WO2024034199A1 - 基地局、端末及び通信方法 - Google Patents

基地局、端末及び通信方法 Download PDF

Info

Publication number
WO2024034199A1
WO2024034199A1 PCT/JP2023/016440 JP2023016440W WO2024034199A1 WO 2024034199 A1 WO2024034199 A1 WO 2024034199A1 JP 2023016440 W JP2023016440 W JP 2023016440W WO 2024034199 A1 WO2024034199 A1 WO 2024034199A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
transmission timing
sbfd
base station
time resource
Prior art date
Application number
PCT/JP2023/016440
Other languages
English (en)
French (fr)
Inventor
知也 布目
秀俊 鈴木
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024034199A1 publication Critical patent/WO2024034199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure relates to a base station, a terminal, and a communication method.
  • the 3rd Generation Partnership Project (3GPP) has completed the formulation of physical layer specifications for Release 17 NR (New Radio access technology) as a functional expansion of 5th Generation mobile communication systems (5G).
  • 5G 5th Generation mobile communication systems
  • NR has developed functions to realize ultra-reliable and low-latency communication (URLLC) in addition to enhanced mobile broadband (eMBB) to meet the requirements for high speed and large capacity.
  • URLLC ultra-reliable and low-latency communication
  • eMBB enhanced mobile broadband
  • Non-limiting embodiments of the present disclosure contribute to providing a base station, a terminal, and a communication method that can appropriately control transmission timing in wireless communication.
  • the base station has a first uplink transmission timing in a first time resource, and a second uplink transmission timing in a second time resource different from the first time resource.
  • the apparatus includes a control circuit that individually sets timing, and a receiving circuit that receives a signal based on the first transmission timing and the second transmission timing.
  • transmission timing in wireless communication can be appropriately controlled.
  • SBFD Subband non-overlapping full duplex
  • SBFD Subband non-overlapping full duplex
  • FIG. 1 is a diagram showing an example of the Duplex method.
  • the vertical axis represents frequency
  • the horizontal axis represents time.
  • “U” indicates uplink transmission
  • “D” indicates downlink transmission.
  • FIG. 1(a) shows an example of half duplex Time Division Duplex (TDD).
  • UE#1 and UE#2 are terminals (UE: User Equipment) connected to a base station (for example, gNB).
  • UE User Equipment
  • the transmission direction (for example, downlink or uplink) in a certain time resource may be common between the base station and the terminal. For example, the transmission direction does not differ between terminals in a certain time resource.
  • Figure 1(b) shows an example of SBFD.
  • SBFD frequency resources (or frequency bands) are divided into multiple bands (e.g., subbands, RB sets, subbands, subBWPs (Bandwidth parts)), and each subband is divided into different directions (e.g., downlink). link or uplink) transmission.
  • a terminal performs transmission/reception on either the uplink or the downlink in a certain time resource, and does not perform transmission/reception on the other.
  • SBFD a base station can transmit and receive uplink and downlink simultaneously. Note that there may be cases in which the terminal does not use resources in the transmission direction in a certain time resource (for example, the resources indicated by the dotted line in FIG. 1(b)).
  • the uplink transmission timing at the terminal may be set earlier than the downlink reception timing by T TA (for example, a parameter regarding timing advance between the downlink and uplink).
  • T TA is defined, for example, by the following equation (1).
  • N TA (for example, a parameter regarding timing advance between downlink and uplink, or a timing setting value) is used at the base station to match the reception timing of uplink from each terminal. good. For example, if you want to match the uplink reception timing from each terminal to the downlink transmission timing, N TA should be twice the propagation time for each terminal (for example, the time corresponding to the round-trip propagation delay time). ) may be set. For example, since the propagation delay time may vary depending on the location of the terminal (eg, the distance between the base station and the terminal), the NTA may be adjusted for each terminal using the Timing Advance command.
  • N TA,offset (eg, the offset value used to calculate the timing advance) may be set for the switching time from uplink reception to downlink transmission at the base station.
  • N TA,offset may be set, for example, by upper layer signaling (eg, Cell-specific Radio Resource Control (RRC) signaling).
  • RRC Radio Resource Control
  • a predefined default value (or fixed value) may be set for N TA,offset .
  • N TA and N TA,offset may be set depending on the implementation of the base station, for example.
  • N TA,adj common and N TA,adj UE are parameters used in a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • FIG. 2 shows an example of transmission and reception timing at a base station and a terminal.
  • the first line shows the slot structure
  • the second to fifth lines show the transmission timing and reception timing at each of the base station and terminal.
  • N TA is set to a time equivalent to twice the propagation delay time
  • N TA,offset is set to a value other than 0 (for example, a value greater than 0).
  • the second line of FIG. 2 shows the downlink transmission timing of the base station
  • the third line of FIG. 2 shows the downlink reception timing of the terminal.
  • the downlink reception timing of the terminal is delayed by a propagation delay time compared to the downlink transmission timing of the base station.
  • the fourth line of FIG. 2 shows the uplink transmission timing of the terminal
  • the fifth line of FIG. 2 shows the uplink reception timing of the base station.
  • the uplink transmission timing of the terminal is determined by (N TA +N TA,offset )T c (for example, T TA shown in equation (1)) with respect to the downlink transmission timing of the terminal. ), is set early (note that T c is omitted in FIG. 2).
  • the uplink reception timing of the base station is delayed by the propagation delay time compared to the uplink transmission timing of the terminal.
  • the uplink reception timing is N TA, offset from the downlink transmission timing.
  • N TA offset from the downlink transmission timing.
  • an interval of N TA,offset is required between the completion of uplink reception in slot#1 (for example, the 5th line) and the start of downlink transmission in slot#2 (for example, the 2nd line). (gap period), the base station can perform switching processing from uplink reception to downlink transmission during this period.
  • a downlink subband and an uplink subband may exist within the same time resource (for example, a slot or symbol; hereinafter sometimes referred to as "slot/symbol").
  • slot/symbol For example, in SBFD, if N TA,offset is set to a value different from 0 (for example, a value greater than 0), the base station determines the symbol timing (or symbol boundary) between the downlink and uplink. It is assumed that there may be a deviation. If the symbol boundary shifts between the downlink and uplink, self-interference from the downlink subband to the uplink subband may increase in the base station.
  • FIG. 3 shows an example of base station transmission and reception timing in SBFD.
  • Subband #0 and Subband #2 are assigned to the downlink
  • Subband #1 is assigned to the uplink.
  • N TA,offset is set to a value greater than 0.
  • the symbol timing (or symbol boundary) of uplink Subband #1 is earlier than the symbol timing (or symbol boundary) of downlink Subband #0 and Subband #2. Therefore, in Fig. 3, the symbol timing (or symbol boundary) is shifted between Subband #1, Subband #0, and Subband #2, so that from Subband #0 or Subband #2 in the uplink to Self-interference to Subband #1 may increase.
  • a communication system may include, for example, the base station 100 (eg, gNB) shown in FIGS. 4 and 6 and the terminal 200 (eg, UE) shown in FIGS. 5 and 7.
  • the base station 100 eg, gNB
  • the terminal 200 eg, UE
  • a plurality of base stations 100 and multiple terminals 200 may each exist in the communication system.
  • FIG. 4 is a block diagram illustrating a partial configuration example of base station 100 according to one aspect of the present disclosure.
  • a control unit corresponding to a control circuit, for example
  • the second transmission timing of the uplink is individually set.
  • a receiving unit (for example, corresponding to a receiving circuit) receives the signal based on the first transmission timing and the second transmission timing.
  • FIG. 5 is a block diagram illustrating a partial configuration example of the terminal 200 according to one aspect of the present disclosure.
  • the control unit (for example, corresponding to a control circuit) controls the first transmission timing of the uplink in the first time resource, and the control unit in the second time resource different from the first time resource.
  • the second uplink transmission timing is individually set.
  • a transmitting unit (for example, corresponding to a transmitting circuit) transmits a signal based on the first transmitting timing and the second transmitting timing.
  • FIG. 6 is a block diagram illustrating a configuration example of base station 100 according to one aspect of the present disclosure.
  • the base station 100 includes a receiving section 101, a demodulation/decoding section 102, a scheduling section 103, a timing control section 104, a control information holding section 105, a data/control information generation section 106, and an encoding section 102.
  • - Includes a modulation section 107 and a transmission section 108.
  • the demodulation/decoding section 102 the scheduling section 103, the timing control section 104, the control information holding section 105, the data/control information generation section 106, and the encoding/modulation section 107 is shown in FIG.
  • the receiving section 101 may be included in the control section shown in FIG. 4, and the receiving section 101 may be included in the receiving section shown in FIG.
  • the receiving unit 101 performs receiving processing such as down-conversion or A/D conversion on a received signal received via an antenna, and outputs the received signal after receiving processing to the demodulating/decoding unit 102.
  • the receiving unit 101 may perform the receiving process according to timing set by the timing control unit 104.
  • the demodulation/decoding section 102 demodulates and decodes, for example, a received signal (for example, an uplink signal) input from the receiving section 101, and outputs the decoding result to the scheduling section 103.
  • a received signal for example, an uplink signal
  • the scheduling unit 103 may perform scheduling for the terminal 200, for example. Scheduling section 103 schedules transmission and reception of each terminal 200, for example, based on at least one of the decoding result input from demodulation/decoding section 102 and the control information input from control information holding section 105, The data/control information generation unit 106 is instructed to generate at least one of data and control information. Furthermore, the scheduling section 103 may instruct the timing control section 104 regarding uplink reception timing. Furthermore, the scheduling section 103 may output control information regarding scheduling for the terminal 200 to the control information holding section 105.
  • the timing control unit 104 generates information regarding the transmission timing of the terminal 200 (for example, the value of NTA ,offset , and time resources (for example, slots or symbols) to which the set transmission timing is applied) in accordance with instructions from the scheduling unit 103. (information related to the data, etc.) and output the determined information to the data/control information generation unit 106. Furthermore, the timing control section 104 may set the reception timing for the reception section 101 based on the determined information.
  • the control information holding unit 105 holds, for example, control information set in each terminal 200.
  • the control information may include, for example, information regarding the transmission timing of each terminal 200.
  • the control information holding unit 105 may output the held information to each component of the base station 100 (for example, the scheduling unit 103) as necessary.
  • the data/control information generation unit 106 generates at least one of data and control information, for example, according to instructions from the scheduling unit 103, and outputs a signal containing the generated data or control information to the encoding/modulation unit 107. . Further, the data/control information generation unit 106 generates control information for the terminal 200 based on information related to the transmission timing of the terminal 200 inputted from the timing control unit 104, and outputs a signal including the generated control information. is output to the encoding/modulating section 107. Note that the generated data and control information may include, for example, at least one of upper layer signaling information and downlink control information.
  • control information regarding transmission timing of a terminal may be transmitted as physical layer control information (for example, control information on a PDCCH (Physical Downlink Control Channel)), and may be transmitted as upper layer signaling information (or upper layer parameters). It may also be sent as .
  • physical layer control information for example, control information on a PDCCH (Physical Downlink Control Channel)
  • upper layer signaling information or upper layer parameters
  • the encoding/modulating section 107 encodes and modulates the signal input from the data/control information generating section 106 (including, for example, data, control information, or information regarding the transmission timing of the terminal 200), and after modulation, The signal is output to the transmitter 108.
  • the transmitting unit 108 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 107, and transmits the radio signal obtained by the transmission processing from the antenna to the terminal 200. Send to.
  • FIG. 7 is a block diagram illustrating a configuration example of terminal 200 according to one aspect of the present disclosure.
  • the terminal 200 includes a receiving section 201, a demodulating/decoding section 202, a controlling section 203, a timing controlling section 204, a control information holding section 205, a data/control information generating section 206, and an encoding/decoding section 202. It has a modulation section 207 and a transmission section 208.
  • the demodulation/decoding section 202 the control section 203, the timing control section 204, the control information holding section 205, the data/control information generation section 206, and the encoding/modulation section 207 is shown in FIG.
  • the transmitter 208 may be included in the controller shown in FIG. 5, and the transmitter 208 may be included in the transmitter shown in FIG.
  • the receiving unit 201 performs receiving processing such as down-conversion or A/D conversion on a received signal received via an antenna, and outputs the received signal after receiving processing to the demodulating/decoding unit 202.
  • the demodulation/decoding section 202 demodulates and decodes the received signal input from the receiving section 201, for example, and outputs the decoding result to the control section 203.
  • the decoding result may include, for example, upper layer signaling information and downlink control information.
  • the demodulation/decoding unit 202 may include, for example, information regarding the transmission timing of the terminal 200 (for example, the value of N TA,offset , information regarding the time resource (for example, slot or symbol) to which the set transmission timing is applied) to the decoding result. information, etc.), it is output to the timing control unit 204.
  • the control unit 203 transmits and receives data or control information based on the decoding result (for example, data or control information) input from the demodulation/decoding unit 202 and the control information input from the control information holding unit 205. It may be determined whether the For example, if the determination result is that data or control information has been received, the control unit 203 may instruct the reception unit 201 and the demodulation/decoding unit 202 to receive at least one of the data and control information (Fig. (not shown). Further, for example, if the determination result is that data or control information is to be transmitted, the control unit 203 may instruct the data/control information generation unit 206 to generate at least one of data and control information. Further, the control unit 203 may instruct the timing control unit 204 to set the transmission timing, for example. Further, the control unit 203 may output control information regarding the setting of transmission timing to the control information holding unit 205.
  • the decoding result for example, data or control information
  • the timing control unit 204 determines the transmission timing based on the information regarding the transmission timing input from the demodulation/decoding unit 202 and the control information regarding the setting of the transmission timing input from the control unit 203, and 208, the transmission timing may be set.
  • the control information holding unit 205 holds, for example, control information input from the control unit 203, and outputs the held information to each component (for example, the control unit 203) as necessary.
  • the data/control information generation unit 206 generates data or control information, for example, according to instructions from the control unit 203, and outputs a signal containing the generated data or control information to the encoding/modulation unit 207.
  • the encoding/modulating section 207 encodes and modulates the signal input from the data/control information generating section 206, and outputs the modulated transmission signal to the transmitting section 208.
  • the transmitting unit 208 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 207, and transmits the radio signal obtained by the transmission processing from the antenna to the base station. Send to 100.
  • the transmitter 208 may perform the transmitting process according to the transmit timing set by the timing controller 204.
  • FIG. 8 is a sequence diagram showing an example of the operation of the base station 100 and the terminal 200.
  • the base station 100 determines, for example, information regarding settings (configurations) such as transmission timing settings of the terminal 200 in a specific time resource (eg, slot/symbol) (S101).
  • settings configurations
  • S101 specific time resource
  • the base station 100 transmits upper layer signaling information including the determined configuration information to the terminal 200 (S102).
  • the base station 100 schedules data transmission and reception with respect to the terminal 200 (S103). At this time, base station 100 determines whether the resource scheduled for terminal 200 is included in a specific time resource (eg, slot/symbol).
  • a specific time resource eg, slot/symbol
  • the base station 100 instructs the terminal 200 to perform uplink transmission (for example, transmission of Physical Uplink Shared Channel (PUSCH)) using PDCCH (for example, including Uplink grant) based on the scheduling result (S104 ).
  • the base station 100 transmits information (for example, information regarding the type of slot/symbol) regarding whether or not the resource to which uplink transmission is allocated is a specific time resource (for example, a slot/symbol) to the terminal 200. You may notify.
  • PUSCH Physical Uplink Shared Channel
  • PDCCH for example, including Uplink grant
  • the terminal 200 determines uplink transmission timing (for example, PUSCH transmission timing) based on, for example, the PDCCH (Uplink grant) transmitted from the base station 100 (S105). For example, the terminal 200 determines whether the uplink transmission timing (assigned resource) notified from the base station 100 corresponds to a specific time resource (for example, a slot or symbol) or corresponds to another time resource different from the specific time resource. PUSCH transmission timing may be determined (or set or adjusted).
  • the terminal 200 transmits the PUSCH based on the PDCCH (Uplink grant) transmitted from the base station 100 and the determined transmission timing (S106).
  • PDCCH Uplink grant
  • Uplink transmission timing setting method A method for setting uplink transmission timing of terminal 200 in base station 100 (for example, timing control unit 104) will be described. Note that the terminal 200 (for example, the timing control unit 204) may set the uplink transmission timing by assuming the uplink transmission timing setting method performed by the base station 100, for example.
  • base station 100 and terminal 200 determine uplink transmission timing in a specific time resource (e.g., slot/symbol) and other time resources (e.g., slot/symbol) different from the specific time resource. Individually set (or adjust) the uplink transmission timing at a specific time resource (e.g., slot/symbol) and other time resources (e.g., slot/symbol) different from the specific time resource. Individually set (or adjust) the uplink transmission timing at
  • the base station 100 determines N TA,offset (transmission timing offset value) in the SBFD symbol or SBFD candidate symbol (for example, corresponding to a specific time resource) and other symbols different from the SBFD symbol and the SBFD candidate symbol. (for example, a normal symbol in which the transmission direction is a unit) may be different from N TA,offset .
  • N TA,offset transmission timing offset value
  • the base station 100 may set N TA,offset to 0 in the SBFD symbol or the SBFD candidate symbol. Also, for example, the base station 100 sets N TA,offset in a normal symbol (for example, a symbol with a single transmission direction) to a value different from that of the SBFD symbol and the BFD candidate symbol (for example, a value of 0 or more). You may do so.
  • a normal symbol for example, a symbol with a single transmission direction
  • the BFD candidate symbol for example, a value of 0 or more. You may do so.
  • N TA,offset as for normal symbols may be set for the SBFD candidate symbol.
  • SBFD symbol represents, for example, a symbol to which SBFD is actually applied (for example, a symbol in which the same symbol has multiple subbands with different transmission directions).
  • SBFD candidate symbol represents a symbol to which SBFD may be applied.
  • SBFD may be applied to the SBFD candidate symbol (SBFD symbol), or SBFD may not be applied (for example, it may be a normal symbol).
  • SBFD candidate symbol may be set (or changed or overwritten) in either the SBFD symbol or the normal symbol by signaling from the base station 100 or the like.
  • NTA ,offsets may be set for the SBFD symbol and the SBFD symbol.
  • FIG. 9 shows an example of transmission and reception timing according to method 1.
  • FIG. 9 shows the transmission and reception timing in five slots, Slot#0 to Slot#4.
  • Slot#0, Slot#3, and Slot#4 are slots consisting of normal symbols (single symbol in the transmission direction)
  • Slot#1 and Slot#2 are slots consisting of SBFD symbols.
  • three subbands are set on the SBFD symbols of Slot #1 and Slot #2.
  • DL/UL relation at the bottom of FIG. 9 represents the symbol type (for example, normal symbol or SBFD symbol) and the transmission/reception timing at the base station 100.
  • "Normal DL” represents a downlink slot consisting of normal symbols
  • “Normal UL” represents an uplink slot consisting of normal symbols.
  • SBFD DL represents a downlink slot (or downlink subband) consisting of SBFD symbols
  • SBFD UL represents an uplink slot (or uplink subband) consisting of SBFD symbols. represent.
  • N TA,offset in an uplink slot (Normal UL) consisting of normal symbols is set to a value greater than 0. Therefore, as shown in FIG. 9, the symbol timing of Slot#3 is advanced by N TA,offset , and there is N TA,offset between Slot#3 (Normal UL) and Slot#4 (Normal DL). There is a gap equivalent to offset .
  • N TA,offset in the uplink subband (SBFD UL) is set to 0 in Slot #1 and Slot #2 consisting of SBFD symbols. Therefore, as shown in FIG. 9, in Slot#1 and Slot#2, the symbol timing of the uplink subband (SBFD UL) is the same as the symbol timing of the downlink subband (SBFD DL). The symbol timing (or symbol boundary) between UL and SBFD DL matches.
  • method 1 which symbol is set as the SBFD symbol (or SBFD candidate symbol) (for example, symbol type) may be notified to the terminal 200 by the following notification method.
  • notification method 1 whether or not it is an SBFD symbol (or symbol type) is notified using UE-specific DCI.
  • DCI format 0_0, 0_1, 0_2, 1_0, 1_1, 1_2 may be used as the UE-specific DCI, or other DCI formats may be used.
  • a UE-specific DCI indicates whether the resources scheduled by the DCI (e.g., resources used for PUSCH, Physical Uplink Control Channel (PUCCH), Sounding Reference Signal (SRS)) are regular symbols or SBFD It may be notified whether it is a symbol or not.
  • resources scheduled by the DCI e.g., resources used for PUSCH, Physical Uplink Control Channel (PUCCH), Sounding Reference Signal (SRS)
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the base station 100 can notify the symbol type using the UE-specific DCI after scheduling. For example, base station 100 can notify terminal 200 of the symbol type after determining whether to use each symbol allocated to terminal 200 as an SBFD symbol or a normal symbol. Therefore, in the notification method 1, since it is not necessary to use the SBFD candidate symbol, the base station 100 may set the SBFD symbol instead of the SBFD candidate symbol.
  • Example 1 The symbol type (either a normal symbol or an SBFD symbol) may be notified using a 1-bit field of the UE-specific DCI. For example, a 1-bit field may be added to the DCI. For example, a field value of "0" may indicate a normal symbol, and a field value of "1" may indicate an SBFD symbol.
  • Example 2 The symbol type (either a normal symbol or an SBFD symbol) may be notified by reusing the existing field of the UE-specific DCI. For example, fields for configuring time domain resources such as "Time domain resource assignment”, "PUCCH resource indicator”, or "PDSCH-to-HARQ_feedback timing indicator" may be reused.
  • Time domain resource assignment provides information about the association between time domain resources (e.g., parameter settings related to time domain resources) and values notified by DCI fields (e.g., values related to indexes). (for example, information in table format) is set in advance by RRC signaling.
  • time domain resources e.g., parameter settings related to time domain resources
  • values notified by DCI fields e.g., values related to indexes
  • information in table format is set in advance by RRC signaling.
  • one of the settings in the table may include a setting that indicates either "SBFD symbol” or "normal symbol” as the symbol type. good.
  • the base station 100 can notify the terminal 200 of whether or not it is an SBFD symbol in addition to the uplink transmission instruction using the UE-specific DCI, so that the overhead of notification can be reduced.
  • notification method 2 whether or not it is an SBFD symbol (or symbol type) is notified using group-common DCI.
  • DCI format 2_0, 2_1, 2_2, 2_3, 2_4, 2_5, 2_6, 2_7 may be used for group-common DCI, and other DCI formats may be used.
  • the base station 100 can notify the symbol type using the group-common DCI after scheduling, so as in notification method 1, the SBFD symbol may be set instead of the SBFD candidate symbol.
  • a bit field that notifies whether it is an SBFD symbol may be added to DCI format 2_0.
  • the symbol type (for example, either an SBFD symbol or a normal symbol) of multiple slots corresponding to the slot format indicator (SFI) may be notified by the added field.
  • SFI slot format indicator
  • a 5-bit field may be added to DCI format 2_0 for symbol type notification.
  • Each bit of the added bit field (eg, 5 bits) may correspond to each slot (eg, 5 slots) signaled by the SFI.
  • a bit value of "0" may indicate a normal symbol
  • a bit value of "1” may indicate an SBFD symbol.
  • the symbols in the 2nd, 3rd, and 4th slots among the 5 slots reported by SFI are SBFD symbols, and other Means that the symbols (1st and 5th symbols) are normal symbols.
  • the number of slots whose slot format is notified by SFI is not limited to 5 slots, and may be any other number of slots.
  • the size (number of bits) of the bit field added to the group-common DCI may be set according to the number of slots for which the slot format is notified by the SFI.
  • quasi-statically configured uplink transmission such as PUSCH transmission by Configured grant or periodic transmission of SRS is not instructed to be transmitted by the UE-specific DCI, and is transmitted without DCI. Therefore, in the notification method 1 using UE-specific DCI, it is difficult to notify the symbol type for semi-statically set transmission. On the other hand, in notification method 2, it is possible to notify whether or not it is an SBFD symbol using the group common DCI, so it is also applicable to semi-statically set transmission.
  • notification method 3 whether or not it is an SBFD symbol (or the symbol type) is notified using quasi-static signaling (for example, RRC signaling).
  • quasi-static signaling for example, RRC signaling
  • multiple slots/symbols may be set as SBFD candidate symbols.
  • the symbol type is set quasi-statically before scheduling is determined. For example, if a certain symbol is set (or confirmed) as an SBFD symbol before scheduling is determined, the symbol cannot be switched to a normal symbol depending on the communication environment, etc., reducing scheduling flexibility. obtain. Therefore, in notification method 3, for example, the base station 100 may set, for each symbol, whether or not it is an SBFD candidate symbol.
  • the configuration of the SBFD candidate symbol may be added to “tdd-UL-DL-ConfigurationDedicated”, which is RRC signaling that configures the symbol transmission direction for each terminal.
  • the first (or start, head) symbol number for example, any one of 0 to 13
  • the number of SBFD candidate symbols or allocation length; for example, 0 to 14
  • all symbols in the slot are set as the SBFD candidate symbol. Note that the symbol number and the number of symbols are just examples, and other values may be used.
  • notification method 3 a symbol that can become an SBFD symbol (for example, a symbol to which SBFD may be applied) can be set as an SBFD candidate symbol.
  • notification method 1 using UE-specific DCI is difficult to apply to semi-statically configured transmissions (e.g. Configured grant), whereas notification method 3 is Since symbol types can be statically set for a plurality of slots/symbols, it is also applicable to transmissions set semi-statically.
  • the base station 100 uses notification method 3 to semi-statically set a symbol that can become an SBFD symbol as an SBFD candidate symbol. Furthermore, after scheduling, the base station 100 sets the symbol type (SBFD symbol or normal symbol) using notification method 1 for uplink transmission that is dynamically scheduled by the DCI, and sets the symbol type (SBFD symbol or normal symbol) semi-statically. For uplink transmission, the symbol type (SBFD symbol or normal symbol) may be set using notification method 2. At this time, the symbol type of the SBFD candidate symbol set by the notification method 3 may be overwritten as either the SBFD symbol or the normal symbol according to the notification by the notification method 1 or the notification method 2. In this way, symbol types can be switched flexibly by combining notification methods 1 to 3, thereby improving scaling flexibility and resource utilization efficiency.
  • N TA,offset for each of the SBFD symbols and normal symbols may be set individually.
  • N TA,offset in the SBFD symbol may be set to 0.
  • N TA,offset in a normal symbol may be set to a value of 0 or more.
  • N TA,offset in the SBFD candidate symbol may be set to 0 (eg, the same value as the SBFD symbol) or the same value as the normal symbol. Whether N TA,offset in the SBFD candidate symbol is set to 0 or the same value as a normal symbol may be determined by, for example, semi-static setting or definition.
  • the default behavior of the SBFD candidate symbol may be the same behavior as the SBFD symbol. For example, if there is no notification of the symbol type for the SBFD candidate symbol, it may be assumed that the SBFD candidate symbol has subbands. Furthermore, when N TA,offset in the SBFD candidate symbol is set to the same value as in a normal symbol, the default operation in the SBFD candidate symbol may be the same as in the normal symbol. For example, if there is no notification of the symbol type for the SBFD candidate symbol, it may be assumed that the SBFD candidate symbol has no subband. Note that when there is notification of the symbol type for the SBFD candidate symbol, an operation (or setting of N TA,offset ) corresponding to the notified symbol type may be performed.
  • the symbol type can be switched flexibly from an SBFD candidate symbol to an SBFD symbol (for example, a symbol with subbands) or a normal symbol (for example, a symbol without subbands), so that scaling Increase flexibility and improve resource utilization efficiency.
  • the base station 100 sets N TA,offset (transmission timing offset value) in a specific time resource (e.g., slot/symbol) that is set dynamically or quasi-statically and that is different from the specific time resource.
  • N TA,offset in other time resources may be different.
  • the base station 100 sets N TA,offset in a specific slot/symbol to 0, and sets N TA,offset in other slots/symbols to a value different from that of the specific slot/symbol (for example, 0 or more). value).
  • transmission timing change slot/symbol or transmission timing change symbol
  • normal slots/symbols symbol (or regular symbol).
  • method 2 which symbol is set as the transmission timing change symbol (for example, symbol type) may be notified to the terminal 200 by the following notification method.
  • notification method 1 whether or not the symbol is a transmission timing change symbol (or symbol type) is notified using UE-specific DCI.
  • DCI format 0_0, 0_1, 0_2, 1_0, 1_1, 1_2 may be used as the UE-specific DCI, or other DCI formats may be used.
  • the UE-specific DCI may notify whether the resources scheduled by the DCI (e.g., resources used for PUSCH, PUCCH, SRS) are normal symbols or transmission timing change symbols. .
  • Example 1 The symbol type (either a normal symbol or a transmission timing change symbol) may be notified using a 1-bit field of the UE-specific DCI. For example, a field value of "0" may indicate a normal symbol, and a field value of "1" may indicate a transmission timing change symbol.
  • Example 2 The symbol type (either a normal symbol or a transmission timing change symbol) may be notified by reusing the existing field of the UE-specific DCI. For example, fields for setting time domain resources such as "Time domain resource assignment”, "PUCCH resource indicator”, and "PDSCH-to-HARQ_feedback timing indicator" may be reused.
  • Time domain resource assignment provides information about the association between time domain resources (e.g., parameter settings related to time domain resources) and values notified by DCI fields (e.g., values related to indexes). (for example, information in table format) is set in advance by RRC signaling.
  • time domain resources e.g., parameter settings related to time domain resources
  • values notified by DCI fields e.g., values related to indexes
  • information in table format is set in advance by RRC signaling.
  • one of the settings in the table includes a setting that indicates either "transmission timing change symbol" or "normal symbol” as the symbol type. It's okay.
  • the base station 100 can notify the terminal 200 of whether or not it is a transmission timing change symbol in addition to the uplink transmission instruction using the UE-specific DCI, so that notification overhead can be reduced. .
  • notification method 2 whether or not the symbol is a transmission timing change symbol (or symbol type) is notified using group-common DCI.
  • DCI format 2_0, 2_1, 2_2, 2_3, 2_4, 2_5, 2_6, 2_7 may be used for group-common DCI, and other DCI formats may be used.
  • a bit field that notifies whether the symbol is a transmission timing change symbol may be added to DCI format 2_0.
  • the symbol type of multiple slots corresponding to the SFI may be notified by the added field.
  • the added field For example, if a slot format of up to 5 slots can be reported by SFI, a 5-bit field may be added to DCI format 2_0 for symbol type notification. Each bit of the added bit field (eg, 5 bits) may correspond to each slot (eg, 5 slots) signaled by the SFI.
  • a bit value of "0" may indicate a normal symbol
  • a bit value of "1” may indicate a transmission timing change symbol.
  • the symbols in the 2nd, 3rd, and 4th slots among the 5 slots notified by SFI are transmission timing change symbols
  • the number of slots whose slot format is notified by SFI is not limited to 5 slots, and may be any other number of slots.
  • the size (number of bits) of the bit field added to the group-common DCI may be set according to the number of slots for which the slot format is notified by the SFI.
  • quasi-statically configured uplink transmission such as PUSCH transmission by Configured grant or periodic transmission of SRS is not instructed to be transmitted by the UE-specific DCI, and is transmitted without DCI. Therefore, in the notification method 1 using UE-specific DCI, it is difficult to notify the symbol type for semi-statically set transmission. On the other hand, in notification method 2, since it is possible to notify whether or not it is a transmission timing change symbol using the group common DCI, it is also applicable to transmissions set semi-statically.
  • notification method 3 whether or not the symbol is a transmission timing change symbol (or the symbol type) is notified using quasi-static signaling (for example, RRC signaling).
  • quasi-static signaling for example, RRC signaling
  • multiple slots/symbols may be set as transmission timing change symbols.
  • the setting of the transmission timing change symbol may be added to "tdd-UL-DL-ConfigurationDedicated", which is RRC signaling that sets the symbol transmission direction for each terminal.
  • the first (or start, head) symbol number for example, any one of 0 to 13
  • the number of transmission timing change symbols (or allocation length, for example , 0 to 14) may be added.
  • notification method 1 using UE-specific DCI is difficult to apply to semi-statically configured transmissions (such as Configured grants), while notification method 3 is difficult to apply to semi-statically configured transmissions (such as Configured grants). Since symbol types can be set for multiple slots/symbols, it is also applicable to semi-statically installed transmissions.
  • method 2 may also be used in combination with any of notification methods 1 to 3.
  • N TA,offset for each of the transmission timing change symbol and the normal symbol may be set individually.
  • N TA,offset in the transmission timing change symbol may be set to zero.
  • N TA,offset in a normal symbol may be set to a different value (for example, a value of 0 or more) than that of a transmission timing change symbol.
  • method 2 by setting N TA,offset to 0 in the transmission timing change symbol, if the transmission timing change symbol is an SBFD symbol, the symbol between the uplink subband and the downlink subband It becomes possible to match the timing (or symbol boundaries), and self-interference at the base station 100 can be reduced.
  • terminal 200 adjusts uplink transmission timing based on instructions from base station 100 (for example, information regarding transmission timing change symbols) without specifying which symbol is an SBFD symbol. do. Thereby, for example, even when SBFD is applied, terminal 200 can operate without being aware of which symbol is an SBFD symbol. In this way, in method 2, SBFD can be realized by a transparent method.
  • the base station 100 can transparently control subbands, and can control subbands depending on the communication environment (for example, downlink and uplink traffic loads, uplink coverage needs, delay requirements, etc.). Accordingly, it is possible to select whether or not to apply SBFD (for example, whether or not to allocate subbands to symbols), thereby increasing the degree of freedom in scheduling and improving resource utilization efficiency.
  • N TA,offset2 is set in the terminal 200 that uses the transmission timing change symbol (for example, the terminal 200 that supports SBFD operation), and does not need to be set in the terminal 200 that uses the normal symbol.
  • the base station 100 provides the terminal 200 with a common offset value (N TA,offset ) for the uplink transmission timing of each of the transmission timing change symbol and the normal symbol, and the uplink transmission timing change symbol of the transmission timing change symbol.
  • An offset value (N TA,offset2 ) specific to the link transmission timing may be set.
  • N TA,offset may be set to Cell-specific, for example, and may be shared with terminals 200 that do not support transmission timing change symbols.
  • N TA,offset2 may be set to be UE-specific, for example, and may be set to the terminal 200 corresponding to the transmission timing change symbol.
  • N TA,offset2 may be set to, for example, a negative value of the same magnitude as N TA,offset (for example, a value that cancels N TA,offset ).
  • N TA,offset 25600 is set
  • N TA,offset2 -25600 may be set.
  • the offset value (N TA,offset +N TA,offset2 ) with respect to the uplink transmission timing is set to 0, so the symbol between the uplink subband and the downlink subband You can match the timing.
  • N TA,offset2 by adding N TA,offset2 , it can coexist with the existing parameter (N TA,offset ), so that when the terminal 200 performs SBFD operation, compatibility with the existing operation can be improved.
  • the base station 100 may determine the transmission timing setting value (N TA ′) in a specific slot/symbol and the transmission timing setting value (N TA ) in another slot/symbol (for example, a normal slot/symbol). may be different.
  • a setting value (for example, an absolute value or an increase/decrease value (or difference)) may be notified for N TA ′ separately from the existing N TA .
  • the setting value of N TA ' may be notified to the terminal 200 by, for example, MAC signaling or RRC signaling.
  • N TA and N TA ' may be managed individually as different cumulative values.
  • the value of NTA can be increased or decreased by the MAC signaling Timing Advance Command.
  • the value of N TA ' may be increased or decreased by different values, for example using a different Timing Advance Command than N TA .
  • the transmission timing for a normal symbol and the transmission timing for a transmission timing change symbol may be calculated using equations (4) and (5), respectively.
  • N TA ' is not limited to the example described above.
  • N TA ' can be increased or decreased by the Timing Advance Command, so the transmission timing can be dynamically adjusted under the control of the base station 100.
  • the transmission timing of the transmission timing change symbol may be calculated using the following equation (6) instead of equation (5).
  • N TA2 is a timing setting value similar to N TA '.
  • the base station 100 sets, for the terminal 200, a timing setting value (N TA ) common to transmission timing change symbols and normal symbols, and a timing setting value (N TA2 ) unique to the transmission timing change symbol. You may do so.
  • the notification method of method 2 may be applied as a method of notifying which slot/symbol is a transmission timing change slot/symbol.
  • the base station 100 can transparently control subbands and control the communication environment (e.g., downlink and uplink traffic loads, the need for uplink coverage, delay It is possible to select whether or not to apply SBFD (e.g., whether to allocate subbands to symbols or not) depending on the requirements (such as requests for .
  • the base station 100 and the terminal 200 determine the uplink transmission timing in a specific time resource (for example, an SBFD symbol, an SBFD candidate symbol, or a transmission timing change symbol) and other time resources.
  • Uplink transmission timings for resources are adjusted individually, and signals are transmitted and received based on each transmission timing.
  • symbol timing (or symbol boundaries) can be matched between uplink subbands and downlink subbands, and downlink subbands can be matched. Self-interference from the band to the uplink subband can be reduced.
  • uplink reception performance at base station 100 can be improved by advancing uplink symbol timing.
  • transmission timing in wireless communication can be appropriately controlled.
  • SBFD symbols or transmission timing change symbols
  • normal symbols may have different uplink transmission timings (for example, symbol timings), so the symbols may overlap.
  • the last symbol (SBFD symbol) of Slot #2 and the first symbol (normal symbol) of Slot #3 overlap. Therefore, the same terminal 200 cannot perform uplink transmission using both the last symbol of Slot #2 and the first symbol of Slot #3. To avoid such overlap, the following method may be applied.
  • Method 1 priority is given to the later symbol among the overlapping symbols.
  • the terminal 200 may transmit the signal of the later symbol among the overlapping symbols, and may not transmit the signal of the previous symbol (for example, may discard or drop it). Further, the base station 100 does not have to perform allocation to a previous symbol that overlaps with a subsequent symbol by scheduling.
  • the terminal 200 does not need to transmit a signal in the last symbol of Slot #2, and the base station 100 does not need to allocate resources.
  • Method 2 priority is given to the SBFD symbol (or transmission timing change symbol) among the overlapping symbols.
  • the terminal 200 may transmit the SBFD symbol (or transmission timing change symbol) signal among the overlapping symbols, and may not transmit the normal symbol signal. Furthermore, base station 100 does not need to allocate normal symbols that overlap with SBFD symbols (or transmission timing change symbols) through scheduling.
  • the terminal 200 does not need to transmit a signal and the base station 100 does not need to allocate resources in the first symbol (normal symbol) of Slot #3.
  • Method 2 is effective, for example, when it is necessary to improve the performance of SBFD symbols (or transmission timing change symbols).
  • SBFD symbols or transmission timing change symbols.
  • the performance of SBFD symbols can be degraded due to interference between uplink and downlink, so the performance of SBFD symbols can be improved by giving priority to SBFD symbols, or Since transmissions are not discarded, performance deterioration can be suppressed.
  • the terminal 200 may transmit the normal symbol signal among the overlapping symbols, and may not transmit the SBFD symbol (or transmission timing change symbol) signal. Furthermore, the base station 100 does not need to allocate an SBFD symbol (or transmission timing change symbol) that overlaps with a normal symbol through scheduling.
  • the terminal 200 does not need to transmit a signal and the base station 100 does not need to allocate resources in the last symbol (SBFD symbol or transmission timing change symbol) of Slot #2. .
  • method 3 is effective when protecting existing terminal operations.
  • the Transient period represents, for example, a power transition period when turning transmission ON/OFF or when transmitting with different transmission power.
  • the transient period of the SBFD symbol (or transmission timing change symbol) and normal symbol overlap, the transient period may be set using the following method.
  • the Transient period may be equally divided between the SBFD symbol (or transmission timing change symbol) and the normal symbol.
  • FIG. 10 shows an example of setting the transient period according to method 1.
  • SBFD symbol represents an SBFD symbol
  • Normal symbol represents a normal symbol.
  • the Transient period spans both symbols evenly.
  • Method 1 is effective, for example, when it is desired that the influence of the transient period be applied equally to both the SBFD symbol (or transmission timing change symbol) and the normal symbol.
  • the Transient period is equally divided into the SBFD symbol (or transmission timing change symbol) and the normal symbol, but the present invention is not limited to this.
  • the Transient period can be divided into the SBFD symbol (or (transmission timing change symbol) and normal symbols may be set non-uniformly.
  • the Transient period is assigned to the normal symbol period.
  • FIG. 10 shows an example of setting the transient period according to method 2. As shown in FIG. 10, Transient period is set to Normal symbol.
  • Method 2 is effective when it is necessary to improve the performance of SBFD symbols (or transmission timing change symbols).
  • the performance of SBFD symbols may be degraded due to interference between uplink and downlink, so by prioritizing SBFD symbols, the performance of SBFD symbols can be improved or By setting SBFD outside the SBFD symbol, performance deterioration can be suppressed.
  • Method 3 gives priority to normal symbols.
  • the Transient period is assigned to the period of the SBFD symbol (or transmission timing change symbol).
  • FIG. 10 shows an example of setting the transient period according to method 3. As shown in FIG. 10, Transient period is set to SBFD symbol.
  • method 3 is effective when protecting existing terminal operations.
  • the transient period has been explained above.
  • parameters related to the number of subbands, number of terminals, number of slots, number of symbols, transmission timing (N TA , N TA ', N TA,offset , N TA,offset2 , bits of the notification field in DCI)
  • the value (number) is an example and is not limited.
  • (supplement) Information indicating whether the terminal 200 supports the functions, operations, or processes shown in the embodiments described above is transmitted from the terminal 200 to the base station 100, for example, as capability information or capability parameters of the terminal 200. (or notification).
  • the capability information may include an information element (IE) that individually indicates whether the terminal 200 supports at least one of the functions, operations, or processes shown in the embodiments described above.
  • the capability information may include an information element indicating whether the terminal 200 supports any combination of two or more of the functions, operations, or processes shown in the embodiments described above.
  • the base station 100 may determine (or determine or assume) the functions, operations, or processes that are supported (or not supported) by the terminal 200 that is the source of the capability information.
  • the base station 100 may perform operations, processing, or control according to the determination result based on the capability information.
  • base station 100 may control uplink transmission timing for terminal 200 based on capability information received from terminal 200.
  • the terminal 200 does not support some of the functions, operations, or processes shown in the embodiments described above does not mean that such some functions, operations, or processes are limited in the terminal 200. It's okay. For example, information or requests regarding such restrictions may be notified to the base station 100.
  • Information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly transmitted to the base station 100 in association with information known in the base station 100 or information transmitted to the base station 100. may be notified.
  • the downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted on a Physical Downlink Control Channel (PDCCH) of the physical layer, It may also be a signal (or information) transmitted in an upper layer Medium Access Control Control Element (MAC CE) or Radio Resource Control (RRC). Further, the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal.
  • PDCCH Physical Downlink Control Channel
  • MAC CE Medium Access Control Element
  • RRC Radio Resource Control
  • the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal.
  • the uplink control signal (or uplink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in the PUCCH of the physical layer, MAC CE or It may also be a signal (or information) transmitted in RRC. Further, the signal (or information) is not limited to being notified by an uplink control signal, and may be predefined in specifications (or standards), or may be preset in the base station and terminal. Further, the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
  • UCI uplink control information
  • SCI 1st stage sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • the base station includes a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), and a Base Transceiver. Station (BTS), base unit, gateway, etc. may be used.
  • TRP Transmission Reception Point
  • RRH Remote Radio Head
  • eNB eNodeB
  • gNB gNodeB
  • BS Base Station
  • BTS Base Transceiver. Station
  • base unit gateway, etc.
  • a terminal may play the role of a base station.
  • a relay device that relays communication between an upper node and a terminal may be used. Alternatively, it may be a roadside device.
  • An embodiment of the present disclosure may be applied to, for example, any of the uplink, downlink, and sidelink.
  • an embodiment of the present disclosure may be used for uplink Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), Physical Random Access Channel (PRACH), downlink Physical Downlink Shared Channel (PDSCH), PDCCH, Physical Broadcast Channel (PBCH) or Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Control Channel (PSCCH), and Physical Sidelink Broadcast Channel (PSBCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PDCCH, PDSCH, PUSCH, and PUCCH are each an example of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel.
  • PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel.
  • PBCH and PSBCH are examples of broadcast channels
  • PRACH is an example of a random access channel.
  • An embodiment of the present disclosure may be applied to either a data channel or a control channel, for example.
  • the channel in one embodiment of the present disclosure may be replaced with data channels PDSCH, PUSCH, PSSCH, or control channels PDCCH, PUCCH, PBCH, PSCCH, PSBCH.
  • the reference signal is, for example, a signal known by both the base station and the mobile station, and may also be referred to as a Reference Signal (RS) or a pilot signal.
  • the reference signal is Demodulation Reference Signal (DMRS), Channel State Information - Reference Signal (CSI-RS), Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), Cell-specific Reference Signal (CRS), or Sounding Any reference signal (SRS) may be used.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CRS Cell-specific Reference Signal
  • SRS Sounding Any reference signal
  • the unit of time resource is not limited to one or a combination of a slot and a symbol, but includes, for example, a frame, a superframe, a subframe, a slot, a timeslot subslot, a minislot, or a symbol, an orthogonal
  • the time resource unit may be a frequency division multiplexing (OFDM) symbol, a single carrier-frequency division multiplexing (SC-FDMA) symbol, or another time resource unit.
  • the number of symbols included in one slot is not limited to the number of symbols illustrated in the embodiment described above, and may be any other number of symbols.
  • An embodiment of the present disclosure may be applied to either a licensed band or an unlicensed band.
  • An embodiment of the present disclosure can be applied to communication between a base station and a terminal (Uu link communication), communication between terminals and terminals (Sidelink communication), and Vehicle to Everything (V2X) communication. Good too.
  • the channel in one embodiment of the present disclosure may be replaced with any one of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, or PBCH.
  • an embodiment of the present disclosure may be applied to a terrestrial network, a non-terrestrial network (NTN) using a satellite, or a high-altitude pseudosatellite (HAPS). . Further, an embodiment of the present disclosure may be applied to terrestrial networks with large transmission delays compared to symbol lengths and slot lengths, such as networks with large cell sizes and ultra-wideband transmission networks.
  • NTN non-terrestrial network
  • HAPS high-altitude pseudosatellite
  • an antenna port refers to a logical antenna (antenna group) composed of one or more physical antennas.
  • an antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna made up of a plurality of antennas.
  • an antenna port may be defined as the minimum unit by which weighting of a precoding vector is multiplied.
  • 5G fifth generation mobile phone technology
  • NR new radio access technologies
  • the system architecture as a whole assumes an NG-RAN (Next Generation-Radio Access Network) that includes gNBs.
  • the gNB provides the UE-side termination of the user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols for NG radio access.
  • gNBs are connected to each other by an Xn interface.
  • the gNB also communicates with the NGC (Next Generation Core) through the Next Generation (NG) interface, and more specifically, with the AMF (Access and Mobility Management Function) (e.g., a specific core entity that performs AMF) through the NG-C interface.
  • NGC Next Generation Core
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • NG-U interface a specific core entity that performs UPF
  • the NG-RAN architecture is shown in Figure 11 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack includes a PDCP (Packet Data Convergence Protocol (see TS 38.300, section 6.4)) sublayer that is terminated on the network side in the gNB; It includes the RLC (Radio Link Control (see TS 38.300, Section 6.3)) sublayer and the MAC (Medium Access Control (see TS 38.300, Section 6.2)) sublayer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is defined for NR (see e.g. TS 38.300, section 4.4.2).
  • An overview of Layer 2 functionality is provided in Section 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in Sections 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in Section 7 of TS 38.300.
  • the Medium-Access-Control layer handles logical channel multiplexing and scheduling and scheduling-related functions, including handling various numerologies.
  • the physical layer is responsible for encoding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • physical channels include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and PDSCH (Physical Downlink Shared Channel) as downlink physical channels.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communications (mMTC) with diverse requirements in terms of data rates, latency, and coverage.
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and user-experienced data rates that are around three times the data rates offered by IMT-Advanced.
  • URLLC on the other hand, more stringent requirements are imposed for ultra-low latency (0.5 ms for user plane latency in each of UL and DL) and high reliability (1-10-5 within 1 ms).
  • mmTC preferably offers high connection density (1,000,000 devices/km2 in urban environments), wide coverage in harsh environments, and extremely long battery life (15 years) for low-cost devices. can be sought.
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • CP cyclic prefix
  • TTI time-to-live
  • Subcarrier spacing may be optionally optimized so that similar CP overhead is maintained.
  • the NR may support one or more subcarrier spacing values.
  • resource element may be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM/SC-FDMA symbol.
  • resource grids of subcarriers and OFDM symbols are defined for each uplink and downlink.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • FIG. 12 shows the functional separation between NG-RAN and 5GC.
  • a logical node of NG-RAN is gNB or ng-eNB.
  • 5GC has logical nodes AMF, UPF, and SMF.
  • gNB and ng-eNB host the following main functions: - Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation of resources to UEs (scheduling) in both uplink and downlink, etc. Radio Resource Management functions; - IP header compression, encryption, and integrity protection of data; - AMF selection upon UE attachment if the routing to the AMF cannot be determined from the information provided by the UE; - Routing of user plane data towards the UPF; - Routing of control plane information towards AMF; - setting up and tearing down connections; - scheduling and sending paging messages; - Scheduling and transmission of system broadcast information (sourced from AMF or Operation, Admission, Maintenance (OAM)); - configuration of measurements and measurement reports for mobility and scheduling; - transport level packet marking in the uplink; - Session management; - Support for network slicing; - management of QoS flows and mapping to data radio bearers; - Support for UE in RRC_INACTIVE state; - NAS message
  • Access and Mobility Management Function hosts the following main functions: - Ability to terminate Non-Access Stratum (NAS) signaling; - NAS signaling security; - Access Stratum (AS) security controls; - Core Network (CN) inter-node signaling for mobility between 3GPP access networks; - Reachability of UEs in idle mode (including controlling and performing paging retransmissions); - Management of registration area; - Support for intra-system and inter-system mobility; - Access authentication; - access authorization, including checking roaming privileges; - Mobility management controls (subscription and policies); - Support for network slicing; - Selection of Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - Anchor points for intra-RAT mobility/inter-RAT mobility (if applicable); - External PDU (Protocol Data Unit) session point for interconnection with the data network; - Packet routing and forwarding; - Packet inspection and user plane policy rule enforcement; - Traffic usage reporting; - uplink classifier to support the routing of traffic flows to the data network; - Branching Point to support multi-homed PDU sessions; - QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement); - Verification of uplink traffic (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification triggering functions.
  • Anchor points for intra-RAT mobility/inter-RAT mobility if applicable
  • External PDU Protocol Data Unit
  • Packet inspection and user plane policy rule enforcement Packet inspection and user plane policy rule enforcement
  • Traffic usage reporting - uplink classifier to support the routing of traffic flows to the data network
  • Session Management Function hosts the following main functions: - Session management; - IP address assignment and management for the UE; - UPF selection and control; - ability to configure traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination; - Control part policy enforcement and QoS; - Downlink data notification.
  • UPF User Plane Function
  • Figure 13 shows some of the interactions between the UE, gNB, and AMF (5GC entity) when the UE transitions from RRC_IDLE to RRC_CONNECTED in the NAS part (see TS 38.300 v15.6.0).
  • RRC is upper layer signaling (protocol) used for UE and gNB configuration.
  • This transition allows the AMF to prepare the UE context data (which includes, for example, the PDU session context, security keys, UE Radio Capabilities, UE Security Capabilities, etc.) and configure the initial context Send it to gNB along with the setup request (INITIAL CONTEXT SETUP REQUEST).
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
  • the gNB sends an RRCReconfiguration message to the UE, and in response to this, the gNB receives RRCReconfigurationComplete from the UE, thereby performing reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). .
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • the steps regarding RRCReconfiguration are omitted since SRB2 and DRB are not set up.
  • the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • the present disclosure provides a control circuit that establishes a Next Generation (NG) connection with a gNodeB during operation, and a control circuit that establishes a Next Generation (NG) connection during operation so that a signaling radio bearer between the gNodeB and User Equipment (UE) is set up.
  • a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
  • RRC Radio Resource Control
  • IE resource allocation configuration information element
  • Figure 14 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) is considering three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first stage of specifications for enhanced mobile-broadband (eMBB) communications has been completed.
  • eMBB enhanced mobile-broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massively simultaneous machine type communications
  • Standardization for massive machine-type communications is included.
  • Figure 14 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see eg ITU-R M.2083 Figure 2).
  • URLLC use cases have strict performance requirements such as throughput, latency, and availability.
  • the URLLC use case is envisioned as one of the elemental technologies to realize future applications such as wireless control of industrial production or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and traffic safety. ing.
  • Ultra-high reliability of URLLC is supported by identifying technologies that meet the requirements set by TR 38.913.
  • Important requirements for NR URLLC in Release 15 include a target user plane latency of 0.5 ms in the UL (uplink) and 0.5 ms in the DL (downlink).
  • the general URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes when the user plane latency is 1 ms.
  • BLER block error rate
  • Technological enhancements targeted by NR URLLC aim to improve latency and reliability.
  • Technological enhancements to improve latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free uplink (of configured grants), slot-level repetition in data channels, and downlink pre-emption.
  • Preemption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, transmissions that were already authorized are replaced by later transmissions. Preemption is applicable regardless of the specific service type. For example, transmission of service type A (URLLC) may be replaced by transmission of service type B (eMBB, etc.).
  • Technical enhancements for reliability include a dedicated CQI/MCS table for the 1E-5 target BLER.
  • Massive machine type communication (mMTC) use cases are characterized by a very large number of connected devices, typically transmitting relatively small amounts of data that are not sensitive to delay.
  • the device is required to be low cost and have a very long battery life. From an NR perspective, utilizing a very narrow bandwidth portion is one solution that saves power and allows longer battery life from the UE's perspective.
  • NR URLLC radio access control
  • the strict requirements are: high reliability (up to 10-6 level reliability), high availability, packet size up to 256 bytes, time synchronization up to a few ⁇ s (values can vary depending on the use case).
  • the latency as short as 0.5ms to 1ms (eg, 0.5ms latency in the targeted user plane), it can be 1 ⁇ s or a few ⁇ s).
  • NR URLLC there may be some technological enhancements from the physical layer perspective. These technology enhancements include PDCCH (Physical Downlink Control Channel) enhancements for compact DCI, PDCCH repetition, and increased PDCCH monitoring. Further, the enhancement of UCI (Uplink Control Information) relates to enhanced HARQ (Hybrid Automatic Repeat Request) and enhancement of CSI feedback. There may also be PUSCH enhancements related to minislot level hopping and retransmission/repetition enhancements.
  • minislot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • the 5G QoS (Quality of Service) model is based on QoS flows, including QoS flows that require a guaranteed flow bit rate (GBR: Guaranteed Bit Rate QoS flows), and QoS flows that require a guaranteed flow bit rate. (non-GBR QoS flows). Therefore, at the NAS level, a QoS flow is the most fine-grained QoS partition in a PDU session.
  • a QoS flow is identified within a PDU session by a QoS Flow ID (QFI) carried in an encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • the 5GC establishes one or more PDU sessions.
  • the NG-RAN establishes at least one Data Radio Bearers (DRB), eg as shown above with reference to FIG. 13. Additionally, additional DRBs for the QoS flow of that PDU session can be configured later (it is up to the NG-RAN to decide when to configure them).
  • DRB Data Radio Bearers
  • the NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas AS level mapping rules in the UE and NG-RAN associate UL QoS flows and DL QoS flows with DRBs.
  • FIG. 15 shows the 5G NR non-roaming reference architecture (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function eg, an external application server hosting 5G services, illustrated in FIG. 14
  • AF Application Function
  • NEF Network Exposure Function
  • Policy control e.g. QoS control
  • Application Functions that are considered trusted by the Operator based on deployment by the Operator may interact directly with the associated Network Function.
  • Application Functions that are not allowed by the operator to directly access Network Functions interact with their associated Network Functions using an externally open framework via the NEF.
  • Figure 15 shows further functional units of the 5G architecture, namely Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF) , Session Management Function (SMF), and Data Network (DN, eg, service provided by an operator, Internet access, or service provided by a third party). All or part of the core network functionality and application services may be deployed and operate in a cloud computing environment.
  • NSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • DN Data Network
  • All or part of the core network functionality and application services may be deployed and operate in a cloud computing environment.
  • the present disclosure determines the QoS requirements for at least one of the URLLC service, the eMMB service, and the mmTC service in order to establish a PDU session including a radio bearer between the gNodeB and the UE according to the QoS requirements.
  • a transmitter for transmitting a request containing the request to at least one of the functions of the 5GC (e.g., NEF, AMF, SMF, PCF, UPF, etc.); and a control circuit for, in operation, servicing using the established PDU session;
  • An application server eg, 5G architecture AF is provided.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process explained in the above embodiment is partially or entirely realized as an LSI, which is an integrated circuit. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of a single chip that includes some or all of the functional blocks.
  • the LSI may include data input and output.
  • LSIs are sometimes called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized using a dedicated circuit, a general-purpose processor, or a dedicated processor. Furthermore, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital or analog processing.
  • the present disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) that have communication capabilities.
  • the communication device may include a wireless transceiver and processing/control circuitry.
  • the wireless transceiver may include a receiving section and a transmitting section, or both as functions.
  • the wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.) ), digital players (e.g.
  • digital audio/video players wearable devices (e.g. wearable cameras, smartwatches, tracking devices), game consoles, digital book readers, telehealth/telemedicine (e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • wearable devices e.g. wearable cameras, smartwatches, tracking devices
  • game consoles digital book readers
  • digital book readers e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication equipment is not limited to portable or movable, but also non-portable or fixed equipment, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "things” that can exist on an Internet of Things (IoT) network.
  • IoT Internet of Things
  • Communication includes data communication using cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication using a combination of these.
  • Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform communication functions of a communication device.
  • Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various equipment described above, without limitation. .
  • the base station has a first uplink transmission timing in a first time resource, and a second uplink transmission timing in a second time resource different from the first time resource.
  • the apparatus includes a control circuit that individually sets timing, and a receiving circuit that receives a signal based on the first transmission timing and the second transmission timing.
  • control circuit makes a transmission timing offset value in the first time resource different from a transmission timing offset value in the second time resource.
  • control circuit sets the offset value of the first time resource to zero.
  • the first time resource is a symbol to which a method is applied in which a transmission direction is set to each of a plurality of bands obtained by dividing a frequency band, or a symbol that is a symbol to which a method of applying the method is applied. It's a symbol.
  • the first time resource is a symbol that is configured dynamically or semi-statically.
  • control circuit includes an offset value common to the transmission timing in each of the first time resource and the second time resource, and a unique offset value to the transmission timing in the first time resource. Set the offset value.
  • control circuit sets a transmission timing setting value for the first time resource and a transmission timing setting value for the second time resource to be different.
  • a terminal has a first uplink transmission timing in a first time resource, and a second uplink transmission timing in a second time resource different from the first time resource. and a transmission circuit that transmits a signal based on the first transmission timing and the second transmission timing.
  • the base station includes a first uplink transmission timing in a first time resource, and a first uplink transmission timing in a second time resource different from the first time resource.
  • a second transmission timing is individually set, and a signal is received based on the first transmission timing and the second transmission timing.
  • a terminal transmits a first transmission timing of an uplink in a first time resource and a first transmission timing of an uplink in a second time resource different from the first time resource. 2 transmission timings are set individually, and the signal is transmitted based on the first transmission timing and the second transmission timing.
  • An embodiment of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、第1の送信タイミングに基づいて、信号を受信する受信回路と、を具備する。

Description

基地局、端末及び通信方法
 本開示は、基地局、端末及び通信方法に関する。
 3rd Generation Partnership Project(3GPP)では、第5世代移動通信システム(5G:5th Generation mobile communication systems)の機能拡張として、Release 17 NR(New Radio access technology)の物理レイヤの仕様策定が完了した。NRでは、高速及び大容量といった要求条件に合致すべくモバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)に加え、超高信頼低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)を実現する機能をサポートする(例えば、非特許文献1-6を参照)。
3GPP TS 38.211 V17.2.0, "NR; Physical channels and modulation (Release 17)," June 2022 3GPP TS 38.212 V17.2.0, "NR; Multiplexing and channel coding (Release 17)," June 2022 3GPP TS 38.213 V17.2.0, "NR; Physical layer procedure for control (Release 17)," June 2022 3GPP TS 38.214 V17.2.0, "NR; Physical layer procedures for data (Release 17)," June 2022 3GPP TS 38.215 V17.1.0, "NR; Physical layer measurements (Release 17)," June 2022 3GPP TS 38.331 V17.1.0, "NR; Radio Resource Control (RRC) protocol specification (Release 17)", June 2022
 しかしながら、無線通信における送信タイミングの制御方法については検討の余地がある。
 本開示の非限定的な実施例は、無線通信における送信タイミングを適切に制御できる基地局、端末及び通信方法の提供に資する。
 本開示の一実施例に係る基地局は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を受信する受信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、無線通信における送信タイミングを適切に制御できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Duplex方式の例を示す図 下りリンク及び上りリンクの送信タイミング及び受信タイミングの一例を示す図 Subband non-overlapping full duplex(SBFD)における送受信タイミングの一例を示す図 基地局の一部の構成例を示すブロック図 端末の一部の構成例を示すブロック図 基地局の構成例を示すブロック図 端末の構成例を示すブロック図 基地局及び端末の動作例を示すシーケンス図 下りリンク及び上りリンクの送信タイミング及び受信タイミングの一例を示す図 Transient periodの設定例を示す図 3GPP NRシステムの例示的なアーキテクチャの図 NG-RAN(Next Generation - Radio Access Network)と5GC(5th Generation Core)との間の機能分離を示す概略図 Radio Resource Control(RRC)接続のセットアップ/再設定の手順のシーケンス図 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、および高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 [Subband non-overlapping full duplex(SBFD)について]
 Release 18のStudy Itemとして、“Study on evolution of NR duplex operation”が承認された。このStudy Itemの主な議題のひとつとして、subband non-overlapping full duplex(SBFD、又は、Cross Division Duplex(XDD)とも呼ぶ)への対応がある。
 図1は、Duplex方式の例を示す図である。図1において、縦軸は周波数を表し、横軸は時間を表す。また、図1において、「U」は上りリンク(uplink)の送信を示し、「D」は下りリンク(downlink)の送信を示す。
 図1(a)は、half duplexのTime Division Duplex(TDD)の例を示す。図1(a)において、UE#1、及び、UE#2は、基地局(例えば、gNB)に接続している端末(UE:User Equipment)である。図1(a)に示すhalf duplexにおいて、或る時間リソースにおける送信方向(例えば、下りリンク又は上りリンク)は、基地局、端末間で共通でよい。例えば、或る時間リソースにおいて送信方向が端末間で異なることはない。
 図1(b)は、SBFDの例を示す。SBFDでは、周波数リソース(又は、周波数帯域)が複数の帯域(例えば、サブバンド、RB set、サブ帯域、サブBWP(Bandwidth part)とも呼ぶ)に分割され、サブバンド単位の異なる方向(例えば、下りリンク又は上りリンク)の送信をサポートする。なお、SBFDでは、端末は、或る時間リソースにおいて上りリンク及び下りリンクの何れか一方の送受信を行い、他方の送受信を行わない。その一方で、SBFDでは、基地局は、上りリンクと下りリンクとを同時に送受信可能である。なお、或る時間リソースにおける送信方向のリソースを端末が使用しないケースがあってもよい(例えば、図1(b)の点線で示すリソース)。
 [Timing alignmentについて]
 例えば、端末における上りリンクの送信タイミングは、下りリンクの受信タイミングに対して、TTA(例えば、下りリンクと上りリンクとの間のタイミングアドバンスに関するパラメータ)早く設定されてよい。TTAは、例えば、次式(1)によって定義される。
Figure JPOXMLDOC01-appb-M000001
 ここで、NTA(例えば、下りリンクと上りリンクとの間のタイミングアドバンスに関するパラメータ、又は、タイミング設定値)は、基地局において、各端末からの上りリンクの受信タイミングを合わせるために使用されてよい。例えば、各端末からの上りリンクの受信タイミングを下りリンクの送信タイミングに合わせる場合には、NTAには、各端末に対して伝搬時間の2倍(例えば、往復の伝搬遅延時間に対応する時間)が設定されてよい。例えば、伝搬遅延時間は、端末の位置(例えば、基地局と端末との距離)に応じて変わり得るため、NTAは、Timing Advanceコマンドにより端末毎に調整されてよい。
 NTA,offset(例えば、タイミングアドバンスの算出に使用されるオフセット値)は、基地局における上りリンク受信から下りリンク送信への切り替え時間のために設定されてよい。NTA,offsetは、例えば、上位レイヤシグナリング(例えば、Cell-specificのRadio Resource Control(RRC)シグナリング)によって設定されてもよい。または、NTA,offsetには、予め規定されたデフォルト値(又は、固定値)が設定されてもよい。
 なお、NTA及びNTA,offsetは、例えば、基地局の実装に依存して設定されてもよい。
 NTA,adj common及びNTA,adj UE(例えば、タイミング補正に関するパラメータ)は、Non-terrestrial network(NTN)に用いられるパラメータである。以下の説明では、一例として、NTA,adj common及びNTA,adj UEを扱わない場合(例えば、NTA,adj common=NTA,adj UE=0と見なす場合)について説明する。
 図2は、基地局及び端末における送受信タイミングの例を示す。
 図2の例では、Slot#0、Slot#1、及び、Slot#2における送受信タイミングについて説明する。図2において、“D”は下りリンク(downlink)を表し、“U”は上りリンク(Uplink)を表し、“gap”は送受信に用いないgap区間を表す。
 図2において、1行目は、スロットの構造を示し、2行目~5行目は、基地局及び端末のそれぞれにおける送信タイミング及び受信タイミングを示す。また、図2に示す例では、NTAには、伝搬遅延時間の2倍に相当する時間が設定され、NTA,offsetには、0でない値(例えば、0より大きい値)が設定される。
 図2の2行目は、基地局の下りリンク送信タイミングを示し、図2の3行目は、端末の下りリンク受信タイミングを示す。図2に示すように、端末の下りリンク受信タイミングは、基地局の下りリンク送信タイミングと比較して、伝搬遅延時間(propagation delay)分、遅れたタイミングである。
 図2の4行目は、端末の上りリンク送信タイミングを示し、図2の5行目は、基地局の上りリンク受信タイミングを示す。図2に示すように、端末の上りリンク送信タイミングは、端末の下りリンクの信タイミングに対して、(NTA+NTA,offset)Tc分(例えば、式(1)に示すTTA分)、早く設定される(なお、図2ではTcは省略している)。また、図2に示すように、基地局の上りリンク受信タイミングは、端末の上りリンク送信タイミングと比較して、伝搬遅延時間分、遅れたタイミングである。
 図2において、基地局の送受信タイミング(例えば、2行目の下りリンク送信タイミングと5行目の上りリンク受信タイミング)を比較すると、上りリンク受信タイミングは、下りリンク送信タイミングよりもNTA,offset分、早いことが分かる。これにより、図2において、slot#1の上りリンク受信完了(例えば、5行目)から、slot#2の下りリンク送信開始(例えば、2行目)までの間に、NTA,offsetの間隔(gap期間)が生じるため、基地局は、この期間において上りリンク受信から下りリンク送信への切り替え処理を実施できる。
 [SBFDにおけるTiming alignmentについて]
 SBFDでは、下りリンクのサブバンド及び上りリンクのサブバンドが同一時間リソース(例えば、スロット又はシンボル。以下、「スロット/シンボル」と表すこともある)内に存在し得る。例えば、SBFDにおいて、NTA,offsetが0と異なる値(例えば、0より大きい値)に設定される場合、基地局では、下りリンクと上りリンクとの間においてシンボルタイミング(又は、シンボル境界)がずれる場合が想定される。下りリンクと上りリンクとの間においてシンボル境界がずれると、基地局において、下りリンクのサブバンドから上りリンクのサブバンドへの自己干渉(self-interference)が増加する可能性がある。
 図3は、SBFDにおける基地局の送受信タイミングの例を示す。図3に示す例では、Subband#0及びSubband#2が下りリンクに割り当てられ、Subband#1が上りリンクに割り当てられる。また、図3では、NTA,offsetが0より大きい値に設定される。図3に示すように、上りリンクのSubband#1のシンボルタイミング(又は、シンボル境界)は、下りリンクのSubband#0及びSubband#2のシンボルタイミング(又は、シンボル境界)よりも早くなる。このため、図3では、Subband#1と、Subband#0及びSubband#2との間においてシンボルタイミング(又は、シンボル境界)がずれるため、下りリンクのSubband#0又はSubband#2から、上りリンクのSubband#1への自己干渉が増加し得る。
 本開示の非限定的な一実施例では、SBFDにおいてサブバンド間の干渉を抑制するタイミング制御方法について説明する。
 [通信システムの概要]
 本開示の一態様に係る通信システムは、例えば、図4及び図6に示す基地局100(例えば、gNB)、及び、図5及び図7に示す端末200(例えば、UE)を備えてよい。基地局100及び端末200は、それぞれ、通信システムにおいて複数台存在してもよい。
 図4は本開示の一態様に係る基地局100の一部の構成例を示すブロック図である。図4に示す基地局100において、制御部(例えば、制御回路に対応)は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する。受信部(例えば、受信回路に対応)は、第1の送信タイミング及び第2の送信タイミングに基づいて、信号を受信する。
 図5は本開示の一態様に係る端末200の一部の構成例を示すブロック図である。図5に示す端末200において、制御部(例えば、制御回路に対応)は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する。送信部(例えば、送信回路に対応)は、第1の送信タイミング及び第2の送信タイミングに基づいて、信号を送信する。
 [基地局の構成]
 図6は、本開示の一態様に係る基地局100の構成例を示すブロック図である。図6において、基地局100は、受信部101と、復調・復号部102と、スケジューリング部103と、タイミング制御部104と、制御情報保持部105と、データ・制御情報生成部106と、符号化・変調部107と、送信部108と、を有する。
 なお、例えば、復調・復号部102、スケジューリング部103、タイミング制御部104、制御情報保持部105、データ・制御情報生成部106、及び、符号化・変調部107の少なくとも一つは、図4に示す制御部に含まれてよく、受信部101は、図4に示す受信部に含まれてよい。
 受信部101は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号を復調・復号部102へ出力する。例えば、受信部101は、タイミング制御部104から設定されるタイミングに従って、受信処理を行ってよい。
 復調・復号部102は、例えば、受信部101から入力される受信信号(例えば、上りリンク信号)を復調及び復号し、復号結果をスケジューリング部103へ出力する。
 スケジューリング部103は、例えば、端末200に対するスケジューリングを行ってよい。スケジューリング部103は、例えば、復調・復号部102から入力される復号結果、及び、制御情報保持部105から入力される制御情報の少なくとも一つに基づいて、各端末200の送受信のスケジューリングを行い、データ・制御情報生成部106に対して、データ及び制御情報の少なくとも一つの生成指示を行う。また、スケジューリング部103は、タイミング制御部104に対して、上りリンクの受信タイングを指示してよい。また、スケジューリング部103は、端末200に対するスケジューリングに関する制御情報を制御情報保持部105へ出力してよい。
 タイミング制御部104は、例えば、スケジューリング部103からの指示に従って、端末200の送信タイミングに関する情報(例えば、NTA,offsetの値、設定される送信タイミングを適用する時間リソース(例えば、スロット又はシンボル)に関する情報等)を決定し、決定した情報を、データ・制御情報生成部106に出力してよい。また、タイミング制御部104は、決定した情報に基づいて、受信部101に対して、受信タイミングを設定してよい。
 制御情報保持部105は、例えば、各端末200に設定した制御情報を保持する。制御情報には、例えば、各端末200の送信タイミングに関する情報が含まれてよい。制御情報保持部105は、例えば、保持した情報を必要に応じて、基地局100の各構成部(例えば、スケジューリング部103)に出力してよい。
 データ・制御情報生成部106は、例えば、スケジューリング部103からの指示に従って、データ及び制御情報の少なくとも一つを生成し、生成したデータ又は制御情報を含む信号を符号化・変調部107に出力する。また、データ・制御情報生成部106は、例えば、タイミング制御部104から入力される、端末200の送信タイミングに関する情報に基づいて、端末200への制御情報を生成し、生成した制御情報を含む信号を符号化・変調部107に出力する。なお、生成されるデータ及び制御情報には、例えば、上位レイヤのシグナリング情報、及び、下り制御情報の少なくとも一つが含まれてよい。例えば、端末の送信タイミングに関する制御情報は、物理レイヤの制御情報(例えば、PDCCH(Physical Downlink Control Channel)上の制御情報)として送信されてもよく、上位レイヤのシグナリング情報(又は、上位レイヤパラメータ)として送信されてもよい。
 符号化・変調部107は、例えば、データ・制御情報生成部106から入力される信号(例えばデータ、制御情報、又は、端末200の送信タイミングに関する情報を含む)を符号化及び変調し、変調後の信号を送信部108に出力する。
 送信部108は、例えば、符号化・変調部107から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから端末200へ送信する。
 [端末の構成]
 図7は、本開示の一態様に係る端末200の構成例を示すブロック図である。図7において、端末200は、受信部201と、復調・復号部202と、制御部203と、タイミング制御部204と、制御情報保持部205と、データ・制御情報生成部206と、符号化・変調部207と、送信部208と、を有する。
 なお、例えば、復調・復号部202、制御部203、タイミング制御部204、制御情報保持部205、データ・制御情報生成部206、及び、符号化・変調部207の少なくとも一つは、図5に示す制御部に含まれてよく、送信部208は、図5に示す送信部に含まれてよい。
 受信部201は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号を復調・復号部202へ出力する。
 復調・復号部202は、例えば、受信部201から入力される受信信号を復調及び復号し、復号結果を制御部203へ出力する。復号結果には、例えば、上位レイヤのシグナリング情報、及び、下り制御情報が含まれてよい。また、復調・復号部202は、例えば、復号結果に、端末200の送信タイミングに関する情報(例えば、NTA,offsetの値、設定される送信タイミングを適用する時間リソース(例えば、スロット又はシンボル)に関する情報等)が含まれる場合、タイミング制御部204へ出力する。
 制御部203は、例えば、復調・復号部202から入力される復号結果(例えば、データ又は制御情報)、及び、制御情報保持部205から入力される制御情報に基づいて、データ又は制御情報の送受信の有無を判定してよい。制御部203は、例えば、判定の結果、データ又は制御情報の受信が有る場合、受信部201及び復調・復号部202に対して、データ及び制御情報の少なくとも一つの受信指示を行ってよい(図示せず)。また、例えば、制御部203は、判定の結果、データ又は制御情報の送信が有る場合、データ・制御情報生成部206に対して、データ及び制御情報の少なくとも一つの生成指示を行ってよい。また、制御部203は、例えば、送信タイミングの設定を、タイミング制御部204に指示してよい。また、制御部203は、送信タイミングの設定に関する制御情報を制御情報保持部205へ出力してよい。
 タイミング制御部204は、例えば、復調・復号部202から入力される送信タイミングに関する情報、及び、制御部203から入力される送信タイミングの設定に関する制御情報に基づいて、送信タイミングを決定し、送信部208に対して、送信タイミングを設定してよい。
 制御情報保持部205は、例えば、制御部203から入力される制御情報を保持し、保持した情報を、必要に応じて、各構成部(例えば、制御部203)に出力する。
 データ・制御情報生成部206は、例えば、制御部203からの指示に従って、データ又は制御情報を生成し、生成したデータ又は制御情報を含む信号を符号化・変調部207に出力する。
 符号化・変調部207は、例えば、データ・制御情報生成部206から入力される信号を符号化及び変調し、変調後の送信信号を送信部208に出力する。
 送信部208は、例えば、符号化・変調部207から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから基地局100へ送信する。例えば、送信部208は、タイミング制御部204から設定される送信タイミングに従って、送信処理を行ってよい。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200における動作例について説明する。
 図8は基地局100及び端末200の動作例を示すシーケンス図である。
 図8において、基地局100は、例えば、特定の時間リソース(例えば、スロット/シンボル)における端末200の送信タイミング設定といった設定(コンフィグレーション)に関する情報を決定する(S101)。
 基地局100は、例えば、決定した設定情報を含む上位レイヤのシグナリング情報を端末200へ送信する(S102)。
 基地局100は、例えば、端末200に対して、データの送受信のスケジューリングを行う(S103)。このとき、基地局100は、端末200に対してスケジューリングしたリソースが特定の時間リソース(例えば、スロット/シンボル)に含まれるか否かを判断する。
 基地局100は、例えば、スケジューリング結果に基づいて、PDCCH(例えば、Uplink grantを含む)を用いて、上りリンク送信(例えば、Physical Uplink Shared Channel(PUSCH)の送信)を端末200に指示する(S104)。このとき、基地局100は、例えば、上りリンク送信を割り当てるリソースが特定の時間リソース(例えば、スロット/シンボル)であるか否かに関する情報(例えば、スロット/シンボルの種別に関する情報)を端末200へ通知してよい。
 端末200は、例えば、基地局100から送信されるPDCCH(Uplink grant)に基づいて、上りリンク送信タイミング(例えば、PUSCHの送信タイミング)を判定する(S105)。例えば、端末200は、基地局100から通知される上りリンク送信タイング(割当リソース)が特定の時間リソース(例えば、スロット又はシンボル)に該当するか、特定の時間リソースと異なる他の時間リソースに該当するかを判定し、PUSCHの送信タイミングを決定(又は、設定、調整)してよい。
 端末200は、基地局100から送信されるPDCCH(Uplink grant)、及び、判定した送信タイミングに基づいて、PUSCHを送信する(S106)。
 [上りリンク送信タイミング設定方法]
 基地局100(例えば、タイミング制御部104)における、端末200の上りリンク送信タイミングの設定方法について説明する。なお、端末200(例えば、タイミング制御部204)は、例えば、基地局100が行う上りリンク送信タイミング設定の方法を想定して上りリンク送信タイミングを設定してよい。
 本実施の形態では、基地局100及び端末200は、特定の時間リソース(例えば、スロット/シンボル)における上りリンク送信タイミング、及び、特定の時間リソースと異なる他の時間リソース(例えば、スロット/シンボル)における上りリンク送信タイミングを個別に設定(又は、調整)する。
 以下、上りリンク送信タイミング設定に関する方法1~3についてそれぞれ説明する。
 [方法1]
 方法1では、基地局100は、SBFDシンボル又はSBFD candidateシンボル(例えば、特定の時間リソースに対応)におけるNTA,offset(送信タイミングのオフセット値)と、SBFDシンボル及びSBFD candidateシンボルと異なる他のシンボル(例えば、送信方向が単位の通常のシンボル)におけるNTA,offsetとを異ならせてよい。
 例えば、基地局100は、SBFDシンボル又はSBFD candidateシンボルにおけるNTA,offsetを0に設定してよい。また、例えば、基地局100は、通常のシンボル(例えば、送信方向が単一のシンボル)におけるNTA,offsetを、SBFDシンボル及びBFD candidateシンボルとは異なる値(例えば、0以上の値)に設定してよい。
 なお、後述する通り、SBFD candidateシンボルに対して、通常のシンボルと同一のNTA,offsetを設定する動作としてもよい。
 ここで、「SBFDシンボル」は、例えば、実際にSBFDが適用されるシンボル(例えば、同一シンボルに送信方向の異なる複数のサブバンドがあるシンボル)を表す。
 また、「SBFD candidateシンボル」は、SBFDを適用する可能性のあるシンボルを表す。SBFD candidateシンボルは、例えば、トラフィックの状況に応じて、SBFDが適用される場合(SBFDシンボルとなる場合)もあれば、SBFDが適用されない場合(例えば、通常のシンボルとなる場合)もある。例えば、SBFD candidateシンボルは、基地局100からのシグナリングなどによって、SBFDシンボル及び通常のシンボルの何れか一方に設定(又は、変更、上書き)されてもよい。
 また、例えば、SBFDシンボルとSBFDシンボルとで異なるNTA,offsetが設定されてもよい。
 図9は、方法1に係る送受信タイミングの例を示す。
 図9の例では、Slot#0~Slot#4の5スロットにおける送受信タイミングを示す。例えば、Slot#0、Slot#3及びSlot#4は通常のシンボル(送信方向が単一のシンボル)からなるスロットであり、Slot#1及びSlot#2はSBFDシンボルからなるスロットである。また、一例として、Slot#1及びSlot#2のSBFDシンボル上には、3つのサブバンドが設定される。
 また、図9の下部の「DL/UL relation」は、シンボル種別(例えば、通常のシンボル又はSBFDシンボル)、及び、基地局100における送受信タイミングを表す。例えば、「Normal DL」は、通常のシンボルからなる下りリンクスロットを表し、「Normal UL」は、通常のシンボルからなる上りリンクスロットを表す。また、例えば、「SBFD DL」は、SBFDシンボルからなる下りリンクスロット(又は、下りリンクサブバンド)を表し、「SBFD UL」は、SBFDシンボルからなる上りリンクスロット(又は、上りリンクサブバンド)を表す。
 図9に示すように、通常のシンボルからなる上りリンクスロット(Normal UL)におけるNTA,offsetは、0より大きい値に設定される。このため、図9に示すように、Slot#3のシンボルタイミングは、NTA,offset分早くなり、Slot#3(Normal UL)とSlot#4(Normal DL)との間には、NTA,offsetに相当するgapが存在する。
 その一方で、図9に示すように、SBFDシンボルからなるSlot#1及びSlot#2では、上りリンクサブバンド(SBFD UL)におけるNTA,offsetは、0に設定される。このため、図9に示すように、Slot#1及びSlot#2では、上りリンクのサブバンド(SBFD UL)のシンボルタイミングは、下りリンクのサブバンド(SBFD DL)のシンボルタイミングと変わらず、SBFD ULと、SBFD DLとの間のシンボルタイミング(又は、シンボル境界)が一致する。
 よって、図9において、SBFDシンボルからなるSlot#1及びSlot#2では、複数のサブバンド間のシンボル境界が揃うので、SBFDの下りリンクのサブバンド(SBFD DL)から、SBFDの上りリンクのサブバンド(SBFD UL)への自己干渉を抑制できる。
 なお、方法1において、どのシンボルがSBFDシンボル(又は、SBFD candidateシンボル)に設定されるか(例えば、シンボル種別)については、以下の通知方法により端末200へ通知されてよい。
 <通知方法1>
 通知方法1では、SBFDシンボルであるか否か(又は、シンボル種別)は、UE-specific DCIを用いて通知される。
 UE-specific DCIには、例えば、DCI format 0_0, 0_1, 0_2, 1_0, 1_1, 1_2が使用されてもよく、他のDCI formatが使用されてもよい。
 例えば、UE-specific DCIは、当該DCIによってスケジューリングされるリソース(例えば、PUSCH、Physical Uplink Control Channel(PUCCH)、Sounding Reference Signal(SRS)に使用されるリソース)が、通常のシンボルであるか、SBFDシンボルであるかを通知してよい。
 なお、基地局100は、スケジューリング後に、UE-specific DCIを用いてシンボル種別を通知できる。例えば、基地局100は、端末200に割り当てる各シンボルを、SBFDシンボルとして使用するか、通常のシンボルとして使用するかを決定した後に、端末200へシンボル種別を通知できる。よって、通知方法1では、SBFD candidateシンボルを用いなくてよいので、基地局100は、SBFD candidateシンボルではなく、SBFDシンボルを設定してよい。
 通知方法1の通知例を以下に挙げる。
 例1:
 シンボル種別(通常のシンボル及びSBFDシンボルの何れか)は、UE-specific DCIの1ビットのフィールドを用いて通知されてよい。例えば、DCIに、1ビットのフィールドが追加されてよい。例えば、フィールドの値が“0”の場合は通常のシンボルを示し、フィールドの値が“1”の場合はSBFDシンボルを示してもよい。
 例2:
 シンボル種別(通常のシンボル及びSBFDシンボルの何れか)は、UE-specific DCIの既存のフィールドを再利用して通知されてよい。例えば、“Time domain resource assignment”、“PUCCH resource indicator”、又は、“PDSCH-to-HARQ_feedback timing indicator”といった時間領域のリソースを設定するフィールドが再利用されてよい。
 例えば、“Time domain resource assignment”では、時間領域のリソース(例えば、時間領域のリソースに関するパラメータの設定値)と、DCIのフィールドによって通知される値(例えば、インデックスに関する値)との紐付けに関する情報(例えば、テーブル形式の情報)がRRCシグナリングによって事前に設定される。例えば、Time domain resource assignment”において、当該テーブルの設定の一つ(例えば、パラメータの一つ)に、シンボル種別として“SBFDシンボル”又は“通常のシンボル”の何れかを示す設定が含まれてもよい。
 以上、通知方法1の通知例について説明した。
 通知方法1によれば、基地局100は、UE-specific DCIによって、上りリンク送信の指示に加え、SBFDシンボルであるか否かを端末200へ通知できるため、通知のオーバーヘッドを低減できる。
 <通知方法2>
 通知方法2では、SBFDシンボルであるか否か(又は、シンボル種別)は、group-common DCIを用いて通知される。
 group-common DCIには、例えば、DCI format 2_0, 2_1, 2_2, 2_3, 2_4, 2_5, 2_6, 2_7が使用されてもよく、他のDCI formatが使用されてもよい。
 通知方法2では、基地局100は、スケジューリング後に、group-common DCIを用いてシンボル種別を通知できるので、通知方法1と同様、SBFD candidateシンボルでなく、SBFDシンボルを設定してよい。
 通知方法2の通知例を以下に挙げる。
 例えば、SBFDシンボルであるか否かを通知するビットフィールドが、DCI format 2_0に追加されてよい。
 例えば、追加されるフィールドによって、Slot format indicator(SFI)に対応する複数スロットのシンボル種別(例えば、SBFDシンボル及び通常のシンボルの何れか)が通知されてよい。例えば、SFIによって最大5つのスロットのslot formatが通知可能である場合、シンボル種別の通知のために、5ビットのフィールドがDCI format 2_0に追加されてよい。追加されるビットフィールド(例えば、5ビット)の各ビットが、SFIによって通知される各スロット(例えば、5スロット)にそれぞれ対応してよい。
 例えば、追加されるビットフィールドにおいて、ビット値が“0”の場合は通常のシンボルを示し、ビット値が“1”の場合はSBFDシンボルを示してよい。一例として、5ビットのビットフィールドで通知される値が“0b01110”の場合、SFIによって通知される5スロットのうち、2番目、3番目、4番目のスロットのシンボルがSBFDシンボルであり、他のシンボル(1番目、5番目のシンボル)が通常のシンボルであることを意味する。
 なお、SFIによってslot formatが通知されるスロット数は5スロットに限定されず、他のスロット数でもよい。group-common DCI(例えば、DCI format 2_0)に追加されるビットフィールドのサイズ(ビット数)は、SFIによってslot formatが通知されるスロット数に応じて設定されてよい。
 ここで、例えば、Configured grantによるPUSCH送信、又は、SRSの周期的な送信といった準静的に設定される上りリンク送信は、UE-specific DCIによって送信指示されず、DCI無しで送信が行われる。このため、UE-specific DCIを用いる通知方法1では、準静的に設定される送信に対してシンボル種別の通知が困難である。これに対して、通知方法2では、group common DCIによって、SBFDシンボルであるか否かを通知できるので、準静的に設定される送信にも適用可能である。
 <通知方法3>
 通知方法3では、SBFDシンボルであるか否か(又は、シンボル種別)は、準静的なシグナリング(例えば、RRCシグナリング)を用いて通知される。
 例えば、複数のスロット/シンボルは、SBFD candidateシンボルとして設定されてよい。
 通知方法3では、スケジューリングを決定する前に、シンボル種別が準静的に設定される。例えば、スケジューリングを決定する前に、或るシンボルをSBFDシンボルに設定(又は、確定)すると、通信環境等に応じて当該シンボルを通常のシンボルへ切り替えることができず、スケジューリングの柔軟性が低下し得る。このため、通知方法3では、例えば、基地局100は、各シンボルに対して、SBFD candidateシンボルであるか否かを設定してよい。
 通知方法3の通知例を以下に挙げる。
 例えば、端末個別にシンボルの送信方向を設定するRRCシグナリングである“tdd-UL-DL-ConfigurationDedicated”に、SBFD candidateシンボルの設定が追加されてよい。例えば、スロット内において、SBFD candidateシンボルが配置される最初(又は、開始、先頭)のシンボル番号(例えば、0~13の何れか)、及び、SBFD candidateシンボル数(又は、割当長。例えば、0~14の何れか)の設定が追加されてよい。一例として、SBFD candidateシンボルの設定として、シンボル番号=0、シンボル数=14が設定されると、スロット内の全てのシンボルがSBFD candidateシンボルに設定される。なお、シンボル番号、及び、シンボル数は一例であり、他の値でもよい。
 通知方法3では、SBFDシンボルになり得るシンボル(例えば、SBFDが適用される可能性のあるシンボル)を、SBFD candidateシンボルとして設定できる。上述したように、UE-specific DCIを用いる通知方法1は、準静的に設定される送信(例えば、Configured grantなど)に適用することが困難であるのに対して、通知方法3は、準静的に複数のスロット/シンボルに対してシンボル種別を設定可能であるので、準静的に設定される送信にも適用可能である。
 以上、通知方法1~3について説明した。
 なお、通知方法1~3の何れかを組み合わせてもよい。
 例えば、3つの通知方法1~3の全てを組み合わせる場合について説明する。
 例えば、基地局100は、通知方法3により、SBFDシンボルになり得るシンボルをSBFD candidateシンボルに準静的に設定する。また、基地局100は、スケジューリング後、DCIによって動的にスケジューリングされる上りリンク送信に対しては通知方法1により、シンボル種別(SBFDシンボル又は通常のシンボル)を設定し、準静的に設定される上りリンク送信に対しては通知方法2によりシンボル種別(SBFDシンボル又は通常のシンボル)を設定してもよい。このとき、通知方法3によって設定されるSBFD candidateシンボルは、通知方法1又は通知方法2による通知に従って、SBFDシンボル又は通常のシンボルの何れかへシンボル種別が上書きされてよい。このように、通知方法1~3の組み合わせにより、シンボル種別を柔軟に切り替えることができるので、スケーリングの柔軟性を向上し、リソースの利用効率を向上できる。
 例えば、SBFDシンボル及び通常のシンボルのそれぞれにおけるNTA,offsetは個別に設定されてよい。例えば、SBFDシンボルにおけるNTA,offsetは、0に設定されてよい。また、例えば、通常のシンボルにおけるNTA,offsetは、0以上の値に設定されてよい。
 また、方法1では、例えば、SBFD candidateシンボルにおけるNTA,offsetは、0(例えば、SBFDシンボルと同じ値)又は通常のシンボルと同じ値に設定されてよい。SBFD candidateシンボルにおけるNTA,offsetを0に設定するか、通常のシンボルと同じ値に設定するかは、例えば、準静的な設定、又は、定義により決定されてもよい。
 SBFD candidateシンボルにおけるNTA,offsetが0に設定される場合、SBFD candidateシンボルのデフォルトの動作は、SBFDシンボルと同様の動作でもよい。例えば、SBFD candidateシンボルに対するシンボル種別の通知が無い場合には、SBFD candidateシンボルにサブバンドが有ることを想定する扱いでもよい。また、SBFD candidateシンボルにおけるNTA,offsetが通常のシンボルと同じ値に設定される場合、SBFD candidateシンボルにおけるデフォルトの動作は、通常のシンボルと同様の動作でもよい。例えば、SBFD candidateシンボルに対するシンボル種別の通知が無い場合には、SBFD candidateシンボルにサブバンドが無いことを想定する扱いでもよい。なお、SBFD candidateシンボルに対するシンボル種別の通知が有る場合には、通知されるシンボル種別に対応する動作(又は、NTA,offsetの設定)が行われてもよい。
 以上、3つの通知方法1~3を組み合わせる場合について説明した。
 このように、方法1では、SBFDシンボル及びSBFD candidateシンボルにおいて、上りリンクのサブバンドと下りリンクのサブバンドとの間のシンボルタイミング(又は、シンボル境界)を一致させることが可能になり、基地局100での自己干渉を低減できる。
 また、方法1では、SBFD candidateシンボルからSBFDシンボル(例えば、サブバンドの有るシンボル)、又は、通常のシンボル(例えば、サブバンドの無いシンボル)へ柔軟にシンボル種別を切り替えることができるので、スケーリングの柔軟性を向上し、リソースの利用効率を向上できる。
 [方法2]
 方法2では、基地局100は、動的又は準静的に設定される特定の時間リソース(例えば、スロット/シンボル)におけるNTA,offset(送信タイミングのオフセット値)と、特定の時間リソースと異なる他の時間リソースにおけるNTA,offsetとを異ならせてよい。
 例えば、基地局100は、特定のスロット/シンボルにおけるNTA,offsetを0に設定し、他のスロット/シンボルにおけるNTA,offsetを、特定のスロット/シンボルとは異なる値(例えば、0以上の値)に設定してよい。
 以下では、特定のスロット/シンボルを、「送信タイミング変更スロット/シンボル(,又は、送信タイミング変更シンボル)」と表記し、送信タイミング変更スロット/シンボルと異なる他のスロット/シンボルを「通常のスロット/シンボル(又は、通常のシンボル)」と表記する。
 方法2において、どのシンボルが送信タイミング変更シンボルに設定されるか(例えば、シンボル種別)については、以下の通知方法により端末200へ通知されてよい。
 <通知方法1>
 通知方法1では、送信タイミング変更シンボルであるか否か(又は、シンボル種別)は、UE-specific DCIを用いて通知される。
 UE-specific DCIには、例えば、DCI format 0_0, 0_1, 0_2, 1_0, 1_1, 1_2が使用されてもよく、他のDCI formatが使用されてもよい。
 例えば、UE-specific DCIは、当該DCIによってスケジューリングされるリソース(例えば、PUSCH、PUCCH、SRSに使用されるリソース)が、通常のシンボルであるか、送信タイミング変更シンボルであるかを通知してよい。
 通知方法1の通知例を以下に挙げる。
 例1:
 シンボル種別(通常のシンボル及び送信タイミング変更シンボルの何れか)は、UE-specific DCIの1ビットのフィールドを用いて通知されてよい。例えば、フィールドの値が“0”の場合は通常のシンボルを示し、フィールドの値が“1”の場合は送信タイミング変更シンボルを示してもよい。
 例2:
 シンボル種別(通常のシンボル及び送信タイミング変更シンボルの何れか)は、UE-specific DCIの既存のフィールドを再利用して通知されてよい。例えば、“Time domain resource assignment”、“PUCCH resource indicator”、“PDSCH-to-HARQ_feedback timing indicator”といった時間領域のリソースを設定するフィールドが再利用されてよい。
 例えば、“Time domain resource assignment”では、時間領域のリソース(例えば、時間領域のリソースに関するパラメータの設定値)と、DCIのフィールドによって通知される値(例えば、インデックスに関する値)との紐付けに関する情報(例えば、テーブル形式の情報)がRRCシグナリングによって事前に設定される。例えば、Time domain resource assignment”において、当該テーブルの設定の一つ(例えば、パラメータの一つ)に、シンボル種別として“送信タイミング変更シンボル”又は“通常のシンボル”の何れかを示す設定が含まれてもよい。
 以上、通知方法の通知例について説明した。
 通知方法1によれば、基地局100は、UE-specific DCIによって、上りリンクの送信の指示に加え、送信タイミング変更シンボルであるか否かを端末200へ通知できるため、通知のオーバーヘッドを低減できる。
 <通知方法2>
 通知方法2では、送信タイミング変更シンボルであるか否か(又は、シンボル種別)は、group-common DCIを用いて通知される。
 group-common DCIには、例えば、DCI format 2_0, 2_1, 2_2, 2_3, 2_4, 2_5, 2_6, 2_7が使用されてもよく、他のDCI formatが使用されてもよい。
 通知方法2の通知例を以下に挙げる。
 例えば、送信タイミング変更シンボルかであるか否かを通知するビットフィールドが、DCI format 2_0に追加されてよい。
 例えば、追加されるフィールドによって、SFIに対応する複数スロットのシンボル種別(例えば、送信タイミング変更シンボル及び通常のシンボルの何れか)が通知されてよい。例えば、SFIによって最大5つのスロットのslot formatが通知可能である場合、シンボル種別の通知のために、5ビットのフィールドがDCI format 2_0に追加されてよい。追加されるビットフィールド(例えば、5ビット)の各ビットが、SFIによって通知される各スロット(例えば、5スロット)にそれぞれ対応してよい。
 例えば、追加されるビットフィールドにおいて、ビット値が“0”の場合は通常のシンボルを示し、ビット値が“1”の場合は送信タイミング変更シンボルを示してよい。一例として、5ビットのビットフィールドで通知される値が“0b01110”の場合、SFIによって通知される5スロットのうち、2番目、3番目、4番目のスロットのシンボルが送信タイミング変更シンボルであり、他のシンボル(1番目、5番目のシンボル)が通常のシンボルであることを意味する。
 なお、SFIによってslot formatが通知されるスロット数は5スロットに限定されず、他のスロット数でもよい。group-common DCI(例えば、DCI format 2_0)に追加されるビットフィールドのサイズ(ビット数)は、SFIによってslot formatが通知されるスロット数に応じて設定されてよい。
 ここで、例えば、Configured grantによるPUSCH送信、又は、SRSの周期的な送信といった準静的に設定される上りリンク送信は、UE-specific DCIによって送信指示されず、DCI無しで送信が行われる。このため、UE-specific DCIを用いる通知方法1では、準静的に設定される送信に対してシンボル種別の通知が困難である。これに対して、通知方法2では、group common DCIによって、送信タイミング変更シンボルであるか否かを通知できるので、準静的に設定される送信にも適用可能である。
 <通知方法3>
 通知方法3では、送信タイミング変更シンボルであるか否か(又は、シンボル種別)は、準静的なシグナリング(例えば、RRCシグナリング)を用いて通知される。
 例えば、複数のスロット/シンボルは、送信タイミング変更シンボルとして設定されてよい。
 通知方法3の通知例を以下に挙げる。
 例えば、端末個別にシンボルの送信方向を設定するRRCシグナリングである“tdd-UL-DL-ConfigurationDedicated”に、送信タイミング変更シンボルの設定を追加されてよい。例えば、スロット内において、送信タイミング変更シンボルが配置される最初(又は、開始、先頭)のシンボル番号(例えば、0~13の何れか)、及び、送信タイミング変更シンボル数(又は、割当長。例えば、0~14の何れか)の設定が追加されてよい。一例として、送信タイミング変更シンボルの設定として、シンボル番号=0、シンボル数=14が設定されると、スロット内の全てのシンボルが送信タイミング変更シンボルに設定される。なお、シンボル番号、及び、シンボル数は一例であり、他の値でもよい。
 例えば、UE-specific DCIを用いる通知方法1は、準静的に設定される送信(例えば、Configured grantなど)に適用することが困難であるのに対して、通知方法3は、準静的に複数スロット/シンボルに対してシンボル種別を設定可能であるので、準静的に設置される送信にも適用可能である。
 以上、通知方法1~3について説明した。
 なお、方法1と同様、方法2でも、通知方法1~3の何れかを組み合わせて使用してもよい。
 また、方法2では、送信タイミング変更シンボル及び通常のシンボルのそれぞれにおけるNTA,offsetは個別に設定されてよい。例えば、送信タイミング変更シンボルにおけるNTA,offsetは0に設定されてよい。また、例えば、通常のシンボルにおけるNTA,offsetは、送信タイミング変更シンボルと異なる値(例えば、0以上の値)に設定されてよい。
 方法2では、送信タイミング変更シンボルにおいてNTA,offsetが0に設定されることにより、送信タイミング変更シンボルがSBFDシンボルの場合には、上りリンクのサブバンドと下りリンクのサブバンドとの間のシンボルタイミング(又は、シンボル境界)を一致させることが可能となり、基地局100での自己干渉を低減できる。
 また、方法2では、端末200は、どのシンボルがSBFDシンボルであるかを特定することなく、基地局100からの指示(例えば、送信タイミング変更シンボルに関する情報)に基づいて、上りリンク送信タイミングを調整する。これにより、端末200は、例えば、SBFDが適用される場合でも、どのシンボルがSBFDシンボルであるかを意識することなく動作できる。このように、方法2では、透過的な方法(又は、Transparentな方法)によってSBFDを実現できる。
 このように、方法2によれば、送信タイミング変更シンボルにおいて、上りリンクと下りリンクとでシンボルタイミングを合わせることを可能にし、SBFDにおける基地局100での自己干渉を低減できる。また、方法2によれば、基地局100は、サブバンドを透過的に制御でき、通信環境(例えば、下りリンク及び上りリンクのトラフィック負荷、上りリンクのカバレッジの必要性、遅延に対する要求など)に応じて、SBFDを適用するか否か(例えば、シンボルに対してサブバンドを割り当てるか否か)を選択できるため、スケジューリングの自由度を向上でき、リソースの利用効率を向上できる。
 なお、方法2において、送信タイミング変更シンボル及び通常のシンボルにおける上りリンク送信タイミングの算出には、それぞれ異なる式(2)及び式(3)が適用されてもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、NTA,offsetは、通常のシンボルと送信タイミング変更シンボルとで同じ値(共通の値)が適用されてよい。その一方で、NTA,offset2は送信タイミング変更シンボルを使用する端末200(例えば、SBFDの動作に対応した端末200)に設定され、通常のシンボルを使用する端末200に設定されなくてよい。
 このように、基地局100は、端末200に対して、送信タイミング変更シンボル及び通常のシンボルのそれぞれの上りリンク送信タイミングに共通のオフセット値(NTA,offset)、及び、送信タイミング変更シンボルの上りリンク送信タイミングに固有のオフセット値(NTA,offset2)を設定してよい。
 また、NTA,offsetは、例えば、Cell-specificに設定されてよく、送信タイミング変更シンボルに対応しない端末200と共有されてよい。また、NTA,offset2は、例えば、UE-specificに設定されてよく、送信タイミング変更シンボルに対応する端末200に設定されてよい。
 NTA,offset2には、例えば、NTA,offsetと同じ大きさのマイナスの値(例えば、NTA,offsetを打ち消す値)が設定されてもよい。一例として、NTA,offset=25600が設定される場合、NTA,offset2=-25600が設定されてよい。これにより、送信タイミング変更シンボルでは、上り送信タイミングに対するオフセット値(NTA,offset+NTA,offset2)が0に設定されるので、上りリンクのサブバンドと下りリンクのサブバンドとの間のシンボルタイミングを一致させることができる。
 このように、NTA,offset2の追加により、既存のパラメータ(NTA,offset)と共存させることができるので、端末200がSBFD動作を行う場合における既存の動作との互換性を向上できる。
 [方法3]
 方法3では、動的又は準静的に設定される特定の時間リソース(例えば、特定のスロット/シンボル、又は、送信タイミング変更シンボル)に対して、追加のタイミング設定値(例えば、「NTA’」と表記する)を適用する。
 例えば、基地局100は、特定のスロット/シンボルにおける送信タイミングの設定値(NTA’)と、他のスロット/シンボル(例えば、通常のスロット/シンボル)における送信タイミングの設定値(NTA)とを異ならせてよい。
 NTA’に対して、既存のNTAとは個別に設定値(例えば、絶対値、又は、増減値(又は、差分))が通知されてよい。NTA’の設定値は、例えば、MACのシグナリング又はRRCシグナリングによって端末200へ通知されてよい。
 また、NTA及びNTA’は、異なる累積値として個別に管理されてよい。例えば、NTAの値は、MACのシグナリングのTiming Advance Commandにより増加又は減少可能である。NTA’の値は、例えば、NTAとは異なるTiming Advance Commandを用いて、異なる値で増加又は減少させてよい。
 通常のシンボルにおける送信タイミング、及び、送信タイミング変更シンボルにおける送信タイミングは式(4)及び式(5)によりそれぞれ算出されてよい。
Figure JPOXMLDOC01-appb-M000003
 例えば、送信タイミング変更シンボルにおいて、NTA’= NTA-NTA,offsetになるようにNTA’の値が設定されてよい。これにより、送信タイミング変更シンボルにおいて、NTA,offsetの影響を無くすこと(又は、打ち消すこと)ができる。これにより、例えば、送信タイミング変更シンボルにおいてSBFDが適用される場合、SBFDシンボルにおいて下りリンクのサブバンドと上りリンクのサブバンドとの間のシンボルタイミング(又は、シンボル境界)を一致させることが可能である。
 なお、NTA’の値は、上述した例に限定されない。例えば、NTA’は、Timing Advance Commandにより増加又は減少可能であるので、基地局100の制御により、送信タイミングの動的な調整が可能である。例えば、NTA’の調整によって、SBFDシンボルにおいて、上りリンクと下りリンクとのシンボルタイミングのずれを、cyclic prefix(CP)内に収まる範囲で調整することにより、通常のシンボルと送信タイミング変更シンボルとの間のタイミングのずれを低減できる。
 なお、送信タイミング変更シンボルにおける送信タイミングは、式(5)の代わりに、次式(6)により算出されてもよい。
Figure JPOXMLDOC01-appb-M000004
 ここで、NTA2は、NTA’と同様のタイミング設定値である。上述した式とは、形式が異なるのみであり、例えば、NTA’= NTA+ NTA2の関係があってもよい。基地局100は、例えば、端末200に対して、送信タイミング変更シンボル及び通常のシンボルに共通のタイミング設定値(NTA)、及び、送信タイミング変更シンボルに固有のタイミング設定値(NTA2)を設定してよい。
 また、方法3において、どのスロット/シンボルが送信タイミング変更スロット/シンボルであるかを通知する方法としては、方法2の通知方法が適用されてもよい。
 このように、方法3によれば、送信タイミング変更シンボルにおいて、上りリンクと下りリンクのシンボルタイミングを合わせることを可能にし、SBFDにおける基地局100での自己干渉を低減できる。また、方法3によれば、Timing Advance Commandを用いて上りリンク送信のタイミングを動的に制御可能であるので、基地局100におけるタイミング制御の柔軟性を向上できる。また、方法3によれば、方法2と同様、基地局100は、サブバンドを透過的に制御でき、通信環境(例えば、下りリンク及び上りリンクのトラフィック負荷、上りリンクのカバレッジの必要性、遅延に対する要求など)に応じて、SBFDを適用するか否か(例えば、シンボルに対してサブバンドを割り当てるか否か)を選択できるため、スケジューリングの自由度を向上でき、リソースの利用効率を向上できる。
 以上、上りリンク送信タイミング設定に関する方法1~3について説明した。
 このように、本実施の形態では、基地局100及び端末200は、特定の時間リソース(例えば、SBFDシンボル、SBFD candidateシンボル、又は、送信タイミング変更シンボル)における上りリンク送信タイミング、及び、他の時間リソース(例えば、通常のシンボル)における上りリンク送信タイミングを個別に調整し、各送信タイミングに基づいて、信号を送受信する。
 これにより、例えば、SBFDが適用される特定の時間リソースでは、上りリンクのサブバンドと下りリンクのサブバンドとの間でシンボルタイミング(又は、シンボル境界)を一致させることができ、下りリンクのサブバンドから、上りリンクのサブバンドへの自己干渉を低減できる。一方で、例えば、SBFDが適用されない他の時間リソースでは、上りリンクのシンボルタイミングを早めることにより、基地局100における上りリンク受信性能を向上できる。
 よって、本実施の形態によれば、無線通信における送信タイミングを適切に制御できる。
 (他の実施の形態)
 [シンボルのオーバーラップについて]
 SBFDシンボル(又は、送信タイミング変更シンボル)と通常のシンボルとでは、上りリンクの送信タイミング(例えば、シンボルタイミング)が異なり得るため、シンボルがオーバーラップし得る。例えば、図9に示す例において、Slot#2の最後のシンボル(SBFDシンボル)と、Slot#3の最初のシンボル(通常のシンボル)とはオーバーラップする。そのため、同一の端末200がSlot#2の最後のシンボル及びSlot#3の最初のシンボルの両方を用いて上りリンク送信を行うことはできない。このようなオーバーラップを避けるために、次の方法を適用してよい。
 <方法1>
 方法1では、オーバーラップするシンボルのうち、後のシンボルを優先する。
 例えば、端末200は、オーバーラップするシンボルのうち、後のシンボルの信号を送信し、前のシンボルの信号を送信しなくてもよい(例えば、破棄、又は、dropしてもよい)。また、基地局100は、スケジューリングによって、後ろのシンボルとオーバーラップする前のシンボルへの割り当てを行わなくてもよい。
 図9に示す例では、Slot#2の最後のシンボルにおいて、端末200は、信号を送信しなくてもよく、基地局100は、リソースを割り当てなくてもよい。
 <方法2>
 方法2では、オーバーラップするシンボルのうち、SBFDシンボル(又は、送信タイミング変更シンボル)を優先する。
 例えば、端末200は、オーバーラップするシンボルのうち、SBFDシンボル(又は、送信タイミング変更シンボル)の信号を送信し、通常のシンボルの信号を送信しなくてもよい。また、基地局100は、スケジューリングによって、SBFDシンボル(又は、送信タイミング変更シンボル)とオーバーラップする通常のシンボルへの割り当てを行わなくてもよい。
 図9に示す例では、Slot#3の最初のシンボル(通常のシンボル)において、端末200は、信号を送信しなくてもよく、基地局100は、リソースを割り当てなくてもよい。
 方法2は、例えば、SBFDシンボル(又は、送信タイミング変更シンボル)の性能を向上させる必要がある場合に有効である。例えば、SBFDシンボルでは、上りリンクと下りリンクとの間の干渉によりパフォーマンスが低下する可能性があるため、SBFDシンボルを優先することにより、SBFDシンボルの性能を向上させることができ、若しくは、シンボルの送信が破棄されないことにより性能の劣化を抑制できる。
 <方法3>
 方法3では、オーバーラップするシンボルのうち、通常のシンボルを優先する。
 例えば、端末200は、オーバーラップするシンボルのうち、通常のシンボルの信号を送信し、SBFDシンボル(又は、送信タイミング変更シンボル)の信号を送信しなくてもよい。また、基地局100は、スケジューリングによって、通常のシンボルとオーバーラップするSBFDシンボル(又は、送信タイミング変更シンボル)への割り当てを行わなくてもよい。
 図9に示す例では、Slot#2の最後のシンボル(SBFDシンボル又は送信タイミング変更シンボル)において、端末200は、信号を送信しなくてもよく、基地局100は、リソースを割り当てなくてもよい。
 通常のシンボルが、端末200と既存の端末とで共用される場合(例えば、既存の端末に対してSBFDシンボルで送受信が制限される場合)、通常のシンボルの送信を破棄すると、既存の端末動作に影響を与える可能性がある。そのため、方法3は、既存の端末動作を保護する場合に有効である。
 [Transient periodについて]
 連続した時間リソース(例えば、スロット/シンボル)での送信において、Transient periodが重なることが想定される。
 Transient periodは、例えば、送信をON/OFFする場合、又は、異なる送信電力で送信する場合の電力の遷移期間を表す。
 SBFDシンボル(又は、送信タイミング変更シンボル)と通常のシンボルとのTransient periodが重なる場合、次の方法によりTransient periodを設定してよい。
 <方法1>
 方法1では、両方のシンボルでTransient periodを等分割する。
 例えば、Transient periodが重なる場合に、Transient periodをSBFDシンボル(又は、送信タイミング変更シンボル)と通常のシンボルとで等分割してよい。
 図10に方法1によるTransient periodの設定例を示す。図10において、「SBFD symbol」はSBFDシンボルを表し、「Normal symbol」は通常のシンボルを表す。図10に示すように、Transient periodは、両方のシンボルに均等にまたがっている。
 方法1は、例えば、SBFDシンボル(又は、送信タイミング変更シンボル)及び通常のシンボルの何れのシンボルにもTransient periodの影響が均等に及ぶようにしたい場合に有効である。
 なお、ここでは、SBFDシンボル(又は、送信タイミング変更シンボル)と通常のシンボルとでTransient periodを等分割する場合について説明したが、これに限定されず、例えば、Transient periodは、SBFDシンボル(又は、送信タイミング変更シンボル)と通常のシンボルとに不均一に設定されてもよい。
 <方法2>
 方法2では、SBFDシンボル(または、送信タイミング変更シンボル)を優先する。
 例えば、Transient periodが連続するシンボルに重なる場合に、Transient periodを通常のシンボルの期間に割り当てる。
 図10に方法2によるTransient periodの設定例を示す。図10に示すように、Transient periodはNormal symbolに設定される。
 方法2は、SBFDシンボル(又は、送信タイミング変更シンボル)の性能を向上させる必要がある場合に有効である。例えば、SBFDシンボルは、上りリンクと下りリンクとの間の干渉によりパフォーマンスが低下する可能性があるため、SBFDシンボルを優先することにより、SBFDシンボルの性能を向上させることができ、若しくは、Transient periodがSBFDシンボル外に設定されることにより性能の劣化を抑制できる。
 <方法3>
 方法3では、通常のシンボルを優先する。
 例えば、Transient periodが連続するシンボルに重なる場合に、Transient periodをSBFDシンボル(又は、送信タイミング変更シンボル)の期間に割り当てる。
 図10に方法3によるTransient periodの設定例を示す。図10に示すように、Transient periodはSBFD symbolに設定される。
 通常のシンボルが、端末200と既存の端末とで共用される場合(例えば、既存の端末に対してSBFDシンボルで送受信が制限される場合)、通常のシンボル期間にTransient periodを設定すると、既存の端末動作に影響を与える可能性がある。そのため、方法3は、既存の端末動作を保護する場合に有効である。
 以上、Transient periodについて説明した。
 また、上述した実施の形態において、サブバンド数、端末数、スロット数、シンボル数、送信タイミングに関するパラメータ(NTA、NTA’、NTA,offset、NTA,offset2、DCIにおける通知フィールドのビット数)といった値は一例であって、限定されない。
 (補足)
 上述した実施の形態に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した実施の形態に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。
 基地局100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局100は、端末200から受信した能力情報に基づいて、端末200に対する上りリンク送信タイミングを制御してよい。
 なお、上述した実施の形態に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局100に通知されてもよい。
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局100において既知の情報あるいは基地局100へ送信される情報に関連付けられて暗黙的(implicit)に基地局100に通知されてもよい。
 (制御信号)
 本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
 本開示において、本開示の一実施例に関連する上り制御信号(又は、上り制御情報)は、例えば、物理層のPUCCHにおいて送信される信号(又は、情報)でもよく、上位レイヤのMAC CE又はRRCにおいて送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、上り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。また、上り制御信号は、例えば、uplink control information(UCI)、1st stage sidelink control information(SCI)、又は、2nd stage SCIに置き換えてもよい。
 (基地局)
 本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
 (上りリンク/下りリンク/サイドリンク)
 本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared
 Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
 なお、PDCCH、PDSCH、PUSCH、及び、PUCCHそれぞれは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、及び、上りリンク制御チャネルの一例である。また、PSCCH、及び、PSSCHは、サイドリンク制御チャネル、及び、サイドリンクデータチャネルの一例である。また、PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。
 (データチャネル/制御チャネル)
 本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
 (参照信号)
 本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
 (時間間隔)
 本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロットサブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
 (周波数帯域)
 本開示の一実施例は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
 (通信)
 本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
 また、本開示の一実施例は、地上のネットワーク、衛星又は高度疑似衛星(HAPS:High Altitude Pseudo Satellite)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示の一実施例は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。
 (アンテナポート)
 本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図11に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km2)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図12は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップおよび再設定の手順>
 図13は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図14は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図14は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図13を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。
 図15は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図14に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図15は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る基地局は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を受信する受信回路と、を具備する。
 本開示の一実施例において、前記制御回路は、前記第1の時間リソースにおける送信タイミングのオフセット値と、前記第2の時間リソースにおける送信タイミングのオフセット値とを異ならせる。
 本開示の一実施例において、前記制御回路は、前記第1の時間リソースの前記オフセット値をゼロに設定する。
 本開示の一実施例において、前記第1の時間リソースは、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式が適用されるシンボル、又は、前記方式を適用する可能性のあるシンボルである。
 本開示の一実施例において、前記第1の時間リソースは、動的又は準静的に設定されるシンボルである。
 本開示の一実施例において、前記制御回路は、前記第1の時間リソース及び前記第2の時間リソースのそれぞれにおける送信タイミングに共通のオフセット値、及び、前記第1の時間リソースにおける送信タイミングに固有のオフセット値を設定する。
 本開示の一実施例において、前記制御回路は、前記第1の時間リソースにおける送信タイミングの設定値と、前記第2の時間リソースにおける送信タイミングの設定値とを異ならせる。
 本開示の一実施例に係る端末は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を送信する送信回路と、を具備する。
 本開示の一実施例に係る通信方法において、基地局は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定し、前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を受信する。
 本開示の一実施例に係る通信方法において、端末は、第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定し、前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を送信する。
 2022年8月12日出願の特願2022-128841の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100 基地局
 101,201 受信部
 102,202 復調・復号部
 103 スケジューリング部
 104,204 タイミング制御部
 105,205 制御情報保持部
 106,206 データ・制御情報生成部
 107,207 符号化・変調部
 108,208 送信部
 200 端末
 203 制御部
 

Claims (10)

  1.  第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、
     前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を受信する受信回路と、
     を具備する基地局。
  2.  前記制御回路は、前記第1の時間リソースにおける送信タイミングのオフセット値と、前記第2の時間リソースにおける送信タイミングのオフセット値とを異ならせる、
     請求項1に記載の基地局。
  3.  前記制御回路は、前記第1の時間リソースの前記オフセット値をゼロに設定する、
     請求項2に記載の基地局。
  4.  前記第1の時間リソースは、周波数帯域を分割した複数の帯域のそれぞれに送信方向が設定される方式が適用されるシンボル、又は、前記方式を適用する可能性のあるシンボルである、
     請求項3に記載の基地局。
  5.  前記第1の時間リソースは、動的又は準静的に設定されるシンボルである、
     請求項3に記載の基地局。
  6.  前記制御回路は、前記第1の時間リソース及び前記第2の時間リソースのそれぞれにおける送信タイミングに共通のオフセット値、及び、前記第1の時間リソースにおける送信タイミングに固有のオフセット値を設定する、
     請求項1に記載の基地局。
  7.  前記制御回路は、前記第1の時間リソースにおける送信タイミングの設定値と、前記第2の時間リソースにおける送信タイミングの設定値とを異ならせる、
     請求項1に記載の基地局。
  8.  第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定する制御回路と、
     前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を送信する送信回路と、
     を具備する端末。
  9.  基地局は、
     第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定し、
     前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を受信する、
     通信方法。
  10.  端末は、
     第1の時間リソースにおける上りリンクの第1の送信タイミング、及び、前記第1の時間リソースと異なる第2の時間リソースにおける上りリンクの第2の送信タイミングを個別に設定し、
     前記第1の送信タイミング及び前記第2の送信タイミングに基づいて、信号を送信する、
     通信方法。
PCT/JP2023/016440 2022-08-12 2023-04-26 基地局、端末及び通信方法 WO2024034199A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022128841 2022-08-12
JP2022-128841 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034199A1 true WO2024034199A1 (ja) 2024-02-15

Family

ID=89851488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016440 WO2024034199A1 (ja) 2022-08-12 2023-04-26 基地局、端末及び通信方法

Country Status (1)

Country Link
WO (1) WO2024034199A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2203157, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143975 *
LG ELECTRONICS: "Study on Subband non-overlapping full duplex", 3GPP DRAFT; R1-2204530, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153570 *

Similar Documents

Publication Publication Date Title
JP2023521568A (ja) 能力削減型nr(新無線)デバイスのための制御リソースセット0
US20220132506A1 (en) User equipment and scheduling device
US20220256557A1 (en) Communication apparatuses and communication methods for dci for v2x communication apparatuses
WO2022014272A1 (ja) 端末、基地局及び通信方法
WO2024034199A1 (ja) 基地局、端末及び通信方法
WO2024034198A1 (ja) 端末、基地局及び通信方法
WO2023188912A1 (ja) 基地局、端末及び通信方法
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2024024259A1 (ja) 端末、基地局、及び、通信方法
WO2023188913A1 (ja) 基地局、端末及び通信方法
WO2023013217A1 (ja) 基地局、端末及び通信方法
WO2022064795A1 (ja) 端末及び通信方法
WO2024029157A1 (ja) 端末、基地局、及び、通信方法
WO2023100471A1 (ja) 基地局、端末及び通信方法
WO2022014281A1 (ja) 端末、基地局及び通信方法
WO2023181557A1 (ja) 端末、基地局及び通信方法
WO2022030113A1 (ja) 基地局、端末及び通信方法
WO2022079955A1 (ja) 端末、基地局及び通信方法
WO2023204061A1 (ja) 通信装置、及び、通信方法
WO2024034227A1 (ja) 通信装置、及び、通信方法
WO2023181556A1 (ja) 端末、基地局及び通信方法
EP4125233A1 (en) User equipment and base station involved in resource indication for control channel carrier switching
WO2023243614A1 (ja) 端末、基地局及び通信方法
WO2022014279A1 (ja) 端末、基地局及び通信方法
WO2023181579A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852185

Country of ref document: EP

Kind code of ref document: A1