WO2024037013A1 - 马达驱动电路及终端设备 - Google Patents

马达驱动电路及终端设备 Download PDF

Info

Publication number
WO2024037013A1
WO2024037013A1 PCT/CN2023/089379 CN2023089379W WO2024037013A1 WO 2024037013 A1 WO2024037013 A1 WO 2024037013A1 CN 2023089379 W CN2023089379 W CN 2023089379W WO 2024037013 A1 WO2024037013 A1 WO 2024037013A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
electrically connected
voltage
switch module
power module
Prior art date
Application number
PCT/CN2023/089379
Other languages
English (en)
French (fr)
Inventor
马骋宇
武渊
马雷
王朝
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024037013A1 publication Critical patent/WO2024037013A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present application relates to the field of circuit technology, and in particular, to a motor drive circuit and terminal equipment.
  • Linear Resonant Actuator has been widely used in various vibration situations of terminal equipment such as mobile phones due to its strong, rich, crisp vibration and low energy consumption.
  • LRA Linear Resonant Actuator
  • the cost of the terminal is high.
  • this application provides a motor drive circuit and terminal equipment. It can replace the motor drive chip.
  • the motor drive circuit can realize high-voltage drive with simple structure and low cost.
  • embodiments of the present application provide a motor drive circuit, including: a power module for outputting AC voltage; an inductive coupling module including a primary inductor and a secondary inductor. One end of the primary inductor is connected to the positive electrode of the power module.
  • each parallel capacitor group includes at least one switch module and at least one parallel capacitor, the first electrode of the parallel capacitor is electrically connected to one end of the secondary inductor and the positive end of the linear motor respectively, in parallel
  • the second electrode of the capacitor is electrically connected to the first end of the switch module, and the second end of the switch module is electrically connected to the other end of the secondary inductor and the negative end of the linear motor respectively
  • the control module is electrically connected to the control end of the switch module, Used to control the turn-on or turn-off of the switch module; when at least one of the switch modules is controlled to be turned on, the parallel capacitor electrically connected to the turned-on switch module is connected in parallel with the secondary induct
  • the impedance of the secondary side is reduced compared to when the parallel capacitor is not connected in parallel.
  • the voltage gain formula when the impedance of the secondary side decreases, the voltage gain increases, that is, the voltage gain of the voltage received by the linear motor and the AC voltage output by the power module increases.
  • the AC voltage output by the power module remains unchanged, , the voltage received by the linear motor increases, that is, high-voltage drive is achieved through the motor drive circuit, with simple structure and low cost.
  • the motor drive circuit includes a parallel capacitor bank.
  • the structure is simple and the cost is low.
  • the motor drive module includes multiple parallel capacitor banks. When multiple parallel capacitor banks are connected to the secondary When the side inductor is connected in parallel, the impedance of the secondary side can be further reduced, thereby further coupling to the voltage of the linear motor.
  • each parallel capacitor group may include one parallel capacitor.
  • the parallel capacitor group includes one parallel capacitor, the structure is simple and the cost is low.
  • Each parallel capacitor group can also include multiple parallel capacitors.
  • multiple parallel capacitors can be connected in parallel with the secondary inductor at the same time, which can further reduce the impedance of the secondary side and further reduce the coupling to
  • the voltage of the linear motor can also be determined by connecting some of the multiple parallel capacitors in parallel with the secondary inductor, that is, the switch module corresponding to this part of the capacitor is turned on, and the switch module corresponding to the remaining capacitor is turned off.
  • the specific requirements of the linear motor can be determined according to the requirements of the linear motor. It is determined by the driving voltage and the signal received by the control terminal of the switch module.
  • the motor drive module further includes a first compensation capacitor and a second compensation capacitor; the first compensation capacitor is connected in series with the primary side inductor, and the second compensation capacitor is connected in series with the secondary side inductor.
  • the impedance formula when the first compensation capacitor is connected in series with the primary inductor, the blocking effect of the primary inductor on the AC voltage can be weakened; when the second compensation capacitor is connected in series with the secondary inductor, the blocking effect of the secondary inductor on the AC voltage can be weakened. hindering effect.
  • the power module is reused as a control module. In this way, there is no need to set up a separate control module, which reduces the cost of the motor drive circuit. When the motor drive circuit is used in terminal equipment, the cost of the terminal equipment can be reduced. cost.
  • each parallel capacitor group includes two parallel capacitors and two switch modules, and the two parallel capacitors include a first parallel capacitor and a second parallel capacitor.
  • the two switch modules include a first switch module and a second switch module; the first electrode of the first parallel capacitor and the first electrode of the second parallel capacitor are both electrically connected to the positive terminal of the linear motor, and the first electrode of the first parallel capacitor is electrically connected to the positive terminal of the linear motor.
  • the two electrodes are electrically connected to the first end of the first switch module, the second electrode of the second parallel capacitor is electrically connected to the first end of the second switch module, the second end of the first switch module and the second end of the second switch module are electrically connected.
  • Both terminals are electrically connected to the negative terminal of the linear motor, the control terminal of the first switch module is electrically connected to the positive terminal of the power module, and the control terminal of the second switch module is electrically connected to the negative terminal of the power module; during the transient vibration stage of the linear motor,
  • the power module is used to output the first AC voltage.
  • the voltage of the positive output of the power module controls the conduction of the first parallel capacitor, or the voltage of the negative output of the power module controls the conduction of the second parallel capacitor; during the steady-state vibration stage of the linear motor,
  • the power module is used to output a second AC voltage.
  • the voltage of the positive output of the power module controls the first parallel capacitor to be turned off, and the voltage of the negative output of the power module controls the second parallel capacitor to be turned off. That is, the AC voltage output by the power module is directly used to control whether the parallel capacitor is connected to the circuit. There is no need for separate control of the power module, which can reduce the calculation steps of the power module.
  • the AC voltage output by the power module is a sine wave or a square wave.
  • the first switch module when the positive terminal of the power module outputs a positive voltage, for example, the first switch module can be controlled to conduct is turned on, thereby causing the first parallel capacitor to be connected in parallel with the secondary inductor.
  • the negative pole of the power module outputs a positive voltage
  • the second switch module can be controlled to be turned on, thereby causing the second parallel capacitor to be connected in parallel with the secondary inductor. That is, when the power module When outputting the first AC voltage, at least one parallel capacitor can be connected in parallel with the secondary inductor to reduce the impedance of the secondary side, thereby increasing the voltage received by the linear motor.
  • the above parallel capacitor group includes two parallel capacitors and two switch modules.
  • each parallel capacitor group also includes two voltage dividing modules.
  • the two voltage dividing modules include a first voltage dividing module and a second voltage dividing module; one end of the first voltage dividing module is electrically connected to the positive electrode of the power module, and the third voltage dividing module is electrically connected to the positive electrode of the power supply module.
  • the other end of a voltage dividing module is electrically connected to the control terminal of the first switch module; one end of the second voltage dividing module is electrically connected to the negative pole of the power supply module, and the other end of the second voltage dividing module is electrically connected to the control terminal of the second switch module. connect. That is, the AC voltage output by the power module is divided and then the switch module is controlled to be turned on or off. In this way, the selection of the switch module can be made more flexible.
  • each parallel capacitor group also includes two voltage dividing modules
  • the voltage dividing module includes a first resistor and a second resistor; one end of the first resistor in the first voltage dividing module The other end of the first resistor in the first voltage dividing module is electrically connected to the control end of the first switch module and one end of the second resistor respectively.
  • the second resistor in the first voltage dividing module is electrically connected to the positive electrode of the power supply module.
  • the other end is grounded; one end of the first resistor in the second voltage dividing module is electrically connected to the negative electrode of the power module, and the other end of the first resistor in the second voltage dividing module is respectively connected to the control end of the second switch module and the second One end of the resistor is electrically connected, and the other end of the second resistor in the second voltage dividing module is connected to ground.
  • the voltage dividing module has a simple structure and low cost.
  • the switch module includes a metal oxide semiconductor field effect transistor and other structures with switching functions.
  • the embodiment of this application only takes the switch module including a metal oxide semiconductor field effect transistor as an example for description. Others Structures with switching functions are within the protection scope of the embodiments of the present application.
  • the power module is a power management chip in the terminal device. In this way, there is no need to set up a separate power module, which reduces the cost of the motor drive circuit. When the motor drive circuit is used in the terminal device, the cost can be reduced. Cost of terminal equipment.
  • the inductive coupling module includes a common mode inductor, a coupling inductor or a transformer.
  • embodiments of the present application provide a terminal device, including a motor drive circuit of the first aspect or any implementation of the first aspect above. Since the motor drive circuit used in the terminal device of the embodiment of the present application is the third A motor drive circuit on the one hand or any one of the implementation methods of the first aspect above, so both can solve the same technical problem and achieve the same expected effect.
  • Figure 1 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a motor drive circuit of a terminal provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of another motor drive circuit of a terminal provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another motor drive circuit of a terminal provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another motor drive circuit of a terminal provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another motor drive circuit of the terminal provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another motor drive circuit of a terminal provided by an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Terminal devices such as mobile phones, tablets, etc., in addition to prompting users through sound, can also prompt users through vibration to improve the user experience of the terminal device.
  • the mobile phone can vibrate to remind the user.
  • the terminal can provide vibration feedback in time when detecting the user's operation.
  • the above-mentioned vibration is generated by a motor installed in the terminal. That is to say, the terminal is equipped with a motor, and the vibration prompt is realized through the vibration of the motor.
  • Motors used in terminal equipment can be divided into two categories, one is rotor motor, and the other is linear motor.
  • rotor motor is divided into ordinary motor and flat motor
  • linear motor is divided into longitudinal (Z-axis) linear motor and transverse (Z-axis) linear motor.
  • X-axis) linear motor Since a linear motor (Linear Resonant Actuator, LRA) has the advantages of strong, rich, crisp vibration, and low energy consumption, the embodiment of this application takes the linear motor as an example as an example.
  • LRA Linear Resonant Actuator
  • Linear motors are generally divided into two types: transient vibration (also called short vibration) and steady-state vibration (also called long vibration).
  • steady-state vibration is when the mobile phone vibrates, the vibration of the mobile phone is relatively gentle and lasts for a long time.
  • it can be achieved by driving a linear motor with a lower voltage.
  • Transient vibration is when the mobile phone vibrates, the vibration of the mobile phone is relatively strong and the duration is relatively short. Accordingly, it needs to be driven by a larger voltage (also called high voltage) to drive the linear motor.
  • embodiments of the present application provide a motor drive circuit that can replace the motor drive chip.
  • the terminal can only drive the linear motor at low voltage, high-voltage drive can be achieved through the motor drive circuit, which has a simple structure and low cost.
  • the motor drive circuit is used in terminal equipment, and the terminal equipment can be any terminal equipment that can provide vibration prompts through the vibration of a linear motor.
  • the terminal device may be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a vehicle-mounted computer, a smart wearable device (such as a smart watch), a smart home device, etc., in the embodiment of this application
  • PDA personal digital assistant
  • the terminal device may be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a vehicle-mounted computer, a smart wearable device (such as a smart watch), a smart home device, etc.
  • PDA personal digital assistant
  • smart wearable device such as a smart watch
  • smart home device etc.
  • Figure 1 shows a schematic structural diagram of a terminal device.
  • the terminal device 100 shown in FIG. 1 is only an example of a terminal device, and the terminal device 100 may have more or fewer components than shown in the figure, and two or more components may be combined. , or can have different component configurations.
  • the various components shown in Figure 1 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal device 100 includes: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, and a battery 142 , Antenna 1, Antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, motor drive circuit 190, linear motor 191, indicator 192 , camera 193, display screen 194, and subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, and a battery 142 , Antenna 1, Antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module
  • the sensor module 180 may include a pressure sensor, a gyroscope sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, etc.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal device 100 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory.
  • the processor 110 may include one or more interfaces through which electrical connection and control with other modules of the terminal device 100 are achieved.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the USB interface 130 is an interface that complies with USB standard specifications, and may specifically be a USB Type C interface, etc.
  • USB The interface 130 can be used to electrically connect the power adapter to charge the terminal device 100, and can also be used to transmit data between devices.
  • the processor 110 is electrically connected to the USB interface 130, and the processor 110 determines the type of device connected to the USB interface 130 based on signals from the USB interface 130. It can also be used to electrically connect headphones (such as digital headphones, etc.) to play audio through the headphones.
  • This interface can also be used to electrically connect other terminal devices, such as AR devices.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger (power adapter, etc.). While charging the battery 142, the charging management module 140 can also provide power to the terminal device through the power management module 141.
  • the power management module 141 (also called a power management chip) is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, internal memory 121, external memory, display screen 194, camera 193, wireless communication module 160, etc.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied to the terminal device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the wireless communication module 160 can provide applications on the terminal device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites.
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • Bluetooth bluetooth, BT
  • global navigation satellites Global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the antenna 1 of the terminal device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal device 100 can communicate with the network and other devices through wireless communication technology.
  • the terminal device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the terminal device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to implement an expansion terminal. Storage capabilities of device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the terminal device 100 .
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the terminal device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the terminal device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • Linear motor 191 can generate vibration cues.
  • the linear motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • Different application scenarios (such as time reminders, receiving information, alarm clocks, games, etc.) can also correspond to different vibration feedback effects.
  • the touch vibration feedback effect can also be customized.
  • the linear motor 191 when the terminal device can only drive the linear motor 191 at low voltage, the linear motor 191 can be driven at high voltage through an external motor drive circuit 190 without the need to set up a dedicated high-voltage drive chip.
  • FIG. 2 shows a schematic structural diagram of a motor drive circuit provided by an embodiment of the present application.
  • the motor driving circuit 190 includes a power module 11 , a control module 12 , an inductive coupling module 13 , a first compensation capacitor C1 , a second compensation capacitor C2 and at least one parallel capacitor group.
  • Each parallel capacitor group includes at least one
  • the parallel capacitor C3 and the switch module 14 are electrically connected to the parallel capacitor C3, that is, each parallel capacitor C3 corresponds to one switch module 14.
  • the inductive coupling module 13 includes a primary inductor L1 and a secondary inductor L2.
  • One end of the primary inductor L1 is electrically connected to the positive electrode V+ of the power module 11 , and the other end of the primary inductor L1 is electrically connected to the negative electrode V- of the power module 11 .
  • One end of the secondary inductor L2 is electrically connected to the positive end of the linear motor 191 and the first electrode of the parallel capacitor C3, and the other end of the secondary inductor L2 is electrically connected to the negative end of the linear motor 191 and the second end of the switch module 14 respectively.
  • the second electrode of the parallel capacitor C3 is electrically connected to the first end of the switch module 14, that is, each parallel capacitor group is connected in parallel with the secondary inductor L2.
  • the control end of the switch module 14 is electrically connected to the control module 12 .
  • the first compensation capacitor C1 is connected in series with the primary inductor L1, and the second compensation capacitor C2 is connected in series with the secondary inductor L2. That is to say, the first compensation capacitor C1 is located between the positive terminal V+ of the power module 11 and one end of the primary inductor L1, and the second compensation capacitor C2 is located between the positive terminal of the linear motor 191 and one end of the secondary inductor L2.
  • the power module 11 is used to output the AC voltage V1.
  • the inductive coupling module 13 is used to couple the AC voltage V1 output by the power module 11 to the linear motor 191 .
  • the control module 12 is used to control the switching module 14 to be turned on or off.
  • G is the voltage gain
  • j is the imaginary sign
  • 2 ⁇ f
  • f is the AC operating frequency
  • M is the mutual inductance
  • K is the coupling coefficient, which is a certain value
  • L 1 is the inductance value of the primary inductor L1
  • L 2 is the inductance value of the secondary inductor L2
  • R L is the resistance value of the equivalent load
  • Z P is the primary side
  • the impedance of specifically the sum of the capacitive reactance Z C1 of the first compensation capacitor C1 and the inductive reactance Z L1 of the primary inductor L1
  • Z S is the impedance of the secondary side, specifically the sum of the capacitive reactance Z C2 of the second compensation capacitor C2 and the secondary The sum of the inductive reactance Z L2 of the side inductance L2.
  • the secondary impedance becomes smaller and the voltage gain becomes larger, that is, the voltage V2 received by the linear motor 191 becomes larger.
  • G' is the voltage gain after the change;
  • R 1 is the resistance value of the equivalent resistor on the primary side;
  • R 2 is the resistance value of the equivalent resistor on the secondary side;
  • the voltage gain can be controlled by controlling whether the parallel capacitor C3 is connected or not (whether the switch module 14 is turned on or not) to achieve voltage boosting.
  • the specific values of each of the above parameters can be determined based on the driving voltage required by the linear motor 191, the AC voltage output by the power module 11, and the above formula.
  • each parallel capacitor group includes a parallel capacitor C3 and a switch module 14 .
  • the horse The driving circuit 190 may also include a parallel capacitor group.
  • Each parallel capacitor group includes a plurality of parallel capacitors C3 and a switch module 14 electrically connected to the parallel capacitor C3.
  • FIG. 3 illustrates an embodiment of the present application.
  • FIG. 3 illustrates an embodiment of the present application.
  • FIG. 3 illustrates an embodiment of the present application.
  • FIG. 3 which illustrates an embodiment of the present application.
  • FIG. 3 illustrates an embodiment of the present application.
  • FIG. 3 which illustrates an embodiment of the present application.
  • FIG. 3 which illustrates an embodiment of the present application.
  • FIG. 3 which illustrates an embodiment of the present application.
  • FIG. 3 which illustrates an embodiment of the present application.
  • the motor driving circuit 190 includes a plurality of parallel capacitor groups, each of which includes at least one parallel capacitor C3 and a switch module 14 electrically connected to the parallel capacitor C3.
  • the secondary impedance can be further reduced, thereby further increasing the voltage V2 received by the linear motor 191.
  • the power module 11 When the linear motor 191 is required to vibrate in a steady state, the power module 11 outputs the second AC voltage, and the control module 12 controls the switch module 14 to turn off, that is, the parallel capacitor C3 is not connected to the circuit. At this time, the inductive coupling module 13 outputs the The second AC voltage is coupled to the linear motor 191 to drive the linear motor 191 to achieve steady-state vibration.
  • the power module 11 When the linear motor 191 is required to vibrate transiently, the power module 11 outputs a first AC voltage.
  • the control module 12 is used to monitor the AC voltage output by the power module 11 in real time.
  • the switch module 14 When it is detected that the AC voltage output by the power module 11 is the first AC voltage, , the switch module 14 is controlled to be turned on, and the parallel capacitor C3 is connected to the circuit.
  • the secondary impedance Z S becomes smaller, the voltage gain G becomes larger, so the voltage V2 received by the linear motor 191 and the AC output of the power module 11
  • the ratio of voltage V1 to voltage becomes larger, thereby achieving boost driving of the linear motor 191 without setting up a separate motor drive chip.
  • the structure is simple and the cost is low.
  • the mobile phone when the mobile phone receives an incoming call request, in order to prompt the user to respond to the incoming call request in a timely manner, the mobile phone can prompt the user by vibrating.
  • the linear motor 191 needs to start vibrating quickly from a static state to achieve a relatively high level. A large amount of vibration and then continuous vibration.
  • the power module 11 outputs a first AC voltage.
  • the first AC voltage is, for example, a 5V sine wave or a square wave.
  • the control module 12 monitors the The first AC voltage control switch module 14 is turned on, the parallel capacitor C3 is connected to the circuit, the voltage gain G becomes larger, and the voltage V2 received by the linear motor 191 increases, for example, to 10V, to achieve boosting and driving the linear motor 191.
  • the power module 11 outputs a second AC voltage, which is, for example, a 1.8V sine wave or a square wave.
  • the control module 12 controls the switch module 14 to turn off based on the monitored second AC voltage, and the parallel capacitor C3
  • the voltage V2 received by the linear motor 191 may be, for example, the AC voltage output by the power module 11 , for example, 1.8V. That is, the voltage gain between the voltage V2 received by the linear motor 191 and the AC voltage V1 output by the power module 11 is 1. , so that the linear motor 191 continues to vibrate.
  • Figure 4 shows another structural schematic diagram of a motor drive circuit provided by an embodiment of the present application.
  • the power module 11 in the motor drive circuit 190 is reused as the control module 12, that is, the control end of the switch module 14 is electrically connected to the power module 11. While the power module 11 outputs AC voltage, it also outputs a control switch. The control signal of the module 14 is turned on, so that there is no need to set the control module 12 separately.
  • FIG. 5 shows another structural schematic diagram of the motor drive circuit provided by the embodiment of the present application.
  • each parallel capacitor group includes two parallel capacitors C3 and Two switch modules 14, the two parallel capacitors C3 include a first parallel capacitor C31 and a second parallel capacitor C32, the two switch modules 14 include a first switch module 141 and a second switch module 142; the control end of the first switch module 141 The control end of the second switch module 142 is electrically connected to the negative electrode V- of the power module 11 .
  • the power module 11 In the transient vibration stage of the linear motor 191, that is, when the linear motor 191 needs to vibrate transiently, the power module 11 is used to output the first AC voltage, and the voltage output by the positive V+ of the power module 11 controls the first switch module 141 to conduct, or , the voltage of the negative V- output of the power module 11 controls the second switch module 142 to be turned on.
  • the power module 11 In the steady-state vibration stage of the linear motor 191, that is, when the linear motor 191 needs to vibrate in a steady state, the power module 11 is used to output the second AC voltage, and the voltage output by the positive V+ of the power module 11 controls the first switch module 141 to turn off, and , the voltage of the negative V- output of the power module 11 controls the second switch module 142 to turn off.
  • the power module 11 when the linear motor 191 needs to vibrate in a steady state, the power module 11 outputs an AC voltage of 1.8V, and the positive terminal V+ of the power module 11 and the negative terminal V- of the power module 11 alternately output 1.8V.
  • the first switch module 141 The voltage at the control terminal of the second switch module 142 is lower than its own conduction threshold voltage, and the first parallel capacitor C31 and the second parallel capacitor C32 are not connected to the circuit.
  • the ratio of the voltage V2 received by the linear motor 191 to the AC voltage V1 output by the power module 11 is close to 1, and the linear motor 191 vibrates in a steady state.
  • the power module 11 When the linear motor 191 needs to vibrate transiently, the power module 11 outputs an AC voltage of 5V, and the positive pole V+ of the power module 11 and the negative pole V- of the power module 11 output 5V alternately.
  • the first switch module 141 and the second switch module 142 The voltage at the control terminal is alternately higher than its own conduction threshold voltage, and the first parallel capacitor C31 and the second parallel capacitor C32 are alternately connected to the circuit.
  • the impedance of the secondary side decreases and the voltage gain becomes larger, that is, the ratio of the voltage V2 received by the linear motor 191 and the AC voltage V1 output by the power module 11 becomes larger, that is, the AC voltage V1 output by the power module 11 remains unchanged.
  • the voltage V2 received by the linear motor 191 increases, thereby realizing boost driving of the linear motor 191 .
  • each parallel capacitor group also includes two voltage dividing modules, and the voltage dividing module includes a first resistor R1 and a second resistor R2.
  • the two voltage dividing modules include a first voltage dividing module and a second voltage dividing module.
  • One end of the first resistor R1 in the first voltage dividing module is electrically connected to the positive electrode V+ of the power supply module 11.
  • the first voltage dividing module in the first voltage dividing module The other end of the resistor R1 is electrically connected to the control end of the first switch module 141 and one end of the second resistor R2 respectively.
  • the other end of the second resistor R2 in the first voltage dividing module is grounded;
  • One end of a resistor R1 is electrically connected to the negative electrode V- of the power module 11, and the other end of the first resistor R1 in the second voltage dividing module is electrically connected to the control end of the second switch module 142 and one end of the second resistor R2, respectively.
  • the other end of the second resistor R2 in the second voltage dividing module 142 is connected to ground.
  • the signal at the control end of the first switch module 141 is obtained by dividing the voltage output by the positive terminal V+ of the power module 11 through the first resistor R1 and the second resistor R2.
  • the signal at the control end of the second switch module 142 is obtained by The voltage output by the negative electrode V- of the power module 11 is divided by the first resistor R1 and the second resistor R2. In this way, the selection range of the switch module 14 can be expanded.
  • the embodiment of the present application does not limit the type of the switch module 14. As long as the structure can realize the switching function, it is within the protection scope of the embodiment of the present application.
  • the switch module 14 is, for example, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the first switch module 141 and the second switch module 142 may be of the same type or different types.
  • the first switch module 141 and the second switch module 142 may be of the same type, for example, both are N-type MOSFETs. .
  • one may be an N-type MOSFET and the other may be a P-type MOSFET.
  • the first switch module 141 is an N-type MOSFET and the second switch module 142 is a P-type MOSFET.
  • FIG. 7 shows yet another structural schematic diagram of a motor drive circuit provided by an embodiment of the present application.
  • the control end of the second switch module 142 is electrically connected to the control end of the first switch module 141 , for example, both are electrically connected to the positive electrode V+ of the power supply module 11 , or both are electrically connected to the negative electrode V- of the power supply module 11 .
  • Connection, set up in this way, each parallel capacitor group can only be equipped with a set of voltage dividing modules, simplifying the circuit structure and reducing costs.
  • the embodiment of the present application does not limit the type of the power module 11 , as long as it can output AC voltage and can drive the linear motor 191 to vibrate.
  • the above-mentioned power management chip 141 can be reused as the power module 11. In this way, there is no need to set up a separate power module 11, which reduces the cost of the motor drive circuit 190.
  • the motor drive circuit 190 is used in terminal equipment, The cost of the terminal device 100 can be reduced.
  • the embodiment of the present application does not limit the type of the inductive coupling module 13 , as long as the AC voltage output by the power module 11 can be coupled to the linear motor 191 .
  • the inductive coupling module 13 includes a common mode inductor, a coupling voltage or a transformer, etc.
  • the inductive coupling module 13 includes a common mode inductor and a coupling inductor, it is beneficial to the miniaturized design of the terminal equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本申请实施例提供一种马达驱动电路及终端设备,可以降低成本。该马达驱动电路包括:电源模块,用于输出交流电压;电感耦合模块,包括原边电感和副边电感,用于将交流电压耦合至线性马达;至少一个并联电容组,每个并联电容组包括至少一个开关模块和至少一个并联电容,并联电容的第一电极分别与副边电感的一端以及线性马达的正端电连接,并联电容的第二电极与开关模块的第一端电连接,开关模块的第二端分别与副边电感的另一端以及线性马达的负端电连接;控制模块,与开关模块的控制端电连接,用于控制开关模块的导通或关断;当控制至少一个开关模块导通时,与导通的开关模块电连接的并联电容与副边电感并联,以增大耦合至线性马达的交流电压。

Description

马达驱动电路及终端设备
本申请要求于2022年08月19日提交中国国家知识产权局、申请号为202211000885.6、申请名称为“马达驱动电路及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,尤其涉及一种马达驱动电路及终端设备。
背景技术
线性马达(Linear Resonant Actuator,LRA)凭借其振感强烈、丰富、清脆,能耗低等优点,已经广泛应用于如手机等终端设备的各种振动场合中。线性马达要想实现振动,一般需要设置单独的马达驱动芯片驱动线性马达。然而,由于马达驱动芯片的成本较高,所以导致终端的成本较高。
发明内容
为了解决上述技术问题,本申请提供一种马达驱动电路及终端设备。可以代替马达驱动芯片,当终端设备只能低压驱动线性马达时,通过该马达驱动电路实现高压驱动,结构简单,成本低。
第一方面,本申请实施例提供一种马达驱动电路,包括:电源模块,用于输出交流电压;电感耦合模块,包括原边电感和副边电感,原边电感的一端与电源模块的正极电连接,原边电感的另一端与电源模块的负极电连接,副边电感的一端与线性马达的正端电连接,副边电感的另一端与线性马达的负端电连接,用于将交流电压耦合至线性马达;至少一个并联电容组,每个并联电容组包括至少一个开关模块和至少一个并联电容,并联电容的第一电极分别与副边电感的一端以及线性马达的正端电连接,并联电容的第二电极与开关模块的第一端电连接,开关模块的第二端分别与副边电感的另一端以及线性马达的负端电连接;控制模块,与开关模块的控制端电连接,用于控制开关模块的导通或关断;当控制至少一个所述开关模块导通时,与导通的开关模块电连接的所述并联电容与所述副边电感并联,以增大耦合至线性马达的交流电压。
当并联电容与副边电感并联时,相比于未并联并联电容时,副边的阻抗减小。根据电压增益公式可知,当副边的阻抗减小时,电压增益增大,即线性马达接收的电压和电源模块输出的交流电压的电压增益增大,在电源模块输出的交流电压不变的情况下,线性马达接收的电压增大,也就是说,通过该马达驱动电路实现高压驱动,结构简单,成本低。
示例性的,马达驱动电路包括一个并联电容组,当马达驱动电路包括一个并联电容组时,结构简单,成本低。马达驱动模块包括多个并联电容组,当多个并联电容组与副 边电感并联时,可以进一步降低副边的阻抗,进而进一步耦合至线性马达的电压。
示例性的,每个并联电容组可以包括一个并联电容,当并联电容组包括一个并联电容时,结构简单,成本低。每个并联电容组还可以包括多个并联电容,当并联电容组包括多个并联电容时,多个并联电容可以同时与副边电感并联,这样可以进一步降低副边的阻抗,进而进一步降低耦合至线性马达的电压,还可以多个并联电容中的部分电容与副边电感并联,即该部分电容对应的开关模块导通,剩余的电容对应的开关模块关断,具体可以根据线性马达所需的驱动电压以及开关模块控制端接收的信号决定。
在一些可能实现的方式中,马达驱动模块还包括第一补偿电容和第二补偿电容;第一补偿电容与原边电感串联,第二补偿电容与副边电感串联。根据阻抗公式可知,当第一补偿电容与原边电感串联时,可以减弱原边电感对交流电压的阻碍作用;当第二补偿电容与副边电感串联时,可以减弱副边电感对交流电压的阻碍作用。
在一些可能实现的方式中,电源模块复用为控制模块,这样一来,无需单独设置控制模块,降低马达驱动电路的成本,当该马达驱动电路应用于终端设备中时,可以降低终端设备的成本。
在一些可能实现的方式中,在上述电源模块复用为控制模块的基础上,每个并联电容组包括两个并联电容和两个开关模块,两个并联电容包括第一并联电容和第二并联电容,两个开关模块包括第一开关模块和第二开关模块;第一并联电容的第一电极和第二并联电容的第一电极均与线性马达的正端电连接,第一并联电容的第二电极与第一开关模块的第一端电连接,第二并联电容的第二电极与第二开关模块的第一端电连接,第一开关模块的第二端和第二开关模块的第二端均与线性马达的负端电连接,第一开关模块的控制端与电源模块的正极电连接,第二开关模块的控制端与电源模块的负极电连接;在线性马达的瞬态振动阶段,电源模块用于输出第一交流电压,电源模块的正极输出的电压控制第一并联电容导通,或电源模块的负极输出的电压控制第二并联电容导通;在线性马达的稳态振动阶段,电源模块用于输出第二交流电压,电源模块的正极输出的电压控制第一并联电容关断,以及,电源模块的负极输出的电压控制第二并联电容关断。即直接利用电源模块输出的交流电压控制并联电容接入电路与否,无需电源模块单独控制,这样可以减小电源模块的运算步骤。
示例性的,电源模块输出的交流电压例如为正弦波或方波,这样,在电源模块输出第一交流电压的前提下,当电源模块的正极输出正电压时,例如可以控制第一开关模块导通,进而使得第一并联电容与副边电感并联,当电源模块的负极输出正电压时,例如可以控制第二开关模块导通,进而使得第二并联电容与副边电感并联,即当电源模块输出第一交流电压时,可以使得至少一个并联电容与副边电感并联,以使副边的阻抗降低,进而使得线性马达接收的电压增大。
在一些可能实现的方式中,在上述并联电容组包括两个并联电容和两个开关模块的 基础上,每个并联电容组还包括两个分压模块,两个分压模块包括第一分压模块和第二分压模块;第一分压模块的一端与电源模块的正极电连接,第一分压模块的另一端与第一开关模块的控制端电连接;第二分压模块的一端与电源模块的负极电连接,第二分压模块的另一端与第二开关模块的控制端电连接。即对电源模块输出的交流电压进行分压之后控制开关模块导通或关断,这样,可以使得开关模块的选取更加的灵活。
在一些可能实现的方式中,在上述每个并联电容组还包括两个分压模块的基础上,分压模块包括第一电阻和第二电阻;第一分压模块中的第一电阻的一端与电源模块的正极电连接,第一分压模块中的第一电阻的另一端分别与第一开关模块的控制端以及第二电阻的一端电连接,第一分压模块中的第二电阻的另一端接地设置;第二分压模块中的第一电阻的一端与电源模块的负极电连接,第二分压模块中的第一电阻的另一端分别与第二开关模块的控制端以及第二电阻的一端电连接,第二分压模块中的第二电阻的另一端接地设置。分压模块的结构简单,且成本低。
在一些可能实现的方式中,开关模块包括金属氧化物半导体型场效应管等具有开关功能的结构,本申请实施例仅以开关模块包括金属氧化物半导体型场效应管为例进行的说明,其他具有开关功能的结构均在本申请实施例的保护范围内。
在一些可能实现的方式中,电源模块为终端设备中的电源管理芯片,这样一来,无需单独设置电源模块,降低马达驱动电路的成本,当该马达驱动电路应用于终端设备中时,可以降低终端设备的成本。
在一些可能实现的方式中,电感耦合模块包括共模电感、耦合电感或变压器等。
第二方面,本申请实施例提供一种终端设备,包括第一方面或者以上第一方面的任意一种实现方式的马达驱动电路,由于本申请实施例的终端设备中使用的马达驱动电路为第一方面或者以上第一方面的任意一种实现方式的马达驱动电路,因此二者能够解决相同的技术问题,并达到相同的预期效果。
附图说明
图1为本申请实施例提供的一种终端设备的结构示意图;
图2为本申请实施例提供的终端的一种马达驱动电路的结构示意图;
图3为本申请实施例提供的终端的又一种马达驱动电路的结构示意图;
图4为本申请实施例提供的终端的又一种马达驱动电路的结构示意图;
图5为本申请实施例提供的终端的又一种马达驱动电路的结构示意图;
图6为本申请实施例提供的终端的又一种马达驱动电路的结构示意图;
图7为本申请实施例提供的终端的又一种马达驱动电路的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个***是指两个或两个以上的***。
终端设备如手机、平板电脑等,除了可以通过声音的方式对用户进行提示外,还可以通过振动的方式对用户进行提示,以提高终端设备的用户使用体验。比如,对于会议场景,当用户对手机执行某些操作时,为了避免手机提示音对会议场景中的其他用户造成干扰,手机可以通过振动方式提示用户。又比如,当手机接收到来电请求时,为了提示用户及时回应该来电请求,手机可以同时通过响铃和振动的方式对用户进行提示。特别地,当用户在终端中执行某些操作时,为了提高用户使用体验,终端可以在检测到用户的操作时及时进行振动反馈等。其中,上述振动的产生都是通过设置在终端中的马达实现的,也就是说,终端中设置有马达,通过马达的振动实现振动提示。
应用于终端设备中的马达可以分为两大类,一为转子马达,二为线性马达,其中,转子马达分为普通马达和扁平马达,线性马达分为纵向(Z轴)线性马达和横向(X轴)线性马达。由于,线性马达(Linear Resonant Actuator,LRA)凭借其振感强烈、丰富、清脆,能耗低等优点,因此,本申请实施例就应用于终端中的马达为线性马达为例进行的说明。
线性马达一般分为瞬态振动(也称为短振)和稳态振动(也称为长振)两种类型。其中,稳态振动为当手机振动时,手机振感较为和缓,持续时间较长的振动,相应的,可以通过较低的电压驱动线性马达实现。瞬态振动为当手机振动时,手机振感较为强烈,持续时间较为短促的振动,相应的,需要通过较大的电压(也称为高压)驱动线性马达实现。
而当终端只能输出低压时,需要设置单独的马达驱动芯片,以驱动线性马达实现瞬态振动和稳态振动。然而,由于马达驱动芯片的成本较高,所以导致终端的成本较高。
基于此,本申请实施例提供了一种马达驱动电路,可以代替马达驱动芯片,当终端只能低压驱动线性马达时,通过该马达驱动电路实现高压驱动,结构简单,成本低。该马达驱动电路应用于终端设备中,该终端设备可以为任一可以通过线性马达的振动进行振动提示的终端设备。示例性的,该终端设备可以是手机、电脑、平板电脑、个人数字助理(personal digital assistant,简称PDA)、车载电脑、智能穿戴式设备(如智能手表)、智能家居设备等,本申请实施例对上述终端的具体形式不作特殊限定。
以手机为例,参见图1,图1示出了终端设备的一种结构示意图。应该理解的是,图1所示终端设备100仅是终端设备的一个范例,并且终端设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图1中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
如图1所示,终端设备100包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,马达驱动电路190,线性马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器,陀螺仪传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,骨传导传感器等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。
在一些实施例中,处理器110可以包括一个或多个接口,通过接口实现与终端设备100其他模块的电连接以及控制。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
USB接口130是符合USB标准规范的接口,具体可以是USB Type C接口等。USB 接口130可以用于电连接电源适配器为终端设备100充电,还可以用于设备之间传输数据。具体的,处理器110与USB接口130电连接,处理器110基于USB接口130的信号确定USB接口130连接的设备的类型。也可以用于电连接耳机(如数字耳机等),通过耳机播放音频。该接口还可以用于电连接其他终端设备,例如AR设备等。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器(电源适配器等)。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备供电。
电源管理模块141(也称为电源管理芯片)用于连接电池142、充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。
无线通信模块160可以提供应用在终端设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。
在一些实施例中,终端设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备100可以通过无线通信技术与网络以及其他设备通信。
终端设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。在一些实施例中,终端设备100可以包括1个或N个显示屏194,N为大于1的正整数。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端 设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
线性马达191可以产生振动提示。线性马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,线性马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。本申请实施例中,当终端设备只能低压驱动线性马达191时,可以通过外搭马达驱动电路190实现对线性马达191的高压驱动,无需设置专用高压驱动芯片。
下面对本申请实施例提供的马达驱动电路进行详细介绍。
参见图2,图2示出了本申请实施例提供的马达驱动电路的一种结构示意图。如图2所示,马达驱动电路190包括电源模块11、控制模块12、电感耦合模块13、第一补偿电容C1、第二补偿电容C2和至少一个并联电容组,每个并联电容组包括至少一个并联电容C3和与并联电容C3电连接的开关模块14,即每一个并联电容C3对应一个开关模块14。电感耦合模块13包括原边电感L1和副边电感L2。
原边电感L1的一端与电源模块11的正极V+电连接,原边电感L1的另一端与电源模块11的负极V-电连接。副边电感L2的一端与线性马达191的正端以及并联电容C3的第一电极电连接,副边电感L2的另一端分别与线性马达191的负端以及开关模块14的第二端电连接,并联电容C3的第二电极与开关模块14的第一端电连接,即每个并联电容组均与副边电感L2并联。
开关模块14的控制端与控制模块12电连接。第一补偿电容C1与原边电感L1串联,第二补偿电容C2与副边电感L2串联。也就是说,第一补偿电容C1位于电源模块11的正极V+和原边电感L1的一端之间,第二补偿电容C2位于线性马达191的正端和副边电感L2的一端之间。电源模块11用于输出交流电压V1。电感耦合模块13用于将电源模块11输出的交流电压V1耦合至线性马达191。控制模块12用于控制开关模块14的导通或关断。
当开关模块14关断时,即并联电容C3未接入电路时,亦即串联的副边电感L2和第二补偿电容C2不与并联电容C3并联时,线性马达191接收的电压V2和电源模块11 输出的交流电压V1的电压增益为:
其中,G为电压增益;j为虚数符号;ω=2πf,f为交流工作频率;M为互感,K为耦合系数,为一定值,L1为原边电感L1的电感值,L2为副边电感L2的电感值;RL为等效负载的电阻值;ZP为原边的阻抗,具体为第一补偿电容C1的容抗ZC1与原边电感L1的感抗ZL1之和;ZS为副边的阻抗,具体为第二补偿电容C2的容抗ZC2与副边电感L2的感抗ZL2之和。
当开关模块14导通时,即并联电容C3接入电路时,亦即串联的副边电感L2和第二补偿电容C2与并联电容C3并联。副边阻抗ZS变为:
并联之后的副边阻抗变小,电压增益变大,即线性马达191接收的电压V2变大。
将并联之后的副边阻抗带入到上述电压增益公式中,即将公式(2)带入到公式(1),然后对电压增益公式整体取模,然后化简得到电压增益变化为:
其中,G'为变化之后的电压增益;R1为原边等效的电阻的电阻值;R2为副边等效的电阻的电阻值;X1为原边的电抗,具体为第一补偿电容C1的电抗XC1与原边电感L1的电抗XL1之和;X2'为副边的电抗;C2为第二补偿电容C2的电容值;C3为并联电容C3的电容值;L2为副边电感L2的电感值。
因此,根据上述内容可知,可以通过控制并联电容C3的接入与否(开关模块14导通与否)控制电压增益,实现升压。具体可以根据线性马达191所需的驱动电压、电源模块11输出的交流电压以及上述公式确定上述各参数的具体值。
需要说明的是,上述示例以马达驱动电路190包括一个并联电容组,每个并联电容组包括一个并联电容C3和一个开关模块14为例进行的说明。在其他可选实施例中,马 达驱动电路190还可以包括一个并联电容组,每个并联电容组包括多个并联电容C3以及与并联电容C3电连接的开关模块14,例如,参见图3,图3示出了本申请实施例提供的马达驱动电路的又一种结构示意图。如图3所示,每个并联电容组包括两个并联电容C3以及两个开关模块14,两个并联电容C3和两个开关模块14一一对应电连接。或者,马达驱动电路190包括多个并联电容组,每个并联电容组包括至少一个并联电容C3以及与并联电容C3电连接的开关模块14。当多个并联电容C3均接入电路时,即多个并联电容C3均与副边电感L2并联,可以进一步降低副边的阻抗,进而进一步增大线性马达191接收的电压V2。
下面结合图2对马达驱动电路驱动线性马达实现稳态振动和瞬态振动的过程进行介绍。
当需要线性马达191稳态振动时,电源模块11输出第二交流电压,控制模块12控制开关模块14截止,即并联电容C3不接入电路,此时,电感耦合模块13将电源模块11输出的第二交流电压耦合至线性马达191,驱动线性马达191实现稳态振动。
当需要线性马达191瞬态振动时,电源模块11输出第一交流电压,控制模块12用于实时监测电源模块11输出的交流电压,当监测到电源模块11输出的交流电压为第一交流电压时,控制开关模块14导通,并联电容C3接入到电路中,此时由于副边阻抗ZS变小,因此电压增益G变大,所以线性马达191接收的电压V2和电源模块11输出的交流电压V1的电压的比值变大,从而实现升压驱动线性马达191,无需单独设置马达驱动芯片,结构简单,成本低。
在一种场景下,当手机接收到来电请求,为了提示用户及时回应该来电请求,手机可以通过振动的方式对用户进行提示时,线性马达191需要先从静止状态快速的启振,达到一较大的振动量,然后持续振动。当线性马达191从静止状态快速的启振,且振动量较大时,电源模块11输出第一交流电压,第一交流电压例如为5V正弦波或方波,同时,控制模块12基于监测到的第一交流电压控制开关模块14导通,并联电容C3接入电路,电压增益G变大,线性马达191接收的电压V2增大,例如增大到10V,以实现升压驱动线性马达191,以使线性马达191快速的启振。启振完成后,电源模块11输出第二交流电压,第二交流电压例如为1.8V正弦波或方波,同时,控制模块12基于监测到的第二交流电压控制开关模块14截止,并联电容C3不接入电路,线性马达191接收的电压V2例如可以为电源模块11输出的交流电压,例如为1.8V,即线性马达191接收的电压V2和电源模块11输出的交流电压V1的电压增益为1,以使线性马达191持续振动。
为了进一步降低马达驱动电路的成本,进而降低终端设备的成本。参见图4,图4示出了本申请实施例提供的马达驱动电路的又一种结构示意图。如图4所示,马达驱动电路190中的电源模块11复用为控制模块12,即开关模块14的控制端与电源模块11电连接,电源模块11输出交流电压的同时,还会输出控制开关模块14导通的控制信号,这样一来,无需单独设置控制模块12。
为了减少电源模块11的运算步骤,参见图5,图5示出了本申请实施例提供的马达驱动电路的又一种结构示意图。如图5所示,每个并联电容组包括两个并联电容C3和 两个开关模块14,两个并联电容C3包括第一并联电容C31和第二并联电容C32,两个开关模块14包括第一开关模块141和第二开关模块142;第一开关模块141的控制端与电源模块11的正极V+电连接,第二开关模块142的控制端与电源模块11的负极V-电连接。在线性马达191的瞬态振动阶段,即需要线性马达191瞬态振动时,电源模块11用于输出第一交流电压,电源模块11的正极V+输出的电压控制第一开关模块141导通,或,电源模块11的负极V-输出的电压控制第二开关模块142导通。在线性马达191的稳态振动阶段,即需要线性马达191稳态振动时,电源模块11用于输出第二交流电压,电源模块11的正极V+输出的电压控制第一开关模块141关断,以及,电源模块11的负极V-输出的电压控制第二开关模块142关断。
示例性的,当需要线性马达191稳态振动时,电源模块11输出1.8V的交流电压,电源模块11的正极V+和电源模块11的负极V-交替输出1.8V,此时第一开关模块141和第二开关模块142的控制端的电压低于自身导通阈值电压,第一并联电容C31和第二并联电容C32不接入电路。此时线性马达191接收的电压V2和电源模块11输出的交流电压V1的比值接近于1,线性马达191稳态振动。
需要线性马达191瞬态振动时,电源模块11输出5V的交流电压,电源模块11的正极V+和电源模块11的负极V-交替输出5V,此时第一开关模块141和第二开关模块142的控制端的电压交替高于自身导通阈值电压,第一并联电容C31和第二并联电容C32交替接入电路。此时副边的阻抗降低,电压增益变大,即线性马达191接收的电压V2和电源模块11输出的交流电压V1的比值变大,亦即在电源模块11输出的交流电压V1不变的情况下,线性马达191接收的电压V2增大,从而实现升压驱动线性马达191。
为了扩大开关模块14的选取的范围,参见图6,图6示出了本申请实施例提供的马达驱动电路的又一种结构示意图。如图6所示,每个并联电容组还包括两个分压模块,分压模块包括第一电阻R1和第二电阻R2。两个分压模块包括第一分压模块和第二分压模块,第一分压模块中的第一电阻R1的一端与电源模块11的正极V+电连接,第一分压模块中的第一电阻R1的另一端分别与第一开关模块141的控制端以及第二电阻R2的一端电连接,第一分压模块中的第二电阻R2的另一端接地设置;第二分压模块中的第一电阻R1的一端与电源模块11的负极V-电连接,第二分压模块中的第一电阻R1的另一端分别与第二开关模块142的控制端以及第二电阻R2的一端电连接,第二分压模块142中的第二电阻R2的另一端接地设置。
也就是说,第一开关模块141的控制端的信号是由电源模块11的正极V+输出的电压经过第一电阻R1和第二电阻R2分压得到的,第二开关模块142的控制端的信号是由电源模块11的负极V-输出的电压经过第一电阻R1和第二电阻R2分压得到的,这样一来,可以扩大开关模块14的选取范围。
对于上述开关模块14的类型,本申请实施例对开关模块14的类型不进行限定,只要可以实现开关功能的结构均在本申请实施例的保护范围内。示例性的,开关模块14例如为金属氧化物半导体型场效应管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)。
在此情况下,上述第一开关模块141和第二开关模块142的类型可以相同,也可以不同,例如,上述第一开关模块141和第二开关模块142的类型相同,例如均为N型MOSFET。
当然,还可以一个为N型MOSFET,一个为P型MOSFET,示例性的,第一开关模块141为N型MOSFET,第二开关模块142为P型MOSFET。
在此情况下,参见图7,图7示出了本申请实施例提供的马达驱动电路的又一种结构示意图。如图7所示,第二开关模块142的控制端与第一开关模块141的控制端电连接,例如均与电源模块11的正极V+电连接,或者,均与电源模块11的负极V-电连接,这样设置,每个并联电容组可以仅设置一组分压模块,简化电路结构,降低成本。
对于电源模块11的类型,本申请实施例对电源模块11的类型不进行限定,只要可以输出交流电压,且可以驱动线性马达191振动即可。示例性的,上述电源管理芯片141例如可以复用为电源模块11,这样一来,无需单独设置电源模块11,降低马达驱动电路190的成本,当该马达驱动电路190应用于终端设备中时,可以降低终端设备100的成本。
对于电感耦合模块13的类型,本申请实施例对电感耦合模块13的类型不进行限定,只要可以将电源模块11输出的交流电压耦合至线性马达191处即可。示例性的,电感耦合模块13包括共模电感、耦合电压或变压器等。当电感耦合模块13包括共模电感、耦合电感时,有利于终端设备的小型化设计。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种马达驱动电路,其特征在于,包括:
    电源模块,用于输出交流电压;
    电感耦合模块,包括原边电感和副边电感,所述原边电感的一端与所述电源模块的正极电连接,所述原边电感的另一端与所述电源模块的负极电连接,所述副边电感的一端与线性马达的正端电连接,所述副边电感的另一端与所述线性马达的负端电连接,用于将所述交流电压耦合至所述线性马达;
    至少一个并联电容组,每个所述并联电容组包括至少一个开关模块和至少一个并联电容,所述并联电容的第一电极分别与所述副边电感的一端以及所述线性马达的正端电连接,所述并联电容的第二电极与所述开关模块的第一端电连接,所述开关模块的第二端分别与所述副边电感的另一端以及所述线性马达的负端电连接;
    控制模块,与所述开关模块的控制端电连接,用于控制所述开关模块的导通或关断;当控制至少一个所述开关模块导通时,与导通的所述开关模块电连接的所述并联电容与所述副边电感并联,以增大耦合至所述线性马达的交流电压。
  2. 根据权利要求1所述的马达驱动电路,其特征在于,所述马达驱动电路还包括第一补偿电容和第二补偿电容;
    所述第一补偿电容与所述原边电感串联,所述第二补偿电容与所述副边电感串联。
  3. 根据权利要求1所述的马达驱动电路,其特征在于,所述电源模块复用为所述控制模块。
  4. 根据权利要求3所述的马达驱动电路,其特征在于,每个所述并联电容组包括两个并联电容和两个开关模块,两个所述并联电容包括第一并联电容和第二并联电容,两个所述开关模块包括第一开关模块和第二开关模块;所述第一开关模块的控制端与所述电源模块的正极电连接,所述第二开关模块的控制端与所述电源模块的负极电连接;
    在所述线性马达的瞬态振动阶段,所述电源模块用于输出第一交流电压,所述电源模块的正极输出的电压控制所述第一开关模块导通,或,所述电源模块的负极输出的电压控制所述第二开关模块导通;
    在所述线性马达的稳态振动阶段,所述电源模块用于输出第二交流电压,所述电源模块的正极输出的电压控制所述第一开关模块关断,以及,所述电源模块的负极输出的电压控制所述第二开关模块关断。
  5. 根据权利要求4所述的马达驱动电路,其特征在于,每个所述并联电容组还包括两个分压模块,两个所述分压模块包括第一分压模块和第二分压模块;
    所述第一分压模块的一端与所述电源模块的正极电连接,所述第一分压模块的另一端与所述第一开关模块的控制端电连接;
    所述第二分压模块的一端与所述电源模块的负极电连接,所述第二分压模块的另一端与所述第二开关模块的控制端电连接。
  6. 根据权利要求5所述的马达驱动电路,其特征在于,所述分压模块包括第一电阻和第二电阻;
    所述第一分压模块中的第一电阻的一端与所述电源模块的正极电连接,所述第一分压模块中的第一电阻的另一端分别与所述第一开关模块的控制端以及所述第二电阻的一端电连接,所述第一分压模块中的第二电阻的另一端接地设置;
    所述第二分压模块中的第一电阻的一端与所述电源模块的负极电连接,所述第二分压模块中的第一电阻的另一端分别与所述第二开关模块的控制端以及所述第二电阻的一端电连接,所述第二分压模块中的第二电阻的另一端接地设置。
  7. 根据权利要求1-6任一项所述的马达驱动电路,其特征在于,所述开关模块包括金属氧化物半导体型场效应管。
  8. 根据权利要求1-6任一项所述的马达驱动电路,其特征在于,所述电源模块为终端设备中的电源管理芯片。
  9. 根据权利要求1-6任一项所述的马达驱动电路,其特征在于,所述电感耦合模块包括共模电感、耦合电感或变压器。
  10. 一种终端设备,其特征在于,包括权利要求1-9任一项所述的马达驱动电路。
PCT/CN2023/089379 2022-08-19 2023-04-20 马达驱动电路及终端设备 WO2024037013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211000885.6A CN116054680B (zh) 2022-08-19 2022-08-19 马达驱动电路及终端设备
CN202211000885.6 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037013A1 true WO2024037013A1 (zh) 2024-02-22

Family

ID=86122415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089379 WO2024037013A1 (zh) 2022-08-19 2023-04-20 马达驱动电路及终端设备

Country Status (2)

Country Link
CN (1) CN116054680B (zh)
WO (1) WO2024037013A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085105A1 (en) * 2008-09-30 2010-04-08 Infineon Technologies Ag Circuit arrangement including a voltage supply circuit and semiconductor switching element
CN106740220A (zh) * 2017-01-05 2017-05-31 西安特锐德智能充电科技有限公司 一种恒流恒压复合拓扑的无线充电电路
CN109474082A (zh) * 2018-12-07 2019-03-15 华中科技大学 一种基于变补偿网络结构的双向无线电能传输***及方法
CN111193428A (zh) * 2020-01-20 2020-05-22 南京理工大学 微细高频分组脉冲电源
CN114825663A (zh) * 2022-05-06 2022-07-29 安徽工业大学 一种sp型双输出单独可调无线电能传输***及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060704A (ja) * 2010-09-06 2012-03-22 Minebea Co Ltd 負荷駆動装置
CN110912409B (zh) * 2019-11-07 2020-12-18 广州金升阳科技有限公司 一种正反激式开关电源电路
CN113595383B (zh) * 2020-04-30 2023-01-13 华为技术有限公司 一种开关电容电路、充电控制***及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085105A1 (en) * 2008-09-30 2010-04-08 Infineon Technologies Ag Circuit arrangement including a voltage supply circuit and semiconductor switching element
CN106740220A (zh) * 2017-01-05 2017-05-31 西安特锐德智能充电科技有限公司 一种恒流恒压复合拓扑的无线充电电路
CN109474082A (zh) * 2018-12-07 2019-03-15 华中科技大学 一种基于变补偿网络结构的双向无线电能传输***及方法
CN111193428A (zh) * 2020-01-20 2020-05-22 南京理工大学 微细高频分组脉冲电源
CN114825663A (zh) * 2022-05-06 2022-07-29 安徽工业大学 一种sp型双输出单独可调无线电能传输***及其控制方法

Also Published As

Publication number Publication date
CN116054680B (zh) 2023-10-27
CN116054680A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2023197699A1 (zh) 充电电路、充电控制方法和电子设备
KR20150091729A (ko) 전자 장치의 충전 회로
US10461623B2 (en) Voltage converter circuit, electronic device including the same and voltage conversion method
CN113009995B (zh) 一种供电装置及供电方法
EP4274049A1 (en) Charging conversion device, and charging control method
CN116529981A (zh) 双电池管理电路和电子设备
CN113949167B (zh) 一种充电装置及电子设备
EP4199343A1 (en) Linear motor driving method and circuit, and related apparatus
CN112737566A (zh) 一种接口转换电路及电子设备
WO2023207706A1 (zh) 一种充电电路及电子设备
CN116569441A (zh) 双电池管理电路和电子设备
WO2024037013A1 (zh) 马达驱动电路及终端设备
EP4050754B1 (en) Power supply system, and electronic device
CN115065128B (zh) 电子设备及充电控制方法
CN218829140U (zh) 双电池管理电路和电子设备
CN218829139U (zh) 双电池管理电路和电子设备
WO2023123788A1 (zh) 无线充电装置以及方法
WO2023142820A1 (zh) 一种开关电容电路sc及电子设备
CN117118006A (zh) 电子设备、充电电路、充电控制方法以及芯片
CN111371157B (zh) 充电控制方法及装置、充电电路、电子设备、存储介质
CN117134009B (zh) 充电方法及电子设备
EP4283830A1 (en) Electronic device and power supply method for smart power amplifier
CN117318201A (zh) 充电电路、电子设备及反向充电方法
CN118232444A (zh) 充电电路控制方法、装置、设备及存储介质
CN116937983A (zh) 一种电压变换电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853922

Country of ref document: EP

Kind code of ref document: A1