WO2024037571A1 - 资源分配方法、装置以及存储介质 - Google Patents

资源分配方法、装置以及存储介质 Download PDF

Info

Publication number
WO2024037571A1
WO2024037571A1 PCT/CN2023/113399 CN2023113399W WO2024037571A1 WO 2024037571 A1 WO2024037571 A1 WO 2024037571A1 CN 2023113399 W CN2023113399 W CN 2023113399W WO 2024037571 A1 WO2024037571 A1 WO 2024037571A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
frequency domain
prs
pscch
range
Prior art date
Application number
PCT/CN2023/113399
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2024037571A1 publication Critical patent/WO2024037571A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a resource allocation method, device and storage medium.
  • 5G fifth generation mobile communication technology
  • SL sidelinks
  • This application provides a resource allocation method, device and storage medium, which helps alleviate the resource shortage problem of the resource pool in Sidelink.
  • this application provides a resource allocation method, including:
  • Blind detection of sidelink control information SCI is performed within the at least one PSCCH frequency domain resource range to determine the transmission resources of the positioning reference signal PRS available in the resource pool.
  • the resource configuration parameters include one or more of the following parameters:
  • the number N of SL-PRS resources associated with each PSCCH frequency domain resource range, where N is a positive integer.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS.
  • determining the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters of the resource pool includes:
  • the frequency domain resources of the resource pool are divided to determine the resource size of at least one PSCCH frequency domain resource range.
  • the method further includes:
  • each SL-PRS resource association is determined in the frequency domain of the resource pool. PSCCH frequency domain resource range.
  • the resource configuration parameters include one or more of the following:
  • the number P of PSCCH frequency domain resource ranges, where P is an integer greater than or equal to 1;
  • the frequency domain interval between two adjacent PSCCH frequency domain resource ranges.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS.
  • determining the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters of the resource pool includes:
  • At least one PSCCH frequency domain resource range is determined.
  • the location of the domain resource scope is determined.
  • the method further includes:
  • the number of SL-PRS resources configured in each time slot and the P the number of SL-PRS resources corresponding to a PSCCH frequency domain resource range is determined.
  • the method further includes:
  • the configuration parameters of the SL-PRS resource, the mapping method of the SL-PRS resource and the PSCCH frequency domain resource range, and the association of one PSCCH frequency domain resource range is determined in the frequency domain of the resource pool.
  • the mapping method is to sequentially map the SL-PRS resources and the PSCCH frequency domain resource range according to the index number of the SL-PRS resource and the frequency domain position of the at least one PSCCH frequency domain resource range. mapping.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range are the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range.
  • determining the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters of the resource pool includes:
  • the at least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range are the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range.
  • determining the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters of the resource pool includes:
  • At least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the starting position is a starting subchannel or a starting resource block RB of the resource pool.
  • the sidelink control information SCI blind detection is performed within the at least one PSCCH frequency domain resource range to determine the transmission resources of the positioning reference signal PRS available in the resource pool, include:
  • the SCI blind detection result it is determined whether the PRS resources associated with each PSCCH frequency domain resource range in the at least one PSCCH frequency domain resource range are available, and the available PRS transmission resources are multiple in the time slot in which they are located. At least one of the SL-PRS resources.
  • the sidelink control information SCI blind detection is performed within the at least one PSCCH frequency domain resource range to determine the transmission resources of the positioning reference signal PRS available in the resource pool, include:
  • the available PRS transmission resources are determined.
  • the resource pool is used to transmit the PRS.
  • this application provides a resource allocation device, including:
  • a determination module configured to determine the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters;
  • a processing module configured to perform blind detection of sidelink control information SCI within the at least one PSCCH frequency domain resource range to determine available transmission resources of the positioning reference signal PRS.
  • the resource configuration parameters include one or more of the following parameters:
  • the number N of SL-PRS resources associated with each PSCCH frequency domain resource range, where N is a positive integer.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS.
  • the determining module is specifically used to:
  • the frequency domain resources of the resource pool are divided to determine the resource size of at least one PSCCH frequency domain resource range.
  • the determining module is also used to:
  • each SL-PRS resource association is determined in the frequency domain of the resource pool. PSCCH frequency domain resource range.
  • the resource configuration parameters include one or more of the following:
  • the number P of PSCCH frequency domain resource ranges, where P is an integer greater than or equal to 1;
  • the frequency domain interval between two adjacent PSCCH frequency domain resource ranges.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by the SL-PRS.
  • the determining module is also used to:
  • At least one PSCCH frequency domain resource range is determined.
  • the location of the domain resource scope is determined.
  • the determining module is also used to:
  • the number of SL-PRS resources configured in each time slot and the P the number of SL-PRS resources corresponding to a PSCCH frequency domain resource range is determined.
  • the determining module is also used to:
  • the configuration parameters of the SL-PRS resource, the mapping method of the SL-PRS resource and the PSCCH frequency domain resource range, and one PSCCH frequency domain resource range corresponding The number of SL-PRS resources, and the PSCCH frequency domain resource range associated with each SL-PRS resource is determined in the frequency domain of the resource pool.
  • the mapping method is to sequentially map the SL-PRS resources and the PSCCH frequency domain resource range according to the index number of the SL-PRS resource and the frequency domain position of the at least one PSCCH frequency domain resource range. mapping.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range are the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range.
  • the determining module is also used to:
  • the at least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range are the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range.
  • the determining module is also used to:
  • At least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the starting position is a starting subchannel or a starting resource block RB of the resource pool.
  • the processing module is specifically used to:
  • the SCI blind detection result it is determined whether the PRS resources associated with each PSCCH frequency domain resource range in the at least one PSCCH frequency domain resource range are available, and the available PRS transmission resources are multiple in the time slot in which they are located. At least one of the SL-PRS resources.
  • processing module is also used to:
  • the available PRS transmission resources are determined.
  • the resource pool is used to transmit the PRS.
  • this application provides a resource allocation device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method as described in the first aspect.
  • the present application provides a computer-readable storage medium.
  • Computer-executable instructions are stored in the computer-readable storage medium. When the computer-executable instructions are executed by a processor, they are used to implement a method as described in the first aspect. a resource allocation method.
  • the present application provides a computer program product, including a computer program that implements the resource allocation method described in the first aspect when executed by a processor.
  • the present application provides a chip.
  • a computer program is stored on the chip.
  • the method described in the first aspect is implemented.
  • the chip can also be a chip module.
  • This application provides a resource allocation method, device and storage medium.
  • the terminal equipment obtains the resource configuration parameters of the resource pool, determines at least one PSCCH frequency domain resource range in the resource pool frequency domain according to the resource configuration parameters, and determines at least one PSCCH frequency domain resource range in the resource pool.
  • SCI blind detection is performed in the frequency domain resource range, so that the available PRS transmission resources in the resource pool are determined based on the SCI blind detection results. It is no longer necessary to allocate a time slot to a terminal device for PRS transmission, which helps to alleviate the problem of resource shortage. , improving the resource utilization of the resource pool.
  • Figure 1 is a schematic diagram of a Sidelink transmission resource in the resource pool
  • Figure 2 is a schematic diagram of a terminal device determining available resources within a resource selection window
  • Figure 3 is a schematic diagram showing that two retransmission resources can be indicated in the SCI of one transmission
  • Figure 4A is a schematic diagram of a Sidelink communication scenario
  • Figure 4B is a schematic diagram of another Sidelink communication scenario
  • Figure 4C is a schematic diagram of another Sidelink communication scenario
  • Figure 5 is a schematic flow chart of a resource allocation method provided in Embodiment 1 of the present application.
  • Figure 6 is a schematic diagram of the SL-PRS resources and PSCCH frequency domain resource range in the resource pool in the second embodiment of the present application;
  • Figure 7 is a schematic diagram of the SL-PRS resources and PSCCH frequency domain resource range in the resource pool in the third example of the present application.
  • Figure 8 is a schematic diagram of the SL-PRS resources and PSCCH frequency domain resource range in the resource pool in the third example of the present application.
  • Figure 9 is a schematic diagram of the SL-PRS resources and PSCCH frequency domain resource range in the resource pool in the third example of the present application.
  • Figure 10 is a schematic diagram of a PSCCH frequency domain resource range in an example of Embodiment 4 of the present application.
  • Figure 11 is a schematic diagram of a PSCCH frequency domain resource range in an example of Embodiment 5 of the present application.
  • Figure 12 is a schematic structural diagram of a resource allocation device provided in Embodiment 6 of the present application.
  • Figure 13 is a schematic structural diagram of a resource allocation device provided in Embodiment 7 of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system may include non-standalone networking (Non-Standalone, NSA) and/or standalone networking (Standalone, SA).
  • the technical solution provided by this application can also be applied to Machine Type Communication (MTC), Long Term Evolution-Machine (LTE-M), and Device-to-Device (D2D).
  • MTC Machine Type Communication
  • LTE-M Long Term Evolution-Machine
  • D2D Device-to-Device
  • Network Machine Type Communication
  • M2M Machine to Machine
  • IoT Internet of Things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called Vehicle to X (V2X, X can represent anything).
  • the V2X can include: Vehicle to Vehicle (V2V) communication, where the vehicle and Infrastructure (Vehicle to Infrastructure, V2I) communication, communication between vehicles and pedestrians (Vehicle to Pedestrian, V2P) or vehicle and network (Vehicle to Network, V2N) communication, etc.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P vehicle to Pedestrian
  • V2N Vehicle to Network
  • Sidelink is used for direct communication between terminal devices. Specifically, Sidelink communication can be used between terminal devices through the direct communication interface.
  • the minimum granularity in the time domain is a time slot (Slot)
  • the minimum granularity in the frequency domain is a subchannel (Subchannel).
  • a subchannel contains multiple resource blocks (Resource Block, RB).
  • RB resource blocks
  • the terminal device selects Sidelink transmission resources, it can determine the number of required sub-channels Sub-channel, Channel, PSSCH).
  • PSCCH carries sidelink control information (SCI), and PSSCH carries transmitted data.
  • SCI includes time-frequency domain location information of current Sidelink transmission resources, time-frequency domain location information of reserved Sidelink transmission resources, and Decode the parameters of PSSCH, etc., where the reserved Sidelink transmission resources can be called reserved resources.
  • Mode 1 In NR V2X, two Sidelink resource allocation schemes are supported: Mode 1 and Mode 2.
  • Mode 1 The base station schedules Sidelink transmission resources to the terminal device for Sidelink transmission.
  • Mode 2 The terminal device determines the Sidelink transmission resources configured or preconfigured by the base station/network equipment, that is, the base station does not participate in resource allocation.
  • the following Sidelink transmission resources can be called transmission resources.
  • Resource allocation under Mode 2 can be divided into resource awareness and resource selection/reselection phases, which correspond to the resource awareness window and the resource selection window respectively.
  • the terminal device is always in a resource-aware state.
  • the terminal device determines the resource occupancy in the resource selection window based on the sensing result of the resource sensing window, and excludes unavailable resources that are occupied by other devices in the resource selection window. resources to determine the available transmission resources for Sidelink transmission.
  • the trigger condition may be that when the data packet arrives, the terminal device has no available transmission resources.
  • the terminal device when the terminal device detects the PSCCH, it decodes the SCI carried in the PSCCH and makes a judgment based on the received reference signal received power (RSRP), as shown in Figure 2 shows that the RSRP values of terminal equipment A and terminal equipment B are less than or equal to the preset power threshold, then it is determined that the reserved resources of terminal equipment A and terminal equipment B in the resource selection window are available resources, where, terminal equipment A and terminal equipment B
  • the time-frequency domain location information of the reserved resources of terminal equipment B can be obtained by decoding the SCI.
  • the time-frequency domain location information of reserved resources in SCI is when the terminal device transmits the same transport block (Transport Block, TB), indicating the retransmission transmission resource of the TB. to represent resource reservation.
  • Transport Block TB
  • TB includes PSCCH and PSSCH.
  • Each SCI can indicate at most L transmission resources.
  • the value of L supported in a resource pool can be configured through high-level signaling.
  • the value is generally 2 or 3. That is to say, the SCI needs to indicate this time. Transmission and other time-frequency domain resource locations for up to 2 retransmissions.
  • the time interval between the first transmission resource and the last transmission resource indicated in each SCI shall not exceed 32 time slots.
  • the SCI indicating one transmission can indicate at most two subsequent retransmission resources. That is to say, the SCI of the first TB transmission indicates this The time-frequency domain resource locations of the first transmission and the following two TB retransmissions.
  • the SCI of the second TB transmission indicates the time-frequency domain resource locations of this transmission and the third transmission. Understandably, the SCI in the third transmission Subsequent transmission resources are no longer indicated in .
  • the maximum number of transmissions for one TB can be 32.
  • the time domain position information and frequency domain position information in SCI can be represented by joint coding.
  • positioning terminal equipment is one of the important functions.
  • Current positioning technology includes downlink positioning technology and uplink positioning technology, and the downlink reference signal can be PRS.
  • Terminal devices can send PRS through Sidelink transmission resources, so that other terminal devices can measure the PRS to obtain the relative positions between terminal devices.
  • PRS can be transmitted on sidelink transmission resources together with information such as PSCCH and/or PSSCH, or the resource pool for the transmission of information such as PSCCH and PSSCH and the resource pool corresponding to PRS transmission can be at different frequencies, different carriers or different Part of the bandwidth (Bandwidth Part, BWP). Due to the large bandwidth of PRS, if the transmission resources of PRS are determined according to the above-mentioned Sidelink resource allocation plan, in the time domain, one time slot can only be allocated to one terminal device, while in the frequency domain, the entire resource pool bandwidth can be occupied. As a result, PRS transmission resources are in short supply. How to improve the utilization efficiency of PRS transmission resources is a problem that needs to be solved.
  • the parameter structure of PRS includes a four-layer structure, that is, a positioning frequency layer contains multiple transmission and reception points (Transmission and Reception Point, TPR).
  • TPR Transmission and Reception Point
  • One TPR can correspond to multiple PRS resource sets (Sets), and one PRS resource set can Contains multiple PRS resources.
  • each PRS resource has a corresponding identification (Identity Document, ID).
  • the corresponding parameters and scope of each layer are different.
  • the parameters for locating the frequency layer include the frequency domain resource reference position of the PRS, the subcarrier spacing of the PRS, the cyclic prefix (Cyclic Prefix, CP) type of the PRS, The resource pattern of the PRS, the starting resource block (RB) of the PRS, and the bandwidth of the PRS.
  • the scope of the positioning frequency layer is all PRS resources included in the layer.
  • the parameters of the PRS resource set layer include the period of the PRS resource, the starting time slot of the PRS resource set, the repetition factor of the PRS resource, the time interval between PRS resources, and the silence pattern of PRS transmission.
  • the scope of the PRS resource set layer is all PRS resources in the resource set.
  • the parameters of the PRS resource layer include the starting RE position of the first symbol occupied by the PRS, the RE position interval relative to the first symbol, and the interval between the PRS and the first time slot of the PRS resource set (the interval unit is time slot) , the position of the PRS starting symbol (Symbol) and the number of symbols it occupies.
  • the scope of the PRS resource layer is all PRS resources in this layer.
  • this application provides a resource allocation method.
  • the terminal equipment determines at least one PSCCH frequency domain resource range according to the resource configuration parameters of the resource pool, and determines at least one PSCCH frequency domain resource range by SCI blind detection is performed within the source range to determine the available PRS transmission resources among multiple SL-PRS resources. It is no longer necessary to allocate a time slot to a terminal device for PRS transmission, which helps to alleviate the problem of resource shortage and improve The resource utilization of the resource pool.
  • the application scenarios applicable to the embodiments of the present application can be any of the above communication scenarios.
  • the following is explained using Figure 4C as an example.
  • a terminal device 401 and a terminal device 402 are included.
  • Terminal equipment 401 and terminal equipment 402 communicate through a direct communication interface (for example, PC5).
  • Terminal equipment 401 determines the PSCCH frequency domain resource range according to the resource configuration parameters, and performs PSCCH detection within the PSCCH frequency domain resource range to perform SCI blind detection. This allows the terminal device 401 to determine the available PRS transmission resources indicated in the SCI information sent by the terminal device 402 according to the blind detection result.
  • the terminal device 401 and the terminal device 402 can be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, Wireless terminals in industrial control (Industrial Control), vehicle terminal equipment, wireless terminals in self-driving (Self Driving), roadside equipment (Road Side Unit, RSU), wireless terminal equipment in remote medical (Remote Medical), Wireless terminal equipment in Smart Grid, wireless terminal equipment in Transportation Safety, wireless terminal equipment in Smart City, wireless terminal equipment in Smart Home, wearable Terminal equipment, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • an augmented reality (Augmented Reality, AR) terminal device Wireless terminals in industrial control (Industrial Control)
  • vehicle terminal equipment wireless terminals in self-driving (Self
  • the terminal equipment involved in the embodiments of this application can also be called terminal, user equipment (User Equipment, UE), access terminal equipment, vehicle terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , remote user equipment, mobile equipment, wireless communication equipment, UE agent or UE device, etc.
  • user equipment User Equipment
  • UE User Equipment
  • access terminal equipment vehicle terminal
  • industrial control terminal UE unit
  • UE station mobile station
  • mobile station mobile station
  • remote station remote user equipment
  • mobile equipment wireless communication equipment
  • wireless communication equipment UE agent or UE device
  • the base station in Figures 4A-4C is a device with wireless transceiver functions. Including but not limited to: evolutionary base stations (Evolutional Node B, eNB or eNodeB) in LTE, base stations (gNodeB or gNB) or transceiver nodes (Transmission and Receiving Points, TRP) in NR, base stations in subsequent evolution systems, wireless Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in the Wireless Fidelity (WiFi) system.
  • the base station can be: macro base station, micro base station, pico base station, small station, relay station, etc.
  • FIG. 5 is a schematic flowchart of a resource allocation method provided in Embodiment 1 of the present application. The method can be executed by a terminal device. Referring to FIG. 5 , the method includes the following steps.
  • the terminal device obtains the resource configuration parameters of the resource pool.
  • the terminal device can obtain the resource configuration parameters of the resource pool, and the resource pool can be used to transmit PRS. It can be understood that the resource pool can also be used by the terminal device to transmit information such as PSCCH and PSSCH. This application does not limit this.
  • the resource configuration parameters may be determined by the terminal device according to its predefined rules, or may be preconfigured by high-level signaling of the terminal device, and the terminal device obtains the resource configuration parameters through high-level signaling.
  • the resource configuration parameters can also be configured by a network device (such as a base station) and sent to the terminal device.
  • the terminal device determines at least one PSCCH frequency domain resource range in the frequency domain of the resource pool according to the resource configuration parameters.
  • the terminal device After the terminal device obtains the resource configuration parameters, it can determine at least one PSCCH frequency domain resource range in the frequency domain of the resource pool based on the resource configuration parameters.
  • the resource configuration parameters are different, and the way of determining at least one PSCCH frequency domain resource range is different.
  • the resource configuration parameters include the configuration parameters of the SL-PRS resources in each time slot, it means that each time slot The slot includes multiple SL-PRS resources, then the terminal equipment can determine at least one PSCCH frequency domain resource range in each time slot, so that the terminal equipment determines according to the mapping method between the SL-PRS resources and the PSCCH frequency domain resource range.
  • SL-PRS resources associated with each PSCCH frequency domain resource range when the resource configuration parameters include the configuration parameters of the SL-PRS resources in each time slot, it means that each time slot The slot includes multiple SL-PRS resources, then the terminal equipment can determine at least one PSCCH frequency domain resource range in each time slot, so that the terminal equipment determines according to the mapping method between the SL-PRS resources and the PSCCH frequency domain resource range.
  • the terminal device performs SCI blind detection in at least one PSCCH frequency domain resource range to determine the available PRS transmission resources in the resource pool.
  • the terminal equipment can perform SCI blind detection in at least one PSCCH frequency domain resource range, and determine the available PRS transmission resources based on the blind detection results.
  • each PSCCH frequency domain resource range used by the terminal equipment for SCI blind detection is associated with at least one SL-PRS resource
  • the terminal equipment can determine whether the SL-PRS resources associated with each PSCCH frequency domain resource range in at least one PSCCH frequency domain resource range are available based on the blind detection results, so as to achieve a time slot
  • the above blind detection result may be the value of RSRP.
  • the value of RSRP is less than or equal to the preset power threshold, it is determined that the SL-PRS resource associated with the corresponding PSCCH frequency domain resource range is available. It can be understood that the available SL -PRS resources can be resources reserved by other terminal devices within the resource selection window.
  • the terminal device obtains the resource configuration parameters of the resource pool, determines at least one PSCCH frequency domain resource range in the frequency domain of the resource pool based on the resource configuration parameters, and performs SCI blind detection in at least one PSCCH frequency domain resource range. This makes it possible to determine the available PRS transmission resources in the resource pool based on the SCI blind detection results. It is no longer necessary to allocate a time slot to a terminal device for PRS transmission, which helps alleviate the problem of resource shortage and improves the utilization of the resource pool resources. Rate.
  • the resource configuration parameters are different, and correspondingly, the determination methods of the PSCCH frequency domain resource range are also different. For example, they can be divided into four determination methods. Taking the four determination methods as examples, the following describes in detail how the terminal equipment determines the PSCCH frequency domain resource range according to the four determination methods through Embodiment 2 to Embodiment 5 respectively.
  • Embodiment 2 of the present application provides a method for determining a PSCCH frequency domain resource range, which method can be executed by a terminal device.
  • the resource configuration parameters include one or more of the following parameters: configuration parameters of at least one SL-PRS resource in each time slot, and the number N of SL-PRS resources associated with each PSCCH frequency domain resource range, where N is a positive integer.
  • the configuration parameters of the SL-PRS resource may include: the starting symbol position of the SL-PRS, the number of symbols occupied by the SL-PRS, the resource unit offset value of the SL-PRS, the resource pattern of the SL-PRS, and the SL-PRS The number of frequency domain sub-channels or resource blocks occupied.
  • the terminal equipment can divide the frequency domain resources of the resource pool based on the number N of SL-PRS resources associated with each PSCCH frequency domain resource range in the above resource configuration parameters, and the number of SL-PRS resources configured in each time slot, To determine the resource size of at least one PSCCH frequency domain resource range. For example, when N is 2, the number of SL-PRS resources configured in each time slot is 8, and the bandwidth of the resource pool is 24 sub-channels, then according to N and the number of SL-PRS resources is 8, as shown in Figure 6 , four PSCCH frequency domain resource ranges can be determined, then the resource size of each PSCCH frequency domain resource range is 6 sub-channels. The figure has been sorted from low to high according to the frequency domain position.
  • the terminal equipment can determine each SL in the frequency domain of the resource pool according to the resource size of each PSCCH frequency domain resource range, the configuration parameters of the SL-PRS resources, and the mapping method between the SL-PRS resources and the PSCCH frequency domain resource range. -The PSCCH frequency domain resource range associated with the PRS resource.
  • the above mapping relationship is based on the index number of the SL-PRS resource and at least one PSCCH
  • the frequency domain resource range and the frequency domain position are mapped sequentially between the SL-PRS resources and the PSCCH frequency domain resource range.
  • the above mapping relationship may be based on the index number of the SL-PRS resource from small to large, and the frequency domain position of at least one PSCCH frequency domain resource range from low to high, and the SL-PRS resources and the PSCCH frequency domain resource ranges are sequentially mapped. mapping.
  • the frequency domain positions of the four PSCCH frequency domain resource ranges are arranged from low to high as: PSCCH frequency domain resource range 1,..., PSCCH frequency domain resource range 4.
  • the eight SL-PRS resources configured in each time slot are arranged from small to large index numbers as: SL-PRS1, SL-PRS2,..., SL-PRS8. Then according to the mapping method between SL-PRS resources and PSCCH frequency domain resource range, according to the index number of the SL-PRS resource from small to large, each two SL-PRS resources are mapped according to the frequency domain position of the PSCCH frequency domain resource range from low to high.
  • the SL-PRS resources and the PSCCH frequency domain resource range are mapped in sequence, that is, SL-PRS1 and SL-PRS2 are mapped to the PSCCH frequency domain resource range 1, and SL-PRS3 and SL-PRS4 are mapped to the PSCCH frequency domain resource range 2.
  • map SL-PRS5 and SL-PRS6 to PSCCH frequency domain resource range 3 map SL-PRS7 and SL-PRS8 to PSCCH frequency domain resource range 4, that is, map each two SL-PRS resources to The PSCCH frequency domain resource range is associated to have an association relationship, so that the terminal equipment can determine whether the SL-PRS resources associated with the PSCCH frequency domain resource range are available based on the blind detection results of SCI blind detection within the PSCCH frequency domain resource range.
  • the starting symbol position and number of occupied symbols of the SL-PRS resource can be determined according to the configuration parameters of the SL-PRS resource. , resource unit offset value, resource pattern, and the number of occupied frequency domain sub-channels or resource blocks, etc., so that when it is determined that the SL-PRS resource is available, the terminal device uses the SL-PRS resource for PRS transmission.
  • the terminal device divides the frequency domain resources of the resource pool according to the resource configuration parameters, and after determining the resource size and location of the PSCCH frequency domain resource range, a time domain resource is allocated according to the mapping method between the SL-PRS resource and the PSCCH frequency domain resource range.
  • the SL-PRS resources in the slot are mapped to the PSCCH frequency domain resource range, so that the terminal equipment can determine the SL-PRS resources associated with the PSCCH frequency domain resource range based on the blind detection results of SCI blind detection within the PSCCH frequency domain resource range. it's usable or not. It is no longer necessary to allocate a time slot to a terminal device for PRS transmission, which helps alleviate the problem of resource shortage and improves the utilization of resource pool resources.
  • Embodiment 3 of the present application provides another method for determining the PSCCH frequency domain resource range, which method can be executed by a terminal device.
  • Resource configuration parameters include one or more of the following parameters: at least one SL-PRS resource in each time slot Configuration parameters, the number P of PSCCH frequency domain resource ranges, the resource size of each PSCCH frequency domain resource range, the starting position of the first PSCCH frequency domain resource range, and the frequency domains of two adjacent PSCCH frequency domain resource ranges interval, where P is an integer greater than or equal to 1.
  • the configuration parameters of the SL-PRS resource may include: the starting symbol position of the SL-PRS, the number of symbols occupied by the SL-PRS, the resource unit offset value of the SL-PRS, the resource pattern of the SL-PRS, and the location of the SL-PRS.
  • the terminal equipment can configure the resource configuration parameters based on the resource size of each PSCCH frequency domain resource range, the number P of PSCCH frequency domain resource ranges, the starting position of the first PSCCH frequency domain resource range, and the two adjacent PSCCH frequency domain resources in the above resource configuration parameters.
  • the frequency domain interval of the domain resource range determines the position of at least one PSCCH frequency domain resource range.
  • the terminal equipment can also determine the number P of PSCCH frequency domain resource ranges based on the number of SL-PRS resources configured in each time slot. That is, the number of SL-PRS resources configured in each time slot can be It is equal to the number P of PSCCH frequency domain resource ranges.
  • the starting position of the first PSCCH frequency domain resource range may be the starting resource block or the starting subchannel number.
  • the starting subchannel number of the first PSCCH frequency domain resource range is 0, because A subchannel includes multiple resource blocks, so the starting position of the frequency domain resource range of the first PSCCH is not limited to a certain resource block in subchannel 0. That is to say, the entire subchannel 0 can be used as the first PSCCH.
  • the value P of the number of PSCCH frequency domain resource ranges is 3, and the frequency domain interval between two adjacent PSCCH frequency domain resource ranges is 2 sub-channels. Then the terminal equipment determines the positions of the three PSCCH frequency domain resource ranges, as shown in Figure 7 , the figure has been sorted from low to high according to the frequency domain position.
  • the terminal equipment can determine the number of SL-PRS resources corresponding to a PSCCH frequency domain resource range based on the number of SL-PRS resources configured in each time slot and the number P of PSCCH frequency domain resource ranges. For example, when the number of SL-PRS resources configured in each time slot is 3 and P is 3, then an SL-PRS resource corresponding to a PSCCH frequency domain resource range is determined.
  • the terminal equipment can determine the location of at least one PSCCH frequency domain resource range, the configuration parameters of the SL-PRS resource, the mapping method between the SL-PRS resource and the PSCCH frequency domain resource range, and the SL-PSC corresponding to one PSCCH frequency domain resource range.
  • the number of PRS resources determines the PSCCH frequency domain resource range associated with each SL-PRS resource in the frequency domain of the resource pool.
  • the three PSCCH frequency domain resource ranges are ordered from low to high in frequency domain position: PSCCH frequency domain resource range 1, PSCCH frequency domain resource range 2, and PSCCH frequency domain resource range 3.
  • the three SL-PRS resources configured in each time slot are ordered from small to large according to the index number: SL-PRS1, SL-PRS2, SL-PRS3.
  • the terminal equipment can follow the mapping method of SL-PRS resources and PSCCH frequency domain resource range, SL-PRS1 is mapped to PSCCH frequency domain resource range 1, SL-PRS2 is mapped to PSCCH frequency domain resource range 2, and SL-PRS3 is mapped to PSCCH frequency domain resource range 3. That is to say, each SL-PRS resource is associated with each PSCCH frequency domain resource range to have an association relationship, so that the terminal equipment can determine and Whether the SL-PRS resources associated with the PSCCH frequency domain resource range are available.
  • the number of the starting subchannel of the first PSCCH frequency domain resource range is 2, the value P of the number of PSCCH frequency domain resource ranges is 2, and the frequency domain of the two adjacent PSCCH frequency domain resource ranges is 2.
  • the interval is 2 sub-channels, then the terminal equipment determines the positions of the 2 PSCCH frequency domain resource ranges as shown in Figure 8. Further, the terminal equipment can determine two SL-PRS resources corresponding to one PSCCH frequency domain resource range based on the number of SL-PRS resources configured in each time slot (4) and the number of PSCCH frequency domain resource ranges (2).
  • the 2 PSCCH frequency domain resource ranges are sorted from low to high according to the frequency domain position: PSCCH frequency domain resource range 1, PSCCH frequency domain resource range 2.
  • the 4 SL-PRS resources configured in each time slot are arranged in ascending order according to the index number. The large order is: SL-PRS1, SL-PRS2, SL-PRS3, SL-PRS4.
  • the terminal equipment maps both SL-PRS1 and SL-PRS2 to PSCCH frequency domain resource range 1 according to the mapping method of SL-PRS resources and PSCCH frequency domain resource range, and maps SL-PRS3 and SL-PRS4 All are mapped to PSCCH frequency domain resource range 2. That is to say, every two SL-PRS resources are associated with each PSCCH frequency domain resource range to have an association relationship.
  • the number of the starting subchannel of the first PSCCH frequency domain resource range is 2, the value P of the number of PSCCH frequency domain resource ranges is 2, and the frequency domain of the two adjacent PSCCH frequency domain resource ranges is 2.
  • the interval is 2 sub-channels, then the terminal equipment determines the positions of the 2 PSCCH frequency domain resource ranges as shown in Figure 9. Further, the terminal device can configure the number of SL-PRS resources 5 and the number of PSCCH frequency domain resource ranges 2 according to each time slot. The terminal device can configure the number M of SL-PRS resources and the PSCCH frequency domain resource range.
  • the 2 PSCCH frequency domain resource ranges are sorted from low to high according to the frequency domain position: PSCCH frequency domain resource range 1, PSCCH frequency domain resource range 2.
  • the 5 SL-PRS resources configured in each time slot are arranged in ascending order according to the index number. The large order is: SL-PRS1, SL-PRS2,..., SL-PRS5.
  • the terminal equipment maps SL-PRS1, SL-PRS2 and SL-PRS3 to PSCCH frequency domain resource range 1 according to the mapping method of SL-PRS resources and PSCCH frequency domain resource range, and SL-PRS4 and SL-PRS5 both Mapping with PSCCH frequency domain resource range 2. That is to say, the first three SL-PRS resources are associated with the first PSCCH frequency domain resource range, and the last two SL-PRS resources are associated with the second PSCCH frequency domain resource range to have an association relationship.
  • the starting symbol position and number of occupied symbols of the SL-PRS resource can be determined according to the configuration parameters of the SL-PRS resource. , resource unit offset value, resource pattern, and the number of occupied frequency domain sub-channels or resource blocks, etc., so that when it is determined that the SL-PRS resource is available, the terminal device uses the SL-PRS resource for PRS transmission.
  • the terminal device divides the frequency domain resources of the resource pool according to the resource configuration parameters, and after determining the location and resource size of the PSCCH frequency domain resource range, a time domain resource is allocated according to the mapping method between the SL-PRS resource and the PSCCH frequency domain resource range.
  • the SL-PRS resources in the slot are mapped to the PSCCH frequency domain resource range, so that the terminal equipment can determine the SL-PRS resources associated with the PSCCH frequency domain resource range based on the blind detection results of SCI blind detection within the PSCCH frequency domain resource range. it's usable or not. It is no longer necessary to allocate a time slot to a terminal device for PRS transmission, which helps alleviate the problem of resource shortage and improves the utilization of resource pool resources.
  • mapping method of the SL-PRS resources and the PSCCH frequency domain resource range in the above embodiments is only an example.
  • the mapping method of the SL-PRS resources and the PSCCH frequency domain resource range can also be other methods.
  • the mapping method may be to sequentially map the SL-PRS resources and the PSCCH frequency domain resource range according to the index number of the SL-PRS resource from large to small, and the frequency domain position of at least one PSCCH frequency domain resource range from low to high.
  • the mapping method of SL-PRS resources and PSCCH frequency domain resource ranges may also be mapping SL-PRS resources to any one or multiple PSCCH frequency domain resource ranges, which is not limited in this application.
  • Embodiment 4 of the present application provides another method for determining the PSCCH frequency domain resource range, which method can be executed by a terminal device.
  • the resource configuration parameters include one or more of the following parameters: the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range.
  • the starting position of the PSCCH frequency domain resource range reference may be made to Embodiment 3, which will not be described again here.
  • the terminal equipment can determine at least one PSCCH frequency domain resource range in the frequency domain of the resource pool according to the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range, as shown in Figure 10.
  • Figure 10 is the determination A schematic diagram of the PSCCH frequency domain resource range.
  • the terminal device can also determine multiple PSCCH frequency domain resource ranges based on the resource size of the resource pool and the resource size of the PSCCH frequency domain resource range. For example, when the resource size of the resource pool is 64 sub-channels and the resource size of the PSCCH frequency domain resource range is 8 sub-channels, the terminal device can determine 8 PSCCH frequency domain resource ranges. This enables the terminal equipment to perform SCI blind detection within at least one PSCCH frequency domain resource range, and determine the available PRS transmission resources based on the SCI blind detection results.
  • the terminal equipment determines at least one PSCCH frequency domain resource range according to the resource configuration parameters, so that the terminal equipment only needs to perform SCI blind detection within the PSCCH frequency domain resource range to determine the available PRS based on the blind detection results. Transmit resources without the need to perform SCI blind detection on the entire PRS resource pool, which reduces the complexity of SCI blind detection on terminal equipment.
  • Embodiment 5 of the present application provides another method for determining the PSCCH frequency domain resource range, which method can be executed by a terminal device.
  • the resource configuration parameters include one or more of the following parameters: the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range.
  • the starting position of the resource pool may be the starting resource block or the starting subchannel.
  • the terminal device can use the starting position of the resource pool as the starting position of the PSCCH frequency domain resource range, and then determine the frequency domain of the resource pool based on the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range.
  • At least one PSCCH frequency domain resource range is shown in Figure 11.
  • Figure 11 is a schematic diagram of a determined PSCCH frequency domain resource range.
  • the terminal device can also determine multiple PSCCH frequency domain resource ranges based on the resource size of the resource pool and the resource size of the PSCCH frequency domain resource range. For example, when the resource size of the resource pool is 64 sub-channels and the resource size of the PSCCH frequency domain resource range is 8 sub-channels, the terminal device can determine 8 PSCCH frequency domain resource ranges.
  • the terminal equipment can perform SCI blind detection within at least one PSCCH frequency domain resource range, and determine the available PRS transmission resources based on the SCI blind detection results.
  • the terminal equipment determines at least one PSCCH frequency domain resource range according to the resource configuration parameters, so that the terminal equipment only needs to perform SCI blind detection within the PSCCH frequency domain resource range to determine the available PRS based on the blind detection results. Transmit resources without the need to perform SCI blind detection on the entire PRS resource pool, which reduces the complexity of SCI blind detection on terminal equipment.
  • FIG 12 is a schematic structural diagram of a resource allocation device provided in Embodiment 6 of the present application.
  • the device 120 may be a chip or a chip module. Referring to Figure 12, the device 120 includes: an acquisition module 1201, a determination module 1202 and a processing module 1203.
  • the acquisition module 1201 is used to acquire the resource configuration parameters of the resource pool.
  • the determination module 1202 is configured to determine the frequency domain resource range of at least one physical sidelink control channel PSCCH in the frequency domain of the resource pool according to the resource configuration parameters.
  • the processing module 1203 is configured to perform blind detection of sidelink control information SCI within at least one PSCCH frequency domain resource range to determine available transmission resources of the positioning reference signal PRS.
  • the resource configuration parameters include one or more of the following parameters:
  • Configuration parameters of at least one sidelink positioning reference signal SL-PRS resource in each time slot are configured to provide at least one sidelink positioning reference signal SL-PRS resource in each time slot.
  • N The number N of SL-PRS resources associated with each PSCCH frequency domain resource range, N is a positive integer.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by SL-PRS.
  • the determining module 1202 is specifically used to:
  • the frequency domain resources of the resource pool are divided to determine the resource size of at least one PSCCH frequency domain resource range.
  • the determining module 1202 is also used to:
  • the PSCCH frequency domain resource range associated with each SL-PRS resource is determined in the resource pool frequency domain.
  • the resource configuration parameters include one or more of the following:
  • P is an integer greater than or equal to 1.
  • the resource size of each PSCCH frequency domain resource range is the resource size of each PSCCH frequency domain resource range.
  • the starting position of the first PSCCH frequency domain resource range is the starting position of the first PSCCH frequency domain resource range.
  • the frequency domain interval between two adjacent PSCCH frequency domain resource ranges.
  • the configuration parameters of the SL-PRS resource include:
  • the number of frequency domain sub-channels or resource blocks occupied by SL-PRS is the number of frequency domain sub-channels or resource blocks occupied by SL-PRS.
  • the determining module 1202 is also used to:
  • the determining module 1020 is also used to:
  • the number of SL-PRS resources configured in each time slot and P the number of SL-PRS resources corresponding to a PSCCH frequency domain resource range is determined.
  • the determining module 1202 is also used to:
  • the configuration parameters of the SL-PRS resources, the mapping method of the SL-PRS resources and the PSCCH frequency domain resource range, and the number of SL-PRS resources corresponding to one PSCCH frequency domain resource range is determined in the resource pool frequency domain.
  • the mapping method is to sequentially map the SL-PRS resources and the PSCCH frequency domain resource range according to the index number of the SL-PRS resource and the frequency domain position of at least one PSCCH frequency domain resource range.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range are the starting position of the PSCCH frequency domain resource range and the resource size of the PSCCH frequency domain resource range.
  • the determining module 1202 is also used to:
  • At least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the resource configuration parameters include one or more of the following parameters:
  • the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range are the starting position of the resource pool and the resource size of the PSCCH frequency domain resource range.
  • the determining module 1202 is also used to:
  • the starting position of the resource pool is used as the starting position of the PSCCH frequency domain resource range.
  • At least one PSCCH frequency domain resource range in the frequency domain of the resource pool is determined.
  • the starting position is a starting subchannel or a starting resource block RB of the resource pool.
  • processing module 1203 is specifically used to:
  • each PSCCH frequency in at least one PSCCH frequency domain resource range determines each PSCCH frequency in at least one PSCCH frequency domain resource range. Whether the PRS resource associated with the domain resource range is available, and the available PRS transmission resource is at least one of the multiple SL-PRS resources in the time slot in which it is located.
  • processing module 1203 is also used to:
  • the available PRS transmission resources are determined.
  • the resource pool is used to transmit PRS.
  • the device of this embodiment can be used to perform a technical solution of a resource allocation method in the above method embodiment.
  • the specific implementation method and technical effect are similar and will not be described again here.
  • Figure 13 is a schematic structural diagram of a resource allocation device provided in Embodiment 7 of the present application.
  • the resource allocation device 130 may include: at least one processor 1301 and a memory 1302.
  • Memory 1302 is used to store programs.
  • the program may include program code, which includes computer operating instructions.
  • the memory 1302 may include high-speed random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory), such as at least one disk memory.
  • RAM Random Access Memory
  • Non-Volatile Memory such as at least one disk memory.
  • the processor 1301 is configured to execute computer execution instructions stored in the memory 1302 to implement the method described in the foregoing method embodiments.
  • the processor 1301 may be a central processing unit (Central Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement embodiments of the present application. .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the resource allocation device 130 may also include: a communication interface 1303.
  • a communication interface 1303. In terms of specific implementation, if the communication interface 1303, the memory 1302 and the processor 1301 are implemented independently, the communication interface 1303, the memory 1302 and the processor 1301 can be connected to each other through a bus and complete mutual communication.
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1303, the memory 1302 and the processor 1301 are integrated on one chip, the communication interface 1303, the memory 1302 and the processor 1301 can complete communication through the internal interface.
  • the resource allocation device 130 may be a chip, a module, an IDE or a terminal device, etc.
  • the resource allocation device of this embodiment can be used to implement a technical solution of a resource allocation method in the above method embodiment.
  • the specific implementation method and technical effect are similar, and will not be described again here.
  • Embodiment 8 of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), RAM, magnetic disk or optical disk, etc.
  • the computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, it is used to implement the technical solutions shown in the above method embodiments. The specific implementation methods and technical effects are similar. , we won’t go into details here.
  • Embodiment 9 of the present application provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the technical solution shown in the above method embodiment is implemented.
  • the specific implementation method and technical effect are similar and will not be described again here.
  • Embodiment 10 of the present application provides a chip.
  • a computer program is stored on the chip.
  • the method shown in the above method embodiment is implemented.
  • the chip can also be a chip module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供的一种资源分配方法、装置以及存储介质。该方法包括:终端设备通过获取资源池的资源配置参数,根据该资源配置参数确定资源池频域上至少一个PSCCH频域资源范围,并在至少一个PSCCH频域资源范围进行SCI盲检,使得根据SCI盲检结果确定资源池中可用的PRS的传输资源,不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。

Description

资源分配方法、装置以及存储介质
本申请要求于2022年08月17日提交国家知识产权局、申请号为202210989350.X、申请名称为“资源分配方法、装置以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源分配方法、装置以及存储介质。
背景技术
随着第五代移动通信技术(5th Generation,5G)技术的发展,用户对终端设备与终端设备之间的侧行链路(Sidelink,SL)的通信能力提出了更高的要求。例如,通过侧行链路通信完成终端设备的定位测量。
对于终端设备而言,在侧行链路中完成定位测量,需要在侧行链路中传输定位测量相关信号。然而,侧行链路中的传输资源较为紧张,很难给每个终端设备配置专用的定位测量资源。因此,如何实现侧行链路中定位测量相关信号的资源分配,对于侧行链路通信能力的提升有重要的实际意义。
发明内容
本申请提供一种资源分配方法、装置以及存储介质,有助于缓解Sidelink中的资源池的资源紧缺的问题。
第一方面,本申请提供一种资源分配方法,包括:
获取资源池的资源配置参数;
根据所述资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围;
在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源。
在一种可能的实施方式中,所述资源配置参数包括以下一个或多个参数:
每个时隙中至少一个侧行链路定位参考信号SL-PRS资源的配置参数;
每个PSCCH频域资源范围关联的SL-PRS资源的个数N,所述N为正整数。
在一种可能的实施方式中,所述SL-PRS资源的配置参数,包括:
所述SL-PRS的起始符号位置;
所述SL-PRS占用的符号数;
所述SL-PRS的资源单元偏移值;
所述SL-PRS的资源图样;
所述SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
根据所述N和每个时隙配置的SL-PRS资源个数,划分所述资源池的频域资源,以确定至少一个PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,所述方法还包括:
根据所述资源大小、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,在所述资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个:
每个时隙中至少一个SL-PRS资源的配置参数;
PSCCH频域资源范围的个数P,所述P为大于或等于1的整数;
每个PSCCH频域资源范围的资源大小;
第一个PSCCH频域资源范围的起始位置;
相邻两个PSCCH频域资源范围的频域间隔。
在一种可能的实施方式中,所述SL-PRS资源的配置参数,包括:
所述SL-PRS的起始符号位置;
所述SL-PRS占用的符号数;
所述SL-PRS的资源单元偏移值;
所述SL-PRS的资源图样;
所述SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
根据每个PSCCH频域资源范围的资源大小、所述P、所述第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,确定至少一个PSCCH频域资源范围的位置。
在一种可能的实施方式中,所述方法还包括:
根据每个时隙配置的SL-PRS资源个数和所述P,确定一个PSCCH频域资源范围对应的SL-PRS资源的个数。
在一种可能的实施方式中,所述方法还包括:
根据所述至少一个PSCCH频域资源范围的位置、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,以及一个PSCCH频域资源范围关联的SL-PRS资源的个数,在所述资源池频域上确定每个SL-PRS资源对应的PSCCH频域资源范围。
在一种可能的实施方式中,所述映射方式为根据SL-PRS资源的索引号,以及所述至少一个PSCCH频域资源范围频域位置,依次进行SL-PRS资源与PSCCH频域资源范围的映射。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个参数:
PSCCH频域资源范围的起始位置和所述PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
根据所述起始位置和所述资源大小,确定所述资源池频域上所述至少一个PSCCH频域资源范围。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个参数:
所述资源池的起始位置、PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
将所述资源池的起始位置作为所述PSCCH频域资源范围的起始位置;
根据所述起始位置和所述资源大小,确定所述资源池频域上至少一个PSCCH频域资源范围。
在一种可能的实施方式中,所述起始位置为所述资源池的起始子信道或者起始资源块RB。
在一种可能的实施方式中,所述在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源,包括:
在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
根据所述SCI盲检结果,确定所述至少一个PSCCH频域资源范围中每个PSCCH频域资源范围关联的PRS资源是否可用,所述可用的PRS的传输资源为其所在的时隙中多个SL-PRS资源中的至少一个。
在一种可能的实施方式中,所述在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源,包括:
在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
根据所述SCI盲检结果,确定所述可用的PRS的传输资源。
在一种可能的实施方式中,所述资源池用于传输所述PRS。
第二方面,本申请提供一种资源分配装置,包括:
获取模块,用于获取资源池的资源配置参数;
确定模块,用于根据所述资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围;
处理模块,用于在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定可用的定位参考信号PRS的传输资源。
在一种可能的实施方式中,所述资源配置参数包括以下一个或多个参数:
每个时隙中至少一个侧行链路定位参考信号SL-PRS资源的配置参数;
每个PSCCH频域资源范围关联的SL-PRS资源的个数N,所述N为正整数。
在一种可能的实施方式中,所述SL-PRS资源的配置参数,包括:
所述SL-PRS的起始符号位置;
所述SL-PRS占用的符号数;
所述SL-PRS的资源单元偏移值;
所述SL-PRS的资源图样;
所述SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,确定模块具体用于:
根据所述N和每个时隙配置的SL-PRS资源个数,划分所述资源池的频域资源,以确定至少一个PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块还用于:
根据所述资源大小、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,在所述资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个:
每个时隙中至少一个SL-PRS资源的配置参数;
PSCCH频域资源范围的个数P,所述P为大于或等于1的整数;
每个PSCCH频域资源范围的资源大小;
第一个PSCCH频域资源范围的起始位置;
相邻两个PSCCH频域资源范围的频域间隔。
在一种可能的实施方式中,所述SL-PRS资源的配置参数,包括:
所述SL-PRS的起始符号位置;
所述SL-PRS占用的符号数;
所述SL-PRS的资源单元偏移值;
所述SL-PRS的资源图样;
所述SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,确定模块还用于:
根据每个PSCCH频域资源范围的资源大小、所述P、所述第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,确定至少一个PSCCH频域资源范围的位置。
在一种可能的实施方式中,确定模块还用于:
根据每个时隙配置的SL-PRS资源个数和所述P,确定一个PSCCH频域资源范围对应的SL-PRS资源的个数。
在一种可能的实施方式中,确定模块还用于:
根据所述至少一个PSCCH频域资源范围的位置、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,以及一个PSCCH频域资源范围对应的SL-PRS资源的个数,在所述资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
在一种可能的实施方式中,所述映射方式为根据SL-PRS资源的索引号,以及所述至少一个PSCCH频域资源范围频域位置,依次进行SL-PRS资源与PSCCH频域资源范围的映射。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个参数:
PSCCH频域资源范围的起始位置和所述PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块还用于:
根据所述起始位置和所述资源大小,确定所述资源池频域上所述至少一个PSCCH频域资源范围。
在一种可能的实施方式中,所述资源配置参数包括以下一个或者多个参数:
所述资源池的起始位置、PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块还用于:
将所述资源池的起始位置作为所述PSCCH频域资源范围的起始位置;
根据所述起始位置和所述资源大小,确定所述资源池频域上至少一个PSCCH频域资源范围。
在一种可能的实施方式中,所述起始位置为所述资源池的起始子信道或者起始资源块RB。
在一种可能的实施方式中,处理模块具体用于:
在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
根据所述SCI盲检结果,确定所述至少一个PSCCH频域资源范围中每个PSCCH频域资源范围关联的PRS资源是否可用,所述可用的PRS的传输资源为其所在的时隙中多个SL-PRS资源中的至少一个。
在一种可能的实施方式中,处理模块还用于:
在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
根据所述SCI盲检结果,确定所述可用的PRS的传输资源。
在一种可能的实施方式中,所述资源池用于传输所述PRS。
第三方面,本申请提供一种资源分配装置,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第一方面所述的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如第一方面所述的一种资源分配方法。
第五方面,本申请提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面所述的资源分配方法。
第六方面,本申请提供一种芯片,所述芯片上存储有计算机程序,所述计算机程序被所述芯片执行时,实现如第一方面所述的方法。该芯片还可以为芯片模组。
本申请提供的一种资源分配方法、装置以及存储介质,终端设备通过获取资源池的资源配置参数,根据该资源配置参数确定资源池频域上至少一个PSCCH频域资源范围,并在至少一个PSCCH频域资源范围进行SCI盲检,使得根据SCI盲检结果确定资源池中可用的PRS的传输资源,不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为资源池中一个Sidelink传输资源的示意图;
图2为终端设备确定资源选择窗内的可用资源的示意图;
图3为一次传输的SCI中可以指示两个重传资源的示意图;
图4A为一种Sidelink的通信场景的示意图;
图4B为另一种Sidelink的通信场景的示意图;
图4C为另一种Sidelink的通信场景的示意图;
图5为本申请实施例一提供的一种资源分配方法的流程示意图;
图6为本申请实施例二示例的SL-PRS资源与PSCCH频域资源范围在资源池中的示意图;
图7为本申请实施例三示例的SL-PRS资源与PSCCH频域资源范围在资源池中的示意图;
图8为本申请实施例三示例的SL-PRS资源与PSCCH频域资源范围在资源池中的示意图;
图9为本申请实施例三示例的SL-PRS资源与PSCCH频域资源范围在资源池中的示意图;
图10为本申请实施例四示例的一个PSCCH频域资源范围的示意图;
图11为本申请实施例五示例的一个PSCCH频域资源范围的示意图;
图12为本申请实施例六提供的一种资源分配装置的结构示意图;
图13为本申请实施例七提供的一种资源分配装置的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一 致的装置和方法的例子。
本申请实施例的技术方案可以适用于各种通信***,例如:长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、5G移动通信***或新无线接入技术(New Radio Access Technology,NR)。其中,5G移动通信***可以包括非独立组网(Non-Standalone,NSA)和/或独立组网(Standalone,SA)。
本申请提供的技术方案还可以适用于机器类通信(Machine Type Communication,MTC)、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M)、设备到设备(Device-to Device,D2D)网络、机器到机器(Machine to Machine,M2M)网络、物联网(Internet of Things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网***中的通信方式统称为车到其他设备(Vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(Vehicle to Vehicle,V2V)通信,车辆与基础设施(Vehicle to Infrastructure,V2I)通信、车辆与行人之间的通信(Vehicle to Pedestrian,V2P)或车辆与网络(Vehicle to Network,V2N)通信等。
首先对本申请涉及的相关术语或名词进行介绍,以便于本领域技术人员理解。
(1)Sidelink
Sidelink用于终端设备之间的直接通信,具体的,终端设备与终端设备之间可以通过直连通信接口使用Sidelink通信。在资源池中,时域上的最小粒度为时隙(Slot),频域上的最小粒度为子信道(Subchannel),一个子信道包含多个资源块(Resource Block,RB)。终端设备在进行Sidelink传输资源选择时,可根据其需要传输的数据包的大小,确定所需的子信道的个数X,从而确定该终端设备的Sidelink传输资源为某个时隙中连续的X个子信道,X为正整数,图1为子信道的个数为3的示意图,该Sidelink传输资源上同时传输边缘通信物理控制信道(Physical Sidelink Control CHannel,PSCCH)和边缘通信共享信道(Physical Sidelink Shared Channel,PSSCH)。其中,PSCCH承载侧行链路控制信息(Sidelink Control Information,SCI),PSSCH承载传输的数据,SCI包括当前Sidelink传输资源的时频域位置信息、预留的Sidelink传输资源的时频域位置信息以及解码PSSCH的参数等,其中预留的Sidelink传输资源可称为预留资源。
在NR V2X中,支持模式1(Mode 1)和模式2(Mode 2)两种Sidelink资源分配方案。
Mode 1:基站调度Sidelink传输资源给终端设备进行Sidelink传输。
Mode 2:终端设备确定由基站/网络设备配置或预配置的Sidelink传输资源,即基站不参与资源分配。以下Sidelink传输资源可以称为传输资源。
在Mode 2下的资源分配可以分为资源感知、以及资源选择/重选阶段,分别对应资源感知窗口和资源选择窗口。终端设备一直处于资源感知的状态,当终端设备触发资源选择,终端设备根据资源感知窗口的感知结果,判断资源选择窗内的资源占用情况,排除资源选择窗内被其他中的设备占用的不可用资源,以确定可用的传输资源进行Sidelink传输。终端设备触发资源选择的触发条件可以有多种,示例性的,触发条件可以是当数据包到达时,终端设备没有可用的传输资源。
具体的,在资源感知窗口中,当终端设备检测到PSCCH,则对PSCCH中承载的SCI进行解码,并通过接收到的参考信号接收功率(Reference Signal Received Power,RSRP)进行判断,如图2所示,终端设备A和终端设备B的RSRP的值小于或者等于预设的功率阈值,则确定终端设备A和终端设备B在资源选择窗内的预留资源为可用资源,其中,终端设备A和终端设备B的预留资源的时频域位置信息可以通过解码SCI得到。
(2)SCI
SCI中的预留资源的时频域位置信息(即时域位置信息和频域位置信息),是终端设备在传输同一个传输块(Transport Block,TB)时,指示该TB的重传传输资源,以表示资源预留,当其他终端设备感知到该终端设备当前的传输资源后,可以根据SCI确定资源选择窗内的预留资源的占用情况。其中,TB包括PSCCH和PSSCH。
每个SCI中最多可以指示L个传输资源,示例性的,可通过高层信令配置一个资源池中支持的L的值,该值一般为2或者3,也就是说,SCI中需要指示本次传输以及其他最多2次重传的时频域资源位置。为了限制SCI中的资源指示开销,每个SCI中指示的第一个传输资源和最后一个传输资源的时间间隔不超过32个时隙。如图3所示,当L的值为3,从时域上看,那么表示一次传输的SCI中可以最多指示后面两个重传资源,也就是说,第一次TB传输的SCI中指示本次传输和后面两次TB重传的时频域资源位置,第二次TB传输的SCI指示本次传输和第三次传输的时频域资源位置。可以理解,第三次传输中的SCI 中不再指示后续的传输资源。一般的,一个TB的传输次数(包括初次传输和重传)最大值可以为32。其中,SCI中的时域位置信息和频域位置信息可以采用联合编码的方式表示。
(3)定位参考信号(Positioning Reference Signal,PRS)
在移动通信***中,对终端设备进行定位是重要的功能之一。当前的定位技术包括下行定位技术和上行定位技术,下行参考信号可以为PRS。终端设备可以通过Sidelink传输资源发送PRS,使得其他终端设备可以对该PRS进行测量,以获取终端设备之间的相对位置。
可以理解,PRS可以与PSCCH和/或PSSCH等信息一起在sidelink传输资源上传输,或者,PSCCH和PSSCH等信息传输的资源池与PRS传输对应的资源池可以在不同的频点、不同载波或者不同的部分带宽(Bandwidth Part,BWP)。由于PRS的带宽较大,若按照上述Sidelink的资源分配方案确定PRS的传输资源,则在时域上,一个时隙仅能分配给一个终端设备使用,而频域上可以占用整个资源池带宽,使得PRS的传输资源较为紧缺,如何提高PRS的传输资源的利用效率是需要解决的一个问题。
具体的,PRS的参数结构包括四层结构,即一个定位频率层包含多个发送接收点(Transmission and Reception Point,TPR),一个TPR可以对应多个PRS资源集(Set),一个PRS资源集可以包含多个PRS资源。其中,每个PRS资源均有对应的标识(Identity Document,ID)。
相应的,每一层对应的参数以及作用范围不同,示例性的,定位频率层的参数包含PRS的频域资源参考位置、PRS的子载波间隔、PRS的循环前缀(Cyclic Prefix,CP)类型、PRS的资源图样、PRS的起始资源块(Resource Block,RB)以及PRS的带宽。定位频率层的作用范围是该层内包含的所有的PRS资源。
PRS资源集层的参数包含PRS资源的周期、PRS资源集的起始时隙、PRS资源的重复因子、PRS资源之间的时间间隔以及PRS传输的静音图样。PRS资源集层的作用范围是该资源集内的所有的PRS资源。
PRS资源层的参数包含PRS所占第一个符号的起始RE位置、相对于第一个符号的RE位置间隔、PRS相对于PRS资源集第一个时隙的间隔(间隔单位为时隙)、PRS起始符号(Symbol)的位置以及所占的符号数。PRS资源层的作用范围是该层内的所有的PRS资源。
有鉴于此,本申请提供了一种资源分配方法,终端设备根据资源池的资源配置参数确定至少一个PSCCH频域资源范围,通过在至少一个PSCCH频域资 源范围内进行SCI盲检,以确定多个SL-PRS资源中可用的PRS的传输资源,不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。
对于Sidelink的通信场景,可分为终端设备均在基站覆盖范围内(In-Coverage)、部分终端设备处于基站覆盖范围内(Partial-Coverage)、以及终端设备均超出基站覆盖范围内(Out-of-Coverage),如图4A、图4B和图4C所示。
本申请实施例所适用的应用场景可以为上述任意一个通信场景,下面以图4C为例进行说明。
参见图4C,包括终端设备401和终端设备402。终端设备401和终端设备402通过直连通信接口(例如PC5)进行通信,终端设备401根据资源配置参数确定PSCCH频域资源范围,并在PSCCH频域资源范围进行PSCCH检测,以进行SCI盲检,使得终端设备401可用根据盲检结果确定终端设备402发送的SCI信息中指示的可用的PRS的传输资源。
可以理解,终端设备401和终端设备402的数量均可以为多个,图中未示出。终端设备401和终端设备402可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端、车辆终端设备、无人驾驶(Self Driving)中的无线终端、路侧设备(Road Side Unit,RSU)、远程医疗(Remote Medical)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(User Equipment,UE)、接入终端设备、车辆终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程用户设备、移动设备、无线通信设备、UE代理或UE装置等。
图4A-4C中的基站是一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、NR中的基站(gNodeB或gNB)或收发节点(Transmission and Receiving Points,TRP)、后续演进***中的基站、无线保真(Wireless Fidelity,WiFi)***中的接入节点、无线中继节点、无线回传节点等。基站可以是:宏基站、微基站、微微基站、小站、中继站等。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立存在,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图5为本申请实施例一提供的一种资源分配方法的流程示意图,该方法可以由终端设备执行,参考图5,该方法包括如下步骤。
S501、终端设备获取资源池的资源配置参数。
终端设备可以获取资源池的资源配置参数,该资源池可用于传输PRS,可以理解,该资源池也可以用于终端设备传输PSCCH和PSSCH等信息,本申请对此不作限制。
需要说明的是,资源配置参数可以是终端设备根据其预定义规则确定的,也可以是由终端设备的高层信令预配置的,终端设备通过高层信令获取该资源配置参数。或者,资源配置参数也可以由网络设备(例如基站)配置,并发送给终端设备。
S502、终端设备根据资源配置参数,确定资源池频域上至少一个PSCCH频域资源范围。
终端设备获取到资源配置参数后,可以根据资源配置参数确定该资源池频域上至少一个PSCCH频域资源范围。
进一步的,资源配置参数的不同,确定的至少一个PSCCH频域资源范围的方式不同,示例性的,当资源配置参数中包括每个时隙中SL-PRS资源的配置参数,则表示每个时隙中包括多个SL-PRS资源,那么,终端设备可以在每个时隙中确定的至少一个PSCCH频域资源范围,从而终端设备根据SL-PRS资源与PSCCH频域资源范围的映射方式,确定每个PSCCH频域资源范围关联的SL-PRS资源。
S503、终端设备在至少一个PSCCH频域资源范围进行SCI盲检,以确定资源池中可用的PRS的传输资源。
终端设备可以在至少一个PSCCH频域资源范围进行SCI盲检,根据盲检结果,确定可用的PRS的传输资源。
示例性的,当资源配置参数中包括每个时隙中SL-PRS资源的配置参数,则终端设备用于SCI盲检的每个PSCCH频域资源范围,均关联至少一个SL-PRS资源,那么,终端设备根据盲检结果,可以确定至少一个PSCCH频域资源范围中每个PSCCH频域资源范围关联的SL-PRS资源是否可用,以实现一个时隙中 可以有至少一个SL-PRS资源提供给多个终端设备进行PRS的传输。
示例性的,上述盲检结果可以是RSRP的值,当RSRP的值小于或者等于预设的功率阈值,则确定相应的PSCCH频域资源范围关联的SL-PRS资源可用,可以理解,可用的SL-PRS资源可以是其他终端设备在资源选择窗内的预留资源。
在本实施例中,终端设备通过获取资源池的资源配置参数,根据该资源配置参数确定资源池频域上至少一个PSCCH频域资源范围,并在至少一个PSCCH频域资源范围进行SCI盲检,使得根据SCI盲检结果确定资源池中可用的PRS的传输资源,不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。
资源配置参数不同,相应的,PSCCH频域资源范围的确定方式也有所不同,示例性的,可分为四种确定方式。下面以四种确定方式为例,通过实施例二至实施例五分别对终端设备根据四种确定方式确定PSCCH频域资源范围进行详细说明。
本申请实施例二提供的一种PSCCH频域资源范围的确定方法,该方法可以由终端设备执行。
资源配置参数包括以下一个或多个参数:每个时隙中至少一个SL-PRS资源的配置参数、每个PSCCH频域资源范围关联的SL-PRS资源的个数N,N为正整数。
其中,SL-PRS资源的配置参数可以包括:SL-PRS的起始符号位置、SL-PRS占用的符号数、SL-PRS的资源单元偏移值、SL-PRS的资源图样、以及SL-PRS所占用的频域子信道个数或资源块个数。
终端设备可以基于上述资源配置参数中的每个PSCCH频域资源范围关联的SL-PRS资源的个数N,以及每个时隙配置的SL-PRS资源个数,划分资源池的频域资源,以确定至少一个PSCCH频域资源范围的资源大小。示例性的,当N为2,每个时隙配置的SL-PRS资源个数为8,资源池的带宽为24个子信道,则根据N和SL-PRS资源个数8,如图6所示,可以确定4个PSCCH频域资源范围,那么每个PSCCH频域资源范围的资源大小为6个子信道,图中已按照频域位置由低到高排序。
进一步的,终端设备可以根据每个PSCCH频域资源范围的资源大小、SL-PRS资源的配置参数、SL-PRS资源与PSCCH频域资源范围的映射方式,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
可选的,上述映射关系为根据SL-PRS资源的索引号,以及至少一个PSCCH 频域资源范围频域位置,依次进行SL-PRS资源与PSCCH频域资源范围的映射。具体的,上述映射关系可以是根据SL-PRS资源的索引号由小到大,以及至少一个PSCCH频域资源范围频域位置由低到高,依次进行SL-PRS资源与PSCCH频域资源范围的映射。
以4个PSCCH频域资源范围为例,4个PSCCH频域资源范围频域位置由低到高排列为:PSCCH频域资源范围1,…,PSCCH频域资源范围4。每个时隙配置的8个SL-PRS资源按照索引号从小到大进行排列为:SL-PRS1,SL-PRS2,…,SL-PRS8。则按照SL-PRS资源与PSCCH频域资源范围的映射方式,按照SL-PRS资源的索引号从小到大,将每两个SL-PRS资源按照PSCCH频域资源范围的频域位置由低到高依次进行SL-PRS资源与PSCCH频域资源范围的映射,即将SL-PRS1与SL-PRS2与PSCCH频域资源范围1进行映射,将SL-PRS3与SL-PRS4与PSCCH频域资源范围2进行映射,将SL-PRS5与SL-PRS6与PSCCH频域资源范围3进行映射,将SL-PRS7与SL-PRS8与PSCCH频域资源范围4进行映射,也就是说,将每两个SL-PRS资源与PSCCH频域资源范围进行关联,以具备关联关系,从而使得终端设备可以根据PSCCH频域资源范围内进行SCI盲检的盲检结果,确定与PSCCH频域资源范围关联的SL-PRS资源是否可用。
具体的,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围后,根据SL-PRS资源的配置参数,可以确定SL-PRS资源的起始符号位置、占用的符号数、资源单元偏移值、资源图样以及所占用的频域子信道个数或资源块个数等,使得当确定SL-PRS资源可用时,终端设备使用该SL-PRS资源进行PRS传输。
在本实施例中,终端设备根据资源配置参数划分资源池的频域资源,确定PSCCH频域资源范围的资源大小以及位置后,按照SL-PRS资源与PSCCH频域资源范围的映射方式将一个时隙中的SL-PRS资源与PSCCH频域资源范围进行映射,从而使得终端设备可以根据PSCCH频域资源范围内进行SCI盲检的盲检结果,确定与PSCCH频域资源范围关联的SL-PRS资源是否可用。不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。
本申请实施例三提供的另一种PSCCH频域资源范围的确定方法,该方法可以由终端设备执行。
资源配置参数包括以下一个或多个参数:每个时隙中至少一个SL-PRS资源 的配置参数、PSCCH频域资源范围的个数P、每个PSCCH频域资源范围的资源大小、第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,其中P为大于或等于1的整数。
其中,SL-PRS资源的配置参数可以包括:SL-PRS的起始符号位置、SL-PRS占用的符号数、SL-PRS的资源单元偏移值、SL-PRS的资源图样以及SL-PRS所占用的频域子信道个数或资源块个数。
终端设备可以基于上述资源配置参数中的每个PSCCH频域资源范围的资源大小、PSCCH频域资源范围的个数P、第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,确定至少一个PSCCH频域资源范围的位置。
作为一种可能的实现方式,终端设备也可以根据每个时隙配置的SL-PRS资源个数确定PSCCH频域资源范围的个数P,即每个时隙配置的SL-PRS资源个数可以等于PSCCH频域资源范围的个数P。
示例性的,第一个PSCCH频域资源范围的起始位置可以是起始资源块或者起始子信道的编号,例如第一个PSCCH频域资源范围的起始子信道的编号为0,由于一个子信道包括多个资源块,所以不限定第一个PSCCH频域资源范围的起始位置为子信道0中的某个资源块,也就是说,整个子信道0均可作为第一个PSCCH频域资源范围的起始位置。PSCCH频域资源范围的个数P的值为3,相邻两个PSCCH频域资源范围的频域间隔为2个子信道,则终端设备确定3个PSCCH频域资源范围的位置如图7所示,图中已按照频域位置由低到高排序。
进一步的,终端设备可以根据每个时隙配置的SL-PRS资源个数和PSCCH频域资源范围的个数P,确定一个PSCCH频域资源范围对应的SL-PRS资源的个数,示例性的,当每个时隙配置的SL-PRS资源个数为3,P为3,则确定一个PSCCH频域资源范围对应的一个SL-PRS资源。
进一步的,终端设备可以根据至少一个PSCCH频域资源范围的位置、SL-PRS资源的配置参数、SL-PRS资源与PSCCH频域资源范围的映射方式,以及一个PSCCH频域资源范围对应的SL-PRS资源的个数,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
以图7为例,3个PSCCH频域资源范围按照频域位置由低到高排序为:PSCCH频域资源范围1,PSCCH频域资源范围2,PSCCH频域资源范围3。每个时隙配置的3个SL-PRS资源按照索引号由小到大排序为:SL-PRS1,SL-PRS2,SL-PRS3。终端设备可以按照SL-PRS资源与PSCCH频域资源范围的映射方式, 将SL-PRS1与PSCCH频域资源范围1进行映射,将SL-PRS2与PSCCH频域资源范围2进行映射,将SL-PRS3与PSCCH频域资源范围3进行映射。也就是说,将每个SL-PRS资源与每个PSCCH频域资源范围进行关联,以具备关联关系,从而使得终端设备可以根据PSCCH频域资源范围内进行SCI盲检的盲检结果,确定与PSCCH频域资源范围关联的SL-PRS资源是否可用。
在另一个示例中,第一个PSCCH频域资源范围的起始子信道的编号为2,PSCCH频域资源范围的个数P的值为2,相邻两个PSCCH频域资源范围的频域间隔为2个子信道,则终端设备确定2个PSCCH频域资源范围的位置如图8所示。进一步的,终端设备可以根据每个时隙配置的SL-PRS资源个数4和PSCCH频域资源范围的个数2,确定一个PSCCH频域资源范围对应的2个SL-PRS资源。
2个PSCCH频域资源范围按照频域位置由低到高排序为:PSCCH频域资源范围1,PSCCH频域资源范围2,每个时隙配置的4个SL-PRS资源按照索引号由小到大排序为:SL-PRS1,SL-PRS2,SL-PRS3,SL-PRS4。如图8所示,终端设备按照SL-PRS资源与PSCCH频域资源范围的映射方式、将SL-PRS1和SL-PRS2均与PSCCH频域资源范围1进行映射,将SL-PRS3和SL-PRS4均与PSCCH频域资源范围2进行映射。也就是说,将每两个SL-PRS资源与每个PSCCH频域资源范围进行关联,以具备关联关系。
在又一个示例中,第一个PSCCH频域资源范围的起始子信道的编号为2,PSCCH频域资源范围的个数P的值为2,相邻两个PSCCH频域资源范围的频域间隔为2个子信道,则终端设备确定2个PSCCH频域资源范围的位置如图9所示。进一步的,终端设备可以根据每个时隙配置的SL-PRS资源个数5和PSCCH频域资源范围的个数2,终端设备可以通过SL-PRS资源的个数M与PSCCH频域资源范围的个数N的比值,并且向上取整,确定一个PSCCH频域资源范围关联的SL-PRS资源的个数,即一个PSCCH频域资源范围对应的SL-PRS资源个数等于那么,在该示例中,终端设备可以确定一个PSCCH频域资源范围对应的3个SL-PRS资源。
2个PSCCH频域资源范围按照频域位置由低到高排序为:PSCCH频域资源范围1,PSCCH频域资源范围2,每个时隙配置的5个SL-PRS资源按照索引号由小到大排序为:SL-PRS1,SL-PRS2,…,SL-PRS5。如图9所示,终端设备按照SL-PRS资源与PSCCH频域资源范围的映射方式、将SL-PRS1、SL-PRS2和SL-PRS3均与PSCCH频域资源范围1进行映射,将SL-PRS4和SL-PRS5均 与PSCCH频域资源范围2进行映射。也就是说,将前三个SL-PRS资源与第一个PSCCH频域资源范围进行关联,将后两个SL-PRS资源与第二个PSCCH频域资源范围进行关联,以具备关联关系。
对于SL-PRS资源与PSCCH频域资源范围的映射方式的描述,可以参考实施例二,这里不再赘述。
具体的,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围后,根据SL-PRS资源的配置参数,可以确定SL-PRS资源的起始符号位置、占用的符号数、资源单元偏移值、资源图样以及所占用的频域子信道个数或资源块个数等,使得当确定SL-PRS资源可用时,终端设备使用该SL-PRS资源进行PRS传输。
在本实施例中,终端设备根据资源配置参数划分资源池的频域资源,确定PSCCH频域资源范围的位置和资源大小后,按照SL-PRS资源与PSCCH频域资源范围的映射方式将一个时隙中的SL-PRS资源与PSCCH频域资源范围进行映射,从而使得终端设备可以根据PSCCH频域资源范围内进行SCI盲检的盲检结果,确定与PSCCH频域资源范围关联的SL-PRS资源是否可用。不再需要分配一个时隙给一个终端设备进行PRS的传输,有助于缓解资源紧缺的问题,提高了资源池的资源的利用率。
需要说明的是,对于上述实施例中的SL-PRS资源与PSCCH频域资源范围的映射方式,本申请实施例仅为示例,SL-PRS资源与PSCCH频域资源范围的映射方式还可以是其他的映射方式,例如可以是根据SL-PRS资源的索引号由大到小,以及至少一个PSCCH频域资源范围频域位置由低到高,依次进行SL-PRS资源与PSCCH频域资源范围的映射。又例如,SL-PRS资源与PSCCH频域资源范围的映射方式还可以是将SL-PRS资源与任意一个或者多个PSCCH频域资源范围进行映射,本申请对此不作限定。
本申请实施例四提供的另一种PSCCH频域资源范围的确定方法,该方法可以由终端设备执行。
资源配置参数包括以下一个或者多个参数:PSCCH频域资源范围的起始位置和PSCCH频域资源范围的资源大小。对于PSCCH频域资源范围的起始位置的描述,可以参考实施例三,这里不再赘述。
进一步的,终端设备可以根据PSCCH频域资源范围的起始位置和PSCCH频域资源范围的资源大小,确定资源池频域上至少一个PSCCH频域资源范围,如图10所示,图10为确定的一个PSCCH频域资源范围的示意图。
作为一种可能的实现方式,终端设备还可以根据资源池的资源大小,以及PSCCH频域资源范围的资源大小,确定多个PSCCH频域资源范围。示例性的,当资源池的资源大小为64个子信道,PSCCH频域资源范围的资源大小为8个子信道,则终端设备可以确定8个PSCCH频域资源范围。使得终端设备可以在至少一个PSCCH频域资源范围内进行SCI盲检,根据SCI盲检结果,确定可用的PRS的传输资源。
在本实施例中,终端设备根据资源配置参数确定至少一个PSCCH频域资源范围,从而使得终端设备只需要在PSCCH频域资源范围内进行SCI盲检,以根据盲检结果,确定可用的PRS的传输资源,而不需要再整个PRS资源池进行SCI盲检,降低了终端设备进行SCI盲检的复杂度。
本申请实施例五提供的另一种PSCCH频域资源范围的确定方法,该方法可以由终端设备执行。
资源配置参数包括以下一个或者多个参数:资源池的起始位置、PSCCH频域资源范围的资源大小。其中,资源池的起始位置可以是起始资源块或者起始子信道。
进一步的,终端设备可以将资源池的起始位置作为PSCCH频域资源范围的起始位置,然后根据PSCCH频域资源范围的起始位置和PSCCH频域资源范围的资源大小,确定资源池频域上至少一个PSCCH频域资源范围,如图11所示,图11为确定的一个PSCCH频域资源范围的示意图。
作为一种可能的实现方式,终端设备还可以根据资源池的资源大小,以及PSCCH频域资源范围的资源大小,确定多个PSCCH频域资源范围。示例性的,当资源池的资源大小为64个子信道,PSCCH频域资源范围的资源大小为8个子信道,则终端设备可以确定8个PSCCH频域资源范围。使得终端设备可以在至少一个PSCCH频域资源范围内进行SCI盲检,根据SCI盲检结果,确定可用的PRS的传输资源。
在本实施例中,终端设备根据资源配置参数确定至少一个PSCCH频域资源范围,从而使得终端设备只需要在PSCCH频域资源范围内进行SCI盲检,以根据盲检结果,确定可用的PRS的传输资源,而不需要再整个PRS资源池进行SCI盲检,降低了终端设备进行SCI盲检的复杂度。
图12为本申请实施例六提供的一种资源分配装置的结构示意图。该装置120可以为芯片或者芯片模组。请参见图12,该装置120包括:获取模块1201、确定模块1202和处理模块1203。
获取模块1201,用于获取资源池的资源配置参数。
确定模块1202,用于根据资源配置参数,确定资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围。
处理模块1203,用于在至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定可用的定位参考信号PRS的传输资源。
在一种可能的实施方式中,资源配置参数包括以下一个或多个参数:
每个时隙中至少一个侧行链路定位参考信号SL-PRS资源的配置参数。
每个PSCCH频域资源范围关联的SL-PRS资源的个数N,N为正整数。
在一种可能的实施方式中,SL-PRS资源的配置参数,包括:
SL-PRS的起始符号位置。
SL-PRS占用的符号数。
SL-PRS的资源单元偏移值。
SL-PRS的资源图样。
SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,确定模块1202具体用于:
根据N和每个时隙配置的SL-PRS资源个数,划分资源池的频域资源,以确定至少一个PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块1202还用于:
根据资源大小、SL-PRS资源的配置参数、SL-PRS资源与PSCCH频域资源范围的映射方式,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
在一种可能的实施方式中,资源配置参数包括以下一个或者多个:
每个时隙中至少一个SL-PRS资源的配置参数。
PSCCH频域资源范围的个数P,P为大于或等于1的整数。
每个PSCCH频域资源范围的资源大小。
第一个PSCCH频域资源范围的起始位置。
相邻两个PSCCH频域资源范围的频域间隔。
在一种可能的实施方式中,SL-PRS资源的配置参数,包括:
SL-PRS的起始符号位置。
SL-PRS占用的符号数。
SL-PRS的资源单元偏移值。
SL-PRS的资源图样。
SL-PRS所占用的频域子信道个数或资源块个数。
在一种可能的实施方式中,确定模块1202还用于:
根据每个PSCCH频域资源范围的资源大小、P、第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,确定至少一个PSCCH频域资源范围的位置。
在一种可能的实施方式中,确定模块1020还用于:
根据每个时隙配置的SL-PRS资源个数和P,确定一个PSCCH频域资源范围对应的SL-PRS资源的个数。
在一种可能的实施方式中,确定模块1202还用于:
根据至少一个PSCCH频域资源范围的位置、SL-PRS资源的配置参数、SL-PRS资源与PSCCH频域资源范围的映射方式,以及一个PSCCH频域资源范围对应的SL-PRS资源的个数,在资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
在一种可能的实施方式中,映射方式为根据SL-PRS资源的索引号,以及至少一个PSCCH频域资源范围频域位置,依次进行SL-PRS资源与PSCCH频域资源范围的映射。
在一种可能的实施方式中,资源配置参数包括以下一个或者多个参数:
PSCCH频域资源范围的起始位置和PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块1202还用于:
根据起始位置和资源大小,确定资源池频域上至少一个PSCCH频域资源范围。
在一种可能的实施方式中,资源配置参数包括以下一个或者多个参数:
资源池的起始位置、PSCCH频域资源范围的资源大小。
在一种可能的实施方式中,确定模块1202还用于:
将资源池的起始位置作为PSCCH频域资源范围的起始位置。
根据起始位置和资源大小,确定资源池频域上至少一个PSCCH频域资源范围。
在一种可能的实施方式中,起始位置为资源池的起始子信道或者起始资源块RB。
在一种可能的实施方式中,处理模块1203具体用于:
在至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果。
根据SCI盲检结果,确定至少一个PSCCH频域资源范围中每个PSCCH频 域资源范围关联的PRS资源是否可用,可用的PRS的传输资源为其所在的时隙中多个SL-PRS资源中的至少一个。
在一种可能的实施方式中,处理模块1203还用于:
在至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果。
根据SCI盲检结果,确定可用的PRS的传输资源。
在一种可能的实施方式中,资源池用于传输PRS。
本实施例的装置,可用于执行上述方法实施例中的一种资源分配方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
图13为本申请实施例七提供的一种资源分配装置的结构示意图,如图13所示,资源分配装置130可以包括:至少一个处理器1301和存储器1302。
存储器1302,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器1302可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非易失性存储器(Non-Volatile Memory),例如至少一个磁盘存储器。
处理器1301用于执行存储器1302存储的计算机执行指令,以实现前述方法实施例所描述的方法。其中,处理器1301可能是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,资源分配装置130还可以包括:通信接口1303。在具体实现上,如果通信接口1303、存储器1302和处理器1301独立实现,则通信接口1303、存储器1302和处理器1301可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果通信接口1303、存储器1302和处理器1301集成在一块芯片上实现,则通信接口1303、存储器1302和处理器1301可以通过内部接口完成通信。
资源分配装置130可以为芯片、模组、IDE或者终端设备等。
本实施例的资源分配装置,可用于执行上述方法实施例中的一种资源分配方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例八提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、RAM、磁盘或者光盘等各种可以存储计算机程序的介质,具体的,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器执行时用于实现上述方法实施例所示的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例九提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时,实现上述方法实施例所示的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十提供一种芯片,芯片上存储有计算机程序,计算机程序被芯片执行时,实现上述方法实施例所示的方法。该芯片还可以为芯片模组。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (22)

  1. 一种资源分配方法,其特征在于,包括:
    获取资源池的资源配置参数;
    根据所述资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围;
    在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源。
  2. 根据权利要求1所述的方法,其特征在于,所述资源配置参数包括以下一个或多个参数:
    每个时隙中至少一个侧行链路定位参考信号SL-PRS资源的配置参数;
    每个PSCCH频域资源范围关联的SL-PRS资源的个数N,所述N为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述SL-PRS资源的配置参数,包括:
    所述SL-PRS的起始符号位置;
    所述SL-PRS占用的符号数;
    所述SL-PRS的资源单元偏移值;
    所述SL-PRS的资源图样;
    所述SL-PRS所占用的频域子信道个数或资源块个数。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
    根据所述N和每个时隙配置的SL-PRS资源个数,划分所述资源池的频域资源,以确定至少一个PSCCH频域资源范围的资源大小。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述资源大小、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,在所述资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
  6. 根据权利要求1所述的方法,其特征在于,所述资源配置参数包括以下一个或者多个:
    每个时隙中至少一个SL-PRS资源的配置参数;
    PSCCH频域资源范围的个数P,所述P为大于或等于1的整数;
    每个PSCCH频域资源范围的资源大小;
    第一个PSCCH频域资源范围的起始位置;
    相邻两个PSCCH频域资源范围的频域间隔。
  7. 根据权利要求6所述的方法,其特征在于,所述SL-PRS资源的配置参数,包括:
    所述SL-PRS的起始符号位置;
    所述SL-PRS占用的符号数;
    所述SL-PRS的资源单元偏移值;
    所述SL-PRS的资源图样;
    所述SL-PRS所占用的频域子信道个数或资源块个数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
    根据每个PSCCH频域资源范围的资源大小、所述P、所述第一个PSCCH频域资源范围的起始位置以及相邻两个PSCCH频域资源范围的频域间隔,确定至少一个PSCCH频域资源范围的位置。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据每个时隙配置的SL-PRS资源个数和所述P,确定一个PSCCH频域资源范围对应的SL-PRS资源的个数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据所述至少一个PSCCH频域资源范围的位置、所述SL-PRS资源的配置参数、所述SL-PRS资源与所述PSCCH频域资源范围的映射方式,以及一个PSCCH频域资源范围对应的SL-PRS资源的个数,在所述资源池频域上确定每个SL-PRS资源关联的PSCCH频域资源范围。
  11. 根据权利要求5或10所述的方法,其特征在于,所述映射方式为根据SL-PRS资源的索引号,以及所述至少一个PSCCH频域资源范围频域位置,依次进行SL-PRS资源与PSCCH频域资源范围的映射。
  12. 根据权利要求1所述的方法,其特征在于,所述资源配置参数包括以下一个或者多个参数:
    PSCCH频域资源范围的起始位置和所述PSCCH频域资源范围的资源大小。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频 域资源范围,包括:
    根据所述起始位置和所述资源大小,确定所述资源池频域上所述至少一个PSCCH频域资源范围。
  14. 根据权利要求1所述的方法,其特征在于,所述资源配置参数包括以下一个或者多个参数:
    所述资源池的起始位置、PSCCH频域资源范围的资源大小。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述资源池的资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围,包括:
    将所述资源池的起始位置作为所述PSCCH频域资源范围的起始位置;
    根据所述起始位置和所述资源大小,确定所述资源池频域上至少一个PSCCH频域资源范围。
  16. 根据权利要求6-8或者12-15任一项所述的方法,其特征在于,所述起始位置为所述资源池的起始子信道或者起始资源块RB。
  17. 根据权利要求2-10任一项所述的方法,其特征在于,所述在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源,包括:
    在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
    根据所述SCI盲检结果,确定所述至少一个PSCCH频域资源范围中每个PSCCH频域资源范围关联的PRS资源是否可用,所述可用的PRS的传输资源为其所在的时隙中多个SL-PRS资源中的至少一个。
  18. 根据权利要求12-15任一项所述的方法,其特征在于,所述在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定所述资源池中可用的定位参考信号PRS的传输资源,包括:
    在所述至少一个PSCCH频域资源范围内进行SCI盲检,得到SCI盲检结果;
    根据所述SCI盲检结果,确定所述可用的PRS的传输资源。
  19. 根据权利要求1所述的方法,其特征在于,所述资源池用于传输所述PRS。
  20. 一种资源分配装置,其特征在于,包括:
    获取模块,用于获取资源池的资源配置参数;
    确定模块,用于根据所述资源配置参数,确定所述资源池频域上至少一个物理侧行链路控制信道PSCCH频域资源范围;
    处理模块,用于在所述至少一个PSCCH频域资源范围内进行侧行链路控制信息SCI盲检,以确定可用的定位参考信号PRS的传输资源。
  21. 一种资源分配装置,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-19中任一项所述的资源分配方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1-19任一项所述的资源分配方法。
PCT/CN2023/113399 2022-08-17 2023-08-16 资源分配方法、装置以及存储介质 WO2024037571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989350.X 2022-08-17
CN202210989350.XA CN117651337A (zh) 2022-08-17 2022-08-17 资源分配方法、装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2024037571A1 true WO2024037571A1 (zh) 2024-02-22

Family

ID=89940726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113399 WO2024037571A1 (zh) 2022-08-17 2023-08-16 资源分配方法、装置以及存储介质

Country Status (2)

Country Link
CN (1) CN117651337A (zh)
WO (1) WO2024037571A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383749A (zh) * 2019-06-03 2019-10-25 北京小米移动软件有限公司 控制信道发送、接收方法、装置及存储介质
CN111435909A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 发送和接收反馈信道的方法以及装置
US20200314804A1 (en) * 2019-03-28 2020-10-01 Samsung Electronics Co., Ltd. Method and device of resource allocation for sidelink transmission in wireless communication system
CN113228789A (zh) * 2019-04-08 2021-08-06 华为技术有限公司 用于侧行传输的harq反馈和重传机制
WO2021240479A1 (en) * 2020-05-29 2021-12-02 Lenovo (Singapore) Pte. Ltd. Requesting a sidelink positioning reference signal resource
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115280860A (zh) * 2020-03-19 2022-11-01 高通股份有限公司 覆盖外侧链路辅助协同定位中定位参考信号资源的确定

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435909A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 发送和接收反馈信道的方法以及装置
US20200314804A1 (en) * 2019-03-28 2020-10-01 Samsung Electronics Co., Ltd. Method and device of resource allocation for sidelink transmission in wireless communication system
CN113228789A (zh) * 2019-04-08 2021-08-06 华为技术有限公司 用于侧行传输的harq反馈和重传机制
CN110383749A (zh) * 2019-06-03 2019-10-25 北京小米移动软件有限公司 控制信道发送、接收方法、装置及存储介质
CN115280860A (zh) * 2020-03-19 2022-11-01 高通股份有限公司 覆盖外侧链路辅助协同定位中定位参考信号资源的确定
WO2021240479A1 (en) * 2020-05-29 2021-12-02 Lenovo (Singapore) Pte. Ltd. Requesting a sidelink positioning reference signal resource
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117651337A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
CN109526255B (zh) 从重叠资源池中选择无线电资源以用于车辆(v2x)通信的方法和装置
US10716092B2 (en) Method and apparatus for selecting radio resources for vehicle (V2X) communications from an overlapping resource pool
WO2018126857A1 (zh) 一种上行传输方法、终端、网络侧设备
KR102032884B1 (ko) 물리적 다운링크 제어 채널의 전송 방법 및 장치
EP4280763A2 (en) Communication method and apparatus
WO2020200014A1 (zh) 通信方法及装置
CN112055982B (zh) 测距信号的发送、接收方法、装置、设备及可读存储介质
WO2019061103A1 (zh) 直连链路数据传输的方法、终端设备和网络设备
CN112187401B (zh) 多时间单元传输方法及相关装置
CN113766575A (zh) 通信方法及通信设备
CN112188637B (zh) 无线通信方法、用户设备和网络设备
JP2022551552A (ja) 上りリンク制御情報の伝送方法及び装置
CN109328478A (zh) 资源处理方法、装置及终端
WO2024037571A1 (zh) 资源分配方法、装置以及存储介质
WO2021228163A1 (zh) 确定资源的方法、装置及***
KR20220102586A (ko) 인터-ue 조정 기반의 사이드링크 자원의 할당을 위한 방법 및 장치
KR20220071950A (ko) 사이드링크 통신에서 추가 pqi를 사용한 데이터의 전송 방법 및 장치
WO2019128949A1 (zh) 一种数据传输格式的传输方法和装置
WO2023207774A1 (zh) 一种通信方法及装置
WO2023030199A1 (zh) 资源指示方法及通信装置
RU2802787C1 (ru) Способ отправки двух уровней каналов управления, терминальное устройство и устройство связи
RU2801816C1 (ru) Способ и устройство для передачи данных
US20220279486A1 (en) Method for Sending Two Levels of Control Channels, Terminal Device, and Communications Apparatus
US20240155582A1 (en) Enhancement of handling intra-cell guard band for sidelink (sl) in unlicensed spectrum
CN117354810A (zh) 信息传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854471

Country of ref document: EP

Kind code of ref document: A1