WO2024036613A1 - 处理方法、通信设备及存储介质 - Google Patents

处理方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2024036613A1
WO2024036613A1 PCT/CN2022/113660 CN2022113660W WO2024036613A1 WO 2024036613 A1 WO2024036613 A1 WO 2024036613A1 CN 2022113660 W CN2022113660 W CN 2022113660W WO 2024036613 A1 WO2024036613 A1 WO 2024036613A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing advance
side link
symbols
select
control information
Prior art date
Application number
PCT/CN2022/113660
Other languages
English (en)
French (fr)
Inventor
朱荣昌
黄伟
黄钧蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2022/113660 priority Critical patent/WO2024036613A1/zh
Publication of WO2024036613A1 publication Critical patent/WO2024036613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present application relates to the field of communication technology, and in particular, to a processing method, communication equipment and storage medium.
  • the inventor found that there are at least the following problems: in the unlicensed spectrum, if the interval between two transmissions is greater than 25 ⁇ s, the latter transmission cannot share the COT used in the previous transmission, that is, the latter transmission Transmission requires the use of Type 1 Channel access, which will reduce the probability of the subsequent transmission seizing unlicensed spectrum.
  • the main purpose of this application is to provide a processing method, communication equipment and storage medium, aiming to improve the probability of seizing unlicensed spectrum during side-link transmission.
  • this application provides a processing method that can be applied to terminal devices (such as mobile phones), including the following steps:
  • S1 Select or determine cyclic prefix extension based on preset parameters, generate orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, and communicate based on the orthogonal frequency division multiplexing symbols.
  • the preset parameters include at least one of the following: number of symbols, timing advance, propagation delay, and interval value.
  • step S1 it also includes: selecting or determining at least one of the following: number of symbols, timing advance, propagation delay, and interval value.
  • the method of selecting or determining the number of symbols includes at least one of the following:
  • the number of symbols is selected or determined based on the current partial bandwidth of the side link and/or the subcarrier spacing of the side link resource pool.
  • the timing advance includes the first timing advance and/or the second timing advance used for two adjacent transmissions.
  • the method of selecting or determining the timing advance includes at least one of the following:
  • a network device such as a base station
  • the second timing advance is selected or determined based on a random access response message sent by a network device (such as a base station).
  • the method of selecting or determining the propagation delay includes at least one of the following:
  • the propagation delay is selected or determined based on the first signal.
  • the step of selecting or determining the interval value includes at least one of the following:
  • the interval value is selected or determined based on a preset configuration.
  • This application also provides a processing method that can be applied to terminal devices (such as mobile phones), including the following steps:
  • S10 Send a first message.
  • the first message is used to select or determine a first parameter.
  • the first parameter is used to select or determine a cyclic prefix extension.
  • the first message includes at least one of the following: side link control information, common side link control information, side link radio resource control signaling, side link medium access control information unit; and/or,
  • the first parameter includes at least one of the following: number of symbols, first timing advance, and interval value.
  • the method further includes the following steps:
  • a first signal is sent, and the first signal is used to select or determine the propagation delay.
  • the method further includes the following steps:
  • a first signal is sent, and the first signal is used to select or determine the propagation delay.
  • step S10 it also includes:
  • the first message is selected or determined based on the second message.
  • This application also provides a processing method that can be applied to network equipment (such as base stations), including the following steps:
  • A10 Send a second message, the second message is used to select or determine the second parameter, the second parameter is used to select or determine the cyclic prefix extension.
  • the second message includes at least one of the following: downlink control information, medium access control information unit, random access response message; and/or the second parameter includes at least one of the following: number of symbols, Timing advance amount and interval value.
  • the timing advance includes a first timing advance and/or a second timing advance used for two adjacent transmissions.
  • This application also provides a communication device, including: a memory, a processor, and a processing program stored on the memory and executable on the processor.
  • a processing program stored on the memory and executable on the processor.
  • the communication device in this application can be a terminal device (such as a mobile phone) or a network device (such as a base station).
  • a terminal device such as a mobile phone
  • a network device such as a base station
  • This application also provides a storage medium, a computer program is stored on the storage medium, and when the computer program is executed by a processor, the steps of any of the above processing methods are implemented.
  • This application selects or determines cyclic prefix extension based on preset parameters, generates orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, communicates based on the orthogonal frequency division multiplexing symbols, and generates orthogonal frequency division multiplexing symbols based on the cyclic prefix extension.
  • Frequency division multiplexing symbols, and using the generated orthogonal frequency division multiplexing symbols for side link transmission helps to preserve channel occupation time and can increase the probability of seizing unlicensed spectrum during side link transmission.
  • Figure 1 is a schematic diagram of the hardware structure of a mobile terminal that implements various embodiments of the present application
  • FIG. 2 is a communication network system architecture diagram provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the hardware structure of a controller 140 provided by this application.
  • Figure 4 is a schematic diagram of the hardware structure of a network node 150 provided by this application.
  • Figure 5 is a schematic flowchart of a processing method according to the first embodiment
  • Figure 6 is a first principle schematic diagram of a processing method according to the first embodiment
  • Figure 7 is a second schematic diagram of the processing method according to the first embodiment
  • Figure 8 is a schematic flowchart of a processing method according to the second embodiment
  • Figure 9 is a schematic flowchart of a processing method according to a third embodiment.
  • Figure 10 is a schematic flowchart of a processing method according to the fourth embodiment.
  • Figure 11 is a schematic flowchart of a processing method according to the fifth embodiment.
  • Figure 12 is a first principle schematic diagram of a processing method according to the seventh embodiment.
  • Figure 13 is a second schematic diagram of the processing method according to the seventh embodiment.
  • Figure 14 is a schematic structural diagram of a processing device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram 2 of the processing device provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram three of the processing device provided by the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C"; another example is, “ A, B or C” or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C". Exceptions to this definition occur only when the combination of elements, functions, steps, or operations is inherently mutually exclusive in some manner.
  • each step in the flow chart in the embodiment of the present application is displayed in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in the figure may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily sequential. may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • step codes such as S0 and S1 are used for the purpose of describing the corresponding content more clearly and concisely, and do not constitute a substantial restriction on the sequence. Those skilled in the art may S1 will be executed first and then S0, etc., but these should be within the protection scope of this application.
  • Terminal devices can be implemented in various forms.
  • the terminal devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Smart terminal devices such as wearable devices, smart bracelets, and pedometers, as well as fixed terminal devices such as digital TVs and desktop computers.
  • PDA Personal Digital Assistant
  • PMP portable media players
  • navigation devices Smart terminal devices such as wearable devices, smart bracelets, and pedometers
  • Smart terminal devices such as wearable devices, smart bracelets, and pedometers
  • fixed terminal devices such as digital TVs and desktop computers.
  • a mobile terminal will be taken as an example.
  • the structure according to the embodiments of the present application can also be applied to fixed-type terminal equipment.
  • the mobile terminal 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, and a /V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used to receive and send information or signals during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global Mobile Communications System), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division) Duplexing-Long Term Evolution, Frequency Division Duplex Long Term Evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, Time Division Duplex Long Term Evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global Mobile Communications System
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code
  • WiFi is a short-distance wireless transmission technology.
  • the mobile terminal can help users send and receive emails, browse web pages, access streaming media, etc. through the WiFi module 102. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the mobile terminal and can be omitted as needed without changing the essence of the invention.
  • the audio output unit 103 may, when the mobile terminal 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, etc., receive the audio signal received by the radio frequency unit 101 or the WiFi module 102 or store it in the memory 109 The audio data is converted into audio signals and output as sound. Furthermore, the audio output unit 103 may also provide audio output related to a specific function performed by the mobile terminal 100 (eg, call signal reception sound, message reception sound, etc.). The audio output unit 103 may include a speaker, a buzzer, or the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 can process still pictures or images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Video image data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or WiFi module 102.
  • the microphone 1042 can receive sounds (audio data) via the microphone 1042 in operating modes such as a phone call mode, a recording mode, a voice recognition mode, and the like, and can process such sounds into audio data.
  • the processed audio (voice) data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in a phone call mode.
  • Microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to eliminate (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the mobile terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display when the mobile terminal 100 moves to the ear. Panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes). It can detect the magnitude and direction of gravity when stationary.
  • It can be used to identify applications of mobile phone posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone, it can also be configured with fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also known as a touch screen, can collect the user's touch operations on or near the touch panel 1071 (for example, the user uses a finger, stylus, or any suitable object or accessory on or near the touch panel 1071 operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into contact point coordinates , and then sent to the processor 110, and can receive the commands sent by the processor 110 and execute them.
  • the touch panel 1071 can be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include but are not limited to one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, etc., which are not specifically discussed here. limited.
  • the touch panel 1071 can cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to the touch event.
  • the type provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. The implementation of the input and output functions of the mobile terminal is not limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected to the mobile terminal 100 .
  • external devices may include a wired or wireless headphone port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the mobile terminal 100 or may be used to connect between the mobile terminal 100 and an external device. Transfer data between devices.
  • Memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the storage data area may Store data created based on the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 109 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 110 is the control center of the mobile terminal, using various interfaces and lines to connect various parts of the entire mobile terminal, by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109 , execute various functions of the mobile terminal and process data, thereby overall monitoring the mobile terminal.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, application programs, etc., and modulation
  • the demodulation processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • the mobile terminal 100 may also include a power supply 111 (such as a battery) that supplies power to various components.
  • a power supply 111 such as a battery
  • the power supply 111 may be logically connected to the processor 110 through a power management system, thereby managing charging, discharging, and power consumption management through the power management system. and other functions.
  • the mobile terminal 100 may also include a Bluetooth module, etc., which will not be described again here.
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of universal mobile communication technology.
  • the LTE system includes UEs (User Equipment, User Equipment) connected in sequence. )201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP business 204.
  • UEs User Equipment, User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • UE 201 may be the above-mentioned terminal device 100, which will not be described again here.
  • E-UTRAN202 includes eNodeB2021 and other eNodeB2022, etc.
  • eNodeB2021 can be connected to other eNodeB2022 through backhaul (for example, X2 interface), eNodeB2021 is connected to EPC203, and eNodeB2021 can provide access from UE201 to EPC203.
  • backhaul for example, X2 interface
  • EPC 203 may include MME (Mobility Management Entity, mobility management entity) 2031, HSS (Home Subscriber Server, home user server) 2032, other MME 2033, SGW (Serving Gate Way, service gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, policy and charging functional entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and to save some user-specific information about service characteristics, data rates, etc. All user data can be sent through SGW2034.
  • PGW2035 can provide IP address allocation and other functions for UE 201.
  • PCRF2036 is the policy and charging control policy decision point for business data flows and IP bearer resources. It is the policy and charging execution function. The unit (not shown) selects and provides available policy and charging control decisions.
  • IP services 204 may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • FIG. 3 is a schematic diagram of the hardware structure of a controller 140 provided by this application.
  • the controller 140 includes: a memory 1401 and a processor 1402.
  • the memory 1401 is used to store program instructions.
  • the processor 1402 is used to call the program instructions in the memory 1401 to execute the steps performed by the controller in the first method embodiment. Its implementation principle The beneficial effects are similar and will not be repeated here.
  • the above-mentioned controller also includes a communication interface 1403, which can be connected to the processor 1402 through a bus 1404.
  • the processor 1402 can control the communication interface 1403 to implement the receiving and sending functions of the controller 140.
  • FIG. 4 is a schematic diagram of the hardware structure of a network node 150 provided by this application.
  • the network node 150 includes: a memory 1501 and a processor 1502.
  • the memory 1501 is used to store program instructions.
  • the processor 1502 is used to call the program instructions in the memory 1501 to execute the steps performed by the head node in the first method embodiment. Its implementation principle The beneficial effects are similar and will not be repeated here.
  • the above-mentioned controller also includes a communication interface 1503, which can be connected to the processor 1502 through a bus 1504.
  • the processor 1502 can control the communication interface 1503 to implement the receiving and transmitting functions of the network node 150 .
  • the above integrated modules implemented in the form of software function modules can be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium and include a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the methods of various embodiments of the present application. Some steps.
  • a computer program product includes one or more computer instructions.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk, SSD), etc.
  • Figure 5 is a schematic flow chart of a processing method according to the first embodiment.
  • the method in the embodiment of the present application can be applied to terminal devices (such as mobile phones, cars, etc.).
  • the processing method includes the following steps:
  • S1 Select or determine cyclic prefix extension based on preset parameters, generate orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, and communicate based on the orthogonal frequency division multiplexing symbols.
  • channel occupancy time (COT) sharing can be further assisted by using cyclic prefix extension (Cyclic Prefix Extension, CPE).
  • CPE Cyclic Prefix Extension
  • the transmitter node uses it to utilize COT. , preventing it from being idle for too long and losing access to unauthorized channels. This ensures that the interval between two transmissions meets regulations and enables COT sharing.
  • the time domain reference point of the terminal sending the side link channel is the downlink time slot from the base station, and the terminal selects the timing advance (TA) between the terminal and the base station as the timing advance (TA) on the side link.
  • Figure 6 is a first schematic diagram of the processing method according to the first embodiment
  • Figure 7 is a second schematic diagram of the processing method according to the first embodiment.
  • the sending terminal When transmitting the Physical Sidelink Control Channel (PSCCH) and/or the Physical Sidelink Shared Channel (PSSCH), TA 1 is used as the timing advance for transmission.
  • the receiving terminal is on the transmitting physical side.
  • TA 2 is used as the timing advance for transmission.
  • link feedback channel Physical Sidelink Feedback Channel, PSFCH
  • TA 2 is used as the timing advance for transmission. If the sending terminal wishes to share the COT initiated by it to the receiving terminal, from the perspective of the sending terminal, the preset interval between the control channel/data channel sent by the sending terminal and the feedback channel it receives should be equal to 16/25us and/or Other fixed values, the values of these fixed values are natural numbers, and the units of these fixed values are microseconds.
  • the sending terminal shares the COT initiated by it with the receiving terminal, and the receiving terminal uses the COT to send the physical side link control channel and/or the physical side link data channel, then from the perspective of the sending terminal, the sending terminal sends
  • the interval between the physical side link control channel and/or physical side link data channel and the physical side link control channel and/or physical side link data channel sent by the receiving terminal should be equal to 16/25us and/or other fixed values. , the values of these fixed values are natural numbers, and the units of these fixed values are microseconds.
  • the second sending terminal uses the COT to send the physical side link control channel and/or the physical side link data channel, and the physical side link feedback channel , at least one of the physical side link synchronization signal block (S-SS/PSBCH) and the side link channel state information reference signal (S-CSI-RS), then from the perspective of the first sending terminal, the first sending terminal
  • the interval between at least one of -SS/PSBCH) and side-link channel state information reference signal (S-CSI-RS) should be equal to 16/25us and/or other fixed values.
  • the values of these fixed values are natural numbers. , these fixed values are in microseconds.
  • the receiving terminal transmits the first symbol of the physical side link feedback channel and/or the physical side link control channel and/or the physical side link data channel and/or the symbol before the first symbol of the channel.
  • Cyclic Prefix Extension CPE
  • the preset parameters include at least one of the following: number of symbols, timing advance, propagation delay, and interval value.
  • the length of CPE T CPE can be obtained by the following equation:
  • T 1 -TA 1 +T gap T 2 -TA 2 -T CPE +T d
  • T 1 is the transmission end time of the sending terminal
  • T 2 is the start time of the receiving terminal's transmission
  • TA 1 is the timing advance of the sending terminal
  • TA 2 is the timing advance of the receiving terminal
  • T d is the signal at Tx- Propagation delay on the Rx link.
  • T CPE (T 2 -T 1 )-(TA 2 -TA 1 )+T d -T gap
  • T sym is the symbol length
  • C i is the number of symbols
  • T gap is the interval value
  • TA 1 (N TA,SL +N TA,offset ) ⁇ T c
  • TA 2 (N TA,SL +N TA,offset ) ⁇ T c
  • N TA,SL is the side link timing advance parameter, which is provided by MAC CE (medium access control layer control unit) or RAR (random access response message);
  • Timing advance TA (including timing advance TA 1 corresponding to the previous transmission and/or timing advance TA 2 corresponding to the next transmission); propagation delay T d ; gap value (gap) T gap .
  • step S1 it also includes: selecting or determining at least one of the following: number of symbols, timing advance, propagation delay, interval value, that is, including at least one of the following steps:
  • Step S01 Select or determine the number of symbols
  • the number of symbols may be selected or determined based on side link control information.
  • the number of symbols may be selected or determined based on downlink control information.
  • the number of symbols may be selected or determined based on the common side link control information.
  • the number of symbols may be selected or determined based on the current side link partial bandwidth (BWP) and/or the subcarrier spacing of the side link resource pool. For example, when the subcarrier spacing is 15kHz and 30kHz, C i is equal to 1; when the subcarrier spacing is 60kHz, C i is equal to 2.
  • BWP side link partial bandwidth
  • Step S02 Select or determine the timing advance amount
  • the timing advance includes a first timing advance and/or a second timing advance used for two adjacent transmissions,
  • the first timing advance may be selected or determined based on at least one of side link radio resource control signaling, medium access control information unit and side link control information sent by the first terminal.
  • the first terminal is the terminal that sent the previous transmission among the two adjacent transmissions.
  • the first timing advance and/or the second timing advance may be selected or determined based on a medium access control information unit sent by a network device (such as a base station).
  • a network device such as a base station
  • the second timing advance may be selected or determined based on a random access response message sent by a network device (such as a base station).
  • a network device such as a base station
  • the first timing advance amount and/or the second timing advance amount is a fixed value
  • the fixed value is a natural number
  • the unit of the fixed value is microseconds.
  • the difference between the first timing advance amount and the second timing advance amount is a preset value, that is, the first timing advance amount can be calculated based on the second timing advance amount.
  • the preset value may be indicated by at least one of side link radio resource control signaling, medium access control information unit, side link control information and random access response message.
  • the preset value may be used as one of the parameters for selecting or determining cyclic prefix extension.
  • the first timing advance is applied to the previous transmission among the two adjacent transmissions.
  • the second timing advance is applied to the latter of two adjacent transmissions.
  • the timing advance is indicated by at least one of side link radio resource control signaling, medium access control information unit, side link control information and random access response message.
  • Step S03 Select or determine the propagation delay
  • the propagation delay may be selected or determined based on radio resource control signaling, a preset fixed value and/or the first signal.
  • the propagation delay is the propagation delay of the signal between the sending terminal and the receiving terminal, and/or the propagation delay of the signal between the first sending terminal and the second sending terminal.
  • the propagation delay consider that side links are mainly used in two scenarios. One is an indoor scenario, where the distance between terminals is small, and the corresponding propagation delay is also small; the other is a highway scenario, where the distance between terminals is small. The greater the distance, the corresponding propagation delay is also greater.
  • the propagation delay can be enabled through Radio Resource Control (RRC) signaling, that is, the cyclic prefix extension calculation does not need to consider the propagation delay.
  • RRC Radio Resource Control
  • a fixed propagation delay value such as 1us, 2us, etc.
  • the receiving terminal and/or the second sending terminal corresponding to the later transmission need to estimate the propagation delay based on the received signal.
  • the signal is sent by the first sending terminal corresponding to the previous transmission.
  • the signal may be a Demodulation Reference Signal (DMRS) of the Physical Sidelink Control Channel (Physical Sidelink Control Channel, PSCCH).
  • DMRS Demodulation Reference Signal
  • the physical side chain At least one of the DMRS of the physical sidelink share channel (PSSCH), the side link synchronization signal block (S-SS/PSBCH), and the channel state information reference signal (Channel State Information-Reference Signal, CSI-RS).
  • Step S04 Select or determine an interval value.
  • the interval value may be selected or determined based on side link control information, downlink control information and/or preset configuration.
  • the interval value is 16us and/or 25us, which can be dynamically indicated through SCI;
  • the subsequent transmission is a physical side link feedback channel sent by the receiving terminal
  • the number of symbols, interval value and other parameters can be indicated by side link control information (Sidelink Control Information, SCI).
  • SCI Sidelink Control Information
  • the subsequent transmission is the physical side link control channel and/or the physical side link data channel, the physical side link feedback channel, and the physical side link synchronization signal block (S-SS/ PSBCH), side link channel state information reference signal (S-CSI-RS), the number of symbols, interval value and other parameters can be indicated by the base station sending downlink control information (DCI) .
  • DCI downlink control information
  • the above parameters can also be jointly indicated through SCI, for example, configuring a table, see Table 1.
  • Each row in the table represents a value of the above parameters.
  • the table can be configured through RRC signaling.
  • Table 1 First configuration table
  • the orthogonal frequency division multiplexing (OFDM) symbol (Orthogonal Frequency Division Multiplexing, OFDM) can be generated according to the cyclic prefix extension.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Prefixing the cyclic prefix CP with the length of the CPE generates an OFDM symbol upon which communications can be performed.
  • this embodiment selects or determines the cyclic prefix extension based on the number of symbols, timing advance, propagation delay and/or interval value, and then generates orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, and based on the orthogonal frequency division multiplexing Frequency division multiplexing of symbols for communication helps preserve channel occupancy time and improves the probability of seizing unlicensed spectrum during side-link transmission.
  • FIG 8 is a schematic flow chart of a processing method according to the second embodiment. Based on the first embodiment of the present application, this embodiment discloses a method for selecting or determining the number of symbols in step S01, which specifically includes at least the following: One item:
  • S011 Select or determine the number of symbols based on side link control information
  • the number of symbols C i can be dynamically indicated through the side link control information SCI.
  • a field is added to the SCI format, and the field is used to indicate the number of symbols required for the cyclic prefix. For example, adding 2 bits, the field points to Table 1.
  • C 2 and C 3 are configured through RRC signaling , its value is ⁇ 1,...,28 ⁇ , optionally, when the subcarrier spacing is 15kHz, the values of C 2 and C 3 are ⁇ 1,...,28 ⁇ ; when the subcarrier spacing When it is 30kHz, the value of C 2 is ⁇ 1,...,28 ⁇ , and the value of C 3 is ⁇ 2,...,28 ⁇ ; when the subcarrier spacing is 60kHz, the value of C 2 is ⁇ 2,...,28 ⁇ , the value of C 3 is ⁇ 3,...,28 ⁇ .
  • the side link control information is carried in a physical side link control channel and is sent by the first sending terminal.
  • the first sending terminal is the terminal that sends the previous transmission among the two adjacent transmissions.
  • the first sending terminal is a terminal that initiates COT.
  • S012 Select or determine the number of symbols based on downlink control information
  • the number of symbols C i can be dynamically indicated through the downlink control information DCI.
  • a field is added to the DCI format, and the field is used to indicate the number of symbols required for the cyclic prefix. For example, adding 2 bits, the field points to Table 1.
  • the number of symbols is selected or determined according to the indication in the DCI.
  • the number of symbols C i can be dynamically indicated through the common side link control information public SCI, which is used to indicate at least the COT length, COT remaining time, COT switching point, number of symbols C i , channel access type, etc. one.
  • S014 Select or determine the number of symbols based on the current partial bandwidth of the side link and/or the subcarrier spacing of the side link resource pool.
  • the number of symbols C i is associated with the current side link partial bandwidth BWP and/or the subcarrier spacing of the side link resource pool. For example, when the subcarrier spacing is 15kHz and 30kHz, C i is equal to 1; when the subcarrier spacing At 60kHz, C i is equal to 2.
  • the first sending terminal discards the last C i -1 symbols of the last transmission.
  • this embodiment selects or determines the number of symbols based on side link control information, downlink control information, common side link control information, current side link partial bandwidth and/or subcarrier spacing of the side link resource pool, and then Select or determine the cyclic prefix extension according to the number of symbols to generate orthogonal frequency division multiplexing symbols, and then perform side link channel transmission based on the orthogonal frequency division multiplexing symbols, which helps to preserve the channel occupation time and improve the side link channel. The probability of seizing unlicensed spectrum during link transmission.
  • FIG. 9 is a schematic flowchart of a processing method according to a third embodiment. Based on the above embodiment, this embodiment discloses a method for selecting or determining a timing advance in step S02.
  • the timing advance includes The first timing advance and/or the second timing advance used for two adjacent transmissions, the method of selecting or determining the timing advance, specifically includes at least one of the following:
  • S021 Select or determine the first timing advance based on at least one of the side link radio resource control signaling, the medium access control information unit and the side link control information sent by the first terminal;
  • N TA,SL can be equal to zero.
  • TA 1 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through the side link radio resource control signaling SL-RRC sent by the first sending terminal corresponding to the previous transmission.
  • TA 1 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through the medium access control information unit MAC-CE sent by the first sending terminal corresponding to the previous transmission.
  • TA 1 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through the side link control information SCI sent by the first sending terminal corresponding to the previous transmission.
  • S022 Select or determine the first timing advance and/or the second timing advance based on the medium access control information unit sent by the network device;
  • the last transmission sent by the receiving terminal is the physical side link feedback channel (PSFCH).
  • PSFCH physical side link feedback channel
  • the second timing advance TA 2 is the timing advance used by the second sending terminal for transmission, and the second sending terminal shares the COT used by the sending terminal.
  • the last transmission sent by the second sending terminal is a physical side link control channel and/or a physical side link data channel, a physical side link feedback channel, a physical side link synchronization signal block (S-SS/PSBCH), At least one of the side link channel state information reference signals (S-CSI-RS).
  • N TA,SL can be equal to zero.
  • TA 1 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through the medium access control information unit MAC-CE sent by the base station.
  • the updated TA 1 needs to be synchronously notified to the receiving terminal corresponding to the subsequent transmission and/or the second sending terminal.
  • TA 2 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through the medium access control information unit MAC-CE sent by the base station.
  • S023 Select or determine the second timing advance based on the random access response message sent by the network device.
  • TA 2 may notify the receiving terminal and/or the second sending terminal corresponding to the subsequent transmission through a random access response (RAR) message sent by the base station.
  • RAR random access response
  • the first timing advance amount and/or the second timing advance amount is a fixed value
  • the fixed value is a natural number
  • the unit of the fixed value is microseconds.
  • the difference between the first timing advance amount and the second timing advance amount is a preset value, that is, the first timing advance amount can be calculated based on the second timing advance amount.
  • the preset value may be indicated by at least one of side link radio resource control signaling, medium access control information unit, side link control information and random access response message.
  • the preset value may be used as one of the parameters for selecting or determining cyclic prefix extension.
  • the first timing advance is applied to the previous transmission among the two adjacent transmissions.
  • the second timing advance is applied to the latter of two adjacent transmissions.
  • the timing advance is indicated by at least one of side link radio resource control signaling, medium access control information unit, side link control information and random access response message.
  • this embodiment selects or determines the first timing advance and/or the second timing advance for two adjacent transmissions, based on the side link radio resource control signaling and medium access control sent by the first terminal. Select or determine the first timing advance amount based on at least one of the information unit and side link control information; select or determine the first timing advance amount and/or the first timing advance amount based on the medium access control information unit sent by the network device. 2. Timing advance amount: Select or determine the second timing advance amount based on the random access response message sent by the network device. Then, based on the first timing advance and/or the second timing advance, the cyclic prefix extension is selected or determined for side link channel transmission, which helps to preserve the channel occupation time and improve the preemption of unauthorized access during side link transmission. spectrum probability.
  • Figure 10 is a schematic flowchart of a processing method according to the fourth embodiment.
  • the method in the embodiment of the present application can be executed by a terminal device (such as a mobile phone, a vehicle, etc.).
  • the processing method includes the following steps:
  • S10 Send a first message.
  • the first message is used to select or determine a first parameter.
  • the first parameter is used to select or determine a cyclic prefix extension.
  • the first sending terminal sends the first message to the receiving terminal and/or the second sending terminal, so that the receiving terminal and/or the second sending terminal select or determine the first parameter according to the first message.
  • the first parameter is used to select or determine the cyclic prefix extension, and generate orthogonal frequency division multiplexing symbols according to the cyclic prefix extension for communication.
  • the first message includes at least one of the following: side link control information, common side link control information, side link radio resource control signaling, and side link medium access control information unit;
  • the first parameter includes at least one of the following: number of symbols, first timing advance, and interval value.
  • the step of selecting or determining the first parameter based on the first message includes at least one of the following:
  • the number of symbols can be selected or determined based on side link control information, downlink control information, common side link control information, current side link partial bandwidth and/or subcarrier spacing of the side link resource pool;
  • the first timing advance may be selected or determined based on at least one of the side link radio resource control signaling, the side link medium access control information unit and the side link control information sent by the first sending terminal;
  • the propagation delay may be selected or determined based on side-link radio resource control signaling, a preset fixed value and/or the first signal;
  • the interval value may be selected or determined based on sidelink control information.
  • step S10 further includes: in response to the number of symbols being greater than a preset threshold, discarding the symbols of the previous transmission in the two adjacent transmissions.
  • the first sending terminal discards the last C i -1 symbols of the last transmission.
  • step S10 also includes: selecting or determining the first message based on the second message.
  • the first sending terminal can receive the second message sent by the network device (such as the base station), and the first sending terminal can forward the first timing advance carried in the second message from the base station through the first message. to the receiving terminal and/or the second sending terminal.
  • the network device such as the base station
  • the first message including side link control information, common side link control information, side link radio resource control signaling and/or side link medium access control information unit is sent for Selecting or determining a first parameter including the number of symbols, a first timing advance and/or an interval value, the first parameter can be used to select or determine a cyclic prefix extension, and the orthogonal frequency division multiplexing symbols generated according to the cyclic prefix extension can be used for communication process to increase the probability of seizing unlicensed spectrum during side-link transmission.
  • FIG 11 is a schematic flowchart of a processing method according to the fifth embodiment.
  • the method in the embodiment of the present application can be executed by a network device (such as a base station).
  • the processing method includes the following steps:
  • A10 Send a second message, the second message is used to select or determine the second parameter, the second parameter is used to select or determine the cyclic prefix extension.
  • the second message is sent through the network device to select or determine the second parameter, and then the cyclic prefix extension is selected or determined based on the second parameter to generate symbols for the communication process.
  • the second message includes at least one of the following: downlink control information, medium access control information unit, and random access response message;
  • the second parameter includes at least one of the following: number of symbols, timing advance, and interval value.
  • the timing advance includes a first timing advance and/or a second timing advance used for two adjacent transmissions.
  • the method of selecting or determining the first parameter includes at least one of the following:
  • the embodiment of the present application specifically sends a second message to select or determine the second parameter, and then selects or determines the cyclic prefix extension based on the second parameter to generate symbols for the communication process, which helps to retain Channel occupation time increases the probability of seizing unlicensed spectrum during side-link transmission.
  • this embodiment further discloses the processing method in the foregoing embodiments.
  • the first sending terminal and the receiving terminal and/or the second sending terminal cannot communicate with the base station on the spectrum, then the first sending terminal The TA used by the receiving terminal and/or the second sending terminal is 0. Then the length of CPE can be determined by the following formula.
  • T CPE (T 2 -T 1 )+T d -T gap
  • T sym is the symbol length
  • C i is the number of symbols
  • T gap is the interval value
  • the number of symbols C i can be dynamically indicated through SCI.
  • a field is added to the SCI format, and the field is used to indicate the number of symbols required for the cyclic prefix. For example, adding 2 bits, the field points to Table 1 above.
  • C 2 and C 3 are configured through RRC signaling , its value is ⁇ 1,...,28 ⁇ , optionally, when the subcarrier spacing is 15kHz, the values of C 2 and C 3 are ⁇ 1,...,28 ⁇ ; when the subcarrier spacing When it is 30kHz, the value of C 2 is ⁇ 1,...,28 ⁇ , and the value of C 3 is ⁇ 2,...,28 ⁇ ; when the subcarrier spacing is 60kHz, the value of C 2 is ⁇ 2,...,28 ⁇ , the value of C 3 is ⁇ 3,...,28 ⁇ .
  • the symbol number C i can be dynamically indicated through a public SCI, which is used to indicate at least one of COT length, COT remaining time, COT switching point, symbol number C i , channel access type, etc.
  • the symbol number C i is associated with the subcarrier spacing of the current side link BWP and/or side link resource pool. For example, when the subcarrier spacing is 15kHz and 30kHz, C i is equal to 1; when the subcarrier spacing is 60kHz When , C i is equal to 2.
  • the sending terminal discards the last C i -1 symbols of the last transmission.
  • the side link is mainly applied to two scenarios.
  • One is an indoor scenario, the distance between terminals is small, and the corresponding propagation delay is also small; the other is a high-speed scenario.
  • the distance between terminals is large, and the corresponding propagation delay is also large.
  • the propagation delay can be disabled through RRC signaling, that is, the cyclic prefix extension calculation does not need to consider the propagation delay.
  • a fixed propagation delay value such as 1us, 2us, etc.
  • the receiving terminal and/or the second sending terminal corresponding to the later transmission need to estimate the propagation delay based on the received signal.
  • the signal is sent by the first sending terminal corresponding to the previous transmission, and the signal may be at least one of the DMRS of the PSCCH channel, the DMRS of the PSSCH channel, the side link synchronization signal, and the side link CSI-RS signal.
  • the interval value is 16us and/or 25us, which can be dynamically indicated through SCI;
  • the subsequent transmission is a side-link physical feedback channel sent by the receiving terminal
  • the number of symbols, interval value and other parameters may be indicated by SCI.
  • the subsequent transmission is the physical side link control channel and/or the physical side link data channel, the physical side link feedback channel, and the physical side link synchronization signal block (S-SS/ PSBCH), side link channel state information reference signal (S-CSI-RS), the number of symbols, interval value and other parameters can be indicated by SCI.
  • S-SS/ PSBCH physical side link synchronization signal block
  • S-CSI-RS side link channel state information reference signal
  • the above parameters can also be jointly indicated through SCI, for example, configuring a table, and each row in the table represents a value of the above parameters.
  • the table can be configured through RRC signaling.
  • the interval value which is 16us and/or 25us, can be predefined.
  • the cyclic prefix extension is applied to generate OFDM symbols.
  • the length of the CPE is added before the cyclic prefix CP to generate an OFDM symbol.
  • the cyclic prefix extension is determined by selecting or determining the number of symbols C i , the propagation delay T d and the interval value, and a positive cyclic prefix extension is generated based on the cyclic prefix extension.
  • Cross-frequency division multiplexing symbols, and then side-link channel transmission based on orthogonal frequency division multiplexing symbols, help preserve channel occupation time and increase the probability of seizing unlicensed spectrum during side-link transmission.
  • the method for determining cyclic prefix expansion in different application scenarios has been expanded and the flexibility of the method for determining cyclic prefix expansion has been improved.
  • this embodiment further discloses the processing method in the foregoing embodiments.
  • Cyclic prefix extension technology needs to be used to ensure that the size of the interval is equal to 16/25us or less than 16us. To use cyclic prefix extension, you need to determine the length of the cyclic prefix extension. Since two consecutive transmissions come from the same sending terminal, there is no need to consider the sending propagation delay.
  • the length of CPE T CPE can be obtained by the following equation:
  • T 1 is the end time of the previous transmission
  • T 2 is the start time of the next transmission
  • TA old is the timing advance of the previous transmission
  • TA new is the timing advance of the next transmission.
  • T CPE (T 2 -T 1 )-(TA new -TA old )-T gap
  • T sym is the symbol length
  • C i is the number of symbols
  • T gap is the interval value
  • TA old (N TA,SL +N TA,offset ) ⁇ T c
  • TA new (N TA,SL +N TA, offset ) ⁇ T c
  • the number of symbols C i can be dynamically indicated through DCI.
  • a field is added to the DCI format, and the field is used to indicate the number of symbols required for the cyclic prefix. For example, adding 2 bits, the field points to Table 1 above.
  • C 2 and C 3 are configured through RRC signaling , its value is ⁇ 1,...,28 ⁇ , optionally, when the subcarrier spacing is 15kHz, the values of C 2 and C 3 are ⁇ 1,...,28 ⁇ ; when the subcarrier spacing When it is 30kHz, the value of C 2 is ⁇ 1,...,28 ⁇ , and the value of C 3 is ⁇ 2,...,28 ⁇ ; when the subcarrier spacing is 60kHz, the value of C 2 is ⁇ 2,...,28 ⁇ , the value of C 3 is ⁇ 3,...,28 ⁇ .
  • the symbol number C i is associated with the subcarrier spacing of the current side link BWP and/or side link resource pool. For example, when the subcarrier spacing is 15kHz and 30kHz, C i is equal to 1; when the subcarrier spacing is 60kHz When , C i is equal to 2.
  • the sending terminal discards the last C i -1 symbols of the last transmission.
  • both the TA old corresponding to the previous transmission and the TA new corresponding to the subsequent transmission can be obtained through the MAC CE from the base station.
  • N TA,SL can be equal to zero.
  • TA old can notify the terminal corresponding to the previous transmission through the MAC-CE sent by the base station.
  • TA old can notify the terminal corresponding to the previous transmission through the RAR message sent by the base station.
  • the timing advance TA new is the timing advance used for a later transmission, and the latter transmission and the previous transmission are in the same COT.
  • N TA,SL can be equal to zero.
  • TA new can notify the terminal corresponding to the subsequent transmission through the MAC-CE sent by the base station.
  • TA new can notify the terminal corresponding to the subsequent transmission through the RAR message sent by the base station.
  • the interval value its value is Xus, 16us and/or 25us, which can be dynamically indicated through DCI, where X is a value less than 16, and the value of X can be configured through RRC.
  • the sending terminal sends the subsequent physical side link control channel and/or physical side link data channel, physical side link feedback channel, and physical side link synchronization signal block ( S-SS/PSBCH) and side-link channel state information reference signal (S-CSI-RS), LBT does not need to be performed; otherwise, LBT is performed once.
  • S-SS/PSBCH physical side link synchronization signal block
  • S-CSI-RS side-link channel state information reference signal
  • the value is 16us and/or 25us, which can be dynamically indicated by DCI;
  • the above parameters can also be jointly indicated through DCI, for example, configuring a table, and each row in the table represents a value of the above parameters.
  • the table can be configured through RRC signaling.
  • Figure 12 is a first schematic diagram of the processing method according to the seventh embodiment
  • Figure 13 is a second schematic diagram of the processing method according to the seventh embodiment.
  • the above-mentioned cyclic prefix extension is applied to generate OFDM symbols.
  • the length of the CPE is added before the cyclic prefix CP to generate an OFDM symbol.
  • the timing advance TA old corresponding to the previous transmission the timing advance TA new corresponding to the next transmission and the interval value are then determined to determine the cyclic prefix extension.
  • orthogonal frequency division multiplexing symbols are generated. Based on the orthogonal frequency division multiplexing Using symbols for side-link channel transmission helps preserve channel occupancy time and improves the probability of seizing unlicensed spectrum during side-link transmission.
  • the method for determining cyclic prefix expansion in different application scenarios has been expanded and the flexibility of the method for determining cyclic prefix expansion has been improved.
  • Figure 14 is a schematic structural diagram of a processing device provided by an embodiment of the present application.
  • the device can be mounted on the terminal device in the above method embodiment, and the device can specifically be a server.
  • the processing device shown in Figure 14 can be used to perform some or all of the functions in the method embodiments described in the above embodiments.
  • the processing device 110 includes:
  • the processing module 111 is configured to select or determine cyclic prefix extension based on preset parameters, generate orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, and perform communication based on the orthogonal frequency division multiplexing symbols.
  • the preset parameters include at least one of the following: number of symbols, timing advance, propagation delay, and interval value.
  • the step of selecting or determining cyclic prefix extension based on preset parameters, generating orthogonal frequency division multiplexing symbols based on the cyclic prefix extension, and communicating based on the orthogonal frequency division multiplexing symbols also includes:
  • the method of selecting or determining the number of symbols includes at least one of the following:
  • the number of symbols is selected or determined based on the current partial bandwidth of the side link and/or the subcarrier spacing of the side link resource pool.
  • the timing advance includes the first timing advance and/or the second timing advance used for two adjacent transmissions.
  • the method of selecting or determining the timing advance includes at least one of the following:
  • a network device such as a base station
  • the second timing advance is selected or determined based on a random access response message sent by a network device (such as a base station).
  • the method of selecting or determining the propagation delay includes at least one of the following:
  • the propagation delay is selected or determined based on the first signal.
  • the step of selecting or determining the interval value includes at least one of the following:
  • the interval value is selected or determined based on a preset configuration.
  • modules in the processing device shown in FIG. 14 may be performed by modules in the processing device shown in FIG. 14 .
  • Each unit in the processing device shown in Figure 14 can be separately or entirely combined into one or several additional modules to form, or one (some) of the modules can be further divided into multiple functionally smaller units. , which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above units are divided based on logical functions.
  • the function of one module can also be implemented by multiple modules, or the functions of multiple modules can be implemented by one module.
  • the processing device may also include other modules. In practical applications, these functions may also be implemented with the assistance of other modules, and may be implemented by multiple modules in cooperation.
  • the processing device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • Figure 15 is a second structural schematic diagram of a processing device provided by an embodiment of the present application. As shown in Figure 15, the processing device 120 includes:
  • the sending module 121 is configured to send a first message, the first message is used to select or determine a first parameter, and the first parameter is used to select or determine a cyclic prefix extension.
  • the first message includes at least one of the following: side link control information, common side link control information, side link radio resource control signaling, and side link medium access control information unit.
  • the first parameter includes at least one of the following: number of symbols, first timing advance, and interval value.
  • the step of sending the first message further includes: in response to the number of symbols being greater than a preset threshold, discarding the symbols of the previous transmission in the two adjacent transmissions.
  • the processing device is further configured to send a first signal, where the first signal is used to select or determine the propagation delay.
  • the processing device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • FIG 16 is a schematic structural diagram three of a processing device provided by an embodiment of the present application. As shown in Figure 16, the processing device 130 includes:
  • the sending module 131 is configured to send a second message, the second message is used to select or determine a second parameter, and the second parameter is used to select or determine a cyclic prefix extension.
  • the second message includes at least one of the following: downlink control information, medium access control information unit, and random access response message.
  • the second parameter includes at least one of the following: number of symbols, timing advance, and interval value.
  • the timing advance includes a first timing advance and/or a second timing advance used for two adjacent transmissions.
  • FIG 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 140 described in this embodiment may be the terminal device (or a component that can be used for the terminal device) or a network device (or a component that can be used for the network device) mentioned in the previous method embodiment.
  • the communication device 140 may be used to implement the method corresponding to the terminal device or network device described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 140 may include one or more processors 141, which may also be called a processing unit, and may implement certain control or processing functions.
  • the processor 141 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication equipment, execute software programs, and process data of software programs.
  • the processor 141 may also store instructions 143 or data (eg, intermediate data).
  • the instruction 143 can be executed by the processor 141, so that the communication device 140 performs the method corresponding to the terminal device or network device described in the above method embodiment.
  • the communication device 140 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the communication device 140 may include one or more memories 142, on which instructions 144 may be stored, and the instructions may be executed on the processor 141, so that the communication device 140 executes the method described in the above method embodiment.
  • data may also be stored in the memory 142 .
  • the processor 141 and the memory 142 can be provided separately or integrated together.
  • communication device 140 may also include a transceiver 145 and/or an antenna 146.
  • the processor 141 may be called a processing unit and controls the communication device 140 (terminal device or core network device or radio access network device).
  • the transceiver 145 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, etc., and is used to implement the transceiver function of the communication device 140 .
  • the first message and the second message may be received or sent by the transceiver 145; and, the processor 141 may receive or send the first message based on The preset content selects or determines the time domain position and/or frequency domain position of each transmission opportunity of the control resource set.
  • the specific implementation process of the processor 141 and the transceiver 145 can be referred to the relevant descriptions of the above embodiments, and will not be described again here.
  • the first message and the second message may be received or sent by the transceiver 145 .
  • the specific implementation process of the processor 141 and the transceiver 145 can be referred to the relevant descriptions of the above embodiments, and will not be described again here.
  • the processor 141 and transceiver 145 described in this application can be implemented in IC (Integrated Circuit, integrated circuit), analog integrated circuit, RFIC (Radio Frequency Integrated Circuit, radio frequency integrated circuit), mixed signal integrated circuit, ASIC (Application Specific Integrated Circuit, application specific integrated circuit), PCB (Printed Circuit Board, printed circuit board), electronic equipment, etc.
  • IC Integrated Circuit, integrated circuit
  • RFIC Radio Frequency Integrated Circuit, radio frequency integrated circuit
  • mixed signal integrated circuit aSIC (Application Specific Integrated Circuit, application specific integrated circuit)
  • ASIC Application Specific Integrated Circuit, application specific integrated circuit
  • PCB Print Circuit Board, printed circuit board
  • electronic equipment etc.
  • the processor 141 and the transceiver 145 can also be manufactured using various integrated circuit process technologies, such as CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), NMOS (N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor) ), PMOS (Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor), BJT (Bipolar Junction Transistor, bipolar junction transistor), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs) wait.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • NMOS N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor
  • PMOS Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor
  • BJT Bipolar Junction Transistor, bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • the communication device can be a terminal device (such as a mobile phone) or a network device (such as a base station).
  • a terminal device such as a mobile phone
  • a network device such as a base station
  • the terminal device can be implemented in various forms.
  • the terminal devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, as well as fixed terminal devices such as digital TVs and desktop computers.
  • the communication device is described by taking a terminal device or a network device as an example, the scope of the communication device described in this application is not limited to the above-mentioned terminal device or network device, and the structure of the communication device may not be limited to Limitations of Figure 17.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • An embodiment of the present application also provides a communication system, including: a terminal device as in any of the above method embodiments; and a network device as in any of the above method embodiments.
  • An embodiment of the present application also provides a communication device, including a memory and a processor.
  • a processing program is stored in the memory. When the processing program is executed by the processor, the steps of the processing method in any of the above embodiments are implemented.
  • the communication device in this application can be a terminal device (such as a mobile phone) or a network device (such as a base station). The specific meaning needs to be clarified according to the context.
  • Embodiments of the present application also provide a storage medium.
  • a processing program is stored on the storage medium.
  • the processing program is executed by a processor, the steps of the processing method in any of the above embodiments are implemented.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the methods in the above various possible implementations.
  • Embodiments of the present application also provide a chip, which includes a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program from the memory, so that the device equipped with the chip executes the above various possible implementations. Methods.
  • the units in the equipment of the embodiments of this application can be merged, divided, and deleted according to actual needs.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disc, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, a computer, a server, a controlled terminal device, or a network device, etc.) to execute the method of each embodiment of the present application.
  • a computer program product includes one or more computer instructions.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (eg, floppy disks, storage disks, tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种处理方法、通信设备及存储介质,该方法通过基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信,通过根据循环前缀扩展生成正交频分复用符号,并将生成的正交频分复用符号用于侧链路传输,有助于保留信道占据时间,可以提高侧链路传输过程中抢占到非授权频谱的概率。

Description

处理方法、通信设备及存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种处理方法、通信设备及存储介质。
背景技术
在侧链路传输中,通常在子帧结构的末尾有一个间隙符号,用于Tx/Rx切换(以及当UE RRC接入网络时,通过TA切换到UL传输)。此外,当发送终端将COT(Channel Occupancy Time,信道占据时间)共享给接收终端让它发送PSFCH信道时,也存在一个间隙符号。对于FR1中支持的子载波间隔为15kHz或者30kHz,其符号长度始终大于25μs。
在构思及实现本申请过程中,发明人发现至少存在如下问题:在非授权频谱中如果两次传输之间的间隔大于25μs,则后一次传输不能共享前一次传输所使用的COT,即后一次传输需要使用Type 1 Channel access,由此会降低后一次传输抢占到非授权频谱的概率。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
技术解决方案
本申请的主要目的在于提供一种处理方法、通信设备及存储介质,旨在提高侧链路传输过程中抢占到非授权频谱的概率。
为实现上述目的,本申请提供的一种处理方法,可应用于终端设备(如手机),包括以下步骤:
S1:基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信。
可选地,所述预设参数包括以下至少一项:符号数、定时提前量、传播时延、间隔值。
可选地,步骤S1之前,还包括:选取或确定以下至少一项:符号数、定时提前量、传播时延、间隔值。
可选地,选取或确定符号数的方式,包括以下至少一项:
基于侧链路控制信息选取或确定所述符号数;
基于下行控制信息选取或确定所述符号数;
基于公共侧链路控制信息选取或确定所述符号数;
基于当前侧链路部分带宽和/或侧链路资源池的子载波间隔选取或确定所述符号数。
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量,选取或确定定时提前量的方式,包括以下至少一项:
基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,选取或确定所述第一定时提前量;
基于网络设备(如基站)发送的介质访问控制信息单元,选取或确定所述第一定时提前量和/或第二定时提前量;
基于网络设备(如基站)发送的随机接入响应消息,选取或确定所述第二定时提前量。
可选地,选取或确定传播时延的方式,包括以下至少一项:
基于无线资源控制信令选取或确定所述传播时延;
基于预设固定值选取或确定所述传播时延;
基于第一信号选取或确定所述传播时延。
可选地,选取或确定间隔值的步骤包括以下至少一项:
基于侧链路控制信息选取或确定所述间隔值;
基于下行控制信息选取或确定所述间隔值;
基于预设配置选取或确定所述间隔值。
本申请还提供一种处理方法,可应用于终端设备(如手机),包括以下步骤:
S10:发送第一消息,所述第一消息用于选取或确定第一参数,所述第一参数用于选取或确定循环前缀扩展。
可选地,所述第一消息包括以下至少一项:侧链路控制信息、公共侧链路控制信息、侧链路无线资 源控制信令、侧链路介质访问控制信息单元;和/或,所述第一参数包括以下至少一项:符号数、第一定时提前量、间隔值。
可选地,所述方法还包括以下步骤:
发送第一信号,所述第一信号用于选取或确定传播时延。
可选地,所述方法还包括以下步骤:
发送第一信号,所述第一信号用于选取或确定传播时延。
可选地,步骤S10之前还包括:
基于第二消息选取或确定所述第一消息。
本申请还提供一种处理方法,可应用于网络设备(如基站),包括以下步骤:
A10:发送第二消息,所述第二消息用于选取或确定第二参数,所述第二参数用于选取或确定循环前缀扩展。
可选地,所述第二消息包括以下至少一项:下行控制信息、介质访问控制信息单元、随机接入响应消息;和/或,所述第二参数包括包括以下至少一项:符号数、定时提前量、间隔值。
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量。
本申请还提供一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现如上任一所述的处理方法的步骤。
本申请中的通信设备,可以是终端设备(如手机),也可以是网络设备(如基站),具体所指,需要根据上下文加以明确。
本申请还提供一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一所述的处理方法的步骤。
本申请通过基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信,通过根据循环前缀扩展生成正交频分复用符号,并将生成的正交频分复用符号用于侧链路传输,有助于保留信道占据时间,可以提高侧链路传输过程中抢占到非授权频谱的概率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实现本申请各个实施例的一种移动终端的硬件结构示意图;
图2为本申请实施例提供的一种通信网络***架构图;
图3为本申请提供的一种控制器140的硬件结构示意图;
图4为本申请提供的一种网络节点150的硬件结构示意图;
图5为根据第一实施例示出的处理方法的流程示意图;
图6为根据第一实施例示出的处理方法的第一原理示意图;
图7为根据第一实施例示出的处理方法的第二原理示意图;
图8为根据第二实施例示出的处理方法的流程示意图;
图9为根据第三实施例示出的处理方法的流程示意图;
图10为根据第四实施例示出的处理方法的流程示意图;
图11为根据第五实施例示出的处理方法的流程示意图;
图12为根据第七实施例示出的处理方法的第一原理示意图;
图13为根据第七实施例示出的处理方法的第二原理示意图;
图14为本申请实施例提供的处理装置的结构示意图一;
图15为本申请实施例提供的处理装置的结构示意图二;
图16为本申请实施例提供的处理装置的结构示意图三;
图17为本申请实施例提供的通信设备的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
本申请的实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如S0、S1等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S1后执行S0等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等智能终端设备,以及诸如数字TV、台式计算机等固定终端设备。
后续描述中将以移动终端为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的 元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端设备。
请参阅图1,其为实现本申请各个实施例的一种移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对移动终端的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯***)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
移动终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装 置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理***与处理器110逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的移动终端所基于的通信网络***进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络***架构图,该通信网络***为通用移动通信技术的LTE***,该LTE***包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述终端设备100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)或其它IP业务等。
虽然上述以LTE***为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE***,也可以适用于其他无线通信***,例如GSM、CDMA2000、WCDMA、TD-SCDMA、5G以及未来新的网络***(如6G)等,此处不做限定。
图3为本申请提供的一种控制器140的硬件结构示意图。该控制器140包括:存储器1401和处理器1402,存储器1401用于存储程序指令,处理器1402用于调用存储器1401中的程序指令执行上述方法实施例一中控制器所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。可选地,上述控制器还包括通信接口1403,该通信接口1403可以通过总线1404与处理器1402连接。处理器1402可以控制通信接口1403来实现控制器140的接收和发送的功能。
图4为本申请提供的一种网络节点150的硬件结构示意图。该网络节点150包括:存储器1501和处理器1502,存储器1501用于存储程序指令,处理器1502用于调用存储器1501中的程序指令执行上述方法实施例一中首节点所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。可选地,上述控制器还包括通信接口1503,该通信接口1503可以通过总线1504与处理器1502连接。处理器1502可以控制通信接口1503来实现网络节点150的接收和发送的功能。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例方法的部分步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
基于上述移动终端硬件结构以及通信网络***,提出本申请各个实施例。
第一实施例
参照图5,图5为根据第一实施例示出的处理方法的流程示意图,本申请实施例的所述方法可应用于终端设备(如手机,汽车等),所述处理方法包括以下步骤:
S1:基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信。
在本申请实施例中,通过使用循环前缀扩展(Cyclic Prefix Extension,CPE)可以进一步的帮助信道占据时间(Channel Occupancy Time,COT)共享,在该循环前缀扩展中,发射机节点使用它来利用COT,防止它闲置太久而失去对未授权信道的访问。从而保证了两次传输之间的间隔满足法规,使得COT共享能够实现。
可选地,在侧链路传输中,终端发送侧链路信道的时域参考点为来自基站的下行时隙,终端选择终端到基站之间的定时提前量(TA)作为在侧链路上的发送的定时提前量(TA SL)。参照图6及图7,图6为根据第一实施例示出的处理方法的第一原理示意图,图7为根据第一实施例示出的处理方法的第二原理示意图,如图所示,发送终端在发送物理侧链路控制信道(Physical Sidelink Control Channel,PSCCH)和/或物理侧链路数据信道(Physical Sidelink Shared Channel,PSSCH)时使用TA 1作为发送的定时提前量,接收终端在发送物理侧链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)时使用TA 2作为发送的定时提前量。如果发送终端希望将其发起的COT分享给接收终端,则从发送终端的角度看,发送终端发送的控制信道/数据信道与其接收的反馈信道之间的预设间隔应该等于16/25us和/或其他固定值,这些固定值的取值是自然数,这些固定值的单位为微秒。
类似地,如果发送终端将其发起的COT分享给接收终端,接收终端使用该COT发送物理侧链路控制信道和/或物理侧链路数据信道,则从发送终端的角度看,发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道与接收终端发送的物理侧链路控制信道和/或物理侧链路数据信道之间的间隔应该等于16/25us和/或其他固定值,这些固定值的取值是自然数,这些固定值的单位为微秒。
类似地,如果第一发送终端将其发起的COT分享给第二发送终端,第二发送终端使用该COT发送物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项,则从第一发送终端的角度看,第一发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项与第二发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项之间的间隔应该等于16/25us和/或其他固定值,这些固定值的取值是自然数,这些固定值的单位为微秒。
为了保障发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道与接收终端发送的物理侧链路反馈信道之间的间隔等于预设间隔,和/或为了保障发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道与接收终端发送的物理侧链路反馈信道之间的间隔等于预设间隔,本申请实施例中以预设间隔为16us或者25us为例,接收终端对发送物理侧链路反馈信道和/或物理侧链路控制信道和/或物理侧链路数据信道的第一个符号和/或所述信道的第一个符号的前一个符号进行循环前缀扩展(CPE)。使用循环前缀扩展,需要确定循环前缀扩展的长度,即基于预设参数选取或确定循环前缀扩展。
可选地,所述预设参数包括以下至少一项:符号数、定时提前量、传播时延、间隔值。
在本申请实施例中,CPE的长度T CPE可以通过如下等式获得:
T 1-TA 1+T gap=T 2-TA 2-T CPE+T d
其中,T 1为发送终端的传输结束时刻,T 2为接收终端的传输的开始时刻,TA 1为发送终端的定时提前量,TA 2为接收终端的定时提前量,T d为信号在Tx-Rx链路上的传播时延。
通过转换,可得
T CPE=(T 2-T 1)-(TA 2-TA 1)+T d-T gap
=∑ 0 CiT sym-(TA 2-TA 1)+T d-T gap
=∑ 0 CiT sym-((TA 2-TA 1)-T d+T gap)
其中,T sym为符号长度,C i为符号数,T gap为间隔值,
TA 1=(N TA,SL+N TA,offset)·T c;TA 2=(N TA,SL+N TA,offset)·T c
其中,N TA,SL为侧链路定时提前量参数,由MAC CE(介质访问控制层控制单元)或者RAR(随机接入响应消息)提供;N TA,offset为定时提前量偏置,由高层信令提供或者预定义;时域单位T c=1/(Δf max·N f),其中Δf max=480·10 3Hz,N f=4096。
可选地,对于后一次传输,为了确定CPE的大小T CPE,需要获得以下信息中的至少:
符号数C i;定时提前量TA(包括前一次传输对应的定时提前量TA 1和/或后一次传输对应的定时提前量TA 2);传播时延T d;间隔值(gap)T gap
可选地,步骤S1之前,还包括:选取或确定以下至少一项:符号数、定时提前量、传播时延、间隔值,即包括以下至少一个步骤:
步骤S01:选取或确定符号数;
可选地,基于侧链路控制信息可以选取或确定符号数。
可选地,基于下行控制信息可以选取或确定符号数。
可选地,基于公共侧链路控制信息可以选取或确定符号数。
可选地,基于当前侧链路部分带宽(BWP)和/或侧链路资源池的子载波间隔可以选取或确定符号数。例如,当子载波间隔为15kHz和30kHz时,C i等于1;当子载波间隔为60kHz时,C i等于2。
步骤S02:选取或确定定时提前量;
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量,
可选地,基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,可以选取或确定所述第一定时提前量。
可选地,所述第一终端为发送相邻两次传输中的前一次传输的终端。
可选地,基于网络设备(如基站)发送的介质访问控制信息单元,可以选取或确定所述第一定时提前量和/或第二定时提前量。
可选地,基于网络设备(如基站)发送的随机接入响应消息,可以选取或确定所述第二定时提前量。
可选地,所述第一定时提前量和/或第二定时提前量为固定值,所述固定值为自然数,所述固定值的单位为微秒。
可选地,所述第一定时提前量和所述第二定时提前量的差值为预设值,即可以根据所述第二定时提前量计算出所述第一定时提前量。所述预设值可以通过侧链路无线资源控制信令、介质访问控制信息单 元、侧链路控制信息和随机接入响应消息中的至少一项指示。所述预设值可以作为选取或确定循环前缀扩展的参数之一。
可选地,所述第一定时提前量应用于相邻两次传输中的前一次传输。
可选地,所述第二定时提前量应用于相邻两次传输中的后一次传输。
可选地,所述定时提前量以通过侧链路无线资源控制信令、介质访问控制信息单元、侧链路控制信息和随机接入响应消息中的至少一项指示。
步骤S03:选取或确定传播时延;
可选地,基于无线资源控制信令、预设固定值和/或第一信号可以选取或确定所述传播时延。
在本申请实施例中,所述传播时延为信号在发送终端和接收终端之间传播的时延,和/或信号在第一发送终端和第二发送终端之间传播的时延。对于传播时延,考虑到侧链路主要应用到两个场景,一个是室内场景,终端之间的距离较小,相应的传播时延也较小;另一个是高速公路场景,终端之间的距离较大,相应的传播时延也较大。
可选地,可以通过无线资源控制(Radio Resource Control,RRC)信令去使能传播时延,即循环前缀扩展计算不需要考虑传播时延。
可选地,使用固定的传播时延取值,例如1us,2us等。
可选地,后一次传输对应的接收终端和/或第二发送终端需要根据接收到的信号估计出传播时延。所述信号由前一次传输对应的第一发送终端发送,所述信号可以是物理侧链路控制信道(Physical Sidelink Control Channel,PSCCH)的解调参考信号(Demodulation Reference Signal,DMRS),物理侧链路数据信道(Physical Sidelink Share Channel,PSSCH)的DMRS,侧链路同步信号块(S-SS/PSBCH),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)至少之一。
步骤S04:选取或确定间隔值。
可选地,基于侧链路控制信息、下行控制信息和/或预设配置可以选取或确定所述间隔值。
在本申请实施例中,对于间隔值,其取值为16us和/或25us,可以通过SCI动态指示;
可选地,如果后续的传输为接收终端发送的物理侧链路反馈信道,则所述符号数、间隔值等参数可以通过侧链路控制信息(Sidelink Control Information,SCI)指示。
可选地,如果后续的传输为第二发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项,所述符号数、间隔值等参数可以通过基站发送下行链路控制信息(Downlink Control Information,DCI)指示。
可选地,上述参数,例如符号数,间隔值,还可以通过SCI联合指示,例如配置一个表格,参见表1,表格中的每一行代表了上述参数的一个取值。表格可以通过RRC信令配置而成。
表1:第一配置表格
T extindex i C i Δ i
0 - -
1 C 1 25·10 -6
2 C 2 16·10 -6+T TA
3 C 3 25·10 -6+T TA
可选地,基于预设参数选取或确定循环前缀扩展后,即可根据循环前缀扩展生成正交频分复用符号(Orthogonal Frequency Division Multiplexing,OFDM),对于一个使用了循环前缀扩展的OFDM符号,在循环前缀CP之前加上CPE的长度可生成一个OFDM符号,基于所述OFDM符号可进行通信。
本实施例通过上述方案,基于符号数、定时提前量、传播时延和/或间隔值选取或确定循环前缀扩展,进而根据循环前缀扩展生成正交频分复用符号,并基于所述正交频分复用符号进行通信,有助于保留信道占据时间,可以提高侧链路传输过程中抢占到非授权频谱的概率。
第二实施例
参照图8,图8为根据第二实施例示出的处理方法的流程示意图,在本申请第一实施例的基础上,本实施例公开了步骤S01选取或确定符号数的方法,具体包括以下至少一项:
S011:基于侧链路控制信息选取或确定所述符号数;
可选地,对于符号数C i可通过侧链路控制信息SCI动态指示,可选地,在SCI格式中增加一个域,所述域用来指示循环前缀需要的符号数。例如增加2比特,所述域指向表1。可选地,表格中的C i值分 别为C1,C2,C3,C 1=1 for μ∈{0,1},C 1=2 for μ=2;C 2和C 3通过RRC信令配置,其取值为{1,...,28},可选地,当子载波间隔为15kHz时,C 2和C 3的取值为{1,...,28};当子载波间隔为30kHz时,C 2的取值为{1,...,28},C 3的取值为{2,...,28};当子载波间隔为60kHz时,C 2的取值为{2,...,28},C 3的取值为{3,...,28}。
可选地,所述侧链路控制信息承载在物理侧链路控制信道中,由第一发送终端发送。所述第一发送终端为发送两次相邻传输中的前一次传输的终端。
可选地,所述第一发送终端为发起COT的终端。
S012:基于下行控制信息选取或确定所述符号数;
可选地,符号数C i可通过下行控制信息DCI动态指示,可选地,在DCI格式中增加一个域,所述域用来指示循环前缀需要的符号数。例如增加2比特,所述域指向表1。当第一发送终端接收到DCI后,根据DCI中的指示设置相应的SCI中的内容,并将该SCI发送给接收终端和/或第二发送终端。
可选地,当接收终端和/或第二发送终端接收到DCI后,根据DCI中的指示选取或确定所述符号数。
S013:基于公共侧链路控制信息选取或确定所述符号数;
可选地,符号数C i可通过公共侧链路控制信息公共SCI动态指示,所述公共SCI用于指示COT长度,COT剩余时间,COT切换点,符号数C i,信道接入类型等至少之一。
S014:基于当前侧链路部分带宽和/或侧链路资源池的子载波间隔选取或确定所述符号数。
可选地,符号数C i与当前侧链路部分带宽BWP和/或侧链路资源池的子载波间隔关联,例如当子载波间隔为15kHz和30kHz时,C i等于1;当子载波间隔为60kHz时,C i等于2。
可选地,当符号数C i大于1时,第一发送终端丢弃最后一次传输的后C i-1个符号。
本实施例通过上述方案,基于侧链路控制信息、下行控制信息、公共侧链路控制信息、当前侧链路部分带宽和/或侧链路资源池的子载波间隔选取或确定符号数,进而根据符号数选取或确定循环前缀扩展,以用于生成正交频分复用符号,进而基于所述正交频分复用符号进行侧链路信道传输,有助于保留信道占据时间,提高侧链路传输过程中抢占到非授权频谱的概率。
第三实施例
参照图9,图9为根据第三实施例示出的处理方法的流程示意图,在上述实施例的基础上,本实施例公开了步骤S02选取或确定定时提前量的方法,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量,选取或确定定时提前量的方式,具体包括以下至少一项:
S021:基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,选取或确定所述第一定时提前量;
对于前一次传输对应的第一定时提前量TA 1,所述第一定时提前量TA 1为发送终端的传输所使用的定时提前量,所述定时提前量等于TA 1=(N TA,SL+N TA,offset)·T c,其中N TA,SL可以等于当前工作的小区上行的定时提前量N TA1,N TA=T A·16·64/2 μ,T A通过随机接入响应RAR消息或者MAC CE获得。N TA,offset通过RRC信令指示获得,或者根据协议预定义获得。
可选地,N TA,SL可以等于零。
可选地,TA 1可通过前一次传输对应的第一发送终端发送的侧链路无线资源控制信令SL-RRC通知后一次传输对应的接收终端和/或第二发送终端。
可选地,TA 1可通过前一次传输对应的第一发送终端发送的介质访问控制信息单元MAC-CE通知后一次传输对应的接收终端和/或第二发送终端。
可选地,TA 1可通过前一次传输对应的第一发送终端发送的侧链路控制信息SCI通知后一次传输对应的接收终端和/或第二发送终端。
S022:基于网络设备发送的介质访问控制信息单元,选取或确定所述第一定时提前量和/或第二定时提前量;
对于后一次传输对应的第二定时提前量TA 2,所述第二定时提前量TA 2为接收终端/或第二发送终端的传输所使用的定时提前量,所述定时提前量等于TA 2=(N TA,SL+N TA,offset)·T c,其中N TA,SL可以等于当前工作的小区上行的定时提前量N TA2,N TA=T A·16·64/2 μ,T A通过RAR消息或者MAC CE获得。N TA,offset通过RRC信令指示获得,或者根据协议预定义获得。所述接收终端发送的后一次传输为物理侧链路反馈信道(PSFCH)。
可选地,所述第二定时提前量TA 2为第二发送终端的传输所使用的定时提前量,所述第二发送终端共享发送终端所使用的COT。所述第二发送终端发送的后一次传输为物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项。
可选地,N TA,SL可以等于零。
可选地,TA 1可通过基站发送的介质访问控制信息单元MAC-CE通知后一次传输对应的接收终端和/或第二发送终端。
可选地,当发送终端侧TA 1更新后,所述更新后的TA 1需要同步通知给后一次传输对应的接收终端和/或第二发送终端。
可选地,TA 2可通过基站发送的介质访问控制信息单元MAC-CE通知后一次传输对应的接收终端和/或第二发送终端。
S023:基于网络设备发送的随机接入响应消息,选取或确定所述第二定时提前量。
可选地,TA 2可通过基站发送的随机接入响应(RAR)消息通知后一次传输对应的接收终端和/或第二发送终端。
可选地,所述第一定时提前量和/或第二定时提前量为固定值,所述固定值为自然数,所述固定值的单位为微秒。
可选地,所述第一定时提前量和所述第二定时提前量的差值为预设值,即可以根据所述第二定时提前量计算出所述第一定时提前量。所述预设值可以通过侧链路无线资源控制信令、介质访问控制信息单元、侧链路控制信息和随机接入响应消息中的至少一项指示。所述预设值可以作为选取或确定循环前缀扩展的参数之一。
可选地,所述第一定时提前量应用于相邻两次传输中的前一次传输。
可选地,所述第二定时提前量应用于相邻两次传输中的后一次传输。
可选地,所述定时提前量以通过侧链路无线资源控制信令、介质访问控制信息单元、侧链路控制信息和随机接入响应消息中的至少一项指示。
本实施例通过上述方案,选取或确定用于相邻两次传输的第一定时提前量和/或第二定时提前量,基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,选取或确定所述第一定时提前量;基于网络设备发送的介质访问控制信息单元,选取或确定所述第一定时提前量和/或第二定时提前量;基于网络设备发送的随机接入响应消息,选取或确定所述第二定时提前量。进而基于第一定时提前量和/或第二定时提前量选取或确定循环前缀扩展,以用于侧链路信道传输,有助于保留信道占据时间,提高侧链路传输过程中抢占到非授权频谱的概率。
第四实施例
参照图10,图10为根据第四实施例示出的处理方法的流程示意图,本申请实施例的所述方法可以由终端设备来执行(如手机,车辆等),所述处理方法包括以下步骤:
S10:发送第一消息,所述第一消息用于选取或确定第一参数,所述第一参数用于选取或确定循环前缀扩展。
在本申请实施例中,通过第一发送终端发送第一消息至接收终端和/或第二发送终端,以供接收终端和/或第二发送终端根据第一消息选取或确定第一参数,将第一参数用于选取或确定循环前缀扩展,并根据循环前缀扩展生成正交频分复用符号以用于通信。
可选地,所述第一消息包括以下至少一项:侧链路控制信息、公共侧链路控制信息、侧链路无线资源控制信令、侧链路介质访问控制信息单元;
可选地,所述第一参数包括以下至少一项:符号数、第一定时提前量、间隔值。
可选地,基于第一消息选取或确定第一参数的步骤包括以下至少一项:
基于侧链路控制信息、下行控制信息、公共侧链路控制信息、当前侧链路部分带宽和/或侧链路资源池的子载波间隔可以选取或确定符号数;
基于第一发送终端发送的侧链路无线资源控制信令、侧链路介质访问控制信息单元和侧链路控制信息中的至少一项,可以选取或确定所述第一定时提前量;
基于侧链路无线资源控制信令、预设固定值和/或第一信号可以选取或确定所述传播时延;
基于侧链路控制信息可以选取或确定所述间隔值。
可选地,步骤S10之后还包括:响应于符号数大于预设阈值,丢弃相邻两次传输中前一次传输的 符号。
在本申请实施例中,当符号数C i大于1时,第一发送终端丢弃最后一次传输的后C i-1个符号。
可选地,步骤S10之前还包括:基于第二消息选取或确定所述第一消息。
在本申请实施例中,第一发送终端可接收网络设备(如基站)发送的第二消息,第一发送终端可以将来自基站的第二消息内承载的第一定时提前量通过第一消息转发给接收终端和/或第二发送终端。
本实施例通过上述方案,通过发送包括侧链路控制信息、公共侧链路控制信息、侧链路无线资源控制信令和/或侧链路介质访问控制信息单元的第一消息,以用于选取或确定包括符号数、第一定时提前量和/或间隔值的第一参数,第一参数可用于选取或确定循环前缀扩展,根据循环前缀扩展生成的正交频分复用符号可用于通信过程,提高侧链路传输过程中抢占到非授权频谱的概率。
第五实施例
参照图11,图11为根据第五实施例示出的处理方法的流程示意图,本申请实施例的所述方法可以由网络设备来执行(如基站),所述处理方法包括以下步骤:
A10:发送第二消息,所述第二消息用于选取或确定第二参数,所述第二参数用于选取或确定循环前缀扩展。
在本申请实施例中,通过网络设备发送第二消息,用于选取或确定第二参数,进而基于第二参数选取或确定循环前缀扩展,以用于生成符号用于通信过程。
可选地,所述第二消息包括以下至少一项:下行控制信息、介质访问控制信息单元、随机接入响应消息;
可选地,所述第二参数包括包括以下至少一项:符号数、定时提前量、间隔值。
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量。
在本申请实施例中,基于第二消息中的下行控制信息、介质访问控制信息单元和/或随机接入响应消息,选取或确定第一参数的方法包括以下至少一项:
基于下行控制信息选取或确定符号数;
基于下行控制信息选取或确定间隔值;
基于介质访问控制信息单元选取或确定第一定时提前量和/或第二定时提前量;
基于随机接入响应消息选取或确定第二定时提前量。
本申请实施例通过上述方案,具体通过发送第二消息,用于选取或确定第二参数,进而基于第二参数选取或确定循环前缀扩展,以用于生成符号用于通信过程,有助于保留信道占据时间,提高侧链路传输过程中抢占到非授权频谱的概率。
第六实施例
在本申请上述实施例的基础上,本实施例进一步公开了前述实施例中的处理方法。
在本申请实施例中,如果侧链路通信所使用的频谱上不存在小区,即第一发送终端和接收终端和/或第二发送终端不能在该频谱上与基站通信,则第一发送终端和接收终端和/或第二发送终端使用的TA为0。则CPE的长度可以由以下公式确定。
T CPE=(T 2-T 1)+T d-T gap
=∑ 0 CiT sym-(T gap-T d)
其中,T sym为符号长度,C i为符号数,T gap为间隔值。
对于后一次传输,为了确定CPE的大小T CPE,需要选取或确定符号数C i、传播时延T d及间隔值(gap)T gap
在本申请实施例中,对于符号数C i可通过SCI动态指示,可选地,在SCI格式中增加一个域,所述域用来指示循环前缀需要的符号数。例如增加2比特,所述域指向上述表1。可选地,表格中的C i值分别为C1,C2,C3,C 1=1 for μ∈{0,1},C 1=2 for μ=2;C 2和C 3通过RRC信令配置,其取值为{1,...,28},可选地,当子载波间隔为15kHz时,C 2和C 3的取值为{1,...,28};当子载波间隔为30kHz时,C 2的取值为{1,...,28},C 3的取值为{2,...,28};当子载波间隔为60kHz时,C 2的取值为{2,...,28},C 3的取值为{3,...,28}。
可选地,符号数C i可通过公共SCI动态指示,所述公共SCI用于指示COT长度,COT剩余时间,COT切换点,符号数C i,信道接入类型等至少之一。
可选地,符号数C i与当前侧链路BWP和/或侧链路资源池的子载波间隔关联,例如当子载波间隔为15kHz和30kHz时,C i等于1;当子载波间隔为60kHz时,C i等于2。
可选地,当符号数C i大于1时,发送终端丢弃最后一次传输的后C i-1个符号。
在本申请实施例中,对于传播时延,考虑到侧链路主要应用到两个场景,一个是室内场景,终端之间的距离较小,相应的传播时延也较小;另一个是高速公路场景,终端之间的距离较大,相应的传播时延也较大。
可选地,可以通过RRC信令去使能传播时延,即循环前缀扩展计算不需要考虑传播时延。
可选地,使用固定的传播时延取值,例如1us,2us等。
可选地,后一次传输对应的接收终端和/或第二发送终端需要根据接收到的信号估计出传播时延。所述信号由前一次传输对应的第一发送终端发送,所述信号可以是PSCCH信道的DMRS,PSSCH信道的DMRS,侧链路同步信号,侧链路CSI-RS信号至少之一。
在本申请实施例中,对于间隔值,其取值为16us和/或25us,可以通过SCI动态指示;
可选地,如果后续的传输为接收终端发送的侧链路物理反馈信道,则所述符号数、间隔值等参数可以通过SCI指示。
可选地,如果后续的传输为第二发送终端发送的物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项,所述符号数、间隔值等参数可以通过通过SCI指示。
可选地,上述参数,例如符号数,间隔值,还可以通过SCI联合指示,例如配置一个表格,表格中的每一行代表了上述参数的一个取值。表格可以通过RRC信令配置而成。
可选地,间隔值,其取值为16us和/或25us,可以预定义确定。
可选地,所述循环前缀扩展应用于生成OFDM符号,可选地,对于一个使用了循环前缀扩展的OFDM符号,在循环前缀CP之前加上CPE的长度生成一个OFDM符号。
本申请实施例中,在侧链路通信所使用的频谱上不存在小区,即第一发送终端和接收终端和/或第二发送终端不能在该频谱上与基站通信,第一发送终端和接收终端和/或第二发送终端使用的定时提前量TA为0的情况下,通过选取或确定符号数C i、传播时延T d及间隔值,进而确定循环前缀扩展,根据循环前缀扩展生成正交频分复用符号,进而基于正交频分复用符号进行侧链路信道传输,有助于保留信道占据时间,提高侧链路传输过程中抢占到非授权频谱的概率。拓展了不同应用场景中循环前缀扩展的确定方式,提高了循环前缀扩展的确定方法的灵活性。
第七实施例
在本申请上述实施例的基础上,本实施例进一步公开了前述实施例中的处理方法。
在本申请实施例中,对于第一发送终端的连续多次传输,考虑到在当前的侧链路传输Sidelink子帧结构中,总是在子帧的末尾有一个间隙符号,用于Tx/Rx切换(以及当UE RRC接入网络时,通过TA切换到UL传输)。需要使用循环前缀扩展技术来保障该间隔的大小等于16/25us或者小于16us。使用循环前缀扩展,需要确定循环前缀扩展的长度。由于连续的两次传输都来自同一个发送终端,因此不需要考虑发送传播时延。
CPE的长度T CPE可以通过如下等式获得:
T 1-TA old+T gap=T 2-TA new-T CPE
其中,T 1为前一次传输的结束时刻,T 2为后一次传输的开始时刻,TA old为前一次传输的定时提前量,TA new为后一次传输的定时提前量。
通过转换,可得
T CPE=(T 2-T 1)-(TA new-TA old)-T gap
=∑ 0 CiT sym-(TA new-TA old)-T gap
=∑ 0 CiT sym-((TA new-TA old)+T gap)
其中,T sym为符号长度,C i为符号数,T gap为间隔值,TA old=(N TA,SL+N TA,offset)·T c;TA new=(N TA,SL+N TA,offset)·T c
对于后一次传输,为了确定CPE的大小,需要选取或确定符号数C i、前一次传输对应的定时提前量TA old、后一次传输对应的定时提前量TA new及间隔值(gap)T gap
在本申请实施例中,对于符号数C i可通过DCI动态指示,可选地,在DCI格式中增加一个域,所述域用来指示循环前缀需要的符号数。例如增加2比特,所述域指向上述表1。可选地,表格中的C i值分别为C1,C2,C3,C 1=1 for μ∈{0,1},C 1=2 for μ=2;C 2和C 3通过RRC信令配置,其取值为{1,...,28},可选地,当子载波间隔为15kHz时,C 2和C 3的取值为{1,...,28};当子载波间隔为30kHz时,C 2的取值为{1,...,28},C 3的取值为{2,...,28};当子载波间隔为60kHz时,C 2的取值为{2,...,28}, C 3的取值为{3,...,28}。
可选地,符号数C i与当前侧链路BWP和/或侧链路资源池的子载波间隔关联,例如当子载波间隔为15kHz和30kHz时,C i等于1;当子载波间隔为60kHz时,C i等于2。
可选地,当符号数C i大于1时,发送终端丢弃最后一次传输的后C i-1个符号。
在本申请实施例中,对于前一次传输对应的TA old以及后一次传输对应的TA new,都可通过来自基站的MAC CE获得。
在本申请实施例中,对于前一次传输对应的定时提前量TA old,所述定时提前量TA old为发送终端的前一次传输所使用的定时提前量,所述定时提前量等于TA old=(N TA,SL+N TA,offset)·T c,其中N TA,SL可以等于当前工作的小区上行的定时提前量N TA_old,N TA=T A·16·64/2 μ,T A通过RAR消息或者MAC CE获得。N TA,offset通过RRC信令指示获得,或者根据协议预定义获得。
可选地,N TA,SL可以等于零。
可选地,TA old可通过基站发送的MAC-CE通知前一次传输对应的终端。
可选地,TA old可通过基站发送的RAR消息通知前一次传输对应的终端。
在本申请实施例中,对于后一次传输对应的定时提前量TA new,所述定时提前量TA new为发送终端的传输所使用的定时提前量,所述定时提前量等于TA new=(N TA,SL+N TA,offset)·T c,其中N TA,SL可以等于当前工作的小区上行的定时提前量N TA_new,N TA=T A·16·64/2 μ,T A通过RAR消息或者MAC CE获得。N TA,offset通过RRC信令指示获得,或者根据协议预定义获得。
可选地,所述定时提前量TA new为后一次传输所使用的定时提前量,所述后一次传输和前一次传输处于同一个COT。
可选地,N TA,SL可以等于零。
可选地,TA new可通过基站发送的MAC-CE通知后一次传输对应的终端。
可选地,TA new可通过基站发送的RAR消息通知后一次传输对应的终端。
在本申请实施例中,对于间隔值,其取值为Xus,16us和/或25us,可以通过DCI动态指示,其中X为小于16的一个取值,X的取值可以通过RRC配置。
可选地,如果DCI指示间隔值为Xus,则发送终端在发送后续的物理侧链路控制信道和/或物理侧链路数据信道、物理侧链路反馈信道、物理侧链路同步信号块(S-SS/PSBCH)、侧链路信道状态信息参考信号(S-CSI-RS)中的至少一项时不需要进行LBT;否则进行一次LBT。
可选地,对于间隔值,其取值为16us和/或25us,可以通过DCI动态指示;
可选地,上述参数,例如符号数,间隔值,还可以通过DCI联合指示,例如配置一个表格,表格中的每一行代表了上述参数的一个取值。表格可以通过RRC信令配置而成。
参照图12及图13,图12为根据第七实施例示出的处理方法的第一原理示意图,图13为根据第七实施例示出的处理方法的第二原理示意图,如图所示,,所述循环前缀扩展应用于生成OFDM符号,可选地,对于一个使用了循环前缀扩展的OFDM符号,在循环前缀CP之前加上CPE的长度生成一个OFDM符号。
本申请实施例中,在对于第一终端具有连续多次传输,由于连续的两次传输都来自同一个发送终端,不需要考虑发送传播时延的情况下,通过选取或确定符号数C i、前一次传输对应的定时提前量TA old、后一次传输对应的定时提前量TA new及间隔值,进而确定循环前缀扩展,基于循环前缀扩展生成正交频分复用符号,基于正交频分复用符号进行侧链路信道传输,有助于保留信道占据时间,提高侧链路传输过程中抢占到非授权频谱的概率。拓展了不同应用场景中循环前缀扩展的确定方式,提高了循环前缀扩展的确定方法的灵活性。
请参见图14,图14为本申请实施例提供的处理装置的结构示意图一,该装置可搭载在上述方法实施例中的终端设备上,该设备具体可以是服务器。图14所示的处理装置可以用于执行上述实施例所描述的方法实施例中的部分或全部功能。如图14所示,该处理装置110包括:
处理模块111,用于基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信。
可选地,所述预设参数包括以下至少一项:符号数、定时提前量、传播时延、间隔值。
可选地,所述基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信的步骤之前还包括:
选取或确定以下至少一项:符号数、定时提前量、传播时延、间隔值。
可选地,选取或确定符号数的方式,包括以下至少一项:
基于侧链路控制信息选取或确定所述符号数;
基于下行控制信息选取或确定所述符号数;
基于公共侧链路控制信息选取或确定所述符号数;
基于当前侧链路部分带宽和/或侧链路资源池的子载波间隔选取或确定所述符号数。
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量,选取或确定定时提前量的方式,包括以下至少一项:
基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,选取或确定所述第一定时提前量;
基于网络设备(如基站)发送的介质访问控制信息单元,选取或确定所述第一定时提前量和/或第二定时提前量;
基于网络设备(如基站)发送的随机接入响应消息,选取或确定所述第二定时提前量。
可选地,选取或确定传播时延的方式,包括以下至少一项:
基于无线资源控制信令选取或确定所述传播时延;
基于预设固定值选取或确定所述传播时延;
基于第一信号选取或确定所述传播时延。
可选地,选取或确定间隔值的步骤包括以下至少一项:
基于侧链路控制信息选取或确定所述间隔值;
基于下行控制信息选取或确定所述间隔值;
基于预设配置选取或确定所述间隔值。
根据本申请的实施例的处理方法所涉及的部分步骤可由图14所示的处理装置中的模块来执行。图14所示的处理装置中的各个单元可以分别或全部合并为一个或若干个另外的模块来构成,或者其中的某个(些)模块还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个模块的功能也可以由多个模块来实现,或者多个模块的功能由一个模块实现。在本申请的其它实施例中,处理装置也可以包括其它模块,在实际应用中,这些功能也可以由其它模块协助实现,并且可以由多个模块协作实现。
本申请实施例提供的处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
请参见图15,图15为本申请实施例提供的处理装置的结构示意图二,如图15所示,该处理装置120包括:
发送模块121,用于发送第一消息,所述第一消息用于选取或确定第一参数,所述第一参数用于选取或确定循环前缀扩展。
可选地,所述第一消息包括以下至少一项:侧链路控制信息、公共侧链路控制信息、侧链路无线资源控制信令、侧链路介质访问控制信息单元。
可选地,所述第一参数包括以下至少一项:符号数、第一定时提前量、间隔值。
可选地,所述发送第一消息的步骤之后还包括:响应于符号数大于预设阈值,丢弃相邻两次传输中前一次传输的符号。
可选地,所述处理装置还用于:发送第一信号,所述第一信号用于选取或确定传播时延。
本申请实施例提供的处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图16为本申请实施例提供的处理装置的结构示意图三,如图16所示,该处理装置130包括:
发送模块131,用于发送第二消息,所述第二消息用于选取或确定第二参数,所述第二参数用于选取或确定循环前缀扩展。
可选地,所述第二消息包括以下至少一项:下行控制信息、介质访问控制信息单元、随机接入响应消息。
可选地,所述第二参数包括包括以下至少一项:符号数、定时提前量、间隔值。
可选地,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量。
参阅图17,图17为本申请实施例提供的通信设备的结构示意图。如图17所示,本实施例所述的通信设备140可以是前述方法实施例中提到的终端设备(或者可用于终端设备的部件)或者网络设备(或者可用于网络设备的部件)。通信设备140可用于实现上述方法实施例中描述的对应于终端设备或者网络设备的方法,具体参见上述方法实施例中的说明。
通信设备140可以包括一个或多个处理器141,该处理器141也可以称为处理单元,可以实现一定的控制或者处理功能。处理器141可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
可选地,处理器141也可以存有指令143或者数据(例如中间数据)。可选地,指令143可以被处 理器141运行,使得通信设备140执行上述方法实施例中描述的对应于终端设备或者网络设备的方法。
可选地,通信设备140可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,通信设备140中可以包括一个或多个存储器142,其上可以存有指令144,该指令可在处理器141上被运行,使得通信设备140执行上述方法实施例中描述的方法。
可选地,存储器142中也可以是存储有数据。处理器141和存储器142可以单独设置,也可以集成在一起。
可选地,通信设备140还可以包括收发器145和/或天线146。处理器141可以称为处理单元,对通信设备140(终端设备或核心网设备或者无线接入网设备)进行控制。收发器145可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信设备140的收发功能。
可选地,若该通信设备140用于实现对应于上述各实施例中终端设备的操作时,例如,可以由收发器145接收或发送第一消息及第二消息;以及,由处理器141基于预设内容选取或确定控制资源集的各传输机会的时域位置和/或频域位置。
可选地,处理器141和收发器145的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
可选地,若该通信设备140用于实现对应于上述各实施例中网络设备的操作时,例如:可以由收发器145接收或发送第一消息及第二消息。
可选地,处理器141和收发器145的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
本申请中描述的处理器141和收发器145可实现在IC(Integrated Circuit,集成电路)、模拟集成电路、RFIC(Radio Frequency Integrated Circuit,射频集成电路)、混合信号集成电路、ASIC(Application Specific Integrated Circuit,专用集成电路)、PCB(Printed Circuit Board,印刷电路板)、电子设备等上。该处理器141和收发器145也可以用各种集成电路工艺技术来制造,例如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)、NMOS(N Metal-Oxide-Semiconductor,N型金属氧化物半导体)、PMOS(Positive channel Metal Oxide Semiconductor,P型金属氧化物半导体)、BJT(Bipolar Junction Transistor,双极结型晶体管)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中,通信设备可以为终端设备(如手机),也可以为网络设备(如基站),具体需要根据上下文来加以确定,另外,终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端设备。
虽然在以上的实施例描述中,通信设备以终端设备或者网络设备为例来描述,但本申请中描述的通信设备的范围并不限于上述终端设备或网络设备,而且通信设备的结构可以不受图17的限制。通信设备可以是独立的设备或者可以是较大设备的一部分。
本申请实施例还提供一种通信***,包括:如上任一方法实施例中的终端设备;以及,如上任一方法实施例中的网络设备。
本申请实施例还提供一种通信设备,包括存储器、处理器,存储器上存储有处理程序,处理程序被处理器执行时实现上述任一实施例中的处理方法的步骤。本申请中的通信设备,可以是终端设备(如手机),也可以是网络设备(如基站),具体所指,需要根据上下文加以明确。
本申请实施例还提供一种存储介质,存储介质上存储有处理程序,处理程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
在本申请实施例提供的通信设备和计算机可读存储介质的实施例中,可以包含任一上述处理方法实施例的全部技术特征,说明书拓展和解释内容与上述方法的各实施例基本相同,在此不再做赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
可以理解,上述场景仅是作为示例,并不构成对于本申请实施例提供的技术方案的应用场景的限定,本申请的技术方案还可应用于其他场景。例如,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例设备中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端设备,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD),或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种处理方法,其中,包括以下步骤:
    S1:基于预设参数选取或确定循环前缀扩展,基于所述循环前缀扩展生成正交频分复用符号,基于所述正交频分复用符号进行通信。
  2. 如权利要求1所述的方法,其中,所述预设参数包括以下至少一项:符号数、定时提前量、传播时延、间隔值;和/或,步骤S1之前,还包括:选取或确定以下至少一项:符号数、定时提前量、传播时延、间隔值。
  3. 如权利要求2中所述的方法,其中,选取或确定符号数的方式,包括以下至少一项:
    基于侧链路控制信息选取或确定所述符号数;
    基于下行控制信息选取或确定所述符号数;
    基于公共侧链路控制信息选取或确定所述符号数;
    基于当前侧链路部分带宽和/或侧链路资源池的子载波间隔选取或确定所述符号数。
  4. 如权利要求2所述的方法,其中,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量,选取或确定定时提前量的方式,包括以下至少一项:
    基于第一终端发送的侧链路无线资源控制信令、介质访问控制信息单元和侧链路控制信息中的至少一项,选取或确定所述第一定时提前量;
    基于网络设备发送的介质访问控制信息单元,选取或确定所述第一定时提前量和/或第二定时提前量;
    基于网络设备发送的随机接入响应消息,选取或确定所述第二定时提前量。
  5. 如权利要求2所述的方法,其中,选取或确定传播时延的方式,包括以下至少一项:
    基于无线资源控制信令选取或确定所述传播时延;
    基于预设固定值选取或确定所述传播时延;
    基于第一信号选取或确定所述传播时延。
  6. 如权利要求2所述的方法,其中,选取或确定间隔值的步骤包括以下至少一项:
    基于侧链路控制信息选取或确定所述间隔值;
    基于下行控制信息选取或确定所述间隔值;
    基于预设配置选取或确定所述间隔值。
  7. 一种处理方法,其中,包括以下步骤:
    S10:发送第一消息,所述第一消息用于选取或确定第一参数,所述第一参数用于选取或确定循环前缀扩展。
  8. 如权利要求8所述的方法,其中,所述第一消息包括以下至少一项:侧链路控制信息、公共侧链路控制信息、侧链路无线资源控制信令、侧链路介质访问控制信息单元;和/或,所述第一参数包括以下至少一项:符号数、第一定时提前量、间隔值。
  9. 如权利要求8所述的方法,步骤S10之后还包括:响应于符号数大于预设阈值,丢弃相邻两次传输中前一次传输的符号。
  10. 如权利要求7至9中任一项所述的方法,其中,还包括以下步骤:
    发送第一信号,所述第一信号用于选取或确定传播时延。
  11. 如权利要求7至9中任一项所述的方法,其中,步骤S10之前还包括:
    基于第二消息选取或确定所述第一消息。
  12. 一种处理方法,其中,包括以下步骤:
    A10:发送第二消息,所述第二消息用于选取或确定第二参数,所述第二参数用于选取或确定循环前缀扩展。
  13. 如权利要求12所述的方法,其中,所述第二消息包括以下至少一项:下行控制信息、介质访问控制信息单元、随机接入响应消息;和/或,所述第二参数包括包括以下至少一项:符号数、定时提前量、间隔值。
  14. 如权利要求13所述的方法,其中,所述定时提前量包括用于相邻两次传输的第一定时提前量和/或第二定时提前量。
  15. 一种通信设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现如权利要求1或7或12所述的处理方法的步骤。
  16. 一种存储介质,其中,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1或7或12所述的处理方法的步骤。
PCT/CN2022/113660 2022-08-19 2022-08-19 处理方法、通信设备及存储介质 WO2024036613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113660 WO2024036613A1 (zh) 2022-08-19 2022-08-19 处理方法、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113660 WO2024036613A1 (zh) 2022-08-19 2022-08-19 处理方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024036613A1 true WO2024036613A1 (zh) 2024-02-22

Family

ID=89940405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113660 WO2024036613A1 (zh) 2022-08-19 2022-08-19 处理方法、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024036613A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960810A (zh) * 2008-03-07 2011-01-26 诺基亚公司 用于接收具有定时和频率偏移的ofdm符号的***和方法
WO2021179242A1 (en) * 2020-03-12 2021-09-16 Qualcomm Incorporated Cyclic prefix extension for sounding reference signal transmission in nr-u
US20220030628A1 (en) * 2020-07-24 2022-01-27 Nokia Technologies Oy Determining cyclic prefix extension and listen before talk type for uplink transmissions
CN114270747A (zh) * 2019-11-26 2022-04-01 Oppo广东移动通信有限公司 用于确定循环前缀扩展的方法和装置以及用户设备
CN114503738A (zh) * 2019-10-04 2022-05-13 Lg电子株式会社 在无线通信***中发送和接收信号的方法和支持其的装置
CN114915390A (zh) * 2021-02-08 2022-08-16 展讯通信(上海)有限公司 循环前缀扩展生成及指示方法、装置、可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960810A (zh) * 2008-03-07 2011-01-26 诺基亚公司 用于接收具有定时和频率偏移的ofdm符号的***和方法
CN114503738A (zh) * 2019-10-04 2022-05-13 Lg电子株式会社 在无线通信***中发送和接收信号的方法和支持其的装置
CN114270747A (zh) * 2019-11-26 2022-04-01 Oppo广东移动通信有限公司 用于确定循环前缀扩展的方法和装置以及用户设备
WO2021179242A1 (en) * 2020-03-12 2021-09-16 Qualcomm Incorporated Cyclic prefix extension for sounding reference signal transmission in nr-u
US20220030628A1 (en) * 2020-07-24 2022-01-27 Nokia Technologies Oy Determining cyclic prefix extension and listen before talk type for uplink transmissions
CN114915390A (zh) * 2021-02-08 2022-08-16 展讯通信(上海)有限公司 循环前缀扩展生成及指示方法、装置、可读存储介质

Similar Documents

Publication Publication Date Title
US11582791B2 (en) PUCCH collision processing method and terminal
WO2019184787A1 (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
WO2019196826A1 (zh) 旁链路信息的传输方法及设备
WO2023213257A1 (zh) 数据传输方法、通信设备及存储介质
WO2021155787A1 (zh) Bwp切换方法、终端和网络侧设备
WO2023221794A1 (zh) 控制方法、通信设备及存储介质
WO2023024613A1 (zh) 处理方法、通信设备及存储介质
WO2023082688A1 (zh) 寻呼周期更新方法、通信设备、通信***及存储介质
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2023221831A1 (zh) 处理方法、通信设备及存储介质
CN109802777B (zh) Ptrs的映射方法和通信设备
WO2023130954A1 (zh) 处理方法、通信设备及存储介质
WO2020042909A1 (zh) 传输方法及终端设备
WO2024036613A1 (zh) 处理方法、通信设备及存储介质
WO2023216036A1 (zh) 处理方法、通信设备及存储介质
WO2020011242A1 (zh) Pdsch时域资源分配方法、终端及计算机可读存储介质
WO2023019524A1 (zh) 指示方法、通信设备、通信***及存储介质
WO2023225959A1 (zh) 处理方法、通信设备及存储介质
WO2023070467A1 (zh) 处理方法、通信设备、通信***及存储介质
WO2024026652A1 (zh) 处理方法、通信设备及存储介质
WO2024050835A1 (zh) 处理方法、通信设备及存储介质
WO2024055251A1 (zh) 控制方法、通信设备及存储介质
WO2024050834A1 (zh) 处理方法、通信设备及存储介质
WO2023216197A1 (zh) 处理方法、智能终端及存储介质
WO2023230874A1 (zh) 处理方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955393

Country of ref document: EP

Kind code of ref document: A1