WO2024038815A1 - Production method for polyester resin composition, regeneration method for recovered polyester resin, and polyester resin composition - Google Patents

Production method for polyester resin composition, regeneration method for recovered polyester resin, and polyester resin composition Download PDF

Info

Publication number
WO2024038815A1
WO2024038815A1 PCT/JP2023/029132 JP2023029132W WO2024038815A1 WO 2024038815 A1 WO2024038815 A1 WO 2024038815A1 JP 2023029132 W JP2023029132 W JP 2023029132W WO 2024038815 A1 WO2024038815 A1 WO 2024038815A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
mol
resin composition
aluminum
mass
Prior art date
Application number
PCT/JP2023/029132
Other languages
French (fr)
Japanese (ja)
Inventor
珠世 佐々井
佑 山本
博史 柴野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024038815A1 publication Critical patent/WO2024038815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a polyester resin composition, a method for recycling recovered polyester resin, and a polyester resin composition.
  • Polyester resins represented by polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polyethylene naphthalate (hereinafter sometimes abbreviated as PEN), have excellent transparency, mechanical properties, and chemical properties. Depending on the characteristics of each polyester resin, it can be used in a wide range of fields, such as fibers for clothing and industrial materials, various films and sheets for packaging and industrial use, and hollow molded bodies such as bottles and engineering plastics. used in
  • hollow molded bodies manufactured using polyester resin have become indispensable to human life.
  • the increased use of hollow molded bodies has caused various problems such as resource depletion, increased marine debris, and global warming.
  • mechanical recycling involves crushing and remelting the product, and polyester is broken down to the monomer level and reused as raw material. Polycondensation chemical recycling is also being put into practical use.
  • polyester resins are used as polymerization catalysts such as antimony compounds, titanium compounds, or germanium compounds, which are widely used in general, when used polyester resins are recovered and recycled, the polyester resins become discolored and the molecular weight decreases due to deterioration of the polyester resins. Therefore, improvement is required.
  • Patent Documents 1 and 2 improve thermal oxidation stability, further improvements are required from the viewpoint of suppressing deterioration of physical properties when recycled.
  • a catalyst with excellent thermal stability. Specifically, we have found a catalyst comprising the aluminum compound described in Patent Documents 3 and 4 and a phosphorus compound containing a hindered phenol structure. However, no study has been made to recycle used polyester resins, particularly using at least one selected from antimony compounds, titanium compounds, and germanium compounds as polymerization catalysts.
  • the present invention was made to solve the problems of the prior art, and its purpose is to use a used polyester resin using at least one selected from antimony compounds, titanium compounds, or germanium compounds as a polymerization catalyst. , a method for producing a polyester resin composition that does not easily cause discoloration or a decrease in molecular weight even after being recycled multiple times (hereinafter referred to as "excellent recyclability"), a method for recycling recovered polyester resin, and a polyester resin An object of the present invention is to provide a composition.
  • the present inventors found that bis-2-hydroxy obtained through chemical recycling was added to the recovered polyester resin containing at least one element selected from antimony, titanium, and germanium. It has been discovered that a polyester resin composition with excellent recyclability can be produced by adding a polyester resin obtained by polycondensing a raw material containing ethyl terephthalate with an aluminum compound and a phosphorus compound.
  • the present invention consists of the following configuration.
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin.
  • the polyester resin (B) The method for producing a polyester resin composition (C) according to the above [1], wherein the method satisfies the following (5) and (6).
  • the content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass (6)
  • the content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass [3]
  • a method for regenerating polyester resin (A) by mixing recovered polyester resin (A) and polyester resin (B) containing an aluminum compound and a phosphorus compound comprising: A method for recycling a polyester resin (A), wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin. [12] Recycling of the polyester resin composition according to [11] above, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (A). Method.
  • the content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass (6)
  • the content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass [15] Any of the above [11] to [14], wherein the polyester resin (A) is 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B).
  • [16] The method for regenerating polyester resin (A) according to any one of [11] to [15] above, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
  • a polyester resin composition (C) which is a mixture of a recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) is a mixture of the following (1) ) to (3), and the polyester resin (B) satisfies the following (4): a polyester resin composition (C).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the polyester resin (B) is obtained by polycondensing raw materials containing bis-2-hydroxyethyl terephthalate obtained by decomposing the polyester resin. [18]
  • the phosphorus compounds have the same molecule.
  • the polyester resin composition (C) according to the above [17], which contains a phosphorus element and a phenol structure.
  • polyester resin composition (C) according to [17] or [18] above, wherein the polyester resin composition (C) has an intrinsic viscosity retention of 89% or more.
  • the polyester resin (B) containing an aluminum compound and a phosphorus compound is obtained by polycondensing raw materials containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin, and contains antimony, titanium, and By mixing with the recovered polyester resin (A) containing at least one element selected from germanium to produce the polyester resin composition (C), coloring and molecular weight reduction of the polyester resin composition (C) are suppressed.
  • a polyester resin composition with excellent recyclability can be obtained.
  • a used and recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium and bis-2-hydroxyethyl terephthalate obtained by decomposing the polyester resin are combined.
  • a polyester resin composition (C) with excellent recyclability can be regenerated from the polyester resin (B) obtained by polycondensing the containing raw materials. Furthermore, according to the present invention, the proportion of recycled raw materials in the polyester as a whole can be increased, and the effect of reducing the load on the environment can be further enhanced.
  • polyester resin composition (C) a polyester resin composition
  • C a polyester resin composition
  • the polyester resin (A) can be regenerated by mixing the recovered polyester resin (A) with the polyester resin (B) containing an aluminum compound and a phosphorus compound.
  • the polyester resin (A) is a recovered used polyester resin, and although the shape of the polyester resin (A) is not limited, it is preferably a shape that is easy to mix with the polyester resin (B), for example. , chips, flakes, powders, etc.
  • the polyester resin (A) may be in a pulverized state without melting the recovered polyester resin.
  • the pulverized product is preferably shaped so that the distance between the two longest points is preferably 3 to 30 mm, more preferably 5 to 20 mm, from the viewpoint of ease of handling. Note that this value is the average value of 100g of pulverized material, selected 20 large pulverized products.
  • the polyester resin (A) is preferably a resin that has been once melted in order to produce a polyester molded article.
  • Examples include containers such as PET bottles and trays collected from the streets, fibers and products, products released before being collected during manufacturing, products that were not shipped to the market as B-class products, and products that were not shipped to the market during film stretching. Examples include ears that are gripped, scraps from slits, and molded products that have been returned due to complaints. These may be a single item whose source is known, such as a recovered PET bottle or a film edge, or a mixture of these items whose sources are different.
  • the polyhydric carboxylic acid component and polyhydric alcohol component that are raw materials for the polyester resin (A) may be derived from petroleum or biomass. Further, the polyester resin (A) may be a resin that has already undergone a recycling process such as mechanical recycling or chemical recycling.
  • the polyester resin (A) preferably contains 50 mol% or more of ethylene terephthalate structural units, more preferably 70 mol% or more, even more preferably 80 mol% or more, particularly 90 mol% or more. preferable.
  • the polyhydric carboxylic acid component other than terephthalic acid and the polyhydric alcohol component other than ethylene glycol the components described below as components that may be copolymerized with the polyester resin (B) can be used.
  • the polyester resin (A) is a polyethylene terephthalate resin.
  • the polyester resin (A) may contain an isophthalic acid component among the copolymerized components, and when the total polyhydric carboxylic acid component is 100 mol%, the content of the isophthalic acid component is The lower limit is preferably 0.02 mol%, more preferably 0.05 mol%, even more preferably 0.1 mol%, particularly preferably 0.2 mol%, most preferably 0. It is 3 mol%.
  • the upper limit is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.0 mol%, and particularly preferably 1.8 mol%.
  • the content of the isophthalic acid component contained in the polyester resin (A) is preferably 0.02 to 2.5 mol%, more preferably 0.02 to 2.5 mol%, when the total polycarboxylic acid component is 100 mol%. is 0.05 to 2.3 mol%, more preferably 0.1 to 2.0 mol%, particularly preferably 0.2 to 1.8 mol%, most preferably 0.3 to 2.3 mol%. It is 1.8 mol%.
  • the polyester resin (A) may contain a diethylene glycol component.
  • Diethylene glycol is not only contained in the polyester resin as a by-product of ethylene glycol during polyester polymerization, but also may be intentionally added during polymerization to adjust the crystallinity of the polyester resin (A).
  • the lower limit of the content of the diethylene glycol component in the polyester resin (A) is preferably 0.5 mol%, more preferably 0.8 mol%, when the total polyhydric alcohol component is 100 mol%, More preferably, it is 1.0 mol%, particularly preferably 1.2 mol%, and most preferably 1.4 mol%.
  • the upper limit is preferably 5.0 mol%, more preferably 4.0 mol%, still more preferably 3.5 mol%, particularly preferably 3.0 mol%.
  • the content of the diethylene glycol component contained in the polyester resin (A) is preferably 0.5 to 5.0 mol%, more preferably 0.5 to 5.0 mol%, when the total polyhydric alcohol component is 100 mol%. 8 to 4.0 mol%, more preferably 1.0 to 3.5 mol%, particularly preferably 1.2 to 3.0 mol%, and most preferably 1.4 to 3.0 mol%. It is mole%.
  • the total amount of the copolymerized components of the polyester resin (A) is the sum of the polyhydric alcohol acid component and the polyhydric alcohol component, when the total of all polyhydric carboxylic acid components and all polyhydric alcohol components is 200 mol%.
  • the lower limit is preferably 0.5 mol%, more preferably 1.0 mol%, still more preferably 1.5 mol%, and particularly preferably 2.0 mol%.
  • the upper limit is preferably 7.0 mol%, more preferably 6.0 mol%, even more preferably 5.0 mol%, and particularly preferably 4.0 mol%.
  • the total amount of copolymerized components contained in the polyester resin (A) is 0.5 to 7.0 mol% when the total of all polyhydric carboxylic acid components and all polyhydric alcohol components is 200 mol%. It is preferably 1.0 to 6.0 mol%, still more preferably 1.5 to 5.0 mol%, particularly preferably 2.0 to 4.0 mol%. . If the above upper limit is exceeded, the heat resistance and mechanical strength of the obtained polyester resin (C) may decrease, and in order to prevent this, there is a limit on the amount of recovered polyester resin (A) added. may occur.
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium. That is, the polyester resin (A) contains at least one element selected from antimony compounds, titanium compounds, and germanium compounds. Manufactured using a catalytic amount of catalyst.
  • the total content of antimony element, titanium element, and germanium element in the polyester resin (A) is 2 to 500 mass ppm, preferably 5 to 400 mass ppm, and preferably 10 to 300 mass ppm. More preferably, it is 50 to 250 ppm by mass. If it exceeds 500 mass ppm, the intrinsic viscosity retention of the polyester resin composition (C) described below may become insufficient.
  • mass ppm means 10 -4 mass %.
  • the polyester resin (A) is only a polyester resin produced using at least one polymerization catalyst selected from an antimony compound, a titanium compound, and a germanium compound.
  • a polyester resin produced using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound may be included, but it is preferably in a small amount.
  • the polyester resin produced using at least one kind of polymerization catalyst selected from antimony compounds, titanium compounds, and germanium compounds in the polyester resin (A) is preferably more than 50% by mass, and preferably 70% by mass or more. is preferable, and more preferably 80% by mass or more.
  • the polyester resin (A) may contain colorants, lubricant particles, ultraviolet absorbers, melt resistivity regulators, antistatic agents, antioxidants, heat stabilizers, and the like.
  • the intrinsic viscosity of the polyester resin (A) is 0.5 to 0.8 dl/g or more, preferably 0.7 to 0.8 dl/g. If the intrinsic viscosity of the polyester resin (A) is less than the above, mechanical strength and impact resistance will be insufficient when the polyester resin composition (C) manufactured using the polyester resin (A) is molded. On the other hand, if the intrinsic viscosity of the polyester resin (A) exceeds the above range, there is a possibility that molding becomes difficult.
  • the intrinsic viscosity retention rate of the polyester resin (A) is preferably 92% or less, more preferably 91% or less, even more preferably 90% or less, and particularly preferably 89% or less.
  • the intrinsic viscosity retention rate of the polyester resin (A) exceeds 92%, there is a possibility that the effect of improving recyclability by blending the polyester resin (B) will be insufficient. The method for measuring the intrinsic viscosity retention will be described later.
  • the amount of CT (cyclic trimer) contained in the polyester resin (A) is preferably 9000 mass ppm or less, and 8000 mass ppm or less. It is more preferably at most 7,500 mass ppm, even more preferably at most 7,000 mass ppm.
  • the CT content is preferably 4000 ppm or more by mass, more preferably 4500 ppm or more, and even more preferably 5000 ppm or more. That is, the amount of CT (cyclic trimer) contained in the polyester resin (A) is preferably 9000 to 4000 mass ppm, more preferably 8000 to 4500 mass ppm, and even more preferably 7500 to 5000 mass ppm. and particularly preferably 7000 to 5000 ppm by mass.
  • polyester resin (B) contains an aluminum compound and a phosphorus compound, that is, the polyester resin (B) is produced using a catalytic amount of a polymerization catalyst consisting of an aluminum compound and a phosphorus compound. Furthermore, the polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin. Note that bis-2-hydroxyethyl terephthalate obtained by decomposing polyester resin is sometimes referred to as chemical recycled BHET.
  • PET polyethylene terephthalate
  • the original PET is preferably one that has been used in some way. Examples include containers such as PET bottles and trays collected from the streets, fibers and products, products released before being collected during manufacturing, products that were not shipped to the market as B-class products, and products that were not shipped to the market during film stretching. Examples include ears that are gripped, scraps from slits, and molded products that have been returned due to complaints.
  • Terephthalic acid and ethylene glycol of these base PETs may be derived from petroleum or biomass. Further, it may be a mechanically recycled molded product or a chemically recycled molded product. Alternatively, a mixture of these PETs may be used. It is preferable that PET, which is the source of these materials, is used in the depolymerization step after being crushed, washed, and foreign matter removed.
  • BHET obtained by chemical recycling may contain linear dimers and higher polymers, and may also contain mono-2-hydroxyethyl terephthalate, terephthalic acid, ethylene glycol, etc. You can leave it there.
  • the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 eq/ton or more, more preferably 7,000 eq/ton or more, and even more preferably 7,500 eq/ton or more.
  • the upper limit is preferably 9500 eq/ton, more preferably 9000 eq/ton, still more preferably 8500 eq/ton. That is, the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 to 9,500 eq/ton, more preferably 7,000 to 9,000 eq/ton, and even more preferably 7,500 to 8,500 eq/ton.
  • the amount of terephthalic acid component in the polycarboxylic acid component contained in the chemical recycling BHET is preferably 98.0 mol% or more, more preferably 98.3 mol%, when the total polycarboxylic acid component is 100 mol%. , more preferably 98.5 mol% or more, even more preferably 98.8 mol% or more, particularly preferably 99.0 mol% or more, most preferably 99.2 mol% or more It is.
  • Chemical recycling BHET may contain polyhydric carboxylic acid components other than terephthalic acid components and polyhydric alcohol components other than ethylene glycol.
  • Dicarboxylic acid components other than terephthalic acid components include, for example, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, cyclohexanedicarboxylic acid, etc.
  • polyhydric alcohol components other than ethylene glycol include, for example, diethylene glycol.
  • neopentyl glycol cyclohexanedimethanol
  • trimethylene glycol tetramethylene glycol
  • an ethylene glycol or propylene glycol adduct of bisphenol A an ethylene glycol or propylene glycol adduct of bisphenol S, and the like.
  • PET can be produced by adding a polycondensation catalyst to chemically recycled BHET and polycondensing it by heating under reduced pressure.
  • the lower limit of the amount of chemically recycled BHET is preferably 50% by mass, more preferably 60% by mass, still more preferably 70% by mass, and particularly preferably 80% by mass, based on the total amount of BHET. It is most preferably 90% by mass, and may be 100%. By doing more than the above, environmental friendliness can be improved.
  • chemically recycled BHET is preferably one obtained by depolymerizing PET containing recovered products from the market, and PET recovered from the market is one in which components other than PET are added to adjust crystallinity and physical properties.
  • PET recovered from the market is one in which components other than PET are added to adjust crystallinity and physical properties.
  • the amount of terephthalic acid component in the polyhydric carboxylic acid component contained in the chemical recycling BHET is preferably 97.5 mol% or more, more preferably 98.0 mol% or more, and even more preferably 98.5 mol%. % or more, particularly preferably 99.0 mol% or more, most preferably 99.8 mol% or more.
  • Chemical recycling BHET often contains isophthalic acid as a polycarboxylic acid component other than terephthalic acid, and the content of isophthalic acid is preferably 2.5 mol% or less; 2. It may be less than 5%, more preferably 2.0 mol% or less, even more preferably 1.5 mol% or less, even more preferably 1.2 mol% or less, particularly preferably 1 .0 mol% or less, most preferably 0.8 mol% or less. Further, the content of isophthalic acid is preferably 0.02 mol% or more, more preferably 0.05 mol% or more, still more preferably 0.1 mol% or more, and particularly preferably 0.15 mol%. % or more, most preferably 0.2 mol% or more.
  • the amount of isophthalic acid component in the polyhydric carboxylic acid component contained in the chemically recycled BHET is preferably 0.02 to 2.5 mol%, and may be 0.02 mol% or more and less than 2.5 mol%. , more preferably 0.05 to 2.0 mol%, still more preferably 0.1 to 1.5 mol%, even more preferably 0.1 to 1.2 mol%, particularly preferably It is 0.15 to 1.0 mol%, most preferably 0.2 to 0.8 mol%.
  • the amount of ethylene glycol component in the polyhydric alcohol component contained in chemically recycled BHET is preferably 97.4 mol% or more, more preferably 98.0 mol%, when the total polyhydric alcohol component is 100 mol%. It is mol% or more, more preferably 98.6 mol% or more, particularly preferably 98.8 mol% or more, and may be 99.4 mol% or more.
  • Chemically recycled BHET often contains diethylene glycol as a polyhydric alcohol component other than ethylene glycol, and the content of diethylene glycol is preferably 2% when the total polyhydric alcohol component is 100 mol%. .6 mol% or less, more preferably 2.0 mol% or less, further preferably 1.7 mol% or less, particularly preferably 1.4 mol% or less, and most preferably 1.2 mol% or less. It is less than mol%.
  • the lower limit of the content of diethylene glycol is not particularly limited, but the content of diethylene glycol is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and even more preferably 0.5 mol%.
  • the content is preferably 0.6 mol% or more, and particularly preferably 0.6 mol% or more. That is, the amount of diethylene glycol component in the total polyhydric alcohol component contained in the chemically recycled BHET is preferably 0.1 to 2.6 mol%, more preferably 0.3 to 2.0 mol%, and even more preferably It is 0.5 to 1.7 mol%, particularly preferably 0.6 to 1.4 mol%, and most preferably 0.6 to 1.2 mol%.
  • the original PET resins may not be the same, and the amounts of copolymer components are not always the same. Furthermore, it is difficult to completely avoid the production of diethylene glycol in the production of PET resin, and the amount of diethylene glycol produced varies depending on differences in production conditions and equipment conditions. These factors may cause the composition of the resulting resin to vary, and if it exceeds a certain range, the resin properties of the polyester resin (B) may deteriorate. In order to obtain molded products of stable quality, it is preferable to keep the copolymerization component of polyester resin (B) within a specific range. In order to obtain polyester resin (B) with good properties, it is preferable that the polyhydric carboxylic acid component and polyhydric alcohol component of the chemically recycled BHET be within a certain range.
  • the amount of terephthalic acid component relative to 100 mol% of the total polycarboxylic acid component in the chemical recycling BHET is TPA (b) mol%
  • the ethylene glycol component is relative to 100 mol% of the total polyhydric alcohol component in bis-2-hydroxyethyl terephthalate.
  • the upper limit of the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 7.0 mol%, more preferably It is 4.0 mol%, more preferably 3.0 mol%, particularly preferably 2.8 mol%.
  • the lower limit of the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 0.15 mol%, more preferably 0.3 mol%, and even more preferably It is 0.5 mol%. That is, the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 0.15 to 7.0 mol%, more preferably 0.3 to 4.0 mol%. The content is more preferably 0.5 to 3.0 mol%, particularly preferably 0.5 to 2.8 mol%.
  • the thermal stability and melting point of the obtained polyester resin (B) can be kept high, and coloration can be suppressed.
  • the range of selection of manufacturing conditions for polyester resin (B) can be expanded, and polyester resin (B) can be obtained with good productivity.
  • terephthalic acid component isophthalic acid component
  • ethylene glycol component ethylene glycol component
  • diethylene glycol component include those that exist as a single substance in chemical recycling BHET.
  • the polyester resin (B) may contain copolymerization components other than chemically recycled BHET.
  • dicarboxylic acids include terephthalic acid, orthophthalic acid, isophthalic acid, 5-(alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 1,2 - Bis(phenoxy)ethane - Aromatic dicarboxylic acids such as p,p'-dicarboxylic acid, pamoic acid,
  • polyester resin (B) examples include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, , 4,3',4'-biphenyltetracarboxylic acid and the like.
  • Hydroxycarboxylic acids that may be contained in the polyester resin (B) include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy) Examples include benzoic acid and 4-hydroxycyclohexanecarboxylic acid.
  • diol components examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,2- Butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,10-decamethylene glycol, 1,12-dodecanediol, etc.
  • Illustrated polyalkylene glycols hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis( ⁇ -hydroxyethoxy)benzene, 1,4-bis( ⁇ -hydroxyethoxyphenyl)sulfone, bis(p-hydroxyphenyl) ) ether, bis(p-hydroxyphenyl)sulfone, bis(p-hydroxyphenyl)methane, 1,2-bis(p-hydroxyphenyl)ethane, bisphenol A, bisphenol C, 2,5-naphthalenediol, etc. and alkylene oxide adducts of these phenols.
  • the polyester resin (B) of the present invention may contain a trivalent or higher polyhydric alcohol component as long as it is a small amount.
  • the polyhydric alcohol having a valence of 3 or more is preferably a polyhydric alcohol having a valence of 3 or 4.
  • Examples of trivalent or higher polyhydric alcohols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like.
  • the polyester resin (B) of the present invention may contain a component derived from a cyclic ester and a cyclic ester as long as it is a small amount.
  • the cyclic ester include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, and lactide. Note that the cyclic ester does not correspond to either a polyhydric carboxylic acid component or a polyhydric alcohol component.
  • the polyester resin (B) is a polyethylene terephthalate resin.
  • the content of the ethylene terephthalate structural unit is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, particularly preferably 95 mol% or more. .
  • the lower limit of the terephthalic acid component with respect to the total polyhydric carboxylic acid components in the above-mentioned polyester resin (B) is preferably 97.5 mol%, more preferably 98% by mole. .0 mol%, more preferably 98.5 mol%, even more preferably 99.0 mol%, particularly preferably 99.2 mol%.
  • the upper limit of the terephthalic acid component is preferably 99.98 mol%, more preferably 99.95 mol%, even more preferably 99.9 mol%, even more preferably 99.85 mol%, Particularly preferred is 99.8 mol%.
  • the terephthalic acid component relative to all polycarboxylic acid components in the polyester resin (B) is preferably 97.5 to 99.98 mol%, more preferably 98.0 to 99.95 mol%, and even more preferably is 98.5 to 99.9 mol%, even more preferably 99.0 to 99.85 mol%, particularly preferably 99.2 to 99.8 mol%.
  • the lower limit of the ethylene glycol component is preferably 97.5 mol%, more preferably is 97.7 mol%, more preferably 97.8 mol%, particularly preferably 97.9 mol%, most preferably 98.0 mol%.
  • the upper limit of the ethylene glycol component is preferably 99.3 mol%, more preferably 99.1 mol%, still more preferably 99.0 mol%, particularly preferably 98.9 mol%, and most preferably 99.3 mol%. Preferably it is 98.8 mol%.
  • the ethylene glycol component relative to 100 mol% of the total polyhydric alcohol components in the polyester resin (B) is preferably 97.5 to 99.3 mol%, more preferably 97.7 to 99.15 mol%, More preferably, it is 97.8 to 99.0 mol%, particularly preferably 97.9 to 98.9 mol%, and most preferably 98.0 to 98.8 mol%.
  • the polyester resin (B) is a polyethylene terephthalate resin
  • the amount of the terephthalic acid component based on the total polyhydric carboxylic acid component in the polyester resin (B) is TPA (r) mol%
  • the total amount in the polyester resin (B) is
  • the amount of ethylene glycol component relative to the polyhydric alcohol component is defined as EG(r) mol%
  • the lower limit of the value of 200-TPA(r)-EG(r) is preferably 0.8 mol%, more preferably It is 0.9 mol%, more preferably 1.0 mol%, particularly preferably 1.4 mol%.
  • the upper limit of the value of 200-TPA(r)-EG(r) is preferably 5.0 mol%, more preferably 4.0 mol%, still more preferably 3.5 mol%, and particularly preferably is 3.0 mol%, most preferably 2.8 mol%. That is, the value of 200-TPA(r)-EG(r) is preferably 0.8 to 5.0 mol%, more preferably 0.9 to 4.0 mol%, and even more preferably 1.0 3.5 mol%, more preferably 1.0 to 3.0 mol%, particularly preferably 1.4 to 2.8 mol%.
  • chemically recycled BHET is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, and 80% by mass or more, 90% by mass or more.
  • the content may be 100% by mass.
  • the lower limit of the isophthalic acid component based on all the polycarboxylic acid components in the polyester resin (B) is preferably 0.02 mol%, more preferably 0.05 mol%, and even more preferably 0.1 mol%. It is particularly preferably 0.15 mol%, most preferably 0.2 mol%. In this case, the crystallization rate can be optimized and a highly transparent resin can be obtained.
  • the upper limit of the isophthalic acid component is preferably 2.5 mol%, more preferably 2.0 mol%, even more preferably 1.5 mol%, even more preferably 1.2 mol%, Particularly preferred is 1.0 mol%, most preferably 0.8 mol%. Note that the upper limit of the isophthalic acid component may be less than 2.0 mol%.
  • the lower limit of diethylene glycol based on 100 mol% of the total polyhydric alcohol components of the polyester resin (B) is preferably 0.4 mol%, more preferably 0.9 mol%, and even more preferably 1.0 mol%.
  • the content is particularly preferably 1.1 mol%, and most preferably 1.2 mol%.
  • the upper limit of diethylene glycol is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.1 mol%, particularly preferably 1.9 mol%, and most preferably It is 1.7 mol%.
  • the content of the diethylene glycol component with respect to 100 mol% of the total polyhydric alcohol components of the polyester resin (B) is preferably 0.4 to 2.5 mol%, more preferably 0.9 to 2.3 mol%. %, more preferably 1.0 to 2.1 mol%, particularly preferably 1.1 to 1.9 mol%, most preferably 1.2 to 1.7 mol%.
  • the polyester resin (B) can have high thermal stability, and coloring of the resin can be suppressed.
  • composition of the polyester resin (B) By setting the composition of the polyester resin (B) within the above range, it can have high thermal stability and thermal deterioration during processing is suppressed. Note that thermal deterioration during processing is suppressed, specifically, that a decrease in molecular weight is suppressed and/or coloration is suppressed.
  • the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound.
  • the aluminum compound constituting the polymerization catalyst for the polyester resin (B) is not limited as long as it is soluble in a solvent, and any known aluminum compound can be used without limitation.
  • aluminum compounds include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, citric acid.
  • Carboxylic acid salts such as aluminum, aluminum tartrate, aluminum salicylate; Inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum t-butoxide, etc.; aluminum acetylacetonate, aluminum ethyl acetoacetate, aluminum ethyl acetoacetate diiso-propoxide, etc.
  • Inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide,
  • Chelate compounds organoaluminium compounds such as trimethylaluminum and triethylaluminum, and their partial hydrolysates, aluminum alkoxides and reaction products of aluminum chelate compounds and hydroxycarboxylic acids, aluminum oxide, ultrafine aluminum oxide, aluminum silicate, aluminum Examples include composite oxides of titanium, silicon, zirconium, alkali metals, alkaline earth metals, etc. Among these, at least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferred, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetate are preferred.
  • At least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferable, and aluminum acetate and a base At least one kind selected from basic aluminum acetate is particularly preferred, and basic aluminum acetate is most preferred.
  • the aluminum compound is preferably an aluminum compound that is soluble in a solvent such as water or glycol.
  • Solvents that can be used in the production of polyester resin (B) are water and alkylene glycols.
  • alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, trimethylene glycol, ditrimethylene glycol, tetramethylene glycol, ditetramethylene glycol, neopentyl glycol, etc.
  • it is at least one selected from water, ethylene glycol, trimethylene glycol, and tetramethylene glycol, and more preferably water or ethylene glycol.
  • the content of aluminum element in the polyester resin (B) is preferably 5 to 70 mass ppm, more preferably 7 to 50 mass ppm, even more preferably 10 to 40 mass ppm, particularly preferably 12 to 35 mass ppm. It is ppm. If the aluminum element is less than 5 ppm by mass, there is a risk that the polymerization activity will not be sufficiently exhibited. On the other hand, if it exceeds 70 mass ppm, the amount of aluminum-based foreign matter may increase.
  • the phosphorus compound constituting the polymerization catalyst for the polyester resin (B) is not particularly limited, but it is preferable to use a phosphonic acid-based compound or a phosphinic acid-based compound because it has a large effect of improving catalyst activity. It is more preferable to use a compound because the effect of improving the catalyst activity is particularly large.
  • phosphorus compounds having a phosphorus element and a phenol structure in the same molecule are preferred.
  • phosphorus compounds There are no particular limitations on phosphorus compounds as long as they have a phosphorus element and a phenol structure in the same molecule, but phosphonic acid compounds have a phosphorus element and a phenol structure in the same molecule, and phosphines have a phosphorus element and a phenol structure in the same molecule.
  • R 1 represents a hydrocarbon group having 6 to 50 carbon atoms containing a phenol moiety, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a hydrocarbon group having 6 to 50 carbon atoms containing a phenol structure.
  • R 4 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may include a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 4 may be bonded to each other.
  • Examples of phosphorus compounds having a phosphorus element and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (p-hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, p-hydroxyphenyl Examples include phenyl phosphinate.
  • phosphorus compounds having a phosphorus element and a phenol structure in the same molecule include a phosphorus element and a hindered phenol structure (alkyl group having a tertiary carbon (preferably t-butyl group, thexyl group)).
  • examples include phosphorus compounds having a phenol structure in which an alkyl group having a tertiary carbon at the benzylic position; such as a neopentyl group) is bonded to one or two ortho positions of a hydroxyl group.
  • a phosphorus compound having an element and the structure shown below (formula A), and especially a dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown below (formula B). is more preferable.
  • the phosphorus compound used in the production of the polyester resin (B) is preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown below (formula B);
  • modified dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonates may also be included. Details of the modified product will be described later.
  • X 1 and X 2 represent hydrogen and an alkyl group having 1 to 4 carbon atoms, respectively.
  • a polyester resin in which at least one type of hindered phenol structure can be detected by a P-NMR measurement method of a solution dissolved in a hexafluoroisopropanol-based solvent is referred to as "having a hindered phenol structure.” That is, the polyester resin (B) is preferably a polyester resin produced using a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule as a polymerization catalyst. The method for detecting the hindered phenol structure in the polyester resin (B) (P-NMR measurement method) will be described later.
  • each of X 1 and X 2 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms.
  • the ethyl ester having 2 carbon atoms is preferred because Irganox 1222 (manufactured by BASF) is commercially available and can be easily obtained.
  • the phosphorus compound after heat treatment it is preferable to use the phosphorus compound after heat treatment in a solvent. Note that the details of the heat treatment will be described later.
  • dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate which is a phosphorus compound shown in (formula B) above
  • the phosphorus compound shown in (formula B) is A part of dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is a phosphorus compound, undergoes a structural change.
  • the phosphorus compound includes not only the dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown in (Formula B) but also structurally modified phosphorus compounds. Note that the elimination of the t-butyl group occurs significantly at high temperatures during the polymerization process.
  • diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate when diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate is used as a phosphorus compound, part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate has a structure Nine phosphorus compounds that have changed are shown. The amount of each structurally changed phosphorus compound in the glycol solution can be determined by P-NMR measurement.
  • phosphorus compounds in the present invention include 3,5-di-tert-butyl-4-hydroxy represented by the nine chemical formulas above. Modified forms of dialkyl benzylphosphonate may also be included.
  • the polyester resin (B) contains a phosphorus element and a hindered phenol structure in the same molecule. It can be said that it is a polyester resin manufactured using a phosphorus compound having the following as a polymerization catalyst. By using a phosphorus compound having a hindered phenol structure, sufficient polymerization activity can be exhibited while reducing the cost of the catalyst.
  • the content of the phosphorus element in the polyester resin (B) is preferably 5 to 1000 mass ppm, more preferably 10 to 500 mass ppm, even more preferably 15 to 200 mass ppm, and 15 to 1000 mass ppm. Particularly preferably 100 ppm by weight, most preferably 15 to 80 ppm by weight. If the phosphorus element content is less than 5 ppm by mass, there is a risk that the polymerization activity will decrease and the amount of aluminum-based foreign matter will increase. On the other hand, if it exceeds 1000 ppm by mass, there is a risk that the polymerization activity will decrease or the amount of the phosphorus compound added will increase, leading to a risk that the catalyst cost will increase.
  • the molar ratio of the phosphorus element to the aluminum element (hereinafter referred to as the "residual molar ratio of the phosphorus element to the aluminum element" in order to distinguish it from the "added molar ratio of the phosphorus element to the aluminum element” described later) is It is preferably from 1.00 to 5.00, more preferably from 1.10 to 4.00, even more preferably from 1.20 to 3.50, and even more preferably from 1.25 to 3.00. This is particularly preferred.
  • the aluminum element and phosphorus element in the polyester resin (B) are derived from the aluminum compound and phosphorus compound used as polymerization catalysts for the polyester resin (B), respectively.
  • the residual molar ratio of the phosphorus element to the aluminum element exceeds 5.00, the amount of the phosphorus compound added becomes too large, which may increase the catalyst cost.
  • the residual molar ratio of phosphorus element to aluminum element is preferably 1.32 to 1.80, more preferably 1.38 to 1.68.
  • polyester resin (B) In addition to the above-mentioned aluminum compounds and phosphorus compounds, other polymerization catalysts such as antimony compounds, germanium compounds, and titanium compounds are used as polymerization catalysts to be used in the production of polyester resin (B). , may be used in combination within the range that does not cause problems with the product, such as color tone.
  • the content of antimony element in the polyester resin (B) is preferably 30 mass ppm or less, and the content of germanium element in the polyester resin (B) is preferably 10 mass ppm or less. ) is preferably 3 mass ppm or less. However, it is preferable to use as few of the other polycondensation catalysts as possible.
  • the content of aluminum element corresponding to aluminum-based foreign substances in the polyester resin (B) is preferably 3000 mass ppm or less, more preferably 2800 mass ppm or less, still more preferably 2000 mass ppm or less, and more More preferably, it is 1500 mass ppm or less.
  • the aluminum-based foreign matter originates from the aluminum compound used as a polymerization catalyst, and is a foreign matter that is insoluble in the polyester resin (B). If the content of aluminum-based foreign matter exceeds the above, fine insoluble foreign matter contained in the polyester resin (B) may cause deterioration in the quality of the molded product. It also leads to the problem that filter clogging increases when polyester is filtered during the polycondensation process and molding process.
  • the lower limit of the content of the aluminum element which corresponds to aluminum-based foreign matter, is more preferably 0 mass ppm, but may be about 300 mass ppm due to technical difficulties.
  • this index relatively evaluates the amount of aluminum-based foreign substances based on the amount of aluminum element. It does not indicate the absolute value of the amount of aluminum-based foreign matter contained in the polyester resin.
  • the intrinsic viscosity of the polyester resin (B) is preferably 0.56 to 0.90 dl/g, more preferably 0.56 to 0.80 dl/g, and even more preferably 0.56 to 0.75 dl. /g. If the intrinsic viscosity of the polyester resin (B) is less than 0.56 dl/g, when the polyester resin (B) is air-fed, a large amount of fine powder will be generated due to friction between the polyester resin pellets and the air-feed piping. There is a risk that this may occur. If the intrinsic viscosity of the polyester resin (B) exceeds the above, local shear heat generation may increase when melt-mixing the polyester resin (B) and the recovered polyester resin (A), which may cause the resin to deteriorate.
  • the intrinsic viscosity of the polyester resin (B) can be adjusted according to the intrinsic viscosity of the polyester resin (A).
  • the intrinsic viscosity of the polyester resin (B) can be adjusted according to the intrinsic viscosity of the polyester resin (A).
  • the CT content in the polyester resin (B) is preferably 7000 mass ppm or less, more preferably 6000 mass ppm or less, and even more preferably 5500 mass ppm or less.
  • the CT content is preferably 2,500 mass ppm or more, and preferably 3,000 mass ppm or more.
  • the acid value of the polyester resin (B) is low, it is determined by taking into consideration the balance with economic efficiency, and it is not realistic to make the acid value extremely low.
  • the lower limit of the acid value of the polyester resin (B) can be set to 15 equivalents/ton, and if necessary, 10 equivalents/ton, 5 equivalents/ton, 3 equivalents/ton, 1 equivalent/ton.
  • the lower limit of the acid value of the polyester resin (B) is preferably 15 equivalents/ton, and more Preferably it is 20 equivalents/ton, more preferably 23 equivalents/ton, particularly preferably 25 equivalents/ton.
  • the upper limit is preferably 60 equivalents/ton, more preferably 55 equivalents/ton, even more preferably 50 equivalents/ton, particularly preferably 45 equivalents/ton, and most preferably 40 equivalents/ton. . By setting it as the said range, the productivity of polyester resin can be ensured.
  • methods include maintaining an appropriate temperature and reduced pressure during polycondensation, and purging the inside of the reaction vessel with an inert gas such as nitrogen during polycondensation to create a low oxygen state. It is preferable to take
  • the intrinsic viscosity retention of the polyester resin (B) is preferably 85% or more, more preferably 90% or more, and even more preferably 93% or more. If the intrinsic viscosity retention rate of the polyester resin (B) is less than 93%, the intrinsic viscosity retention rate of the polyester resin composition (C) will be low, and there is a possibility that the recyclability will be insufficient.
  • the upper limit of the intrinsic viscosity retention of the polyester resin (B) is preferably 100%, but due to technical difficulties, it is approximately 99%.
  • the color b value of the polyester resin (B) is preferably 10 or less, more preferably 8 or less, even more preferably 5 or less, and particularly preferably 4 or less.
  • the color b value indicates the yellow/blue coordinate, positive values indicate yellow, negative values indicate blue, and it is believed that the color b value is affected by the thermal stability of the polyester resin (B). It will be done.
  • the polyester resin (B) is in the form of pellets.
  • the distance between the two longest points is 2 to 10 mm, more preferably 3 to 6 mm.
  • the shape of the pellet include a sphere, an ellipsoid, a barrel shape, and a cube.
  • the polyester resin (B) may be a resin pelletized after polymerization, but it may also be a product recovered during the process of molding an article using the polyester resin (B). Items recovered during the process include products that were not shipped to the market as B-class products, edges gripped during film stretching, scraps from slits, and molded products returned due to complaints. In the case of these in-process recovered products, it is preferable that they are pulverized products having the same shape as the polyester resin (A).
  • the polyester resin (B) may be used as an additive masterbatch (concentrated resin) like the polyester resin (D) described below.
  • polyester resin composition (C) It is preferable to produce the polyester resin composition (C) by mixing the polyester resin (A) and the polyester resin (B) at a mass ratio of 5:95 to 95:5. That is, in the polyester resin composition (C), it is preferable that the polyester resin (A) be in an amount of 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). By setting it within the above range, coloring of the polyester resin composition (C) and reduction in molecular weight can be suppressed. Note that the suppression of coloration in this specification refers to suppressing the decrease in the L value described below and the increase in the b value described below even when recycling is repeated (repeated kneading).
  • the blending ratio of the polyester resin (A) exceeds 95 parts by mass, the intrinsic viscosity retention of the polyester resin composition (C) may become low, leading to insufficient recyclability.
  • the blending ratio of the polyester resin (A) is less than 5 parts by mass, the effect of suppressing coloring may be saturated and the economical efficiency may decrease.
  • the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound, the residual molar ratio of the phosphorus element to the aluminum element is within the above-mentioned predetermined range.
  • polyester resins (A) and polyester resins (B) together. This makes it possible to reduce manufacturing costs and improve recyclability. If the blending ratio of the polyester resin (A) is increased, the manufacturing cost of the polyester resin composition (C) can be reduced, but the color tone tends to deteriorate as the number of recycling increases. On the other hand, if the blending ratio of the polyester resin (B) is increased, deterioration in color tone can be suppressed even when the polyester resin composition (C) is recycled many times, but there is a risk that the manufacturing cost will increase.
  • the mass ratio of polyester resin (A) to polyester resin (B) is more preferably 20:80 to 80:20, and even more preferably 25:75 to 75:25.
  • the polyester resin composition (C) can be produced by dry blending the polyester resin (A) and the polyester resin (B).
  • the polyester resin composition (C) may be produced by kneading the polyester resin (A) and the polyester resin (B) using a melt extrusion method.
  • a conventional extruder such as a Banbury mixer, kneader, single-screw extruder, twin-screw extruder, four-screw extruder, single-screw planetary extruder, etc.
  • the polyester resin composition (C) can be produced by melting and kneading using a typical resin kneading device.
  • the extruder has at least one vent port, preferably two or more vent ports, and more preferably three or more vent ports, and the vent ports are connected to a reduced pressure system to prevent deterioration of the polyester resin composition (C). Suppression is a preferred embodiment.
  • the polyester resin (A) is added to the molten polyester resin (B) and kneaded to form a polyester resin composition (C). good.
  • the intrinsic viscosity of the polyester resin composition (C) is preferably 0.56 to 0.90 dl/g, preferably 0.60 to 0.80 dl/g, and 0.70 to 0.75 dl/g. It is more preferable that it is g. If the intrinsic viscosity of the polyester resin composition (C) exceeds 0.90 dl/g, there is a risk that the economical efficiency will decrease. Furthermore, since local shear heat generation increases when melting in an extruder, there is a risk that the resin may deteriorate or the mechanical strength may become insufficient, making it difficult to produce a hollow molded body. If the intrinsic viscosity of the polyester resin composition (C) is less than 0.56 dl/g, the mechanical strength and impact resistance of the hollow molded article obtained from the polyester resin composition (C) may be insufficient. .
  • the intrinsic viscosity retention of the polyester resin composition (C) is preferably 89% or more, more preferably 90% or more, even more preferably 92% or more, particularly 94% or more. preferable. If the intrinsic viscosity retention of the polyester resin composition (C) is less than 89%, recyclability may be insufficient.
  • the upper limit of the intrinsic viscosity retention of the polyester resin composition (C) is preferably 100%, but due to technical difficulties, it is approximately 97%.
  • the intrinsic viscosity retention rate of the polyester resin composition (C) is higher than the intrinsic viscosity retention rate of the polyester resin (A).
  • intrinsic viscosity retention it refers to the intrinsic viscosity retention of a re-kneaded product that has been re-kneaded only once.
  • the amount of CT (cyclic trimer) contained in the re-kneaded product obtained by re-kneading the polyester resin composition (C) once is 8000 ppm or less. More preferably it is 7,500 ppm or less, and still more preferably 7,000 ppm or less. Although the lower limit is not limited, it is approximately 5500 ppm due to technical difficulties. If the CT amount exceeds 6,600 ppm, mold staining during molding of the polyester resin composition (C) may increase.
  • Methods for lowering the amount of CT in the polyester resin (B) and polyester resin composition (C) include solid phase polymerization and heat treatment at 190 to 220°C in a closed container or under an ethylene glycol-containing air flow. There are methods.
  • the value ( ⁇ CT) obtained by subtracting the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) once from the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) three times is 1500 ppm or less. It is preferable that there be. More preferably it is 1000 ppm or less, and still more preferably 950 ppm or less. The lower limit is preferably 0 ppm, but due to technical difficulties, it is approximately 500 ppm. If ⁇ CT exceeds 1500 ppm, there is a risk that mold contamination during molding may increase.
  • the polyester resin composition (C) contains the polyester resin (B) produced using the above-mentioned Irganox 1222 as a phosphorus compound
  • the P-NMR measurement method is performed on the polyester resin composition (C)
  • At least one of the nine types of hindered phenol structures shown in 1 is detected.
  • a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule other than Irganox 1222 is used as a polymerization catalyst.
  • the method for manufacturing the hollow molded body (D) is not particularly limited, but for example, a method of manufacturing the hollow molded body (D) by molding the polyester resin composition (C) by a method such as melt molding (a method via kneading) ) or a blended product of polyester resin (A) and polyester resin (B) by dry blending etc. is directly supplied to a blow molded body manufacturing device and molded to produce a blow molded body (D) (direct molding method) law), etc.
  • the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound, the cost of the catalyst is higher than that of a polyester resin manufactured using a catalyst such as an antimony catalyst.
  • a catalyst such as an antimony catalyst.
  • the blending ratio of polyester resin (A) and polyester resin (B) may be appropriately set according to market requirements, but it is preferable that the mass ratio of polyester resin (A) and polyester resin (B) is 5:95 to 95:5. It is preferable to mix to produce the hollow molded body (D).
  • the fields of application of the hollow molded product (D) are not particularly limited, but include beverage containers for mineral water, juice, wine, whiskey, etc., household and dish detergent containers, baby bottles, bottled food containers, hair products, cosmetics, etc. It can be used as various containers. Since the hollow molded body (D) is produced by molding a high quality polyester resin composition (C) or a blend containing a high quality polyester resin (B), the hollow molded body (D) can be used in various types. Even if it is collected and recycled after being used as a container, polyester resin can be reused while maintaining its high quality, which in turn can reduce resource depletion, reduce marine debris, and reduce global warming. can contribute to solving problems.
  • the manufacturing method of the hollow molded body (D) is not particularly limited, and for example, a blend obtained by dry blending the polyester resin (A) and the polyester resin (B) is dried by a vacuum drying method or the like, and then extruded.
  • a preformed body with a bottom is obtained by a method of molding with a molding machine such as a molding machine or an injection molding machine, or a method of introducing the melt of the polyester resin composition (C) in a molten state into a molding machine and molding it. Then, a final hollow molded body can be produced from this preformed body by blow molding methods such as stretch blow molding, direct blow molding, and extrusion blow molding.
  • a molded body obtained by a molding machine such as the above-mentioned extrusion molding machine or injection molding machine can also be used as the final hollow molded body.
  • the hollow molded body (D) can also have a multilayer structure provided with a gas barrier layer made of polyvinyl alcohol, polymethaxylylene diamine adipate, etc., a light-shielding resin layer, and the like.
  • a gas barrier layer made of polyvinyl alcohol, polymethaxylylene diamine adipate, etc.
  • a light-shielding resin layer and the like.
  • the inner surface, outer surface, or both surfaces of the container may be partially or completely coated with a layer of metal such as aluminum or diamond-like carbon. It is also possible.
  • polyester (C) to which other resin such as polyethylene or an inorganic nucleating agent such as talc is added may also be used.
  • the polyester resin composition (C) may be molded into a hollow molded body (D) by the above method, but for example, the polyester resin composition (C) may be solid-phase polymerized to increase the intrinsic viscosity or reduce the CT amount. After that, the hollow molded product (D) may be formed.
  • the polyester resin composition (C) which may be a blend obtained by dry blending the polyester resin (A) and the polyester resin (B), has a suppressed intrinsic viscosity retention as well as a degree of coloration during recycling. Therefore, in addition to the hollow molded article (D), it can also be suitably used for other products such as fibers, nonwoven fabrics, sheets, and films.
  • the method for producing the polyester resin (B) can be carried out by a method with known steps, except that a polyester polymerization catalyst consisting of an aluminum compound and a phosphorus compound is used as a catalyst, and a raw material containing chemically recycled BHET is used.
  • a polyester polymerization catalyst consisting of an aluminum compound and a phosphorus compound
  • a raw material containing chemically recycled BHET is used.
  • the content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass (6)
  • the content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass (7)
  • the residual molar ratio of phosphorus element to aluminum element in the polyester resin (B) is 1.00 or more and 5.00 or less
  • the method for producing the polyester resin (B) includes a first step of synthesizing polyester or its oligomer as a polycondensate (lower condensate) as an intermediate, and a second step of further polycondensing the intermediate. It is preferable to have.
  • the first step may be completed simply by heating and melting.
  • a solution S in which an aluminum compound is dissolved in the intermediate and a solution T in which a phosphorus compound is dissolved are prepared so as to satisfy the following (8) to (10). It is preferable to add it to Polyhydric carboxylic acids and their ester-forming derivatives used in the production of polyester resin (B), hydroxycarboxylic acids and their ester-forming derivatives that may be added in small amounts, and cyclic esters that may be added in small amounts are added during polymerization. Almost 100% of the amount initially added to the system as a catalyst remains in the polyester resin (B) produced by polymerization, and is not distilled out of the reaction system. The mass of "polyester resin" can be calculated.
  • the amount of aluminum element added to the polyester resin (B) to be produced is 5 to 70 mass ppm (more preferably 7 to 50 mass ppm, still more preferably 10 to 40 mass ppm, particularly preferably 12 to 35 mass ppm) (9)
  • the amount of phosphorus added to the polyester resin (B) to be produced is 5 to 1500 mass ppm (more preferably 10 to 500 mass ppm, still more preferably 20 to 200 mass ppm, particularly preferably 40 to 100 mass ppm) (10)
  • the molar ratio of the amount of the phosphorus element added in the above (8) to the amount of the aluminum element added in the above (7) (hereinafter referred to as "addition molar ratio of the phosphorus element to the aluminum element") is 1.00 or more7. 00 or less (more preferably 1.50 to 6.00, even more preferably 2.00 to 5.00)
  • polyester resin (B) for example, when producing polyethylene terephthalate, chemical recycling BHET and, if necessary, other copolymerization components are directly reacted to distill off water and esterify, and then the mixture is heated under normal pressure. Alternatively, it is produced by polycondensation under reduced pressure. In this case, it is also preferable to add an acid component such as terephthalic acid as a copolymerization component of chemically recycled BHET. Furthermore, if necessary, solid phase polymerization may be performed to increase the intrinsic viscosity.
  • esterification reaction or transesterification reaction may be carried out in one step or may be carried out in multiple steps.
  • the polyester resin produced by the melt polymerization method may be additionally polymerized by the solid phase polymerization method.
  • the solid-phase polymerization reaction can be carried out in a continuous apparatus like the melt polycondensation reaction.
  • the first stage is the initial stage
  • the final stage is the latter stage
  • the second stage is It is preferable that the stage up to one step before the final stage is an intermediate stage, and the reaction conditions of the polymerization reaction in the intermediate stage are between the reaction conditions of the initial stage and the reaction conditions of the final stage.
  • the degree of increase in intrinsic viscosity achieved in each of these polymerization reaction steps is smoothly distributed.
  • Solid phase polymerization method In order to increase the intrinsic viscosity, a polyester resin produced by a melt polymerization method may be subjected to solid phase polymerization.
  • the solid phase polymerization may be a batch polymerization method or a continuous polymerization method, it is preferable that the solid phase polymerization is performed in a continuous type apparatus similarly to the melt polymerization.
  • Solid phase polymerization is carried out by pulverizing the polyester obtained in the second step (melt polymerization). Powder means chips, pellets, flakes, and powdered polyester, preferably chips or pellets.
  • the above solid phase polymerization is carried out by heating the powdered polyester at a temperature below the melting point of the polyester under an inert gas flow or under reduced pressure.
  • the solid phase polymerization step may be performed in one step or may be performed in multiple steps.
  • the powdery polyester to be supplied to the solid phase polymerization step may be pre-crystallized by heating to a temperature lower than the temperature at which solid phase polymerization is performed, and then supplied to the solid phase polymerization step.
  • Such preliminary crystallization step may be carried out by heating the powdered polyester in a dry state to a temperature of usually 120 to 200°C, preferably 130 to 180°C for 1 minute to 4 hours, or by heating the powdered polyester to a temperature of 1 minute to 4 hours. It may be carried out by heating to a temperature of 120 to 200° C. for 1 minute or more in a steam atmosphere, a steam-containing inert gas atmosphere, or a steam-containing air atmosphere.
  • the polyester melt-polymerized as described above is, for example, chipped and then transported through transportation piping to a storage silo or a solid phase polymerization process. If such chips are transported by a forced low-density transport method using air, for example, a large impact force is applied to the surface of the melt-polymerized polyester chips due to collision with the piping, resulting in fine and film-like formation. A lot of things are generated. Such fines and film-like materials have the effect of accelerating the crystallization of polyester, and when present in large amounts, the transparency of the obtained molded product becomes extremely poor. Therefore, it is one of the preferred embodiments to add a step of removing such fines and film-like substances.
  • the method for removing the above-mentioned fines and film-like substances is not limited, but examples include a vibrating sieve step installed separately in the intermediate step between the solid phase polymerization step and a post-step installed after the solid phase polymerization step; Examples include a treatment method using an airflow classification process using an airflow, a gravity classification process, and the like.
  • aluminum compounds and phosphorus compounds as catalysts, it is preferable to add them in the form of a slurry or solution, more preferably a solution dissolved in a solvent such as water or glycol, and a solution dissolved in water and/or glycol is used. More preferably, a solution in ethylene glycol is most preferably used.
  • solution S in which an aluminum compound is dissolved and solution T in which a phosphorus compound is dissolved are added so that the content (residual amount) in the polyester resin (B) is above It is preferable to add it in a range that satisfies (5) to (7).
  • the polymerization system is A complex having catalytic activity is functionally formed therein, and can exhibit sufficient polymerization activity. Furthermore, the generation of aluminum-based foreign matter can also be suppressed.
  • the aluminum atoms in the aluminum compound that functions as a catalyst are placed in a reduced pressure environment during the polymerization of polyester resin, almost 100% of the amount initially added to the system as a catalyst is produced by polymerization. It remains in the polyester resin (B). That is, since the amount of the aluminum compound does not substantially change before and after polymerization, if the amount of aluminum atoms added to the intermediate is 5 to 70 ppm by mass, the content of aluminum atoms in the polyester resin (B) will also increase. The amount is 5 to 70 ppm by mass.
  • a mixed solution is prepared by mixing the two components in advance, and the mono-component mixed solution is added to the intermediate.
  • methods for making the solutions into one liquid in advance include a method of mixing each solution in a tank, and a method of merging the pipes for adding the catalyst in the middle and mixing them.
  • solution S in which an aluminum compound is dissolved and solution T in which a phosphorus compound is dissolved are added separately, a large amount of foreign matter caused by the aluminum compound is likely to be generated, and the heating crystallization temperature may become low or the cooling crystallization temperature may become lower. In some cases, the catalyst activity becomes high, or sufficient catalytic activity may not be obtained.
  • a complex of the aluminum compound and a phosphorus compound that brings about polymerization activity can be produced quickly and without waste. However, if they are added separately, There is a possibility that the aluminum compound is insufficiently produced and that the aluminum compound that has not been able to form a complex with the phosphorus compound will precipitate as a foreign substance.
  • the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved are preferably added before the start of the polymerization reaction and after the completion of the esterification reaction or the transesterification reaction, and after the first step. It is more preferable that a solution S in which an aluminum compound is dissolved and a solution T in which a phosphorus compound is dissolved are added to the intermediate before the second step. If it is added before the completion of the esterification reaction or transesterification reaction, the amount of aluminum-based foreign substances may increase.
  • the solution S in which the aluminum compound is dissolved is preferably a glycol solution in which the aluminum compound is dissolved
  • the solution T in which the phosphorus compound is dissolved is preferably a glycol solution in which the phosphorus compound is dissolved.
  • the glycol is preferably a glycol that is a constituent of the polyester resin (B), and more preferably ethylene glycol.
  • the phosphorus compound used for manufacturing the polyester resin (B) is one that has been heat-treated in a solvent.
  • the solvent to be used is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and polyester resins such as ethylene glycol ( It is more preferable to use glycol, which is a component of B).
  • the heat treatment in the solvent is preferably performed after the phosphorus compound has been dissolved, but it is not necessary to completely dissolve the phosphorus compound.
  • the heat treatment temperature is preferably 170 to 196°C, more preferably 175 to 185°C, and even more preferably 175 to 180°C.
  • the heat treatment time is preferably 30 to 240 minutes, more preferably 50 to 210 minutes.
  • the concentration of the phosphorus compound during the above heat treatment is preferably 3 to 10% by mass.
  • the above heat treatment makes it possible to keep the acidity of the phosphorus compound contained in the glycol solution constant, improves the polymerization activity when used in combination with an aluminum compound, and reduces the amount of aluminum-based foreign matter generated by the polymerization catalyst. In addition, the amount of phosphorus compound distilled off in the polymerization process can be suppressed, and economical efficiency can be improved. Therefore, it is preferable to perform the above heat treatment.
  • IV Intrinsic viscosity
  • Polyester resin (B-1) was subjected to wet decomposition with sulfuric acid, nitric acid, and perchloric acid, and then neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, absorbance at a wavelength of 830 nm was measured using a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-1700). The concentration of elemental phosphorus in the polyester resin (B-1) was determined from a calibration curve prepared in advance. In the same manner, the concentration of elemental phosphorus in polyester resins (B-2), (B-3), and (H) was determined.
  • Chemical formula 1 34.5ppm
  • Chemical formula 4 30.5ppm
  • Chemical formula 7 53.6ppm
  • Chemical formula 2 33.8ppm
  • Chemical formula 5 30.1ppm
  • Chemical formula 8 53.0ppm
  • Chemical formula 3 31.9ppm
  • chemical formula 6 28.7ppm
  • chemical formula 9 51.3ppm
  • Intrinsic viscosity retention rate of sample As an index of the recyclability of the sample resin, the intrinsic viscosity retention rate shown below was calculated.
  • the sample was vacuum dried at 140° C. for 16 hours to produce dry polyester with a moisture content of 150 ppm or less. This dried polyester was re-kneaded once in a twin-screw extruder under the following conditions, and then the intrinsic viscosity of the re-kneaded product was measured, and the intrinsic viscosity retention was calculated using the following formula.
  • the intrinsic viscosity of the re-kneaded product was measured after re-kneading the above-mentioned dry polyester resin three times in a twin-screw extruder under the following conditions, and the intrinsic viscosity retention rate was calculated using the following formula. did. Note that the method for measuring the intrinsic viscosity is as described in (1) above.
  • the equivalent weight (unit: eq/ton) per 1 ton of oligomer was determined.
  • 20 mg of the resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a ratio of 1:9 (volume ratio), and centrifuged. Thereafter, the supernatant was collected and subjected to 1 H-NMR measurement under the following conditions.
  • ⁇ Preparation of aluminum-containing ethylene glycol solution s> A 20 g/L aqueous solution of basic aluminum acetate and an equal amount (volume ratio) of ethylene glycol were charged into a mixing tank, stirred for several hours at room temperature (23°C), and then heated to 50 to 90 g/L under reduced pressure (3 kPa). Water was distilled off from the system while stirring at °C for several hours to prepare an aluminum-containing ethylene glycol solution s containing 20 g/L of an aluminum compound.
  • Chemical recycled BHET was prepared by mixing the following (n) to (p) so that the chemical recycled BHET had the composition ratio shown in Table 2.
  • ⁇ Polyester resin (B-1)> A 5 L stainless steel autoclave equipped with a stirrer was charged with the chemical recycled BHET shown in Table 2 as the chemical recycled BHET. After purging the system with nitrogen, the temperature was raised to 250° C. at normal pressure while continuing to flow nitrogen, and BHET melted in the process. For another 20 minutes, atmospheric pressure nitrogen flow and temperature of 250° C. were maintained to allow the esterification reaction to proceed.
  • the oligomer properties after the esterification reaction were that the oligomer acid value (OLG-AV) was 100 eq/t and the oligomer hydroxyl value (OLG-OHV) was 7600 eq/t.
  • a mixed solution made by mixing the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above method is added, and furthermore, the mixed solution is mixed with respect to the mass of the polyester resin (B-1) , 30 mass ppm and 74 mass ppm as aluminum element and phosphorus element.
  • the obtained polyester resin was extruded into strands and cut into pellets.
  • the time from the start of temperature rise to the end of the reaction was 180 minutes.
  • the obtained polyester resin was subjected to solid phase polymerization at 230°C for 7 hours under reduced pressure using a batch type solid phase polymerization apparatus, and the polyester resin (B-1) with an intrinsic viscosity of 0.589 dl/g was ) was obtained.
  • the polyester resin (B-1) contained 97 mol% or more of ethylene terephthalate structural units, 0.5 mol% of isophthalic acid, and 1.0 mol% of DEG.
  • polyester resin (B-2) Terephthalic acid (TPA) was added at the mole % shown in Table 3, and the same procedure as for polyester resin (B-1) was carried out. As a result of compositional analysis, it was confirmed that the polyester resin (B-2) contained 97 mol% or more of ethylene terephthalate structural units, 0.4 mol% of isophthalic acid, and 0.9 mol% of diethylene glycol.
  • polyester resin (B-3) Terephthalic acid (TPA) was charged with 15 mass ppm of aluminum element and 38 mass ppm of phosphorus element listed in Table 3, and the same procedure as for polyester resin (B-1) was carried out. As a result of compositional analysis, it was confirmed that the polyester resin (B-3) contained 97 mol% or more of ethylene terephthalate structural units, 0.4 mol% of isophthalic acid, and 0.7 mol% of DEG.
  • Polyester resin (B-4) Polyester resin (B-1) except that instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t listed in Table 3, an antimony catalyst was added so that the amount of antimony element was 200 mass ppm. It was carried out in the same way. As a result of compositional analysis, it was confirmed that the polyester resin (B-4) contained 97 mol% or more of ethylene terephthalate structural units, 0.5 mol% of isophthalic acid, and 1.0 mol% of DEG.
  • Examples 1 to 8 A polyester resin composition was obtained by melt-kneading polyester resin (A-1) and polyester resins (B-1), (B-2), and (B-3) at the blending ratio shown in Table 4. A polyester resin that had been vacuum-dried in advance at 140° C. for 16 hours to a moisture content of 150 ppm or less was melt-kneaded under the following conditions.
  • polyester resins (E) to (G) are polyester resins produced using at least one of an antimony catalyst, a titanium catalyst, and a germanium catalyst, and the content of each element of antimony, titanium, and germanium is as described above. Measured using the measurement method.
  • the recovered polyester resin (A-1) is recycled multiple times by mixing the polyester resin (B-1), (B-2), or (B-3). It was possible to obtain a polyester resin composition with a high intrinsic viscosity retention even after one or three re-kneading times corresponding to the above.
  • Examples 1 to 8 a plurality of polyester resins (B-1), (B-2), or (B-3) were mixed with the recovered polyester resin (A-1).
  • the L value which is a measure of darkening, remains high and the b value, which is a measure of yellowness, remains low even after one or three times of re-kneading, which corresponds to the number of times of recycling.
  • a polyester resin composition could be obtained.
  • polyester resin (B-3) Compared to (B-1) and (B-2), polyester resin (B-3) has a shorter polymerization time and an aluminum-based It is of high quality because it has a small amount of foreign matter. Furthermore, since the amount of catalyst added is small, the cost of the catalyst can be reduced.
  • Reference Example 1 using polyester resin (B-1) had a high intrinsic viscosity retention and a high L value even after being re-kneaded once or three times, which corresponds to recycling multiple times. Although the b value remains low, the polyester resin (B-1) is less economical due to its high manufacturing cost.
  • Comparative Example 1 the recovered polyester resin (A-1) is recycled, but as the number of re-kneading increases, which corresponds to the number of times of recycling, the intrinsic viscosity retention decreases and the molecular weight decreases. In addition, the L value decreased, the b value increased, and coloring was observed.
  • Reference Examples 2 to 6 are cases where a polyester resin containing an antimony element, a titanium element, or a germanium element is used, and in Comparative Examples 2 to 5, a polyester resin containing an antimony element, a titanium element, or a germanium element is used. This is the case when mixed with polyester resin (A-1). Although the intrinsic viscosity retention rate of the polyester resin containing antimony element, titanium element, or germanium element is higher than that of the recovered polyester resin (A-1) (Reference Examples 2 to 6), the recovered polyester resin Even if a polyester resin containing an antimony element, a titanium element, or a germanium element is mixed with the polyester resin (A-1), the intrinsic viscosity retention rate is the same as when only the polyester resin (A-1) is recycled.
  • a polyester resin composition is prepared by mixing a polyester resin (B) containing an aluminum compound and a phosphorus compound and obtained using bis-2-hydroxyethyl terephthalate obtained by chemical recycling as a raw material, and the recovered polyester resin (A).
  • a polyester resin composition C
  • by mixing the polyester resin (B) containing an aluminum compound and a phosphorus compound with the recovered polyester resin (A) to produce a hollow molded body (D) it is possible to color the hollow molded body (D) and reduce the molecular weight.
  • polyester resin composition can be obtained.
  • the polyester resin composition (C) and the blow molded body (D) can be reused, they can contribute to solving various problems such as suppressing resource depletion, reducing marine debris, and suppressing global warming. can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

[Problem] To provide a method for producing a polyester resin composition that is less susceptible to discoloration or a decrease in molecular weight even when recycled multiple times from a used polyester resin produced using at least one compound selected from among antimony compounds, titanium compounds and germanium compounds as a polymerization catalyst. [Solution] A production method for a polyester resin composition (C) which includes a step in which a recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound are mixed together, wherein the polyester resin (A) satisfies (1) to (3), and the polyester resin (B) satisfies (4). (1) The polyester resin (A) contains at least one element selected from among antimony, titanium and germanium. (2) The total content of elemental antimony, elemental titanium and elemental germanium in the polyester resin (A) is 2-500 mass ppm. (3) The intrinsic viscosity of the polyester resin (A) is 0.5-0.8 dl/g. (4) The polyester resin (B) is obtained by polycondensing a starting material which contains bis-2-hydroxyethyl terephthalate obtained by breaking down a polyester resin.

Description

ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物Method for producing polyester resin composition, method for recycling recovered polyester resin, and polyester resin composition
 本発明は、ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物に関する。 The present invention relates to a method for producing a polyester resin composition, a method for recycling recovered polyester resin, and a polyester resin composition.
 ポリエチレンテレフタレート(以下、PETと略記する場合がある)、ポリエチレンナフタレート(以下、PENと略記する場合がある)等に代表されるポリエステル樹脂は、透明性、機械的特性、および化学的特性に優れており、それぞれのポリエステル樹脂の特性に応じて、例えば、衣料用や産業資材用の繊維、包装用や工業用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの中空成形体など各種分野において広範囲に使用されている。 Polyester resins, represented by polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polyethylene naphthalate (hereinafter sometimes abbreviated as PEN), have excellent transparency, mechanical properties, and chemical properties. Depending on the characteristics of each polyester resin, it can be used in a wide range of fields, such as fibers for clothing and industrial materials, various films and sheets for packaging and industrial use, and hollow molded bodies such as bottles and engineering plastics. used in
 近年、例えば、ポリエステル樹脂を用いて製造された中空成形体は、我々人類の生活にとっては必要不可欠なものになってきている。一方では、中空成形体の利用量の増加に伴い、資源枯渇、海洋ごみの増加、地球温暖化など様々な問題を引き起こしている。このような課題を解決する方法として、化石燃料由来製品のリサイクルが進んでおり、ポリエステルにおいても、製品を粉砕、再溶融成形するメカニカルリサイクルや、ポリエステルをモノマーレベルまで分解し、これを原料として再度重縮合したケミカルリサイクルも実用化されつつある。 In recent years, for example, hollow molded bodies manufactured using polyester resin have become indispensable to human life. On the other hand, the increased use of hollow molded bodies has caused various problems such as resource depletion, increased marine debris, and global warming. As a way to solve these problems, recycling of fossil fuel-derived products is progressing, and for polyester as well, mechanical recycling involves crushing and remelting the product, and polyester is broken down to the monomer level and reused as raw material. Polycondensation chemical recycling is also being put into practical use.
 しかし、一般に広く用いられているアンチモン化合物、チタン化合物、又はゲルマニウム化合物を重合触媒としたポリエステル樹脂は、使用済みポリエステル樹脂を回収して再生すると、ポリエステル樹脂の劣化によるポリエステル樹脂の着色や分子量の低下が生じるため、その改善が求められている。 However, when used polyester resins are used as polymerization catalysts such as antimony compounds, titanium compounds, or germanium compounds, which are widely used in general, when used polyester resins are recovered and recycled, the polyester resins become discolored and the molecular weight decreases due to deterioration of the polyester resins. Therefore, improvement is required.
 上記の課題を解決する方法として、アンチモン化合物、チタン化合物、またはゲルマニウム化合物を重合触媒としたポリエステル樹脂の製造において、ヒンダードフェノール化合物を添加する方法が知られている(例えば、特許文献1及び2参照)。 As a method for solving the above problems, a method is known in which a hindered phenol compound is added in the production of polyester resin using an antimony compound, a titanium compound, or a germanium compound as a polymerization catalyst (for example, Patent Documents 1 and 2 reference).
 特許文献1及び2に記載の方法では、熱酸化安定性は向上するが、リサイクルを行った場合において物性の劣化を抑制するという観点からはさらなる改善が求められた。 Although the methods described in Patent Documents 1 and 2 improve thermal oxidation stability, further improvements are required from the viewpoint of suppressing deterioration of physical properties when recycled.
 そこで、出願人は熱安定性に優れた触媒を見出した。具体的には、特許文献3及び4に記載のアルミニウム化合物とヒンダードフェノール構造を含むリン化合物とからなる触媒を見出した。しかし、使用済みポリエステル樹脂、特にアンチモン化合物、チタン化合物、又はゲルマニウム化合物から選ばれる少なくとも一種を重合触媒とした使用済みポリエステル樹脂をリサイクルする検討まではなされていなかった。 Therefore, the applicant discovered a catalyst with excellent thermal stability. Specifically, we have found a catalyst comprising the aluminum compound described in Patent Documents 3 and 4 and a phosphorus compound containing a hindered phenol structure. However, no study has been made to recycle used polyester resins, particularly using at least one selected from antimony compounds, titanium compounds, and germanium compounds as polymerization catalysts.
国際公開第2013/154042号International Publication No. 2013/154042 国際公開第2013/154043号International Publication No. 2013/154043 国際公開第2007/032325号International Publication No. 2007/032325 特開2006-169432号公報JP2006-169432A
 本発明は、かかる従来技術の問題を解消するためになされたものであり、その目的は、アンチモン化合物、チタン化合物、又はゲルマニウム化合物から選ばれる少なくとも一種を重合触媒とした使用済みポリエステル樹脂を用いて、複数回リサイクルを行っても着色や分子量の低下が生じにくい(以下、「リサイクル性に優れた」という)ポリエステル樹脂組成物を製造する方法、及び回収されたポリエステル樹脂の再生方法、並びにポリエステル樹脂組成物を提供することである。 The present invention was made to solve the problems of the prior art, and its purpose is to use a used polyester resin using at least one selected from antimony compounds, titanium compounds, or germanium compounds as a polymerization catalyst. , a method for producing a polyester resin composition that does not easily cause discoloration or a decrease in molecular weight even after being recycled multiple times (hereinafter referred to as "excellent recyclability"), a method for recycling recovered polyester resin, and a polyester resin An object of the present invention is to provide a composition.
 本発明者らは上記課題を解決するため鋭意検討した結果、アンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む回収されたポリエステル樹脂に、ケミカルリサイクルにて得られたビス-2-ヒドロキシエチルテレフタレートを含む原料と、アルミニウム化合物及びリン化合物を用いて重縮合させて得られたポリエステル樹脂を加えることにより、リサイクル性に優れたポリエステル樹脂組成物を製造できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors found that bis-2-hydroxy obtained through chemical recycling was added to the recovered polyester resin containing at least one element selected from antimony, titanium, and germanium. It has been discovered that a polyester resin composition with excellent recyclability can be produced by adding a polyester resin obtained by polycondensing a raw material containing ethyl terephthalate with an aluminum compound and a phosphorus compound.
 すなわち、本発明は以下の構成からなる。
 [1]回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂組成物(C)の製造方法。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
 [2]前記ポリエステル樹脂(B)は下記(5)及び(6)を満足することを特徴とする、上記[1]に記載のポリエステル樹脂組成物(C)の製造方法。
(5)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が5~70質量ppm
(6)前記ポリエステル樹脂(B)中におけるリン元素の含有量が5~1000質量ppm
 [3]前記ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上である、上記[1]または[2]に記載のポリエステル樹脂組成物(C)の製造方法。
 [4]前記ポリエステル樹脂(A)の固有粘度保持率が92%以下である、上記[1]~[3]のいずれかに記載のポリエステル樹脂組成物(C)の製造方法。
 [5]前記ポリエステル樹脂(A)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、上記[1]~[4]のいずれかに記載のポリエステル樹脂組成物の製造方法。
 [6]前記ポリエステル樹脂(B)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、上記[1]~[5]のいずれかに記載のポリエステル樹脂組成物の製造方法。
 [7]前記ポリエステル樹脂(B)の固有粘度保持率が93%以上である、上記[1]~[6]のいずれかに記載のポリエステル樹脂組成物(C)の製造方法。
 [8]前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である、上記[1]~[7]のいずれかに記載のポリエステル樹脂組成物(C)の製造方法。
 [9]前記リン化合物は同一分子内にリン元素とフェノール構造を有する、上記[1]~[8]のいずれかに記載のポリエステル樹脂組成物(C)の製造方法。
 [10]上記[1]~[9]のいずれかに記載の製造方法で製造されたポリエステル樹脂組成物(C)を溶融成形する工程を含む中空成形体(D)の製造方法。
 [11]回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによるポリエステル樹脂(A)の再生方法であって、
前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂(A)の再生方法。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
 
 [12]前記ポリエステル樹脂(A)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、上記[11]に記載のポリエステル樹脂組成物の再生方法。
 [13]前記ポリエステル樹脂(B)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、上記[11]または[12]に記載のポリエステル樹脂組成物の再生方法。
 [14]前記ポリエステル樹脂(B)は下記(5)及び(6)を満足することを特徴とする上記[11]~[13]のいずれかに記載のポリエステル樹脂(A)の再生方法。
(5)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が5~70質量ppm
(6)前記ポリエステル樹脂(B)中におけるリン元素の含有量が5~1000質量ppm
 [15]前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である、上記[11]~[14]のいずれかに記載のポリエステル樹脂(A)の再生方法。
 [16]前記リン化合物は同一分子内にリン元素とフェノール構造を有する、上記[11]~[15]のいずれかに記載のポリエステル樹脂(A)の再生方法。
 [17]回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)との混合物であるポリエステル樹脂組成物(C)であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂組成物(C)。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
 [18]前記リン化合物は同一分子内にリン元素とフェノール構造を有する、上記[17]に記載のポリエステル樹脂組成物(C)。
 [19]前記ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上である、上記[17]または[18]に記載のポリエステル樹脂組成物(C)。
 [20]上記[17]~[19]のいずれか1項に記載のポリエステル樹脂組成物(C)から形成された中空成形体(D)。
That is, the present invention consists of the following configuration.
[1] A step of mixing the recovered polyester resin (A) with a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) satisfies the following (1) to (3). , a method for producing a polyester resin composition (C) in which the polyester resin (B) satisfies the following (4).
(1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
(3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
(4) The polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin. [2] The polyester resin (B) The method for producing a polyester resin composition (C) according to the above [1], wherein the method satisfies the following (5) and (6).
(5) The content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass
(6) The content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass
[3] The method for producing the polyester resin composition (C) according to [1] or [2] above, wherein the polyester resin composition (C) has an intrinsic viscosity retention of 89% or more.
[4] The method for producing the polyester resin composition (C) according to any one of [1] to [3] above, wherein the polyester resin (A) has an intrinsic viscosity retention of 92% or less.
[5] Any one of [1] to [4] above, wherein the isophthalic acid component is 2.5 mol% or less based on 100 mol% of the total polycarboxylic acid components in the polyester resin (A). A method for producing a polyester resin composition.
[6] Any one of [1] to [5] above, wherein the isophthalic acid component is 2.5 mol% or less based on 100 mol% of the total polycarboxylic acid components in the polyester resin (B). A method for producing a polyester resin composition.
[7] The method for producing the polyester resin composition (C) according to any one of [1] to [6] above, wherein the polyester resin (B) has an intrinsic viscosity retention of 93% or more.
[8] Any of the above [1] to [7], wherein the polyester resin (A) is 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). The method for producing the polyester resin composition (C) described in .
[9] The method for producing a polyester resin composition (C) according to any one of [1] to [8] above, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
[10] A method for producing a hollow molded article (D), which includes a step of melt-molding the polyester resin composition (C) produced by the production method according to any one of [1] to [9] above.
[11] A method for regenerating polyester resin (A) by mixing recovered polyester resin (A) and polyester resin (B) containing an aluminum compound and a phosphorus compound, comprising:
A method for recycling a polyester resin (A), wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4).
(1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
(3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
(4) The polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin.
[12] Recycling of the polyester resin composition according to [11] above, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (A). Method.
[13] The polyester resin according to [11] or [12] above, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (B). Method for regenerating the composition.
[14] The method for regenerating polyester resin (A) according to any one of [11] to [13] above, wherein the polyester resin (B) satisfies the following (5) and (6).
(5) The content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass
(6) The content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass
[15] Any of the above [11] to [14], wherein the polyester resin (A) is 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). The method for regenerating polyester resin (A) described in .
[16] The method for regenerating polyester resin (A) according to any one of [11] to [15] above, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
[17] A polyester resin composition (C) which is a mixture of a recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) is a mixture of the following (1) ) to (3), and the polyester resin (B) satisfies the following (4): a polyester resin composition (C).
(1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
(3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
(4) The polyester resin (B) is obtained by polycondensing raw materials containing bis-2-hydroxyethyl terephthalate obtained by decomposing the polyester resin. [18] The phosphorus compounds have the same molecule. The polyester resin composition (C) according to the above [17], which contains a phosphorus element and a phenol structure.
[19] The polyester resin composition (C) according to [17] or [18] above, wherein the polyester resin composition (C) has an intrinsic viscosity retention of 89% or more.
[20] A hollow molded article (D) formed from the polyester resin composition (C) according to any one of [17] to [19] above.
アルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)はポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものであり、アンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む回収されたポリエステル樹脂(A)と混合してポリエステル樹脂組成物(C)を製造することにより、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を得ることができる。
換言すると、アンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む、使用済みの回収されたポリエステル樹脂(A)と、ポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたポリエステル樹脂(B)とから、リサイクル性に優れたポリエステル樹脂組成物(C)に再生することができる。
また、本発明によると、ポリエステル全体として、リサイクル由来原料の比率を高くすることができ、環境に対する負荷の低減効果をさらに高めることができる。
The polyester resin (B) containing an aluminum compound and a phosphorus compound is obtained by polycondensing raw materials containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin, and contains antimony, titanium, and By mixing with the recovered polyester resin (A) containing at least one element selected from germanium to produce the polyester resin composition (C), coloring and molecular weight reduction of the polyester resin composition (C) are suppressed. A polyester resin composition with excellent recyclability can be obtained.
In other words, a used and recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium and bis-2-hydroxyethyl terephthalate obtained by decomposing the polyester resin are combined. A polyester resin composition (C) with excellent recyclability can be regenerated from the polyester resin (B) obtained by polycondensing the containing raw materials.
Furthermore, according to the present invention, the proportion of recycled raw materials in the polyester as a whole can be increased, and the effect of reducing the load on the environment can be further enhanced.
 本発明では、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによりポリエステル樹脂組成物(以下、ポリエステル樹脂組成物(C)ということがある)を製造する。回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによりポリエステル樹脂(A)を再生することができる。 In the present invention, a polyester resin composition (hereinafter sometimes referred to as polyester resin composition (C)) is prepared by mixing the recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound. Manufacture. The polyester resin (A) can be regenerated by mixing the recovered polyester resin (A) with the polyester resin (B) containing an aluminum compound and a phosphorus compound.
[ポリエステル樹脂(A)] [Polyester resin (A)]
 ポリエステル樹脂(A)は使用済みのポリエステル樹脂が回収されたものであり、ポリエステル樹脂(A)の形状は限定されていないが、ポリエステル樹脂(B)と混合しやすい形状であることが好ましく、例えば、チップ、フレーク、粉末等を挙げることができる。 The polyester resin (A) is a recovered used polyester resin, and although the shape of the polyester resin (A) is not limited, it is preferably a shape that is easy to mix with the polyester resin (B), for example. , chips, flakes, powders, etc.
 ポリエステル樹脂(A)は回収されたポリエステル樹脂を溶融させることなく粉砕したままの状態であってもよい。この場合、粉砕物は取り扱い性の点で、最も長い2点の距離が好ましくは3~30mm、より好ましくは5~20mmとなるような形状であることが好ましい。なおこの値は粉砕物100gを取り、大きな粉砕物20点を選びこの平均値である。 The polyester resin (A) may be in a pulverized state without melting the recovered polyester resin. In this case, the pulverized product is preferably shaped so that the distance between the two longest points is preferably 3 to 30 mm, more preferably 5 to 20 mm, from the viewpoint of ease of handling. Note that this value is the average value of 100g of pulverized material, selected 20 large pulverized products.
ポリエステル樹脂(A)は、ポリエステルの成形体を製造するために一旦溶融させた樹脂が好ましい。例としては、街中から回収されたPETボトル、トレイなどの容器類、繊維や製品、製造において製品取りする前の放流品、B級品として市場に出荷さなかった製品類、フィルム延伸の際に把持される耳部分、スリットの端材、クレーム等で返品された成形品などが挙げられる。これらは、例えば、回収PETボトルやフィルムの耳部分など、出所の分かる単一のものであっても良く、これらの出所が異なる混合物であっても良い。ポリエステル樹脂(A)の原料である多価カルボン酸成分および多価アルコール成分は、石油由来のものであってもよく、バイオマス由来のものであってもよい。またポリエステル樹脂(A)は、メカニカルリサイクル、ケミカルリサイクル等のリサイクル工程を既に経た樹脂であってもよい。 The polyester resin (A) is preferably a resin that has been once melted in order to produce a polyester molded article. Examples include containers such as PET bottles and trays collected from the streets, fibers and products, products released before being collected during manufacturing, products that were not shipped to the market as B-class products, and products that were not shipped to the market during film stretching. Examples include ears that are gripped, scraps from slits, and molded products that have been returned due to complaints. These may be a single item whose source is known, such as a recovered PET bottle or a film edge, or a mixture of these items whose sources are different. The polyhydric carboxylic acid component and polyhydric alcohol component that are raw materials for the polyester resin (A) may be derived from petroleum or biomass. Further, the polyester resin (A) may be a resin that has already undergone a recycling process such as mechanical recycling or chemical recycling.
ポリエステル樹脂(A)は、エチレンテレフタレート構造単位を50モル%以上含むことが好ましく、70モル%以上含むことがより好ましく、80モル%以上含むことがさらに好ましく、90モル%以上含有することが特に好ましい。テレフタル酸以外の多価カルボン酸成分、エチレングリコール以外の多価アルコール成分としては、後述するポリエステル樹脂(B)に共重合されても良い成分として記載の成分が使用可能である。 The polyester resin (A) preferably contains 50 mol% or more of ethylene terephthalate structural units, more preferably 70 mol% or more, even more preferably 80 mol% or more, particularly 90 mol% or more. preferable. As the polyhydric carboxylic acid component other than terephthalic acid and the polyhydric alcohol component other than ethylene glycol, the components described below as components that may be copolymerized with the polyester resin (B) can be used.
 ポリエステル樹脂(A)は、ポリエチレンテレフタレート樹脂であることが好ましい。
 この場合、ポリエステル樹脂(A)には、共重合成分の中でイソフタル酸成分が含まれていてもよく、全多価カルボン酸成分を100モル%とした場合に、イソフタル酸成分の含有量の下限は好ましくは0.02モル%であり、より好ましくは0.05モル%であり、さらに好ましくは0.1モル%であり、特に好ましくは0.2モル%であり、最も好ましくは0.3モル%である。上限は好ましくは2.5モル%であり、より好ましくは2.3モル%であり、さらに好ましくは2.0モル%であり、特に好ましくは1.8モル%である。すなわち、ポリエステル樹脂(A)に含まれるイソフタル酸成分の含有量は、全多価カルボン酸成分を100モル%とした場合に、0.02~2,5モル%であることが好ましく、より好ましくは0.05~2,3モル%であり、さらに好ましくは0.1~2,0モル%であり、特に好ましくは0.2~1.8モル%であり、最も好ましくは0.3~1,8モル%である。
It is preferable that the polyester resin (A) is a polyethylene terephthalate resin.
In this case, the polyester resin (A) may contain an isophthalic acid component among the copolymerized components, and when the total polyhydric carboxylic acid component is 100 mol%, the content of the isophthalic acid component is The lower limit is preferably 0.02 mol%, more preferably 0.05 mol%, even more preferably 0.1 mol%, particularly preferably 0.2 mol%, most preferably 0. It is 3 mol%. The upper limit is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.0 mol%, and particularly preferably 1.8 mol%. That is, the content of the isophthalic acid component contained in the polyester resin (A) is preferably 0.02 to 2.5 mol%, more preferably 0.02 to 2.5 mol%, when the total polycarboxylic acid component is 100 mol%. is 0.05 to 2.3 mol%, more preferably 0.1 to 2.0 mol%, particularly preferably 0.2 to 1.8 mol%, most preferably 0.3 to 2.3 mol%. It is 1.8 mol%.
 ポリエステル樹脂(A)には、ジエチレングリコール成分が含まれていてもよい。
 ジエチレングリコールは、ポリエステル重合時のエチレングリコールの副生成物としてポリエステル樹脂中に含まれるだけでなく、ポリエステル樹脂(A)の結晶性の調整のために重合時に意図的に添加されていることがある。
 ポリエステル樹脂(A)のジエチレングリコール成分の含有量の下限は、全多価アルコール成分を100モル%とした場合に、好ましくは0.5モル%であり、より好ましくは0.8モル%であり、さらに好ましくは1.0モル%であり、特に好ましくは1.2モル%であり、最も好ましくは1.4モル%である。上限は好ましくは5.0モル%であり、より好ましくは4.0モル%であり、さらに好ましくは3.5モル%であり、特に好ましくは3.0モル%である。すなわち、ポリエステル樹脂(A)に含まれるジエチレングリコール成分の含有量、全多価アルコール成分を100モル%とした場合に、0.5~5.0モル%であることが好ましく、より好ましくは0.8~4,0モル%であり、さらに好ましくは1.0~3.5モル%であり、特に好ましくは1.2~3.0モル%であり、最も好ましくは1,4~3.0モル%である。
The polyester resin (A) may contain a diethylene glycol component.
Diethylene glycol is not only contained in the polyester resin as a by-product of ethylene glycol during polyester polymerization, but also may be intentionally added during polymerization to adjust the crystallinity of the polyester resin (A).
The lower limit of the content of the diethylene glycol component in the polyester resin (A) is preferably 0.5 mol%, more preferably 0.8 mol%, when the total polyhydric alcohol component is 100 mol%, More preferably, it is 1.0 mol%, particularly preferably 1.2 mol%, and most preferably 1.4 mol%. The upper limit is preferably 5.0 mol%, more preferably 4.0 mol%, still more preferably 3.5 mol%, particularly preferably 3.0 mol%. That is, the content of the diethylene glycol component contained in the polyester resin (A) is preferably 0.5 to 5.0 mol%, more preferably 0.5 to 5.0 mol%, when the total polyhydric alcohol component is 100 mol%. 8 to 4.0 mol%, more preferably 1.0 to 3.5 mol%, particularly preferably 1.2 to 3.0 mol%, and most preferably 1.4 to 3.0 mol%. It is mole%.
 ポリエステル樹脂(A)の共重合成分の合計量は、全多価カルボン酸成分および全多価アルコール成分の合計を200モル%とした場合に、多価アルコール酸成分および多価アルコール成分の合計で、下限が好ましくは0.5モル%であり、より好ましくは1.0モル%であり、さらにこのましくは1.5モル%であり、特に好ましくは2.0モル%である。上限は好ましくは7.0モル%であり、より好ましくは6.0モル%であり、さらに好ましく5.0モル%であり、特に好ましくは4.0モル%である。すなわち、ポリエステル樹脂(A)に含まれる共重合成分の合計量は、全多価カルボン酸成分および全多価アルコール成分の合計を200モル%とした場合に、0.5~7.0モル%であることが好ましく、より好ましくは1.0~6,0モル%であり、さらに好ましくは1.5~5.0モル%であり、特に好ましくは2.0~4.0モル%である。上記の上限を超えた場合には、得られるポリエステル樹脂(C)の耐熱性や機械的強度が低下する場合があり、また、これを防ぐために、回収ポリエステル樹脂(A)の添加量に制限が生じる場合がある。 The total amount of the copolymerized components of the polyester resin (A) is the sum of the polyhydric alcohol acid component and the polyhydric alcohol component, when the total of all polyhydric carboxylic acid components and all polyhydric alcohol components is 200 mol%. The lower limit is preferably 0.5 mol%, more preferably 1.0 mol%, still more preferably 1.5 mol%, and particularly preferably 2.0 mol%. The upper limit is preferably 7.0 mol%, more preferably 6.0 mol%, even more preferably 5.0 mol%, and particularly preferably 4.0 mol%. That is, the total amount of copolymerized components contained in the polyester resin (A) is 0.5 to 7.0 mol% when the total of all polyhydric carboxylic acid components and all polyhydric alcohol components is 200 mol%. It is preferably 1.0 to 6.0 mol%, still more preferably 1.5 to 5.0 mol%, particularly preferably 2.0 to 4.0 mol%. . If the above upper limit is exceeded, the heat resistance and mechanical strength of the obtained polyester resin (C) may decrease, and in order to prevent this, there is a limit on the amount of recovered polyester resin (A) added. may occur.
 ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含むものであり、すなわち、ポリエステル樹脂(A)は、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を触媒量用いて製造されている。 The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium. That is, the polyester resin (A) contains at least one element selected from antimony compounds, titanium compounds, and germanium compounds. Manufactured using a catalytic amount of catalyst.
 ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量は2~500質量ppmであり、5~400質量ppmであることが好ましく、10~300質量ppmであることがより好ましく、50~250質量ppmであることがさらに好ましい。500質量ppmを超えると後述するポリエステル樹脂組成物(C)の固有粘度保持率が不十分となるおそれがある。なお、本明細書においては、質量ppmとは10-4質量%を意味する。 The total content of antimony element, titanium element, and germanium element in the polyester resin (A) is 2 to 500 mass ppm, preferably 5 to 400 mass ppm, and preferably 10 to 300 mass ppm. More preferably, it is 50 to 250 ppm by mass. If it exceeds 500 mass ppm, the intrinsic viscosity retention of the polyester resin composition (C) described below may become insufficient. In addition, in this specification, mass ppm means 10 -4 mass %.
 ポリエステル樹脂(A)は、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を用いて製造されたポリエステル樹脂のみであることが好ましい。アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されたポリエステル樹脂が含まれていてもよいが少量であることが好ましい。ポリエステル樹脂(A)中におけるアンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を用いて製造されたポリエステル樹脂が50質量%超であることが好ましく、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 It is preferable that the polyester resin (A) is only a polyester resin produced using at least one polymerization catalyst selected from an antimony compound, a titanium compound, and a germanium compound. A polyester resin produced using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound may be included, but it is preferably in a small amount. The polyester resin produced using at least one kind of polymerization catalyst selected from antimony compounds, titanium compounds, and germanium compounds in the polyester resin (A) is preferably more than 50% by mass, and preferably 70% by mass or more. is preferable, and more preferably 80% by mass or more.
 ポリエステル樹脂(A)には、着色剤、滑剤粒子、紫外線吸収剤、溶融比抵抗調整剤、帯電防止剤、酸化防止剤、熱安定剤などが含まれていても良い。 The polyester resin (A) may contain colorants, lubricant particles, ultraviolet absorbers, melt resistivity regulators, antistatic agents, antioxidants, heat stabilizers, and the like.
 ポリエステル樹脂(A)の固有粘度は0.5~0.8dl/g以上であり、好ましくは0.7~0.8dl/gである。ポリエステル樹脂(A)の固有粘度が上記未満の場合、ポリエステル樹脂(A)を用いて製造されたポリエステル樹脂組成物(C)を成形加工した際、機械的強度や耐衝撃性が不十分になるおそれがある一方、ポリエステル樹脂(A)の固有粘度が上記範囲を超えた場合は、成形加工が困難になるおそれがある。 The intrinsic viscosity of the polyester resin (A) is 0.5 to 0.8 dl/g or more, preferably 0.7 to 0.8 dl/g. If the intrinsic viscosity of the polyester resin (A) is less than the above, mechanical strength and impact resistance will be insufficient when the polyester resin composition (C) manufactured using the polyester resin (A) is molded. On the other hand, if the intrinsic viscosity of the polyester resin (A) exceeds the above range, there is a possibility that molding becomes difficult.
 ポリエステル樹脂(A)の固有粘度保持率は92%以下であることが好ましく、91%以下であることがより好ましく、90%以下であることがさらに好ましく、89%以下であることが特に好ましい。ポリエステル樹脂(A)の固有粘度保持率が92%を上回る場合は、ポリエステル樹脂(B)を配合することによるリサイクル性の向上効果が不十分となるおそれがある。固有粘度保持率の測定方法については後述する。 The intrinsic viscosity retention rate of the polyester resin (A) is preferably 92% or less, more preferably 91% or less, even more preferably 90% or less, and particularly preferably 89% or less. When the intrinsic viscosity retention rate of the polyester resin (A) exceeds 92%, there is a possibility that the effect of improving recyclability by blending the polyester resin (B) will be insufficient. The method for measuring the intrinsic viscosity retention will be described later.
ポリエステル樹脂(A)が街中から回収されたPETボトルである場合、ポリエステル樹脂(A)中に含まれるCT(環状三量体)量は9000質量ppm以下であることが好ましく、8000質量ppm以下であることがより好ましく、7500質量ppm以下であることがさらに好ましく、7000質量ppm以下であることが特に好ましい。CT含有量は4000質量ppm以上であることが好ましく、4500ppm以上であることがより好ましく、5000ppm以上であることがさらに好ましい。すなわち、ポリエステル樹脂(A)に含まれるCT(環状三量体)量は、9000~4000質量ppmであることが好ましく、より好ましくは8000~4500質量ppmであり、さらに好ましくは7500~5000質量ppmであり、特に好ましくは7000~5000質量ppmである。 When the polyester resin (A) is a PET bottle collected from the city, the amount of CT (cyclic trimer) contained in the polyester resin (A) is preferably 9000 mass ppm or less, and 8000 mass ppm or less. It is more preferably at most 7,500 mass ppm, even more preferably at most 7,000 mass ppm. The CT content is preferably 4000 ppm or more by mass, more preferably 4500 ppm or more, and even more preferably 5000 ppm or more. That is, the amount of CT (cyclic trimer) contained in the polyester resin (A) is preferably 9000 to 4000 mass ppm, more preferably 8000 to 4500 mass ppm, and even more preferably 7500 to 5000 mass ppm. and particularly preferably 7000 to 5000 ppm by mass.
[ポリエステル樹脂(B)]
 ポリエステル樹脂(B)はアルミニウム化合物及びリン化合物を含むものであり、すなわち、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物からなる重合触媒を触媒量用いて製造されている。さらに、ポリエステル樹脂(B)は、ポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである。なお、ポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを、ケミカルリサイクルBHETということがある。
[Polyester resin (B)]
The polyester resin (B) contains an aluminum compound and a phosphorus compound, that is, the polyester resin (B) is produced using a catalytic amount of a polymerization catalyst consisting of an aluminum compound and a phosphorus compound. Furthermore, the polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin. Note that bis-2-hydroxyethyl terephthalate obtained by decomposing polyester resin is sometimes referred to as chemical recycled BHET.
<ケミカルリサイクルBHET>
 ケミカルリサイクルBHETは、ポリエチレンテレフタレート(PET)をエチレングリコール存在下で加熱して解重合して得られたものである。元となるPETは、何らかの形で使用済みとなったものが好ましい。例としては、街中から回収されたPETボトル、トレイなどの容器類、繊維や製品、製造において製品取りする前の放流品、B級品として市場に出荷さなかった製品類、フィルム延伸の際に把持される耳部分、スリットの端材、クレーム等で返品された成形品などが挙げられる。これらの元となるPETは、テレフタル酸やエチレングリコールが石油由来のものであってもよく、バイオマス由来のものであってもよい。またメカニカルリサイクルの成形品であってもよく、ケミカルリサイクルの成形品であってもよい。また、これらのPETの混合物であってもよい。これらの元となるPETは、粉砕、洗浄、異物除去した後に、解重合工程に利用されることが好ましい。
<Chemical recycling BHET>
Chemically recycled BHET is obtained by heating and depolymerizing polyethylene terephthalate (PET) in the presence of ethylene glycol. The original PET is preferably one that has been used in some way. Examples include containers such as PET bottles and trays collected from the streets, fibers and products, products released before being collected during manufacturing, products that were not shipped to the market as B-class products, and products that were not shipped to the market during film stretching. Examples include ears that are gripped, scraps from slits, and molded products that have been returned due to complaints. Terephthalic acid and ethylene glycol of these base PETs may be derived from petroleum or biomass. Further, it may be a mechanically recycled molded product or a chemically recycled molded product. Alternatively, a mixture of these PETs may be used. It is preferable that PET, which is the source of these materials, is used in the depolymerization step after being crushed, washed, and foreign matter removed.
 ケミカルリサイクルによって得られたBHET中には、線状の2量体やそれ以上の多量体などが含まれていてもよく、またモノ-2-ヒドロキシエチルテレフタレートやテレフタル酸、エチレングリコールなどが含まれていてもよい。 BHET obtained by chemical recycling may contain linear dimers and higher polymers, and may also contain mono-2-hydroxyethyl terephthalate, terephthalic acid, ethylene glycol, etc. You can leave it there.
 ケミカルリサイクルBHETの酸価、水酸基価の合計は6500eq/ton以上が好ましく、7000eq/ton以上がより好ましく、7500eq/ton以上がさらに好ましい。上限は好ましくは9500eq/tonであり、より好ましくは9000eq/tonであり、さらに好ましくは8500eq/tonである。すなわち、ケミカルリサイクルBHETの酸価、水酸基価の合計は、好ましくは6500~9500eq/tonであり、より好ましくは7000~9000eq/tonであり、さらに好ましくは7500~8500eq/tonである。上記範囲とすることで、十分な純度を保ちながら、ポリエステル樹脂(B)の生産性を確保することができる。 The total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 eq/ton or more, more preferably 7,000 eq/ton or more, and even more preferably 7,500 eq/ton or more. The upper limit is preferably 9500 eq/ton, more preferably 9000 eq/ton, still more preferably 8500 eq/ton. That is, the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 to 9,500 eq/ton, more preferably 7,000 to 9,000 eq/ton, and even more preferably 7,500 to 8,500 eq/ton. By setting it as the said range, productivity of polyester resin (B) can be ensured, maintaining sufficient purity.
 ケミカルリサイクルBHETに含まれる多価カルボン酸成分中のテレフタル酸成分量は全多価カルボン酸成分を100モル%とした場合に、98.0モル%以上が好ましく、より好ましくは98.3モル%であり、さらに好ましくは98.5モル%以上であり、よりさらに好ましくは、98.8モル%以上であり、特に好ましくは99.0モル%以上であり、最も好ましくは99.2モル%以上である。 The amount of terephthalic acid component in the polycarboxylic acid component contained in the chemical recycling BHET is preferably 98.0 mol% or more, more preferably 98.3 mol%, when the total polycarboxylic acid component is 100 mol%. , more preferably 98.5 mol% or more, even more preferably 98.8 mol% or more, particularly preferably 99.0 mol% or more, most preferably 99.2 mol% or more It is.
 ケミカルリサイクルBHET中には、テレフタル酸成分以外の多価カルボン酸成分およびエチレングリコール以外の多価アルコール成分が含まれていてもよい。テレフタル酸成分以外のジカルボン酸成分は、例えば、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、シクロヘキサンジカルボン酸、等が挙げられ、エチレングリコール以外の多価アルコール成分は、例えば、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、トリメチレングリコール、テトラメチレングリコール、ビスフェノールAのエチレングリコールまたはプロピレングリコール付加物、ビスフェノールSのエチレングリコールまたはプロピレングリコール付加物、などが挙げられる。 Chemical recycling BHET may contain polyhydric carboxylic acid components other than terephthalic acid components and polyhydric alcohol components other than ethylene glycol. Dicarboxylic acid components other than terephthalic acid components include, for example, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, cyclohexanedicarboxylic acid, etc., and polyhydric alcohol components other than ethylene glycol include, for example, diethylene glycol. , neopentyl glycol, cyclohexanedimethanol, trimethylene glycol, tetramethylene glycol, an ethylene glycol or propylene glycol adduct of bisphenol A, an ethylene glycol or propylene glycol adduct of bisphenol S, and the like.
 ケミカルリサイクルBHETに、重縮合触媒を添加し、減圧下で加熱して重縮合し、PETを製造することができる。このときに、全BHET量に対して、ケミカルリサイクルBHET量の下限は好ましくは50質量%であり、より好ましくは60質量%であり、さらに好ましくは70質量%であり、特に好ましくは80質量%であり、最も好ましくは90質量%であり、100%であってもよい。上記以上にすることで環境対応性を向上することができる。 PET can be produced by adding a polycondensation catalyst to chemically recycled BHET and polycondensing it by heating under reduced pressure. At this time, the lower limit of the amount of chemically recycled BHET is preferably 50% by mass, more preferably 60% by mass, still more preferably 70% by mass, and particularly preferably 80% by mass, based on the total amount of BHET. It is most preferably 90% by mass, and may be 100%. By doing more than the above, environmental friendliness can be improved.
 上記のように、ケミカルリサイクルBHETは市場からの回収品を含むPETを解重合したものが好ましく、市場からの回収PETは、結晶性や物性の調整などのためにPET以外の成分が加えられている場合もあるが、回収物から純粋なPETのみを選別したり、BHETをテレフタル酸以外の多価カルボン酸成分を検出されないレベルまで精製したりすることはコスト面で、また回収PETの有効活用および使用エネルギー節減の面で好ましくない。従って、ケミカルリサイクルBHETに含まれる多価カルボン酸成分中のテレフタル酸成分量は好ましくは97.5モル%以上であり、より好ましくは98.0モル%以上であり、さらに好ましくは98.5モル%以上であり、特に好ましくは99.0モル%以上であり、最も好ましくは99.8モル%以上である。 As mentioned above, chemically recycled BHET is preferably one obtained by depolymerizing PET containing recovered products from the market, and PET recovered from the market is one in which components other than PET are added to adjust crystallinity and physical properties. However, it is cost-effective to select only pure PET from the recovered material or to purify BHET to a level where polycarboxylic acid components other than terephthalic acid are not detected, and it is also difficult to make effective use of recovered PET. and unfavorable in terms of saving energy. Therefore, the amount of terephthalic acid component in the polyhydric carboxylic acid component contained in the chemical recycling BHET is preferably 97.5 mol% or more, more preferably 98.0 mol% or more, and even more preferably 98.5 mol%. % or more, particularly preferably 99.0 mol% or more, most preferably 99.8 mol% or more.
 ケミカルリサイクルBHETに含まれるテレフタル酸成以外の多価カルボン酸成分としては、イソフタル酸が含有されている場合が多く、イソフタル酸の含有量は、好ましくは2.5モル%以下であり、2.5%未満であってもよく、より好ましくは2.0モル%以下であり、さらに好ましくは1.5モル%以下であり、よりさらに好ましくは1.2モル%以下であり、特に好ましくは1.0モル%以下であり、最も好ましくは0.8モル%以下である。また、イソフタル酸の含有量は、好ましくは0.02モル%以上であり、より好ましくは0.05モル%以上あり、さらに好ましくは0.1モル%以上であり、特に好ましくは0.15モル%以上であり、最も好ましくは0.2モル%以上である。すなわち、ケミカルリサイクルBHETに含まれる多価カルボン酸成分中のイソフタル酸成分量は、0.02~2.5モル%が好ましく、0.02モル%以上2.5モル%未満であってもよく、より好ましくは0.05~2.0モル%であり、さらに好ましくは0.1~1.5モル%であり、よりさらに好ましくは0.1~1.2モル%であり、特に好ましくは0.15~1.0モル%であり、最も好ましくは0.2~0.8モル%である。 Chemical recycling BHET often contains isophthalic acid as a polycarboxylic acid component other than terephthalic acid, and the content of isophthalic acid is preferably 2.5 mol% or less; 2. It may be less than 5%, more preferably 2.0 mol% or less, even more preferably 1.5 mol% or less, even more preferably 1.2 mol% or less, particularly preferably 1 .0 mol% or less, most preferably 0.8 mol% or less. Further, the content of isophthalic acid is preferably 0.02 mol% or more, more preferably 0.05 mol% or more, still more preferably 0.1 mol% or more, and particularly preferably 0.15 mol%. % or more, most preferably 0.2 mol% or more. That is, the amount of isophthalic acid component in the polyhydric carboxylic acid component contained in the chemically recycled BHET is preferably 0.02 to 2.5 mol%, and may be 0.02 mol% or more and less than 2.5 mol%. , more preferably 0.05 to 2.0 mol%, still more preferably 0.1 to 1.5 mol%, even more preferably 0.1 to 1.2 mol%, particularly preferably It is 0.15 to 1.0 mol%, most preferably 0.2 to 0.8 mol%.
。・
 上記のように、市場からの回収物から純粋なPETのみを選別したり、BHETをエチレングリコール以外の多価アルコール成分を検出されないレベルまで精製したりすることはコスト面で、また回収PETの有効活用および使用エネルギー節減の面で好ましくない。また、ジエチレングリコールはPETの製造工程で副反応として発生しPETに共重合されるので、エチレングリコール以外の多価アルコール成分を検出されないレベルにまで低減することは困難である。
 従って、ケミカルリサイクルBHETに含まれる多価アルコール成分中のエチレングリコール成分量は全多価アルコール成分を100モル%とした場合に、好ましくは97.4モル%以上であり、より好ましくは98.0モル%以上であり、さらに好ましくは98.6モル%以上であり、特に好ましくは98.8モル%以上であり、99.4モル%以上であってもよい。
.・
As mentioned above, selecting only pure PET from recovered materials from the market and refining BHET to a level where polyhydric alcohol components other than ethylene glycol are undetectable are both cost-effective and efficient. Unfavorable in terms of utilization and energy saving. Furthermore, since diethylene glycol is generated as a side reaction during the PET manufacturing process and copolymerized into PET, it is difficult to reduce polyhydric alcohol components other than ethylene glycol to an undetectable level.
Therefore, the amount of ethylene glycol component in the polyhydric alcohol component contained in chemically recycled BHET is preferably 97.4 mol% or more, more preferably 98.0 mol%, when the total polyhydric alcohol component is 100 mol%. It is mol% or more, more preferably 98.6 mol% or more, particularly preferably 98.8 mol% or more, and may be 99.4 mol% or more.
 ケミカルリサイクルBHETに含まれるエチレングリコール以外の多価アルコール成分としては、ジエチレングリコールが含有されている場合が多く、ジエチレングリコールの含有量は、全多価アルコール成分を100モル%とした場合に、好ましくは2.6モル%以下であり、より好ましくは2.0モル%以下であり、さらに好ましくは1.7モル%以下であり、特に好ましくは1.4モル%以下であり、最も好ましくは1.2モル%以下である。ジエチレングリコールの含有量の下限は、特に限定されないが、ジエチレングリコールの含有量は、好ましくは0.1モル%以上であり、より好ましくは0.3モル%以上であり、さらに好ましくは0.5モル%以上であり、特に好ましくは0.6モル%以上である。すなわち、ケミカルリサイクルBHETに含まれる全多価アルコール成分中のジエチレングリコール成分量は、0.1~2.6モル%が好ましく、より好ましくは0.3~2.0モル%であり、さらに好ましくは0.5~1.7モル%であり、特に好ましくは0.6~1.4モル%であり、最も好ましくは0.6~1.2モル%である。 Chemically recycled BHET often contains diethylene glycol as a polyhydric alcohol component other than ethylene glycol, and the content of diethylene glycol is preferably 2% when the total polyhydric alcohol component is 100 mol%. .6 mol% or less, more preferably 2.0 mol% or less, further preferably 1.7 mol% or less, particularly preferably 1.4 mol% or less, and most preferably 1.2 mol% or less. It is less than mol%. The lower limit of the content of diethylene glycol is not particularly limited, but the content of diethylene glycol is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and even more preferably 0.5 mol%. The content is preferably 0.6 mol% or more, and particularly preferably 0.6 mol% or more. That is, the amount of diethylene glycol component in the total polyhydric alcohol component contained in the chemically recycled BHET is preferably 0.1 to 2.6 mol%, more preferably 0.3 to 2.0 mol%, and even more preferably It is 0.5 to 1.7 mol%, particularly preferably 0.6 to 1.4 mol%, and most preferably 0.6 to 1.2 mol%.
 ケミカルリサイクルBHETは、元となるPET樹脂が同一ではないことがあり、共重合成分の量が常に同じというわけでない。また、PET樹脂の製造においてジエチレングリコールの生成を完全に避けることは困難であり、製造条件の違いや設備の状態の違いにより、ジエチレングリコールの生成量も異なってくる。これらの要因により、得られる樹脂の組成が変動し、一定範囲を超えるとポリエステル樹脂(B)の樹脂特性が低下するおそれがある。安定した品質の成形品を得るためには、ポリエステル樹脂(B)の共重合成分を特定範囲内にすることが好ましいため、ポリエステル樹脂(B)の製造条件の選択の幅を広げ、また、生産性よくポリエステル樹脂(B)を得るためにも、ケミカルリサイクルBHETの多価カルボン酸成分および多価アルコール成分を一定範囲になるようにすることが好ましい。 In chemically recycled BHET, the original PET resins may not be the same, and the amounts of copolymer components are not always the same. Furthermore, it is difficult to completely avoid the production of diethylene glycol in the production of PET resin, and the amount of diethylene glycol produced varies depending on differences in production conditions and equipment conditions. These factors may cause the composition of the resulting resin to vary, and if it exceeds a certain range, the resin properties of the polyester resin (B) may deteriorate. In order to obtain molded products of stable quality, it is preferable to keep the copolymerization component of polyester resin (B) within a specific range. In order to obtain polyester resin (B) with good properties, it is preferable that the polyhydric carboxylic acid component and polyhydric alcohol component of the chemically recycled BHET be within a certain range.
 前記ケミカルリサイクルBHET中の全多価カルボン酸成分100モル%に対するテレフタル酸成分の量をTPA(b)モル%、ビス-2-ヒドロキシエチルテレフタレート中の全多価アルコール成分100モル%に対するエチレングリコール成分の量をEG(b)モル%とした場合、(100-TPA(b))+(100-EG(b))×2の値の上限は好ましくは7.0モル%であり、より好ましくは4.0モル%であり、さらに好ましくは3.0モル%、特に好ましくは2.8モル%である。また、(100-TPA(b))+(100-EG(b))×2の値の下限は好ましくは0.15モル%であり、より好ましくは0.3モル%であり、さらに好ましくは0.5モル%である。すなわち、(100-TPA(b))+(100-EG(b))×2の値は、0.15~7.0モル%が好ましく、より好ましくは0.3~4.0モル%であり、さらに好ましくは0.5~3.0モル%であり、特に好ましくは0.5~2,8モル%である。上記範囲とすることで、得られたポリエステル樹脂(B)の熱安定性や融点を高く保つことができ、着色を抑制できる。さらに、ポリエステル樹脂(B)の製造条件の選択の幅を広げ、また、生産性よくポリエステル樹脂(B)を得ることができる。 The amount of terephthalic acid component relative to 100 mol% of the total polycarboxylic acid component in the chemical recycling BHET is TPA (b) mol%, and the ethylene glycol component is relative to 100 mol% of the total polyhydric alcohol component in bis-2-hydroxyethyl terephthalate. When the amount of EG(b) is mol%, the upper limit of the value of (100-TPA(b))+(100-EG(b))×2 is preferably 7.0 mol%, more preferably It is 4.0 mol%, more preferably 3.0 mol%, particularly preferably 2.8 mol%. Further, the lower limit of the value of (100-TPA(b))+(100-EG(b))×2 is preferably 0.15 mol%, more preferably 0.3 mol%, and even more preferably It is 0.5 mol%. That is, the value of (100-TPA(b))+(100-EG(b))×2 is preferably 0.15 to 7.0 mol%, more preferably 0.3 to 4.0 mol%. The content is more preferably 0.5 to 3.0 mol%, particularly preferably 0.5 to 2.8 mol%. By setting it as the said range, the thermal stability and melting point of the obtained polyester resin (B) can be kept high, and coloration can be suppressed. Furthermore, the range of selection of manufacturing conditions for polyester resin (B) can be expanded, and polyester resin (B) can be obtained with good productivity.
 上記のテレフタル酸成分、イソフタル酸成分、エチレングリコール成分、ジエチレングリコール成分は、ケミカルリサイクルBHETに単体として存在しているものも含んだ値である。 The values for the above terephthalic acid component, isophthalic acid component, ethylene glycol component, and diethylene glycol component include those that exist as a single substance in chemical recycling BHET.
 <共重合成分>
 ポリエステル樹脂(B)には、ケミカルリサイクルBHET以外の共重合成分が含まれていても良い。例えば、ジカルボン酸として、テレフタル酸、オルソフタル酸、イソフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、パモ酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸;フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸;などが挙げられる。
<Copolymerization component>
The polyester resin (B) may contain copolymerization components other than chemically recycled BHET. For example, dicarboxylic acids include terephthalic acid, orthophthalic acid, isophthalic acid, 5-(alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 1,2 - Bis(phenoxy)ethane - Aromatic dicarboxylic acids such as p,p'-dicarboxylic acid, pamoic acid, anthracenedicarboxylic acid; oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberin Acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1,3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1 , 3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.; Saturated aliphatic dicarboxylic acids; and the like.
 ポリエステル樹脂(B)に含まれていてもよい3価以上の多価カルボン酸としては、例えば、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸などが挙げられる。 Examples of trivalent or higher polycarboxylic acids that may be contained in the polyester resin (B) include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, , 4,3',4'-biphenyltetracarboxylic acid and the like.
 ポリエステル樹脂(B)に含まれていてもよいヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸などが挙げられる。 Hydroxycarboxylic acids that may be contained in the polyester resin (B) include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy) Examples include benzoic acid and 4-hydroxycyclohexanecarboxylic acid.
ポリエステル樹脂(B)に含まれていても良いジオール成分(グリコール成分)として、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,10-デカメチレングリコール、1,12-ドデカンジオールなどに例示されるアルキレングリコール;ジエチレングリコール、トリエチレングリコール等に例示されるオリゴアルキレングリコール;1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノールなどに例示される脂環式構造を有するジアルコール;ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示されるポリアルキレングリコール;ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオールなどに例示されるフェノール類およびこれらフェノール類のアルキレンオキサイド付加物、が挙げられる。 Examples of diol components (glycol components) that may be contained in the polyester resin (B) include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,2- Butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,10-decamethylene glycol, 1,12-dodecanediol, etc. Alkylene glycols exemplified by; oligoalkylene glycols exemplified by diethylene glycol, triethylene glycol, etc.; 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, Dialcohols with an alicyclic structure such as 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.; polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, etc. Illustrated polyalkylene glycols; hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis(β-hydroxyethoxy)benzene, 1,4-bis(β-hydroxyethoxyphenyl)sulfone, bis(p-hydroxyphenyl) ) ether, bis(p-hydroxyphenyl)sulfone, bis(p-hydroxyphenyl)methane, 1,2-bis(p-hydroxyphenyl)ethane, bisphenol A, bisphenol C, 2,5-naphthalenediol, etc. and alkylene oxide adducts of these phenols.
 本発明のポリエステル樹脂(B)は、少量であれば3価以上の多価アルコール成分が含まれていてもよい。3価以上の多価アルコールは3~4価の多価アルコールであることが好ましい。3価以上の多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。 The polyester resin (B) of the present invention may contain a trivalent or higher polyhydric alcohol component as long as it is a small amount. The polyhydric alcohol having a valence of 3 or more is preferably a polyhydric alcohol having a valence of 3 or 4. Examples of trivalent or higher polyhydric alcohols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like.
 本発明のポリエステル樹脂(B)は、少量であれば環状エステルに由来する成分および環状エステルを含んでもよい。環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。なお、環状エステルは多価カルボン酸成分にも多価アルコール成分にも該当しないものとする。 The polyester resin (B) of the present invention may contain a component derived from a cyclic ester and a cyclic ester as long as it is a small amount. Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, and lactide. Note that the cyclic ester does not correspond to either a polyhydric carboxylic acid component or a polyhydric alcohol component.
 ポリエステル樹脂(B)は、ポリエチレンテレフタレート樹脂であることが好ましい。この場合、エチレンテレフタレート構造単位が70モル%以上含有することが好ましく、80モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましく、95モル%以上含有することが特に好ましい。 It is preferable that the polyester resin (B) is a polyethylene terephthalate resin. In this case, the content of the ethylene terephthalate structural unit is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, particularly preferably 95 mol% or more. .
 ポリエステル樹脂(B)が、上記ポリエチレンテレフタレート樹脂である場合、上記ポリエステル樹脂(B)中の全多価カルボン酸成分に対するテレフタル酸成分の下限は好ましくは97.5モル%であり、より好ましくは98.0モル%であり、さらに好ましくは98.5モル%であり、よりさらに好ましくは99.0モル%であり、特に好ましくは99.2モル%である。テレフタル酸成分の上限は好ましくは99.98モル%であり、より好ましくは99.95モル%であり、さらに好ましくは99.9モル%であり、よりさらに好ましくは99.85モル%であり、特に好ましくは99.8モル%である。すなわち、ポリエステル樹脂(B)中の全多価カルボン酸成分に対するテレフタル酸成分は、97.5~99.98モル%が好ましく、より好ましくは98.0~99.95モル%であり、さらに好ましくは98.5~99.9モル%であり、よりさらに好ましくは99.0~99.85モル%であり、特に好ましくは99.2~99.8モル%である。 When the polyester resin (B) is the above-mentioned polyethylene terephthalate resin, the lower limit of the terephthalic acid component with respect to the total polyhydric carboxylic acid components in the above-mentioned polyester resin (B) is preferably 97.5 mol%, more preferably 98% by mole. .0 mol%, more preferably 98.5 mol%, even more preferably 99.0 mol%, particularly preferably 99.2 mol%. The upper limit of the terephthalic acid component is preferably 99.98 mol%, more preferably 99.95 mol%, even more preferably 99.9 mol%, even more preferably 99.85 mol%, Particularly preferred is 99.8 mol%. That is, the terephthalic acid component relative to all polycarboxylic acid components in the polyester resin (B) is preferably 97.5 to 99.98 mol%, more preferably 98.0 to 99.95 mol%, and even more preferably is 98.5 to 99.9 mol%, even more preferably 99.0 to 99.85 mol%, particularly preferably 99.2 to 99.8 mol%.
 ポリエステル樹脂(B)が、上記ポリエチレンテレフタレート樹脂である場合、上記ポリエステル樹脂(B)中の全多価アルコール成分100モル%に対するエチレングリコール成分の下限は好ましくは97.5モル%であり、より好ましくは97.7モル%であり、さらに好ましくは97.8モル%であり、特に好ましくは97.9モル%であり、最も好ましくは98.0モル%である。エチレングリコール成分の上限は好ましくは99.3モル%であり、より好ましくは99.1モル%であり、さらに好ましくは99.0モル%であり、特に好ましくは98.9モル%であり、最も好ましくは98.8モル%である。すなわち、ポリエステル樹脂(B)中の全多価アルコール成分100モル%に対するエチレングリコール成分は、97.5~99.3モル%が好ましく、より好ましくは97.7~99.15モル%であり、さらに好ましくは97.8~99.0モル%であり、特に好ましくは97.9~98.9モル%であり、最も好ましくは98.0~98.8モル%である。 When the polyester resin (B) is the polyethylene terephthalate resin, the lower limit of the ethylene glycol component is preferably 97.5 mol%, more preferably is 97.7 mol%, more preferably 97.8 mol%, particularly preferably 97.9 mol%, most preferably 98.0 mol%. The upper limit of the ethylene glycol component is preferably 99.3 mol%, more preferably 99.1 mol%, still more preferably 99.0 mol%, particularly preferably 98.9 mol%, and most preferably 99.3 mol%. Preferably it is 98.8 mol%. That is, the ethylene glycol component relative to 100 mol% of the total polyhydric alcohol components in the polyester resin (B) is preferably 97.5 to 99.3 mol%, more preferably 97.7 to 99.15 mol%, More preferably, it is 97.8 to 99.0 mol%, particularly preferably 97.9 to 98.9 mol%, and most preferably 98.0 to 98.8 mol%.
ポリエステル樹脂(B)が、ポリエチレンテレフタレート樹脂である場合、上記ポリエステル樹脂(B)中の全多価カルボン酸成分に対するテレフタル酸成分の量をTPA(r)モル%、ポリエステル樹脂(B)中の全多価アルコール成分に対するエチレングリコール成分の量をEG(r)モル%とした場合、200-TPA(r)-EG(r)の値の下限は好ましくは0.8モル%であり、より好ましくは0.9モル%であり、さらに好ましくは1.0モル%であり、特に好ましくは1.4モル%である。200-TPA(r)-EG(r)の値の上限は好ましくは5.0モル%であり、より好ましくは4.0モル%であり、さらに好ましくは3.5モル%であり、特に好ましくは3.0モル%であり、最も好ましくは2.8モル%である。すなわち、200-TPA(r)-EG(r)の値は、0.8~5.0モル%が好ましく、より好ましくは0.9~4.0モル%であり、さらに好ましくは1.0~3.5モル%であり、よりさらに好ましくは1.0~3.0モル%であり、特に好ましくは1.4~2.8モル%である。 When the polyester resin (B) is a polyethylene terephthalate resin, the amount of the terephthalic acid component based on the total polyhydric carboxylic acid component in the polyester resin (B) is TPA (r) mol%, and the total amount in the polyester resin (B) is When the amount of ethylene glycol component relative to the polyhydric alcohol component is defined as EG(r) mol%, the lower limit of the value of 200-TPA(r)-EG(r) is preferably 0.8 mol%, more preferably It is 0.9 mol%, more preferably 1.0 mol%, particularly preferably 1.4 mol%. The upper limit of the value of 200-TPA(r)-EG(r) is preferably 5.0 mol%, more preferably 4.0 mol%, still more preferably 3.5 mol%, and particularly preferably is 3.0 mol%, most preferably 2.8 mol%. That is, the value of 200-TPA(r)-EG(r) is preferably 0.8 to 5.0 mol%, more preferably 0.9 to 4.0 mol%, and even more preferably 1.0 3.5 mol%, more preferably 1.0 to 3.0 mol%, particularly preferably 1.4 to 2.8 mol%.
 ポリエステル樹脂(B)中の原料のうち、ケミカルリサイクルBHETは好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上であり、80質量%以上、90質量%以上であってもよく、100質量%であってもよい。 Of the raw materials in the polyester resin (B), chemically recycled BHET is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, and 80% by mass or more, 90% by mass or more. The content may be 100% by mass.
 ポリエステル樹脂(B)中の全多価カルボン酸成分に対するイソフタル酸成分の下限は好ましくは0.02モル%であり、より好ましくは0.05モル%であり、さらに好ましくは0.1モル%であり、特に好ましくは0.15モル%であり、最も好ましくは0.2モル%である。この場合、結晶化速度を最適化することが可能で、透明性の高い樹脂が得られる。イソフタル酸成分の上限は好ましくは2.5モル%であり、より好ましくは2.0モル%であり、さらに好ましくは1.5モル%であり、よりさらに好ましくは1.2モル%であり、特に好ましくは1.0モル%であり、最も好ましくは0.8モル%である。なお、イソフタル酸成分の上限は2.0モル%未満であってもよい。 The lower limit of the isophthalic acid component based on all the polycarboxylic acid components in the polyester resin (B) is preferably 0.02 mol%, more preferably 0.05 mol%, and even more preferably 0.1 mol%. It is particularly preferably 0.15 mol%, most preferably 0.2 mol%. In this case, the crystallization rate can be optimized and a highly transparent resin can be obtained. The upper limit of the isophthalic acid component is preferably 2.5 mol%, more preferably 2.0 mol%, even more preferably 1.5 mol%, even more preferably 1.2 mol%, Particularly preferred is 1.0 mol%, most preferably 0.8 mol%. Note that the upper limit of the isophthalic acid component may be less than 2.0 mol%.
 ポリエステル樹脂(B)の全多価アルコール成分100モル%に対するジエチレングリコールの下限は、好ましくは0.4モル%であり、より好ましくは0.9モル%であり、さらに好ましくは1.0モル%であり、特に好ましくは1.1モル%であり、最も好ましくは1.2モル%である。ジエチレングリコールの上限は好ましくは2.5モル%であり、より好ましくは2.3モル%であり、さらに好ましくは2.1モル%であり、特に好ましくは1.9モル%であり、最も好ましくは1.7モル%である。すなわち、ポリエステル樹脂(B)の全多価アルコール成分100モル%に対するジエチレングリコール成分の含有量は、0.4~2.5モル%であることが好ましく、より好ましくは0.9~2.3モル%であり、さらに好ましくは1.0~2.1モル%であり、特に好ましくは1.1~1.9モル%であり、最も好ましくは1.2~1.7モル%である。この場合、ポリエステル樹脂(B)は高い熱安定性を有することができ、樹脂の着色を抑制することができる。 The lower limit of diethylene glycol based on 100 mol% of the total polyhydric alcohol components of the polyester resin (B) is preferably 0.4 mol%, more preferably 0.9 mol%, and even more preferably 1.0 mol%. The content is particularly preferably 1.1 mol%, and most preferably 1.2 mol%. The upper limit of diethylene glycol is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.1 mol%, particularly preferably 1.9 mol%, and most preferably It is 1.7 mol%. That is, the content of the diethylene glycol component with respect to 100 mol% of the total polyhydric alcohol components of the polyester resin (B) is preferably 0.4 to 2.5 mol%, more preferably 0.9 to 2.3 mol%. %, more preferably 1.0 to 2.1 mol%, particularly preferably 1.1 to 1.9 mol%, most preferably 1.2 to 1.7 mol%. In this case, the polyester resin (B) can have high thermal stability, and coloring of the resin can be suppressed.
 ポリエステル樹脂(B)の組成を上記範囲とすることで、高い熱安定性を有することができ、加工時の熱劣化が抑制される。なお、加工時の熱劣化が抑制されるとは、具体的には、分子量の低下が抑制され、および/または、着色が抑制されること、である。 By setting the composition of the polyester resin (B) within the above range, it can have high thermal stability and thermal deterioration during processing is suppressed. Note that thermal deterioration during processing is suppressed, specifically, that a decrease in molecular weight is suppressed and/or coloration is suppressed.
<重合触媒>
 上述のとおり、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されている。
<Polymerization catalyst>
As mentioned above, the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound.
(アルミニウム化合物)
 ポリエステル樹脂(B)の重合触媒を構成するアルミニウム化合物は溶媒に溶解するものであれば限定されず、公知のアルミニウム化合物が限定なく使用できる。アルミニウム化合物として、例えば、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩;塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩;アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムn-プロポキサイド、アルミニウムイソプロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt-ブトキサイドなどアルミニウムアルコキサイド;アルミニウムアセチルアセトネート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのキレート化合物;トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、アルミニウムのアルコキサイドやアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物、酸化アルミニウム、超微粒子酸化アルミニウム、アルミニウムシリケート、アルミニウムとチタンやケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物などが挙げられる。これらのうちカルボン酸塩、無機酸塩、およびキレート化合物から選ばれる少なくとも1種が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がさらに好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種が特に好ましく、塩基性酢酸アルミニウムが最も好ましい。
(aluminum compound)
The aluminum compound constituting the polymerization catalyst for the polyester resin (B) is not limited as long as it is soluble in a solvent, and any known aluminum compound can be used without limitation. Examples of aluminum compounds include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, citric acid. Carboxylic acid salts such as aluminum, aluminum tartrate, aluminum salicylate; Inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum t-butoxide, etc.; aluminum acetylacetonate, aluminum ethyl acetoacetate, aluminum ethyl acetoacetate diiso-propoxide, etc. Chelate compounds; organoaluminium compounds such as trimethylaluminum and triethylaluminum, and their partial hydrolysates, aluminum alkoxides and reaction products of aluminum chelate compounds and hydroxycarboxylic acids, aluminum oxide, ultrafine aluminum oxide, aluminum silicate, aluminum Examples include composite oxides of titanium, silicon, zirconium, alkali metals, alkaline earth metals, etc. Among these, at least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferred, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetate are preferred. At least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferable, and aluminum acetate and a base At least one kind selected from basic aluminum acetate is particularly preferred, and basic aluminum acetate is most preferred.
 上記アルミニウム化合物は水やグリコールなどの溶剤に可溶化するアルミニウム化合物であることが好ましい。ポリエステル樹脂(B)の製造において使用できる溶媒とは、水およびアルキレングリコール類である。アルキレングリコール類には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、トリメチレングリコール、ジトリメチレングリコール、テトラメチレングリコール、ジテトラメチレングリコール、ネオペンチルグリコールなどが挙げられる。好ましくは、水、エチレングリコール、トリメチレングリコール、及びテトラメチレングリコールから選ばれる少なくとも1種であり、さらに好ましくは水又はエチレングリコールである。 The aluminum compound is preferably an aluminum compound that is soluble in a solvent such as water or glycol. Solvents that can be used in the production of polyester resin (B) are water and alkylene glycols. Examples of alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, trimethylene glycol, ditrimethylene glycol, tetramethylene glycol, ditetramethylene glycol, neopentyl glycol, etc. . Preferably, it is at least one selected from water, ethylene glycol, trimethylene glycol, and tetramethylene glycol, and more preferably water or ethylene glycol.
 ポリエステル樹脂(B)中におけるアルミニウム元素の含有率は、5~70質量ppmであることが好ましく、より好ましくは7~50質量ppm、さらに好ましくは10~40質量ppm、特に好ましくは12~35質量ppmである。アルミニウム元素が5質量ppm未満では、重合活性が十分に発揮されないおそれがある。一方、70質量ppmを超えるとアルミニウム系異物量が増大するおそれがある。 The content of aluminum element in the polyester resin (B) is preferably 5 to 70 mass ppm, more preferably 7 to 50 mass ppm, even more preferably 10 to 40 mass ppm, particularly preferably 12 to 35 mass ppm. It is ppm. If the aluminum element is less than 5 ppm by mass, there is a risk that the polymerization activity will not be sufficiently exhibited. On the other hand, if it exceeds 70 mass ppm, the amount of aluminum-based foreign matter may increase.
(リン化合物)
 ポリエステル樹脂(B)の重合触媒を構成するリン化合物としては、特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きいため好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きいためより好ましい。
(phosphorus compound)
The phosphorus compound constituting the polymerization catalyst for the polyester resin (B) is not particularly limited, but it is preferable to use a phosphonic acid-based compound or a phosphinic acid-based compound because it has a large effect of improving catalyst activity. It is more preferable to use a compound because the effect of improving the catalyst activity is particularly large.
 上記リン化合物のうち、同一分子内にリン元素とフェノール構造を有するリン化合物が好ましい。同一分子内にリン元素とフェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物、同一分子内にリン元素とフェノール構造を有するホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きいため好ましく、一種または二種以上の同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物を用いると触媒活性の向上効果が非常に大きいためより好ましい。 Among the above phosphorus compounds, phosphorus compounds having a phosphorus element and a phenol structure in the same molecule are preferred. There are no particular limitations on phosphorus compounds as long as they have a phosphorus element and a phenol structure in the same molecule, but phosphonic acid compounds have a phosphorus element and a phenol structure in the same molecule, and phosphines have a phosphorus element and a phenol structure in the same molecule. It is preferable to use one or more compounds selected from the group consisting of acid compounds because the effect of improving the catalytic activity is large, and one or more phosphonic acid compounds having a phosphorus element and a phenol structure in the same molecule. It is more preferable to use this because the effect of improving the catalyst activity is very large.
 また、同一分子内にリン元素とフェノール構造を有するリン化合物としては、P(=O)R1(OR2)(OR3)やP(=O)R14(OR2)で表される化合物などが挙げられる。R1はフェノール部を含む炭素数6~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール構造を含む炭素数6~50の炭化水素基を表す。R4は、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。 In addition, phosphorus compounds that have a phosphorus element and a phenol structure in the same molecule are represented by P(=O)R 1 (OR 2 ) (OR 3 ) and P(=O)R 1 R 4 (OR 2 ). Examples include compounds such as R 1 represents a hydrocarbon group having 6 to 50 carbon atoms containing a phenol moiety, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a hydrocarbon group having 6 to 50 carbon atoms containing a phenol structure. R 4 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group. R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group. However, the hydrocarbon group may include a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 4 may be bonded to each other.
 同一分子内にリン元素とフェノール構造を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。 Examples of phosphorus compounds having a phosphorus element and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (p-hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, p-hydroxyphenyl Examples include phenyl phosphinate.
 同一分子内にリン元素とフェノール構造を有するリン化合物としては、上記の例示の他に同一分子内にリン元素とヒンダードフェノール構造(3級炭素を有するアルキル基(好ましくはt-ブチル基、テキシル基などの3級炭素をベンジル位に有するアルキル基;ネオペンチル基など)が水酸基の1つ又は2つのオルト位に結合しているフェノール構造など)を有するリン化合物が挙げられ、同一分子内にリン元素と下記(化式A)の構造を有するリン化合物であることが好ましく、中でも、下記(化式B)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることがより好ましい。なお、ポリエステル樹脂(B)の製造に用いられるリン化合物としては、下記(化式B)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることが好ましいが、それ以外に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。変性体の詳細については後述する。 In addition to the above-mentioned examples, phosphorus compounds having a phosphorus element and a phenol structure in the same molecule include a phosphorus element and a hindered phenol structure (alkyl group having a tertiary carbon (preferably t-butyl group, thexyl group)). Examples include phosphorus compounds having a phenol structure in which an alkyl group having a tertiary carbon at the benzylic position; such as a neopentyl group) is bonded to one or two ortho positions of a hydroxyl group. It is preferably a phosphorus compound having an element and the structure shown below (formula A), and especially a dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown below (formula B). is more preferable. The phosphorus compound used in the production of the polyester resin (B) is preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown below (formula B); In addition, modified dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonates may also be included. Details of the modified product will be described later.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
((化式A)において、*は結合手を表す。) (In (formula A), * represents a bond.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
((化式B)において、X1、X2は、それぞれ、水素、炭素数1~4のアルキル基を表す。) (In (formula B), X 1 and X 2 represent hydrogen and an alkyl group having 1 to 4 carbon atoms, respectively.)
 本明細書では、ヘキサフルオロイソプロパノール系溶媒に溶解した溶液のP-NMR測定方法により、ヒンダードフェノール構造の少なくとも1種が検出できるポリエステル樹脂を「ヒンダードフェノール構造を有する」という。すなわち、ポリエステル樹脂(B)は、同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたポリエステル樹脂であることが好ましい。ポリエステル樹脂(B)中のヒンダードフェノール構造の検出方法(P-NMR測定方法)については後述する。 In this specification, a polyester resin in which at least one type of hindered phenol structure can be detected by a P-NMR measurement method of a solution dissolved in a hexafluoroisopropanol-based solvent is referred to as "having a hindered phenol structure." That is, the polyester resin (B) is preferably a polyester resin produced using a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule as a polymerization catalyst. The method for detecting the hindered phenol structure in the polyester resin (B) (P-NMR measurement method) will be described later.
 上記(化式B)において、X1、X2はいずれも炭素数1~4のアルキル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましい。特に、炭素数2のエチルエステル体は、Irganox1222(ビーエーエスエフ社製)が市販されており容易に入手できるので好ましい。 In the above (formula B), each of X 1 and X 2 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms. In particular, the ethyl ester having 2 carbon atoms is preferred because Irganox 1222 (manufactured by BASF) is commercially available and can be easily obtained.
 リン化合物は溶媒中で熱処理して用いることが好ましい。なお、熱処理の詳細については後述する。リン化合物として、上記(化式B)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルを用いた場合、上記熱処理において、(化式B)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの一部が構造変化する。例えば、t-ブチル基の脱離、エチルエステル基の加水分解およびヒドロキシエチルエステル交換構造(エチレングリコールとのエステル交換構造)などに変化する。従って、本発明においては、リン化合物としては、(化式B)で示した3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも構造変化したリン化合物も含まれる。なお、t-ブチル基の脱離は、重合工程の高温下で顕著に起こる。 It is preferable to use the phosphorus compound after heat treatment in a solvent. Note that the details of the heat treatment will be described later. When dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is a phosphorus compound shown in (formula B) above, is used as the phosphorus compound, in the above heat treatment, the phosphorus compound shown in (formula B) is A part of dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is a phosphorus compound, undergoes a structural change. For example, the t-butyl group is eliminated, the ethyl ester group is hydrolyzed, and the structure changes to a hydroxyethyl transesterification structure (transesterification structure with ethylene glycol). Therefore, in the present invention, the phosphorus compound includes not only the dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate shown in (Formula B) but also structurally modified phosphorus compounds. Note that the elimination of the t-butyl group occurs significantly at high temperatures during the polymerization process.
 以下では、リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルを用いた場合に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルの一部が構造変化した9つのリン化合物を示している。グリコール溶液中での構造変化した各リン化合物の成分量はP-NMR測定方法により定量できる。 In the following, when diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate is used as a phosphorus compound, part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate has a structure Nine phosphorus compounds that have changed are shown. The amount of each structurally changed phosphorus compound in the glycol solution can be determined by P-NMR measurement.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 従って、本発明におけるリン化合物としては、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも9つの上記化学式で示される3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。 Therefore, in addition to dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, phosphorus compounds in the present invention include 3,5-di-tert-butyl-4-hydroxy represented by the nine chemical formulas above. Modified forms of dialkyl benzylphosphonate may also be included.
 リン化合物として上記Irganox1222を用いた場合、ポリエステル樹脂中に下記表1に示した9種のリン化合物残基が含まれる。P-NMR測定方法により、表1に示した9種のヒンダードフェノール構造の中の少なくとも1種が検出された場合、ポリエステル樹脂(B)は、同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたポリエステル樹脂であるといえる。ヒンダードフェノール構造を有するリン化合物を用いることにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。 When the above-mentioned Irganox 1222 is used as the phosphorus compound, the nine types of phosphorus compound residues shown in Table 1 below are contained in the polyester resin. If at least one of the nine types of hindered phenol structures shown in Table 1 is detected by the P-NMR measurement method, the polyester resin (B) contains a phosphorus element and a hindered phenol structure in the same molecule. It can be said that it is a polyester resin manufactured using a phosphorus compound having the following as a polymerization catalyst. By using a phosphorus compound having a hindered phenol structure, sufficient polymerization activity can be exhibited while reducing the cost of the catalyst.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明においては、上記化式1、4、及び7の少なくとも1種が含まれていることが好ましい。 In the present invention, it is preferable that at least one of the above formulas 1, 4, and 7 is included.
 ポリエステル樹脂(B)中におけるリン元素の含有率は5~1000質量ppmであることが好ましく、10~500質量ppmであることがより好ましく、15~200質量ppmであることがさらに好ましく、15~100質量ppmであることが特に好ましく、15~80質量ppmであることが最も好ましい。リン元素が5質量ppm未満では、重合活性の低下やアルミニウム系異物量が増大するおそれがある。一方、1000質量ppmを超えると逆に重合活性が低下するおそれやリン化合物の添加量が多くなり、触媒コストが増加するおそれがある。 The content of the phosphorus element in the polyester resin (B) is preferably 5 to 1000 mass ppm, more preferably 10 to 500 mass ppm, even more preferably 15 to 200 mass ppm, and 15 to 1000 mass ppm. Particularly preferably 100 ppm by weight, most preferably 15 to 80 ppm by weight. If the phosphorus element content is less than 5 ppm by mass, there is a risk that the polymerization activity will decrease and the amount of aluminum-based foreign matter will increase. On the other hand, if it exceeds 1000 ppm by mass, there is a risk that the polymerization activity will decrease or the amount of the phosphorus compound added will increase, leading to a risk that the catalyst cost will increase.
 ポリエステル樹脂(B)において、アルミニウム元素に対するリン元素のモル比(後述する「アルミニウム元素に対するリン元素の添加モル比」と区別するため、以下では「アルミニウム元素に対するリン元素の残存モル比」という)が1.00~5.00であることが好ましく、1.10~4.00であることがより好ましく、1.20~3.50であることがさらに好ましく、1.25~3.00であることが特に好ましい。上述のように、ポリエステル樹脂(B)中のアルミニウム元素およびリン元素はそれぞれ、ポリエステル樹脂(B)の重合触媒として使用するアルミニウム化合物およびリン化合物に由来する。これらアルミニウム化合物とリン化合物を特定の比率で併用することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造された樹脂はアンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なるが、アルミニウム化合物とリン化合物を特定の比率で併用することにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。アルミニウム元素に対するリン元素の残存モル比が1.00未満では、熱安定性および熱酸化安定性が低下するおそれや、アルミニウム系異物量が増大するおそれがある。一方、アルミニウム元素に対するリン元素の残存モル比が5.00を超えると、リン化合物の添加量が多くなりすぎるため、触媒コストが増大するおそれがある。
 コストをより重視する場合、アルミニウム元素に対するリン元素の残存モル比が1.32~1.80が好ましく、1.38~1.68がより好ましい。
In the polyester resin (B), the molar ratio of the phosphorus element to the aluminum element (hereinafter referred to as the "residual molar ratio of the phosphorus element to the aluminum element" in order to distinguish it from the "added molar ratio of the phosphorus element to the aluminum element" described later) is It is preferably from 1.00 to 5.00, more preferably from 1.10 to 4.00, even more preferably from 1.20 to 3.50, and even more preferably from 1.25 to 3.00. This is particularly preferred. As mentioned above, the aluminum element and phosphorus element in the polyester resin (B) are derived from the aluminum compound and phosphorus compound used as polymerization catalysts for the polyester resin (B), respectively. By using these aluminum compounds and phosphorus compounds together in a specific ratio, a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited. Additionally, resins manufactured using polymerization catalysts consisting of aluminum compounds and phosphorus compounds have higher catalyst costs (higher manufacturing costs) than polyester resins manufactured using catalysts such as antimony catalysts. By using an aluminum compound and a phosphorus compound together in a specific ratio, sufficient polymerization activity can be exhibited while suppressing the cost of the catalyst. If the residual molar ratio of the phosphorus element to the aluminum element is less than 1.00, there is a risk that the thermal stability and thermal oxidation stability will decrease and the amount of aluminum-based foreign matter will increase. On the other hand, if the residual molar ratio of the phosphorus element to the aluminum element exceeds 5.00, the amount of the phosphorus compound added becomes too large, which may increase the catalyst cost.
When cost is more important, the residual molar ratio of phosphorus element to aluminum element is preferably 1.32 to 1.80, more preferably 1.38 to 1.68.
 ポリエステル樹脂(B)の製造に用いられる重合触媒として、上述のアルミニウム化合物およびリン化合物に加えて、アンチモン化合物、ゲルマニウム化合物、チタン化合物など他の重合触媒を、ポリエステル樹脂(B)の特性、加工性、色調等製品に問題を生じない範囲内において併用してもよい。ポリエステル樹脂(B)中におけるアンチモン元素の含有率は30質量ppm以下であることが好ましく、ポリエステル樹脂(B)中におけるゲルマニウム元素の含有率は10質量ppm以下であることが好ましく、ポリエステル樹脂(B)中におけるチタン元素の含有率は3質量ppm以下であることが好ましい。ただし、上記他の重縮合触媒は、極力使用しないことが好ましい。 In addition to the above-mentioned aluminum compounds and phosphorus compounds, other polymerization catalysts such as antimony compounds, germanium compounds, and titanium compounds are used as polymerization catalysts to be used in the production of polyester resin (B). , may be used in combination within the range that does not cause problems with the product, such as color tone. The content of antimony element in the polyester resin (B) is preferably 30 mass ppm or less, and the content of germanium element in the polyester resin (B) is preferably 10 mass ppm or less. ) is preferably 3 mass ppm or less. However, it is preferable to use as few of the other polycondensation catalysts as possible.
 ポリエステル樹脂(B)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率は3000質量ppm以下であることが好ましく、より好ましくは2800質量ppm以下であり、さらに好ましくは2000質量ppm以下であり、よりさらに好ましくは1500質量ppm以下である。アルミニウム系異物とは重合触媒として用いたアルミニウム化合物に起因するものであり、ポリエステル樹脂(B)に不溶の異物である。アルミニウム系異物の含有率が上記を超えると、ポリエステル樹脂(B)に含まれる不溶性の微細な異物が原因となり、成形体の品位が悪化するおそれがある。また、重縮合工程や成形工程でのポリエステルろ過時のフィルター詰まりが多くなるという課題にも繋がる。アルミニウム系異物に相当するアルミニウム元素の含有率の好ましい下限は0質量ppmであることがより好ましいが、技術的な困難性より300質量ppm程度であってもよい。
 なお、本明細書では、実施例に後述した測定方法でアルミニウム元素量を測定していることからも分かるように、この指標は、アルミニウム元素量に基づき、アルミニウム系異物量を相対的に評価するものであり、ポリエステル樹脂中に含まれるアルミニウム系異物量の絶対値を示すものではない。
The content of aluminum element corresponding to aluminum-based foreign substances in the polyester resin (B) is preferably 3000 mass ppm or less, more preferably 2800 mass ppm or less, still more preferably 2000 mass ppm or less, and more More preferably, it is 1500 mass ppm or less. The aluminum-based foreign matter originates from the aluminum compound used as a polymerization catalyst, and is a foreign matter that is insoluble in the polyester resin (B). If the content of aluminum-based foreign matter exceeds the above, fine insoluble foreign matter contained in the polyester resin (B) may cause deterioration in the quality of the molded product. It also leads to the problem that filter clogging increases when polyester is filtered during the polycondensation process and molding process. The lower limit of the content of the aluminum element, which corresponds to aluminum-based foreign matter, is more preferably 0 mass ppm, but may be about 300 mass ppm due to technical difficulties.
In addition, in this specification, as can be seen from the fact that the amount of aluminum element is measured by the measurement method described later in the Examples, this index relatively evaluates the amount of aluminum-based foreign substances based on the amount of aluminum element. It does not indicate the absolute value of the amount of aluminum-based foreign matter contained in the polyester resin.
 ポリエステル樹脂(B)の固有粘度は0.56~0.90dl/gであることが好ましく、0.56~0.80dl/gであることがより好ましく、さらに好ましくは0.56~0.75dl/gである。ポリエステル樹脂(B)の固有粘度が0.56dl/g未満の場合は、ポリエステル樹脂(B)を空送する際に、ポリエステル樹脂ペレット同士や空送配管との摩擦によって微小粉末(ファイン)が大量に発生するおそれがある。ポリエステル樹脂(B)の固有粘度が上記を超える場合は、ポリエステル樹脂(B)と回収ポリエステル樹脂(A)と溶融混合するときに局所的なせん断発熱が大きくなり樹脂が劣化する可能性がある。ポリエステル樹脂(B)の固有粘度はポリエステル樹脂(A)の固有粘度に合わせて調整することができる。
なお、溶融重合のみで固有粘度が0.62dl/gを超えるポリエステル樹脂(B)を製造しようとする場合、経済性が低下するおそれがあるため、0.62dl/gを超えるポリエステル樹脂(B)が必要である場合は、溶融重合で得られた固有粘度0.62dl/g未満のポリエステル樹脂をさらに固相重合し固有粘度を上昇させることが好ましい。
The intrinsic viscosity of the polyester resin (B) is preferably 0.56 to 0.90 dl/g, more preferably 0.56 to 0.80 dl/g, and even more preferably 0.56 to 0.75 dl. /g. If the intrinsic viscosity of the polyester resin (B) is less than 0.56 dl/g, when the polyester resin (B) is air-fed, a large amount of fine powder will be generated due to friction between the polyester resin pellets and the air-feed piping. There is a risk that this may occur. If the intrinsic viscosity of the polyester resin (B) exceeds the above, local shear heat generation may increase when melt-mixing the polyester resin (B) and the recovered polyester resin (A), which may cause the resin to deteriorate. The intrinsic viscosity of the polyester resin (B) can be adjusted according to the intrinsic viscosity of the polyester resin (A).
In addition, when trying to produce a polyester resin (B) with an intrinsic viscosity exceeding 0.62 dl/g only by melt polymerization, there is a risk that economic efficiency will decrease. If this is necessary, it is preferable to further solid-phase polymerize the polyester resin obtained by melt polymerization and having an intrinsic viscosity of less than 0.62 dl/g to increase the intrinsic viscosity.
 固相重合を行った場合、ポリエステル樹脂(B)中のCT含有量は7000質量ppm以下が好ましく、6000質量ppm以下がより好ましく、5500質量ppm以下が更に好ましい。CT含有量は、現実的には、2500質量ppm以上が好ましく、3000質量ppm以上が好ましい。 When solid phase polymerization is performed, the CT content in the polyester resin (B) is preferably 7000 mass ppm or less, more preferably 6000 mass ppm or less, and even more preferably 5500 mass ppm or less. In reality, the CT content is preferably 2,500 mass ppm or more, and preferably 3,000 mass ppm or more.
 ポリエステル樹脂(B)の酸価は低いことが好ましいが、経済性の観点とのバランスをも考慮して決定され、酸価を極端に低くすることは現実的ではない。たとえば、固相重合を行うことにより、ポリエステル樹脂(B)の酸価の下限を15当量/tonとすることができ、必要であれば10当量/ton、5当量/ton、3当量/ton、1当量/ton、とすることができる。酸価を低くするためには、固相重合を行うことが好ましいが、固相重合を行わない場合は、ポリエステル樹脂(B)の酸価の下限は、好ましくは15当量/tonであり、より好ましくは20当量/tonであり、さらに好ましくは23当量/tonであり、特に好ましくは25当量/tonである。
 上限は好ましくは60当量/tonであり、より好ましくは55当量/tonであり、さらに好ましくは50当量/tonであり、特に好ましくは45当量/tonであり、最も好ましくは40当量/tonである。上記範囲とすることでポリエステル樹脂の生産性を確保することができる。酸価を上記範囲とするためには、重縮合中で適正温度、減圧状態を維持する、重縮合時に反応容器内を窒素などの不活性ガスで置換して、低酸素状態にするなどの方法を採ることが好ましい。
Although it is preferable that the acid value of the polyester resin (B) is low, it is determined by taking into consideration the balance with economic efficiency, and it is not realistic to make the acid value extremely low. For example, by performing solid phase polymerization, the lower limit of the acid value of the polyester resin (B) can be set to 15 equivalents/ton, and if necessary, 10 equivalents/ton, 5 equivalents/ton, 3 equivalents/ton, 1 equivalent/ton. In order to lower the acid value, it is preferable to perform solid phase polymerization, but when solid phase polymerization is not performed, the lower limit of the acid value of the polyester resin (B) is preferably 15 equivalents/ton, and more Preferably it is 20 equivalents/ton, more preferably 23 equivalents/ton, particularly preferably 25 equivalents/ton.
The upper limit is preferably 60 equivalents/ton, more preferably 55 equivalents/ton, even more preferably 50 equivalents/ton, particularly preferably 45 equivalents/ton, and most preferably 40 equivalents/ton. . By setting it as the said range, the productivity of polyester resin can be ensured. In order to keep the acid value within the above range, methods include maintaining an appropriate temperature and reduced pressure during polycondensation, and purging the inside of the reaction vessel with an inert gas such as nitrogen during polycondensation to create a low oxygen state. It is preferable to take
 ポリエステル樹脂(B)の固有粘度保持率が85%以上であることが好ましく、90%以上であることがより好ましく、93%以上であることがさらに好ましい。ポリエステル樹脂(B)の固有粘度保持率が93%未満ではポリエステル樹脂組成物(C)の固有粘度保持率が低くなり、リサイクル性が不十分となるおそれがある。ポリエステル樹脂(B)の固有粘度保持率の上限は100%が好ましいが技術的な困難性より99%程度である。 The intrinsic viscosity retention of the polyester resin (B) is preferably 85% or more, more preferably 90% or more, and even more preferably 93% or more. If the intrinsic viscosity retention rate of the polyester resin (B) is less than 93%, the intrinsic viscosity retention rate of the polyester resin composition (C) will be low, and there is a possibility that the recyclability will be insufficient. The upper limit of the intrinsic viscosity retention of the polyester resin (B) is preferably 100%, but due to technical difficulties, it is approximately 99%.
 ポリエステル樹脂(B)のカラーb値は、10以下であることが好ましく、8以下であることがより好ましく、5以下であることがさらに好ましく、4以下であることが特に好ましい。カラーb値は黄色/青色座標を示しており、正の値は黄色を示し、負の値は青色を示しており、カラーb値はポリエステル樹脂(B)の熱安定性に影響を受けると考えられる。
 
The color b value of the polyester resin (B) is preferably 10 or less, more preferably 8 or less, even more preferably 5 or less, and particularly preferably 4 or less. The color b value indicates the yellow/blue coordinate, positive values indicate yellow, negative values indicate blue, and it is believed that the color b value is affected by the thermal stability of the polyester resin (B). It will be done.
ポリエステル樹脂(B)はペレット状であることが好ましい。最も長い2点の距離が2~10mm、さらには3~6mmのペレットとすることが好ましい。ペレットの形状としては、球形、楕円体、俵型、立方体などが挙げられる。 It is preferable that the polyester resin (B) is in the form of pellets. Preferably, the distance between the two longest points is 2 to 10 mm, more preferably 3 to 6 mm. Examples of the shape of the pellet include a sphere, an ellipsoid, a barrel shape, and a cube.
 ポリエステル樹脂(B)は重合後ペレット化された樹脂であってもよいが、ポリエステル樹脂(B)を用いて物品を成形する際の工程内回収品などであってもよい。工程内回収品としては、B級品として市場に出荷さなかった製品類、フィルム延伸の際に把持される耳部分、スリットの端材、クレーム等で返品された成形品などが挙げられる。これらの工程内回収品の場合は、ポリエステル樹脂(A)と同様な形状の粉砕物であることが好ましい。 The polyester resin (B) may be a resin pelletized after polymerization, but it may also be a product recovered during the process of molding an article using the polyester resin (B). Items recovered during the process include products that were not shipped to the market as B-class products, edges gripped during film stretching, scraps from slits, and molded products returned due to complaints. In the case of these in-process recovered products, it is preferable that they are pulverized products having the same shape as the polyester resin (A).
 ポリエステル樹脂(B)は後述するポリエステル樹脂(D)ように添加剤のマスターバッチ(濃縮樹脂)として用いてもよい。 The polyester resin (B) may be used as an additive masterbatch (concentrated resin) like the polyester resin (D) described below.
[ポリエステル樹脂組成物(C)]
 ポリエステル樹脂(A)とポリエステル樹脂(B)とを質量比で5:95~95:5で混合してポリエステル樹脂組成物(C)を製造することが好ましい。すなわち、ポリエステル樹脂組成物(C)において、ポリエステル樹脂(A)及びポリエステル樹脂(B)の合計100質量部に対してポリエステル樹脂(A)が5~95質量部であることが好ましい。上記範囲内とすることによりポリエステル樹脂組成物(C)の着色や分子量の低下を抑制できる。なお、本明細書での着色の抑制とは、リサイクル回数を重ねた(再練りを繰り返した)場合であっても後述のL値の低下や後述のb値の上昇を抑制することを指す。ポリエステル樹脂(A)の配合割合が95質量部を超えた場合は、ポリエステル樹脂組成物(C)の固有粘度保持率が低くなり、リサイクル性が不十分となるおそれがある。一方、ポリエステル樹脂(A)の配合割合が5質量部未満の場合は、着色の抑制効果が飽和する上に経済性が低下するおそれがある。なお、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造されているため、アルミニウム元素に対するリン元素の残存モル比を上記の所定の範囲内とした場合であってもアンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なっているが、ポリエステル樹脂(A)とポリエステル樹脂(B)とを併用することにより製造コストを抑えつつ、リサイクル性も高めることができる。ポリエステル樹脂(A)の配合割合を高くすると、ポリエステル樹脂組成物(C)の製造コストは抑えることができるが、リサイクル回数を重ねると色調が悪化しやすくなる。一方、ポリエステル樹脂(B)の配合割合を高めるとポリエステル樹脂組成物(C)のリサイクル回数を重ねた場合であっても色調の悪化は抑制できるが、製造コストは高くなるおそれがある。ポリエステル樹脂(A)とポリエステル樹脂(B)の質量比は20:80~80:20であることがより好ましく、25:75~75:25であることがさらに好ましい。
[Polyester resin composition (C)]
It is preferable to produce the polyester resin composition (C) by mixing the polyester resin (A) and the polyester resin (B) at a mass ratio of 5:95 to 95:5. That is, in the polyester resin composition (C), it is preferable that the polyester resin (A) be in an amount of 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). By setting it within the above range, coloring of the polyester resin composition (C) and reduction in molecular weight can be suppressed. Note that the suppression of coloration in this specification refers to suppressing the decrease in the L value described below and the increase in the b value described below even when recycling is repeated (repeated kneading). If the blending ratio of the polyester resin (A) exceeds 95 parts by mass, the intrinsic viscosity retention of the polyester resin composition (C) may become low, leading to insufficient recyclability. On the other hand, if the blending ratio of the polyester resin (A) is less than 5 parts by mass, the effect of suppressing coloring may be saturated and the economical efficiency may decrease. In addition, since the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound, the residual molar ratio of the phosphorus element to the aluminum element is within the above-mentioned predetermined range. Although the cost of the catalyst is higher (higher production cost) than polyester resins produced using catalysts such as antimony catalysts, it is possible to use polyester resins (A) and polyester resins (B) together. This makes it possible to reduce manufacturing costs and improve recyclability. If the blending ratio of the polyester resin (A) is increased, the manufacturing cost of the polyester resin composition (C) can be reduced, but the color tone tends to deteriorate as the number of recycling increases. On the other hand, if the blending ratio of the polyester resin (B) is increased, deterioration in color tone can be suppressed even when the polyester resin composition (C) is recycled many times, but there is a risk that the manufacturing cost will increase. The mass ratio of polyester resin (A) to polyester resin (B) is more preferably 20:80 to 80:20, and even more preferably 25:75 to 75:25.
 ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンドしてポリエステル樹脂組成物(C)を製造することができる。また、ポリエステル樹脂(A)とポリエステル樹脂(B)とを溶融押出法で混練してポリエステル樹脂組成物(C)を製造してもよい。その場合、ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンドした後に、バンバリーミキサー、ニーダー、単軸押出機、二軸押出機、四軸押出機、単軸遊星型押出機等の一般的な樹脂用混練装置を用いて溶融・混練することによりポリエステル樹脂組成物(C)を製造することができる。中でも、二軸押出機、四軸押出機、単軸遊星型押出機等の表面更新の優れたものが好ましい。また、該押出機は、少なくとも1個以上、好ましくは2個以上、更に好ましくは3個以上のベント口を有し、ベント口は減圧系に接続してポリエステル樹脂組成物(C)の劣化を抑制することが好ましい実施態様である。 The polyester resin composition (C) can be produced by dry blending the polyester resin (A) and the polyester resin (B). Alternatively, the polyester resin composition (C) may be produced by kneading the polyester resin (A) and the polyester resin (B) using a melt extrusion method. In that case, after dry-blending the polyester resin (A) and the polyester resin (B), a conventional extruder such as a Banbury mixer, kneader, single-screw extruder, twin-screw extruder, four-screw extruder, single-screw planetary extruder, etc. The polyester resin composition (C) can be produced by melting and kneading using a typical resin kneading device. Among these, those with excellent surface renewal properties such as twin-screw extruders, four-screw extruders, and single-screw planetary extruders are preferred. Further, the extruder has at least one vent port, preferably two or more vent ports, and more preferably three or more vent ports, and the vent ports are connected to a reduced pressure system to prevent deterioration of the polyester resin composition (C). Suppression is a preferred embodiment.
また、ポリエステル樹脂(B)の重合終了後、冷却ペレット化する前の段階で溶融状態のポリエステル樹脂(B)にポリエステル樹脂(A)を投入して混練し、ポリエステル樹脂組成物(C)としてもよい。 In addition, after the polymerization of the polyester resin (B) is completed, and before it is cooled and pelletized, the polyester resin (A) is added to the molten polyester resin (B) and kneaded to form a polyester resin composition (C). good.
 ポリエステル樹脂組成物(C)の固有粘度は、0.56~0.90dl/gであることが好ましく、0.60~0.80dl/gであることが好ましく、0.70~0.75dl/gであることがより好ましい。ポリエステル樹脂組成物(C)の固有粘度が0.90dl/gを超えた場合は、経済性が低下するおそれがある。また、押出機で溶融する時の局所的なせん断発熱が大きくなるため、樹脂が劣化したり、機械的強度が不十分となり、中空成形体の製造が困難になるおそれがある。ポリエステル樹脂組成物(C)の固有粘度が0.56dl/g未満の場合は、ポリエステル樹脂組成物(C)から得られる中空成形体の機械的強度や耐衝撃性が不十分になるおそれがある。 The intrinsic viscosity of the polyester resin composition (C) is preferably 0.56 to 0.90 dl/g, preferably 0.60 to 0.80 dl/g, and 0.70 to 0.75 dl/g. It is more preferable that it is g. If the intrinsic viscosity of the polyester resin composition (C) exceeds 0.90 dl/g, there is a risk that the economical efficiency will decrease. Furthermore, since local shear heat generation increases when melting in an extruder, there is a risk that the resin may deteriorate or the mechanical strength may become insufficient, making it difficult to produce a hollow molded body. If the intrinsic viscosity of the polyester resin composition (C) is less than 0.56 dl/g, the mechanical strength and impact resistance of the hollow molded article obtained from the polyester resin composition (C) may be insufficient. .
 ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上であることが好ましく、90%以上であることがより好ましく、92%以上であることがさらに好ましく、94%以上であることが特に好ましい。ポリエステル樹脂組成物(C)の固有粘度保持率が89%未満ではリサイクル性が不十分となるおそれがある。ポリエステル樹脂組成物(C)の固有粘度保持率の上限は100%が好ましいが技術的な困難性より97%程度である。また、ポリエステル樹脂組成物(C)の固有粘度保持率はポリエステル樹脂(A)の固有粘度保持率よりも高いことが好ましい。なお、本明細書では単に「固有粘度保持率」と記載されている場合には、1回だけ再練りした再練り品の固有粘度保持率のことを指す。 The intrinsic viscosity retention of the polyester resin composition (C) is preferably 89% or more, more preferably 90% or more, even more preferably 92% or more, particularly 94% or more. preferable. If the intrinsic viscosity retention of the polyester resin composition (C) is less than 89%, recyclability may be insufficient. The upper limit of the intrinsic viscosity retention of the polyester resin composition (C) is preferably 100%, but due to technical difficulties, it is approximately 97%. Moreover, it is preferable that the intrinsic viscosity retention rate of the polyester resin composition (C) is higher than the intrinsic viscosity retention rate of the polyester resin (A). In addition, in this specification, when it is simply described as "intrinsic viscosity retention", it refers to the intrinsic viscosity retention of a re-kneaded product that has been re-kneaded only once.
 ポリエステル樹脂組成物(C)を1回再練りした再練り品中に含まれるCT(環状三量体)量が8000ppm以下であることが好ましい。より好ましくは7500ppm以下であり、さらに好ましくは7000ppm以下である。下限は限定されないが、技術的な困難性より5500ppm程度である。CT量が6600ppmを超えると、ポリエステル樹脂組成物(C)の成形時の金型汚れが増加するおそれがある。ポリエステル樹脂(B)やポリエステル樹脂組成物(C)中のCT量を下げる方法としては、固相重合を行う方法や、密閉容器内またはエチレングリコール含有気流下で190~220℃の加熱処理を行う方法などがある。 It is preferable that the amount of CT (cyclic trimer) contained in the re-kneaded product obtained by re-kneading the polyester resin composition (C) once is 8000 ppm or less. More preferably it is 7,500 ppm or less, and still more preferably 7,000 ppm or less. Although the lower limit is not limited, it is approximately 5500 ppm due to technical difficulties. If the CT amount exceeds 6,600 ppm, mold staining during molding of the polyester resin composition (C) may increase. Methods for lowering the amount of CT in the polyester resin (B) and polyester resin composition (C) include solid phase polymerization and heat treatment at 190 to 220°C in a closed container or under an ethylene glycol-containing air flow. There are methods.
 ポリエステル樹脂組成物(C)を3回再練りした再練り品のCT量からポリエステル樹脂組成物(C)を1回再練りした再練り品のCT量を減じた値(ΔCT)は1500ppm以下であることが好ましい。より好ましくは1000ppm以下であり、さらに好ましくは950ppm以下である。下限は0ppmであることが好ましいが、技術的な困難性より500ppm程度である。ΔCTが1500ppmを超えると成形時の金型汚れが増加するおそれがある。 The value (ΔCT) obtained by subtracting the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) once from the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) three times is 1500 ppm or less. It is preferable that there be. More preferably it is 1000 ppm or less, and still more preferably 950 ppm or less. The lower limit is preferably 0 ppm, but due to technical difficulties, it is approximately 500 ppm. If ΔCT exceeds 1500 ppm, there is a risk that mold contamination during molding may increase.
 また、ポリエステル樹脂組成物(C)中にリン化合物として上記Irganox1222を用いて製造されたポリエステル樹脂(B)を含む場合、ポリエステル樹脂組成物(C)に対してP-NMR測定方法を行うと表1に示した9種のヒンダードフェノール構造の中の少なくとも1種が検出される。Irganox1222以外の同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として用いた場合も同様である。 In addition, when the polyester resin composition (C) contains the polyester resin (B) produced using the above-mentioned Irganox 1222 as a phosphorus compound, when the P-NMR measurement method is performed on the polyester resin composition (C), At least one of the nine types of hindered phenol structures shown in 1 is detected. The same applies when a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule other than Irganox 1222 is used as a polymerization catalyst.
[中空成形体(D)]
 中空成形体(D)の製造方法としては、特に限定されないが、例えば、ポリエステル樹脂組成物(C)を溶融成形等の方法で成形して中空成形体(D)を製造する方法(混練経由法)やポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンド等によりブレンドしたブレンド物を中空成形体製造装置に直接供給して成形して中空成形体(D)を製造する方法(直接成形法)などが挙げられる。
[Hollow molded body (D)]
The method for manufacturing the hollow molded body (D) is not particularly limited, but for example, a method of manufacturing the hollow molded body (D) by molding the polyester resin composition (C) by a method such as melt molding (a method via kneading) ) or a blended product of polyester resin (A) and polyester resin (B) by dry blending etc. is directly supplied to a blow molded body manufacturing device and molded to produce a blow molded body (D) (direct molding method) law), etc.
 なお、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造されているため、アンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なっているが、ポリエステル樹脂(A)とポリエステル樹脂(B)とを併用して中空成形体(D)を製造することにより製造コストを抑えつつ、リサイクル性も高めることができる。ポリエステル樹脂(A)の配合割合を高くすると、中空成形体(D)の製造コストは抑えることができるが、リサイクル回数を重ねると色調が悪化する。一方、ポリエステル樹脂(B)の配合割合を高めるとポリエステル樹脂組成物(C)のリサイクル回数を重ねても色調の悪化は抑制できるが、製造コストは高くなる。ポリエステル樹脂(A)とポリエステル樹脂(B)との配合割合は、市場要求により適宜設定すればよいが、ポリエステル樹脂(A)とポリエステル樹脂(B)を質量比で5:95~95:5で混合して中空成形体(D)を製造することが好ましい。 In addition, since the polyester resin (B) is manufactured using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound, the cost of the catalyst is higher than that of a polyester resin manufactured using a catalyst such as an antimony catalyst. However, by manufacturing the hollow molded article (D) using polyester resin (A) and polyester resin (B) together, it is possible to reduce manufacturing costs and improve recyclability. can. If the blending ratio of the polyester resin (A) is increased, the manufacturing cost of the hollow molded article (D) can be reduced, but the color tone deteriorates as the number of recycling increases. On the other hand, if the blending ratio of the polyester resin (B) is increased, deterioration in color tone can be suppressed even if the polyester resin composition (C) is recycled many times, but the manufacturing cost increases. The blending ratio of polyester resin (A) and polyester resin (B) may be appropriately set according to market requirements, but it is preferable that the mass ratio of polyester resin (A) and polyester resin (B) is 5:95 to 95:5. It is preferable to mix to produce the hollow molded body (D).
 中空成形体(D)の利用分野は、特に限定されないが、ミネラルウオーター、ジュース、ワイン、ウイスキー等の飲料容器、住居用および食器用洗剤容器、ほ乳瓶、瓶詰め食品容器、整髪料、化粧品等の各種容器等として用いることができる。中空成形体(D)は高品質であるポリエステル樹脂組成物(C)又は高品質であるポリエステル樹脂(B)を含むブレンド物を成形して作製しているので、中空成形体(D)は各種容器として使用された後に回収して再生しても、高品質を維持したまま、ポリエステル樹脂を再使用することが出来、ひいては、資源枯渇の抑制、海洋ごみの減少、地球温暖化の抑制など様々な課題解決に寄与することができる。 The fields of application of the hollow molded product (D) are not particularly limited, but include beverage containers for mineral water, juice, wine, whiskey, etc., household and dish detergent containers, baby bottles, bottled food containers, hair products, cosmetics, etc. It can be used as various containers. Since the hollow molded body (D) is produced by molding a high quality polyester resin composition (C) or a blend containing a high quality polyester resin (B), the hollow molded body (D) can be used in various types. Even if it is collected and recycled after being used as a container, polyester resin can be reused while maintaining its high quality, which in turn can reduce resource depletion, reduce marine debris, and reduce global warming. can contribute to solving problems.
 中空成形体(D)の製造方法は特に限定されておらず、例えば、ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンド等によりブレンドしたブレンド物を真空乾燥法等によって乾燥した後に押出成形機や射出成形機等の成形機によって成形する方法や、ポリエステル樹脂組成物(C)の溶融体を溶融状態のまま成形機に導入して成形する方法により、有底の予備成形体を得て、この予備成形体を延伸ブロー成形、ダイレクトブロー成形、押出ブロー成形などのブロー成形法により最終的な中空成形体を製造することができる。もちろん、上記の押出成形機や射出成形機等の成形機によって得られた成形体を最終的な中空成形体とすることもできる。 The manufacturing method of the hollow molded body (D) is not particularly limited, and for example, a blend obtained by dry blending the polyester resin (A) and the polyester resin (B) is dried by a vacuum drying method or the like, and then extruded. A preformed body with a bottom is obtained by a method of molding with a molding machine such as a molding machine or an injection molding machine, or a method of introducing the melt of the polyester resin composition (C) in a molten state into a molding machine and molding it. Then, a final hollow molded body can be produced from this preformed body by blow molding methods such as stretch blow molding, direct blow molding, and extrusion blow molding. Of course, a molded body obtained by a molding machine such as the above-mentioned extrusion molding machine or injection molding machine can also be used as the final hollow molded body.
 さらには、中空成形体(D)は、ポリビニルアルコールやポリメタキシリレンジアミンアジペートなどのガスバリア層、遮光性樹脂層などを設けた多層構造とすることも可能である。また、PVD(物理蒸着法)やCVD(化学蒸着法)等の方法を用いて、容器の内面、外面、または両面に一部または全部をアルミニウムなどの金属やダイヤモンド状カーボンの層等で被覆することも可能である。 Furthermore, the hollow molded body (D) can also have a multilayer structure provided with a gas barrier layer made of polyvinyl alcohol, polymethaxylylene diamine adipate, etc., a light-shielding resin layer, and the like. In addition, using a method such as PVD (physical vapor deposition) or CVD (chemical vapor deposition), the inner surface, outer surface, or both surfaces of the container may be partially or completely coated with a layer of metal such as aluminum or diamond-like carbon. It is also possible.
 なお、中空成形体(D)の口栓部等の結晶性を上げるため、ポリエチレンなどの他の樹脂やタルク等の無機核剤を添加したポリエステル(C)を用いることもできる。 In addition, in order to improve the crystallinity of the plug portion of the hollow molded body (D), polyester (C) to which other resin such as polyethylene or an inorganic nucleating agent such as talc is added may also be used.
 ポリエステル樹脂組成物(C)を上記方法で中空成形体(D)に成形してもよいが、例えば、ポリエステル樹脂組成物(C)を固相重合により固有粘度を上昇させたり、CT量を低減させたりした後に中空成形体(D)に成形してもよい。 The polyester resin composition (C) may be molded into a hollow molded body (D) by the above method, but for example, the polyester resin composition (C) may be solid-phase polymerized to increase the intrinsic viscosity or reduce the CT amount. After that, the hollow molded product (D) may be formed.
 ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンドしたブレンド物であってもよいポリエステル樹脂組成物(C)は、固有粘度保持率の他にもリサイクルの際の着色度も抑制されているので、中空成形体(D)以外にも、繊維、不織布、シート、フィルム等の他の製品等にも好適に用いることが出来る。 The polyester resin composition (C), which may be a blend obtained by dry blending the polyester resin (A) and the polyester resin (B), has a suppressed intrinsic viscosity retention as well as a degree of coloration during recycling. Therefore, in addition to the hollow molded article (D), it can also be suitably used for other products such as fibers, nonwoven fabrics, sheets, and films.
[ポリエステル樹脂(B)の製造方法]
 次に、ポリエステル樹脂(B)の製造方法について説明する。ポリエステル樹脂(B)の製造方法としては、触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点、ケミカルリサイクルBHETを含む原料を用いる点以外は公知の工程を備えた方法で行うことができるが、下記(5)と(6)とを満足するように重合触媒を添加することが好ましく、下記(5)と(6)に加えて下記(7)も満足するように重合触媒を添加することがさらに好ましい。なお、下記(5)~(7)の好適な数値範囲については上述している。
(5)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が5~70質量ppm
(6)前記ポリエステル樹脂(B)中におけるリン元素の含有量が5~1000質量ppm
(7)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.00以上5.00以下
[Method for producing polyester resin (B)]
Next, a method for producing polyester resin (B) will be explained. The method for producing the polyester resin (B) can be carried out by a method with known steps, except that a polyester polymerization catalyst consisting of an aluminum compound and a phosphorus compound is used as a catalyst, and a raw material containing chemically recycled BHET is used. However, it is preferable to add the polymerization catalyst so that the following (5) and (6) are satisfied, and in addition to the following (5) and (6), the polymerization catalyst is added so that the following (7) is also satisfied. It is even more preferable. Note that the preferred numerical ranges of (5) to (7) below have been described above.
(5) The content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass
(6) The content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass
(7) The residual molar ratio of phosphorus element to aluminum element in the polyester resin (B) is 1.00 or more and 5.00 or less
 ポリエステル樹脂(B)の製造方法としては、中間体として重縮合物(低次縮合物)であるポリエステル又はそのオリゴマーを合成する第1ステップと、前記中間体をさらに重縮合する第2ステップとを有することが好ましい。 The method for producing the polyester resin (B) includes a first step of synthesizing polyester or its oligomer as a polycondensate (lower condensate) as an intermediate, and a second step of further polycondensing the intermediate. It is preferable to have.
前記第一ステップで合成される低次縮合物(低重合体)であるポリエステル又はそのオリゴマーの製造方法としては、原料がケミカルリサイクルBHETのみである場合、または、共重合成分が少量である場合は、加熱溶融するだけで第1ステップが終了する場合がある。共重合成分が多い場合は、ケミカルリサイクルBHETと共重合成分をあらかじめ混合してオリゴマーを合成する方法、または、共重合成分からオリゴマーを合成した後に、ケミカルリサイクルBHETを混合する方法がある。 As for the method for producing polyester or its oligomer, which is a low-order condensate (low polymer) synthesized in the first step, when the raw material is only chemically recycled BHET, or when the copolymerization component is small, , the first step may be completed simply by heating and melting. When there are many copolymerization components, there is a method of premixing the chemically recycled BHET and the copolymerization component to synthesize an oligomer, or a method of synthesizing the oligomer from the copolymerization component and then mixing the chemically recycled BHET.
 また、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを下記(8)~(10)を満足するように添加することが好ましい。ポリエステル樹脂(B)の製造に用いられる多価カルボン酸およびそのエステル形成性誘導体、少量添加してもよいヒドロキシカルボン酸およびこれらのエステル形成性誘導体、少量添加してもよい環状エステルは、重合中に反応系から系外へ留出せず、触媒として系に最初に添加された使用量のほぼ100%が重合によって製造されたポリエステル樹脂(B)中に残留するため、これらの仕込み量から「生成されるポリエステル樹脂」の質量を算出することができる。
 (8)生成するポリエステル樹脂(B)に対するアルミニウム元素の添加量が5~70質量ppm(より好ましくは7~50質量ppm、さらに好ましくは10~40質量ppm、特に好ましくは12~35質量ppm)
 (9)生成するポリエステル樹脂(B)に対するリン元素の添加量が5~1500質量ppm(より好ましくは10~500質量ppm、さらに好ましくは20~200質量ppm、特に好ましくは40~100質量ppm)
 (10)前記(7)におけるアルミニウム元素の添加量に対する前記(8)におけるリン元素の添加量のモル比(以下、「アルミニウム元素に対するリン元素の添加モル比」という)が1.00以上7.00以下(より好ましくは1.50~6.00、さらに好ましくは2.00~5.00)
Further, after the first step and before the second step, a solution S in which an aluminum compound is dissolved in the intermediate and a solution T in which a phosphorus compound is dissolved are prepared so as to satisfy the following (8) to (10). It is preferable to add it to Polyhydric carboxylic acids and their ester-forming derivatives used in the production of polyester resin (B), hydroxycarboxylic acids and their ester-forming derivatives that may be added in small amounts, and cyclic esters that may be added in small amounts are added during polymerization. Almost 100% of the amount initially added to the system as a catalyst remains in the polyester resin (B) produced by polymerization, and is not distilled out of the reaction system. The mass of "polyester resin" can be calculated.
(8) The amount of aluminum element added to the polyester resin (B) to be produced is 5 to 70 mass ppm (more preferably 7 to 50 mass ppm, still more preferably 10 to 40 mass ppm, particularly preferably 12 to 35 mass ppm)
(9) The amount of phosphorus added to the polyester resin (B) to be produced is 5 to 1500 mass ppm (more preferably 10 to 500 mass ppm, still more preferably 20 to 200 mass ppm, particularly preferably 40 to 100 mass ppm)
(10) The molar ratio of the amount of the phosphorus element added in the above (8) to the amount of the aluminum element added in the above (7) (hereinafter referred to as "addition molar ratio of the phosphorus element to the aluminum element") is 1.00 or more7. 00 or less (more preferably 1.50 to 6.00, even more preferably 2.00 to 5.00)
 ポリエステル樹脂(B)の製造方法において、例えば、ポリエチレンテレフタレートを製造する場合は、ケミカルリサイクルBHET、および、必要により他の共重合成分を直接反応させて水を留去しエステル化した後、常圧あるいは減圧下で重縮合を行うことで製造される。この場合、ケミカルリサイクルBHETの共重合成分として、テレフタル酸等の酸成分を加えることも好ましい。さらに必要に応じて、極限粘度を増大させるために固相重合を行ってもよい。 In the method for producing polyester resin (B), for example, when producing polyethylene terephthalate, chemical recycling BHET and, if necessary, other copolymerization components are directly reacted to distill off water and esterify, and then the mixture is heated under normal pressure. Alternatively, it is produced by polycondensation under reduced pressure. In this case, it is also preferable to add an acid component such as terephthalic acid as a copolymerization component of chemically recycled BHET. Furthermore, if necessary, solid phase polymerization may be performed to increase the intrinsic viscosity.
 これらいずれの方式においても、エステル化反応あるいはエステル交換反応は、1段階で行ってもよいし、また多段階に分けて行ってもよい。 In any of these methods, the esterification reaction or transesterification reaction may be carried out in one step or may be carried out in multiple steps.
 また、溶融重合法で製造されたポリエステル樹脂を固相重合法で追加重合してもよい。固相重合反応は、溶融重縮合反応と同様に連続式装置で行うことが出来る。 Furthermore, the polyester resin produced by the melt polymerization method may be additionally polymerized by the solid phase polymerization method. The solid-phase polymerization reaction can be carried out in a continuous apparatus like the melt polycondensation reaction.
 3基以上の反応器よりなる連続重縮合装置(初期段階、中期段階および後期段階の3段階の重合方式)である場合は、1段階目を初期段階、最終段を後期段階、2段階目から最終段の一つ手前の段階までを中間段階とし、中間段階の重合反応の反応条件は、初期段階の反応条件と最終段階の反応条件の間の条件であることが好ましい。これらの重合反応工程の各々において到達される極限粘度の上昇の度合は滑らかに分配されることが好ましい。 If it is a continuous polycondensation device consisting of three or more reactors (three-stage polymerization method: initial stage, middle stage, and late stage), the first stage is the initial stage, the final stage is the latter stage, and the second stage is It is preferable that the stage up to one step before the final stage is an intermediate stage, and the reaction conditions of the polymerization reaction in the intermediate stage are between the reaction conditions of the initial stage and the reaction conditions of the final stage. Preferably, the degree of increase in intrinsic viscosity achieved in each of these polymerization reaction steps is smoothly distributed.
(固相重合法)
 固有粘度を増大させるために溶融重合法で製造されたポリエステル樹脂を固相重合してもよい。固相重合は、バッチ式重合法であっても、連続重合法であってもよいが、固相重合は、溶融重合と同様に連続式装置で行うことが好ましい。
(Solid phase polymerization method)
In order to increase the intrinsic viscosity, a polyester resin produced by a melt polymerization method may be subjected to solid phase polymerization. Although the solid phase polymerization may be a batch polymerization method or a continuous polymerization method, it is preferable that the solid phase polymerization is performed in a continuous type apparatus similarly to the melt polymerization.
 ポリエステル樹脂(B)のCT量を下げるために、溶融重合法で製造されたポリエステル樹脂を固相重合法で追加重合するのが好ましい。固相重合は、前記第2ステップ(溶融重合)により得られたポリエステルを粉粒体状にして実施される。粉粒体とはチップ、ペレット、フレーク、粉末状のポリエステルを意味するが、好ましくはチップまたはペレットである。 In order to lower the CT amount of the polyester resin (B), it is preferable to additionally polymerize the polyester resin produced by the melt polymerization method by a solid phase polymerization method. Solid phase polymerization is carried out by pulverizing the polyester obtained in the second step (melt polymerization). Powder means chips, pellets, flakes, and powdered polyester, preferably chips or pellets.
 上記固相重合は粉粒体状のポリエステルをポリエステルの融点以下の温度にて、不活性ガス流通下あるいは減圧下で加熱することにより実施される。固相重合工程は1段階で行ってもよいし、また多段階に分けて行ってもよい。 The above solid phase polymerization is carried out by heating the powdered polyester at a temperature below the melting point of the polyester under an inert gas flow or under reduced pressure. The solid phase polymerization step may be performed in one step or may be performed in multiple steps.
 固相重合工程に供給される粉粒状ポリエステルは、あらかじめ固相重合を行なう場合の温度より低い温度に加熱して予備結晶化を行なった後、固相重合工程に供給してもよい。 The powdery polyester to be supplied to the solid phase polymerization step may be pre-crystallized by heating to a temperature lower than the temperature at which solid phase polymerization is performed, and then supplied to the solid phase polymerization step.
 このような予備結晶化工程は、粉粒状ポリエステルを乾燥状態で通常120~200℃、好ましくは130~180℃の温度に1分~4時間加熱することによって行なってもよく、あるいは粉粒ポリエステルを水蒸気雰囲気下又は水蒸気含有不活性ガス雰囲気下あるいは水蒸気含有空気雰囲気下で、120~200℃の温度に1分間以上加熱することによって行なってもよい。 Such preliminary crystallization step may be carried out by heating the powdered polyester in a dry state to a temperature of usually 120 to 200°C, preferably 130 to 180°C for 1 minute to 4 hours, or by heating the powdered polyester to a temperature of 1 minute to 4 hours. It may be carried out by heating to a temperature of 120 to 200° C. for 1 minute or more in a steam atmosphere, a steam-containing inert gas atmosphere, or a steam-containing air atmosphere.
 前記のようにして溶融重合されたポリエステルは、例えば、チップ化されたあと輸送配管中を貯蔵用サイロや固相重合工程に輸送される。このようなチップの輸送を、例えば空気を使用した強制的な低密度輸送方法で行うと、溶融重合ポリエステルのチップの表面には配管との衝突によって大きな衝撃力がかかり、この結果ファインやフィルム状物が多量に発生する。このようなファインやフィルム状物はポリエステルの結晶化を促進させる効果を持っており、多量に存在する場合には得られた成形体の透明性が非常に悪くなる。従って、このようなファインやフィルム状物を除去する工程を付加することは好ましい実施態様の一つである。 The polyester melt-polymerized as described above is, for example, chipped and then transported through transportation piping to a storage silo or a solid phase polymerization process. If such chips are transported by a forced low-density transport method using air, for example, a large impact force is applied to the surface of the melt-polymerized polyester chips due to collision with the piping, resulting in fine and film-like formation. A lot of things are generated. Such fines and film-like materials have the effect of accelerating the crystallization of polyester, and when present in large amounts, the transparency of the obtained molded product becomes extremely poor. Therefore, it is one of the preferred embodiments to add a step of removing such fines and film-like substances.
 上記のファインやフィルム状物を除去する方法は限定されないが、例えば、前記の固相重合工程と固相重合工程のあとに設置される後工程との中間工程に別々に設置した振動篩工程および空気流による気流分級工程、重力式分級工程等で処理する方法等が挙げられる。 The method for removing the above-mentioned fines and film-like substances is not limited, but examples include a vibrating sieve step installed separately in the intermediate step between the solid phase polymerization step and a post-step installed after the solid phase polymerization step; Examples include a treatment method using an airflow classification process using an airflow, a gravity classification process, and the like.
 アルミニウム化合物およびリン化合物を触媒として用いる場合には、スラリー状または溶液状で添加するのが好ましく、水やグリコールなどの溶媒に溶解した溶液がより好ましく、水および/またはグリコールに溶解した溶液を用いることがさらに好ましく、エチレングリコールに溶解した溶液を用いることが最も好ましい。 When using aluminum compounds and phosphorus compounds as catalysts, it is preferable to add them in the form of a slurry or solution, more preferably a solution dissolved in a solvent such as water or glycol, and a solution dissolved in water and/or glycol is used. More preferably, a solution in ethylene glycol is most preferably used.
 ポリエステル樹脂(B)の製造工程の重合反応の開始までの任意の段階でアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tをポリエステル樹脂(B)中の含有率(残存量)が上記(5)~(7)を満たす範囲になるように添加するのが好ましい。 At any stage up to the start of the polymerization reaction in the manufacturing process of polyester resin (B), solution S in which an aluminum compound is dissolved and solution T in which a phosphorus compound is dissolved are added so that the content (residual amount) in the polyester resin (B) is above It is preferable to add it in a range that satisfies (5) to (7).
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとをポリエステル樹脂(B)中の含有率(残存量)が上記(5)~(7)を満たすように添加することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム系異物の生成も抑制することができる。 By adding solution S in which an aluminum compound is dissolved and solution T in which a phosphorus compound is dissolved so that the content (residual amount) in the polyester resin (B) satisfies (5) to (7) above, the polymerization system is A complex having catalytic activity is functionally formed therein, and can exhibit sufficient polymerization activity. Furthermore, the generation of aluminum-based foreign matter can also be suppressed.
 なお、触媒として機能するアルミニウム化合物中のアルミニウム原子は、ポリエステル樹脂の重合時に減圧環境下に置かれても、触媒として系に最初に添加された使用量のほぼ100%が、重合によって製造されたポリエステル樹脂(B)中に残留する。すなわち、アルミニウム化合物の量は重合の前後でほぼ変化しないため、前記中間体に対するアルミニウム原子の添加量が5~70質量ppmとなるようにすると、ポリエステル樹脂(B)中におけるアルミニウム原子の含有率も5~70質量ppmとなる。 In addition, even if the aluminum atoms in the aluminum compound that functions as a catalyst are placed in a reduced pressure environment during the polymerization of polyester resin, almost 100% of the amount initially added to the system as a catalyst is produced by polymerization. It remains in the polyester resin (B). That is, since the amount of the aluminum compound does not substantially change before and after polymerization, if the amount of aluminum atoms added to the intermediate is 5 to 70 ppm by mass, the content of aluminum atoms in the polyester resin (B) will also increase. The amount is 5 to 70 ppm by mass.
 また、アルミニウム化合物とともに触媒として機能するリン化合物は、ポリエステル樹脂の重合時に減圧環境下に置かれる際、触媒として系に最初に添加された使用量の一部(10~40%程度)が系外に除去されるが、この除去割合はアルミニウム原子に対するリン原子の添加モル比、添加するアルミニウム化合物を溶解した溶液やリン化合物を溶解した溶液の塩基性度や酸性度、アルミニウム含有溶液やリン含有溶液の添加方法(一液化して添加するか、別々に添加するか)等により変化する。したがって、最終生成物となるポリエステル樹脂(B)中のリン化合物の添加量が上記(6)を満たすように適宜設定するのが好ましい。 In addition, when the phosphorus compound, which functions as a catalyst together with the aluminum compound, is placed in a reduced pressure environment during the polymerization of polyester resin, a portion (about 10 to 40%) of the amount initially added to the system as a catalyst is removed from the system. However, this removal ratio depends on the addition molar ratio of phosphorus atoms to aluminum atoms, the basicity and acidity of the solution containing the added aluminum compound and the solution containing the phosphorus compound, the aluminum-containing solution, and the phosphorus-containing solution. It varies depending on the method of addition (whether added as a single liquid or added separately). Therefore, it is preferable to appropriately set the amount of the phosphorus compound added in the polyester resin (B) as the final product so as to satisfy the above (6).
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを同時に添加することが好ましく、アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを、あらかじめ前記中間体に添加する比率で混合して混合液を作製しておき、一液化した混合液を前記中間体に添加することがより好ましい実施態様である。あらかじめ一液化する方法としては、それぞれの溶液をタンクで混合する方法、触媒を添加する配管を途中で合流して混合させる方法などが挙げられる。 It is preferable to add the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved at the same time, and the ratio of adding the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved in advance to the intermediate is In a more preferred embodiment, a mixed solution is prepared by mixing the two components in advance, and the mono-component mixed solution is added to the intermediate. Examples of methods for making the solutions into one liquid in advance include a method of mixing each solution in a tank, and a method of merging the pipes for adding the catalyst in the middle and mixing them.
 アルミニウム化合物とリン化合物とを反応容器に添加する場合には、反応容器の撹拌の強度を十分に高くすることが好ましい。反応容器間の配管に添加する場合には、インラインミキサーなどを設置して、添加された触媒溶液が速やかに均一混合されるようにすることが好ましい。 When adding an aluminum compound and a phosphorus compound to a reaction vessel, it is preferable to sufficiently increase the stirring intensity of the reaction vessel. When adding the catalyst solution to a pipe between reaction vessels, it is preferable to install an in-line mixer or the like so that the added catalyst solution can be quickly and uniformly mixed.
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを別々に添加した場合、アルミニウム化合物に起因する異物が多く発生しやすく、昇温結晶化温度が低くなったり、降温結晶化温度が高くなったり、十分な触媒活性が得られなくなる場合がある。アルミニウム化合物とリン化合物を同時に添加することで、重合活性をもたらすアルミニウム化合物とリン化合物の複合体を速やかに無駄なく生成できるが、別々に添加した場合には、アルミニウム化合物とリン化合物の複合体の生成が不十分であり、また、リン化合物との複合体を生成できなかったアルミニウム化合物が異物として析出するおそれがある。 If solution S in which an aluminum compound is dissolved and solution T in which a phosphorus compound is dissolved are added separately, a large amount of foreign matter caused by the aluminum compound is likely to be generated, and the heating crystallization temperature may become low or the cooling crystallization temperature may become lower. In some cases, the catalyst activity becomes high, or sufficient catalytic activity may not be obtained. By adding an aluminum compound and a phosphorus compound at the same time, a complex of the aluminum compound and a phosphorus compound that brings about polymerization activity can be produced quickly and without waste. However, if they are added separately, There is a possibility that the aluminum compound is insufficiently produced and that the aluminum compound that has not been able to form a complex with the phosphorus compound will precipitate as a foreign substance.
 また、アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとは、重合反応の開始前であり、かつ、エステル化反応またはエステル交換反応終了後に添加することが好ましく、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tを添加することがより好ましい。エステル化反応またはエステル交換反応終了前に添加すると、アルミニウム系異物量が増大するおそれがある。 Further, the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved are preferably added before the start of the polymerization reaction and after the completion of the esterification reaction or the transesterification reaction, and after the first step. It is more preferable that a solution S in which an aluminum compound is dissolved and a solution T in which a phosphorus compound is dissolved are added to the intermediate before the second step. If it is added before the completion of the esterification reaction or transesterification reaction, the amount of aluminum-based foreign substances may increase.
 アルミニウム化合物を溶解した溶液Sは、アルミニウム化合物を溶解したグリコール溶液であることが好ましく、リン化合物を溶解した溶液Tは、リン化合物を溶解したグリコール溶液であることが好ましい。グリコールはポリエステル樹脂(B)の構成成分であるグリコールであることが好ましく、エチレングリコールであることがさらに好ましい。 The solution S in which the aluminum compound is dissolved is preferably a glycol solution in which the aluminum compound is dissolved, and the solution T in which the phosphorus compound is dissolved is preferably a glycol solution in which the phosphorus compound is dissolved. The glycol is preferably a glycol that is a constituent of the polyester resin (B), and more preferably ethylene glycol.
<リン化合物の熱処理>
 また、ポリエステル樹脂(B)の製造に使用するリン化合物は溶媒中で熱処理されたものであることが好ましい。使用する溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されないが、アルキレングリコールとしては、リン化合物を溶解する溶媒を用いることが好ましく、エチレングリコール等のポリエステル樹脂(B)の構成成分であるグリコールを用いることがより好ましい。溶媒中での加熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。
<Heat treatment of phosphorus compounds>
Moreover, it is preferable that the phosphorus compound used for manufacturing the polyester resin (B) is one that has been heat-treated in a solvent. The solvent to be used is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and polyester resins such as ethylene glycol ( It is more preferable to use glycol, which is a component of B). The heat treatment in the solvent is preferably performed after the phosphorus compound has been dissolved, but it is not necessary to completely dissolve the phosphorus compound.
 上記熱処理の条件は、熱処理温度が170~196℃であることが好ましく、より好ましくは175~185℃、さらに好ましくは175~180℃である。熱処理時間は30~240分が好ましく、より好ましくは50~210分である。 Regarding the conditions for the above heat treatment, the heat treatment temperature is preferably 170 to 196°C, more preferably 175 to 185°C, and even more preferably 175 to 180°C. The heat treatment time is preferably 30 to 240 minutes, more preferably 50 to 210 minutes.
 上記熱処理時のリン化合物の濃度は3~10質量%が好ましい。 The concentration of the phosphorus compound during the above heat treatment is preferably 3 to 10% by mass.
 上記の熱処理により、グリコール溶液中に含まれるリン化合物の酸性度を一定にすることができ、アルミニウム化合物と併用することによる重合活性が向上するとともに、重合触媒に起因するアルミニウム系異物量の生成を低下させることができ、かつ重合工程におけるリン化合物の留去量が抑制でき経済性が高めることができる。よって、上記熱処理を行うことが好ましい。 The above heat treatment makes it possible to keep the acidity of the phosphorus compound contained in the glycol solution constant, improves the polymerization activity when used in combination with an aluminum compound, and reduces the amount of aluminum-based foreign matter generated by the polymerization catalyst. In addition, the amount of phosphorus compound distilled off in the polymerization process can be suppressed, and economical efficiency can be improved. Therefore, it is preferable to perform the above heat treatment.
 以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法は以下の通りである。 Hereinafter, the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples. The evaluation methods used in each example and comparative example are as follows.
〔評価方法〕
(1)固有粘度(IV)
 試料を約3g凍結粉砕して140℃15分間乾燥した後、0.20g計量し、1,1,2,2-テトラクロロエタンとp-クロロフェノールとを1:3(質量比)で混ぜた混合溶媒を20ml用いて100℃で60分間撹拌して完全に溶解して室温まで冷却した後グラスフィルターを通して試料とした。30℃に温調されたウベローデ粘度計((株)離合社製)を用いて試料および溶媒の落下時間を計測し、次式により固有粘度[η]を求めた。
  [η]=(-1+√(1+4K’ηsp))/2K’C
  ηsp=(τ-τ)/τ
  ここで、
  [η]:固有粘度(dl/g)
  ηsp:比粘度(-)
  K’:ハギンスの恒数(=0.33)
  C:濃度(=1g/dl)
  τ:試料の落下時間(sec)
  τ:溶媒の落下時間(sec)
〔Evaluation methods〕
(1) Intrinsic viscosity (IV)
Approximately 3g of the sample was freeze-pulverized and dried at 140°C for 15 minutes, then 0.20g was weighed and a mixture of 1,1,2,2-tetrachloroethane and p-chlorophenol was mixed at a ratio of 1:3 (mass ratio). Using 20 ml of the solvent, the mixture was stirred at 100° C. for 60 minutes to completely dissolve, cooled to room temperature, and then passed through a glass filter to be used as a sample. The falling time of the sample and solvent was measured using an Ubbelohde viscometer (manufactured by Rigosha Co., Ltd.) whose temperature was controlled at 30° C., and the intrinsic viscosity [η] was determined using the following formula.
[η] = (-1+√(1+4K'η sp ))/2K'C
η sp = (τ−τ 0 )/τ 0
here,
[η]: Intrinsic viscosity (dl/g)
η sp : Specific viscosity (-)
K': Huggins' constant (=0.33)
C: Concentration (=1g/dl)
τ: Sample falling time (sec)
τ 0 : Falling time of solvent (sec)
(2)試料中における所定の金属元素の含有率
 白金製るつぼに後述するポリエステル樹脂(A-1)を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を下記の条件で測定し、高周波誘導結合プラズマ発光分析法によりポリエステル樹脂(A-1)中におけるアンチモン元素、ゲルマニウム元素、及びチタン元素の濃度を求めた。同様に後述するポリエステル樹脂(B-4)、(E)~(G)中におけるアンチモン元素、ゲルマニウム元素、及びチタン元素の濃度を求めたが、含有量が1質量ppm以下である元素については記載を省略した。また、上記と同様の方法で後述するポリエステル樹脂(B-1)中におけるアルミニウム元素の濃度を求めた。同様にして、ポリエステル樹脂(B-2)、(B-3)、(H)のアルミニウム元素の濃度を求めた。
  装置:SPECTRO社製 CIROS-120
  プラズマ出力:1400W
  プラズマガス:13.0L/min
  補助ガス:2.0L/min
  ネブライザー:クロスフローネブライザー
  チャンバー:サイクロンチャンバー
  測定波長:167.078nm
(2) Content of the specified metal element in the sample Weigh the polyester resin (A-1) described below in a platinum crucible, carbonize it on an electric stove, and then ash it in a muffle furnace at 550°C for 8 hours. It became. The sample after incineration was dissolved in 1.2M hydrochloric acid to prepare a sample solution. The prepared sample solution was measured under the following conditions, and the concentrations of antimony element, germanium element, and titanium element in the polyester resin (A-1) were determined by high frequency inductively coupled plasma emission spectrometry. Similarly, the concentrations of antimony element, germanium element, and titanium element in polyester resins (B-4) and (E) to (G) described later were determined, but elements whose content is 1 mass ppm or less are not listed. was omitted. In addition, the concentration of aluminum element in the polyester resin (B-1), which will be described later, was determined in the same manner as above. In the same manner, the concentration of aluminum element in polyester resins (B-2), (B-3), and (H) was determined.
Equipment: CIROS-120 manufactured by SPECTRO
Plasma output: 1400W
Plasma gas: 13.0L/min
Auxiliary gas: 2.0L/min
Nebulizer: Crossflow nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078nm
(3)ポリエステル樹脂(B-1)中におけるリン元素の含有率
 ポリエステル樹脂(B-1)を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調整した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、ポリエステル樹脂(B-1)中のリン元素の濃度を求めた。同様にして、ポリエステル樹脂(B-2)、(B-3)、(H)中のリン元素の濃度を求めた。
(3) Content of phosphorus element in polyester resin (B-1) Polyester resin (B-1) was subjected to wet decomposition with sulfuric acid, nitric acid, and perchloric acid, and then neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, absorbance at a wavelength of 830 nm was measured using a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-1700). The concentration of elemental phosphorus in the polyester resin (B-1) was determined from a calibration curve prepared in advance. In the same manner, the concentration of elemental phosphorus in polyester resins (B-2), (B-3), and (H) was determined.
(4)試料中のヒンダードフェノール構造又はその分解残基の存在確認
 試料420mgをヘキサフルオロイソプロパノールと重ベンゼンとを1:1(質量比)で混ぜた混合溶媒2.7mLに溶解し、リン酸25%重アセトン溶液を10μL添加して遠心分離を行った。その後、上澄み液にトリフルオロ酢酸100~150mgを添加し、すぐに下記の条件でP-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE500)
  31P共鳴周波数:202.456MHz
  ロック溶媒:重ベンゼン
  検出パルスのフリップ角:65°
  データ取り込み時間:1.5秒
  遅延時間:0.5秒
  プロトンデカップリング:フルデカップル
  測定温度:25~35℃
  積算回数:20000~30000回程度
 表1に示した化式番号残基のピーク波長を以下に示す。これらのピーク波長が検出されたときには、試料中にヒンダードフェノール構造を有すると判断した。
 化学式1:34.5ppm、化学式4:30.5ppm、化学式7:53.6ppm
 化学式2:33.8ppm、化学式5:30.1ppm、化学式8:53.0ppm
 化学式3:31.9ppm、化学式6:28.7ppm、化学式9:51.3ppm
(4) Confirmation of presence of hindered phenol structure or its decomposition residue in the sample 420 mg of the sample was dissolved in 2.7 mL of a mixed solvent of hexafluoroisopropanol and heavy benzene at a ratio of 1:1 (mass ratio), and phosphoric acid 10 μL of 25% deuterated acetone solution was added and centrifuged. Thereafter, 100 to 150 mg of trifluoroacetic acid was added to the supernatant, and P-NMR measurement was immediately performed under the following conditions.
Equipment: Fourier transform nuclear magnetic resonance apparatus (BRUKER, AVANCE500)
31P resonance frequency: 202.456MHz
Locking solvent: Heavy benzene Detection pulse flip angle: 65°
Data acquisition time: 1.5 seconds Delay time: 0.5 seconds Proton decoupling: Full decoupling Measurement temperature: 25-35℃
Number of integrations: about 20,000 to 30,000 times The peak wavelengths of the chemical formula number residues shown in Table 1 are shown below. When these peak wavelengths were detected, it was determined that the sample had a hindered phenol structure.
Chemical formula 1: 34.5ppm, Chemical formula 4: 30.5ppm, Chemical formula 7: 53.6ppm
Chemical formula 2: 33.8ppm, Chemical formula 5: 30.1ppm, Chemical formula 8: 53.0ppm
Chemical formula 3: 31.9ppm, chemical formula 6: 28.7ppm, chemical formula 9: 51.3ppm
(5)環状三量体の定量
 試料を冷凍粉砕あるいは細片化し、試料100mgを精秤した。これを、ヘキサフルオロイソプロパノ-ル/クロロホルム混合液(容量比=2/3)3mLに溶解し、さらにクロロホルム20mLを加えて希釈した。これにメタノ-ル10mLを加えてポリマーを沈殿させた後、濾過した。濾液を蒸発乾固し、ジメチルホルムアミド10mLで定容とした。次いで下記の高速液体クロマトグラフ法でポリエステル樹脂中あるいは中空成形体中の環状三量体量を定量した。前記操作を5回繰返し、その平均値をCT含有量とした。
  装置:L-7000(日立製作所製)
  カラム:μ-Bondasphere C18 5μ 100オングストローム 3.9mm×15cm(Waters製)
  溶媒:溶離液A:2%酢酸/水(v/v)
     溶離液B:アセトニトリル
     グラジエントB%:10→100%(0→55分)
  流速:0.8mL/分
  温度:30℃
  検出器:UV-259nm
(5) Quantification of cyclic trimer The sample was frozen and crushed or cut into pieces, and 100 mg of the sample was precisely weighed. This was dissolved in 3 mL of a hexafluoroisopropanol/chloroform mixture (volume ratio = 2/3), and further diluted with 20 mL of chloroform. 10 mL of methanol was added to this to precipitate the polymer, which was then filtered. The filtrate was evaporated to dryness and made up to volume with 10 mL of dimethylformamide. Next, the amount of cyclic trimer in the polyester resin or the hollow molded body was determined by the high performance liquid chromatography method described below. The above operation was repeated five times, and the average value was taken as the CT content.
Equipment: L-7000 (manufactured by Hitachi)
Column: μ-Bondasphere C18 5 μ 100 angstrom 3.9 mm x 15 cm (manufactured by Waters)
Solvent: Eluent A: 2% acetic acid/water (v/v)
Eluent B: Acetonitrile Gradient B%: 10 → 100% (0 → 55 minutes)
Flow rate: 0.8mL/min Temperature: 30℃
Detector: UV-259nm
(6)試料の固有粘度保持率
 試料樹脂のリサイクル性の指標として、下記に示す固有粘度保持率を算出した。
 試料を真空乾燥140℃、16時間乾燥し、水分率150ppm以下の乾燥ポリエステルを作製した。この乾燥ポリエステルを用いて以下の条件で二軸押出機にて再練り処理を1回行った後に再練り品の固有粘度を測定し、下記の式を用いて固有粘度保持率を算出した。また、上記乾燥ポリエステル樹脂を用いて以下の条件で二軸押出機にて再練り処理を3回行った後に再練り品の固有粘度を測定し、下記の式を用いて固有粘度保持率を算出した。なお、固有粘度の測定方法は上記(1)に記載のとおりである。
  二軸押出機:テクノベル社製KZW15TW-45/60MG-NH(-2200)
  設定温度:260℃(実温268~270℃)
  スクリュー回転数:200rpm
  吐出量1.7~2.0kg/h
 固有粘度保持率(%)=100×再練り品の固有粘度/試料の固有粘度
 なお、水分率は、電量滴定法であるカールフィッシャー水分計(株式会社三菱ケミカルアナリテック製、CA-200)を用いて、試料0.6gを230℃,5分間、250mL/minの窒素気流下の条件で測定した。
(6) Intrinsic viscosity retention rate of sample As an index of the recyclability of the sample resin, the intrinsic viscosity retention rate shown below was calculated.
The sample was vacuum dried at 140° C. for 16 hours to produce dry polyester with a moisture content of 150 ppm or less. This dried polyester was re-kneaded once in a twin-screw extruder under the following conditions, and then the intrinsic viscosity of the re-kneaded product was measured, and the intrinsic viscosity retention was calculated using the following formula. In addition, the intrinsic viscosity of the re-kneaded product was measured after re-kneading the above-mentioned dry polyester resin three times in a twin-screw extruder under the following conditions, and the intrinsic viscosity retention rate was calculated using the following formula. did. Note that the method for measuring the intrinsic viscosity is as described in (1) above.
Twin screw extruder: KZW15TW-45/60MG-NH (-2200) manufactured by Technovel
Set temperature: 260℃ (actual temperature 268-270℃)
Screw rotation speed: 200rpm
Discharge amount 1.7~2.0kg/h
Intrinsic viscosity retention rate (%) = 100 x Intrinsic viscosity of remixed product/Intrinsic viscosity of sample The moisture content was measured using a Karl Fischer moisture meter (manufactured by Mitsubishi Chemical Analytic Corporation, CA-200), which is a coulometric titration method. Using this method, 0.6 g of a sample was measured at 230° C. for 5 minutes under a nitrogen flow of 250 mL/min.
(7)カラーb値測定
 試料の樹脂ペレットを測定セルに詰め込み(約50g)回転させながら測定を実施した。
  装置:東京電色社製 精密型分光光度色彩計TC-1500SX
  測定方法:JIS Z8722準拠 透過光 0度、-0度法
  検出素子:シリコンフォトダイオードアレー
  光源:ハロゲンランプ 12V100W 2000H
  測定面積:透過25mmφ
  湿温度条件:25℃、RH50%
  測定セル:φ35mm、高さ25mm 回転式(ペレット)
  測定内容:X,Y,Z3刺激値 CIE色度座標
 x=X/(X+Y+Z) y=Y/(X+Y+Z)
 ポリエステル樹脂(C)においては、上記(7)と同じ方法で再練り処理を行い、再練り処理を1回行った後の再練り品におけるL値及びb値と再練り処理を3回行った後の再練り品におけるL値及びb値と求めた。
(7) Color b value measurement A sample of resin pellets was packed into a measurement cell (approximately 50 g) and measurement was performed while rotating.
Equipment: Tokyo Denshokusha precision spectrophotometer colorimeter TC-1500SX
Measurement method: JIS Z8722 compliant Transmitted light 0 degree, -0 degree method Detection element: Silicon photodiode array Light source: Halogen lamp 12V100W 2000H
Measurement area: Transmission 25mmφ
Humidity temperature condition: 25℃, RH50%
Measuring cell: φ35mm, height 25mm Rotating type (pellet)
Measurement details: X, Y, Z tristimulus values CIE chromaticity coordinates x=X/(X+Y+Z) y=Y/(X+Y+Z)
For the polyester resin (C), the re-kneading process was performed in the same manner as in (7) above, and the L value and b value of the re-kneading product after the re-kneading process was performed once, and the re-kneading process was performed three times. The L value and b value of the subsequent remixed product were determined.
(8)ポリエステル樹脂(A-1)中の多価カルボン酸成分、多価アルコール成分の含有量、ポリエステル樹脂(B)中の多価カルボン酸成分、多価アルコール成分の含有量、酸価、及びポリエステル樹脂(B)のオリゴマー中の酸価、水酸基価
 ・ポリエステル樹脂(A-1)中の多価カルボン酸成分量として、全多価カルボン酸成分100モル%に対する量(モル%)を求めた。
・ポリエステル樹脂(A-1)中の多価アルコール成分量として、全多価アルコール成分100モル%に対する量(モル%)を求めた。
 ・ポリエステル樹脂(B)中の多価カルボン酸成分量として、全多価カルボン酸成分100モル%に対する量(モル%)を求めた。
・ポリエステル樹脂(B)中の多価アルコール成分量として、全多価アルコール成分100モル%に対する量(モル%)を求めた。
・ポリエステル樹脂(B)中の酸価(AV)として、樹脂1t当たりの当量(単位;eq/ton)を求めた。
・ポリエステル樹脂(B)のオリゴマー中の酸価(OLG-AV)として、オリゴマー1t当たりの当量(単位;eq/ton)を求めた。
・ポリエステル樹脂(B)のオリゴマー中の水酸基価(OLG-OHV)として、オリゴマー1t当たりの当量(単位;eq/ton)を求めた。
(測定方法)
 樹脂20mgを重ヘキサフルオロイソプロパノールと重クロロホルムとを1:9(容量比)で混ぜた混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、下記の条件で1H-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE NEO600)
  1H共鳴周波数:600.13MHz
  ロック溶媒:重クロロホルム
  フリップ角:30°
  データ取り込み時間:4秒
  遅延時間:1秒
  測定温度:30℃
  積算回数:128回
(8) Content of polyhydric carboxylic acid component and polyhydric alcohol component in polyester resin (A-1), content of polyhydric carboxylic acid component and polyhydric alcohol component in polyester resin (B), acid value, and the acid value and hydroxyl value in the oligomer of the polyester resin (B) - Determine the amount (mol%) of the polycarboxylic acid component in the polyester resin (A-1) based on 100 mol% of the total polycarboxylic acid component. Ta.
- As the amount of polyhydric alcohol component in the polyester resin (A-1), the amount (mol%) based on 100 mol% of the total polyhydric alcohol component was determined.
- As the amount of the polycarboxylic acid component in the polyester resin (B), the amount (mol%) based on 100 mol% of the total polycarboxylic acid component was determined.
- As the amount of polyhydric alcohol component in the polyester resin (B), the amount (mol%) based on 100 mol% of the total polyhydric alcohol component was determined.
- As the acid value (AV) in the polyester resin (B), the equivalent weight (unit: eq/ton) per 1 ton of resin was determined.
- As the acid value (OLG-AV) in the oligomer of polyester resin (B), the equivalent weight (unit: eq/ton) per 1 ton of oligomer was determined.
- As the hydroxyl value (OLG-OHV) in the oligomer of the polyester resin (B), the equivalent weight (unit: eq/ton) per 1 ton of oligomer was determined.
(Measuring method)
20 mg of the resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a ratio of 1:9 (volume ratio), and centrifuged. Thereafter, the supernatant was collected and subjected to 1 H-NMR measurement under the following conditions.
Equipment: Fourier transform nuclear magnetic resonance apparatus (AVANCE NEO600, manufactured by BRUKER)
1H resonance frequency: 600.13MHz
Lock solvent: deuterated chloroform Flip angle: 30°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 30℃
Accumulated number of times: 128 times
(9)ポリエステル樹脂(B)のオリゴマー中の水酸基の割合算出(OLG-OH%)
 水酸基の割合は、上記方法で求めた酸価と水酸基価より、下記式に従って算出した。オリゴマー末端を酸価と水酸基価の合計値としている。
水酸基の割合={水酸基価/(水酸基価+酸価)}×100
(9) Calculation of the proportion of hydroxyl groups in the oligomer of polyester resin (B) (OLG-OH%)
The proportion of hydroxyl groups was calculated according to the following formula from the acid value and hydroxyl value determined by the above method. The oligomer end is the sum of the acid value and hydroxyl value.
Ratio of hydroxyl groups = {hydroxyl value / (hydroxyl value + acid value)} x 100
(10)BHET中の多価カルボン酸成分および多価アルコール成分の含有量
・BHET中の多価カルボン酸成分量として、全多価カルボン酸成分100モル%に対する量(モル%)を求めた。
・BHET中の多価アルコール成分量として、全多価アルコール成分100モル%に対する量(モル%)を求めた。
(測定方法)
 ケミカルリサイクルBHETを重メタノールに溶解し、下記の条件で1H-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製)
  1H共鳴周波数:500.13MHz
  ロック溶媒:重メタノール
  フリップ角:45°
  データ取り込み時間:4秒
  遅延時間:1秒
  測定温度:27℃
  積算回数:36回
(10) Content of polycarboxylic acid component and polyhydric alcohol component in BHET The amount (mol %) of the polycarboxylic acid component in BHET was determined based on 100 mol % of the total polycarboxylic acid component.
- As the amount of polyhydric alcohol component in BHET, the amount (mol%) based on 100 mol% of the total polyhydric alcohol component was determined.
(Measuring method)
Chemically recycled BHET was dissolved in heavy methanol, and 1 H-NMR measurement was performed under the following conditions.
Equipment: Fourier transform nuclear magnetic resonance apparatus (manufactured by BRUKER)
1H resonance frequency: 500.13MHz
Lock solvent: Heavy methanol Flip angle: 45°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 27℃
Accumulated number of times: 36 times
(11)融点Tm
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、試料5mgをアルミパンに入れ、蓋を押さえて密封した。次いで、一度290℃で5分ホールドした後、液体窒素で急冷して、その後25℃から290℃まで、20℃/minの昇温速度で測定した。得られた吸熱ピークのピークトップの値を融点Tmとした。
(11) Melting point Tm
Using a differential scanning calorimeter "DSC220 model" manufactured by Seiko Electronics Co., Ltd., 5 mg of the sample was placed in an aluminum pan, and the lid was pressed to seal. Next, the temperature was once held at 290°C for 5 minutes, then rapidly cooled with liquid nitrogen, and then the temperature was measured from 25°C to 290°C at a temperature increase rate of 20°C/min. The peak top value of the obtained endothermic peak was defined as the melting point Tm.
 以下、アルミニウム含有エチレングリコール溶液、リン含有エチレングリコール溶液、及びケミカルリサイクルBHETの調製について説明する。 Hereinafter, the preparation of an aluminum-containing ethylene glycol solution, a phosphorus-containing ethylene glycol solution, and chemically recycled BHET will be explained.
<アルミニウム含有エチレングリコール溶液sの調製>
 塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液sを調製した。
<Preparation of aluminum-containing ethylene glycol solution s>
A 20 g/L aqueous solution of basic aluminum acetate and an equal amount (volume ratio) of ethylene glycol were charged into a mixing tank, stirred for several hours at room temperature (23°C), and then heated to 50 to 90 g/L under reduced pressure (3 kPa). Water was distilled off from the system while stirring at °C for several hours to prepare an aluminum-containing ethylene glycol solution s containing 20 g/L of an aluminum compound.
<リン含有エチレングリコール溶液tの調製>
 リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液tを調製した。
<Preparation of phosphorus-containing ethylene glycol solution t>
As a phosphorus compound, Irganox 1222 (manufactured by BFA) was charged into a preparation tank together with ethylene glycol, and heat treated at 175°C for 150 minutes with stirring under nitrogen substitution to obtain a phosphorus-containing ethylene glycol solution containing 50 g/L of phosphorus compound. was prepared.
<ケミカルリサイクルBHETの準備>
 ケミカルリサイクルBHETが表2に示した組成比となるように、下記(n)~(p)を混合し、ケミカルリサイクルBHETを調製した。
 (n)飲料用ボトルの回収物から得られ、イソフタル酸成分を含むケミカルリサイクルBHET
 (o)飲料用ボトルの回収物から得られ、ジエチレングリコール成分を含むケミカルリサイクルBHET
 (p)PETフィルムの回収物から得られ、イソフタル酸成分を含むケミカルリサイクルBHET
<Preparation for chemical recycling BHET>
Chemical recycled BHET was prepared by mixing the following (n) to (p) so that the chemical recycled BHET had the composition ratio shown in Table 2.
(n) Chemical recycled BHET obtained from recovered beverage bottles and containing isophthalic acid components
(o) Chemical recycled BHET obtained from recovered beverage bottles and containing diethylene glycol components
(p) Chemical recycled BHET obtained from recovered PET film and containing isophthalic acid components
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<ポリエステル樹脂(B-1)>
撹拌機付き5Lステンレス製オートクレーブに、ケミカルリサイクルBHETとして、表2のケミカルリサイクルBHETを仕込んだ。系内を窒素置換した後、窒素流通を継続しながら常圧にて温度250℃まで昇温すると、その過程でBHETが溶融した。さらに20分間、常圧窒素流通と温度250℃を維持し、エステル化反応を進行させた。エステル化反応後のオリゴマー特性はオリゴマー酸価(OLG-AV)が100eq/t、オリゴマー水酸基価(OLG-OHV)が7600eq/tであった。その後、上記方法で調製したアルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを混合し一液化した混合液を添加し、さらに該混合液は、ポリエステル樹脂(B-1)の質量に対して、アルミニウム元素およびリン元素として30質量ppmおよび74質量ppmとなるように作製した。アルミニウム元素に対するリン元素の添加モル比は(P/Al)=2.15であった。
 その後、攪拌しながら、系の温度を278℃まで昇温して、この間に系の圧力を徐々に減じて0.1kPaとし、この条件下で重縮合反応により、表3のポリエステル樹脂を得た。その後、得られたポリエステル樹脂をストランド状に押し出して、ペレット状に切断した。昇温を開始してから反応終了までの時間は180分であった。その後、得られたポリエステル樹脂を、バッチ式の固相重合装置を使用し、230℃にて、減圧下、7時間固相重合し、固有粘度が0.589dl/gのポリエステル樹脂(B-1)を得た。組成分析の結果、ポリエステル樹脂(B-1)中に、エチレンテレフタレート構造単位を97モル%以上含み、イソフタル酸は0.5mol%を含み、DEGは1.0mol%を含むことを確認した。
<Polyester resin (B-1)>
A 5 L stainless steel autoclave equipped with a stirrer was charged with the chemical recycled BHET shown in Table 2 as the chemical recycled BHET. After purging the system with nitrogen, the temperature was raised to 250° C. at normal pressure while continuing to flow nitrogen, and BHET melted in the process. For another 20 minutes, atmospheric pressure nitrogen flow and temperature of 250° C. were maintained to allow the esterification reaction to proceed. The oligomer properties after the esterification reaction were that the oligomer acid value (OLG-AV) was 100 eq/t and the oligomer hydroxyl value (OLG-OHV) was 7600 eq/t. Thereafter, a mixed solution made by mixing the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above method is added, and furthermore, the mixed solution is mixed with respect to the mass of the polyester resin (B-1) , 30 mass ppm and 74 mass ppm as aluminum element and phosphorus element. The molar ratio of the phosphorus element to the aluminum element was (P/Al)=2.15.
Thereafter, while stirring, the temperature of the system was raised to 278°C, and during this time the pressure of the system was gradually reduced to 0.1 kPa, and under these conditions a polycondensation reaction was performed to obtain the polyester resins shown in Table 3. . Thereafter, the obtained polyester resin was extruded into strands and cut into pellets. The time from the start of temperature rise to the end of the reaction was 180 minutes. Thereafter, the obtained polyester resin was subjected to solid phase polymerization at 230°C for 7 hours under reduced pressure using a batch type solid phase polymerization apparatus, and the polyester resin (B-1) with an intrinsic viscosity of 0.589 dl/g was ) was obtained. As a result of compositional analysis, it was confirmed that the polyester resin (B-1) contained 97 mol% or more of ethylene terephthalate structural units, 0.5 mol% of isophthalic acid, and 1.0 mol% of DEG.
<ポリエステル樹脂(B-2)>
表3に記載しているモル%にてテレフタル酸(TPA)を仕込み、ポリエステル樹脂(B-1)と同様に実施した。組成分析の結果、ポリエステル樹脂(B-2)中に、エチレンテレフタレート構造単位を97モル%以上含み、イソフタル酸は0.4mol%を含み、ジエチレングリコールは0.9mol%を含むことを確認した。
<Polyester resin (B-2)>
Terephthalic acid (TPA) was added at the mole % shown in Table 3, and the same procedure as for polyester resin (B-1) was carried out. As a result of compositional analysis, it was confirmed that the polyester resin (B-2) contained 97 mol% or more of ethylene terephthalate structural units, 0.4 mol% of isophthalic acid, and 0.9 mol% of diethylene glycol.
<ポリエステル樹脂(B-3)>
表3に記載しているアルミニウム元素15質量ppm及びリン元素38質量ppmとしテレフタル酸(TPA)を仕込み、ポリエステル樹脂(B-1)と同様に実施した。組成分析の結果、ポリエステル樹脂(B-3)中に、エチレンテレフタレート構造単位を97モル%以上含み、イソフタル酸は0.4mol%を含み、DEGは0.7mol%を含むことを確認した。
<Polyester resin (B-3)>
Terephthalic acid (TPA) was charged with 15 mass ppm of aluminum element and 38 mass ppm of phosphorus element listed in Table 3, and the same procedure as for polyester resin (B-1) was carried out. As a result of compositional analysis, it was confirmed that the polyester resin (B-3) contained 97 mol% or more of ethylene terephthalate structural units, 0.4 mol% of isophthalic acid, and 0.7 mol% of DEG.
<ポリエステル樹脂(B-4)>
表3に記載しているアルミニウム含有エチレングリコール溶液s及びリン含有エチレングリコール溶液tを添加する代わりに、アンチモン元素として200質量ppmになるようにアンチモン触媒を添加する以外はポリエステル樹脂(B-1)と同様に実施した。組成分析の結果、ポリエステル樹脂(B-4)中に、エチレンテレフタレート構造単位を97モル%以上含み、イソフタル酸は0.5mol%を含み、DEGは1.0mol%を含むことを確認した。
<Polyester resin (B-4)>
Polyester resin (B-1) except that instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t listed in Table 3, an antimony catalyst was added so that the amount of antimony element was 200 mass ppm. It was carried out in the same way. As a result of compositional analysis, it was confirmed that the polyester resin (B-4) contained 97 mol% or more of ethylene terephthalate structural units, 0.5 mol% of isophthalic acid, and 1.0 mol% of DEG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<ポリエステル樹脂(A-1)>
ポリエステル樹脂(A-1)として、回収ポリエステル樹脂フレークを用いた。該回収ポリエステル樹脂フレークは、組成分析の結果、エチレンテレフタレート構造単位を97モル%以上含み、イソフタル酸は1.5mol%を含み、ジエチレングリコールは2.2mol%を含むことを確認した。該回収ポリエステル樹脂フレークの固有粘度は0.750dl/gであった。また、上記回収ポリエステル樹脂フレーク中におけるアンチモン元素の含有率は190質量ppm、ゲルマニウム元素の含有率は1.6質量ppmであった。なお、チタン元素の含有率は1質量ppm以下と非常に少量であるため、表3及び表4ではチタン元素の含有率の記載は省略した。アンチモン、ゲルマニウム、チタンの各元素の含有率から、上記回収ポリエステル樹脂フレークは、アンチモン触媒で製造されたポリエステル樹脂を用いた中空成形体を主体とした回収ポリエステル樹脂フレークであることを裏付けることができた。
<Polyester resin (A-1)>
Recovered polyester resin flakes were used as the polyester resin (A-1). As a result of composition analysis, it was confirmed that the recovered polyester resin flakes contained 97 mol% or more of ethylene terephthalate structural units, 1.5 mol% of isophthalic acid, and 2.2 mol% of diethylene glycol. The recovered polyester resin flakes had an intrinsic viscosity of 0.750 dl/g. Further, the content of antimony element in the recovered polyester resin flakes was 190 mass ppm, and the content of germanium element was 1.6 mass ppm. In addition, since the content of titanium element is very small, 1 mass ppm or less, the description of the content of titanium element is omitted in Tables 3 and 4. From the content of each element of antimony, germanium, and titanium, it can be confirmed that the above recovered polyester resin flakes are mainly hollow molded bodies using polyester resin produced with an antimony catalyst. Ta.
(実施例1~8)
 ポリエステル樹脂(A-1)とポリエステル樹脂(B-1)、(B-2)、(B-3)とを表4に示した配合比で溶融混練することでポリエステル樹脂組成物を得た。あらかじめ140℃、16時間の真空乾燥により、水分率150ppm以下に乾燥したポリエステル樹脂を用い、下記の条件で溶融混錬した。
  二軸押出機:テクノベル社製KZW15TW-45/60MG-NH(-2200)
  設定温度:260℃(実温268~270℃)
  スクリュー回転数:200rpm
  吐出量1.7~2.0kg/h
 なお、水分率は、電量滴定法であるカールフィッシャー水分計(株式会社三菱ケミカルアナリテック製、CA-200)を用いて、試料0.6gを230℃,5分間、250mL/minの窒素気流下の条件で測定した。
 得られたポリエステル樹脂組成物の各種特性を表4に示す。
(Examples 1 to 8)
A polyester resin composition was obtained by melt-kneading polyester resin (A-1) and polyester resins (B-1), (B-2), and (B-3) at the blending ratio shown in Table 4. A polyester resin that had been vacuum-dried in advance at 140° C. for 16 hours to a moisture content of 150 ppm or less was melt-kneaded under the following conditions.
Twin screw extruder: KZW15TW-45/60MG-NH (-2200) manufactured by Technovel
Set temperature: 260℃ (actual temperature 268-270℃)
Screw rotation speed: 200rpm
Discharge amount 1.7~2.0kg/h
The moisture content was determined by measuring 0.6 g of the sample at 230°C for 5 minutes under a nitrogen flow of 250 mL/min using a coulometric titration Karl Fischer moisture meter (CA-200, manufactured by Mitsubishi Chemical Analytic Corporation). Measured under the following conditions.
Table 4 shows various properties of the obtained polyester resin composition.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(比較例1、参考例1~6)
 ポリエステル樹脂(A-1)、ポリエステル樹脂(B-1)、(B-4)及び下記ポリエステル樹脂(E)~(G)単体の各種特性を表5に示す。なお、ポリエステル樹脂(E)~(G)はアンチモン触媒、チタン触媒、及びゲルマニウム触媒の少なくとも一つを用いて作製されたポリエステル樹脂であり、アンチモン、チタン、ゲルマニウムの各元素の含有率は上記の測定方法で測定されている。
ポリエステル樹脂(E):インドラマ社製N1(アンチモン元素の含有量:270質量ppm、固有粘度:0.789dl/g)
ポリエステル樹脂(F):インドラマ社製H0AF(チタン元素の含有量:7質量ppm、固有粘度:0.753dl/g)
ポリエステル樹脂(G):インドラマ社製N2G(ゲルマニウム元素の含有量:30質量ppm、固有粘度:0.739dl/g)
ポリエステル樹脂(H):インドラマ社製H2HPC(アルミニウム元素の含有量:15質量ppm、リン元素の含有量:75ppm、固有粘度:0.740dl/g)
(Comparative example 1, reference examples 1 to 6)
Table 5 shows various properties of polyester resin (A-1), polyester resins (B-1), (B-4), and the following polyester resins (E) to (G) alone. In addition, polyester resins (E) to (G) are polyester resins produced using at least one of an antimony catalyst, a titanium catalyst, and a germanium catalyst, and the content of each element of antimony, titanium, and germanium is as described above. Measured using the measurement method.
Polyester resin (E): N1 manufactured by Indrama (antimony element content: 270 mass ppm, intrinsic viscosity: 0.789 dl/g)
Polyester resin (F): H0AF manufactured by Indrama (Titanium element content: 7 mass ppm, intrinsic viscosity: 0.753 dl/g)
Polyester resin (G): N2G manufactured by Indrama (Germanium element content: 30 mass ppm, intrinsic viscosity: 0.739 dl/g)
Polyester resin (H): H2HPC manufactured by Indrama (aluminum element content: 15 mass ppm, phosphorus element content: 75 ppm, intrinsic viscosity: 0.740 dl/g)
(比較例2~5)
 ポリエステル樹脂(A-1)とポリエステル樹脂(B-4)、(E)~(G)のいずれかを表5に示した配合比で、実施例1と同様に溶融混練することで、ポリエステル樹脂組成物を得た。ポリエステル樹脂組成物の各種特性を表5に示す。
(Comparative Examples 2 to 5)
By melt-kneading polyester resin (A-1) and polyester resin (B-4), any one of (E) to (G) in the blending ratio shown in Table 5 in the same manner as in Example 1, polyester resin A composition was obtained. Table 5 shows various properties of the polyester resin composition.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~実施例8では、回収されたポリエステル樹脂(A-1)に対してポリエステル樹脂(B-1)、(B-2)または(B-3)を混合することにより、複数回リサイクルを行ったことに相当する再練り回数1回または3回を経た後においても固有粘度保持率が高いポリエステル樹脂組成物を得ることができた。 In Examples 1 to 8, the recovered polyester resin (A-1) is recycled multiple times by mixing the polyester resin (B-1), (B-2), or (B-3). It was possible to obtain a polyester resin composition with a high intrinsic viscosity retention even after one or three re-kneading times corresponding to the above.
 また、実施例1~実施例8では、回収されたポリエステル樹脂(A-1)に対してポリエステル樹脂(B-1)、(B-2)または(B-3)を各々混合することにより複数回リサイクルを行ったことに相当する再練り回数1回または3回を経た後においても黒ずみの尺度であるL値が高いままであり、かつ、黄色みの尺度であるb値が低いままであるポリエステル樹脂組成物を得ることができた。 In addition, in Examples 1 to 8, a plurality of polyester resins (B-1), (B-2), or (B-3) were mixed with the recovered polyester resin (A-1). The L value, which is a measure of darkening, remains high and the b value, which is a measure of yellowness, remains low even after one or three times of re-kneading, which corresponds to the number of times of recycling. A polyester resin composition could be obtained.
 ポリエステル樹脂(B-3)は(B-1)、(B-2)と比較して、アルミニウム元素及びリン元素の添加量が少ないにもかかわらず、重合時間が短くなっている上にアルミニウム系異物量も少ないため高品質である。また、触媒添加量も少ないことから、触媒のコストを低減できる。 Compared to (B-1) and (B-2), polyester resin (B-3) has a shorter polymerization time and an aluminum-based It is of high quality because it has a small amount of foreign matter. Furthermore, since the amount of catalyst added is small, the cost of the catalyst can be reduced.
 ポリエステル樹脂(B-1)を用いた参考例1は複数回リサイクルを行ったことに相当する再練り回数1回または3回を経た後においても、固有粘度保持率が高く、L値が高いままであり、かつ、b値が低いままであるが、ポリエステル樹脂(B-1)は製造コストが高いため、経済性が劣る。 Reference Example 1 using polyester resin (B-1) had a high intrinsic viscosity retention and a high L value even after being re-kneaded once or three times, which corresponds to recycling multiple times. Although the b value remains low, the polyester resin (B-1) is less economical due to its high manufacturing cost.
 比較例1では、回収されたポリエステル樹脂(A-1)をリサイクルしているが、リサイクル回数を重ねたことに相当する再練り回数を重ねるにつれて極限粘度保持率が低下し、分子量が低下してしまい、さらに、L値が低下し、b値が高くなり、着色が見られた。 In Comparative Example 1, the recovered polyester resin (A-1) is recycled, but as the number of re-kneading increases, which corresponds to the number of times of recycling, the intrinsic viscosity retention decreases and the molecular weight decreases. In addition, the L value decreased, the b value increased, and coloring was observed.
 参考例2~6では、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を用いた場合であり、比較例2~5では、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を回収されたポリエステル樹脂(A-1)と混合した場合である。アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂の固有粘度保持率は回収されたポリエステル樹脂(A-1)の固有粘度保持率よりも高い(参考例2~6)にもかかわらず、回収されたポリエステル樹脂(A-1)に対してアンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を混合してもポリエステル樹脂(A-1)のみをリサイクルした場合と固有粘度保持率は同程度であり(比較例2~5)、回収されたポリエステル樹脂(A-1)に対してアンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を混合しても分子量の低下を抑制することはできなかった。また、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を回収されたポリエステル樹脂(A-1)と混合した場合、リサイクル回数を重ねたことに相当する再練り回数を重ねるとCT量やΔCTが多くなってしまい、リサイクル性を高めることはできなかった。 Reference Examples 2 to 6 are cases where a polyester resin containing an antimony element, a titanium element, or a germanium element is used, and in Comparative Examples 2 to 5, a polyester resin containing an antimony element, a titanium element, or a germanium element is used. This is the case when mixed with polyester resin (A-1). Although the intrinsic viscosity retention rate of the polyester resin containing antimony element, titanium element, or germanium element is higher than that of the recovered polyester resin (A-1) (Reference Examples 2 to 6), the recovered polyester resin Even if a polyester resin containing an antimony element, a titanium element, or a germanium element is mixed with the polyester resin (A-1), the intrinsic viscosity retention rate is the same as when only the polyester resin (A-1) is recycled. (Comparative Examples 2 to 5), even if a polyester resin containing an antimony element, a titanium element, or a germanium element is mixed with the recovered polyester resin (A-1), the decrease in molecular weight cannot be suppressed. There wasn't. In addition, when polyester resin containing antimony element, titanium element, or germanium element is mixed with recovered polyester resin (A-1), the CT amount and ΔCT increase after repeated kneading times corresponding to repeated recycling times. This resulted in a large amount of waste, making it impossible to improve recyclability.
 アルミニウム化合物及びリン化合物を含み、ケミカルリサイクルによって得られたビス-2-ヒドロキシエチルテレフタレートを原料として得たポリエステル樹脂(B)と、回収されたポリエステル樹脂(A)とを混合してポリエステル樹脂組成物(C)を製造することにより、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を得ることができる。また、アルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)を回収されたポリエステル樹脂(A)と混合して中空成形体(D)を製造することにより、中空成形体(D)の着色や分子量の低下を抑制でき、リサイクル性に優れ、さらにポリエステルフィルム全体として、回収物の割合を高くすることができ、環境に対する負荷の低減効果をさらに高めることができる。ポリエステル樹脂組成物を得ることができる。
 また、ポリエステル樹脂組成物(C)や中空成形体(D)は再使用することが出来るので、資源枯渇の抑制、海洋ごみの減少、地球温暖化の抑制など様々な課題解決に寄与することができる。
A polyester resin composition is prepared by mixing a polyester resin (B) containing an aluminum compound and a phosphorus compound and obtained using bis-2-hydroxyethyl terephthalate obtained by chemical recycling as a raw material, and the recovered polyester resin (A). By producing (C), it is possible to suppress the coloration and decrease in molecular weight of the polyester resin composition (C), and it is possible to obtain a polyester resin composition with excellent recyclability. In addition, by mixing the polyester resin (B) containing an aluminum compound and a phosphorus compound with the recovered polyester resin (A) to produce a hollow molded body (D), it is possible to color the hollow molded body (D) and reduce the molecular weight. It is possible to suppress the deterioration of the polyester film, to have excellent recyclability, and to increase the proportion of recovered materials in the polyester film as a whole, thereby further increasing the effect of reducing the load on the environment. A polyester resin composition can be obtained.
In addition, since the polyester resin composition (C) and the blow molded body (D) can be reused, they can contribute to solving various problems such as suppressing resource depletion, reducing marine debris, and suppressing global warming. can.

Claims (20)

  1.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂組成物(C)の製造方法。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
    It includes a step of mixing the recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester resin Resin (B) is a method for producing a polyester resin composition (C) that satisfies the following (4).
    (1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
    (3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
    (4) The polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin.
  2.  前記ポリエステル樹脂(B)は下記(5)及び(6)を満足することを特徴とする、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。
    (5)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が5~70質量ppm
    (6)前記ポリエステル樹脂(B)中におけるリン元素の含有量が5~1000質量ppm
    The method for producing a polyester resin composition (C) according to claim 1, wherein the polyester resin (B) satisfies the following (5) and (6).
    (5) The content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass
    (6) The content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass
  3.  前記ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上である、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。 The method for producing a polyester resin composition (C) according to claim 1, wherein the polyester resin composition (C) has an intrinsic viscosity retention of 89% or more.
  4.  前記ポリエステル樹脂(A)の固有粘度保持率が92%以下である、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。 The method for producing a polyester resin composition (C) according to claim 1, wherein the polyester resin (A) has an intrinsic viscosity retention of 92% or less.
  5.  前記ポリエステル樹脂(A)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、請求項1に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to claim 1, wherein the isophthalic acid component is 2.5 mol% or less based on 100 mol% of the total polycarboxylic acid components in the polyester resin (A).
  6.  前記ポリエステル樹脂(B)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、請求項1に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to claim 1, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (B).
  7.  前記ポリエステル樹脂(B)の固有粘度保持率が93%以上である、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。 The method for producing a polyester resin composition (C) according to claim 1, wherein the polyester resin (B) has an intrinsic viscosity retention of 93% or more.
  8.  前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。 The polyester resin composition (C) according to claim 1, wherein the polyester resin (A) is 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). Production method.
  9.  前記リン化合物は同一分子内にリン元素とフェノール構造を有する、請求項1に記載のポリエステル樹脂組成物(C)の製造方法。 The method for producing a polyester resin composition (C) according to claim 1, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
  10.  請求項1~9のいずれか1項に記載の製造方法で製造されたポリエステル樹脂組成物(C)を溶融成形する工程を含む中空成形体(D)の製造方法。 A method for producing a hollow molded article (D), comprising a step of melt-molding a polyester resin composition (C) produced by the production method according to any one of claims 1 to 9.
  11.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによるポリエステル樹脂(A)の再生方法であって、
    前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂(A)の再生方法。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
    A method for regenerating polyester resin (A) by mixing recovered polyester resin (A) and polyester resin (B) containing an aluminum compound and a phosphorus compound, the method comprising:
    A method for recycling a polyester resin (A), wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4).
    (1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
    (3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
    (4) The polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin.
  12.  前記ポリエステル樹脂(A)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、請求項11に記載のポリエステル樹脂組成物の再生方法。 The method for regenerating a polyester resin composition according to claim 11, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (A).
  13.  前記ポリエステル樹脂(B)中の全多価カルボン酸成分100モル%に対して、イソフタル酸成分が2.5モル%以下である、請求項11または12に記載のポリエステル樹脂組成物の再生方法。 The method for regenerating a polyester resin composition according to claim 11 or 12, wherein the isophthalic acid component is 2.5 mol% or less with respect to 100 mol% of the total polycarboxylic acid components in the polyester resin (B).
  14.  前記ポリエステル樹脂(B)は下記(5)及び(6)を満足することを特徴とする、請求項11または12に記載のポリエステル樹脂(A)の再生方法。
    (5)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が5~70質量ppm
    (6)前記ポリエステル樹脂(B)中におけるリン元素の含有量が5~1000質量ppm
    The method for recycling polyester resin (A) according to claim 11 or 12, wherein the polyester resin (B) satisfies the following (5) and (6).
    (5) The content of aluminum element in the polyester resin (B) is 5 to 70 ppm by mass
    (6) The content of phosphorus element in the polyester resin (B) is 5 to 1000 ppm by mass
  15.  前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である、請求項11または12に記載のポリエステル樹脂(A)の再生方法。 The polyester resin (A) according to claim 11 or 12, wherein the polyester resin (A) is 5 to 95 parts by mass based on a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). How to play.
  16.  前記リン化合物は同一分子内にリン元素とフェノール構造を有する、請求項11または12に記載のポリエステル樹脂(A)の再生方法。 The method for regenerating polyester resin (A) according to claim 11 or 12, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
  17.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)との混合物であるポリエステル樹脂組成物(C)であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)を満足するポリエステル樹脂組成物(C)。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)がポリエステル樹脂を分解することによって得られたビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合させて得られたものである
    A polyester resin composition (C) which is a mixture of the recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) is a mixture of the following (1) to ( A polyester resin composition (C) that satisfies the following (3), and the polyester resin (B) satisfies the following (4).
    (1) The polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) Total content of antimony, titanium, and germanium elements in the polyester resin (A) is 2 to 500 mass ppm
    (3) The polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g
    (4) The polyester resin (B) is obtained by polycondensing a raw material containing bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin.
  18.  前記リン化合物は同一分子内にリン元素とフェノール構造を有する、請求項17に記載のポリエステル樹脂組成物(C)。 The polyester resin composition (C) according to claim 17, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
  19.  前記ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上である、請求項17に記載のポリエステル樹脂組成物(C)。 The polyester resin composition (C) according to claim 17, wherein the polyester resin composition (C) has an intrinsic viscosity retention of 89% or more.
  20.  請求項17~19のいずれか1項に記載のポリエステル樹脂組成物(C)から形成された中空成形体(D)。 A blow molded article (D) formed from the polyester resin composition (C) according to any one of claims 17 to 19.
PCT/JP2023/029132 2022-08-17 2023-08-09 Production method for polyester resin composition, regeneration method for recovered polyester resin, and polyester resin composition WO2024038815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-130236 2022-08-17
JP2022130236 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024038815A1 true WO2024038815A1 (en) 2024-02-22

Family

ID=89941624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029132 WO2024038815A1 (en) 2022-08-17 2023-08-09 Production method for polyester resin composition, regeneration method for recovered polyester resin, and polyester resin composition

Country Status (1)

Country Link
WO (1) WO2024038815A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249650A (en) * 2001-02-23 2002-09-06 Toyobo Co Ltd Polyester composition, hollow molding and sheet material
JP2002249558A (en) * 2001-02-22 2002-09-06 Toyobo Co Ltd Method for preparing polyester film and polyester film
JP2003306536A (en) * 2002-02-12 2003-10-31 Toyobo Co Ltd Polyester composition, hollow molded product composed thereof, sheet product and oriented film
JP2006169432A (en) * 2004-12-17 2006-06-29 Toyobo Co Ltd Polyester and method for producing polyester
WO2007141866A1 (en) * 2006-06-02 2007-12-13 Teijin Fibers Limited Process for production of polyethylene terephthalate
JP2008030370A (en) * 2006-07-31 2008-02-14 Toyobo Co Ltd Laminated polyester film
JP2011256328A (en) * 2010-06-11 2011-12-22 Toyo Seikan Kaisha Ltd Recycled polyester-containing polyester structure and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249558A (en) * 2001-02-22 2002-09-06 Toyobo Co Ltd Method for preparing polyester film and polyester film
JP2002249650A (en) * 2001-02-23 2002-09-06 Toyobo Co Ltd Polyester composition, hollow molding and sheet material
JP2003306536A (en) * 2002-02-12 2003-10-31 Toyobo Co Ltd Polyester composition, hollow molded product composed thereof, sheet product and oriented film
JP2006169432A (en) * 2004-12-17 2006-06-29 Toyobo Co Ltd Polyester and method for producing polyester
WO2007141866A1 (en) * 2006-06-02 2007-12-13 Teijin Fibers Limited Process for production of polyethylene terephthalate
JP2008030370A (en) * 2006-07-31 2008-02-14 Toyobo Co Ltd Laminated polyester film
JP2011256328A (en) * 2010-06-11 2011-12-22 Toyo Seikan Kaisha Ltd Recycled polyester-containing polyester structure and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI412546B (en) Aluminum containing polyester polymers having low acetaldehyde generation rates
EP1719790A1 (en) Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP2004292803A (en) Polyester polymerization catalyst, process for producing the same and process for producing polyester therewith
JP5533898B2 (en) Polyester resin composition and molded product
TWI818595B (en) Manufacturing method of polyester resin composition and regeneration method of recovered polyester resin and polyester resin composition
JP7485214B2 (en) Method for producing polyester resin composition and method for regenerating recovered polyester resin
JP2005213291A (en) Polyester resin composition and polyester molded product made of the same
JP2006193725A (en) Polyester-based resin composition, method for producing the same, and molded product
WO2024038815A1 (en) Production method for polyester resin composition, regeneration method for recovered polyester resin, and polyester resin composition
KR20220161363A (en) Method for producing polyester resins and blow molded products made of polyester resins
JP2009052043A (en) Polyester and polyester molded product formed thereof
JP2004307597A (en) Method for producing polyethylene terephthalate
WO2023054271A1 (en) Method for producing recycled polyester resin
EP4215448A1 (en) Polyester resin, blow-molded object therefrom, and production methods therefor
JP7435842B1 (en) Chemically recycled polyethylene terephthalate resin and molded products thereof
JP7452174B2 (en) Polyester resin and polyester resin blow molded products
JP7475364B2 (en) Polyester polymerization catalyst and method for producing polyester using the same
JP2011026438A (en) Method for producing polyethylene terephthalate
WO2024038867A1 (en) Method for producing polyester film using recycled polyester resin, and polyester film
KR20240070509A (en) Method for producing recycled polyester resin
JP2005206747A (en) Polyester resin, polyester resin composition composed thereof, and polyester molded item
JP2008050396A (en) Copolyester and method for producing the same
JP2006045456A (en) Polyester resin composition and polyester molded article comprising the same
JP2004307595A (en) Method for producing polyethylene terephthalate
JP2011026437A (en) Method for producing polyethylene terephthalate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854849

Country of ref document: EP

Kind code of ref document: A1