WO2024036536A1 - 排放组件、箱体、电池和用电装置 - Google Patents

排放组件、箱体、电池和用电装置 Download PDF

Info

Publication number
WO2024036536A1
WO2024036536A1 PCT/CN2022/113157 CN2022113157W WO2024036536A1 WO 2024036536 A1 WO2024036536 A1 WO 2024036536A1 CN 2022113157 W CN2022113157 W CN 2022113157W WO 2024036536 A1 WO2024036536 A1 WO 2024036536A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
wall
protective
battery
inlet
Prior art date
Application number
PCT/CN2022/113157
Other languages
English (en)
French (fr)
Inventor
张辰辰
金海族
李星
李振华
唐彧
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/113157 priority Critical patent/WO2024036536A1/zh
Priority to PCT/CN2022/121220 priority patent/WO2024036704A1/zh
Publication of WO2024036536A1 publication Critical patent/WO2024036536A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means

Definitions

  • This application relates to the field of battery technology, and in particular to a discharge component, a box, a battery and an electrical device.
  • Batteries in related technologies have a wide range of application scenarios, such as being used in vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys, power tools and other electrical devices.
  • batteries have the risk of thermal runaway. Once thermal runaway occurs, the emissions ejected from the battery core can easily cause secondary injuries, aggravating the harm and impact of thermal runaway.
  • This application aims to solve at least one of the technical problems existing in the prior art. To this end, this application proposes a discharge assembly, a box, a battery and an electrical device, which can reduce the hazards and scope of influence of thermal runaway.
  • the discharge assembly includes: a discharge member, a discharge cavity is formed in the discharge member, an inlet area is formed on the wall of the discharge member, and the discharge cavity is adapted to pass through the inlet area Receive emissions discharged from the battery cells; and a protective member disposed within the discharge member, the protective member being adapted to block the inlet area in a protective state to at least block the emissions. flame, and form a communication channel connecting the inlet area and the discharge chamber so that the gas in the exhaust can enter the discharge chamber.
  • a protective piece is provided in the emission part to block the flame in the emission from the battery cell, thereby better reducing the hazards and scope of influence of thermal runaway.
  • the discharge member includes a first wall
  • the inlet area includes a plurality of first inlet areas formed on the first wall
  • the guard includes a first guard
  • the first The protective piece is spaced apart from the inside and outside of the first wall in a protective state, and its orthographic projection on the first wall covers the first inlet area.
  • first protective parts there are multiple first protective parts and they are arranged at intervals, and each first inlet area is protected by a corresponding first protective part.
  • At least two adjacent first inlet areas are protected by the same first protective piece.
  • all of the first inlet areas are protected by the same first guard.
  • a plurality of the first inlet areas are arranged along the length direction of the discharge member to form a first inlet row, and each of the first inlet areas in the first inlet row is composed of the same first inlet area.
  • the first protective piece of protection is provided.
  • a plurality of first inlet rows arranged along the height direction of the discharge member are formed on the first wall, and the first protection members provided corresponding to each of the first inlet rows are arranged along the height direction of the discharge member.
  • the discharge parts are spaced apart in the height direction.
  • a plurality of the first inlet areas are arranged along the height direction of the discharge member to form a first inlet row, and each of the first inlet areas in the first inlet row is composed of the same first inlet area.
  • the first protective piece of protection is provided.
  • a plurality of first inlet rows arranged along the length direction of the discharge member are formed on the first wall, and the first protection members provided corresponding to each of the first inlet rows are arranged along the length direction of the discharge member.
  • the discharge parts are spaced apart in the length direction.
  • the first protective member has a first through hole, and an orthographic projection of the first through hole on the first wall is offset from the first inlet area.
  • the discharge member includes a second wall
  • the inlet area includes a plurality of second inlet areas formed on the second wall
  • the first protective member is in contact with the third inlet area in a protective state.
  • the two wall surfaces are spaced apart from each other inside and outside, and the orthographic projection on the second wall surface covers the second entrance area.
  • the second wall and the first wall are opposite side walls of the discharge member, and the first protective member is located between the first wall and the second wall.
  • the second wall and the first wall are two side walls in the width direction of the discharge member, and the first protective member is located between the first wall and the second wall. central location in the room.
  • the first protective member has a first through hole
  • the orthographic projection of the first through hole on the first wall is offset from the first inlet area
  • the first through hole The orthographic projection of the hole on the second wall is offset from the second inlet area.
  • the discharge member includes a second wall
  • the inlet area includes a plurality of second inlet areas formed on the second wall
  • the guard includes a second guard
  • the second The protective piece is spaced apart from the inside and outside of the second wall in a protective state, and an orthographic projection on the second wall covers the second inlet area.
  • the second wall and the first wall are opposite side walls of the discharge member, and the second protective member is provided on the first protective member close to the second wall. one side.
  • the second guard is spaced apart from the first guard to form at least a portion of the discharge cavity between the first guard and the second guard.
  • each second inlet area is protected by a corresponding second protective part.
  • At least two adjacent second inlet areas are protected by the same second guard.
  • the second protective member has a second through hole, and the orthographic projection of the second through hole on the second wall is staggered from the second inlet area.
  • the first protective member has a first through hole, and an orthographic projection of the first through hole on the first wall is offset from the first inlet area.
  • the second wall and the first wall are two side walls in the width direction of the discharge member, and a support beam extending along the length direction of the discharge member is provided in the discharge member.
  • the first protective member is provided on the side of the support beam facing the first wall
  • the second protective member is provided on the side of the support beam facing the second wall
  • the support The beam has a third through hole.
  • At least one of the protective elements is provided in a fixed position.
  • the discharge member is provided with a support beam, and the protective member is fixedly provided on the support beam.
  • the protective piece matches the shape of the wall at the corresponding position of the support beam.
  • the position or shape of at least one of the guards may be varied.
  • At least one of the guards is deformable or movable along the entry direction of the corresponding inlet area.
  • the discharge assembly includes a support for supporting the protective member whose position is changeable, and the support is configured to melt under the temperature of the discharge, so that the The corresponding position of the protective piece can be changed.
  • At least one of the guards is movable along a spaced direction of a plurality of the inlet areas on the same wall to selectively guard different inlet areas.
  • the discharge assembly includes a drive device for driving the movable guard.
  • the protective piece is spaced apart from the inside and outside of the wall forming the inlet area in a protective state to form the communication channel between the protective piece and the wall, wherein the The communication channel communicates with the discharge chamber from the edge of the protective member; and/or the protective member has a through hole arranged staggered with the inlet area, and the communication channel communicates with the discharge chamber through the through hole.
  • the discharge chamber is connected.
  • the guard is a hollow shell to form the communication channel within the guard, and a peripheral side wall of the guard has an opening to communicate the communication channel with the discharge chamber.
  • the protective piece is arranged in close contact with the wall forming the inlet area and connects the communication channel with the inlet area.
  • the protective piece is a fireproof piece.
  • the fireproof component is a fireproof material plate, or includes a base body and a fireproof layer provided outside the base body.
  • the discharge assembly further includes: a blocking member, which is disposed in the discharge cavity and blocks between two adjacent inlet areas on the same side.
  • the exhaust assembly is for a battery including at least one of the battery cells.
  • the box body defines a receiving cavity for accommodating battery cells, and the box body includes the discharge assembly according to the first aspect embodiment of the present application. According to the case of the present application, the safety of the battery used in the case is improved by providing the discharge assembly of the first embodiment.
  • the box includes a frame and a dividing beam, and the dividing beam is located in a space surrounded by the frame to divide the space into a plurality of accommodating cavities.
  • the frame and the dividing beams are At least one of the dividing beams is configured as the discharge assembly.
  • the dividing beams include longitudinal beams extending along the length direction of the box, the longitudinal beams being configured as the discharge assembly; or the dividing beams include longitudinal beams extending along the width direction of the box.
  • Extended beams the beams are configured as the discharge assembly; or the partition beams include longitudinal beams extending along the length direction of the box and cross beams extending along the width direction of the box, the longitudinal beams and the At least one of said beams is configured as said discharge assembly.
  • the box includes a top cover, and the top cover includes the discharge assembly; or the box includes a bottom plate, and the bottom plate includes the discharge assembly; or the box includes a top cover and At least one of the base plate, the top cover and the base plate includes the drain assembly.
  • a battery according to the third embodiment of the present application includes: a box body, which is the box body according to the second embodiment of the present application; and a battery cell, wherein the battery cell is multiple and is located at Describe the accommodation cavity. According to the battery of the present application, by providing the box of the second embodiment, the safety of the battery is improved.
  • the box includes partition beams for dividing the space in the box into a plurality of accommodation chambers, and the partition beams are configured as the discharge assembly.
  • the width direction of the discharge assembly A battery row is provided on at least one side of the discharge assembly, and the battery row includes a plurality of battery cells arranged sequentially along the length direction of the discharge assembly, and each battery cell is discharged to the discharge cavity separately.
  • the battery rows are respectively provided on both sides of the discharge assembly in the width direction.
  • At least one side of the discharge assembly in the width direction is provided with a plurality of battery rows arranged in sequence along the height direction of the discharge assembly.
  • the thickness direction of the battery cell is the same as the height direction of the discharge assembly.
  • a side wall surface of the battery cell facing the discharge assembly is a first end surface, and the first end surface has a pressure relief area.
  • the electrical connection end of the battery cell is provided on other wall surfaces of the battery cell except the first end surface.
  • a side wall surface of the battery cell facing away from the discharge assembly is a second end surface, and the electrical connection end of the battery cell is provided on the second end surface.
  • the battery cells are mounted to the exhaust assembly.
  • the battery according to the fourth embodiment of the present application includes: a discharge member, the discharge member is a long strip structure and a discharge cavity is formed in the discharge member, and the two side walls in the width direction of the discharge member are respectively An inlet area is formed, and the discharge cavity is adapted to receive the emissions discharged by the battery cells through the inlet area; battery rows are respectively provided on both sides of the width direction of the discharge member, and the battery rows are arranged on both sides of the discharge member in the width direction.
  • the row includes a plurality of battery cells arranged sequentially along the length direction of the discharge member.
  • the battery cells have a pressure relief area on a side facing the discharge member. Each of the battery cells corresponds to one of the battery cells.
  • a pressure relief area is provided; a protective piece is provided in the discharge piece, the protective piece is spaced apart from the inside and outside of the wall and blocks the inlet area to at least block the flame in the discharge. , and a communication channel is formed between the protective piece and the wall surface to connect the inlet area and the discharge chamber so that the gas in the exhaust can enter the discharge chamber.
  • the electrical device includes a battery according to any embodiment of the present application, and the battery is used to provide electrical energy for the electrical device. According to the electric device of the present application, by providing the battery of any of the above embodiments, the safety performance of the electric device is improved.
  • Figure 1 is a schematic diagram of an electric vehicle A according to an embodiment
  • Figure 2 is a schematic diagram of power battery B according to an embodiment
  • Figure 3 is a perspective view of a battery according to an embodiment of the present application.
  • FIG 4 is a perspective view of the discharge assembly shown in Figure 3;
  • Figure 5 is an enlarged view of position A shown in Figure 4.
  • Figure 6 is an exploded view of the exhaust assembly shown in Figure 4.
  • Figure 16 is a schematic diagram of a first wall and a second wall according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of a first wall and a second wall according to another embodiment of the present application.
  • 18-29 are schematic diagrams of exhaust assemblies according to various embodiments of the present application.
  • Figure 30 is a schematic diagram of a protective piece according to an embodiment of the present application.
  • Figure 31 is a schematic diagram of a protective piece according to another embodiment of the present application.
  • Figure 32 is a schematic diagram of a discharge assembly according to one embodiment of the present application.
  • Figure 33 is an exploded view of a battery according to an embodiment of the present application.
  • Figures 34-36 are schematic diagrams of boxes according to various embodiments of the present application.
  • Figure 37 is a schematic diagram of the cooperation between a battery cell and a discharge assembly according to an embodiment of the present application.
  • Figure 38 is a schematic diagram of the discharge direction of the discharge assembly according to an embodiment of the present application.
  • Figure 39 is a schematic diagram of the discharge direction of the discharge assembly according to another embodiment of the present application.
  • Figure 40 is an exploded view of a battery according to another embodiment of the present application.
  • Figure 41 is a schematic diagram of the discharge direction of the battery shown in Figure 40;
  • Figure 42 is an exploded view of the exhaust assembly and battery row according to one embodiment of the present application.
  • Figure 43 is a schematic diagram of an electrical device according to an embodiment of the present application.
  • Electric vehicle A power battery B; emission components 10;
  • Discharge member 1 discharge chamber 11; wall 12; first wall 121; second wall 122;
  • Import area 13 first import area 131; second import area 132;
  • Support beam 16 third through hole 161; cold plate 17;
  • Driving device 3 support 4; barrier 5;
  • Box 100 frame 20; dividing beam 30; longitudinal beam 40; cross beam 50; top cover 60; bottom plate 70; accommodation cavity 1001;
  • Battery cell 200 first end face 2001; pressure relief area 2002; second end face 2003; electrical connection end 2004;
  • Battery row 300 heat insulator 400; end plate 500; battery 1000; electrical device 2000.
  • power battery B As the power source of electric vehicle A (as shown in Figures 1 and 2), plays an irreplaceable and important role.
  • power battery B is composed of a box and multiple battery cells contained in the box.
  • power battery B has high requirements in terms of safety and cycle life.
  • the flame temperature in the emissions is relatively high. If allowed to spread, it will easily cause secondary damage to the battery or cause secondary damage to the battery. Affect other battery cells.
  • a discharge component can be added to the battery.
  • the discharge component can collect the emissions from the battery cells so that the emissions are no longer in a free discharge state.
  • a protective piece can be installed in the discharge component to block the emissions. in the flame, thereby preventing the high temperature of the flame from causing secondary damage to the battery or affecting other battery cells.
  • the battery used in the emission assembly disclosed in the embodiment of the present application may or may not include a traditional box.
  • the batteries disclosed in the embodiments of the present application may be used in, but are not limited to, vehicles, ships, aircraft, and other electrical devices.
  • embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device can be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc. .
  • the discharge assembly 10 includes a discharge member 1 , a discharge cavity 11 is formed in the discharge member 1 , and an inlet area 13 is formed on the wall 12 of the discharge member 1 .
  • the discharge cavity 11 is adapted to receive water through the inlet area 13 Emissions emitted by battery cells 200.
  • the battery cell 200 is located outside the emission part 1.
  • the battery cell 200 emits emissions such as flame, smoke or gas.
  • the emissions can enter the emission part 1 through the inlet area 13 for storage. in the discharge chamber 11, or guided through the discharge chamber 11, and so on.
  • the form of the inlet area 13 is not limited, for example, it can be an opening form, a weak portion, etc., which is not limited here. Therefore, "connected to the inlet area 13" mentioned herein refers to being connected to the inlet area 13 in an open state.
  • the discharge assembly 10 further includes a protective member 2 , which is disposed in the discharge member 1 .
  • the protective member 2 is adapted to block the inlet area 13 in a protective state to at least block the inlet in the discharge. flame, and forms a communication channel R connecting the inlet area 13 and the discharge chamber 11 so that the gas in the exhaust can enter the discharge chamber 11 .
  • the protective member 2 in the protective state can block the flames in the emissions from spraying directly into the discharge member 1 from the inlet area 13, that is, at least part of the flames in the emissions can be protected. Part 2 is blocked to achieve a more effective fire prevention effect to improve the heat diffusion problem caused by thermal runaway, and the gas in the exhaust can enter the exhaust chamber 11 through the communication channel R to meet the exhaust requirements during thermal runaway.
  • emissions such as flames, smoke or gases generated by the battery cells 200 can enter the emission part 1 through the inlet area 13.
  • the flames in the emissions can be effectively isolated.
  • the thermal diffusion problem is improved, thereby preventing thermal diffusion from causing other battery cells 200 to be affected by thermal runaway, effectively avoiding secondary damage.
  • the protective member 2 since the protective member 2 is located inside the discharge member 1, the protective member 2 does not occupy the space outside the discharge member 1, so that the cooperation between the discharge member 1 and the battery cell 200 can be more compact. Moreover, the protective piece 2 located in the discharge piece 1 can be protected by the discharge piece 1 and is not easy to fall off, be damaged by collision, etc., thereby improving the protection reliability of the protective piece 2 . In addition, by disposing the protective part 2 in the discharge part 1, there is no need to modify the battery cell 200, thus ensuring the energy density of the battery cell 200.
  • the installation method of the protective piece 2 is not limited.
  • the protective member 2 may always be in a protective state before the battery cells 200 discharge emissions to the inlet area 13 ; and in other embodiments, before the battery cells 200 discharge emissions to the inlet area 13 Before discharging the emissions, the protective member 2 may be in a non-protective state, and when the battery cells 200 discharge the emissions to the inlet area 13 , or when the emissions are about to be discharged to the inlet area 13 , the protective member 2 may assume a protective state.
  • the protective member 2 blocks the entrance area 13 should be understood in a broad sense, as long as the orthographic projection of the protective member 2 on the wall 12 forming the entrance area 13 covers at least part of the entrance area 13.
  • the orthographic projection of the protective member 2 on the wall 12 forming the inlet area 13 covers more than 50% of the area of the inlet area 13 , thereby improving the protection effect.
  • the orthographic projection of the protective member 2 on the wall 12 forming the inlet area 13 completely covers the inlet area 13. If the coverage range is exactly the same as the inlet area 13, or the coverage range exceeds the inlet area 13, it can be Improve the protective effect more effectively.
  • the formation method of the communication channel R is not limited.
  • the communication channel R may be formed by the discharge member 1 and the protective member 2.
  • the communication channel R may be formed by the discharge member 1 and the protective member 2.
  • the channel R may also be independently defined by the protective member 2, etc., which is not limited here.
  • the protective member 2 when the communication channel R is jointly defined by the discharge member 1 and the protective member 2, the protective member 2 is in the protective state, and the protective member 2 is in contact with the inside and outside of the wall 12 forming the inlet area 13. They are spaced apart to form a communication channel R between the protective member 2 and the wall 12.
  • the communication channel R communicates with the discharge chamber 11 from the edge of the protective member 2.
  • the protective member 2 is opposite to the inlet area 13, so that the communication channel R Connected to entrance area 13. Therefore, the structure is simple and easy to process. It is worth noting that the term “separated from the inside and outside of the wall 12 ” mentioned herein refers to being spaced apart from the wall 12 along the thickness direction of the wall 12 .
  • the protective member 2 when the communication channel R is jointly defined by the discharge member 1 and the protective member 2, the protective member 2 is in the protective state, and the protective member 2 is spaced internally and externally from the wall 12 forming the inlet area 13, so as to A communication channel R is formed between the protective member 2 and the wall 12 .
  • the protective member 2 has a through hole 23 that is offset from the inlet area 13 , that is, the orthographic projection of the through hole 23 on the wall 12 forming the inlet area 13 is exactly the same as the inlet area.
  • the communication channel R communicates with the discharge chamber 11 through the through hole 23, so that the flame in the exhaust directly sprayed from the inlet area 13 can be blocked by the guard 2, and the air flow in the exhaust can enter the discharge chamber through the through hole 23 11. This can also meet the dual requirements of exhaust and fire protection.
  • the communication channel R when the communication channel R is jointly defined by the discharge member 1 and the protective member 2, the protective member 2 is in the protective state, and the protective member 2 is spaced internally and externally from the wall 12 forming the inlet area 13, In order to form a communication channel R between the protective member 2 and the wall 12, the communication channel R communicates with the discharge chamber 11 from the edge of the protective member 2. At the same time, the protective member 2 has a through hole 23 staggered from the inlet area 13, The communication channel R also communicates with the discharge chamber 11 through the through hole 23 . As a result, exhaust efficiency can be improved and safety improved.
  • the protective member 2 may be a hollow shell to form the communication channel R within the protective member 2.
  • the protective member 2 The peripheral side wall has an opening 24 to communicate the communication channel R with the discharge chamber 11.
  • the protective member 2 is non-spacedly attached to the wall 12 forming the inlet area 13 and communicates the communication channel R with the inlet area 13.
  • the protective member 2 The inner wall is spaced internally and externally from the wall surface 12 forming the inlet area 13 and blocks the inlet area 13 to prevent fire. As a result, the overall structural strength of the exhaust assembly 10 can be improved.
  • the discharge member 1 can be provided with the inlet area 13 on only one side, and the discharge member 1 can also be provided with the inlet areas 13 on opposite sides.
  • the protective piece 2 can prevent the two sides from spraying, that is, to prevent the emissions from one side from spraying directly to the opposite side, so as to Avoid the danger caused by thermal runaway and spraying, thereby improving safety.
  • the protective member 2 may be a fireproof member to have better heat resistance and insulation effects, thereby achieving a more effective heat diffusion prevention effect.
  • the form of the fireproof component is not limited.
  • the fireproof component can be a fireproof material plate 2a, such as a mica plate, etc.; for another example, with reference to Figure 31, the fireproof component can include a base 2b and a fireproof layer 2c located outside the base 2b.
  • the fireproof layer 2c can be bonded or sprayed on the base body 2b.
  • the fireproof layer 2c can be an airgel layer, a polypropylene and other material layer, or a fireproof paint layer, etc.
  • the base body 2b can be a plate body, a beam body, etc.
  • the protective piece 2 of the present application is not limited to being a fire-proof piece.
  • the protective piece 2 can also have other functions besides fire prevention, such as smoke adsorption function and insulation function. , waterproof function, etc., I won’t go into details here.
  • the emission assembly 10 may also include other functional parts, such as structural supports, cooling parts, particulate matter collection parts, and the like.
  • the exhaust assembly 10 is used in a battery 1000 that includes at least one battery cell 200 . Therefore, by arranging the exhaust assembly 10 according to the embodiment of the present application, it can not only meet the exhaust demand when thermal runaway occurs, but also improve the thermal diffusion problem, thereby avoiding the thermal diffusion failure problem of the battery 1000 .
  • the battery cell 200 can be disposed outside the position where the inlet area 13 is formed in the discharge member 1 , and the pressure relief area 2002 (such as a pressure relief structure or weak portion) of the battery cell 200 is disposed facing the inlet area 13 to facilitate heat transfer. When out of control, it is quickly discharged towards the inlet area 13.
  • an inlet area 13 can be provided corresponding to each soft-pack battery cell, and the emissions can enter the discharge area through a shorter path. Item 1 is included.
  • the battery 1000 may include a box for packaging one or more battery cells 200.
  • the box may prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 200.
  • the battery 1000 may not include a box for packaging one or more battery cells 200.
  • the emission assembly 10 and the battery cells 200 may be directly placed where the electricity is consumed. In the installation cavity of the device 2000, etc.
  • the multiple battery cells 200 can be directly installed in the box or the installation cavity of the electrical device 2000 without modularization. In this case, there are They can be connected in series and/or in parallel, or multiple battery cells 200 can be formed into a battery module, and the multiple battery modules can be placed in the box or the installation cavity of the electrical device 2000. At this time, each battery module
  • the plurality of battery cells 200 may be connected in series and/or in parallel, and the plurality of battery modules may also be connected in series and/or in parallel.
  • the shape and type of the battery cell 200 are not limited. According to the shape, it can be a cylinder, a flat sheet, a rectangular parallelepiped or other shapes, etc., and according to the packaging type, it can be a cylindrical battery cell. , square battery cells, or soft pack battery cells, etc.
  • the battery cell 200 may include a lithium ion secondary battery cell, a lithium ion primary battery cell, a lithium sulfur battery cell, a sodium lithium ion battery cell, a sodium ion battery cell, a magnesium ion battery cell, etc., for example This is not a limitation.
  • the battery cell 200 may include an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator.
  • the electrode assembly can be a rolled structure or a laminated structure.
  • the positive electrode piece includes a positive electrode current collector and a positive electrode active material layer
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the material of the positive electrode current collector can be aluminum
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be It can be carbon or silicon, etc., which will not be described here.
  • emissions such as flames, smoke or gases generated by the battery cells 200 can enter the emission part 1 through the inlet area 13 , and through the blocking of the protective part 2 , at least the flames in the emissions can be prevented to a certain extent. Isolation improves the thermal diffusion problem, thereby preventing thermal runaway effects on other battery cells 200 in the battery 1000 caused by thermal diffusion, and effectively avoiding secondary damage to the battery 1000 caused by thermal diffusion.
  • the discharge member 1 includes a first wall 121
  • the inlet area 13 includes a plurality of first inlet areas 131 formed on the first wall 121
  • the protective member 2 It includes a first protective member 21, which is spaced apart from the inside and outside of the first wall 121 in a protective state, and the orthographic projection on the first wall 121 covers the first entrance area 131. Therefore, the communication channel R can be formed by the spacing between the first protective member 21 and the first wall 121 , and the orthographic projection of the first protective member 21 on the first wall 121 covers the first entrance area 131 , thereby blocking the second entrance area 131 .
  • An inlet area 131 is used to block the direct incoming flame from the first inlet area 131 . Therefore, the arrangement scheme of the first protective member 21 is simple, easy to implement, and can have a better protective effect.
  • first wall surface 121 Separated from the inside and outside of the first wall surface 121 refers to being spaced apart from the first wall surface 121 along the thickness direction of the first wall surface 121 .
  • each first entrance area 131 is protected by a corresponding first protection member 21 .
  • the number of the first protective parts 21 is the same as the number of the first inlet areas 131 and are arranged in one-to-one correspondence, so as to achieve one-to-one individual protection. Therefore, the area and cost of the first protective parts 21 can be reduced, and the distance between two adjacent first protective parts 21 can form a fluid path connecting the discharge chamber 11 and the communication channel R, which is beneficial to the communication channel. R quickly exhausts air into the exhaust chamber 11 to improve exhaust efficiency and safety.
  • At least two adjacent first inlet areas 131 are protected by the same first protective member 21 . That is to say, the number of the first protective parts 21 is less than the number of the first entrance areas 131 to achieve one-to-many protection. Therefore, the number of the first protective parts 21 can be reduced and the installation efficiency of the first protective parts 21 can be improved.
  • the entire first entrance area 131 is protected by the same first protective member 21 , that is to say, the orthographic projection of the first protective member 21 on the first wall 121 in the protective state Covering the entire first entrance area 131. Therefore, the first protective component 21 is easier to install and the overall production efficiency of the emission assembly 10 is improved.
  • a plurality of first inlet areas 131 are arranged along the length direction X of the discharge member 1 to form a first inlet row 141 .
  • Each first inlet area 131 in the first inlet row 141 is formed by The same first protective piece 21 protects, for example, the first protective piece 21 can extend along the length direction X of the discharge member 1, and the orthographic projection of the first protective piece 21 on the first wall 121 in the protective state covers the first entrance All first inlet areas 131 in row 141. Therefore, the first protective component 21 has a simple structure and is easy to install, which can improve the production efficiency of the emission assembly 10 .
  • the length direction of the discharge member 1 is the length direction of the discharge assembly 10, which is the X direction marked in the figure.
  • the width direction of the discharge member 1 is the width direction of the discharge assembly 10, which is the Y direction marked in the figure.
  • the height direction of the discharge member 1 is the height direction of the discharge assembly 10, which is the Z direction marked in the figure.
  • a plurality of first inlet rows 141 arranged along the height direction Z of the discharge member 1 are formed on the first wall 121 , and the first protection members 21 corresponding to each first inlet row 141 are provided along the discharge direction.
  • the member 1 is spaced apart in the height direction Z.
  • the number of the first protective members 21 is the same as the number of the first inlet rows 141.
  • a plurality of first protective members 21 are spaced apart along the height direction Z of the discharge member 1 to achieve the first A protective member 21 and the first inlet row 141 are arranged one-to-one.
  • the distance between two adjacent first protective parts 21 spaced apart along the height direction Z can form a connection between the discharge chamber 11 and
  • the fluid path of the connecting channel R is conducive to the rapid exhaust of the connecting channel R to the discharge chamber 11, improving the exhaust efficiency and improving safety.
  • a plurality of first inlet areas 131 are arranged along the height direction Z of the discharge member 1 to form a first inlet row 151 , and each first inlet area 131 in the first inlet row 151 is formed by The same first protective piece 21 protects.
  • the first protective member 21 may extend along the height direction Z of the discharge member 1 , and the orthographic projection of the first protective member 21 on the first wall 121 in the protective state covers all the first inlet areas 131 in the first inlet row 151 . Therefore, the first protective component 21 has a simple structure and is easy to install, which can improve the production efficiency of the emission assembly 10 .
  • first inlet rows 151 arranged along the length direction The length direction X of the pieces 1 is spaced apart.
  • the number of first protective parts 21 is the same as the number of first inlet rows 151 , and multiple first protective parts 21 are spaced apart along the length direction one-to-one setting. Therefore, on the premise that the structure of the first protective parts 21 is simple and easy to install, the distance between two adjacent first protective parts 21 spaced apart along the length direction X can form a connection between the discharge chamber 11 and The fluid path of the connecting channel R is conducive to the rapid exhaust of the connecting channel R to the discharge chamber 11, improving the exhaust efficiency and improving safety.
  • the discharge member 1 has a long strip structure, that is to say, the length of the discharge member 1 is greater than the width and height, and the length, width, and height of the discharge member 1 are Two of the three heights are perpendicular to each other.
  • the first inlet area 131 is provided on at least one side of the discharge member 1 in the width direction Y. Therefore, by disposing the first inlet area 131 on at least one side of the width direction Y, the larger wall surface of the discharge member 1 can be used to provide the first inlet area 131 .
  • An inlet area 131 increases the number of the first inlet area 131, which is beneficial for the discharge member 1 to cooperate with a larger number of battery cells 200.
  • the first protective member 21 may have a first through hole 211 , and the orthographic projection of the first through hole 211 on the first wall 121 is offset from the first inlet area 131 . Therefore, the first through hole 211 can be used to form at least part of the fluid path connecting the discharge chamber 11 and the communication channel R, which facilitates the communication channel R to quickly exhaust gas to the discharge chamber 11, improves exhaust efficiency, and improves safety.
  • the flame in the exhaust directly injected from the first inlet area 131 can be effectively blocked by the first protective member 21 , and the gas in the exhaust directly injected from the first inlet area 131 can pass through the first through hole 211 It is discharged to the discharge chamber 11, thereby ensuring the fire prevention effect while meeting the exhaust requirements and improving safety.
  • the first through hole 211 can be provided on the first protective member 21 according to the needs. That is, the arrangement scheme of the first through hole 211 is not limited to The embodiment shown in Figure 13.
  • a part of the fluid path connecting the discharge chamber 11 and the communication channel R is formed through the edge of the first guard 21 , and a part of the fluid path connecting the discharge chamber 11 and the communication channel R is formed through the first through hole 211 . part of the fluid path, which can be more conducive to rapid exhaust of the communication channel R to the discharge chamber 11, and is conducive to improving the exhaust efficiency.
  • the discharge member 1 includes a second wall 122
  • the inlet area 13 includes a plurality of second inlet areas 132 formed on the second wall 122
  • the first protective member 21 is In the protected state, it is spaced from the inside and outside of the second wall 122 and the orthographic projection on the second wall 122 covers the second entrance area 132 . Therefore, the communication channel R can be formed by the spacing between the first protective member 21 and the second wall 122 , and the orthographic projection of the first protective member 21 on the second wall 122 covers the second entrance area 132 , thereby blocking the second entrance area 132 .
  • the second inlet area 132 is used to block the direct injection of flame from the second inlet area 132 . Therefore, the first protective member 21 has a dual protection function, that is, it can protect the first inlet area 131 and the second inlet area 132, thereby simplifying the setting and installation of the protective member 2.
  • the “disposed spaced apart from the inside and outside of the second wall surface 122” mentioned herein refers to being spaced apart from the second wall surface 122 along the thickness direction of the second wall surface 122 .
  • first wall surface 121 and the second wall surface 122 are not limited. For example, they may be adjacent wall surfaces, or they may also be opposite wall surfaces.
  • first wall surface 121 and the second wall surface 122 are adjacent wall surfaces, as shown in FIG. 15 , the first protective member 21 may be in a angled form.
  • first wall 121 and the second wall 122 are opposite walls, such as the two walls in the width direction of the discharge member 1 , the first protective member 21 is plate-shaped, beam-shaped, etc. .
  • the second wall 122 and the first wall 121 are opposite side walls of the discharge member 1 , and the first protective member 21 is located between the first wall 121 and the second wall 122 .
  • the second wall 122 is located on the side of the first protective member 21 away from the first wall 121 . Therefore, the shape of the first protective member 21 is not limited, and flexible arrangement can be achieved.
  • the effect of preventing spray from both sides can be achieved, further improving safety.
  • the first inlet area 131 and the second inlet area 132 may be directly opposite, so that the battery cells 200 outside the first wall 121 and the battery cells 200 outside the second wall 122 may be directly opposite. set up, thereby helping to improve space utilization and increase energy density.
  • the first inlet area 131 and the second inlet area 132 can also be staggered, that is, not facing each other, which can further prevent spray from both sides and improve safety.
  • the discharge member 1 has a long strip structure, that is to say, the length of the discharge member 1 is greater than the width and height, and the length, width, and height of the discharge member 1 are perpendicular to each other.
  • the second wall 122 and the first wall 121 are both sides of the width of the discharge member 1 , so the first inlet area 131 can be located on one side of the width of the discharge member 1 , and the second inlet area 132 can be located on the other side of the width of the discharge member 1 .
  • the larger wall surface of the discharge part 1 can be used to set up the first inlet area 131 and the second inlet area 132, increasing the number of the first inlet area 131 and the second inlet area 132, which is beneficial to the discharge part 1 and a larger number of 200 battery cells cooperate to increase energy density.
  • the first protective member 21 is located at a central position between the first wall 121 and the second wall 122 .
  • the first protective member 21 extends along the length direction of the discharge member 1 and is located at the central position in the width direction of the discharge member 1 .
  • the first protective member 21 has a first through hole 211, and the orthographic projection of the first through hole 211 on the first wall 121 is offset from the first inlet area 131. Moreover, the orthographic projection of the first through hole 211 on the second wall surface 122 is offset from the second inlet area 132 . Therefore, the first through hole 211 can be used to connect both sides of the first protective member 21 to increase the exhaust volume, avoid the explosion problem caused by insufficient exhaust volume, and improve safety.
  • the flame in the exhaust directly injected from the first inlet area 131 can be effectively blocked by the first protective member 21 , and the gas in the exhaust directly injected from the first inlet area 131 can pass through the first through hole 211
  • the flame in the exhaust directly injected from the second inlet area 132 can be effectively blocked by the first protective member 21 , while the gas in the exhaust directly injected from the second inlet area 132 can be It is discharged to the discharge chamber 11 through the first through hole 211, thereby ensuring the fire prevention effect while meeting the exhaust requirements and improving safety.
  • a part of the fluid path connecting the discharge chamber 11 and the communication channel R is formed through the edge of the first guard 21 , and a part of the fluid path connecting the discharge chamber 11 and the communication channel R is formed through the first through hole 211 .
  • part of the fluid path which can be more conducive to rapid exhaust of the communication channel R to the discharge chamber 11, and is conducive to improving the exhaust efficiency.
  • both sides of the first protective member 21 can be connected to increase the exhaust volume, avoid the explosion problem caused by insufficient exhaust volume, and improve safety.
  • the problem of cross-spray can be effectively solved, and a more effective anti-spray effect can be achieved, while at the same time balancing the design of the two dimensions of exhaust space and energy density.
  • the discharge member 1 includes a second wall 122
  • the inlet area 13 includes a plurality of second inlet areas 132 formed on the second wall 122
  • the protective member 2 It includes a second protective piece 22 , which is spaced apart from the inside and outside of the second wall 122 in a protective state, and the orthographic projection on the second wall 122 covers the second entrance area 132 . Therefore, the communication channel R can be formed by the spacing between the second protective member 22 and the second wall 122 , and the orthographic projection of the second protective member 22 on the second wall 122 covers the second entrance area 132 , thereby blocking the second entrance area 132 .
  • the second inlet area 132 is used to block the direct injection of flame from the second inlet area 132 . Therefore, the arrangement scheme of the second protective member 22 is simple, easy to implement, and can have a better protective effect.
  • the “disposed spaced apart from the inside and outside of the second wall surface 122” mentioned herein refers to being spaced apart from the second wall surface 122 along the thickness direction of the second wall surface 122 .
  • first protective part 21 and the second protective part 22 respectively correspond to the protection of the inlet areas 13 on different wall surfaces 12, thereby enabling flexible design of the first protective part 21 and the second protective part 22 with various implementation modes.
  • first wall surface 121 and the second wall surface 122 are not limited. For example, they may be adjacent wall surfaces, or they may also be opposite wall surfaces.
  • the second wall 122 and the first wall 121 are opposite side walls of the discharge member 1 , and the second protective member 22 is disposed close to the first protective member 21 .
  • the first protective member 21 is arranged close to the first wall 121 relative to the second protective member 22, and the second protective member 22 is opposite to the second protective member 22.
  • the first protective member 21 is disposed close to the second wall 122 . Therefore, the structure is simple, easy to process, and the protection effect is good.
  • the first inlet area 131 and the second inlet area 132 may be directly opposite, so that the battery cells 200 outside the first wall 121 and the battery cells 200 outside the second wall 122 may be arranged facing each other. , which will help improve space utilization and increase energy density.
  • the first inlet area 131 and the second inlet area 132 can also be staggered, that is, not facing each other, which can further prevent spraying from both sides and improve safety.
  • the discharge member 1 has a long strip structure, that is to say, the length of the discharge member 1 is greater than the width and height, and the length, width, and height of the discharge member 1 are perpendicular to each other.
  • the second wall 122 and the first wall 121 are both sides of the width of the discharge member 1 , so the first inlet area 131 can be located on one side of the width of the discharge member 1 , and the second inlet area 132 can be located on the other side of the width of the discharge member 1 .
  • the larger wall surface of the discharge part 1 can be used to set up the first inlet area 131 and the second inlet area 132, increasing the number of the first inlet area 131 and the second inlet area 132, which is beneficial to the discharge part 1 and a larger number of 200 battery cells cooperate to increase energy density.
  • the first protective member 21 and the second protective member 22 both extend along the length direction
  • the wall 121 is provided, and the second protective member 22 is provided close to the second wall 122 relative to the first protective member 21 .
  • the second guard 22 is spaced apart from the first guard 21 , so that the discharge cavity 11 can be formed between the first guard 21 and the second guard 22 At least part of it can take into account the larger exhaust space and achieve a more reliable protective effect.
  • a plurality of second protection members 22 are provided at intervals, and each second entrance area 132 is protected by a corresponding second protection member 22 . That is to say, the number of the second protection members 22 is the same as the number of the second inlet areas 132 and is arranged in one-to-one correspondence, so as to achieve one-to-one individual protection.
  • the area and cost of the second protective parts 22 can be reduced, and the spacing between two adjacent second protective parts 22 can form a fluid path connecting the discharge chamber 11 and the communication channel R, which is beneficial to the communication channel. R quickly exhausts air into the exhaust chamber 11 to improve exhaust efficiency and safety.
  • At least two adjacent second inlet areas 132 are protected by the same second protective member 22 . That is to say, the number of the second protection parts 22 is less than the number of the second entrance areas 132 to achieve one-to-many protection. Therefore, the number of the second protective parts 22 can be reduced and the installation efficiency of the second protective parts 22 can be improved.
  • the entire second entrance area 132 is protected by the same second protective member 22 , that is, the second protective member 22 is on the second wall 122 in the protective state.
  • the orthographic projection of covers the entire second entrance area 132.
  • the second protective member 22 is easier to install and the overall production efficiency of the emission assembly 10 is improved.
  • a plurality of second inlet areas 132 are arranged along the length direction X of the discharge member 1 to form a second inlet row 142 .
  • Each second inlet area 132 in the second inlet row 142 is composed of
  • the same second protective piece 22 protects, for example, the second protective piece 22 can extend along the length direction X of the discharge member 1, and the orthographic projection of the second protective piece 22 on the second wall 122 in the protective state covers the second entrance. All second inlet areas 132 in row 142. Therefore, the second protective member 22 has a simple structure and is easy to install, which can improve the production efficiency of the emission assembly 10 .
  • a plurality of second inlet rows 142 arranged along the height direction Z of the discharge member 1 are formed on the second wall surface 122 .
  • the second protection members 22 provided corresponding to each second inlet row 142 are arranged along the discharge direction.
  • the member 1 is spaced apart in the height direction Z.
  • the number of the second protective members 22 is the same as the number of the second inlet rows 142.
  • the plurality of second protective members 22 are spaced apart along the height direction Z of the discharge member 1 to achieve the first
  • the two protective parts 22 and the second inlet row 142 are arranged one-to-one.
  • the distance between the two adjacent second protective parts 22 spaced apart along the height direction Z can form a connection between the discharge chamber 11 and
  • the fluid path of the connecting channel R is conducive to the rapid exhaust of the connecting channel R to the discharge chamber 11, improving the exhaust efficiency and improving safety.
  • a plurality of second inlet areas 132 are arranged along the height direction Z of the discharge member 1 to form a second inlet row 152 , and each second inlet area 132 in the second inlet row 152 is formed by The same second protective piece 22 protects.
  • the second protective member 22 may extend along the height direction Z of the discharge member 1 , and the orthographic projection of the second protective member 22 on the second wall 122 in the protective state covers all the second inlet areas 132 in the second inlet row 152 . Therefore, the second protective member 22 has a simple structure and is easy to install, which can improve the production efficiency of the emission assembly 10 .
  • a plurality of second inlet rows 152 arranged along the length direction The length direction X of the pieces 1 is spaced apart.
  • the number of the second protective parts 22 is the same as the number of the second inlet rows 152 , and the plurality of second protective parts 22 are spaced apart along the length direction X of the discharge part 1 to realize the second protective parts 22 and the second inlet rows 152 one-to-one setting.
  • the second protective member 22 has a second through hole 221 , and the orthographic projection of the second through hole 221 on the second wall surface 122 is offset from the second inlet area 132 . Therefore, the second through hole 221 can be used to form at least part of the fluid path connecting the discharge chamber 11 and the communication channel R, which facilitates the rapid exhaust of the communication channel R to the discharge chamber 11, improves exhaust efficiency, and improves safety.
  • the flame in the exhaust directly injected from the second inlet area 132 can be effectively blocked by the second guard 22 , and the gas in the exhaust directly injected from the second inlet area 132 can pass through the second through hole 221 It is discharged to the discharge chamber 11, thereby ensuring the fire prevention effect while meeting the exhaust requirements and improving safety.
  • the exhaust volume can be increased, avoiding the explosion problem caused by insufficient exhaust volume, and improving safety.
  • the second through-hole 221 can be provided on the second protective member 22 as needed. That is, the arrangement of the second through-hole 221 is not limited to The embodiment shown in Figure 23.
  • the first protective member 21 can simultaneously It has a first through hole 211 , and the orthographic projection of the first through hole 211 on the first wall surface 121 is offset from the first inlet area 131 . Therefore, the flame in the exhaust directly injected from the first inlet area 131 can be effectively blocked by the first protective member 21 , and the gas in the exhaust directly injected from the first inlet area 131 can pass through the first through hole. 211 is discharged to the discharge chamber 11.
  • the flame in the exhaust that is directly injected from the second inlet area 132 can be effectively blocked by the second protective member 22, and the gas in the exhaust that is directly injected from the second inlet area 132 It can be discharged to the discharge chamber 11 through the second through hole 221, thereby meeting the exhaust requirements while ensuring the fire protection effect, improving safety, and increasing the exhaust volume, avoiding the explosion problem caused by insufficient exhaust volume, and improving safety.
  • the first through-hole 211 and the second through-hole 221 can be directly opposite or staggered, and can be specifically designed according to needs, which is not limited here.
  • the second wall surface 122 and the first wall surface 121 are the width side walls of the discharge member 1 , and the discharge member 1 is provided with a wall extending along the length direction X of the discharge member 1 .
  • the support beam 16 has a first protective member 21 disposed on a side of the support beam 16 facing the first wall 121 and a second protector 22 disposed on a side of the support beam 16 facing the second wall 122 .
  • the support beam 16 has a third Three through holes 161.
  • the structural strength of the discharge member 1 can be made better, and by providing the third through hole 161 on the support beam 16 , the gas entering from the first inlet area 131 can pass through the first through hole 211 and the third through hole 161 to the side of the support beam 16 facing the second guard 22 , the gas entering from the second inlet area 132 can come to the support beam 16 via the second through hole 221 and the third through hole 161
  • the side facing the first protective member 21 makes the exhaust space in the exhaust member 1 larger, avoiding the explosion problem caused by insufficient exhaust volume, and improving safety.
  • the third through hole 161 and the second through hole 221 can be directly opposite or staggered, and can be specifically designed according to needs, which is not limited here.
  • the third through hole 161 and the first through hole 211 can be directly opposite or staggered, and can be specifically designed according to needs, and are not limited here.
  • a part of the discharge chamber 11 may be located between the first guard 21 and the support beam 16 , and another part of the discharge chamber 11 may be located between the second guard 22 and the support beam 16 .
  • a part of the discharge chamber 11 may be located between the first guard 21 and the support beam 16
  • a part of the discharge chamber 11 may be located between the second guard 22 and the support beam 16
  • the remaining part of the discharge chamber 11 may be within the support beam 16, etc. No further details will be given here.
  • the problem of cross-spray can be effectively solved and a more effective anti-cross-spray effect can be achieved, while at the same time balancing the design of the two dimensions of exhaust space and energy density. .
  • the position of at least one protective piece 2 is fixed.
  • the protective piece 2 is in an unadjustable position relative to the discharge piece 1, the installation difficulty of the protective piece 2 can be reduced, and it is easy to process, and the protective piece 2 is always in a protective state, and the protective effect is more reliable.
  • the discharge member 1 is provided with a support beam 16, and the protective member 2 is fixedly provided on the support beam 16. Therefore, on the premise of improving the structural strength of the discharge part 1, the installation difficulty of the protective part 2 can be reduced, ensuring that the installation position of the protective part 2 is fixed, so that the protective part 2 can achieve a more effective protective effect.
  • the connection method between the protective piece 2 and the support beam 16 is not limited. For example, it can be a direct or indirect assembly connection (such as pasting, snap connection, thread connection, welding, etc.), or it can also be a coating. form connections, etc.
  • the protective member 2 When the protective member 2 is fixedly provided on the support beam 16, in some embodiments, the protective member 2 matches the wall shape of the corresponding position of the support beam 16, thereby improving the connection reliability and improving the relationship between the support beam 16 and the protective member 2.
  • the supporting effect makes the fitting position more compact, saving space and increasing the exhaust space.
  • the present application is not limited to this.
  • the protective member 2 and the support beam 16 may also be configured to have non-matching shapes to meet different design requirements.
  • the guard 2 when the guard 2 is plate-shaped, it may include a flat plate parallel to the wall 12 where the inlet area 13 is formed, an inclined plate inclined to the wall 12 where the inlet area 13 is formed, a curved panel, etc., which are not limited here.
  • the application is not limited to this, and the protective parts 2 may not be fixed in location.
  • the position or shape of at least one protective part 2 may be changed to meet other design requirements.
  • At least one guard 2 is deformable or movable along the entry direction of the corresponding inlet area 13 .
  • the communication channel R can be enlarged by changing the position or shape of the protective member 2, thereby improving the exhaust efficiency and improving safety.
  • the discharge assembly 10 includes a support 4 for supporting a position-changeable protective member 2 , and the support 4 is configured to melt under the temperature of the discharge. , so that the position of the corresponding protective piece 2 can be changed.
  • the support member 4 can be provided between the support beam 16 and the protective member 2. When the protective member 2 blocks the flame in the emissions, the support member 4 can melt so that the position of the protective member 2 can be moved, thereby increasing the Large exhaust space improves exhaust efficiency.
  • the material selection of the support member 4 is not limited, for example, it may be foam.
  • At least one protective member 2 is movable along the spacing direction of multiple inlet areas 13 on the same wall 12 to selectively protect different inlet areas 13 .
  • the position of the protective element 2 can be adjusted to the inlet area 13 where emissions enter to block the flame, thereby reducing the number of protective elements 2 and reducing the cost of the protective element 2 .
  • the above-mentioned movement may be realized in various ways, for example, the movement may be realized by driving, or it may be automatic movement.
  • the discharge assembly 10 includes a driving device 3 for driving the movable guard 2 .
  • the driving device 3 can be connected to a monitoring system, and the monitoring system can monitor which battery cell 200 is to discharge emissions, so that the driving device 3 can drive the protective member 2 to move to the corresponding position based on the monitoring results, which will not be described in detail here.
  • the specific structure of the driving device 3 is not limited and can be selected flexibly, as long as the movement of the driving guard 2 can be realized.
  • the discharge assembly 10 may further include: a blocking member 5 , which is disposed in the discharge cavity 11 and blocks between two adjacent inlet areas 13 on the same side. Therefore, the problem of flashover between two adjacent inlet areas 13 can be avoided.
  • a blocking member 5 which is disposed in the discharge cavity 11 and blocks between two adjacent inlet areas 13 on the same side. Therefore, the problem of flashover between two adjacent inlet areas 13 can be avoided.
  • the barrier 5 described herein at least has a fireproof function.
  • the function of the discharge member 1 according to the embodiment of the present application is not limited to this.
  • the discharge member 1 may further include a heat exchange part, which is used to exchange heat with at least one of the battery cell 200 and the discharge cavity 11 to provide the battery cell 200 and the discharge cavity 11 with At least one of them dissipates heat, thereby achieving a cooling effect and reducing the probability of heat spread. Therefore, the exhaust member 1 not only ensures the exhaust function, but also has the heat dissipation function.
  • the heat exchange part may include a heat exchange cavity, and the heat exchange cavity may be filled with flowable heat exchange fluid.
  • the heat exchange fluid may flow in the heat exchange cavity, and rely on fluidity to continuously exchange heat with the emissions in the discharge chamber 11 Exchange, take away the heat accumulated in the discharge cavity 11, reduce the probability of heat concentration, improve safety, and reduce the probability of heat spread.
  • the discharge member 1 may include a support beam 16 and a cold plate 17 provided outside the support beam 16 .
  • the support beam 16 is provided with a protective member 2 , or a support beam 16 and a cold plate 17 are provided between the support beam 16 and the cold plate 17 .
  • There is a guard 2 a discharge chamber 11 is defined in the support beam 16, or a discharge chamber 11 is defined between the support beam 16 and the guard 2.
  • An inlet area 13 connected to the discharge chamber 11 is formed on the cold plate 17.
  • the cold plate 17 A heat exchange cavity is formed inside.
  • cold plates 17 are provided on both sides of the support beam 16 in the width direction Y, and battery cells 200 are provided on the side of each cold plate 17 away from the support beam 16.
  • the battery cells 200 are arranged in a single row or multiple rows. Placed outside the cold plate 17 , the discharge chamber 11 is located inside the cold plate 17 .
  • the discharge member 1 is arranged in layers, which is convenient for processing and manufacturing, and can increase the heat exchange area between the heat exchange cavity and the battery cell 200. At the same time, it can also increase the heat conduction area between the heat exchange cavity and the discharge cavity 11, which has the effect of It is beneficial to improve the heat dissipation and cooling effect.
  • the cold plate 17 can also separate the discharge chamber 11 from the battery cells 200 to prevent high-temperature emissions from causing adverse thermal effects on the battery cells 200 .
  • the battery cells 200 on both sides of the discharge member 1 in the width direction Y share the same discharge member 1, which can improve the compactness of the structure.
  • the box 100 defines an accommodation cavity 1001 for accommodating the battery cell 200, that is, the battery cell 200 can be placed in the accommodation cavity 1001.
  • the box 100 includes a discharge assembly 10 according to an embodiment of the first aspect of the present application. Therefore, according to the box 100 according to the embodiment of the present application, due to the exhaust assembly 10 provided, when thermal runaway occurs, emissions such as flames, smoke or gas generated by the battery cells 200 can enter the exhaust member 1 through the inlet area 13, and pass through the exhaust area 13.
  • the blocking of the protective piece 2 can effectively isolate the flame in the emissions and improve the heat diffusion problem, thereby preventing other battery cells 200 from being affected by thermal runaway due to heat diffusion, and effectively avoiding secondary damage.
  • the exhaust assembly 10 can not only realize the exhaust function, but also serve as a part of the box 100 to strengthen the structure, for example, as a beam of the box 100, so that the box 100 can be reduced or even Removing some beam structures makes the battery 1000 using the box 100 more efficient in space utilization, more compact in structure, and higher in energy density.
  • the placement position of the discharge assembly 10 in the box 100 is not limited. For example, some embodiments will be introduced below.
  • the box 100 includes a frame 20 and a partition beam 30 .
  • the partition beam 30 is located in the space surrounded by the frame 20 to divide the space into multiple accommodation cavities 1001 .
  • the frame 20 and partitions At least one of the beams 30 is configured as a discharge assembly 10, and the battery cells 200 may be located on a horizontal side of the discharge assembly 10, and the battery cells 200 may be discharged in a horizontal direction during thermal runaway.
  • the battery cells 200 when the battery cells 200 are respectively disposed on both sides of the partition beam 30 and the partition beam 30 is configured as the discharge assembly 10, the battery cells 200 on both sides can share the discharge assembly 10, so that the number of the discharge assembly 10 can be reduced. Costs are reduced, emissions efficiency is improved, and compactness can be improved, thereby increasing energy density.
  • the partition beam 30 includes a longitudinal beam 40 extending along the length direction F1 of the box 100 (but not including a cross beam 50 extending along the width direction F2 of the box 100 ), and the longitudinal beam 40 is configured to discharge Component 10.
  • the partition beam 30 includes a cross beam 50 extending in the width direction F2 of the box 100 (but not including a longitudinal beam 40 extending in the length direction F1 of the box 100 ), and the cross beam 50 is configured as a discharge assembly. 10.
  • the partition beam 30 includes a longitudinal beam 40 extending along the length direction F1 of the box 100 and a cross beam 50 extending along the width direction F2 of the box 100 . At least one of the longitudinal beam 40 and the cross beam 50 Constructed as exhaust assembly 10 .
  • the box 100 includes a top cover 60 (but not a bottom plate 70).
  • the top cover 60 includes the discharge assembly 10.
  • the battery cell 200 can be located below the discharge assembly 10. In the event of thermal runaway, the battery cell The body 200 can be discharged upward.
  • the box 100 includes a bottom plate 70 (but not the top cover 60 ), and the bottom plate 70 includes the discharge assembly 10 .
  • the battery cell 200 can be located above the discharge assembly 10 , and in the event of thermal runaway. The battery cells 200 can be discharged downward.
  • the box 100 includes a top cover 60 and a bottom plate 70 , and at least one of the top cover 60 and the bottom plate 70 includes the discharge assembly 10 .
  • the box 100 includes a frame 20 , a dividing beam 30 , a top cover 60 and a bottom plate 70 at the same time, wherein at least two of the frame 20 , the dividing beam 30 , the top cover 60 and the bottom plate 70 include the discharge assembly 10 .
  • the design of the discharge assembly 10 is flexible, can meet the design requirements of different boxes 100, and has a wide range of applications.
  • the partition beam 30 when the partition beam 30 is configured as the discharge assembly 10 and includes a discharge path, at least one of the frame 20 , the top cover 60 and the bottom plate 70 may have a discharge path connected with the discharge path. , so that the emissions can be discharged.
  • the partition beam 30 when the partition beam 30 is configured as the discharge assembly 10 , the discharged matter entering the discharge assembly 10 can be discharged downward toward the bottom plate 70 .
  • the partition beam 30 when the partition beam 30 is configured as the discharge assembly 10 , the discharge entering the discharge assembly 10 can be discharged toward the frame 20 along the length direction.
  • the battery 1000 according to the embodiment of the present application includes: a box 100 and a battery cell 200.
  • the box 100 is the box 100 according to the second embodiment of the present application.
  • the battery cell 200 There are a plurality of them and they are arranged in the accommodation cavity 1001 . Therefore, according to the battery 1000 according to the embodiment of the present application, since the box 100 is provided with the emission assembly 10, when thermal runaway occurs, the emissions generated by the battery cell 200, such as flame, smoke or gas, can enter the emission assembly 1 through the inlet area 13. , through the blocking of the protective piece 2, the flame in the emissions can be effectively isolated, and the heat diffusion problem can be improved, thereby preventing other battery cells 200 from being affected by thermal runaway due to heat diffusion, and effectively avoiding secondary damage.
  • the box 100 includes a partition beam 30 for dividing the space in the box 100 into a plurality of accommodation cavities 1001.
  • the partition beam 30 is configured as the discharge assembly 10, so the discharge assembly 10 may be long.
  • the length direction of the separation beam 30 is the length direction X of the discharge assembly 10
  • the width direction of the separation beam 30 is the width direction Y of the discharge assembly 10
  • the height direction of the separation beam 30 is the discharge assembly 10
  • the height direction Z, the height direction Z, the width direction Y and the length direction X are perpendicular to each other. For example, when the battery 1000 is applied to a vehicle, the length direction set up.
  • a battery row 300 is provided on at least one side of the discharge assembly 10 in the width direction Y.
  • the battery row 300 includes a plurality of battery cells arranged sequentially along the length direction X of the discharge assembly 10 . 200, each battery cell 200 is discharged to the exhaust path individually. Therefore, the installation scheme is simple, the discharge assembly 10 can be used to discharge multiple battery cells 200 when they are thermally runaway, and the battery 1000 has a more compact structure and a higher energy density.
  • the plurality of battery cells 200 in the battery row 300 may be connected in parallel and/or in series, and there is no limitation here.
  • battery rows 300 are respectively provided on both sides of the discharge assembly 10 in the width direction Y. Therefore, the battery rows 300 on both sides can share the same discharge assembly 10 for discharge, making the structure compact, improving space utilization, and increasing the energy density of the battery 1000.
  • the battery rows 300 on both sides in the width direction Y are aligned in the length direction X of the discharge assembly 10 .
  • Pair that is, the plurality of battery cells 200 in the battery row 300 on one side are directly opposite to the multiple battery cells 200 in the battery row 300 on the other side along the width direction Y of the discharge assembly 10 , so that further steps can be made.
  • the battery rows 300 on both sides of the width direction Y are staggered in the length direction X of the discharge assembly 10 , that is, one side of the battery rows 300
  • the plurality of battery cells 200 in the battery row 300 and the plurality of battery cells 200 in the battery row 300 on the other side are diagonally aligned one by one along the width direction Y of the discharge assembly 10, so that thermal runaway can be more effectively avoided. Spray problem.
  • At least one side of the discharge assembly 10 in the width direction Y is provided with a plurality of battery rows 300 arranged in sequence along the height direction Z of the discharge assembly 10 , whereby the discharge assembly 10 can It is used to discharge a larger number of battery cells 200, further improving the compact structure and space utilization, and increasing the energy density of the battery 1000.
  • multiple battery rows 300 on the same side in the width direction Y are directly opposite in the length direction X of the discharge assembly 10 , that is, multiple battery cells in one of the battery rows 300 on the same side 200 are directly opposite to the plurality of battery cells 200 in another battery row 300 along the height direction Z of the discharge assembly 10 , thereby further improving space utilization and increasing the energy density of the battery 1000 .
  • multiple battery rows 300 on the same side in the width direction Y are staggered in the length direction
  • the plurality of battery cells 200 are diagonally aligned one by one along the height direction Z of the discharge assembly 10, which will not be described again here.
  • the battery cells 200 The thickness direction is the same as the height direction Z of the discharge assembly 10, so that more rows of battery rows 300 can be accommodated in the height direction Z of the discharge assembly 10, thereby further improving space utilization, increasing the energy density of the batteries 1000, and effectively solving the problem of high The risk of safety failure brought by the energy density of the battery 1000.
  • the height of the battery cell 200 relative to the box 100 can also be reduced, thereby reducing the height of the discharge location (such as an explosion-proof valve or weak point) of the battery cell 200 relative to the box 100, thereby effectively reducing the The height of the eruption position of the battery cell 200 makes the impact range of the emissions in the height direction Z smaller, thereby reducing the diffusion area and improving the overall safety performance of the battery 1000.
  • the discharge location such as an explosion-proof valve or weak point
  • the number of battery rows 300 provided on the same side in the width direction Y is not limited.
  • the number of rows may be less than the number of battery cells 200 included in each battery row 300.
  • it may be 1 row, 2 rows, or 3 rows, thereby reducing the squeezing force caused by the large number of rows, reducing the external squeezing force on the battery cell 200, thereby reducing the intensity of the explosion and eruption of the battery cell 200, and improving safety performance.
  • the side of the discharge assembly 10 in the width direction Y has a heat exchange portion, the battery cells 200 arranged in this way can enable the heat exchange assembly to cool and dissipate heat for a larger number of battery cells 200 at the same time.
  • the side wall surface of the battery cell 200 facing the discharge assembly 10 is a first end surface 2001 , and the first end surface 2001 has a pressure relief area 2002 , for example, a pressure relief area 2002 .
  • the pressure area 2002 may be an explosion-proof valve or a weak point. In the event of thermal runaway, the battery cell 200 can break through the pressure relief area 2002 and discharge emissions into the discharge assembly 10. By arranging the pressure relief area 2002 toward the discharge assembly 10, it is possible to The emission path is shortened, high-temperature emissions are reduced from impacting other battery cells 200 and cause secondary damage, and safety is improved.
  • the electrical connection end 2004 of the battery cell 200 is provided on other wall surfaces of the battery cell 200 except the first end surface 2001 .
  • the electrical connection end 2004 can be a tab or an electrode. terminals etc. Therefore, by arranging the electrical connection end 2004 and the pressure relief area 2002 on different wall surfaces, the distance between the electrical connection end 2004 and the pressure relief area 2002 can be shortened, thereby reducing the impact of emissions ejected from the pressure relief area 2002 on the electrical connection. The adverse thermal effects caused by terminal 2004 and the probability of insulation failure.
  • the wall surface of the battery cell 200 facing away from the discharge assembly 10 is the second end surface 2003
  • the electrical connection end 2004 of the battery cell 200 is provided on the second end surface 2003 . That is, the pressure relief area 2002 and the electrical connection end 2004 are respectively located on opposite sides of the battery cell 200, and the electrical connection end 2004 is located away from the discharge assembly 10, so that the electrical connection end 2004 and the pressure relief area 2002 can be better distanced. distance to reduce the probability of adverse thermal effects and insulation failure caused by the emissions ejected from the pressure relief area 2002 on the electrical connection terminal 2004.
  • the battery cell 200 when the battery cell 200 is a bare cell formed by winding, it is convenient to provide the electrical connection end 2004 and the pressure relief area 2002 at both ends of the winding axis, and the electrical connection end 2004 can be shortened.
  • the lead-out path can also make the exhaust smoother.
  • the first end face 2001 and the second end face 2003 are end faces on both sides of the length of the battery cell 200 .
  • the thickness direction extends along the vertical direction.
  • the electrical connection end 2004 of the battery cell 200 is provided on the second end face 2003, and the pressure relief area 2002 is provided on the first end face 2001, which can reduce the pressure of the battery cell 200 on the battery 1000.
  • the space occupancy rate in the height direction F3 makes the overall structure of the battery 1000 more compact in the height direction Z, which is beneficial to reducing the overall height size of the battery 1000.
  • the problem of ground clearance reduces the problem that the battery is easily bumped and scratched due to the vehicle chassis being too low, making the battery 1000 have a longer service life.
  • the heat exchange part can be used to effectively cool down the pressure relief area 2002 of the battery cell 200 and the emissions. The probability of the spread of thermal runaway is reduced. Moreover, once the cooling medium leaks, the leakage point is far away from the electrical connection end 2004 of the battery cell 200, so safety is high.
  • the present application is not limited to this.
  • the electrical connection end 2004 of the battery cell 200 can also be provided on the thickness side wall surface of the battery cell 200, so that Reduce the difficulty of electrical connections.
  • the electrical connection end 2004 of the battery cell 200 can also be provided on the first end surface 2001 at the same time, that is, the electrical connection end 2004 and the pressure relief area 2002 are located on the same side of the battery cell 200 , at this time, an insulating member can be provided between the electrical connection end 2004 and the discharge assembly 10 to avoid the problem of insulation failure caused by emissions.
  • the method of fixing the battery cell 200 is not limited.
  • it can be installed on the emission assembly 10 , thereby facilitating the installation of the battery cell 200 and ensuring the reliability of the discharge of the battery cell 200 to the emission assembly 10 , improve safety.
  • the connection method between the battery cell 200 and the discharge component 10 is not limited.
  • the battery cell 200 can be directly pasted on the discharge component 1 , thereby improving the connection efficiency.
  • the specific structure of the battery 1000 according to the embodiment of the present application is not limited to this.
  • it may also include a heat insulator 400 disposed between each two adjacent battery cells 200 in the battery row 300 .
  • the end plates 500 provided at both ends of the length of the battery row 300, etc. will not be described in detail here.
  • the number and arrangement of the partition beams 30 and the battery rows 300 included in the battery 100 according to the embodiment of the present application are not limited and can be specifically set according to actual requirements, and will not be described again here.
  • the battery 1000 includes: a discharge part 1 , a battery row 300 and a protective part 2 .
  • the discharge member 1 has a long strip structure and a discharge cavity 11 is formed in the discharge member 1.
  • Inlet areas 13 are respectively formed on both side walls 12 in the width direction of the discharge member 1.
  • the discharge cavity 11 is suitable for receiving batteries through the inlet area 13. Emissions from unit 200.
  • Battery rows 300 are respectively provided on both sides of the discharge member 1 in the width direction.
  • the battery rows 300 include a plurality of battery cells 200 sequentially arranged along the length direction of the discharge member 1.
  • the side of the battery cells 200 faces the discharge member 1.
  • the protective member 2 is provided in the discharge member 1.
  • the protective member 2 is spaced inside and outside the wall 12 and blocks the inlet area 13 to at least block the flame in the discharge, and forms a connected inlet area between the protective member 2 and the wall 12.
  • 13 is a communication channel R with the discharge chamber 11 so that the gas in the exhaust can enter the discharge chamber 11.
  • emissions such as flames, smoke or gases generated by the battery cells 200 can enter the emission member 1 through the inlet area 13.
  • the flames in the emissions can be effectively isolated and the thermal energy can be improved. Diffusion problem, thereby preventing thermal diffusion from causing other battery cells 200 to be affected by thermal runaway, effectively avoiding secondary damage.
  • the protective member 2 since the protective member 2 is located inside the discharge member 1, the protective member 2 does not occupy the space outside the discharge member 1, so that the cooperation between the discharge member 1 and the battery cell 200 can be more compact. Moreover, the protective piece 2 located in the discharge piece 1 can be protected by the discharge piece 1 and is not easy to fall off, be damaged by collision, etc., thereby improving the protection reliability of the protective piece 2 . In addition, by disposing the protective part 2 in the discharge part 1, there is no need to modify the battery cell 200, thus ensuring the energy density of the battery cell 200.
  • the battery 1000 according to the fourth embodiment of the present application may or may not include a traditional box.
  • the protective member 2 in the battery 1000 according to the fourth embodiment of the present application reference may be made to the emission assembly according to the first embodiment of the present application without conflict.
  • the embodiment of the protective member 2 in 10 and the specific optional embodiment of the battery cell 200 in the battery 1000 according to the fourth embodiment of the present application can be referred to the implementation according to the third aspect of the present application on the premise that there is no contradiction.
  • An embodiment of the battery cell 200 in the battery 1000 of the example To simplify the description, no details are given here.
  • an electrical device 2000 includes a battery 1000 according to any embodiment of the present application.
  • the battery 1000 is used to provide electrical energy to the electrical device 2000 . Therefore, the safety of the electrical device 2000 can be improved.
  • the type of electrical device 2000 is not limited, and may be, for example, a vehicle, a mobile phone, a portable device, a laptop, a ship, a spacecraft, an electric toy, an electric tool, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the battery 1000 when the battery 1000 is used in a vehicle, the battery 1000 may be disposed at the bottom or the head or the tail of the vehicle.
  • the battery 1000 may be used to power a vehicle.
  • the battery 1000 may be used as an operating power source for the vehicle.
  • the vehicle may also include a controller and a motor, and the controller is used to control the battery 1000 to provide power to the motor, for example, for starting, navigating and driving the vehicle to meet its power requirements.
  • the battery 1000 can not only be used as the operating power source of the vehicle, but also can be used as the driving power source of the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • first”, “second”, “third”, etc. are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first,” “second,” “third,” etc. may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

一种排放组件、箱体、电池和用电装置。所述排放组件包括:排放件和防护件,所述排放件内形成有排放腔,所述排放件的壁面上形成有进口区域,所述排放腔适于通过所述进口区域接收电池单体排出的排放物,所述防护件设于所述排放件内,所述防护件适于在防护状态下遮挡所述进口区域以至少用于阻挡所述排放物中的火焰,并形成连通所述进口区域与所述排放腔的连通通道以使所述排放物中的气体可进入所述排放腔。

Description

排放组件、箱体、电池和用电装置 技术领域
本申请涉及电池技术领域,尤其是涉及一种排放组件、箱体、电池和用电装置。
背景技术
相关技术中电池的应用场景广泛,例如可以用于车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等用电装置。然而,电池存在热失控的风险,一旦发生热失控,电芯喷出的排放物容易引发二次伤害,加重热失控的危害及影响范围。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种排放组件、箱体、电池以及用电装置,所述排放组件可以降低热失控的危害及影响范围。
根据本申请第一方面实施例的排放组件,包括:排放件,所述排放件内形成有排放腔,所述排放件的壁面上形成有进口区域,所述排放腔适于通过所述进口区域接收电池单体排出的排放物;以及防护件,所述防护件设于所述排放件内,所述防护件适于在防护状态下遮挡所述进口区域以至少用于阻挡所述排放物中的火焰,并形成连通所述进口区域与所述排放腔的连通通道以使所述排放物中的气体可进入所述排放腔。根据本申请的排放组件,通过在排放件内设置防护件,以阻挡电池单体排出的排放物中的火焰,从而可以较好地降低热失控的危害及影响范围。
在一些实施例中,所述排放件包括第一壁面,所述进口区域包括形成在所述第一壁面上的多个第一进口区域,所述防护件包括第一防护件,所述第一防护件在防护状态下与所述第一壁面内外间隔开且在所述第一壁面上的正投影覆盖所述第一进口区域。
在一些实施例中,所述第一防护件为多个且间隔开设置,每个所述第一进口区域分别由一个对应的所述第一防护件防护。
在一些实施例中,至少两个相邻所述第一进口区域由同一个所述第一防护件防护。
在一些实施例中,全部所述第一进口区域由同一个所述第一防护件防护。
在一些实施例中,多个所述第一进口区域沿所述排放件的长度方向排列以形成第一入口排,所述第一入口排中的各所述第一进口区域由同一个所述第一防护件防护。
在一些实施例中,所述第一壁面上形成有沿所述排放件的高度方向排列的多个所述第一入口排,对应各所述第一入口排设置的所述第一防护件沿所述排放件的高度方向间隔开设置。
在一些实施例中,多个所述第一进口区域沿所述排放件的高度方向排列以形成第一入口列,所述第一入口列中的各所述第一进口区域由同一个所述第一防护件防护。
在一些实施例中,所述第一壁面上形成有沿所述排放件的长度方向排列的多个所述第一入口列,对应各所述第一入口列设置的所述第一防护件沿所述排放件的长度方向间隔开设置。
在一些实施例中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开。
在一些实施例中,所述排放件包括第二壁面,所述进口区域包括形成在所述第二壁面上的多个第二进口区域,所述第一防护件在防护状态下与所述第二壁面内外间隔开且在所述第二壁面上的正投影覆盖所述第二进口区域。
在一些实施例中,所述第二壁面与所述第一壁面为所述排放件的相对两侧壁,所述第一防护件位于所述第一壁面与所述第二壁面之间。
在一些实施例中,所述第二壁面与所述第一壁面为所述排放件的宽度方向上的两侧壁,所述第一防护件位于所述第一壁面与所述第二壁面之间的中央位置。
在一些实施例中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开,且所述第一贯通孔在所述第二壁面上的正投影与所述第二进口区域错开。
在一些实施例中,所述排放件包括第二壁面,所述进口区域包括形成在所述第二壁面上的多个第二进口区域,所述防护件包括第二防护件,所述第二防护件在防护状态下与所述第二壁面内外间隔开且在所述第二壁面上的正投影覆盖所述第二进口区域。
在一些实施例中,所述第二壁面与所述第一壁面为所述排放件的相对两侧壁,所述第二防护件设于所述第一防护件的靠近所述第二壁面的一侧。
在一些实施例中,所述第二防护件与所述第一防护件间隔开设置,以在所述第一防护件与所述第二防护件之间形成所述排放腔的至少部分。
在一些实施例中,所述第二防护件为多个且间隔开设置,每个所述第二进口区域分别由一个对应的所述第二防护件防护。
在一些实施例中,至少两个相邻所述第二进口区域由同一个所述第二防护件防护。
在一些实施例中,所述第二防护件上具有第二贯通孔,所述第二贯通孔在所述第二壁面上的正投影与所述第二进口区域错开。
在一些实施例中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开。
在一些实施例中,所述第二壁面与所述第一壁面为所述排放件的宽度方向上的两侧壁,所述排放件内设有沿所述排放件的长度方向延伸的支撑梁,所述第一防护件设于所述支撑梁的朝向所述第一壁面的一侧,所述第二防护件设于所述支撑梁的朝向所述第二壁面的一侧,所述支撑梁上具有第三贯通孔。
在一些实施例中,至少一个所述防护件的设置位置固定。
在一些实施例中,所述排放件内设有支撑梁,所述防护件固定地设于所述支撑梁上。
在一些实施例中,所述防护件与所述支撑梁相应位置的壁面形状相匹配。
在一些实施例中,至少一个所述防护件的位置或形状可变化设置。
在一些实施例中,至少一个所述防护件沿相应所述进口区域的进入方向可变形或可移动。
在一些实施例中,所述排放组件包括支撑件,所述支撑件用于支撑位置可变化的所述防护件,所述支撑件构造为在所述排放物的温度作用下可融化,以使相应的所述防护件的位置可变化。
在一些实施例中,至少一个所述防护件沿同一所述壁面上多个所述进口区域的间隔开方向可移动,以可选择地防护不同所述进口区域。
在一些实施例中,所述排放组件包括驱动装置,所述驱动装置用于驱动可移动的所述防护件。
在一些实施例中,所述防护件在防护状态下与形成所述进口区域的所述壁面内外间隔开设置,以在所述防护件与所述壁面之间形成所述连通通道,其中,所述连通通道从所述防护件的边缘与所述排放腔连通;和/或,所述防护件上具有与所述进口区域错开设置的贯通孔,所述连通通道通过所述贯通孔与所述排放腔连通。
在一些实施例中,所述防护件为中空壳体以在所述防护件内形成所述连通通道,所述防护件的周侧壁具有开口以使所述连通通道与所述排放腔连通,所述防护件与形成所述进口区域的所述壁面贴合设置且使所述连通通道与所述进口区域连通。
在一些实施例中,所述防护件为防火件。
在一些实施例中,所述防火件为防火材料板,或者包括基体和设于所述基体外的防火层。
在一些实施例中,所述排放组件还包括:阻隔件,所述阻隔件设于所述排放腔内,且阻隔在同侧相邻两个所述进口区域之间。
在一些实施例中,所述排放组件用于电池,所述电池包括至少一个所述电池单体。
根据本申请第二方面实施例的箱体,所述箱体限定出用于容置电池单体的容置腔,所述箱体包括根据本申请第一方面实施例的排放组件。根据本申请的箱体,通过设置上述第一方面实施例的排放组件,从而提高了用于箱体的电池的安全性。
在一些实施例中,所述箱体包括边框和分隔梁,所述分隔梁位于所述边框围绕出的空间内,以将所述空间划分为多个所述容置腔,所述边框和所述分隔梁中的至少一个构造为所述排放组件。
在一些实施例中,所述分隔梁包括沿所述箱体的长度方向延伸的纵梁,所述纵梁构造为所述排放组件;或者所述分隔梁包括沿所述箱体的宽度方向方向延伸的横梁,所述横梁构造为所述排放组件;或者 所述分隔梁包括沿所述箱体的长度方向延伸的纵梁和沿所述箱体的宽度方向方向延伸的横梁,所述纵梁和所述横梁中的至少一个构造为所述排放组件。
在一些实施例中,所述箱体包括顶盖,所述顶盖包括所述排放组件;或者所述箱体包括底板,所述底板包括所述排放组件;或者所述箱体包括顶盖和底板,所述顶盖和所述底板中的至少一个包括所述排放组件。
根据本申请第三方面实施例的电池,包括:箱体,所述箱体为根据本申请第二方面实施例的箱体;以及电池单体,所述电池单体为多个且设于所述容置腔。根据本申请的电池,通过设置上述第二方面实施例的箱体,从而提高了电池的安全性。
在一些实施例中,所述箱体包括用于将所述箱体内的空间划分为多个所述容置腔分隔梁,所述分隔梁构造为所述排放组件,所述排放组件的宽度方向上的至少一侧设有电池排,所述电池排包括沿所述排放组件的长度方向依次排列的多个所述电池单体,每个所述电池单体分别单独向所述排放腔排放。
在一些实施例中,所述排放组件的宽度方向上的两侧分别设有所述电池排。
在一些实施例中,所述排放组件的宽度方向上的至少一侧设有沿所述排放组件的高度方向依次排列的多个所述电池排。
在一些实施例中,所述电池单体的厚度方向与所述排放组件的高度方向相同。
在一些实施例中,所述电池单体的朝向所述排放组件的一侧壁面为第一端面,所述第一端面具有泄压区域。
在一些实施例中,所述电池单体的电连接端设于所述电池单体的除所述第一端面以外的其他壁面上。
在一些实施例中,所述电池单体的背离所述排放组件的一侧壁面为第二端面,所述电池单体的电连接端设于所述第二端面。
在一些实施例中,所述电池单体安装于所述排放组件。
根据本申请第四方面实施例的电池,包括:排放件,所述排放件为长条形结构且所述排放件内形成有排放腔,所述排放件的宽度方向上的两侧壁面上分别形成有进口区域,所述排放腔适于通过所述进口区域接收电池单体排出的排放物;电池排,所述排放件的宽度方向上的两侧分别设有所述电池排,所述电池排包括沿所述排放件的长度方向依次排列的多个电池单体,所述电池单体的朝向所述排放件的一侧具有泄压区域,每个所述电池单体分别对应一个所述泄压区域设置;防护件,所述防护件设于所述排放件内,所述防护件与所述壁面内外间隔开设置且遮挡所述进口区域以至少用于阻挡所述排放物中的火焰,并在所述防护件与所述壁面之间形成连通所述进口区域与所述排放腔的连通通道以使所述排放物中的气体可进入所述排放腔。根据本申请第四方面实施例的电池,可以较好地降低热失控的危害及影响范围。
根据本申请第五方面实施例的用电装置,包括根据本申请任一实施例的电池,所述电池用于为所述用电装置提供电能。根据本申请的用电装置,通过设置上述任一实施例的电池,从而提高了用电装置的安全性能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是一个实施例的电动汽车A的示意图;
图2是一个实施例的动力电池B的示意图;
图3是根据本申请一个实施例的电池的立体图;
图4是图3中所示的排放组件的立体图;
图5是图4中所示的A处的放大图;
图6是图4中所示的排放组件的***图;
图7-图15是根据本申请多个不同实施例的排放组件的示意图;
图16是根据本申请一个实施例的第一壁面和第二壁面的示意图;
图17是根据本申请另一个实施例的第一壁面和第二壁面的示意图;
图18-图29是根据本申请多个不同实施例的排放组件的示意图;
图30是根据本申请一个实施例的防护件的示意图;
图31是根据本申请另一个实施例的防护件的示意图;
图32是根据本申请一个实施例的排放组件的示意图;
图33是根据本申请一个实施例的电池的***图;
图34-图36是根据本申请多个不同实施例的箱体的示意图;
图37是根据本申请一个实施例的电池单体与排放组件的配合示意图;
图38是根据本申请一个实施例的排放组件的排放方向示意图;
图39是根据本申请另一个实施例的排放组件的排放方向示意图;
图40是根据本申请另一个实施例的电池的***图;
图41是图40中所示的电池的排放方向示意图;
图42是根据本申请一个实施例的排放组件与电池排的***图;
图43是根据本申请一个实施例的用电装置的示意图。
附图标记:
电动汽车A;动力电池B;排放组件10;
排放件1;排放腔11;壁面12;第一壁面121;第二壁面122;
进口区域13;第一进口区域131;第二进口区域132;
第一入口排141;第二入口排142;第一入口列151;第二入口列152;
支撑梁16;第三贯通孔161;冷板17;
防护件2;第一防护件21;第一贯通孔211;第二防护件22;第二贯通孔221;
贯通孔23;开口24;防火材料板2a;基体2b;防火层2c;连通通道R;
驱动装置3;支撑件4;阻隔件5;
箱体100;边框20;分隔梁30;纵梁40;横梁50;顶盖60;底板70;容置腔1001;
电池单体200;第一端面2001;泄压区域2002;第二端面2003;电连接端2004;
电池排300;隔热件400;端板500;电池1000;用电装置2000。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池B作为电动汽车A的动力源(如图1和图2所示),起着不可替代的重要作用。一般动力电池B由箱体和容纳于箱体内的多个电池单体组成。动力电池B作为新能源汽车核心零部件不论在安全性方面,还是循环使用寿命上均有着较高的要求。
申请人发现,传统用作动力电池B的电池中,一旦发生热失控,电池单体会释放大量排放物,排放物中的火焰温度较高,如果任其扩散,容易对电池造成二次伤害或者影响其他电池单体。基于此,申请人认为可以在电池中添加排放组件,排放组件可以收集电池单体的排放物,使得排放物不再处于自由排放状态,同时,可以在排放组件中设置防护件,以阻挡排放物中的火焰,从而避免火焰的高温对电池造成二次伤害或者影响其他电池单体。
需要说明的是,本申请实施例公开的排放组件所应用的电池可以包括传统的箱体,也可以不包括传统的箱体。此外,本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。例如,本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。
下面,参照附图,描述根据本申请第一方面实施例的排放组件10。
如图3-图6所示,排放组件10包括排放件1,排放件1内形成有排放腔11,排放件1的壁面12上形成有进口区域13,排放腔11适于通过进口区域13接收电池单体200排出的排放物。
例如,电池单体200设于排放件1外,当发生热失控时电池单体200排出排放物,排放物如火焰、烟雾或气体等,排放物可以通过进口区域13进入排放件1,以存放于排放腔11,或者经由排放腔11导走等等。
其中,进口区域13的形式不限,例如可以是开口形式、或者是薄弱部等等,这里不作限制。因此,本文所述的“与进口区域13连通”指的是,与呈现打开状态的进口区域13连通。
如图3-图6所示,排放组件10还包括防护件2,防护件2设于排放件1内,防护件2适于在防护状态下遮挡进口区域13以至少用于阻挡排放物中的火焰,并形成连通进口区域13与排放腔11的连通通道R以使排放物中的气体可进入排放腔11。
例如,当排放物向进口区域13喷入时,处于防护状态的防护件2可以阻挡排放物中的火焰从进口区域13向排放件1内直喷,即排放物中的至少火焰部分可以被防护件2阻挡,起到较为有效的防火效果,以改善由于热失控导致的热扩散问题,而排放物中的气体可以经由连通通道R到进入排放腔11,满足热失控时的排气要求。
例如,当发生热失控时,电池单体200产生的排放物如火焰、烟雾或气体可通过进口区域13进入排放件1内,通过防护件2的阻挡,能够对排放物中的火焰有效隔离,改善热扩散问题,从而避免热扩散引起其他电池单体200受到热失控的影响,有效避免了二次伤害。
并且,由于防护件2位于排放件1内,防护件2不会占用排放件1外的空间,使得排放件1与电池单体200的配合可以更加紧凑。而且,位于排放件1内的防护件2可以获得排放件1的保护,不易脱落、磕碰损坏等,从而可以提升防护件2的防护可靠性。此外,将防护件2设于排放件1内,无需对电池单体200进行改造,从而保证了电池单体200的能量密度。
值得说明的是,防护件2的设置方式不限。例如在一些实施例中,在电池单体200没有向进口区域13排出排放物之前,防护件2可以始终处于防护状态;又例如在另外一些实施例中,在电池单体200没有向进口区域13排出排放物之前,防护件2可以处于非防护状态,而当电池单体200向进口区域13排出排放物时,或者即将向进口区域13排出排放物时,防护件2可以呈现防护状态。
需要说明的是,“防护件2遮挡进口区域13”当作广义理解,只要防护件2在形成进口区域13的壁面12上的正投影覆盖进口区域13的至少部分即可。例如在一些实施例中,防护件2在形成进口区域13的壁面12上的正投影覆盖进口区域13面积的50%以上,从而可以提升防护效果。又例如在另外一些实施例中,防护件2在形成进口区域13的壁面12上的正投影完全覆盖进口区域13,如覆盖范围恰好与进口区域13相同,或者覆盖范围超出进口区域13,都可以更加有效地提升防护效果。
需要说明的是,连通通道R的形成方式不限,例如在一些实施例中,连通通道R可以是由排放件1与防护件2共同限定出而形成的;又例如在一些实施例中,连通通道R还可以是由防护件2独自限定形成的等等,这里不作限定。
例如在一些具体示例中,如图28所示,当连通通道R由排放件1与防护件2共同限定出时,防护件2在防护状态下,防护件2与形成进口区域13的壁面12内外间隔开设置,以在防护件2与该壁面12之间形成连通通道R,连通通道R从防护件2的边缘处与排放腔11连通,防护件2与进口区域13相对,以使连通通道R与进口区域13连通。由此,结构简单、便于加工。值得说明的是,本文所述的“与壁面12内外间隔开设置”指的是,沿壁面12的厚度方向、与壁面12间隔开设置。
或者,如图28所示,当连通通道R由排放件1与防护件2共同限定出时,防护件2在防护状态下,防护件2与形成进口区域13的壁面12内外间隔开设置,以在防护件2与该壁面12之间形成连通通道R,防护件2上具有与进口区域13错开设置的贯通孔23,即贯通孔23在形成进口区域13的壁面12上的正 投影与进口区域13错开,连通通道R通过贯通孔23与排放腔11连通,从而从进口区域13直喷的排放物中的火焰可以被防护件2阻挡,而排放物中的气流可以通过贯通孔23进入排放腔11,由此也可以满足排气和防火双重要求。
再或者,如图28所示,当连通通道R由排放件1与防护件2共同限定出时,防护件2在防护状态下,防护件2与形成进口区域13的壁面12内外间隔开设置,以在防护件2与该壁面12之间形成连通通道R,连通通道R从防护件2的边缘处与排放腔11连通,同时,防护件2上具有与进口区域13错开设置的贯通孔23,连通通道R还通过贯通孔23与排放腔11连通。由此,可以提升排气效率,提高安全性。
又例如在一些具体示例中,如图29所示,当连通通道R由防护件2独自限定出时,防护件2可以为中空壳体以在防护件2内形成连通通道R,防护件2的周侧壁具有开口24以使连通通道R与排放腔11连通,防护件2与形成进口区域13的壁面12非间隔地贴合设置且使连通通道R与进口区域13连通,防护件2的内侧壁与形成进口区域13的壁面12内外间隔开地设置且遮挡进口区域13以起到防火作用。由此,可以提高排放组件10整体的结构强度。
值得说明的是,排放件1可以仅单侧设有进口区域13,排放件1也可以在相对两侧分别设置进口区域13,在一些实施例中,当两侧的进口区域13均都能被防护件2(可以是同一个防护件2,或者不同的防护件2)遮挡时,防护件2可以起到防止两侧对喷的效果,即避免单侧的排放物直喷到对侧,以避免出现热失控对喷导致的危险,从而提高安全性。
需要说明的是,根据本申请实施例的防护件2的具体构成和材料不限。例如在一些实施例中,防护件2可以为防火件,以具有较好的耐热和隔热作用,从而起到较为有效的防热扩散效果。其中,防火件的形式不限,例如结合图30,防火件可以是防火材料板2a,如云母板等;又例如结合图31,防火件可以包括基体2b和设于基体2b外的防火层2c,防火层2c可以是粘接或喷涂于基体2b,例如防火层2c可以是气凝胶层、聚丙烯等材料层、或防火漆层等,基体2b可以是板体、或梁体等等。
值得说明的是,本申请的防护件2不限于是防火件,例如在本申请的其他实施例中,防护件2还可以具有除防火以外的其他功能,例如还可以具有烟雾吸附功能、绝缘功能、防水功能等等,这里不作赘述。
此外,在本申请的一些其他实施例中,排放组件10除了包括防护件2之外,例如还可以包括其他功能件,例如结构支撑件、冷却件、颗粒物收集件等等。
在本申请的一些实施例中,排放组件10用于电池1000,电池1000包括至少一个电池单体200。由此,通过设置根据本申请实施例的排放组件10,在发生热失控时既能满足排气需求,又能改善热扩散问题,从而避免电池1000的热扩散失效问题。例如,电池单体200可以设于排放件1的形成有进口区域13的位置外侧,电池单体200的泄压区域2002(如泄压结构或薄弱部)面对进口区域13设置,以便于热失控时朝向进口区域13快速排放。或者,当电池单体200未设置泄压区域,如传统的软包电池单体,可以在每一个软包电池单体处对应设置一个进口区域13,排放物能够经由较短的路径即进入排放件1内。
根据本申请一些实施例的电池1000,可以包括用于封装一个或多个电池单体200的箱体,箱体可以避免液体或其他异物影响电池单体200的充电或放电。或者,根据本申请另一些实施例的电池1000,电池1000也可以不包括用于封装一个或多个电池单体200的箱体,例如,直接将排放组件10和电池单体200设于用电装置2000的安装腔内等等。
当电池单体200为多个时,可以是将多个电池单体200无模组化地直接设置于箱体或用电装置2000的安装腔内,此时,多个电池单体200之间可串联和/或并联,或者,也可以将多个电池单体200组成电池模组,将多个电池模组放置于箱体或用电装置2000的安装腔内,此时,各电池模组中的多个电池单体200之间可串联和/或并联,多个电池模组之间也可串联和/或并联。
需要说明的是,根据本申请实施例的电池单体200的形状及类型不限,按照形状可以为圆柱体、扁平片体、或长方体或其它形状等,按照封装类型可以为柱形电池单体、方形电池单体、或软包电池单体等。此外,电池单体200可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,对此不作限定。
例如,电池单体200可以包括电极组件和电解液。电极组件包括正极极片、负极极片和隔离膜,电极组件可以是卷绕式结构或叠片式结构等。其中,正极极片包括正极集流体和正极活性物质层,负极极 片包括负极集流体和负极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等,负极集流体的材料可以为铜,负极活性物质可以为碳或硅等,这里不作赘述。
当发生热失控时,电池单体200产生的排放物如火焰、烟雾或气体可通过进口区域13进入排放件1内,通过防护件2的阻挡,能够对排放物中的至少火焰进行一定程度的隔离,改善热扩散问题,从而避免热扩散引起电池1000内的其他电池单体200受到热失控的影响,有效避免了热扩散对电池1000造成的二次伤害。
在本申请的一些实施例中,如图6和图7所示,排放件1包括第一壁面121,进口区域13包括形成在第一壁面121上的多个第一进口区域131,防护件2包括第一防护件21,第一防护件21在防护状态下与第一壁面121内外间隔开且在第一壁面121上的正投影覆盖第一进口区域131。由此,通过第一防护件21与第一壁面121的间隔设置可以形成连通通道R,通过第一防护件21在第一壁面121上的正投影覆盖第一进口区域131,可以起到遮挡第一进口区域131以阻挡从第一进口区域131直喷进入的火焰。因此,第一防护件21的设置方案简单,容易实现,且可以具有较好的防护效果。
值得说明的是,本文所述的“与第一壁面121内外间隔开设置”指的是,沿第一壁面121的厚度方向、与第一壁面121间隔开设置。
在本申请的一些实施例中,如图8所示,第一防护件21为多个且间隔开设置,每个第一进口区域131分别由一个对应的第一防护件21防护。也就是说,第一防护件21的数量与第一进口区域131的数量相同且一一对应设置,以实现一对一地单独防护。由此,可以减小第一防护件21的面积和成本,而且,相邻两个第一防护件21之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
在本申请的另外一些实施例中,如图9所示,至少两个相邻第一进口区域131由同一个第一防护件21防护。也就是说,第一防护件21的数量少于第一进口区域131的数量,以实现一对多地防护。由此,可以减少第一防护件21的数量,提高第一防护件21的安装效率。
例如在一些示例中,如图10所示,全部第一进口区域131由同一个第一防护件21防护,也就是说,第一防护件21在防护状态下在第一壁面121上的正投影覆盖全部第一进口区域131。由此,第一防护件21更加便于安装,提高排放组件10的整体生产效率。
例如在一些示例中,如图10所示,多个第一进口区域131沿排放件1的长度方向X排列以形成第一入口排141,第一入口排141中的各第一进口区域131由同一个第一防护件21防护,例如,第一防护件21可以沿排放件1的长度方向X延伸,且第一防护件21在防护状态下在第一壁面121上的正投影覆盖第一入口排141中全部第一进口区域131。由此,第一防护件21的结构简单、便于安装,可以提高排放组件10的生产效率。
需要说明的是,排放件1的长度方向即为排放组件10的长度方向,均为图中标识的X方向。排放件1的宽度方向即为排放组件10的宽度方向,均为图中标识的Y方向。排放件1的高度方向即为排放组件10的高度方向,均为图中标识的Z方向。
进一步地,如图11所示,第一壁面121上形成有沿排放件1的高度方向Z排列的多个第一入口排141,对应各第一入口排141设置的第一防护件21沿排放件1的高度方向Z间隔开设置,例如,第一防护件21的数量与第一入口排141的数量相同,多个第一防护件21沿排放件1的高度方向Z间隔设置,以实现第一防护件21与第一入口排141的一对一设置。由此,在满足第一防护件21的结构简单、便于安装的前提下,由于沿高度方向Z间隔开设置的相邻两个第一防护件21之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
例如在一些示例中,如图12所示,多个第一进口区域131沿排放件1的高度方向Z排列以形成第一入口列151,第一入口列151中的各第一进口区域131由同一个第一防护件21防护。例如,第一防护件21可以沿排放件1的高度方向Z延伸,且第一防护件21在防护状态下在第一壁面121上的正投影覆盖第一入口列151中全部第一进口区域131。由此,第一防护件21的结构简单、便于安装,可以提高排放组件10的生产效率。
进一步地,如图12所示,第一壁面121上形成有沿排放件1的长度方向X排列的多个第一入口列151,对应各第一入口列151设置的第一防护件21沿排放件1的长度方向X间隔开设置。例如,第一防护件21的数量与第一入口列151的数量相同,多个第一防护件21沿排放件1的长度方向X间隔设置,以实现第一防护件21与第一入口列151的一对一设置。由此,在满足第一防护件21的结构简单、便于安装的前提下,由于沿长度方向X间隔开设置的相邻两个第一防护件21之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
在本申请的一些实施例中,如图3-图6所示,排放件1为长条形结构,也就是说,排放件1的长度大于宽度和高度,且排放件1的长度、宽度、高度三者两两相互垂直。第一进口区域131设于排放件1的宽度方向Y至少一侧,由此,通过将第一进口区域131设置于宽度方向Y至少一侧,从而可以利用排放件1的较大的壁面设置第一进口区域131,增多第一进口区域131的数量,有利于排放件1与更多数量的电池单体200配合。
在本申请的一些实施例中,如图13所示,第一防护件21上可以具有第一贯通孔211,第一贯通孔211在第一壁面121上的正投影与第一进口区域131错开。由此,可以利用第一贯通孔211形成连通排放腔11与连通通道R的流体路径的至少部分,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。例如,从第一进口区域131直喷进入的排放物中的火焰可以被第一防护件21有效阻挡,而从第一进口区域131直喷进入的排放物中的气体可以经由第一贯通孔211排出到排放腔11,从而可以在保证防火效果的同时满足排气要求,提高安全性。
需要说明的是,无论第一防护件21用于遮挡几个第一进口区域131,第一防护件21上均可以根据需求设置第一贯通孔211,即第一贯通孔211的设置方案不限于图13所示实施例。
在一些具体示例中,如图14所示,通过第一防护件21的边缘形成连通排放腔11与连通通道R的流体路径的一部分,通过第一贯通孔211形成连通排放腔11与连通通道R的流体路径的一部分,从而可以更加有利于连通通道R向排放腔11的快速排气,有利于提升排气效率。
在本申请的一些实施例中,如图14所示,排放件1包括第二壁面122,进口区域13包括形成在第二壁面122上的多个第二进口区域132,第一防护件21在防护状态下与第二壁面122内外间隔开且在第二壁面122上的正投影覆盖第二进口区域132。由此,通过第一防护件21与第二壁面122的间隔设置可以形成连通通道R,通过第一防护件21在第二壁面122上的正投影覆盖第二进口区域132,可以起到遮挡第二进口区域132以阻挡从第二进口区域132直喷进入的火焰。因此,第一防护件21具有双重防护功能,即可以防护第一进口区域131又可以防护第二进口区域132,从而可以简化防护件2的设置和安装。
值得说明的是,本文所述的“与第二壁面122内外间隔开设置”指的是,沿第二壁面122的厚度方向、与第二壁面122间隔开设置。
需要说明的是,第一壁面121与第二壁面122的相对位置不限,例如可以是相邻的壁面,又例如还可以是相对的壁面。例如,当第一壁面121与第二壁面122是相邻的壁面时,结合图15所示,第一防护件21可以为折角形式。又例如,结合图14所示,当第一壁面121与第二壁面122是相对的壁面时,例如排放件1的宽度方向两侧壁面时,第一防护件21为板形、梁形等等。
例如在一些实施例中,如图14所示,第二壁面122与第一壁面121为排放件1的相对两侧壁,第一防护件21位于第一壁面121与第二壁面122之间,第二壁面122位于第一防护件21背离第一壁面121的一侧。由此,第一防护件21的形状不限,可以实现灵活设置。另外,通过在相对两侧之间设置第一防护件21进行防护,可以起到防两侧对喷的效果,进一步提高安全性。
其中,如图16所示,第一进口区域131与第二进口区域132可以是正对的,从而使得第一壁面121外侧的电池单体200与第二壁面122外侧的电池单体200可以是正对设置的,从而有利于提高空间利用率,提高能量密度。或者,如图17所示,第一进口区域131与第二进口区域132也可以是错开的,即非正对设置,从而可以进一步起到防两侧对喷的效果,提高安全性。
在本申请的一些实施例中,排放件1为长条形结构,也就是说,排放件1的长度大于宽度和高度,且排放件1的长度、宽度、高度三者两两相互垂直。第二壁面122与第一壁面121为排放件1的宽度两侧壁,从而第一进口区域131可以设于排放件1的宽度一侧,第二进口区域132设于排放件1的宽度另 一侧,从而可以利用排放件1的较大壁面设置第一进口区域131和第二进口区域132,增多第一进口区域131和第二进口区域132的数量,有利于排放件1与更多数量的电池单体200配合,提高能量密度。结合图14,第一防护件21位于第一壁面121与第二壁面122之间的中央位置,例如第一防护件21沿排放件1的长度方向延伸且位于排放件1宽度方向的中央位置。由此,可以简化结构设计,且具有较好的防护效果以及较大的排气空间。
在本申请的一些实施例中,如图14所示,第一防护件21上具有第一贯通孔211,第一贯通孔211在第一壁面121上的正投影与第一进口区域131错开,且第一贯通孔211在第二壁面122上的正投影与第二进口区域132错开。由此,可以利用第一贯通孔211形成连通第一防护件21的两侧,增大排气容积,避免排气容积不足导致的憋爆问题,提高安全性。例如,从第一进口区域131直喷进入的排放物中的火焰可以被第一防护件21有效阻挡,而从第一进口区域131直喷进入的排放物中的气体可以经由第一贯通孔211排出到排放腔11,同时,从第二进口区域132直喷进入的排放物中的火焰可以被第一防护件21有效阻挡,而从第二进口区域132直喷进入的排放物中的气体可以经由第一贯通孔211排出到排放腔11,从而可以在保证防火效果的同时满足排气要求,提高安全性。
在一些具体示例中,如图14所示,通过第一防护件21的边缘形成连通排放腔11与连通通道R的流体路径的一部分,通过第一贯通孔211形成连通排放腔11与连通通道R的流体路径的一部分,从而可以更加有利于连通通道R向排放腔11的快速排气,有利于提升排气效率。而且可以连通第一防护件21的两侧,增大排气容积,避免排气容积不足导致的憋爆问题,提高安全性。
综上,通过设置第一防护件21,可以有效地解决对喷问题,起到较为有效的防对喷效果,同时又平衡了排气空间和能量密度两个维度的设计。
在本申请的一些实施例中,如图18和图19所示,排放件1包括第二壁面122,进口区域13包括形成在第二壁面122上的多个第二进口区域132,防护件2包括第二防护件22,第二防护件22在防护状态下与第二壁面122内外间隔开且在第二壁面122上的正投影覆盖第二进口区域132。由此,通过第二防护件22与第二壁面122的间隔设置可以形成连通通道R,通过第二防护件22在第二壁面122上的正投影覆盖第二进口区域132,可以起到遮挡第二进口区域132以阻挡从第二进口区域132直喷进入的火焰。因此,第二防护件22的设置方案简单,容易实现,且可以具有较好的防护效果。
值得说明的是,本文所述的“与第二壁面122内外间隔开设置”指的是,沿第二壁面122的厚度方向、与第二壁面122间隔开设置。
由此,第一防护件21和第二防护件22分别对应不同壁面12上的进口区域13防护,从而可以实现第一防护件21和第二防护件22的灵活设计,具有多种实施方式。需要说明的是,第一壁面121与第二壁面122的相对位置不限,例如可以是相邻的壁面,又例如还可以是相对的壁面。
例如在一些实施例中,如图18和图19所示,第二壁面122与第一壁面121为排放件1的相对两侧壁,第二防护件22设于第一防护件21的靠近第二壁面122的一侧。即第一防护件21和第二防护件22均位于第一壁面121与第二壁面122之间,第一防护件21相对第二防护件22靠近第一壁面121设置,第二防护件22相对第一防护件21靠近第二壁面122设置。由此,结构简单、便于加工、防护效果较好。
另外,通过在相对两侧之间设置第一防护件21和第二防护件22进行防护,可以起到防两侧对喷的效果,进一步提高安全性。其中,结合图16,第一进口区域131与第二进口区域132可以是正对的,从而使得第一壁面121外侧的电池单体200与第二壁面122外侧的电池单体200可以是正对设置的,从而有利于提高空间利用率,提高能量密度。或者,结合图17,第一进口区域131与第二进口区域132也可以是错开的,即非正对设置,从而可以进一步起到防两侧对喷的效果,提高安全性。
在本申请的一些实施例中,排放件1为长条形结构,也就是说,排放件1的长度大于宽度和高度,且排放件1的长度、宽度、高度三者两两相互垂直。第二壁面122与第一壁面121为排放件1的宽度两侧壁,从而第一进口区域131可以设于排放件1的宽度一侧,第二进口区域132设于排放件1的宽度另一侧,从而可以利用排放件1的较大壁面设置第一进口区域131和第二进口区域132,增多第一进口区域131和第二进口区域132的数量,有利于排放件1与更多数量的电池单体200配合,提高能量密度。第一防护件21和第二防护件22均沿排放件1的长度方向X延伸且均位于第一壁面121与第二壁面122之间,第一防护件21相对第二防护件22靠近第一壁面121设置,第二防护件22相对第一防护件21靠 近第二壁面122设置。由此,可以简化结构设计,且具有较好的防护效果以及较大的排气空间。
在一些实施例中,如图18和图19所示,第二防护件22与第一防护件21间隔开设置,从而可以在第一防护件21与第二防护件22之间形成排放腔11的至少部分,这样既可以兼顾较大的排气空间,又可以起到较为可靠的防护效果。
在本申请的一些实施例中,如图20所示,第二防护件22为多个且间隔开设置,每个第二进口区域132分别由一个对应的第二防护件22防护。也就是说,第二防护件22的数量与第二进口区域132的数量相同且一一对应设置,以实现一对一地单独防护。由此,可以减小第二防护件22的面积和成本,而且,相邻两个第二防护件22之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
在本申请的另外一些实施例中,如图21所示,至少两个相邻第二进口区域132由同一个第二防护件22防护。也就是说,第二防护件22的数量少于第二进口区域132的数量,以实现一对多地防护。由此,可以减少第二防护件22的数量,提高第二防护件22的安装效率。
例如在一些示例中,如图22和图23所示,全部第二进口区域132由同一个第二防护件22防护,也就是说,第二防护件22在防护状态下在第二壁面122上的正投影覆盖全部第二进口区域132。由此,第二防护件22更加便于安装,提高排放组件10的整体生产效率。
例如在一些示例中,如图24所示,多个第二进口区域132沿排放件1的长度方向X排列以形成第二入口排142,第二入口排142中的各第二进口区域132由同一个第二防护件22防护,例如,第二防护件22可以沿排放件1的长度方向X延伸,且第二防护件22在防护状态下在第二壁面122上的正投影覆盖第二入口排142中全部第二进口区域132。由此,第二防护件22的结构简单、便于安装,可以提高排放组件10的生产效率。
进一步地,如图24所示,第二壁面122上形成有沿排放件1的高度方向Z排列的多个第二入口排142,对应各第二入口排142设置的第二防护件22沿排放件1的高度方向Z间隔开设置,例如,第二防护件22的数量与第二入口排142的数量相同,多个第二防护件22沿排放件1的高度方向Z间隔设置,以实现第二防护件22与第二入口排142的一对一设置。由此,在满足第二防护件22的结构简单、便于安装的前提下,由于沿高度方向Z间隔开设置的相邻两个第二防护件22之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
例如在一些示例中,如图25所示,多个第二进口区域132沿排放件1的高度方向Z排列以形成第二入口列152,第二入口列152中的各第二进口区域132由同一个第二防护件22防护。例如,第二防护件22可以沿排放件1的高度方向Z延伸,且第二防护件22在防护状态下在第二壁面122上的正投影覆盖第二入口列152中全部第二进口区域132。由此,第二防护件22的结构简单、便于安装,可以提高排放组件10的生产效率。
进一步地,如图25所示,第二壁面122上形成有沿排放件1的长度方向X排列的多个第二入口列152,对应各第二入口列152设置的第二防护件22沿排放件1的长度方向X间隔开设置。例如,第二防护件22的数量与第二入口列152的数量相同,多个第二防护件22沿排放件1的长度方向X间隔设置,以实现第二防护件22与第二入口列152的一对一设置。由此,在满足第二防护件22的结构简单、便于安装的前提下,由于沿长度方向X间隔开设置的相邻两个第二防护件22之间的间隔位置可以形成连通排放腔11与连通通道R的流体路径,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。
在本申请的一些实施例中,如图23所示,第二防护件22上具有第二贯通孔221,第二贯通孔221在第二壁面122上的正投影与第二进口区域132错开。由此,可以利用第二贯通孔221形成连通排放腔11与连通通道R的流体路径的至少部分,有利于连通通道R快速向排放腔11排气,提升排气效率,提高安全性。例如,从第二进口区域132直喷进入的排放物中的火焰可以被第二防护件22有效阻挡,而从第二进口区域132直喷进入的排放物中的气体可以经由第二贯通孔221排出到排放腔11,从而可以在保证防火效果的同时满足排气要求,提高安全性。而且通过设置第二贯通孔221,可以增大排气容积,避免排气容积不足导致的憋爆问题,提高安全性。
需要说明的是,无论第二防护件22用于遮挡几个第二进口区域132,第二防护件22上均可以根据需求设置第二贯通孔221,即第二贯通孔221的设置方案不限于图23所示实施例。
当第二防护件22上具有第二贯通孔221,第二贯通孔221在第二壁面122上的正投影与第二进口区域132错开时,在一些示例中,第一防护件21上同时可以具有第一贯通孔211,第一贯通孔211在第一壁面121上的正投影与第一进口区域131错开。由此,从第一进口区域131直喷进入的排放物中的火焰可以被第一防护件21有效阻挡,而从第一进口区域131直喷进入的排放物中的气体可以经由第一贯通孔211排出到排放腔11,同时,从第二进口区域132直喷进入的排放物中的火焰可以被第二防护件22有效阻挡,而从第二进口区域132直喷进入的排放物中的气体可以经由第二贯通孔221排出到排放腔11,从而可以在保证防火效果的同时满足排气要求,提高安全性,而且可以增大排气容积,避免排气容积不足导致的憋爆问题,提高安全性。其中,第一贯通孔211与第二贯通孔221可以是正对的,也可以是错开的,可以根据需要具体设计,这里不作限制。
在一些实施例中,如图5和图6所示,第二壁面122与第一壁面121为排放件1的宽度两侧壁,排放件1内设有沿排放件1的长度方向X延伸的支撑梁16,第一防护件21设于支撑梁16的朝向第一壁面121的一侧,第二防护件22设于支撑梁16的朝向第二壁面122的一侧,支撑梁16上具有第三贯通孔161。
由此,通过设置支撑梁16,可以使得排放件1的结构强度较好,并且通过在支撑梁16上设置第三贯通孔161,从第一进口区域131进入的气体可以经由第一贯通孔211和第三贯通孔161来到支撑梁16的朝向第二防护件22的一侧,从第二进口区域132进入的气体可以经由第二贯通孔221和第三贯通孔161来到支撑梁16的朝向第一防护件21的一侧,从而使得排放件1内的排气空间较大,避免排气容积不足导致的憋爆问题,提高安全性。
其中,第三贯通孔161与第二贯通孔221可以是正对的,也可以是错开的,可以根据需要具体设计,这里不作限制。同理,第三贯通孔161与第一贯通孔211可以是正对的,也可以是错开的,可以根据需要具体设计,这里不作限制。
例如在上述实施例中,排放腔11的一部分可以位于第一防护件21与支撑梁16之间,排放腔11的另一部分可以位于第二防护件22与支撑梁16之间。或者还可以是,排放腔11的一部分可以位于第一防护件21与支撑梁16之间,排放腔11的一部分可以位于第二防护件22与支撑梁16之间,排放腔11的其余部分可以位于支撑梁16内,等等。这里不作赘述。
综上,通过设置第一防护件21和第二防护件22,可以有效地解决对喷问题,起到较为有效的防对喷效果,同时又平衡了排气空间和能量密度两个维度的设计。
在本申请的一些实施例中,至少一个防护件2的设置位置固定。当防护件2相对排放件1是不可调节位置时,可以降低防护件2的设置难度,容易加工,且防护件2常呈现防护状态,防护效果较为可靠。
例如结合图26,排放件1内设有支撑梁16,防护件2固定地设于支撑梁16上。由此,在提高排放件1结构强度的前提下,可以降低防护件2的设置难度,保证防护件2的设置位置固定,使得防护件2可以起到较为有效的防护效果。需要说明的是,防护件2与支撑梁16的连接方式不限,例如可以是直接或间接装配形式连接(如粘贴、卡扣连接、螺纹连接、焊接等等),又例如还可以是涂层形式连接,等等。
当防护件2固定地设于支撑梁16上时,在一些实施例中,防护件2与支撑梁16相应位置的壁面形状相匹配,从而可以提高连接可靠性,提高支撑梁16对防护件2的支撑效果,并且使得配合位置更加紧凑,节省空间,提高排气空间。当然,本申请不限于此,例如在本申请的其他实施例中,也可以将防护件2与支撑梁16设置为形状不是匹配的,以满足不同设计要求。
例如,当防护件2为板形时,可以包括平行于形成有进口区域13的壁面12的平板、倾斜于形成有进口区域13的壁面12的斜面板、以及曲面板等等,这里不作限定。
当然,本申请不限于此,防护件2也可以并非设置位置固定,例如在一些实施例中,至少一个防护件2的位置或形状可变化设置,从而可以满足其他设计要求。
例如结合图5,至少一个防护件2沿相应进口区域13的进入方向可变形或可移动。这样,在防护件2阻止火焰时,可以通过防护件2的位置或形状变化,增大连通通道R,从而可以提升排气效率,提高安全性。
具体而言,实现上述移动的方式可以有多种,例如可以是通过驱动而实现移动,或者也可以是自动 移动。例如在一些具体示例中,结合图5和图6,排放组件10包括支撑件4,支撑件4用于支撑位置可变化的防护件2,支撑件4构造为在排放物的温度作用下可融化,以使相应的防护件2的位置可变化。例如,可以在支撑梁16与防护件2之间设置支撑件4,当防护件2阻挡排放物中的火焰时,支撑件4可以发生融化,以使防护件2的位置可移动,从而可以增大排气空间,提高排气效率。需要说明的是,支撑件4的选材不限,例如可以是泡棉等。
又例如,结合图27,至少一个防护件2沿同一壁面12上多个进口区域13的间隔开方向可移动,以可选择地防护不同进口区域13。这样,在发生热失控时,可以将防护件2的位置调节到有排放物进入的进口区域13,以阻挡火焰,从而可以减少防护件2的设置数量,降低防护件2的成本。
具体而言,实现上述移动的方式可以有多种,例如可以是通过驱动而实现移动,或者也可以是自动移动。例如在一些具体示例中,结合图27,排放组件10包括驱动装置3,驱动装置3用于驱动可移动的防护件2。可选地,驱动装置3可以与监测***相连,监测***可监测到哪一电池单体200要排出排放物,从而驱动装置3可以根据监测结果驱动防护件2运动到对应的位置,这里不作赘述。其中,驱动装置3的具体构成不限,可以灵活选择,只要能够实现驱动防护件2移动即可。
在本申请的一些实施例中,结合图32,排放组件10还可以包括:阻隔件5,阻隔件5设于排放腔11内,且阻隔在同侧相邻两个进口区域13之间。由此,可以避免相邻两个进口区域13之间的蹿火问题。需要说明的是,本文所述的阻隔件5至少具有防火功能。
需要说明的是,根据本申请实施例的排放件1的功能不限于此。例如在本申请的一些实施例中,排放件1还可以包括换热部,换热部用于与电池单体200和排放腔11中的至少一个交换热量,以为电池单体200和排放腔11中的至少一个散热,从而实现冷却的效果,降低热蔓延的概率。由此,排放件1在保证排气功能的前提下,还兼具散热功能。
例如,换热部可以包括换热腔,换热腔内可以填充可流动的换热流体,换热流体可以在换热腔中流动,依靠流动性不断地与排放腔11内的排放物进行热量交换,将排放腔11中聚集的热量带走,降低出现热量集中的概率,提高安全性,降低发生热蔓延的概率。
例如图3-图6所示,排放件1可以包括支撑梁16和设于支撑梁16外的冷板17,支撑梁16上设有防护件2,或支撑梁16与冷板17之间设有防护件2,支撑梁16内限定出排放腔11,或者支撑梁16与防护件2之间限定出排放腔11,冷板17上形成有与排放腔11连通的进口区域13,冷板17内形成有换热腔。例如,支撑梁16的宽度方向Y两侧分别设有冷板17,每个冷板17的背离支撑梁16的一侧分别设有电池单体200,如电池单体200成单排或多排放置于冷板17的外侧,排放腔11位于冷板17的内侧。
由此,排放件1为分层设置,便于加工制造,而且能够增大换热腔与电池单体200热交换的面积,同时,还能够增大换热腔与排放腔11的导热面积,有利于提高散热冷却效果。冷板17还可以将排放腔11与电池单体200分隔,避免高温的排放物对电池单体200造成不良的热影响。另外,排放件1宽度方向Y两侧的电池单体200共用同一个排放件1,可以提高结构紧凑性。
下面,参照附图,描述根据本申请第二方面实施例的箱体100。
如图33-图36所示,根据本申请实施例的箱体100,限定出用于容置电池单体200的容置腔1001,即可以将电池单体200设置于容置腔1001内,箱体100包括根据本申请第一方面实施例的排放组件10。由此,根据本申请实施例的箱体100,由于设置有排放组件10,热失控时,电池单体200产生的排放物如火焰、烟雾或气体可通过进口区域13进入排放件1内,通过防护件2的阻挡,能够对排放物中的火焰有效隔离,改善热扩散问题,从而避免热扩散引起其他电池单体200受到热失控的影响,有效避免了二次伤害。
而且,将排放组件10集成于箱体100,排放组件10在实现排气功能的同时,还能够作为箱体100的一部分加强结构,例如作为箱体100的梁,使得箱体100可以减少、甚至去除一些梁结构,使得采用该箱体100的电池1000的空间利用率更高,结构更紧凑,能量密度更高。需要说明的是,排放组件10在箱体100的设置位置不限,例如,下面介绍一些实施例。
例如,如图33-图36所示,箱体100包括边框20和分隔梁30,分隔梁30位于边框20围绕出的空间内,以将空间划分为多个容置腔1001,边框20和分隔梁30中的至少一个构造为排放组件10,此时电池单体200可以位于排放组件10的水平一侧,热失控时电池单体200可以沿水平方向排放。
此外,当在分隔梁30的两侧分别设置电池单体200,且将分隔梁30构造为排放组件10时,两侧电池单体200可以共用排放组件10,从而可以减少排放组件10的数量,降低成本,提高排放效率,而且可以提高结构紧凑性,进而提高能量密度。
例如,如图35所示,分隔梁30包括沿箱体100的长度方向F1延伸的纵梁40(而不包括沿箱体100的宽度方向F2方向延伸的横梁50),纵梁40构造为排放组件10。
例如,如图36所示,分隔梁30包括沿箱体100的宽度方向F2方向延伸的横梁50(而不包括沿箱体100的长度方向F1延伸的纵梁40),横梁50构造为排放组件10。
例如,如图34所示,分隔梁30包括沿箱体100的长度方向F1延伸的纵梁40和沿箱体100的宽度方向F2方向延伸的横梁50,纵梁40和横梁50中的至少一个构造为排放组件10。
例如,如图33所示,箱体100包括顶盖60(而不包括底板70),顶盖60包括排放组件10,此时电池单体200可以位于排放组件10的下方,热失控时电池单体200可以向上排放。
例如,如图33和图34所示,箱体100包括底板70(而不包括顶盖60),底板70包括排放组件10,此时电池单体200可以位于排放组件10的上方,热失控时电池单体200可以向下排放。
例如,如图33和图34所示,箱体100包括顶盖60和底板70,顶盖60和底板70中的至少一个包括排放组件10。
例如,箱体100同时包括边框20、分隔梁30、顶盖60和底板70,其中,边框20、分隔梁30、顶盖60和底板70中的至少两个包括排放组件10。
由此可以看出,排放组件10的设计灵活,可以满足不同箱体100的设计要求,应用范围广泛。
此外,在本申请的实施例中,当分隔梁30构造为排放组件10且包括排放路径时,边框20、顶盖60和底板70中的至少一个上可以具有排出路径,排放路径与排出路径连通,从而可以将排放物排出。例如图38所示,分隔梁30构造为排放组件10时,进入排放组件10内的排放物可以向下朝向底板70排放。例如图39-图41所示,分隔梁30构造为排放组件10时,进入排放组件10内的排放物可以沿长度方向朝向边框20排放。
下面,参照附图,描述根据本申请第三方面实施例的电池1000。
如图33和图34所示,根据本申请实施例的电池1000,包括:箱体100和电池单体200,箱体100为根据本申请第二方面实施例的箱体100,电池单体200为多个且设于容置腔1001。由此,根据本申请实施例的电池1000,由于箱体100设置有排放组件10,热失控时,电池单体200产生的排放物如火焰、烟雾或气体可通过进口区域13进入排放件1内,通过防护件2的阻挡,能够对排放物中的火焰有效隔离,改善热扩散问题,从而避免热扩散引起其他电池单体200受到热失控的影响,有效避免了二次伤害。
在本申请的一些实施例中,箱体100包括用于将箱体100内的空间划分为多个容置腔1001分隔梁30,分隔梁30构造为排放组件10,因此排放组件10可以为长条形的梁体结构,分隔梁30的长度方向即为排放组件10的长度方向X,分隔梁30的宽度方向即为排放组件10的宽度方向Y,分隔梁30的高度方向即为排放组件10的高度方向Z,高度方向Z、宽度方向Y与长度方向X三者两两相互垂直,例如当电池1000应用于车辆时,长度方向X和宽度方向Y均可以水平设置,高度方向Z可以竖直设置。
在一些实施例中,如图33所示,排放组件10的宽度方向Y上的至少一侧设有电池排300,电池排300包括沿排放组件10的长度方向X依次排列的多个电池单体200,每个电池单体200分别单独向排气路径排放。由此,设置方案简单,排放组件10可以用于多个电池单体200热失控时的排放,电池1000的结构紧凑性更好,能量密度更高。需要说明的是,电池排300中的多个电池单体200可以是并联和/或串联,这里不作限制。
在一些具体示例中,如图33所示,排放组件10的宽度方向Y上的两侧分别设有电池排300。由此,两侧的电池排300可以共用同一个排放组件10排放,使得结构紧凑,可以提高空间利用率,提高电池1000的能量密度。
例如可选地,如图33所示,当排放组件10的宽度方向Y上的两侧分别设有电池排300时,宽度方向Y两侧的电池排300在排放组件10的长度方向X上正对,即其中一侧的电池排300中的多个电池单体200与另外一侧的电池排300中的多个电池单体200沿排放组件10的宽度方向Y一一正对,从而可以进一步提高空间利用率,提高电池1000的能量密度。
或者可选地,当排放组件10的宽度方向Y上的两侧分别设有电池排300时,宽度方向Y两侧的电池排300在排放组件10的长度方向X上错开,即其中一侧的电池排300中的多个电池单体200与另外一侧的电池排300中的多个电池单体200沿排放组件10的宽度方向Y一一斜对,从而可以较为有效地避免热失控时的对喷问题。
在一些具体示例中,如图33所示,排放组件10的宽度方向Y上的至少一侧设有沿排放组件10的高度方向Z依次排列的多个电池排300,由此,排放组件10可以用于更多数量的电池单体200排放,进一步提高结构紧凑性和空间利用率,提高电池1000的能量密度。
例如可选地,如图33所示,宽度方向Y同侧的多个电池排300在排放组件10的长度方向X上正对,即同侧的其中一个电池排300中的多个电池单体200与另一个电池排300中的多个电池单体200沿排放组件10的高度方向Z一一正对,从而可以进一步提高空间利用率,提高电池1000的能量密度。
或者可选地,宽度方向Y同侧的多个电池排300在排放组件10的长度方向X上错开,即同侧的其中一个电池排300中的多个电池单体200与另一个电池排300中的多个电池单体200沿排放组件10的高度方向Z一一斜对,这里不作赘述。
当排放组件10的宽度方向Y上的至少一侧设有沿排放组件10的高度方向Z依次排列的多个电池排300时,在一些实施例中,如图33所示,电池单体200的厚度方向与排放组件10的高度方向Z相同,从而可以在排放组件10的高度方向Z上容纳更多排电池排300,从而可以进一步提高空间利用率,提高电池1000的能量密度,有效解决了高能量密度的电池1000带来的安全失效风险。
此外,通过上述设置,还可以降低电池单体200相对于箱体100的高度,从而降低电池单体200的排放位置(如防爆阀或薄弱处)相对于箱体100的高度,进而能够有效降低电池单体200喷发的位置高度,使得排放物在高度方向Z上的影响范围较小,以减小扩散区域,提高电池1000整体的安全性能。
需要说明的是,宽度方向Y同侧所设置的电池排300的数量不限,例如排数可以少于各电池排300所包括的电池单体200的数量,例如可以为1排、2排或3排,从而可以减小由于排数较多造成的挤压力,减轻电池单体200所受外界挤压力,进而降低电池单体200***喷发的剧烈程度,提高安全性能。另外,当排放组件10的宽度方向Y侧面具有换热部时,如此排列的电池单体200可以使得换热组件同时为更多数量的电池单体200冷却散热。
在本申请的一些实施例中,如图37和图42所示,电池单体200的朝向排放组件10的一侧壁面为第一端面2001,第一端面2001具有泄压区域2002,例如,泄压区域2002可以是防爆阀或者薄弱部等,在热失控情况下,电池单体200可冲破泄压区域2002向排放组件10内排出排放物,通过将泄压区域2002朝向排放组件10设置,可以缩短排放路径,降低高温排放物冲击其他电池单体200造成二次伤害,提高安全性。
在一些实施例中,如图37所示,电池单体200的电连接端2004设于电池单体200的除第一端面2001以外的其他壁面上,例如电连接端2004可以为极耳、电极端子等。由此,通过将电连接端2004与泄压区域2002设于不同壁面,可以拉远电连接端2004与泄压区域2002之间的距离,降低从泄压区域2002喷出的排放物对电连接端2004造成的不良热影响以及绝缘失效的概率。
例如在一个具体示例中,如图37所示,电池单体200的背离排放组件10的一侧壁面为第二端面2003,电池单体200的电连接端2004设于第二端面2003。即泄压区域2002与电连接端2004分别设于电池单体200的相对两侧,且电连接端2004背离排放组件10设置,从而可以更好地拉远电连接端2004与泄压区域2002之间的距离,降低从泄压区域2002喷出的排放物对电连接端2004造成的不良热影响以及绝缘失效的概率。
此外,在一些示例中,当电池单体200为裸电芯采用卷绕的方式形成时,便于在卷绕轴向两端分别设置电连接端2004和泄压区域2002,可以缩短电连接端2004的引出路径,并且,还可以使得排气更顺畅。
在一些实施例中,如图37所示,第一端面2001和第二端面2003为电池单体200的长度两侧端面,当电池单体200的长度方向X沿水平方向延伸,厚度方向沿竖向延伸且为电池1000的高度方向F3时,将电池单体200的电连接端2004设于第二端面2003,将泄压区域2002设于第一端面2001,可以降低电池单体200在电池1000的高度方向F3上的空间占用率,使得电池1000整体在高度方向Z上结构更为 紧凑,有利于降低电池1000的整体高度尺寸,当将电池1000安装用车辆的底盘时,有利于解决底盘离地间隙的问题,减少由于车辆底盘过低使得电池容易磕碰刮擦的问题,使得电池1000使用寿命更长。
此外,当排放组件10的朝向电池单体200的一侧为换热部,且换热部内流通冷却介质时,可以利用换热部对电池单体200的泄压区域2002以及排放物有效降温,降低热失控蔓延的概率,而且,一旦冷却介质泄露,泄露处与电池单体200的电连接端2004也相距较远,安全性较高。
当然,本申请不限于此,当泄压区域2002设于电池单体200的长度一端时,例如还可以将电池单体200的电连接端2004设于电池单体200的厚度侧壁面,从而可以降低电连接难度。
本申请还不限于此,在一些实施例中,电池单体200的电连接端2004也可以同时设于第一端面2001,即电连接端2004与泄压区域2002位于电池单体200的同侧,此时,可以在电连接端2004与排放组件10之间设置绝缘件,从而避免排放物引发绝缘失效的问题。
在本申请的一些实施例中,电池单体200的固定方式不限,例如可以安装于排放组件10,从而便于电池单体200的安装,且保证电池单体200向排放组件10的排放可靠性,提高安全性。需要说明的是,电池单体200与排放组件10的连接方式不限,例如电池单体200可以直接粘贴于排放件1,从而提高连接效率。
需要说明的是,根据本申请实施例的电池1000的具体构成不限于此,例如结合图42,还可以包括设于电池排300中每相邻两个电池单体200之间的隔热件400,以及设于电池排300的长度两端的端板500等,这里不作赘述。此外,需要说明的是,根据本申请实施例的电池100所包括的分隔梁30、电池排300等的数量和排布不限,可以根据实际要求具体设定,这里不作赘述。
下面,参照附图,描述根据本申请第四方面实施例的电池1000。
如图3-图4所示,电池1000包括:排放件1、电池排300和防护件2。
排放件1为长条形结构且排放件1内形成有排放腔11,排放件1的宽度方向上的两侧壁面12上分别形成有进口区域13,排放腔11适于通过进口区域13接收电池单体200排出的排放物。
排放件1的宽度方向上的两侧分别设有电池排300,电池排300包括沿排放件1的长度方向依次排列的多个电池单体200,电池单体200的朝向排放件1的一侧具有泄压区域2002,每个电池单体200分别对应一个泄压区域2002设置。
防护件2设于排放件1内,防护件2与壁面12内外间隔开设置且遮挡进口区域13以至少用于阻挡排放物中的火焰,并在防护件2与壁面12之间形成连通进口区域13与排放腔11的连通通道R以使排放物中的气体可进入排放腔11。
值得说明的是,本文所述的“与壁面12内外间隔开设置”指的是,沿壁面12的厚度方向、与壁面12间隔开设置。
当发生热失控时,电池单体200产生的排放物如火焰、烟雾或气体可通过进口区域13进入排放件1内,通过防护件2的阻挡,能够对排放物中的火焰有效隔离,改善热扩散问题,从而避免热扩散引起其他电池单体200受到热失控的影响,有效避免了二次伤害。
并且,由于防护件2位于排放件1内,防护件2不会占用排放件1外的空间,使得排放件1与电池单体200的配合可以更加紧凑。而且,位于排放件1内的防护件2可以获得排放件1的保护,不易脱落、磕碰损坏等,从而可以提升防护件2的防护可靠性。此外,将防护件2设于排放件1内,无需对电池单体200进行改造,从而保证了电池单体200的能量密度。
需要说明的是,根据本申请第四方面实施例的电池1000可以包括传统的箱体,也可以不包括传统的箱体。此外,需要说明的是,根据本申请第四方面实施例的电池1000中的防护件2的具体可选实施例,在不矛盾的前提下,可以参考根据本申请第一方面实施例的排放组件10中的防护件2的实施例,根据本申请第四方面实施例的电池1000中的电池单体200的具体可选实施例,在不矛盾的前提下,可以参考根据本申请第三方面实施例的电池1000中的电池单体200的实施例。为简化描述,这里不作赘述。
下面,参照附图,描述根据本申请第五方面实施例的用电装置2000。
如图43所示,根据本申请实施例的用电装置2000,包括根据本申请任一实施例的电池1000,电池1000用于为用电装置2000提供电能。由此,可以提高用电装置2000的安全性。
需要说明的是,根据本申请实施例的用电装置2000的类型不限,例如可以是车辆、手机、便携式设 备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
例如,如图43所示,当电池1000用于车辆时,电池1000可以设置在车辆的底部或头部或尾部。电池1000可以用于车辆的供电,例如,电池1000可以作为车辆的操作电源。车辆还可以包括控制器和马达,控制器用来控制电池1000为马达供电,例如,用于车辆的启动、导航和行驶时的工作用电需求。在本申请一些实施例中,电池1000不仅仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (51)

  1. 一种排放组件,其中,包括:
    排放件,所述排放件内形成有排放腔,所述排放件的壁面上形成有进口区域,所述排放腔适于通过所述进口区域接收电池单体排出的排放物;以及
    防护件,所述防护件设于所述排放件内,所述防护件适于在防护状态下遮挡所述进口区域以至少用于阻挡所述排放物中的火焰,并形成连通所述进口区域与所述排放腔的连通通道以使所述排放物中的气体可进入所述排放腔。
  2. 根据权利要求1所述的排放组件,其中,所述排放件包括第一壁面,所述进口区域包括形成在所述第一壁面上的多个第一进口区域,所述防护件包括第一防护件,所述第一防护件在防护状态下与所述第一壁面内外间隔开且在所述第一壁面上的正投影覆盖所述第一进口区域。
  3. 根据权利要求2所述的排放组件,其中,所述第一防护件为多个且间隔开设置,每个所述第一进口区域分别由一个对应的所述第一防护件防护。
  4. 根据权利要求2所述的排放组件,其中,至少两个相邻所述第一进口区域由同一个所述第一防护件防护。
  5. 根据权利要求4所述的排放组件,其中,全部所述第一进口区域由同一个所述第一防护件防护。
  6. 根据权利要求4所述的排放组件,其中,多个所述第一进口区域沿所述排放件的长度方向排列以形成第一入口排,所述第一入口排中的各所述第一进口区域由同一个所述第一防护件防护。
  7. 根据权利要求6所述的排放组件,其中,所述第一壁面上形成有沿所述排放件的高度方向排列的多个所述第一入口排,对应各所述第一入口排设置的所述第一防护件沿所述排放件的高度方向间隔开设置。
  8. 根据权利要求4所述的排放组件,其中,多个所述第一进口区域沿所述排放件的高度方向排列以形成第一入口列,所述第一入口列中的各所述第一进口区域由同一个所述第一防护件防护。
  9. 根据权利要求8所述的排放组件,其中,所述第一壁面上形成有沿所述排放件的长度方向排列的多个所述第一入口列,对应各所述第一入口列设置的所述第一防护件沿所述排放件的长度方向间隔开设置。
  10. 根据权利要求4-9中任一项所述的排放组件,其中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开。
  11. 根据权利要求2-9中任一项所述的排放组件,其中,所述排放件包括第二壁面,所述进口区域包括形成在所述第二壁面上的多个第二进口区域,所述第一防护件在防护状态下与所述第二壁面内外间隔开且在所述第二壁面上的正投影覆盖所述第二进口区域。
  12. 根据权利要求11所述的排放组件,其中,所述第二壁面与所述第一壁面为所述排放件的相对两侧壁,所述第一防护件位于所述第一壁面与所述第二壁面之间。
  13. 根据权利要求12所述的排放组件,其中,所述第二壁面与所述第一壁面为所述排放件的宽度方向上的两侧壁,所述第一防护件位于所述第一壁面与所述第二壁面之间的中央位置。
  14. 根据权利要求11-13中任一项所述的排放组件,其中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开,且所述第一贯通孔在所述第二壁面上的正投影与所述第二进口区域错开。
  15. 根据权利要求2-9中任一项所述的排放组件,其中,所述排放件包括第二壁面,所述进口区域包括形成在所述第二壁面上的多个第二进口区域,所述防护件包括第二防护件,所述第二防护件在防护状态下与所述第二壁面内外间隔开且在所述第二壁面上的正投影覆盖所述第二进口区域。
  16. 根据权利要求15所述的排放组件,其中,所述第二壁面与所述第一壁面为所述排放件的相对两侧壁,所述第二防护件设于所述第一防护件的靠近所述第二壁面的一侧。
  17. 根据权利要求16所述的排放组件,其中,所述第二防护件与所述第一防护件间隔开设置,以在所述第一防护件与所述第二防护件之间形成所述排放腔的至少部分。
  18. 根据权利要求15-17中任一项所述的排放组件,其中,所述第二防护件为多个且间隔开设置, 每个所述第二进口区域分别由一个对应的所述第二防护件防护。
  19. 根据权利要求15-17中任一项所述的排放组件,其中,至少两个相邻所述第二进口区域由同一个所述第二防护件防护。
  20. 根据权利要求19所述的排放组件,其中,所述第二防护件上具有第二贯通孔,所述第二贯通孔在所述第二壁面上的正投影与所述第二进口区域错开。
  21. 根据权利要求20所述的排放组件,其中,所述第一防护件上具有第一贯通孔,所述第一贯通孔在所述第一壁面上的正投影与所述第一进口区域错开。
  22. 根据权利要求21所述的排放组件,其中,所述第二壁面与所述第一壁面为所述排放件的宽度方向上的两侧壁,所述排放件内设有沿所述排放件的长度方向延伸的支撑梁,所述第一防护件设于所述支撑梁的朝向所述第一壁面的一侧,所述第二防护件设于所述支撑梁的朝向所述第二壁面的一侧,所述支撑梁上具有第三贯通孔。
  23. 根据权利要求1-22中任一项所述的排放组件,其中,至少一个所述防护件的设置位置固定。
  24. 根据权利要求23所述的排放组件,其中,所述排放件内设有支撑梁,所述防护件固定地设于所述支撑梁上。
  25. 根据权利要求24所述的排放组件,其中,所述防护件与所述支撑梁相应位置的壁面形状相匹配。
  26. 根据权利要求1-22中任一项所述的排放组件,其中,至少一个所述防护件的位置或形状可变化设置。
  27. 根据权利要求26所述的排放组件,其中,至少一个所述防护件沿相应所述进口区域的进入方向可变形或可移动。
  28. 根据权利要求27所述的排放组件,其中,所述排放组件包括支撑件,所述支撑件用于支撑位置可变化的所述防护件,所述支撑件构造为在所述排放物的温度作用下可融化,以使相应的所述防护件的位置可变化。
  29. 根据权利要求26所述的排放组件,其中,至少一个所述防护件沿同一所述壁面上多个所述进口区域的间隔开方向可移动,以可选择地防护不同所述进口区域。
  30. 根据权利要求29所述的排放组件,其中,所述排放组件包括驱动装置,所述驱动装置用于驱动可移动的所述防护件。
  31. 根据权利要求1所述的排放组件,其中,所述防护件在防护状态下与形成所述进口区域的所述壁面内外间隔开设置,以在所述防护件与所述壁面之间形成所述连通通道,其中,所述连通通道从所述防护件的边缘与所述排放腔连通;和/或,所述防护件上具有与所述进口区域错开设置的贯通孔,所述连通通道通过所述贯通孔与所述排放腔连通。
  32. 根据权利要求1所述的排放组件,其中,所述防护件为中空壳体以在所述防护件内形成所述连通通道,所述防护件的周侧壁具有开口以使所述连通通道与所述排放腔连通,所述防护件与形成所述进口区域的所述壁面贴合设置且使所述连通通道与所述进口区域连通。
  33. 根据权利要求1-32中任一项所述的排放组件,其中,所述防护件为防火件。
  34. 根据权利要求33所述的排放组件,其中,所述防火件为防火材料板,或者包括基体和设于所述基体外的防火层。
  35. 根据权利要求1-34中任一项所述的排放组件,其中,还包括:
    阻隔件,所述阻隔件设于所述排放腔内,且阻隔在同侧相邻两个所述进口区域之间。
  36. 根据权利要求1-35中任一项所述的排放组件,其中,所述排放组件用于电池,所述电池包括至少一个所述电池单体。
  37. 一种箱体,其中,所述箱体限定出用于容置电池单体的容置腔,所述箱体包括根据权利要求1-36中任一项所述的排放组件。
  38. 根据权利要求37所述的箱体,其中,所述箱体包括边框和分隔梁,所述分隔梁位于所述边框围绕出的空间内,以将所述空间划分为多个所述容置腔,所述边框和所述分隔梁中的至少一个构造为所述排放组件。
  39. 根据权利要求38所述的箱体,其中,
    所述分隔梁包括沿所述箱体的长度方向延伸的纵梁,所述纵梁构造为所述排放组件;或者
    所述分隔梁包括沿所述箱体的宽度方向方向延伸的横梁,所述横梁构造为所述排放组件;或者
    所述分隔梁包括沿所述箱体的长度方向延伸的纵梁和沿所述箱体的宽度方向方向延伸的横梁,所述纵梁和所述横梁中的至少一个构造为所述排放组件。
  40. 根据权利要求37-39中任一项所述的箱体,其中,
    所述箱体包括顶盖,所述顶盖包括所述排放组件;或者
    所述箱体包括底板,所述底板包括所述排放组件;或者
    所述箱体包括顶盖和底板,所述顶盖和所述底板中的至少一个包括所述排放组件。
  41. 一种电池,其中,包括:
    箱体,所述箱体为根据权利要求36所述的箱体;以及
    电池单体,所述电池单体为多个且设于所述容置腔。
  42. 根据权利要求41所述的电池,其中,所述箱体包括用于将所述箱体内的空间划分为多个所述容置腔分隔梁,所述分隔梁构造为所述排放组件,所述排放组件的宽度方向上的至少一侧设有电池排,所述电池排包括沿所述排放组件的长度方向依次排列的多个所述电池单体,每个所述电池单体分别单独向所述排放腔排放。
  43. 根据权利要求42所述的电池,其中,所述排放组件的宽度方向上的两侧分别设有所述电池排。
  44. 根据权利要求42或43所述的电池,其中,所述排放组件的宽度方向上的至少一侧设有沿所述排放组件的高度方向依次排列的多个所述电池排。
  45. 根据权利要求44所述的电池,其中,所述电池单体的厚度方向与所述排放组件的高度方向相同。
  46. 根据权利要求41-45中任一项所述的电池,其中,所述电池单体的朝向所述排放组件的一侧壁面为第一端面,所述第一端面具有泄压区域。
  47. 根据权利要求46所述的电池,其中,所述电池单体的电连接端设于所述电池单体的除所述第一端面以外的其他壁面上。
  48. 根据权利要求47所述的电池,其中,所述电池单体的背离所述排放组件的一侧壁面为第二端面,所述电池单体的电连接端设于所述第二端面。
  49. 根据权利要求41-48中任一项所述的电池,其中,所述电池单体安装于所述排放组件。
  50. 一种电池,其中,包括:
    排放件,所述排放件为长条形结构且所述排放件内形成有排放腔,所述排放件的宽度方向上的两侧壁面上分别形成有进口区域,所述排放腔适于通过所述进口区域接收电池单体排出的排放物;
    电池排,所述排放件的宽度方向上的两侧分别设有所述电池排,所述电池排包括沿所述排放件的长度方向依次排列的多个电池单体,所述电池单体的朝向所述排放件的一侧具有泄压区域,每个所述电池单体分别对应一个所述泄压区域设置;
    防护件,所述防护件设于所述排放件内,所述防护件与所述壁面内外间隔开设置且遮挡所述进口区域以至少用于阻挡所述排放物中的火焰,并在所述防护件与所述壁面之间形成连通所述进口区域与所述排放腔的连通通道以使所述排放物中的气体可进入所述排放腔。
  51. 一种用电装置,其中,包括根据权利要求41-50中任一项所述的电池,所述电池用于为所述用电装置提供电能。
PCT/CN2022/113157 2022-08-17 2022-08-17 排放组件、箱体、电池和用电装置 WO2024036536A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/113157 WO2024036536A1 (zh) 2022-08-17 2022-08-17 排放组件、箱体、电池和用电装置
PCT/CN2022/121220 WO2024036704A1 (zh) 2022-08-17 2022-09-26 结构梁、箱体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113157 WO2024036536A1 (zh) 2022-08-17 2022-08-17 排放组件、箱体、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024036536A1 true WO2024036536A1 (zh) 2024-02-22

Family

ID=89940272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113157 WO2024036536A1 (zh) 2022-08-17 2022-08-17 排放组件、箱体、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024036536A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
CN102473884A (zh) * 2009-09-18 2012-05-23 松下电器产业株式会社 电池组件
CN111668409A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包及车辆
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
CN112928376A (zh) * 2020-10-19 2021-06-08 江苏时代新能源科技有限公司 箱体、电池及装置
CN215680882U (zh) * 2021-06-16 2022-01-28 厦门海辰新能源科技有限公司 一种电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
CN102473884A (zh) * 2009-09-18 2012-05-23 松下电器产业株式会社 电池组件
CN111668409A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包及车辆
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
CN112928376A (zh) * 2020-10-19 2021-06-08 江苏时代新能源科技有限公司 箱体、电池及装置
CN215680882U (zh) * 2021-06-16 2022-01-28 厦门海辰新能源科技有限公司 一种电池包

Similar Documents

Publication Publication Date Title
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2024007451A1 (zh) 电池和用电装置
US20240204343A1 (en) Battery and electrical device
EP4009435B1 (en) Battery, power consuming apparatus and method and apparatus for producing battery
US20230238610A1 (en) Case of battery, battery, power consumption device, and method and device for manufacturing battery
WO2024036536A1 (zh) 排放组件、箱体、电池和用电装置
WO2023050078A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2024036537A1 (zh) 排放组件、箱体、电池和用电装置
WO2024036533A1 (zh) 电池和用电装置
WO2024065785A1 (zh) 电池及用电装置
CN219873693U (zh) 电池模组、电池包及用电装置
CN219779033U (zh) 电池及用电设备
WO2024036704A1 (zh) 结构梁、箱体、电池及用电设备
CN220914359U (zh) 电池包和车辆
KR102681020B1 (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
CN117423932A (zh) 液冷板、电池包和用电装置
CN219071908U (zh) 电池防火装置、电池箱、电池及用电设备
CN217485679U (zh) 电池包和用电设备
JP7492007B2 (ja) 電池、電力消費装置、電池の製造方法及び装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2024036535A1 (zh) 热管理部件、箱体组件、电池和用电装置
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023070399A1 (zh) 电池、用电装置及电池的制造方法
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
KR102686170B1 (ko) 전지 및 그 관련장치, 제조방법 및 제조설비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955317

Country of ref document: EP

Kind code of ref document: A1