WO2024037344A1 - 显示面板及其显示方法、显示装置 - Google Patents

显示面板及其显示方法、显示装置 Download PDF

Info

Publication number
WO2024037344A1
WO2024037344A1 PCT/CN2023/110785 CN2023110785W WO2024037344A1 WO 2024037344 A1 WO2024037344 A1 WO 2024037344A1 CN 2023110785 W CN2023110785 W CN 2023110785W WO 2024037344 A1 WO2024037344 A1 WO 2024037344A1
Authority
WO
WIPO (PCT)
Prior art keywords
time period
preset time
picture
displayed
detection
Prior art date
Application number
PCT/CN2023/110785
Other languages
English (en)
French (fr)
Inventor
毛健
孟松
韦晓龙
刘苗
许程
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024037344A1 publication Critical patent/WO2024037344A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, to a display panel, a display method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • PM Passive Matrix
  • Active Matrix Active Matrix
  • AM Active Matrix
  • AMOLED is a current drive device and uses independent thin film transistors. (Thin Film Transistor, TFT for short) controls each sub-pixel, and each sub-pixel can be driven to emit light continuously and independently.
  • Embodiments of the present disclosure provide a display panel, including a plurality of pixel units and a detection and compensation circuit. At least one pixel unit includes a plurality of sub-pixels. At least one sub-pixel includes a pixel driving circuit and a component to be driven.
  • the display panel further includes : Detection unit and compensator;
  • the pixel driving circuit is configured to drive the element to be driven to emit light during the effective display time
  • the detection compensation circuit is configured to detect the electrical characteristics of the component to be driven during the non-effective display time
  • the detection unit is configured to detect whether the dynamic and static attributes of the picture displayed by the display panel have changed in the previous preset time period.
  • the preset time period includes the effective display time and the inactive display time.
  • the compensator is configured to receive the first notification and perform at least one of the following operations: not to perform the next preset operation based on the detection result of the detection compensation circuit in the previous preset time period. It is assumed that the picture displayed in the time period is compensated, and the detection function of the detection compensation circuit in the next preset time period is turned off.
  • An embodiment of the present disclosure also provides a display device, including: a display panel as described in any embodiment of the present disclosure.
  • Embodiments of the present disclosure also provide a display method for a display panel.
  • the display panel includes a plurality of pixel units and a detection compensation circuit.
  • At least one pixel unit includes a plurality of sub-pixels.
  • At least one sub-pixel includes a pixel driving circuit and a to-be-driven pixel unit.
  • the display panel further includes: a detection unit and a compensator, and the display method includes:
  • the detection unit detects whether the dynamic and static attributes of the picture displayed on the display panel have changed in the last preset time period.
  • the preset time period includes the effective display time and the ineffective display time.
  • the compensator When the compensator receives the first notification, the compensator performs at least one of the following operations: not based on the detection result of the detection compensation circuit in the previous preset time period. It is assumed that the picture displayed in the time period is compensated, and the detection function of the detection compensation circuit in the next preset time period is turned off.
  • Figure 1 is a schematic structural diagram of a display device
  • Figure 2 is a schematic plan view of a display panel
  • Figure 3 is an equivalent circuit diagram of a pixel driving circuit
  • Figure 4 is a schematic diagram of the difference in detection results obtained by detecting the 1080th line of the display panel under two black and white screens;
  • Figure 5 is a schematic diagram of the difference in detection results obtained by detecting line 3240 of the display panel under two black and white screens;
  • Figure 6 is a schematic structural diagram of a display panel according to an exemplary embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of the connection relationship between a pixel driving circuit and a detection compensation circuit according to an exemplary embodiment of the present disclosure
  • Figure 8 is a schematic diagram of a display process of a display panel according to an exemplary embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of the changes in the threshold flag bit and the detection flag bit in the display process corresponding to Figure 8;
  • Figure 10 is a display flow chart of another display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a display flow chart of yet another display panel according to an exemplary embodiment of the present disclosure.
  • the scale of the drawings in this disclosure can be used as a reference in actual processes, but is not limited thereto.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, and the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display panel and the number of sub-pixels in each pixel are not limited to the numbers shown in the figures.
  • the figures described in the present disclosure are only structural schematic diagrams. One mode of the present disclosure is not limited to the figures. The shape or numerical value shown in the figure.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • a transistor refers to an element including at least three terminals: a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, channel region, and source electrode .
  • the channel region refers to the region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged with each other. Therefore, in this specification, “source electrode” and “drain electrode” can be interchanged with each other, and “source terminal” and “drain terminal” can be interchanged with each other.
  • electrical connection includes a case where constituent elements are connected together through an element having some electrical effect.
  • component having some electrical function There is no particular limitation on the “component having some electrical function” as long as it can transmit and receive electrical signals between the connected components.
  • elements having some electrical function include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements with various functions.
  • Figure 1 is a schematic structural diagram of a display device.
  • the display device may include a timing controller, a data signal driver, a scanning signal driver and a pixel array.
  • the timing controller is respectively connected to the data signal driver and the scanning signal driver.
  • the data signal driver is respectively connected to a plurality of data signal lines ( D1 to Dn) are connected, and the scanning signal driver is connected to a plurality of scanning signal lines (S1 to Sm) respectively.
  • the pixel array may include a plurality of sub-pixels Pxij, i and j may be natural numbers, at least one sub-pixel Pxij may include a circuit unit and a light-emitting device connected to the circuit unit, and the circuit unit may include at least one scanning signal line, at least one data signal line and Pixel drive circuit.
  • the timing controller may provide a gray value and a control signal suitable for the specifications of the data signal driver to the data signal driver, and may provide a clock signal, a scan start signal, etc. suitable for the specifications of the scan signal driver.
  • the data signal driver may generate data voltages to be provided to the data signal lines D1, D2, D3, . . .
  • the data signal driver may sample the grayscale value using a clock signal and apply a data voltage corresponding to the grayscale value to the data signal lines D1 to Dn in units of pixel rows, where n may be a natural number.
  • the scan signal driver may generate scan signals to be supplied to the scan signal lines S1, S2, S3, . . . and Sm by receiving a clock signal, a scan start signal, and the like from the timing controller.
  • the scan signal driver may sequentially supply scan signals having on-level pulses to the scan signal lines S1 to Sm.
  • the scan signal driver may be configured in the form of a shift register, and may generate the scan in a manner that sequentially transmits a scan start signal provided in the form of an on-level pulse to a next-stage circuit under the control of a clock signal.
  • Signal, m can be a natural number.
  • Figure 2 is a schematic plan view of a display panel.
  • the display panel may include a plurality of pixel units P arranged in a matrix. At least one of the plurality of pixel units P includes a first sub-pixel P1 that emits light of a first color, a third sub-pixel that emits light of a second color. There are two sub-pixels P2, a third sub-pixel P3 that emits light of the third color, and a fourth sub-pixel P4 that emits light of the fourth color.
  • Each of the four sub-pixels may include a circuit unit and a light-emitting device.
  • the circuit unit may include a scanning signal line, data The signal line and the pixel driving circuit, the pixel driving circuit is electrically connected to the scanning signal line and the data signal line respectively, and the pixel driving circuit is configured to receive the data voltage transmitted by the data signal line under the control of the scanning signal line, and output a corresponding signal to the light-emitting device. of current.
  • the light-emitting device in each sub-pixel is respectively connected to the pixel driving circuit of the sub-pixel, and the light-emitting device is configured to emit light of corresponding brightness in response to the current output by the pixel driving circuit of the sub-pixel.
  • the first sub-pixel P1 may be a red sub-pixel (R) emitting red light
  • the second sub-pixel P2 may be a green sub-pixel (G) emitting green light
  • the third sub-pixel P3 may be A white sub-pixel (W) that emits white light
  • the fourth sub-pixel P4 may be a blue sub-pixel (B) that emits blue light.
  • the shape of the sub-pixel may be a rectangular shape, a rhombus shape, a pentagonal shape, or a hexagonal shape.
  • four sub-pixels may be arranged horizontally in parallel to form an RWBG pixel arrangement.
  • the four sub-pixels may be arranged in a square, diamond, or vertical arrangement, which is not limited in this disclosure.
  • a plurality of sub-pixels arranged in sequence in the horizontal direction are called pixel rows, and a plurality of sub-pixels arranged in sequence in the vertical direction are called pixel columns.
  • the plurality of pixel rows and the plurality of pixel columns constitute a pixel array arranged in an array. .
  • the pixel driving circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C, 7T1C or 8T1C structure.
  • Figure 3 is an equivalent circuit schematic diagram of a pixel driving circuit. As shown in Figure 3, the pixel driving circuit has a 3T1C structure and may include 3 transistors (first transistor T1, second transistor T2 and third transistor T3), 1 storage capacitor C and 6 signal lines (data signal line D , the first scanning signal line G1, the second scanning signal line G2, the compensation signal line S, the first power supply line VDD and the second power supply line VSS).
  • the first transistor T1 is a switching transistor
  • the second transistor T2 is a driving transistor
  • the third transistor T3 is a compensation transistor.
  • the first pole of the storage capacitor C is coupled to the control pole of the second transistor T2, and the second pole of the storage capacitor C is coupled to the second pole of the second transistor T2.
  • the storage capacitor C is used to store the control pole of the second transistor T2. potential.
  • the control electrode of the first transistor T1 is coupled to the first scanning signal line G1, the first electrode of the first transistor T1 is coupled to the data signal line D, and the second electrode of the first transistor T1 is coupled to the control electrode of the second transistor T2.
  • the first transistor T1 is used to receive the data signal transmitted by the data signal line D under the control of the first scanning signal line G1, so that the control pole of the second transistor T2 receives the data signal.
  • the control electrode of the second transistor T2 is coupled to the second electrode of the first transistor T1, the first electrode of the second transistor T2 is coupled to the first power line VDD, and the second electrode of the second transistor T2 is coupled to the light emitting device.
  • the first electrode (anode) and the second transistor T2 are used to generate corresponding voltage at the second electrode under the control of the data signal received by its control electrode. flow.
  • the control electrode of the third transistor T3 is coupled to the second scanning signal line G2, the first electrode of the third transistor T3 is coupled to the compensation signal line S, and the second electrode of the third transistor T3 is coupled to the second electrode of the second transistor T2.
  • the second transistor T3 is used to extract the threshold voltage Vth and mobility of the second transistor T2 in response to the compensation timing to compensate the threshold voltage Vth.
  • the second electrode (cathode) of the light-emitting device is connected to the second power supply line VSS.
  • the light-emitting device may be an OLED, including a stacked first electrode (anode), an organic light-emitting layer, and a second electrode (cathode).
  • the first electrode of the OLED is coupled to the second electrode of the second transistor T2. pole, the second pole of the OLED is coupled to the second power line VSS, and the OLED is used to respond to the current of the second pole of the second transistor T2 to emit light with corresponding brightness.
  • the signal of the first power line VDD continuously provides a high-level signal
  • the signal of the second power line VSS is a low-level signal.
  • the first to third transistors T1 to T3 may be P-type transistors, or may be N-type transistors. Using the same type of transistors in the pixel drive circuit can simplify the process flow, reduce the process difficulty of the display panel, and improve the product yield.
  • the first to third transistors T1 to T3 may employ low-temperature polysilicon thin film transistors, or may employ oxide thin film transistors, or may employ low-temperature polysilicon thin film transistors and oxide thin film transistors.
  • the active layer of low temperature polysilicon thin film transistors uses low temperature polysilicon (LTPS), and the active layer of oxide thin film transistors uses oxide (Oxide).
  • LTPS low temperature polysilicon
  • Oxide oxide
  • Low-temperature polysilicon thin film transistors have the advantages of high mobility and fast charging, while oxide thin film transistors have the advantages of low leakage current.
  • a low temperature polycrystalline silicon thin film transistor and an oxide thin film transistor can be integrated on a display panel to form a low temperature polycrystalline oxide (LTPO) display panel, and the advantages of both can be utilized.
  • LTPO low temperature polycrystalline oxide
  • the light-emitting device may be an organic electroluminescent diode (OLED) including a stacked first electrode (anode), an organic light-emitting layer, and a second electrode (cathode).
  • OLED organic electroluminescent diode
  • the time of each frame (Frame) of the OLED display device is divided into effective display time (Active time) and blank time (Blank time).
  • active display time the OLED display device uses the pixel drive circuit to perform normal data output display.
  • the detection compensation circuit is used for external real-time detection compensation (Real Time Sense).
  • OLED display devices in each frame The blank time is compensated in real time, the changes in TFT characteristics of the panel device are detected, and the display quality is improved through external compensation.
  • Figure 4 is a schematic diagram of the difference in detection results obtained by detecting the 1080th line of the display panel under two black and white screens.
  • Figure 5 is a schematic diagram of the detection results obtained by detecting the 3240th line of the display panel under two black and white screens.
  • a schematic diagram of the result difference in which the abscissa "analog-to-digital conversion channel" represents the number of columns of the display panel, and the ordinate "analog-to-digital conversion value" represents the detected voltage digital quantity.
  • the voltage digital The analog quantity corresponding to quantity x can be x/1023*16.5V.
  • the detection results of the same row of the OLED panel vary greatly under pictures of different colors and different gray scales. This phenomenon is particularly significant when the picture changes drastically. At this time, the voltage coupling caused by drastic changes in the picture will cause voltage fluctuations on the compensation signal line S in the panel, and the compensation data generated by real-time detection will cause visible horizontal textures in the compensated picture.
  • an embodiment of the present disclosure provides a display panel, including a plurality of pixel units P and a detection compensation circuit.
  • At least one pixel unit P includes a plurality of sub-pixels, and at least one sub-pixel includes a pixel driving circuit (in the figure (not shown) and components to be driven (not shown in the figure), the display panel also includes: a detection unit and a compensator, wherein:
  • a pixel driving circuit configured to drive the element to be driven to emit light during the effective display time
  • a detection compensation circuit configured to detect the electrical characteristics of the component to be driven during the non-effective display time
  • the detection unit is configured to detect whether the dynamic and static attributes of the picture displayed in the last preset time period change, and when the dynamic and static attributes of the picture displayed in the last preset time period change, send a first notification to the compensator;
  • the compensator is configured to receive the first notification, not to compensate the picture displayed in the next preset time period based on the detection result of the detection compensation circuit in the previous preset time period, and/or to turn off the detection. Test the detection function of the compensation circuit in the next preset time period.
  • the preset time period includes the effective display time and the inactive display time.
  • the display panel provided by the embodiment of the present disclosure detects whether the dynamic and static attributes of the picture displayed in the previous preset time period have changed during the display process. If the dynamic and static attributes do not change, real-time detection and compensation are performed. Otherwise, no compensation is performed based on the detection.
  • the detection results of the compensation circuit in the last preset time period are Compensate the picture displayed in the next preset time period, and/or turn off the detection function of the detection compensation circuit in the next preset time period to maintain the accuracy of real-time detection and compensation data, which can effectively shield the picture due to The phenomenon of horizontal texture appearing on the display screen after compensation caused by changes in dynamic and static attributes.
  • FIG. 7 is a schematic diagram of the connection relationship between a pixel driving circuit and a detection compensation circuit according to an exemplary embodiment of the present disclosure.
  • the pixel driving circuit in Figure 7 has a 3T1C structure, including three transistors (a first transistor T1, a second transistor T2, and a third transistor T3) and a storage capacitor C.
  • the pixel The driver circuit may also include other numbers of transistors and storage capacitors.
  • the pixel driving circuit is configured to receive the data voltage transmitted by the data signal line under the control of the scanning signal line, and output a corresponding current to the element to be driven.
  • the detection compensation circuit is connected to the compensation signal line S for obtaining the amount of charge flowing through the element to be driven within the preset detection time (ie, blank time), So that the external compensator calculates the compensation gain value of the component to be driven based on the acquired charge amount.
  • the compensator when the first notification is received, the compensator may be configured for any of the following situations:
  • Type 1 When receiving the first notification, the compensator does not turn off the detection function of the detection and compensation circuit within the next preset time period, and the compensator does not compensate for the displayed picture within the next preset time period;
  • the second type when receiving the first notification, the compensator does not turn off the detection function of the detection and compensation circuit in the next preset time period.
  • the detection result compensates the displayed picture within the next preset time period;
  • the third method when receiving the first notification, the compensator turns off the detection function of the detection and compensation circuit in the next preset time period, and the compensator does not compensate the displayed picture in the next preset time period;
  • the fourth method when receiving the first notification, the compensator turns off the detection function of the detection and compensation circuit in the next preset time period.
  • the measurement results are used to compensate the displayed picture within the next preset time period.
  • the detection result of the detection and compensation circuit at a time other than the last preset time period may be the detection result of the detection and compensation circuit at at least one of the following times: when turning on, when turning off, User-specified time, blank time other than the previous preset time period.
  • the detection unit can determine whether it is necessary to perform power-on detection of the electrical compensation parameters of the display device; when it is necessary to perform power-on detection of the electrical compensation parameters of the display device, the following power-on operation is performed: The electrical compensation parameters of the display device are detected at startup, and new compensation parameter values are obtained and stored in the memory.
  • the detection unit can determine whether it is necessary to perform shutdown detection on the electrical compensation parameters of the display device; when it is necessary to perform shutdown detection on the electrical compensation parameters of the display device, the following shutdown operation is performed: Perform shutdown detection to obtain updated compensation parameter values and store them in memory.
  • the detection unit can also detect the electrical compensation parameters of the display device according to the detection time specified by the user, obtain updated compensation parameter values, and store them in the memory.
  • the electrical compensation parameter includes a threshold voltage and/or mobility of a driving transistor of each pixel unit, and/or a threshold voltage of a light emitting element of each pixel unit.
  • the compensator is further configured to: when the first notification is not received, calculate the detection result of the detection compensation circuit within the next preset time period based on the detection result of the detection compensation circuit in the previous preset time period. The displayed screen is compensated.
  • Figure 8 is a schematic diagram of the display process of a display panel according to an exemplary embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of changes in the threshold flag bit (Threshold_flag) and the detection flag bit (Sense_flag) in the display process corresponding to Figure 8 .
  • the threshold flag bit For example, the first frame can be the frame before each frame
  • Sense_flag the detection flag bit
  • Figure 8 and Figure 9 when the display panel is displaying, it depends on whether the change in the brightness of each frame relative to the brightness of the first frame (for example, the first frame can be the frame before each frame) is greater than a predetermined amount.
  • Set the change threshold to determine the motion and static attributes of each frame (that is, determine the size of the threshold flag bit), and then determine whether the motion and static attributes of the image displayed in the previous preset time period have changed.
  • the detection result of the compensation circuit in the previous preset time period compensates the displayed picture in the next preset time period, and continues to perform real-time detection in the next preset time period (i.e., the next preset time period
  • the detection flag is high level
  • the compensation data is updated after the detection is completed; if there is a change, the displayed picture in the next preset time period will not be compensated or the detection compensation circuit will perform the compensation in the previous preset time period.
  • Update compensation data i.e. next The detection flag bit in the preset time period is low level. This can effectively prevent the problem of horizontal fine lines appearing on the compensated display screen due to deviations in real-time detection results caused by large differences in brightness changes between adjacent frames during the display process.
  • the threshold flag bit Threshold_flag is high, indicating that the change in the brightness of the current frame picture relative to the brightness of the first picture is greater than the preset change amount threshold, that is, the current frame picture is a dynamic picture.
  • the threshold flag bit Threshold_flag is low, which means that the change amount of the brightness of the current frame picture relative to the brightness of the first picture is less than or equal to the preset change amount threshold, that is, the current frame picture is a static picture.
  • the display method of the embodiment of the present disclosure determines the preset time period based on whether the dynamic and static attributes of each frame displayed within a preset time period change. Whether the overall dynamic and static attributes of the displayed picture have changed. When the dynamic and static attributes of the picture displayed in the previous preset time period have not all changed, determine whether the dynamic and static attributes of the picture displayed in the next preset time period are the same as those of the previous preset time period. The dynamic and static attributes of the pictures displayed in each segment are the same.
  • the pictures displayed in a preset time period before the last preset time period are dynamic pictures
  • the pictures displayed in the previous preset time period are all static pictures
  • the pictures displayed in the preset time period are all static pictures relative to the first picture
  • one or more frames of the picture are dynamic pictures, make sure that the dynamic and static attributes of the picture displayed in the last preset time period have not changed;
  • the picture displayed in a preset time period before the last preset time period is a static picture
  • the picture displayed in the previous preset time period is a static picture
  • the pictures displayed in the last preset time period are all dynamic pictures relative to the first picture
  • multiple frames are static images, make sure that the dynamic and static attributes of the images displayed in the last preset time period have not changed.
  • the time when it is determined that the dynamic picture changes to the static picture occurs at time T2
  • the time when it is determined that the static picture changes to the dynamic picture The moment occurs at time T5. This is because we need to detect whether the dynamic and static attributes of the picture displayed in a preset time period have changed to determine the moment when the dynamic and static attributes of the overall picture have changed. That is, the determination time will be delayed by one from the actual time of occurrence. Default time period.
  • the length of the preset time period is related to the refresh rate of the display panel. The higher the refresh rate of the display panel, the longer the length of the preset time period.
  • the preset time period can be set to multiple frames or t seconds, and t is a real number greater than 0. For example, t can be 1.
  • the refresh rate is 120Hz, assuming that the preset time period is 1 second, at this time, the preset time period includes 120 frames.
  • the preset time period includes a ⁇ t1 time interval and a ⁇ t2 time interval; when the picture displayed in the last preset time period is a dynamic picture, the preset time period is the ⁇ t1 time interval; when the last preset time period displays a dynamic picture, the preset time period is a ⁇ t1 time interval. When the picture displayed in the time period is a static picture, the preset time period is the ⁇ t2 time interval.
  • the ⁇ t1 time interval is longer than the ⁇ t2 time interval.
  • the ⁇ t1 time interval and ⁇ t2 time interval can be obtained through experiments.
  • the detection unit determines the motion and static attributes of each frame according to whether the change amount of the brightness data of each frame relative to the brightness data of the first frame is greater than a preset change threshold, and the first frame is for each frame.
  • the xth frame before the frame may be a preset reference frame, and x is a natural number greater than or equal to 1.
  • the brightness data of each frame includes the brightness data of each sub-pixel and the brightness data of the entire picture
  • the preset change threshold includes the change threshold of various sub-pixels and the change threshold of the entire picture.
  • the detection unit can detect the brightness data of all sub-pixels and the brightness data of each sub-pixel in the currently displayed picture, the brightness data of all sub-pixels in the first picture and the brightness data of each sub-pixel.
  • the brightness data of the sub-pixels are accumulated and summed respectively, and the dynamic and static attributes of each frame are determined based on whether the difference in each summation result is less than the preset change threshold.
  • the sub-pixels of the preset color may be sub-pixels of any color such as red sub-pixels, green sub-pixels, blue sub-pixels or white sub-pixels.
  • the frame is determined to be a static picture, and the red sub-pixel, green sub-pixel
  • the change amount thresholds corresponding to the pixel, blue sub-pixel and white sub-pixel can be the same or different.
  • the optimal threshold is when the variation threshold is adjusted so that the horizontal stripes generated by the real-time detection of the display panel are significantly weakened without affecting the real-time detection compensation effect.
  • the change threshold can be set higher; when the brightness of the RGB video source changes slightly, the change threshold can be set lower.
  • the change threshold When the change threshold is set to zero, that is, when a change in the picture is detected, detection will not be performed, or the detection result of the previous preset time period will not be used. At this time, the horizontal stripes are completely eliminated, but this is equivalent to turning off Real-time compensation.
  • the change threshold When the change threshold is set to the maximum brightness of the full screen, the voltage coupling effect caused by drastic changes in the picture cannot be eliminated, the compensation effect is not ideal, and the horizontal stripes generated by real-time detection at this time are serious.
  • FIG 10 is a display flow chart of another display panel according to an embodiment of the present disclosure.
  • each pixel unit of the display panel includes a red sub-pixel (R) that emits red light, and a red sub-pixel that emits green light.
  • the detection unit uses the RGBW algorithm to convert the data of the RGB video source (exemplarily, the The data of the RGB video source can be converted into grayscale data) into the brightness data of each sub-pixel of RGBW.
  • the change threshold determines the dynamic and static attributes of each frame based on whether the brightness data of each sub-pixel in each frame and the sum of brightness data of each sub-pixel in the first frame are greater than the corresponding change threshold, and then determines the above Whether the motion and static attributes of the picture displayed in a preset time period change.
  • real-time detection will not be performed in the next preset time period, or, in the next preset time period, no real-time detection will be performed.
  • Real-time detection is performed during the time period but the compensation data is not updated; when the dynamic and static attributes of the picture displayed in the previous preset time period do not change, real-time detection is performed in the next preset time period. time detection.
  • the detection unit converts the data of the RGB video source into the brightness data of each RGBW sub-pixel through the RGBW algorithm, including: the detection unit converts the grayscale data of the RGB video source into RGB sub-pixels of each pixel unit in multiple image frames. of the brightness data, determine the minimum value in the brightness data of the RGB sub-pixels of each pixel unit, use the determined minimum value as the brightness of the W sub-pixel, and subtract the brightness data of the W sub-pixel from the brightness data of the RGB sub-pixels of each pixel unit. The difference in brightness is used as the brightness data of the RGB sub-pixels of each pixel unit.
  • setting the change threshold value corresponding to various sub-pixels and the entire picture according to the brightness change amount of various sub-pixels and all sub-pixels in each frame may include: setting the change threshold value corresponding to the red sub-pixel is n1% of the maximum brightness value of the red sub-pixel in the full screen, the change amount threshold corresponding to the green sub-pixel is set to n2% of the maximum brightness value of the green sub-pixel in the full screen, and the change amount threshold corresponding to the blue sub-pixel is set to n2% of the maximum brightness value of the full-screen green sub-pixel.
  • n1, n2, n3, n4 and n5 are all real numbers between 0 and 100.
  • n1, n2, n3, n4 and n5 can all be 50.
  • determining the dynamic and static attributes of each frame of picture based on whether the brightness data of each sub-pixel in each frame of the picture and the sum of brightness data of each sub-pixel in the first picture is greater than the corresponding change threshold value may include: when In a certain frame, the change amount of the brightness data sum of the red sub-pixel is less than or equal to the change amount threshold corresponding to the red sub-pixel, the change amount of the brightness data sum of the green sub-pixel is less than or equal to the change amount threshold value corresponding to the green sub-pixel, and The change amount of the brightness data sum of the sub-pixels is less than or equal to the change amount threshold value corresponding to the blue sub-pixel, the change amount of the brightness data sum of the white sub-pixels is less than or equal to the change amount threshold value corresponding to the white sub-pixel, the brightness data of all sub-pixels
  • the frame is a static picture; conversely, when any of the following is satisfied
  • this frame is a dynamic picture.
  • the dynamic and static attributes of each frame may also be determined only based on the changes in the sum of brightness data of one or more sub-pixels, or only based on the changes in the sum of brightness data of all sub-pixels. Determine the dynamic and static attributes of each frame.
  • FIG 11 is a display flow chart of another display panel according to an embodiment of the present disclosure. As shown in Figure 11, it is still assumed that each pixel unit of the display panel includes a red sub-pixel (R) that emits red light, and a green sub-pixel that emits green light.
  • the detection unit uses the RGBW algorithm to convert the RGB video source data into RGBW sub-pixels. For pixel brightness data, the change thresholds corresponding to various sub-pixels and the overall picture are set based on the brightness changes of various sub-pixels and all sub-pixels in each frame.
  • Whether the change amount of the sum of brightness data of each sub-pixel in the first picture is greater than the corresponding change amount threshold is determined to determine the dynamic and static attributes of each frame, and then determine whether the dynamic and static attributes of the picture displayed in the previous preset time period have changed.
  • the detection data outside the last preset time period is used for compensation; when the movement and stillness attributes of the picture displayed in the last preset time period do not change, use The detection data of the last preset time period are compensated.
  • the detection result of the last preset time period is affected by the coupling voltage, that is, it is considered that the detection result of the last preset time period is affected by the coupling voltage.
  • the detection results are unreliable, and detection data outside the last preset time period are used for compensation.
  • the detection data of the last preset time period is used for compensation.
  • the display method of the embodiment of the present disclosure determines whether the current picture is in the state by calculating the brightness sum of each component of R, G, B, and W of each frame and comparing the change amount of the brightness sum of each component with the corresponding threshold change amount.
  • the state of drastic changes is determined to determine whether to perform real-time detection and compensation, so as to achieve the effect of weakening horizontal lines.
  • each pixel unit including a red sub-pixel (R) emitting red light, a green sub-pixel (G) emitting green light, and a white sub-pixel (W) emitting white light.
  • the case of a blue sub-pixel (B) emitting blue light is also applicable to the case where each pixel unit includes other types and numbers of sub-pixels.
  • each pixel unit may include a red sub-image emitting red light.
  • each pixel unit may include one red sub-pixel (R) emitting red light, two green sub-pixels (G) emitting green light, and one blue sub-pixel emitting blue light. (B). At this time, just process the data of the RGB video source as needed.
  • the display panel further includes a timing controller, a scan signal driver, and a data signal driver, wherein:
  • the detection unit is also configured to send a second notification to the timing controller when the dynamic and static attributes of the picture displayed in the previous preset time period change;
  • the timing controller is configured to output the clock signal and the scan start signal to the scan signal driver, and output the first data signal to the data signal driver; and is also configured to receive the second notification and adjust the timing of the clock signal output to the scan signal driver. , so that the detection compensation circuit does not perform real-time detection in the next preset time period;
  • a data signal driver configured to receive a first data signal output by the timing controller, convert the first data signal into a data voltage for pixel charging of the pixel unit and output it to a plurality of data lines;
  • the scan signal driver is configured to receive a clock signal and a scan start signal output by the timing controller, generate a scan signal according to the received clock signal and scan start signal, and output it to a plurality of scan signal lines.
  • the scan signal driver may include multiple cascaded gate drive (Gate On Array, GOA) circuits.
  • GOA cascaded gate drive
  • the detection compensation circuit includes a current integrator, a sampling switch and an analog-to-digital converter, where:
  • One end of the current integrator is connected to the compensation signal line S, and the other end of the current integrator is connected to the first path end of the sampling switch;
  • the second path end of the sampling switch is connected to the first end of the analog-to-digital converter, and the control end of the sampling switch receives the sampling signal;
  • the second terminal of the analog-to-digital converter is connected to the compensator.
  • the compensator compensates the currently displayed picture according to the detection result of the detection compensation circuit during the blank time of the currently displayed picture, including:
  • the compensator calculates the voltage difference corresponding to the amount of charge based on the amount of charge flowing through the element to be driven within the preset detection time (i.e., the blank time of the currently displayed picture);
  • the compensator obtains the compensation gain value (ie, compensation data) of the element to be driven based on the calculated voltage difference.
  • the display panel further includes a memory configured to store the detection result of the detection compensation circuit.
  • Embodiments of the present disclosure also provide a display method for a display panel.
  • the display panel includes a plurality of pixel units and a detection compensation circuit.
  • At least one pixel unit includes a plurality of sub-pixels.
  • At least one sub-pixel includes a pixel driving circuit and a to-be-driven pixel unit.
  • the component, the display panel also includes: a detection unit and a compensator, and the display method includes the following steps:
  • the detection unit detects whether the dynamic and static attributes of the picture displayed in the last preset time period change, and when the dynamic and static attributes of the picture displayed in the last preset time period change, sends a first notification to the compensator;
  • the compensator When the compensator receives the first notification, the compensator does not compensate the picture displayed in the next preset time period based on the detection result of the detection compensation circuit in the previous preset time period, and/or turns off the detection. Test the detection function of the compensation circuit within the next preset time period.
  • the preset time period includes effective display time and inactive display time.
  • the display method further includes:
  • the detection unit sends a second notification to the timing controller
  • the timing controller receives the second notification and adjusts the timing of the clock signal output to the scan signal driver so that the detection compensation circuit does not perform real-time detection in the next preset time period.
  • the detection unit may not send the second notification to the timing controller; the timing controller still The clock signal timing is output to the scan signal driver according to the originally set time sequence.
  • the detection and compensation circuit detects the electrical characteristics of the component to be driven during the blank time in the next preset time period.
  • the compensator does not detect the electrical characteristics of the component to be driven in the next preset time period.
  • the displayed picture is compensated, or the displayed picture within the next preset time period is compensated based on the detection result of the detection and compensation circuit at a time other than the previous preset time period.
  • the time outside the last preset time period includes at least one of the following: when turning on the computer, when turning off the phone, user-specified time, and blank time outside the last preset time period.
  • Exemplary embodiments of the present disclosure also provide a display device, including the display panel described in any of the preceding embodiments.
  • the disclosed display panel can be applied to display devices with pixel driving circuits and detection and compensation circuits, such as OLED, quantum dot display (QLED), light emitting diode display (Micro LED or Mini LED) or quantum dot light emitting diode display (QDLED) etc., this disclosure is not limited here.
  • pixel driving circuits and detection and compensation circuits such as OLED, quantum dot display (QLED), light emitting diode display (Micro LED or Mini LED) or quantum dot light emitting diode display (QDLED) etc.
  • the display device of the embodiment of the present disclosure detects whether the dynamic and static attributes of the picture displayed in the previous preset time period have changed during the display process. If the dynamic and static attributes do not change, real-time detection and compensation are performed. Otherwise, no compensation is performed based on the detection.
  • the detection result of the compensation circuit in the previous preset time period compensates the picture displayed in the next preset time period, and/or turns off the detection function of the detection compensation circuit in the next preset time period, so as to Maintaining the accuracy of real-time detection and compensation data can effectively shield the phenomenon of horizontal texture on the display screen after compensation caused by changes in dynamic and static attributes of the screen, improving the display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种显示面板及其显示方法、显示装置。该显示面板包括多个像素单元和侦测补偿电路,像素单元包括多个子像素,子像素包括像素驱动电路和待驱动元件,显示面板还包括:检测单元和补偿器;像素驱动电路被配置为在有效显示时间驱动待驱动元件;侦测补偿电路被配置为在非有效显示时间对待驱动元件的电特性进行侦测;检测单元被配置为检测上一预设时间段显示的画面的动静属性是否发生变化,当发生变化时发送第一通知至补偿器;补偿器被配置为接收到第一通知,不根据侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,和/或,关闭侦测补偿电路在下一预设时间段内的侦测功能,预设时间段包括有效显示时间和非有效显示时间。

Description

显示面板及其显示方法、显示装置
本申请要求于2022年8月16日提交中国专利局、申请号为202210980572.5、发明名称为“显示面板及其显示方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种显示面板及其显示方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有发光、超薄、广视角、高亮度、高对比度、较低耗电、极高反应速度等优点。依据驱动方式的不同,OLED可分为无源矩阵驱动(Passive Matrix,简称PM)型和有源矩阵驱动(Active Matrix,简称AM)型两种,其中AMOLED是电流驱动器件,采用独立的薄膜晶体管(Thin Film Transistor,简称TFT)控制每个子像素,每个子像素皆可以连续且独立的驱动发光。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种显示面板,包括多个像素单元和侦测补偿电路,至少一个像素单元包括多个子像素,至少一个子像素包括像素驱动电路和待驱动元件,所述显示面板还包括:检测单元和补偿器;
所述像素驱动电路,被配置为在有效显示时间驱动所述待驱动元件发光;
所述侦测补偿电路,被配置为在非有效显示时间对所述待驱动元件的电特性进行侦测;
所述检测单元,被配置为检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,所述预设时间段包括所述有效显示时间和所述非有效显示时间,当所述上一预设时间段所述显示面板显示的画面的动静属性发生变化时,发送第一通知至所述补偿器;
所述补偿器,被配置为接收到所述第一通知,执行以下至少之一的操作:不根据所述侦测补偿电路在所述上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能。
本公开实施例还提供了一种显示装置,包括:如本公开任一实施例所述的显示面板。
本公开实施例还提供了一种显示面板的显示方法,所述显示面板包括多个像素单元和侦测补偿电路,至少一个像素单元包括多个子像素,至少一个子像素包括像素驱动电路和待驱动元件,所述显示面板还包括:检测单元和补偿器,所述显示方法包括:
所述检测单元检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,所述预设时间段包括所述有效显示时间和所述非有效显示时间,当上一预设时间段所述显示面板显示的画面的动静属性发生变化时,发送第一通知至所述补偿器;
当所述补偿器接收到第一通知时,所述补偿器执行以下至少之一的操作:不根据所述侦测补偿电路在所述上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能。
在阅读理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为一种显示装置的结构示意图;
图2为一种显示面板的平面结构示意图;
图3为一种像素驱动电路的等效电路示意图;
图4为在黑白两种画面下,对显示面板第1080行进行侦测得到的侦测结果差异示意图;
图5为在黑白两种画面下,对显示面板第3240行进行侦测得到的侦测结果差异示意图;
图6为本公开示例性实施例一种显示面板的结构示意图;
图7为本公开示例性实施例一种像素驱动电路和侦测补偿电路的连接关系示意图;
图8为本公开示例性实施例一种显示面板的显示流程示意图;
图9为图8对应的显示流程中阈值标志位和侦测标志位的变化示意图;
图10为本公开示例性实施例另一种显示面板的显示流程图;
图11为本公开示例性实施例又一种显示面板的显示流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示面板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换,“源端”和“漏端”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
图1为一种显示装置的结构示意图。如图1所示,显示装置可以包括时序控制器、数据信号驱动器、扫描信号驱动器和像素阵列,时序控制器分别与数据信号驱动器和扫描信号驱动器连接,数据信号驱动器分别与多个数据信号线(D1到Dn)连接,扫描信号驱动器分别与多个扫描信号线(S1到Sm)连接。像素阵列可以包括多个子像素Pxij,i和j可以是自然数,至少一个子像素Pxij可以包括电路单元和与电路单元连接的发光器件,电路单元可以包括至少一个扫描信号线、至少一个数据信号线和像素驱动电路。在示例性实施方式中,时序控制器可以将适合于数据信号驱动器的规格的灰度值和控制信号提供到数据信号驱动器,可以将适合于扫描信号驱动器的规格的时钟信号、扫描起始信号等提供到扫描信号驱动器。数据信号驱动器可以利用从时序控制器接收的灰度值和控制信号来产生将提供到数据信号线D1、D2、D3、……和Dn的数据电压。例如,数据信号驱动器可以利用时钟信号对灰度值进行采样,并且以像素行为单位将与灰度值对应的数据电压施加到数据信号线D1至Dn,n可以是自然数。扫描信号驱动器可以通过从时序控制器接收时钟信号、扫描起始信号等来产生将提供到扫描信号线S1、S2、S3、……和Sm的扫描信号。例如,扫描信号驱动器可以将具有导通电平脉冲的扫描信号顺序地提供到扫描信号线S1至Sm。例如,扫描信号驱动器可以被构造为移位寄存器的形式,并且可以以在时钟信号的控制下顺序地将以导通电平脉冲形式提供的扫描起始信号传输到下一级电路的方式产生扫描信号,m可以是自然数。
图2为一种显示面板的平面结构示意图。如图2所示,显示面板可以包括以矩阵方式排布的多个像素单元P,多个像素单元P的至少一个包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2、出射第三颜色光线的第三子像素P3和出射第四颜色光线的第四子像素P4,四个子像素可以均包括电路单元和发光器件,电路单元可以包括扫描信号线、数据信号线和像素驱动电路,像素驱动电路分别与扫描信号线和数据信号线电连接,像素驱动电路被配置为在扫描信号线的控制下,接收数据信号线传输的数据电压,向发光器件输出相应的电流。每个子像素中的发光器件分别与所在子像素的像素驱动电路连接,发光器件被配置为响应所在子像素的像素驱动电路输出的电流发出相应亮度的光。
在示例性实施方式中,第一子像素P1可以是出射红色光线的红色子像素(R),第二子像素P2可以是出射绿色光线的绿色子像素(G),第三子像素P3可以是出射白色光线的白色子像素(W),第四子像素P4可以是出射蓝色光线的蓝色子像素(B)。
在示例性实施方式中,子像素的形状可以是矩形状、菱形、五边形或六边形。在一种示例性实施方式中,四个子像素可以采用水平并列方式排列,形成RWBG像素排布。在另一种示例性实施方式中,四个子像素可以采用正方形(Square)、钻石形(Diamond)或竖直并列等方式排列,本公开在此不做限定。
在示例性实施方式中,水平方向依次设置的多个子像素称为像素行,竖直方向依次设置的多个子像素称为像素列,多个像素行和多个像素列构成阵列排布的像素阵列。
在示例性实施方式中,像素驱动电路可以是3T1C、4T1C、5T1C、5T2C、6T1C、7T1C或8T1C结构。图3为一种像素驱动电路的等效电路示意图。如图3所示,像素驱动电路为3T1C结构,可以包括3个晶体管(第一晶体管T1、第二晶体管T2和第三晶体管T3)、1个存储电容C和6个信号线(数据信号线D、第一扫描信号线G1、第二扫描信号线G2、补偿信号线S、第一电源线VDD和第二电源线VSS)。
在示例性实施方式中,第一晶体管T1为开关晶体管,第二晶体管T2为驱动晶体管,第三晶体管T3为补偿晶体管。存储电容C的第一极与第二晶体管T2的控制极耦接,存储电容C的第二极与第二晶体管T2的第二极耦接,存储电容C用于存储第二晶体管T2的控制极的电位。第一晶体管T1的控制极耦接于第一扫描信号线G1,第一晶体管T1的第一极耦接于数据信号线D,第一晶体管T1的第二极耦接于第二晶体管T2的控制极,第一晶体管T1用于在第一扫描信号线G1控制下,接收数据信号线D传输的数据信号,使第二晶体管T2的控制极接收所述数据信号。第二晶体管T2的控制极耦接于第一晶体管T1的第二极,第二晶体管T2的第一极耦接于第一电源线VDD,第二晶体管T2的第二极耦接于发光器件的第一极(阳极),第二晶体管T2用于在其控制极所接收的数据信号控制下,在第二极产生相应的电 流。第三晶体管T3的控制极耦接于第二扫描信号线G2,第三晶体管T3的第一极耦接于补偿信号线S,第三晶体管T3的第二极耦接于第二晶体管T2的第二极,第三晶体管T3用于响应补偿时序提取第二晶体管T2的阈值电压Vth以及迁移率,以对阈值电压Vth进行补偿。发光器件的第二极(阴极)与第二电源线VSS连接。
在示例性实施方式中,发光器件可以是OLED,包括叠设的第一极(阳极)、有机发光层和第二极(阴极),OLED的第一极耦接于第二晶体管T2的第二极,OLED的第二极耦接于第二电源线VSS,OLED用于响应第二晶体管T2的第二极的电流而发出相应亮度的光。
在示例性实施方式中,第一电源线VDD的信号为持续提供高电平信号,第二电源线VSS的信号为低电平信号。第一晶体管T1到第三晶体管T3可以是P型晶体管,或者可以是N型晶体管。像素驱动电路中采用相同类型的晶体管可以简化工艺流程,减少显示面板的工艺难度,提高产品的良率。
在示例性实施方式中,第一晶体管T1到第三晶体管T3可以采用低温多晶硅薄膜晶体管,或者可以采用氧化物薄膜晶体管,或者可以采用低温多晶硅薄膜晶体管和氧化物薄膜晶体管。低温多晶硅薄膜晶体管的有源层采用低温多晶硅(Low Temperature Poly-Silicon,简称LTPS),氧化物薄膜晶体管的有源层采用氧化物(Oxide)。低温多晶硅薄膜晶体管具有迁移率高、充电快等优点,氧化物薄膜晶体管具有漏电流低等优点。在示例性实施方式中,可以将低温多晶硅薄膜晶体管和氧化物薄膜晶体管集成在一个显示面板上,形成低温多晶氧化物(Low Temperature Polycrystalline Oxide,简称LTPO)显示面板,可以利用两者的优势,可以实现高分辨率(Pixel Per Inch,简称PPI),低频驱动,可以降低功耗,可以提高显示品质。在示例性实施方式中,发光器件可以是有机电致发光二极管(OLED),包括叠设的第一极(阳极)、有机发光层和第二极(阴极)。
OLED显示设备的每一帧(Frame)的时间分为有效显示时间(Active time)和空白时间(Blank time),在有效显示时间内OLED显示设备利用像素驱动电路进行正常的数据(Data)输出显示,在空白时间内利用侦测补偿电路进行外部实时侦测补偿(Real Time Sense)。OLED显示设备在每一帧 的空白时间进行实时补偿,侦测面板器件TFT特性的变化,进而通过外部补偿来改善显示画面品质。
图4为在黑白两种画面下,对显示面板第1080行进行侦测得到的侦测结果差异示意图,图5为在黑白两种画面下,对显示面板第3240行进行侦测得到的侦测结果差异示意图,其中,横坐标“模数转换通道”表示所在显示面板的列数,纵坐标“模数转换值”表示侦测到的电压数字量,在一种示例性实施例中,电压数字量x对应的模拟量可以为x/1023*16.5V。如图4和图5所示,OLED面板的同一行的侦测结果在不同颜色和不同灰阶的画面下差异较大,这种现象在画面剧烈变化时尤为显著。此时,由于画面剧烈变化产生的电压耦合作用会引起面板内补偿信号线S上电压产生波动,实时侦测产生的补偿数据会使得补偿后画面产生可见的横向纹理。
如图6所示,本公开实施例提供了一种显示面板,包括多个像素单元P和侦测补偿电路,至少一个像素单元P包括多个子像素,至少一个子像素包括像素驱动电路(图中未示出)和待驱动元件(图中未示出),该显示面板还包括:检测单元和补偿器,其中:
像素驱动电路,被配置为在有效显示时间驱动待驱动元件发光;
侦测补偿电路,被配置为在非有效显示时间对待驱动元件的电特性进行侦测;
检测单元,被配置为检测上一预设时间段显示的画面的动静属性是否发生变化,当上一预设时间段显示的画面的动静属性发生变化时,发送第一通知至补偿器;
补偿器,被配置为接收到第一通知,不根据侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,和/或,关闭侦测补偿电路在下一预设时间段内的侦测功能,预设时间段包括有效显示时间和非有效显示时间。
本公开实施例提供的显示面板,通过在显示过程中检测上一预设时间段显示的画面的动静属性是否发生变化,如果动静属性不发生变化,则进行实时侦测补偿,反之则不根据侦测补偿电路在上一预设时间段内的侦测结果对 下一预设时间段内显示的画面进行补偿,和/或,关闭侦测补偿电路在下一预设时间段内的侦测功能,以维持实时侦测补偿数据的准确性,可以有效屏蔽因为画面动静属性变化造成的补偿后显示画面出现横向纹理的现象。
图7为本公开示例性实施例一种像素驱动电路和侦测补偿电路的连接关系示意图。图7中的像素驱动电路为3T1C结构,包括3个晶体管(第一晶体管T1、第二晶体管T2和第三晶体管T3)和1个存储电容C,然而,本公开实施例对此不作限制,像素驱动电路也可以包括其他个数的晶体管和存储电容。像素驱动电路被配置为在扫描信号线的控制下,接收数据信号线传输的数据电压,向待驱动元件输出相应的电流。
在一些示例性实施方式中,如图7所示,侦测补偿电路与补偿信号线S连接,用于获取在预设的侦测时间(即空白时间)内流经待驱动元件的电荷量,以使得外部补偿器根据获取的电荷量计算该待驱动元件的补偿增益值。
在一些示例性实施方式中,当接收到第一通知时,补偿器可以被配置为以下任意之一的情况:
第一种:当接收到第一通知时,补偿器不关闭侦测补偿电路在下一预设时间段内的侦测功能,补偿器不对下一预设时间段内的显示的画面进行补偿;
第二种:当接收到第一通知时,补偿器不关闭侦测补偿电路在下一预设时间段内的侦测功能,补偿器根据侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿;
第三种:当接收到第一通知时,补偿器关闭侦测补偿电路在下一预设时间段内的侦测功能,补偿器不对下一预设时间段内的显示的画面进行补偿;
第四种:当接收到第一通知时,补偿器关闭侦测补偿电路在下一预设时间段内的侦测功能,补偿器根据侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿。
在一些示例性实施方式中,侦测补偿电路在上一预设时间段以外的时间的侦测结果可以为侦测补偿电路在以下至少之一的时间的侦测结果:开机时、关机时、用户指定时间、上一预设时间段以外的空白时间。
本公开实施例中,在显示装置开机运行阶段,检测单元可以判断是否需要对显示装置的电学补偿参数进行开机检测;在需要对显示装置的电学补偿参数进行开机检测时,进行如下开机操作:对显示装置的电学补偿参数进行开机检测,得到新的补偿参数值,并将其存储至存储器中。
在显示装置关机运行阶段,检测单元可以判断是否需要对显示装置的电学补偿参数进行关机检测;在需要对显示装置的电学补偿参数进行关机检测时,进行如下关机操作:对显示装置的电学补偿参数进行关机检测,得到更新的补偿参数值,并将其存储至存储器中。
在显示装置运行过程中,检测单元也可以根据用户指定的侦测时间对显示装置的电学补偿参数进行检测,得到更新的补偿参数值,并将其存储至存储器中。
在一些示例性实施方式中,电学补偿参数包括每个像素单元的驱动晶体管的阈值电压和/或迁移率,和/或每个像素单元的发光元件的阈值电压。
在一些示例性实施方式中,补偿器还被配置为:当没有接收到第一通知时,根据侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内的显示的画面进行补偿。
图8为本公开示例性实施例一种显示面板的显示流程示意图,图9为图8对应的显示流程中阈值标志位(Threshold_flag)和侦测标志位(Sense_flag)的变化示意图,如图8和图9所示,显示面板在显示的时候,根据每帧画面的亮度相对于第一画面(示例性的,第一画面可以为每帧画面的前一帧画面)的亮度的变化量是否大于预设的变化量阈值来确定每帧画面的动静属性(即确定阈值标志位的大小),进而判断上一预设时间段显示的画面的动静属性是否发生变化,如果不发生变化,则根据侦测补偿电路在上一预设时间段的侦测结果对下一预设时间段内的显示的画面进行补偿,并在下一预设时间段内继续进行实时侦测(即下一预设时间段的侦测标志位为高电平),侦测完成后更新补偿数据;如果发生变化,则不对下一预设时间段内的显示的画面进行补偿或者根据侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿,并在下一预设时间段内不进行实时侦测或者在下一预设时间段内进行实时侦测,但不更新补偿数据(即下一 预设时间段的侦测标志位为低电平)。这样可以有效防止显示过程中,因为相邻帧之间亮度变化差异大造成的实时侦测结果偏差而导致的补偿后显示画面出现横向细纹问题。
本公开实施例中,阈值标志位Threshold_flag为高,表示当前帧画面的亮度相对于第一画面的亮度的变化量大于预设的变化量阈值,即当前帧画面为动态画面,反之,阈值标志位Threshold_flag为低,表示当前帧画面的亮度相对于第一画面的亮度的变化量小于或等于预设的变化量阈值,即当前帧画面为静态画面。
本公开实施例的显示方法为了实现动态画面与静态画面之间切换的数据稳定且可靠更新,根据一个预设时间段内显示的每一帧画面的动静属性是否发生变化来判断该预设时间段显示的画面的整体的动静属性是否发生变化,当上一预设时间段显示的画面的动静属性没有全部发生变化时,判定下一预设时间段显示的画面的动静属性与上一预设时间段显示的画面的动静属性相同。
示例性的,当上一预设时间段之前一个预设时间段显示的画面为动态画面时,检测上一预设时间段内显示的画面相对于第一画面是否均为静态画面,当上一预设时间段内显示的画面相对于第一画面均为静态画面时,确定上一预设时间段显示的画面的动静属性发生变化;当上一预设时间段内显示的画面相对于第一画面有一帧或多帧为动态画面时,确定上一预设时间段显示的画面的动静属性没有发生变化;
当上一预设时间段之前一个预设时间段显示的画面为静态画面时,检测上一预设时间段内显示的画面相对于第一画面是否均为动态画面,当上一预设时间段内显示的画面相对于第一画面均为动态画面时,确定上一预设时间段显示的画面的动静属性发生变化;当上一预设时间段内显示的画面相对于第一画面有一帧或多帧为静态画面时,确定上一预设时间段显示的画面的动静属性没有发生变化。
因此,如图8和图9所示,即使在T1时刻前、T2时刻至T3时刻之间以及T5至T6时刻之间,均有△T时间阈值标志位Threshold_flag发生变化,但是,由于△T时间较短(低于预设时间段),我们认为T1时刻前、T2时 刻至T3时刻之间以及T5至T6时刻之间画面整体的动静属性并未发生变化。
另外,虽然实际的动静属性变化时刻发生在T1和T4时刻,但是,根据本公开实施例的显示方法,图8中,判定动态画面转静态画面的时刻发生在T2时刻,判定静态画面转动态画面的时刻发生在T5时刻,这是由于我们要检测一个预设时间段显示的画面的动静属性是否发生变化,来判定画面整体的动静属性发生变化的时刻,即判定时刻会比实际发生时刻延迟一个预设时间段。
在一些示例性实施方式中,预设时间段的长度与显示面板的刷新率相关,显示面板的刷新率越高,预设时间段的长度越长。示例性的,预设时间段可以设置为多帧或t秒,t为大于0的实数,例如,t可以为1。当刷新率为120Hz时,假设预设时间段为1秒,此时,预设时间段包括120帧。
在一些示例性实施方式中,预设时间段包括Δt1时间间隔和Δt2时间间隔;当上一预设时间段显示的画面为动态画面时,预设时间段为Δt1时间间隔;当上一预设时间段显示的画面为静态画面时,预设时间段为Δt2时间间隔。
在一些示例性实施方式中,Δt1时间间隔长于Δt2时间间隔。为了实现动态画面与静态画面之间切换的数据稳定且可靠更新,可以通过实验的方法获得Δt1时间间隔和Δt2时间间隔。
在一些示例性实施方式中,检测单元根据每帧画面的亮度数据相对于第一画面的亮度数据的变化量是否大于预设的变化量阈值来确定每帧画面的动静属性,第一画面为每帧画面之前的第x帧画面或者为预设的参考画面,x为大于或等于1的自然数。
在一些示例性实施方式中,每帧画面的亮度数据包括各个子像素的亮度数据以及整体画面的亮度数据,预设的变化量阈值包括各种子像素的变化量阈值以及整体画面的变化量阈值。
本公开实施例中,检测单元可以对当前显示的画面中所有子像素的亮度数据以及各个子像素的亮度数据、第一画面中所有子像素的亮度数据以及各 个子像素的亮度数据分别进行累加求和,根据每一种求和结果的差异是否均小于预设的变化量阈值来确定每帧画面的动静属性。
示例性的,预设颜色的子像素可以为红色子像素、绿色子像素、蓝色子像素或白色子像素等任一颜色的子像素。当红色子像素、绿色子像素、蓝色子像素和白色子像素的亮度数据的求和结果的差异均小于预设的变化量阈值时,确定该帧画面为静态画面,红色子像素、绿色子像素、蓝色子像素和白色子像素对应的变化量阈值可以相同,也可以不同。
本公开实施例中,当调整变化量阈值使得显示面板实时侦测产生的横纹明显减弱且又不影响实时侦测补偿效果的时候为最佳阈值。当RGB视频源的画面亮度变化较大时,变化量阈值可以设得高一些;当RGB视频源的画面亮度变化较小时,变化量阈值可以设得低一些。
当变化量阈值设置为零时,即检测到画面发生变化时,就不进行侦测,或者不使用上一预设时间段的侦测结果,此时横纹完全消除,但这相当于关闭了实时补偿。当变化量阈值设置为全屏最大亮度时,无法消除由画面剧烈变化引起的电压耦合作用,其补偿效果不理想,且此时实时侦测产生的横纹严重。
图10为本公开实施例另一种显示面板的显示流程图,如图10所示,假设该显示面板的每个像素单元包括一个出射红色光线的红色子像素(R)、一个出射绿色光线的绿色子像素(G)、一个出射白色光线的白色子像素(W)、一个出射蓝色光线的蓝色子像素(B),检测单元通过RGBW算法将RGB视频源的数据(示例性的,该RGB视频源的数据可以为灰阶数据)转化为RGBW各个子像素的亮度数据,根据每帧画面各种子像素以及所有子像素的亮度变化量设定各种子像素对应的以及整体画面对应的变化量阈值,根据每帧画面各个子像素的亮度数据和相对于第一画面各个子像素的亮度数据和的变化量是否大于对应的变化量阈值来确定每帧画面的动静属性,进而确定在上一预设时间段显示的画面的动静属性是否发生变化,当上一预设时间段显示的画面的动静属性发生变化时,在下一预设时间段不进行实时侦测,或者,在下一预设时间段进行实时侦测但不更新补偿数据;当上一预设时间段显示的画面的动静属性没有发生变化时,在下一预设时间段进行实 时侦测。
示例性的,检测单元通过RGBW算法将RGB视频源的数据转化为RGBW各个子像素的亮度数据,包括:检测单元将RGB视频源的灰阶数据转换为多个图像帧中各像素单元RGB子像素的亮度数据,确定每个像素单元RGB子像素的亮度数据中的最小值,将确定的最小值作为W子像素的亮度,并将每个像素单元RGB子像素的亮度数据减去W子像素的亮度的差作为每个像素单元RGB子像素的亮度数据。
示例性的,根据每帧画面各种子像素以及所有子像素的亮度变化量设定各种子像素对应的以及整体画面对应的变化量阈值,可以包括:将红色子像素对应的变化量阈值设置为全屏红色子像素亮度最大值的n1%,将绿色子像素对应的变化量阈值设置为全屏绿色子像素亮度最大值的n2%,将蓝色子像素对应的变化量阈值设置为全屏蓝色子像素亮度最大值的n3%,将白色子像素对应的变化量阈值设置为全屏白色子像素亮度最大值的n4%,将整体画面对应的变化量阈值设置为全屏所有子像素亮度最大值的n5%,其中,n1、n2、n3、n4和n5均为大于0至100之间的实数。示例性的,n1、n2、n3、n4和n5可以均为50。
示例性的,根据每帧画面各个子像素的亮度数据和相对于第一画面各个子像素的亮度数据和的变化量是否大于对应的变化量阈值来确定每帧画面的动静属性,可以包括:当某帧画面中红色子像素的亮度数据和的变化量小于或等于红色子像素对应的变化量阈值、绿色子像素的亮度数据和的变化量小于或等于绿色子像素对应的变化量阈值、蓝色子像素的亮度数据和的变化量小于或等于蓝色子像素对应的变化量阈值、白色子像素的亮度数据和的变化量小于或等于白色子像素对应的变化量阈值、所有子像素的亮度数据和的变化量小于或等于整体画面对应的变化量阈值时,该帧画面为静态画面;反之,当满足以下任意之一时:红色子像素的亮度数据和的变化量大于红色子像素对应的变化量阈值、绿色子像素的亮度数据和的变化量大于绿色子像素对应的变化量阈值、蓝色子像素的亮度数据和的变化量大于蓝色子像素对应的变化量阈值、白色子像素的亮度数据和的变化量大于白色子像素对应的变化量阈值、所有子像素的亮度数据和的变化量大于整体画面对应的变化量阈 值,该帧画面为动态画面。在另一些示例性实施方式中,也可以只根据其中一个或多个子像素的亮度数据和的变化量来确定每帧画面的动静属性,或者,只根据所有子像素的亮度数据和的变化量来确定每帧画面的动静属性。
图11为本公开实施例又一种显示面板的显示流程图,如图11所示,仍假设该显示面板的每个像素单元包括一个出射红色光线的红色子像素(R)、一个出射绿色光线的绿色子像素(G)、一个出射白色光线的白色子像素(W)、一个出射蓝色光线的蓝色子像素(B),检测单元通过RGBW算法将RGB视频源的数据转化为RGBW各个子像素的亮度数据,根据每帧画面各种子像素以及所有子像素的亮度变化量设定各种子像素对应的以及整体画面对应的变化量阈值,根据每帧画面各个子像素的亮度数据和相对于第一画面各个子像素的亮度数据和的变化量是否大于对应的变化量阈值来确定每帧画面的动静属性,进而确定在上一预设时间段显示的画面的动静属性是否发生变化,当上一预设时间段显示的画面的动静属性发生变化时,使用上一预设时间段以外的侦测数据进行补偿;当上一预设时间段显示的画面的动静属性没有发生变化时,使用上一预设时间段的侦测数据进行补偿。本公开实施例中,当上一预设时间段显示的画面的动静属性发生变化时,我们认为上一预设时间段的侦测结果受到耦合电压的影响,即认为上一预设时间段的侦测结果不可靠,在进行补偿时使用上一预设时间段以外的侦测数据进行补偿。当上一预设时间段显示的画面的动静属性没有发生变化时,使用上一预设时间段的侦测数据进行补偿。
本公开实施例的显示方法通过计算每帧画面的R、G、B、W各分量亮度和并将各分量的亮度和的变化量分别与对应的阈值变化量进行比较,来判断当前画面是否处于剧烈变化的状态,进而确定是否进行实时侦测补偿,以此达到减弱横纹的效果。
本公开实施例的显示方法不仅适用于每个像素单元包括一个出射红色光线的红色子像素(R)、一个出射绿色光线的绿色子像素(G)、一个出射白色光线的白色子像素(W)、一个出射蓝色光线的蓝色子像素(B)的情况,也适用于每个像素单元包括其他种类和数目的子像素的情况。例如,在另一些示例性实施方式中,每个像素单元可以包括一个出射红色光线的红色子像 素(R)、一个出射绿色光线的绿色子像素(G)和一个出射蓝色光线的蓝色子像素(B)。在又一些示例性实施方式中,每个像素单元可以包括一个出射红色光线的红色子像素(R)、两个出射绿色光线的绿色子像素(G)和一个出射蓝色光线的蓝色子像素(B)。此时,根据需要对RGB视频源的数据进行处理即可。
在一些示例性实施方式中,该显示面板还包括时序控制器、扫描信号驱动器和数据信号驱动器,其中:
检测单元,还被配置为当上一预设时间段显示的画面的动静属性发生变化时,发送第二通知至时序控制器;
时序控制器,被配置为输出时钟信号、扫描起始信号至扫描信号驱动器,输出第一数据信号至数据信号驱动器;还被配置为接收到第二通知,调整输出至扫描信号驱动器的时钟信号时序,以使得侦测补偿电路在下一预设时间段不进行实时侦测;
数据信号驱动器,被配置为接收时序控制器输出的第一数据信号,将第一数据信号转换成用于像素单元像素充电的数据电压并输出至多条数据线;
扫描信号驱动器,被配置为接收时序控制器输出的时钟信号、扫描起始信号,根据接收的时钟信号、扫描起始信号产生扫描信号并输出至多条扫描信号线。
在一些示例性实施方式中,扫描信号驱动器可以包括多个级联的栅极驱动(Gate On Array,GOA)电路。
在一些示例性实施方式中,如图7所示,侦测补偿电路包括电流积分器、采样开关和模数转换器,其中:
电流积分器的一端与补偿信号线S连接,电流积分器的另一端与采样开关的第一通路端连接;
采样开关的第二通路端与模数转换器的第一端连接,采样开关的控制端接收采样信号;
模数转换器的第二端与补偿器连接。
在一些示例性实施方式中,补偿器根据侦测补偿电路在当前显示的画面的空白时间的侦测结果对当前显示的画面进行补偿,包括:
补偿器根据在预设的侦测时间(即当前显示的画面的空白时间)内流经待驱动元件的电荷量,计算与所述电荷量对应的电压差值;
补偿器根据计算出的电压差值得到待驱动元件的补偿增益值(即补偿数据)。
在一些示例性实施方式中,如图6所示,显示面板还包括存储器,存储器被配置为存储侦测补偿电路的侦测结果。
本公开实施例还提供了一种显示面板的显示方法,所述显示面板包括多个像素单元和侦测补偿电路,至少一个像素单元包括多个子像素,至少一个子像素包括像素驱动电路和待驱动元件,显示面板还包括:检测单元和补偿器,该显示方法包括如下步骤:
检测单元检测上一预设时间段显示的画面的动静属性是否发生变化,当上一预设时间段显示的画面的动静属性发生变化时,发送第一通知至补偿器;
当补偿器接收到第一通知时,补偿器不根据侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,和/或,关闭侦测补偿电路在下一预设时间段内的侦测功能,预设时间段包括有效显示时间和非有效显示时间。
在一些示例性实施方式中,该显示方法还包括:
当上一预设时间段显示的画面的动静属性发生变化时,检测单元发送第二通知至时序控制器;
时序控制器接收到第二通知,调整输出至扫描信号驱动器的时钟信号时序,以使得侦测补偿电路在下一预设时间段不进行实时侦测。
在另一些示例性实施方式中,当上一预设时间段显示的画面的动静属性发生变化时,检测单元也可以不发送第二通知至时序控制器;时序控制器仍 按照原先设定的时钟信号时序输出至扫描信号驱动器,侦测补偿电路在下一预设时间段中的空白时间内对待驱动元件的电特性进行侦测,补偿器不对下一预设时间段内的显示的画面进行补偿,或者,根据侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿。
在一些示例性实施方式中,上一预设时间段以外的时间包括以下至少之一:开机时、关机时、用户指定时间、上一预设时间段以外的空白时间。
本公开示例性实施例还提供了一种显示装置,包括前述任一实施例所述的显示面板。本公开显示面板可以应用于具有像素驱动电路和侦测补偿电路的显示装置中,如OLED、量子点显示(QLED)、发光二极管显示(Micro LED或Mini LED)或量子点发光二极管显示(QDLED)等,本公开在此不做限定。
本公开实施例的显示装置,通过在显示过程中检测上一预设时间段显示的画面的动静属性是否发生变化,如果动静属性不发生变化,则进行实时侦测补偿,反之则不根据侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,和/或,关闭侦测补偿电路在下一预设时间段内的侦测功能,以维持实时侦测补偿数据的准确性,可以有效屏蔽因为画面动静属性变化造成的补偿后显示画面出现横向纹理的现象,提高了显示效果。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本发明。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (15)

  1. 一种显示面板,包括多个像素单元和侦测补偿电路,至少一个像素单元包括多个子像素,至少一个子像素包括像素驱动电路和待驱动元件,所述显示面板还包括:检测单元和补偿器;
    所述像素驱动电路,被配置为在有效显示时间驱动所述待驱动元件发光;
    所述侦测补偿电路,被配置为在非有效显示时间对所述待驱动元件的电特性进行侦测;
    所述检测单元,被配置为检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,所述预设时间段包括所述有效显示时间和所述非有效显示时间,当所述上一预设时间段所述显示面板显示的画面的动静属性发生变化时,发送第一通知至所述补偿器;
    所述补偿器,被配置为接收到所述第一通知,执行以下至少之一的操作:不根据所述侦测补偿电路在所述上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能。
  2. 根据权利要求1所述的显示面板,其中,所述检测单元的检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,包括:
    当所述上一预设时间段之前一个预设时间段显示的画面为动态画面时,检测所述上一预设时间段内显示的画面相对于第一画面是否均为静态画面,当所述上一预设时间段内显示的画面相对于第一画面均为静态画面时,确定所述上一预设时间段显示的画面的动静属性发生变化;当所述上一预设时间段内显示的画面相对于第一画面有一帧或多帧为动态画面时,确定所述上一预设时间段显示的画面的动静属性没有发生变化,所述第一画面为每帧画面之前的第x帧画面或者为预设的参考画面,x为大于或等于1的自然数;
    当所述上一预设时间段之前一个预设时间段显示的画面为静态画面时,检测所述上一预设时间段内显示的画面相对于第一画面是否均为动态画面,当所述上一预设时间段内显示的画面相对于第一画面均为动态画面时,确定 所述上一预设时间段显示的画面的动静属性发生变化;当所述上一预设时间段内显示的画面相对于第一画面有一帧或多帧为静态画面时,确定所述上一预设时间段显示的画面的动静属性没有发生变化。
  3. 根据权利要求2所述的显示面板,其中,所述预设时间段的长度与所述显示面板的刷新率相关,所述显示面板的刷新率越高,所述预设时间段的长度越长。
  4. 根据权利要求2所述的显示面板,其中,所述预设时间段包括Δt1时间间隔和Δt2时间间隔;
    当所述上一预设时间段之前一个预设时间段显示的画面为动态画面时,所述上一预设时间段为Δt1时间间隔;当所述上一预设时间段之前一个预设时间段显示的画面为静态画面时,所述上一预设时间段为Δt2时间间隔。
  5. 根据权利要求4所述的显示面板,其中,所述Δt1时间间隔长于所述Δt2时间间隔。
  6. 根据权利要求1所述的显示面板,其中,所述补偿器被配置为以下任意之一:
    当接收到所述第一通知时,不关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能,不对下一预设时间段内的显示的画面进行补偿;
    当接收到所述第一通知时,不关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能,根据所述侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿;
    当接收到所述第一通知时,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能,不对下一预设时间段内的显示的画面进行补偿;
    当接收到所述第一通知时,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能,根据所述侦测补偿电路在上一预设时间段以外的时间的侦测结果对下一预设时间段内的显示的画面进行补偿。
  7. 根据权利要求1所述的显示面板,其中,所述上一预设时间段以外的 时间包括以下至少之一:开机时、关机时、用户指定时间、上一预设时间段以外的空白时间。
  8. 根据权利要求1所述的显示面板,其中,所述补偿器还被配置为:当没有接收到所述第一通知时,根据所述侦测补偿电路在上一预设时间段内的侦测结果对下一预设时间段内的显示的画面进行补偿。
  9. 根据权利要求1所述的显示面板,其中,所述检测单元根据每帧画面的亮度相对于第一画面的亮度的变化量是否大于预设的变化量阈值来确定每帧画面的动静属性,所述第一画面为每帧画面之前的第x帧画面或者为预设的参考画面,x为大于或等于1的自然数。
  10. 根据权利要求9所述的显示面板,其中,所述每帧画面的亮度包括各个子像素的亮度以及整体画面的亮度,所述预设的变化量阈值包括各个子像素的变化量阈值以及整体画面的变化量阈值。
  11. 一种显示装置,其特征在于,包括:如权利要求1至10任一所述的显示面板。
  12. 一种显示面板的显示方法,所述显示面板包括多个像素单元和侦测补偿电路,至少一个像素单元包括多个子像素,至少一个子像素包括像素驱动电路和待驱动元件,所述显示面板还包括:检测单元和补偿器,所述显示方法包括:
    所述检测单元检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,所述预设时间段包括所述有效显示时间和所述非有效显示时间,当上一预设时间段所述显示面板显示的画面的动静属性发生变化时,发送第一通知至所述补偿器;
    当所述补偿器接收到第一通知时,所述补偿器执行以下至少之一的操作:不根据所述侦测补偿电路在所述上一预设时间段内的侦测结果对下一预设时间段内显示的画面进行补偿,关闭所述侦测补偿电路在所述下一预设时间段内的侦测功能。
  13. 根据权利要求12所述的显示方法,其中,所述检测单元检测上一预设时间段所述显示面板显示的画面的动静属性是否发生变化,包括:
    当所述上一预设时间段之前一个预设时间段显示的画面为动态画面时,所述检测单元检测所述上一预设时间段内显示的画面相对于第一画面是否均为静态画面,当所述上一预设时间段内显示的画面相对于第一画面均为静态画面时,所述检测单元确定所述上一预设时间段显示的画面的动静属性发生变化;当所述上一预设时间段内显示的画面相对于第一画面有一帧或多帧为动态画面时,所述检测单元确定所述上一预设时间段显示的画面的动静属性没有发生变化,所述第一画面为每帧画面之前的第x帧画面或者为预设的参考画面,x为大于或等于1的自然数;
    当所述上一预设时间段之前一个预设时间段显示的画面为静态画面时,所述检测单元检测所述上一预设时间段内显示的画面相对于第一画面是否均为动态画面,当所述上一预设时间段内显示的画面相对于第一画面均为动态画面时,所述检测单元确定所述上一预设时间段显示的画面的动静属性发生变化;当所述上一预设时间段内显示的画面相对于第一画面有一帧或多帧为静态画面时,所述检测单元确定所述上一预设时间段显示的画面的动静属性没有发生变化。
  14. 根据权利要求13所述的显示方法,其中,所述预设时间段包括Δt1时间间隔和Δt2时间间隔;
    当所述上一预设时间段之前一个预设时间段显示的画面为动态画面时,所述上一预设时间段为Δt1时间间隔;当所述上一预设时间段之前一个预设时间段显示的画面为静态画面时,所述上一预设时间段为Δt2时间间隔。
  15. 根据权利要求14所述的显示方法,其中,所述Δt1时间间隔长于所述Δt2时间间隔。
PCT/CN2023/110785 2022-08-16 2023-08-02 显示面板及其显示方法、显示装置 WO2024037344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210980572.5A CN115527492A (zh) 2022-08-16 2022-08-16 显示面板及其显示方法、显示装置
CN202210980572.5 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024037344A1 true WO2024037344A1 (zh) 2024-02-22

Family

ID=84696205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110785 WO2024037344A1 (zh) 2022-08-16 2023-08-02 显示面板及其显示方法、显示装置

Country Status (2)

Country Link
CN (1) CN115527492A (zh)
WO (1) WO2024037344A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115527492A (zh) * 2022-08-16 2022-12-27 合肥京东方卓印科技有限公司 显示面板及其显示方法、显示装置
CN116386541B (zh) * 2023-06-05 2023-08-04 惠科股份有限公司 显示驱动电路、显示驱动方法及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028518A1 (zh) * 2015-08-18 2017-02-23 青岛海信电器股份有限公司 消除残影的方法、装置以及显示器
KR20180013433A (ko) * 2016-07-29 2018-02-07 엘지디스플레이 주식회사 유기 발광 표시 장치
US20190051239A1 (en) * 2017-08-09 2019-02-14 Lg Display Co., Ltd. Organic light-emitting display and method of driving same
CN109658856A (zh) * 2019-02-28 2019-04-19 京东方科技集团股份有限公司 像素数据补偿参数获取方法及装置、amoled显示面板
CN111105764A (zh) * 2019-12-26 2020-05-05 深圳市华星光电半导体显示技术有限公司 缓解显示器残影的显示器驱动方法及其***
CN115527492A (zh) * 2022-08-16 2022-12-27 合肥京东方卓印科技有限公司 显示面板及其显示方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028518A1 (zh) * 2015-08-18 2017-02-23 青岛海信电器股份有限公司 消除残影的方法、装置以及显示器
KR20180013433A (ko) * 2016-07-29 2018-02-07 엘지디스플레이 주식회사 유기 발광 표시 장치
US20190051239A1 (en) * 2017-08-09 2019-02-14 Lg Display Co., Ltd. Organic light-emitting display and method of driving same
CN109658856A (zh) * 2019-02-28 2019-04-19 京东方科技集团股份有限公司 像素数据补偿参数获取方法及装置、amoled显示面板
CN111105764A (zh) * 2019-12-26 2020-05-05 深圳市华星光电半导体显示技术有限公司 缓解显示器残影的显示器驱动方法及其***
CN115527492A (zh) * 2022-08-16 2022-12-27 合肥京东方卓印科技有限公司 显示面板及其显示方法、显示装置

Also Published As

Publication number Publication date
CN115527492A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US11837162B2 (en) Pixel circuit and driving method thereof, display panel
US11380268B2 (en) Driving controller, display device including the same and driving method of display device
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
US11620942B2 (en) Pixel circuit, driving method thereof and display device
CN110021273B (zh) 像素电路及其驱动方法、显示面板
WO2024037344A1 (zh) 显示面板及其显示方法、显示装置
CN110235193B (zh) 像素电路及其驱动方法、显示装置及其驱动方法
CN109859692B (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
CN109872692B (zh) 像素电路及其驱动方法、显示装置
US11069291B2 (en) Pixel circuit and driving method thereof, and display panel
WO2023005648A1 (zh) 像素电路及其驱动方法、阵列基板和显示装置
US20210225262A1 (en) Pixel driving circuit, driving method thereof, and display panel
WO2020200205A1 (zh) 像素电路的补偿方法及驱动方法、补偿装置及显示装置
CN113658554B (zh) 像素驱动电路、像素驱动方法及显示装置
KR20150035073A (ko) 유기발광소자표시장치 및 그 구동방법
CN111785195A (zh) 像素电路的驱动方法、补偿装置及显示设备
WO2022227485A1 (zh) 像素电路及其驱动方法、显示基板及显示装置
WO2024000279A1 (zh) 显示面板及其显示方法、显示装置
WO2024000322A1 (zh) 时序控制器及其侦测补偿方法、显示面板
WO2022246800A1 (zh) 显示面板及其感测方法、驱动方法
WO2023216175A1 (zh) 显示基板及其驱动方法、显示装置
WO2023130222A1 (zh) 显示面板的控制方法及控制装置、显示装置
US20240212606A1 (en) Control Method and Apparatus for Display Panel, and Display Apparatus
WO2022246790A1 (zh) 显示面板的侦测方法及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854248

Country of ref document: EP

Kind code of ref document: A1