410, 430) is installed on the push rod mechanism 20 and moves with the push rod mechanism 20.
  • the contact assembly 40 is divided into two groups, namely, a first contact assembly 40a and a second contact assembly 40b, which are arranged along the movement direction D3 of the push rod mechanism 20.
  • the first contact assembly 40a is close to the magnetic circuit mechanism 30, and the second contact assembly 40b is far away from the magnetic circuit mechanism 30.
  • the first contact assembly 40a includes a first movable reed 410 and two first stationary reeds 420.
  • the second contact assembly 40b includes a second movable reed 430 and two second stationary reeds 440. Both ends of the first movable reed 410 can contact or separate from the two first stationary reeds 420, and both ends of the second movable reed 430 can contact or separate from the two second stationary reeds 440.
  • the contact assembly 40 may also be a group or other quantity.
  • the two ends of the moving reed (410, 430) in the length direction D1 serve as moving contacts, and the moving contacts may protrude from other parts of the moving reed (410, 430) or may be flush with other parts.
  • the part of the stationary reed (420, 440) in contact with the moving contacts serves as a stationary contact, and the stationary contact may protrude from other parts of the stationary reed (420, 440) or may be flush with other parts.
  • the first movable spring piece 410 includes a first movable spring body 412 and a first movable contact 411.
  • the first movable contact 411 and the first movable spring body 412 are separate structures.
  • the first movable contact 411 and the first movable spring body 412 can be connected by riveting, but the present invention is not limited thereto.
  • the first static spring piece 420 includes a first static spring body 421 and a first static contact 422.
  • the first static contact 422 and the first static spring body 421 are separate structures.
  • the first static contact 422 and the first static spring body 421 can be connected by riveting, but the present invention is not limited thereto.
  • the second movable spring piece 430 includes a second movable spring body 434 and a second movable contact 431.
  • the second movable contact 431 and the second movable spring body 434 are separate structures.
  • the second movable contact 431 and the second movable spring body 434 can be connected by riveting, but the present invention is not limited thereto.
  • the second static spring piece 440 includes a second static spring body 441 and a second static contact 442.
  • the second static contact 442 and the second static spring body 441 are separate structures.
  • the second static contact 442 and the second static spring body 441 can be connected by riveting, but the present invention is not limited thereto.
  • first moving contact 411 and the first moving spring body 412 can be an integral structure; the first static contact 422 and the first static spring body 421 can be an integral structure; the second moving contact 431 and the second moving spring body 434 can be an integral structure; the second static contact 442 and the second static spring body 441 can be an integral structure.
  • the housing 1 can also be a ceramic cover.
  • the housing 1 is provided with a mounting portion 11, and the mounting portion 11 is located on one side of the push rod mechanism 20 in the radial direction, and the radial direction is perpendicular to the movement direction D3 of the push rod mechanism 20.
  • the relay of the embodiment of the present invention further includes at least one first magnetic conductor 610, and the at least one first magnetic conductor 610 corresponds to the moving spring of at least one contact assembly 40, that is, it is respectively located on one side of at least one moving spring facing the corresponding static spring.
  • the first magnetic conductor 610 is fixedly connected to the mounting portion 11.
  • At least one first magnetic conductor 610 corresponds to at least one contact assembly 40, which means that the number of first magnetic conductors 610 corresponds to the number of contact assemblies 40, and the positions of first magnetic conductors 610 correspond to the positions of contact assemblies 40.
  • there are two contact assemblies 40 so there are also two first magnetic conductors 610, and one of the first magnetic conductors is 610 corresponds to the first movable reed 410 of the first contact assembly 40a, and another first magnetic conductor 610 corresponds to the second movable reed 430 of the second contact assembly 40b.
  • the multiple contact assemblies 40 in the relay of this embodiment are correspondingly provided with multiple first magnetic conductors 610, so that each contact assembly 40 is provided with an anti-short circuit structure.
  • the housing 1 includes a top wall, a bottom wall and a side wall, the top wall and the bottom wall are arranged opposite to each other along the movement direction of the push rod mechanism 20, and the side wall is connected to the top wall and the bottom wall.
  • the side wall is located on one side of the push rod mechanism 20 in the radial direction, and the mounting portion 11 is formed on the side wall.
  • the side wall surrounds the push rod mechanism 20 along the circumferential direction of the push rod mechanism 20 .
  • the shape of the housing 1 may include various embodiments.
  • the housing 1 may be prismatic, cylindrical, etc., but is not limited thereto.
  • the base 10 includes a bottom plate 130 and a side plate 140, the static spring is fixedly connected to the bottom plate 130, and the side plate 140 is connected to the bottom plate 130 and is located on one side of the radial direction of the push rod mechanism 20.
  • the base 10 is formed with a mounting portion 11, the bottom plate 130 and/or the side plate 140 of the base 10 are provided with the mounting portion 11.
  • the mounting portion 11 may be formed on the bottom plate 130, the mounting portion 11 may be formed on the side plate 140, and the mounting portion 11 may be formed on both the bottom plate 130 and the side plate 140.
  • the bottom plate 130 is defined as: the portion of the base 10 facing the circuit board when the relay is mounted on the circuit board.
  • FIG4 shows a schematic diagram of the relative positions of the first orthographic projection S1, the second orthographic projection S2 and the third orthographic projection S3 on the virtual plane P.
  • Each first magnetic conductor 610 includes a connecting portion 611 and a suspended portion 612, and the connecting portion 611 is fixedly connected to the mounting portion 11 of the base 10.
  • a virtual plane P perpendicular to the movement direction D3 of the push rod mechanism 20 is defined, the connecting portion 611 has a first orthographic projection S1 on the virtual plane P, the suspended portion 612 has a second orthographic projection S2 on the virtual plane P, and the movable spring (410, 430) has a third orthographic projection S3 on the virtual plane P, the first orthographic projection S1 does not overlap with the third orthographic projection S3, and the second orthographic projection S2 at least partially overlaps with the third orthographic projection S3.
  • the suspended portion 612 refers to the portion of the first magnetic conductor 610 that is suspended in the relay and does not contact any component of the relay.
  • the first magnetic conductor 610 is disposed on the movable reed (410, 430)
  • the movable spring piece (410, 430) contacts the stationary spring piece (420, 440)
  • current passes through the movable spring piece (410, 430), thereby forming a magnetic conductive circuit surrounding the movable spring piece (410, 430) at the outer periphery of the movable spring piece (410, 430) in the width direction D2.
  • the first magnet 610 is fixedly connected to the mounting portion 11 of the base 10 via the connecting portion 611, and does not follow the push rod mechanism 20, so that the suction force of the movable spring piece (410, 430) on the first magnet 610 acts on the base 10. Since the position of the base 10 is relatively fixed, the suction force of the first magnet 610 has nothing to do with the push rod mechanism 20. This can prevent the movable spring piece (410, 430) and the static spring piece (420, 440) from bouncing apart due to insufficient holding force of the push rod mechanism 20, causing the relay to burn out or explode.
  • the first orthographic projection S1 of the connecting portion 611 at which the first magnetic conductor 610 is fixedly connected to the base 10 on the virtual plane P does not overlap with the second orthographic projection S2 of the movable spring piece (410, 430) on the virtual plane P, that is, the position at which the first magnetic conductor 610 is connected to the base 10 is not located above the movable spring piece (410, 430), at least one first magnetic conductor 610 can be arranged on the base 10, so that at least one contact assembly 40 corresponds to one first magnetic conductor 610, so that each contact assembly 40 is provided with an anti-short circuit structure.
  • the first magnetic conductor 610 may be a flat plate structure.
  • the first magnetic conductor 610 may also be other regular shapes or special shapes.
  • the connecting portion 611 is inserted into the mounting portion 11 of the base 10 along an insertion direction D4 , and the insertion direction D4 is perpendicular to the movement direction D3 of the push rod mechanism 20 .
  • connection portion 611 is inserted into the base 10 along the insertion direction D4 perpendicular to the movement direction D3 of the push rod mechanism 20.
  • the first magnetic conductor 610 is a plate-shaped structure
  • the first magnetic conductor 610 is perpendicular to the movement direction D3 of the push rod mechanism 20.
  • one end of the first magnetic conductor 610 having the connection portion 611 is connected to the base 10, and one end of the first magnetic conductor 610 having the suspended portion 612 extends in the opposite direction of the insertion direction D4 until the suspended portion 612 and the movable spring sheet (410, 430) at least partially overlap in the movement direction D3 of the push rod mechanism 20.
  • the first magnetizer 610 is installed on the base 10 by plugging, which can simplify the assembly of the first magnetizer 610.
  • the first magnetizer 610 can also be connected to the base 10 by bonding, welding or other connection methods.
  • the insertion direction D4 of the first magnetic conductor 610 is perpendicular to the length direction D1 of the movable spring piece (410, 430). In other words, in space, the first magnetic conductor 610 and the movable spring piece (410, 430) are orthogonal.
  • the magnetic conductive loop formed on the outer periphery of the moving spring (410, 430) is along the width of the moving spring (410, 430). Since the first magnetizer 610 and the moving spring (410, 430) are orthogonal, the magnetic conductive loop will be along the length direction D1 of the suspended portion 612 of the first magnetizer 610, so that most of the suspended portion 612 is magnetized, further causing a magnetic field to be generated between the first magnetizer 610 and the moving spring (410, 430) through which the current flows. Produce stronger suction.
  • Figure 5 shows a cross-sectional view along C-C in Figure 2.
  • Figure 6 shows a partial enlarged view of X1 in Figure 5.
  • the mounting portion 11 includes a first mounting hole 110, and the first mounting hole 110 passes through the inner surface and the outer surface of the shell 1.
  • the hole wall of the first mounting hole 110 has a first positioning wall structure 111 and a first gap wall structure 112.
  • the first magnetizer 610 is inserted into the first mounting hole 110, and part of the outer wall surface of the first magnetizer 610 is in contact with the first positioning wall structure 111, and there is a gap between part of the outer wall surface of the first magnetizer 610 and the first gap wall structure 112, and the gap is filled with sealant.
  • the first mounting hole 110 is formed on the base 10 and passes through the inner surface and the bottom surface of the base 10 .
  • the assembly process of the first magnet 610 and the base 10 is as follows: firstly, the first magnet 610 and the first positioning wall structure 111 of the first mounting hole 110 of the base 10 are used to achieve preliminary positioning, and then the first magnet 610 and the base 10 are sealed and assembled by filling the gap between the first magnet 610 and the gap wall structure of the first mounting hole 110 with sealant. On the one hand, part of the outer wall surface of the first magnet 610 abuts against the positioning wall structure 111, thereby achieving preliminary positioning of the first magnet 610. On the other hand, there is a gap between part of the outer wall surface of the first magnet 610 and the gap wall structure 112.
  • the sealant can climb from the bottom surface of the base 10 along the gap to the inner surface of the base 10 until it climbs to the opening of the first mounting hole 110, so that the sealant fills the gap, further strengthening the sealing and positioning strength between the first magnet 610 and the base 10.
  • the resistance to welding heat of the relay product is improved by using the property that the sealant has stronger melting resistance than the plastic material.
  • the embodiment of the present invention reduces one dispensing step, effectively reduces the cost, and improves the assembly efficiency.
  • the first positioning wall structure 111 includes a first positioning wall 113 and a second positioning wall 114, and the first positioning wall 113 and the second positioning wall 114 are arranged opposite to each other along the movement direction D3 of the push rod mechanism 20.
  • the first positioning wall 113 and the second positioning wall 114 are respectively in contact with the first magnetic conductor 610, thereby limiting the degree of freedom of the first magnetic conductor 610 in the movement direction D3 of the push rod mechanism 20.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 are adapted to the outer contour of the first magnetizer 610.
  • the first positioning wall 113 and the second positioning wall 114 may be planes.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 may be arcuate surfaces.
  • Part of the outer wall surface of the first magnetizer 610 is interference fit with the first positioning wall structure 111.
  • the first magnetizer 610 is interference fit with the first positioning wall 113 and the second positioning wall 114 respectively.
  • a zero clearance fit can also be adopted between part of the outer wall surface of the first magnetizer 610 and the first positioning wall structure 111.
  • the static spring pieces (420, 440) are inserted into the base 10 along the insertion direction D4.
  • the static spring pieces (420, 440) and the first magnetic conductor 610 are both inserted into the base 10 along the insertion direction D4, and thus the static spring pieces (420, 440) and the first magnetic conductor 610 can be installed in the base 10 in the same process, saving assembly time.
  • the base 10 also has a second mounting hole 120 that passes through its inner surface and bottom surface, and the hole wall of the second mounting hole 120 has a second positioning wall structure 121 and a second gap wall structure 122.
  • the static spring sheet (420, 440) is inserted into the second mounting hole 120, and part of the outer wall surface of the static spring sheet (420, 440) abuts against the second positioning wall structure 121, and there is a gap between part of the outer wall surface of the static spring sheet (420, 440) and the second gap wall structure 122, and the gap is filled with sealant.
  • the assembly process of the static spring piece (420, 440) and the base 10 can refer to the assembly process of the first magnetic conductor 610 and the base 10, that is, the static spring piece (420, 440) and the second positioning wall structure 121 of the second mounting hole 120 are first preliminarily positioned, and then the sealant is filled into the gap between the static spring piece (420, 440) and the second gap wall structure 122.
  • the static spring sheet (420, 440) and the first magnetic conductor 610 can be assembled with the base 10 in the same dispensing process, which significantly improves the assembly efficiency.
  • the second positioning wall structure 121 includes a third positioning wall 123 and a fourth positioning wall 124, and the third positioning wall 123 and the fourth positioning wall 124 are arranged opposite to each other along the movement direction D3 of the push rod mechanism 20.
  • the third positioning wall 123 and the fourth positioning wall 124 are respectively in contact with the static spring piece (420, 440), thereby limiting the degree of freedom of the static spring piece (420, 440) in the movement direction D3 of the push rod mechanism 20.
  • the shapes of the third positioning wall 123 and the fourth positioning wall 124 are adapted to the outer contour of the lead-out pin of the static spring piece.
  • the third positioning wall 123 and the fourth positioning wall 124 may be planes.
  • the shapes of the third positioning wall 123 and the fourth positioning wall 124 may be arcuate surfaces.
  • Part of the outer wall surface of the static spring piece (420, 440) is interference fit with the second positioning wall structure 121.
  • part of the outer wall surface of the static spring piece (420, 440) is interference fit with the third positioning wall 123 and the fourth positioning wall 124 respectively.
  • part of the outer wall surface of the static spring piece (420, 440) and the second positioning wall structure 121 can also adopt zero clearance fit.
  • the first magnetizer 610 and the static spring pieces (420, 440) are initially positioned by using part of the outer wall surface of the first magnetizer 610 to abut against the first positioning wall structure 111 and the static spring pieces (420, 440) to abut against the second positioning wall structure 121 (no glue is required during the initial positioning process). Afterwards, glue is dispensed from one side of the bottom surface of the base 10 to the gap between the first magnetizer 610 and the first gap wall structure 112 and between the static spring pieces (420, 440) and the second gap wall structure 122. At the same time, glue can also be dispensed to the gap between the outer cover and the base 10.
  • the gap between the first magnetic conductor 610 and the base 10, the gap between the static spring sheet (420, 440) and the base 10, and the gap between the outer cover and the base 10 can be glued along one glue dispensing direction, which significantly improves the glue dispensing efficiency.
  • the gap between the coil lead pin and the base 10, and the gap between the auxiliary contact lead pin and the base 10 can also be glued at the same time.
  • Figure 8 shows a schematic diagram of the push rod 210, the yoke plate 311, the first magnet 610, the second magnet 620 and the contact assembly 40 of the first embodiment of the present invention after assembly.
  • Figure 9 shows a schematic diagram of the first magnet 610, the second magnet 620 and the contact assembly 40 of the first embodiment of the present invention after assembly.
  • the relay also includes at least one second magnet 620, and the at least one second magnet 620 corresponds to the at least one first magnet 610.
  • the second magnetic conductor 620 is fixedly connected to a side of the movable spring piece (410, 430) facing away from the first magnetic conductor 610, so that a magnetic circuit is formed between the corresponding first magnetic conductor 610 and the second magnetic conductor 620 in the width direction D2 of the movable spring piece (410, 430).
  • the correspondence between at least one second magnetic conductor 620 and at least one first magnetic conductor 610 means that the number of the second magnetic conductors 620 corresponds to that of the first magnetic conductors 610, and the positions of the second magnetic conductors 620 and the first magnetic conductors 610 correspond.
  • the number of the first magnetic conductors 610 and the number of the second magnetic conductors 620 are both two, but the present invention is not limited thereto.
  • the second magnetizer 620 moving with the moving reed (410, 430) approaches or contacts the first magnetizer 610, thereby forming a magnetic conductive loop around the moving reed (410, 430) between the first magnetizer 610 and the second magnetizer 620.
  • first magnet 610 and the second magnet 620 are respectively located on both sides of the moving spring piece (410, 430).
  • the attraction between the first magnet 610 and the second magnet 620 is a direct electromagnetic attraction, which is greater than the attraction between the first magnet 610 and the moving spring piece (410, 430) after magnetization. Therefore, it can more effectively resist the electromotive repulsion generated by the short-circuit current between the moving spring piece (410, 430) and the static spring piece (420, 440), thereby effectively improving the short-circuit resistance.
  • the second magnetic conductor 620 may be fixedly connected to the movable spring sheet (410, 430) by riveting, but is not limited thereto.
  • the first magnetic conductor 610 and the second magnetic conductor 620 can be made of materials such as iron, cobalt, nickel and alloys thereof.
  • the first magnetic conductor 610 may be in a straight line shape, and the second magnetic conductor 620 may be in a U shape.
  • the second magnetic conductor 620 covers the movable spring piece (410, 430) along the width direction D2 of the movable spring piece (410, 430), but the present invention is not limited thereto.
  • Figures 10 and 11 respectively show schematic diagrams of two different viewing angles of the movable spring (410, 430) and the second magnetic conductor 620 of the second embodiment of the present invention after being assembled.
  • the similarities between the second embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the second magnetizer 620 includes at least two sub-magnetizers 621, each of which is U-shaped, and includes a base 622 and two side portions 623, and the two side portions 623 are connected to the base 622.
  • the movable spring (410, 430) is provided with at least one through hole 414, and the at least two sub-magnetizers 621 are connected to the side of the movable spring (410, 430) facing away from the first magnetizer 610, and the side portions 623 of the at least two sub-magnetizers 621 pass through the at least one through hole 414, so as to be close to or contact the first magnetizer 610 through the through hole 414, and form at least two independent magnetic conductive circuits in the width direction D2 of the movable spring (410, 430).
  • the so-called two independent magnetic conductive circuits mean that the two magnetic conductive circuits will not interfere with each other, that is, there is no situation where the magnetic fluxes cancel each other out.
  • the movable reed (410, 430) is provided with a through hole 414, and the through hole 414 is arranged in the middle area between the two movable contacts of the movable reed (410, 430).
  • the second magnetic conductor 620 includes two sub-magnetic conductors 621, and the two sub-magnetic conductors 621 share a first magnetic conductor 610, thereby forming two magnetic circuits.
  • the two U-shaped sub-magnetic conductors 621 are arranged side by side along the width direction D2 of the movable spring piece (410, 430), and a side portion 623 of each sub-magnetic conductor 621 is inserted into the through hole 414 of the movable spring piece (410, 430).
  • the top surface of the side portion 623 of each sub-magnetic conductor 621 is substantially flush with the surface of one side of the movable spring sheet (410, 430) facing the stationary spring sheet (420, 440).
  • the two U-shaped sub-magnetizers 621 have a total of four side portions 623, and the top surfaces of the four side portions 623 cooperate with the first magnetizer 610.
  • the embodiment of the present invention is equivalent to adding two magnetic pole surfaces (equivalent to the magnetic pole surface at the position of the through hole 414 is added), thereby improving the magnetic efficiency, increasing the suction force, and greatly improving the short-circuit resistance.
  • the number of sub-magnetic conductors 621 can also be three or more.
  • Figures 12 and 13 respectively show schematic diagrams of two different perspectives of the assembled movable spring, the first magnetic conductor and the second magnetic conductor of the third embodiment of the present invention, and Figure 14 shows a cross-sectional view of D-D in Figure 13.
  • the similarities between the third embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the movable spring piece (410, 430) is provided with a through hole 414, which is arranged in the middle area between the two movable contacts of the movable spring piece (410, 430).
  • the second magnetic conductor 620 is E-shaped and has a middle protrusion 624, which is passed through the through hole 414.
  • Figures 15 and 16 respectively show schematic diagrams of two different perspectives of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the fourth embodiment of the present invention, and Figure 17 shows a cross-sectional view taken along line E-E in Figure 16.
  • the similarities between the fourth embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the second magnetic conductor 620 is in a straight line shape.
  • Figures 18 and 19 respectively show schematic diagrams of two different perspectives of the movable spring, the first magnetic conductor and the second magnetic conductor after assembly according to the fifth embodiment of the present invention
  • Figure 20 shows a cross-sectional view taken along the line F-F in Figure 19.
  • the similarities between the fifth embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the second magnetic conductor 620 is L-shaped.
  • Figures 21 and 22 respectively show schematic diagrams of two different perspectives of the assembled movable spring, the first magnetic conductor and the second magnetic conductor according to the sixth embodiment of the present invention, and Figure 23 shows a cross-sectional view of G-G in Figure 22.
  • the similarities between the sixth embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the first magnetic conductor 610 and the second magnetic conductor 620 are both L-shaped.
  • the first magnetic conductor 610 has a first short side 613
  • the second magnetic conductor 620 has a second short side 625 .
  • the first short side 613 and the second short side 625 may correspond to each other or may not correspond to each other.
  • the first short side 613 is located at one side of the movable spring piece (410, 430) in the width direction D2
  • the second short side 625 is located at the other side of the movable spring piece (410, 430) in the width direction D2.
  • Figures 24 and 25 respectively show schematic diagrams of two different perspectives of the movable spring, the first magnetic conductor and the second magnetic conductor after assembly according to the seventh embodiment of the present invention, and Figure 26 shows a cross-sectional view taken along line H-H in Figure 25.
  • the similarities between the seventh embodiment and the second embodiment will not be repeated, and the differences are as follows:
  • the first magnetizer 610 is L-shaped.
  • the second magnetizer 620 includes two sub-magnetizers 621, both of which are linear.
  • the two sub-magnetizers 621 are spaced apart along the width direction D2 of the movable spring (410, 430), and the through hole 414 is located between the two sub-magnetizers 621.
  • the terms “first”, “second”, and “third” are used for descriptive purposes only and are not to be understood as indicating or implying relative importance; the term “plurality” refers to two or more, unless otherwise clearly defined.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; “connected” can be a direct connection or an indirect connection through an intermediate medium.
  • the specific meanings of the above terms in the embodiments of the invention can be understood according to the specific circumstances.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Abstract

一种继电器,包括壳体(1)、至少一触点组件(40)、推杆机构(20)和至少一第一导磁体(610)。壳体(1)设有安装部(11);每个触点组件(40)均包括静簧片和动簧片,静簧片固定连接于壳体(1),动簧片设于壳体(1)内;沿触点组件(40)的触点接触分离方向,推杆机构(20)相对于壳体(1)可移动,动簧片设置于推杆机构(20)上,推杆机构(20)能够带动动簧片移动,以使动簧片与对应的静簧片接触或分离;安装部(11)位于推杆机构(20)径向方向上的一侧,径向方向与推杆机构(20)的运动方向垂直;至少一第一导磁体(610)与至少一动簧片一一对应,第一导磁体(610)固定连接于安装部(11),并位于动簧片的朝向对应的静簧片的一侧。

Description

继电器
本公开要求于2022年12月01日提交的申请号为202211543693.X的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本发明涉及电子控制器件技术领域,具体而言,涉及一种继电器。
背景技术
继电器是一种电子控制器件,它具有控制***(又称输入回路)和被控制***(又称输出回路),通常应用于自动控制电路中。继电器实际上是用较小的电流去控制较大电流的一种“自动开关”。因此在电路中起着自动调节、安全保护、转换电路等作用。
当短路负载很大时,继电器触头会因为短路电流产生电动斥力而发生触头弹开,触头瞬间弹开会造成继电器在强电弧的作用下烧毁、***。
在相关技术中,继电器通常设置抗短路结构,以防止触头弹开。具体来说,在继电器的内部设置导磁体,在短路电流作用下,导磁体被磁化会形成闭环磁场产生电磁吸力,从而防止触点因短路电流产生的斥力使动簧片瞬间弹开,避免发生继电器烧毁、***。
然而,相关技术中导磁体固定设置的设置方式只能适应单组动静触点,并不能满足两组或两组以上动静触点的抗短路要求。
发明内容
本发明实施例提供一种继电器,以满足两组或两组以上动静触点的抗短路要求。
本发明实施例的继电器,包括壳体、至少一触点组件、推杆机构和至少一第一导磁体,所述壳体设有安装部;每个所述触点组件均包括静簧片和动簧片,所述静簧片固定连接于所述壳体,所述动簧片设于所述壳体内,所述动簧片设于所述壳体内;沿所述触点组件的触点接触分离方向,所述推杆机构相对于所述壳体可移动,所述动簧片设置于所述推杆机构上,所述推杆机构能够带动所述动簧片移动,以使所述动簧片与对应的所述静簧片接触或分离;其中,所述安装部位于所述推杆机构的径向方向上的一侧,所述径向方向与所述推杆机构的运动方向垂直;至少一第一导磁体与所述至少一触点组件的至少一动簧片一一对应,所述第一导磁体固定连接于所述安装部,并位于所述动簧片的朝向对应的所述静簧片的一侧。
根据本发明的一些实施方式,所述壳体包括侧壁,所述侧壁位于所述推杆机构径向方向上的一侧,所述安装部形成于所述侧壁。
根据本发明的一些实施方式,所述侧壁沿着所述推杆机构的周向方向环绕所述推杆机构。
根据本发明的一些实施方式,所述壳体包括:
底座;以及
外罩,连接于所述底座,所述外罩和所述底座形成一用以容纳所述触点组件、所述推杆机构和所述第一导磁体的腔室;所述底座和/或所述外罩形成所述侧壁。
根据本发明的一些实施方式,所述第一导磁体包括连接部和悬空部,所述连接部固定连接于所述安装部;
其中,定义一个垂直于所述推杆机构的运动方向的虚拟平面,所述连接部在所述虚拟平面上具有第一正投影,所述悬空部在所述虚拟平面上具有第二正投影,所述动簧片在所述虚拟平面上具有第三正投影,所述第一正投影与所述第三正投影不重合,所述第二正投影与所述第三正投影至少部分重合。
根据本发明的一些实施方式,所述第一导磁体为平板结构。
根据本发明的一些实施方式,所述第一导磁体沿一插装方向插装于所述壳体的所述安装部,所述插装方向垂直于所述推杆机构的运动方向。
根据本发明的一些实施方式,所述安装部包括第一安装孔,所述第一安装孔贯穿所述壳体的内表面和外表面,所述第一安装孔的孔壁具有第一定位壁结构和第一间隙壁结构;
所述第一导磁体插装于所述第一安装孔,且所述第一导磁体的部分外壁面与所述第一定位壁结构相抵接,所述第一导磁体的部分外壁面与所述第一间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
根据本发明的一些实施方式,所述第一导磁体的部分外壁面与所述第一定位壁结构过盈配合。
根据本发明的一些实施方式,所述第一定位壁结构包括第一定位壁和第二定位壁,所述第一定位壁和所述第二定位壁沿所述推杆机构的运动方向相对设置。
根据本发明的一些实施方式,所述第一导磁体的插装方向与所述动簧片的长度方向垂直。
根据本发明的一些实施方式,所述静簧片沿所述插装方向插装于所述壳体。
根据本发明的一些实施方式,所述壳体还具有贯穿其内表面和外表面的第二安装孔,所述第二安装孔的孔壁具有第二定位壁结构和第二间隙壁结构;
所述静簧片插装于所述第二安装孔,且所述静簧片的部分外壁面与所述第二定位壁结构抵接,所述静簧片的部分外壁面与所述第二间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
根据本发明的一些实施方式,所述静簧片的部分外壁面与所述第二定位壁结构过盈配合。
根据本发明的一些实施方式,所述第二定位壁结构包括第三定位壁和第四定位壁,所述第三定位壁和所述第四定位壁沿所述推杆机构的运动方向相对设置。
根据本发明的一些实施方式,所述继电器还包括至少一第二导磁体,所述至少一第二导磁体与所述至少一第一导磁体对应;
所述第二导磁体固定连接于所述动簧片背向所述第一导磁体的一侧,以使相对应的所述第一导磁体与所述第二导磁体之间在所述动簧片的宽度方向上形成导磁回路。
根据本发明的一些实施方式,所述第二导磁体为U形,且沿着所述动簧片的宽度方向包覆所述动簧片。
根据本发明的一些实施方式,所述第二导磁体包括至少两个子导磁体,每个所述子导磁体为U形;
所述动簧片设有至少一个通孔,至少两个所述子导磁体均连接于所述动簧片背向所述第一导磁体的一侧,且至少两个所述子导磁体的侧部穿过至少一个通孔,以通过所述通孔与所述第一导磁体靠近或相互接触,并在所述动簧片的宽度方向上形成至少两个独立的导磁回路。
根据本发明的一些实施方式,位于一个所述通孔中的两个所述侧部之间具有间隙。
上述发明中的一个实施例至少具有如下优点或有益效果:
本发明实施例的继电器,壳体上的安装部位于推杆机构径向方向上的一侧,其中径向方向垂直于推杆机构的运动方向,使得第一导磁体与安装部固定连接的位置也是位于推杆机构的一侧,也就是说,第一导磁体与壳体的安装部连接的位置并不位于动簧片的上方,这样,壳体设置多个第一导磁体后,各第一导磁体也不会影响推杆机构的运动,因此本实施例的继电器中,对应多个触点组件可以设置多个第一导磁体,实现每个触点组件均设有抗短路结构。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1示出的是本发明实施例继电器的俯视图,其中省略了外罩。
图2示出的是图1中沿A-A的剖视图。
图3示出的是图2中沿B-B的剖视图。
图4示出的是第一正投影、第二正投影和第三正投影在虚拟平面上的相对位置示意图。
图5示出的是图2中沿C-C的剖视图。
图6示出的是图5中X1处的局部放大图。
图7示出的是图5中X2处的局部放大图。
图8示出的是本发明第一实施例的推动杆、轭铁板、第一导磁体、第二导磁体和触点组件组装后的示意图。
图9示出的是本发明第一实施例的第一导磁体、第二导磁体和触点组件组装后的示意图。
图10和图11分别示出本发明第二实施例的动簧片与第二导磁体组装后的两个不同视角的示意图。
图12和图13分别示出的是本发明第三实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图。
图14示出的是图13中D-D的剖视图。
图15和图16分别示出的是本发明第四实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图。
图17示出的是图16中E-E的剖视图。
图18和图19分别示出的是本发明第五实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图。
图20示出的是图19中F-F的剖视图。
图21和图22分别示出的是本发明第六实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图。
图23示出的是图22中G-G的剖视图。
图24和图25分别示出的是本发明第七实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图。
图26示出的是图25中H-H的剖视图。
其中,附图标记说明如下:
1、壳体;11、安装部;10、底座;110、第一安装孔;111、第一定位壁结构;112、
第一间隙壁结构;113、第一定位壁;114、第二定位壁;120、第二安装孔;121、第二定位壁结构;122、第二间隙壁结构;123、第三定位壁;124、第四定位壁;130、底板;140、侧板;20、推杆机构;210、推动杆;220、铁芯;30、磁路机构;310、轭铁结构;311、轭铁板;3111、贯通孔;312、U形轭铁;320、线架;321、中心孔;330、线圈;340、永磁体;40、触点组件;40a、第一触点组件;40b、第二触点组件;410、第一动簧片;411、第一动触点;412、第一动簧本体;414、通孔;420、第一静簧片;421、第一静簧本体;422、第一静触点;430、第二动簧片;431、第二动触点;434、第二动簧本体;440、第二静簧片;441、第二静簧本体;442、第二静触点;610、第一导磁体;611、连接部;612、悬空部;613、第一短边;620、第二导磁体;621、子导磁体;622、基部;623、侧部;624、中间凸起部;625、第二短边;P、虚拟平面;D1、长度方向;D2、宽度方向;D3、运动方向;D4、插装方向;S1、第一正投影;S2、第二正投影;S3、第三正投影
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
如图1至图3所示,图1示出的是本发明实施例继电器的俯视图,其中省略了外罩,图2示出的是图1中沿A-A的剖视图,图3示出的是图2中沿B-B的剖视图。本发明实施例的继电器包括壳体1、推杆机构20、磁路机构30和触点组件40。于本发明实施例中,壳体1为继电器的外壳。推杆机构20、磁路机构30和触点组件40设置在壳体1内,磁路机构30通过推杆机构20控制触点组件40的触点接触或分离。
可以理解的是,本发明实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
壳体1可以包括底座10和外罩(图中未示出),外罩连接于底座10,形成一用于容纳推杆机构20、磁路机构30和触点组件40的腔室。
磁路机构30包括轭铁结构310、线架320和线圈330。轭铁结构310形成一腔室,线架320和线圈330均设置于轭铁结构310的腔室内。线圈330绕设于线架320的外周,以形成磁控回路。线架320在触点组件40的触点接触分离方向上设有中心孔321,中心孔321用以供推杆机构20的一端穿设。
作为一示例,轭铁结构310包括轭铁板311和U形轭铁312,轭铁板311与U形轭铁312连接共同形成环形。轭铁板311开设有贯通孔3111,该贯通孔3111用于供推杆机构20穿设。
当然,在其他实施例中,轭铁结构310还可以包括圆筒状轭铁和轭铁板311,圆筒状轭铁和轭铁板311连接共同形成环形。
磁路机构30还包括两个永磁体340,两个永磁体340设置于线架320,且位于推杆机构20的运动方向D3的两侧。两个永磁体340形成磁保持的磁路结构,有利于降低用电成本较,延长使用寿命较,提升稳定性。
当然,在其他实施例中,不含永磁体340也是可以的。
如图3所示,沿触点组件40的触点接触或分离方向,推杆机构20相对于底座10可移动。推杆机构20包括推动杆210和铁芯220,铁芯220连接于推动杆210。铁芯220在线圈330形成的磁控回路的作用下能够沿触点接触或分离的方向上移动,进而带动推动杆210移动,以控制触点组件40的触点接触或分离。
请继续参阅图1至图3,触点组件40包括动簧片(410,430)和静簧片(420,440),静簧片(420,440)固定安装于底座10上,动簧片(410,430)设于壳体1内,动簧片(410,430)安装于推杆机构20上,且与推杆机构20随动。
可以理解的是,动簧片(410,430)与推动杆210的组装方式可以采用现有设计中的方案,此处不再赘述。
在本实施例中,触点组件40为两组,分别为第一触点组件40a和第二触点组件40b,第一触点组件40a和第二触点组件40b沿着推杆机构20的运动方向D3布置。并且,第一触点组件40a靠近磁路机构30,第二触点组件40b远离磁路机构30。
第一触点组件40a包括第一动簧片410和两个第一静簧片420。第二触点组件40b包括第二动簧片430和两个第二静簧片440。第一动簧片410的两端能够分别与两个第一静簧片420接触或分离,第二动簧片430的两端能够分别与两个第二静簧片440接触或分离。
当然,在其他实施例中,触点组件40也可以为一组或其他数量。
动簧片(410,430)的长度方向D1的两端作为动触点,动触点可以凸出于动簧片(410,430)的其他部分,也可以是与其他部分齐平。静簧片(420,440)与动触点接触的部分作为静触点,静触点可以凸出于静簧片(420,440)的其他部分,也可以是与其他部分齐平。
作为一示例,如图1所示,第一动簧片410包括第一动簧本体412和第一动触点411,第一动触点411与第一动簧本体412为分体结构,第一动触点411与第一动簧本体412可以采用铆接的方式连接,但不以此为限。第一静簧片420包括第一静簧本体421和第一静触点422,第一静触点422与第一静簧本体421为分体结构,第一静触点422与第一静簧本体421可以采用铆接的方式连接,但不以此为限。
第二动簧片430包括第二动簧本体434和第二动触点431,第二动触点431与第二动簧本体434为分体结构,第二动触点431与第二动簧本体434可以采用铆接的方式连接,但不以此为限。第二静簧片440包括第二静簧本体441和第二静触点442,第二静触点442与第二静簧本体441为分体结构,第二静触点442与第二静簧本体441可以采用铆接方式连接,但不以此为限。
当然,在另一实施例中,第一动触点411与第一动簧本体412可以为一体结构;第一静触点422与第一静簧本体421可以为一体结构;第二动触点431与第二动簧本体434可以为一体结构;第二静触点442与第二静簧本体441可以为一体结构。
可以理解的是,在其他实施例中,壳体1还可以为陶瓷罩。
如图2所示,壳体1设有安装部11,安装部11位于推杆机构20径向方向上的一侧,径向方向与推杆机构20的运动方向D3垂直。本发明实施例的继电器还包括至少一第一导磁体610,至少一第一导磁体610与至少一触点组件40的动簧片对应,即分别位于至少一个动簧片的朝向对应的静簧片的一侧。第一导磁体610固定连接于安装部11。
至少一第一导磁体610与至少一触点组件40对应是指:第一导磁体610与触点组件40的数量对应,且第一导磁体610与触点组件40的位置对应。在本实施例中,触点组件40的数量为两个,那么第一导磁体610的数量也为两个,且其中一个第一导磁体 610与第一触点组件40a的第一动簧片410对应,另一个第一导磁体610与第二触点组件40b的第二动簧片430对应。
可以理解的是,本发明实施例的继电器,由于壳体1上的安装部11位于推杆机构20径向方向上的一侧,其中径向方向垂直于推杆机构20的运动方向,使得第一导磁体610与安装部11固定连接的位置也是位于推杆机构20的一侧,也就是说,第一导磁体610与壳体1的安装部11连接的位置并不位于动簧片的上方,这样,继电器设置多个第一导磁体610后,各第一导磁体610均不会影响推杆机构20的运动,因此本实施例的继电器中的多个触点组件40对应设置多个第一导磁体610,实现每个触点组件40均设有抗短路结构。
壳体1包括顶壁、底壁和侧壁,顶壁和底壁沿着推杆机构20的运动方向相对设置,侧壁连接于顶壁、底壁。侧壁位于推杆机构20径向方向上的一侧,安装部11形成于侧壁上。
进一步地,侧壁沿着推杆机构20的周向方向环绕于推杆机构20。
可以理解的是,壳体1的形状可以包括多种实施例,例如壳体1可以为棱柱形、圆柱形等,但不以此为限。
壳体1的底座10和/或外罩设有安装部11。具体来说,安装部11可以只形成于底座10上,安装部11也可以只形成于外罩上,当然,底座10和外罩上还可以均形成有安装部11。
如图1所示,底座10包括底板130和侧板140,静簧片固定连接于底板130,侧板140连接于底板130,且位于推杆机构20径向方向的一侧。当底座10上形成有安装部11时,底座10的底板130和/或侧板140设有安装部11。具体来说,底板130上可以形成有安装部11,侧板140上可以形成有安装部11,底板130和侧板140上均形成有安装部11。
可以理解的是,于本发明实施例中,底板130定义为:当继电器安装于电路板上时,底座10中朝向电路板的部分。
如图4所示,图4示出的是第一正投影S1、第二正投影S2和第三正投影S3在虚拟平面P上的相对位置示意图。每个第一导磁体610均包括连接部611和悬空部612,连接部611固定连接于底座10的安装部11。其中,定义一个垂直于推杆机构20的运动方向D3的虚拟平面P,连接部611在虚拟平面P上具有第一正投影S1,悬空部612在虚拟平面P上具有第二正投影S2,动簧片(410,430)在虚拟平面P上具有第三正投影S3,第一正投影S1与第三正投影S3不重合,第二正投影S2与第三正投影S3至少部分重合。
悬空部612是指第一导磁体610的该部分悬置于继电器内,且该部分不与继电器的任何部件相接触。
可以理解的是,本发明实施例的继电器,第一导磁体610设置于动簧片(410,430) 的上方,当动簧片(410,430)与静簧片(420,440)接触时,电流通过动簧片(410,430),因而在动簧片(410,430)的宽度方向D2的外周形成一环绕动簧片(410,430)的导磁回路。由于第一导磁体610的存在,导磁回路的大多数磁场会向第一导磁体610聚集并使第一导磁体610磁化,这样第一导磁体610和电流流通的动簧片(410,430)之间会产生沿触点压力方向上的吸力,该吸力与触点压力叠加产生更大的触点压力,能够抵抗动簧片(410,430)的动触点与静簧片(420,440)的静触点之间因短路电流产生的电动斥力,确保动簧片(410,430)的动触点与静簧片(420,440)的静触点不发生弹开。
此外,第一导磁体610通过连接部611固定连接于底座10的安装部11,而并不随动于推杆机构20,使得动簧片(410,430)对第一导磁体610的吸力作用在底座10上,由于底座10的位置相对固定,第一导磁体610的吸力与推杆机构20无关,这样能够避免推杆机构20的保持力不足而造成动簧片(410,430)与静簧片(420,440)弹开,引发继电器烧毁、***。
再者,由于第一导磁体610与底座10固定连接的连接部611在虚拟平面P上的第一正投影S1与动簧片(410,430)在虚拟平面P上的第二正投影S2不重合,也就是说,第一导磁体610与底座10连接的位置并不位于动簧片(410,430)的上方,这样,底座10上可以设置至少一个第一导磁体610,从而至少一个触点组件40对应有一个第一导磁体610,实现每个触点组件40均设有抗短路结构。
作为一示例,第一导磁体610可以为平板结构。当然,在其他实施方式中,第一导磁体610还可以为其他规则形状或异形形状。
如图2所示,连接部611沿一插装方向D4插装于底座10的安装部11,插装方向D4垂直于推杆机构20的运动方向D3。
在本实施例中,连接部611沿着与推杆机构20的运动方向D3垂直的插装方向D4插装于底座10,当第一导磁体610为板状结构时,第一导磁体610是与推杆机构20的运动方向D3垂直。换句话说,第一导磁体610设有连接部611的一端与底座10连接,而第一导磁体610设有悬空部612的一端沿着插装方向D4的相反方向延伸,直至悬空部612与动簧片(410,430)在推杆机构20的运动方向D3上至少部分重合。
采用插装的方式将第一导磁体610安装在底座10上,可简化第一导磁体610的装配方式。当然,在其他实施方式中,也可以采用胶粘接、焊接等连接方式将第一导磁体610与底座10连接。
进一步地,第一导磁体610的插装方向D4与动簧片(410,430)的长度方向D1垂直。也就是说,在空间上,第一导磁体610与动簧片(410,430)是正交的。
可以理解的是,当动簧片(410,430)通电时,动簧片(410,430)外周形成的导磁回路是沿着动簧片(410,430)的宽度。由于第一导磁体610与动簧片(410,430)是正交,那么导磁回路会沿着第一导磁体610的悬空部612的长度方向D1,以使绝大部分的悬空部612被磁化,进一步使得第一导磁体610和电流流通的动簧片(410,430)之间会产 生更强的吸力。
如图2、图5和图6所示,图5示出的是图2中沿C-C的剖视图。图6示出的是图5中X1处的局部放大图。安装部11包括第一安装孔110,第一安装孔110贯穿壳体1的内表面和外表面,第一安装孔110的孔壁具有第一定位壁结构111和第一间隙壁结构112。第一导磁体610插装于第一安装孔110,且第一导磁体610的部分外壁面与第一定位壁结构111相抵接,第一导磁体610的部分外壁面与第一间隙壁结构112之间具有间隙,间隙内填充有密封胶。
在本实施例中,第一安装孔110形成于底座10上,且贯穿底座10的内表面和底面。
在本发明实施例中,第一导磁体610与底座10的组装过程为:先通过第一导磁体610与底座10的第一安装孔110的第一定位壁结构111实现初步定位,再通过向第一导磁体610与第一安装孔110的间隙壁结构之间的间隙填充密封胶的方式,即可完成第一导磁体610与底座10的密封组装。一方面,第一导磁体610的部分外壁面与定位壁结构111相抵接,从而实现第一导磁体610的初步定位。另一方面,第一导磁体610的部分外壁面与间隙壁结构112之间具有间隙,利用虹吸效应,密封胶能够由底座10的底面一侧沿着间隙向底座10的内表面一侧爬升,直至爬升至第一安装孔110的开口处,使得密封胶填满该间隙内,进一步加强第一导磁体610与底座10之间的密封性和定位强度。同时,利用密封胶的耐熔性强于塑料材料的特性来提升继电器产品的耐焊接热能力。相比于现有技术,本发明实施例减少了一道点胶步骤,有效地降低了成本,且提升了组装效率。
如图6所示,第一定位壁结构111包括第一定位壁113和第二定位壁114,第一定位壁113和第二定位壁114沿推杆机构20的运动方向D3相对设置。通过第一定位壁113和第二定位壁114分别与第一导磁体610抵接,进而限定了第一导磁体610在推杆机构20的运动方向D3上的自由度。
可以理解的是,第一定位壁113和第二定位壁114的形状是与第一导磁体610的外轮廓形状相适配。举例来说,当第一导磁体610的截面形状为矩形时,第一定位壁113和第二定位壁114可以为平面。当然,在其他实施方式中,当第一导磁体610的连接部611的截面形状为圆形时,第一定位壁113和第二定位壁114的形状可以为弧面。
第一导磁体610的部分外壁面与第一定位壁结构111过盈配合。在本发明实施例中,第一导磁体610分别与第一定位壁113和第二定位壁114过盈配合。当然,在其他实施例中,第一导磁体610的部分外壁面与第一定位壁结构111之间也可以采用零间隙配合。
如图2所示,静簧片(420,440)沿插装方向D4插装于底座10。静簧片(420,440)与第一导磁体610均是沿着插装方向D4插装于底座10,进而静簧片(420,440)与第一导磁体610可在同一道工序中安装于底座10,节约了组装时间。
如图2、图5和图7所示,底座10还具有贯穿其内表面和底面的第二安装孔120,第二安装孔120的孔壁具有第二定位壁结构121和第二间隙壁结构122。静簧片(420,440)插装于第二安装孔120,且静簧片(420,440)的部分外壁面与第二定位壁结构121抵接,静簧片(420,440)的部分外壁面与第二间隙壁结构122之间具有间隙,间隙内填充有密封胶。
静簧片(420,440)与底座10的组装过程可参照第一导磁体610与底座10的组装过程,即静簧片(420,440)与第二安装孔120的第二定位壁结构121先实现初步定位,再向静簧片(420,440)与第二间隙壁结构122之间的间隙填充密封胶。
由此可见,静簧片(420,440)和第一导磁体610可在同一道点胶工艺中完成与底座10的组装,显著提高了组装效率。
第二定位壁结构121包括第三定位壁123和第四定位壁124,第三定位壁123和第四定位壁124沿推杆机构20的运动方向D3相对设置。通过第三定位壁123和第四定位壁124分别与静簧片(420,440)抵接,进而限定了静簧片(420,440)在推杆机构20的运动方向D3上的自由度。
可以理解的是,第三定位壁123和第四定位壁124的形状是与静簧片的引出脚的外轮廓形状相适配。举例来说,当静簧片的引出脚的截面形状为矩形时,第三定位壁123和第四定位壁124可以为平面。当然,在其他实施方式中,当静簧片的引出脚的截面形状为圆形时,第三定位壁123和第四定位壁124的形状可以为弧面。
静簧片(420,440)的部分外壁面与第二定位壁结构121过盈配合。在本发明实施例中,静簧片(420,440)的部分外壁面分别与第三定位壁123和第四定位壁124过盈配合。当然,在其他实施例中,静簧片(420,440)的部分外壁面与第二定位壁结构121之间也可以采用零间隙配合。
承前所述,利用第一导磁体610的部分外壁面与第一定位壁结构111相抵接以及静簧片(420,440)与第二定位壁结构121相抵接,实现第一导磁体610、静簧片(420,440)的初步定位(初步定位过程中并不需要进行点胶)。之后,由底座10的底面一侧方向向第一导磁体610与第一间隙壁结构112之间以及静簧片(420,440)与第二间隙壁结构122之间的间隙进行点胶。与此同时,还可一并对外罩与底座10之间的缝隙进行点胶。
由此可见,于本发明实施例中,沿着一个点胶方向即可实现第一导磁体610与底座10之间的缝隙、静簧片(420,440)与底座10之间的缝隙以及外罩与底座10之间的缝隙进行点胶,显著提升了点胶效率。当然,在进行点胶时,还可同时对线圈引出脚与底座10之间的缝隙、辅助触点引出脚与底座10之间的缝隙进行点胶。
如图8和图9所示,图8示出的是本发明第一实施例的推动杆210、轭铁板311、第一导磁体610、第二导磁体620和触点组件40组装后的示意图。图9示出的是本发明第一实施例的第一导磁体610、第二导磁体620和触点组件40组装后的示意图。继电器还包括至少一第二导磁体620,至少一第二导磁体620与至少一第一导磁体610对应。
第二导磁体620固定连接于动簧片(410,430)背向第一导磁体610的一侧,以使相对应的第一导磁体610与第二导磁体620之间在动簧片(410,430)的宽度方向D2上形成导磁回路。
可以理解的是,至少一第二导磁体620与至少一第一导磁体610对应是指:第二导磁体620与第一导磁体610的数量对应,且第二导磁体620与第一导磁体610的位置对应。在本实施例中,第一导磁体610和第二导磁体620的数量均为两个,但不以此为限。
当动簧片(410,430)的两端与静簧片(420,440)接触时,与动簧片(410,430)一起运动的第二导磁体620靠近或接触第一导磁体610,从而在第一导磁体610和第二导磁体620之间形成一环绕动簧片(410,430)的导磁回路。当短路电流通过动簧片(410,430)时,第一导磁体610和第二导磁体620之间产生沿触点压力方向上的吸力,该吸力与触点压力叠加产生更大的触点压力,能够抵抗动簧片(410,430)的动触点与静簧片(420,440)的静触点之间因短路电流产生的电动斥力,确保动簧片(410,430)的动触点与静簧片(420,440)的静触点不发生弹开,提升抗短路能力。
需要说明的是,第一导磁体610和第二导磁体620分别位于动簧片(410,430)的两侧,当动簧片(410,430)通电后,第一导磁体610和第二导磁体620之间的吸力是直接的电磁吸力,比仅第一导磁体610磁化后与动簧片(410,430)的吸力更大,故能够更有力地抵抗动簧片(410,430)与静簧片(420,440)之间因短路电流产生的电动斥力,有效提升抗短路能力。
第二导磁体620可以采用铆接方式固定连接于动簧片(410,430),但不以此为限。
第一导磁体610和第二导磁体620可以采用铁、钴、镍及其合金等材料制作而成。
第一导磁体610可以为形直线形,第二导磁体620为U形,第二导磁体620沿着动簧片(410,430)的宽度方向D2包覆动簧片(410,430),但不以此为限。
如图10和图11所示,图10和图11分别示出本发明第二实施例的动簧片(410,430)与第二导磁体620组装后的两个不同视角的示意图。第二实施例与第一实施例的相同之处不再赘述,其不同之处在于:
第二导磁体620包括至少两个子导磁体621,每个子导磁体621为U形,子导磁体621包括基部622和两个侧部623,两个侧部623连接于基部622。动簧片(410,430)设有至少一个通孔414,至少两个子导磁体621均连接于动簧片(410,430)背向第一导磁体610的一侧,且至少两个子导磁体621的侧部623穿过至少一个通孔414,以通过通孔414与第一导磁体610靠近或相互接触,并在动簧片(410,430)的宽度方向D2上形成至少两个独立的导磁回路。利用至少两个独立的导磁回路在所对应的通孔414位置增加的磁极极面,当动簧片(410,430)出现故障大电流时,产生触点压力方向上的吸力,去抵抗动簧片(410,430)与静簧片(420,440)之间因故障电流产生的电动斥力。
所谓两个独立的导磁回路是指两个导磁回路之间不会相互干扰,也就是磁通不存在相互抵消的情况。
在本实施例中,动簧片(410,430)设有一个通孔414,该通孔414设置在动簧片(410,430)的两个动触点之间的中间区域。第二导磁体620包括两个子导磁体621,两个子导磁体621共用一个第一导磁体610,从而形成两个导磁回路。
两个U形的子导磁体621沿着动簧片(410,430)的宽度方向D2并排设置,且每个子导磁体621的一个侧部623穿设于动簧片(410,430)的通孔414内。
在本实施例中,每个子导磁体621的侧部623的顶面与动簧片(410,430)朝向静簧片(420,440)的一侧表面大致平齐。
在本发明实施例中,两个U形的子导磁体621共有四个侧部623,四个侧部623的顶面与第一导磁体610配合,相对于只有一个导磁回路(仅有两个磁极面)来说,在第二导磁体620的结构特征不变的前提下,本发明实施例相当于增加了两个磁极面(相当于通孔414位置的磁极面是增加的),从而提高了磁效率,增大了吸力,大大提高了抗短路能力。
位于一个通孔414中的两个侧部623之间具有间隙。这样,两个导磁回路的磁通不会相互抵消。
当然,在其他实施方式中,子导磁体621的数量还可以为三个或三个以上。
如图12至图14所示,图12和图13分别示出的是本发明第三实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图,图14示出的是图13中D-D的剖视图。第三实施例与第一实施例的相同之处不再赘述,其不同之处在于:
动簧片(410,430)设有一个通孔414,该通孔414设置在动簧片(410,430)的两个动触点之间的中间区域。第二导磁体620呈E形,且具有中间凸起部624,中间凸起部624穿设于通孔414中。
如图15至图17所示,图15和图16分别示出的是本发明第四实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图,图17示出的是图16中E-E的剖视图。第四实施例与第一实施例的相同之处不再赘述,其不同之处在于:
第二导磁体620呈形直线形。
如图18至图20所示,图18和图19分别示出的是本发明第五实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图,图20示出的是图19中F-F的剖视图。第五实施例与第一实施例的相同之处不再赘述,其不同之处在于:
第二导磁体620呈L形。
如图21至图23所示,图21和图22分别示出的是本发明第六实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图,图23示出的是图22中G-G的剖视图。第六实施例与第一实施例的相同之处不再赘述,其不同之处在于:
第一导磁体610和第二导磁体620均呈L形,第一导磁体610具有第一短边613,第二导磁体620具有第二短边625,第一短边613与第二短边625可以是对应的,也可以是不对应的。
在本实施例中,第一短边613的位置对应于动簧片(410,430)的宽度方向D2的一侧,第二短边625的位置对应于动簧片(410,430)的宽度方向D2的另一侧。
如图24至图26所示,图24和图25分别示出的是本发明第七实施例的动簧片、第一导磁体和第二导磁体组装后的两个不同视角的示意图,图26示出的是图25中H-H的剖视图。第七实施例与第二实施例的相同之处不再赘述,其不同之处在于:
第一导磁体610呈L形。第二导磁体620包括两个子导磁体621,两个子导磁体621均呈形直线形。两个子导磁体621沿着动簧片(410,430)的宽度方向D2间隔设置,并且通孔414位于两个子导磁体621之间。
可以理解的是,本发明提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合,此处不再一一举例说明。
在发明实施例中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在发明实施例中的具体含义。
发明实施例的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述发明实施例和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对发明实施例的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为发明实施例的优选实施例而已,并不用于限制发明实施例,对于本领域的技术人员来说,发明实施例可以有各种更改和变化。凡在发明实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在发明实施例的保护范围之内。

Claims (19)

  1. 一种继电器,其特征在于,包括:
    壳体,所述壳体设有安装部;
    至少一触点组件,每个所述触点组件均包括静簧片和动簧片,所述静簧片固定连接于所述壳体,所述动簧片设于所述壳体内;
    推杆机构,沿所述触点组件的触点接触分离方向,所述推杆机构相对于所述壳体可移动,所述动簧片设置于所述推杆机构上,所述推杆机构能够带动所述动簧片移动,以使所述动簧片与对应的所述静簧片接触或分离;其中,所述安装部位于所述推杆机构的径向方向上的一侧,所述径向方向与所述推杆机构的运动方向垂直;以及
    至少一第一导磁体,与所述至少一触点组件的至少一动簧片一一对应,所述第一导磁体固定连接于所述安装部,并位于所述动簧片的朝向对应的所述静簧片的一侧。
  2. 根据权利要求1所述的继电器,其特征在于,所述壳体包括侧壁,所述侧壁位于所述推杆机构径向方向上的一侧,所述安装部形成于所述侧壁。
  3. 根据权利要求2所述的继电器,其特征在于,所述侧壁沿着所述推杆机构的周向方向环绕所述推杆机构。
  4. 根据权利要求2所述的继电器,其特征在于,所述壳体包括:
    底座;以及
    外罩,连接于所述底座,所述外罩和所述底座形成一用以容纳所述触点组件、所述推杆机构和所述第一导磁体的腔室;所述底座和/或所述外罩形成所述侧壁。
  5. 根据权利要求1所述的继电器,其特征在于,所述第一导磁体包括连接部和悬空部,所述连接部固定连接于所述安装部;其中,定义一个垂直于所述推杆机构的运动方向的虚拟平面,所述连接部在所述虚拟平面上具有第一正投影,所述悬空部在所述虚拟平面上具有第二正投影,所述动簧片在所述虚拟平面上具有第三正投影,所述第一正投影与所述第三正投影不重合,所述第二正投影与所述第三正投影至少部分重合。
  6. 根据权利要求5所述的继电器,其特征在于,所述第一导磁体为平板结构。
  7. 根据权利要求1所述的继电器,其特征在于,所述第一导磁体沿一插装方向插装于所述壳体的所述安装部,所述插装方向垂直于所述推杆机构的运动方向。
  8. 根据权利要求7所述的继电器,其特征在于,所述安装部包括第一安装孔,所述第一安装孔贯穿所述壳体的内表面和外表面,所述第一安装孔的孔壁具有第一定位壁结构和第一间隙壁结构;
    所述第一导磁体插装于所述第一安装孔,且所述第一导磁体的部分外壁面与所述第一定位壁结构相抵接,所述第一导磁体的部分外壁面与所述第一间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
  9. 根据权利要求8所述的继电器,其特征在于,所述第一导磁体的部分外壁面与所述第一定位壁结构过盈配合。
  10. 根据权利要求8所述的继电器,其特征在于,所述第一定位壁结构包括第一定位壁和第二定位壁,所述第一定位壁和所述第二定位壁沿所述推杆机构的运动方向相对设置。
  11. 根据权利要求7所述的继电器,其特征在于,所述第一导磁体的插装方向与所述动簧片的长度方向垂直。
  12. 根据权利要求7所述的继电器,其特征在于,所述静簧片沿所述插装方向插装于所述壳体。
  13. 根据权利要求12所述的继电器,其特征在于,所述壳体还具有贯穿其内表面和外表面的第二安装孔,所述第二安装孔的孔壁具有第二定位壁结构和第二间隙壁结构;
    所述静簧片插装于所述第二安装孔,且所述静簧片的部分外壁面与所述第二定位壁结构抵接,所述静簧片的部分外壁面与所述第二间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
  14. 根据权利要求13所述的继电器,其特征在于,所述静簧片的部分外壁面与所述第二定位壁结构过盈配合。
  15. 根据权利要求13所述的继电器,其特征在于,所述第二定位壁结构包括第三定位壁和第四定位壁,所述第三定位壁和所述第四定位壁沿所述推杆机构的运动方向相对设置。
  16. 根据权利要求1所述的继电器,其特征在于,所述继电器还包括至少一第二导磁体,所述至少一第二导磁体与所述至少一第一导磁体对应;
    所述第二导磁体固定连接于所述动簧片背向所述第一导磁体的一侧,以使相对应的所述第一导磁体与所述第二导磁体之间在所述动簧片的宽度方向上形成导磁回路。
  17. 根据权利要求16所述的继电器,其特征在于,所述第二导磁体为U形,且沿着所述动簧片的宽度方向包覆所述动簧片。
  18. 根据权利要求16所述的继电器,其特征在于,所述第二导磁体包括至少两个子导磁体,每个所述子导磁体为U形;所述动簧片设有至少一个通孔,至少两个所述子导磁体均连接于所述动簧片背向所述第一导磁体的一侧,且至少两个所述子导磁体的侧部穿过至少一个通孔,以通过所述通孔与所述第一导磁体靠近或相互接触,并在所述动簧片的宽度方向上形成至少两个独立的导磁回路。
  19. 根据权利要求18所述的继电器,其特征在于,位于一个所述通孔中的两个所述侧部之间具有间隙。
PCT/CN2023/135573 2022-12-01 2023-11-30 继电器 WO2024114755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211543693.X 2022-12-01
CN202211543693.XA CN118136456A (zh) 2022-12-01 2022-12-01 继电器

Publications (1)

Publication Number Publication Date
WO2024114755A1 true WO2024114755A1 (zh) 2024-06-06

Family

ID=91241115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135573 WO2024114755A1 (zh) 2022-12-01 2023-11-30 继电器

Country Status (2)

Country Link
CN (1) CN118136456A (zh)
WO (1) WO2024114755A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321947A1 (en) * 2016-11-15 2018-05-16 Kamstrup A/S Tampering safe bi-stable relay for high currents
CN112201539A (zh) * 2020-09-30 2021-01-08 厦门宏发电声股份有限公司 一种转换迅速的电磁继电器
CN112219254A (zh) * 2018-05-23 2021-01-12 埃伦贝格尔及珀恩斯根有限公司 用于对电流路径进行直流电流中断的分离设备以及保护开关
CN218866991U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321947A1 (en) * 2016-11-15 2018-05-16 Kamstrup A/S Tampering safe bi-stable relay for high currents
CN112219254A (zh) * 2018-05-23 2021-01-12 埃伦贝格尔及珀恩斯根有限公司 用于对电流路径进行直流电流中断的分离设备以及保护开关
CN112201539A (zh) * 2020-09-30 2021-01-08 厦门宏发电声股份有限公司 一种转换迅速的电磁继电器
CN218866991U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器

Also Published As

Publication number Publication date
CN118136456A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
CN103155084B (zh) 电磁接触器
EP2218086B1 (en) Hermetically sealed relay
US9378914B2 (en) Contact device and electromagnetic contactor using the same
CN103140909B (zh) 电磁接触器
CN100468589C (zh) 开关装置
US9117611B2 (en) Electromagnetic contactor
WO2012060090A1 (ja) 継電器
US9202652B2 (en) Electromagnetic contactor
CN218385019U (zh) 继电器
CN103503108A (zh) 电磁接触器
JP2021535549A (ja) 直流リレー
US20150170857A1 (en) Electromagnetic actuator for a medium voltage vacuum circuit breaker
CN218866991U (zh) 继电器
CN218866992U (zh) 继电器
WO2024114755A1 (zh) 继电器
JP2013175437A (ja) 継電器
CN209388949U (zh) 一种直流接触器
KR102574587B1 (ko) 전자석 접점 장치
CN218730704U (zh) 继电器
JP2015037052A (ja) 継電器
CN213845169U (zh) 磁保持继电器
WO2024114773A1 (zh) 继电器
WO2024078421A1 (zh) 继电器
CN118136457A (zh) 继电器
WO2024078455A1 (zh) 继电器