WO2023243614A1 - 端末、基地局及び通信方法 - Google Patents

端末、基地局及び通信方法 Download PDF

Info

Publication number
WO2023243614A1
WO2023243614A1 PCT/JP2023/021793 JP2023021793W WO2023243614A1 WO 2023243614 A1 WO2023243614 A1 WO 2023243614A1 JP 2023021793 W JP2023021793 W JP 2023021793W WO 2023243614 A1 WO2023243614 A1 WO 2023243614A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission waveform
transmission
waveform
ofdm
field
Prior art date
Application number
PCT/JP2023/021793
Other languages
English (en)
French (fr)
Inventor
哲矢 山本
秀俊 鈴木
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2023243614A1 publication Critical patent/WO2023243614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to a terminal, a base station, and a communication method.
  • 5th Generation mobile communication systems are high-capacity, ultra-high-speed (eMBB: enhanced Mobile BroadBand), massive machine type communication (mMTC), and ultra-reliable, low-latency communication.
  • eMBB enhanced Mobile BroadBand
  • mMTC massive machine type communication
  • URLLC Ultra Reliable and Low Latency Communication
  • the 3rd Generation Partnership Project (3GPP) an international standards organization, is working on the specification of New Radio (NR) as one of the 5G wireless interfaces.
  • NR New Radio
  • 3GPP TS38.104 “NR Base Station (BS) radio transmission and reception (Release 15),” March 2021. RP-202928, “New WID on NR coverage enhancements,” China Telecom, December 2020. RP-220937, “Revised WID on Further NR coverage enhancements,” China Telecom, March 2022.
  • 3GPP TS38.211 “NR Physical channels and modulation (Release 17),” March 2022.
  • 3GPP TS38.212 “NR Multiplexing and channel coding (Release 17),” March 2022.
  • Non-limiting embodiments of the present disclosure contribute to providing a terminal, a base station, and a communication method that can improve uplink signal reception performance.
  • control information when dynamic switching between a first transmission waveform of an uplink signal and a second transmission waveform having a data size larger than that of the first transmission waveform is set, control information
  • the control circuit includes a control circuit that determines a field size of the second transmission waveform based on a field size when the second transmission waveform is set, and a reception circuit that receives the control information based on the field size.
  • a transmission signal can be appropriately transmitted.
  • FR1 Frequency Range 1
  • LTE Long Term Evolution
  • Non-Patent Documents 2 and 3 Non-Patent Documents 2 and 3).
  • a terminal receives layer 1 control signals (e.g., Non-Patent Documents 4 to 7) transmit and receive data according to resource allocation instructed by Downlink Control Information (DCI) or Radio Resource Control (RRC), which is Layer 3.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • a terminal On the uplink (UL), a terminal transmits an uplink data channel (for example, PUSCH: Physical Uplink Shared Channel) according to resource allocation (for example, Grant or UL grant) from the base station.
  • an uplink data channel for example, PUSCH: Physical Uplink Shared Channel
  • resource allocation for example, Grant or UL grant
  • DFT-s-OFDM Discrete Frourier Transform-spread-orthogonal frequency division multiplexing
  • CP-OFDM Cyclic prefix-OFDM
  • DFT-s-OFDM has a low peak-to-average power ratio (PAPR) of the transmitted signal and high power usage efficiency, so it can ensure wider uplink coverage compared to CP-OFDM.
  • PAPR peak-to-average power ratio
  • CP-OFDM is highly compatible with Multiple-Input Multiple-Output (MIMO), so it provides high-efficiency transmission in a high Signal-to-Interference and Noise power Ratio (SINR) environment (for example, multiple This is a transmission waveform that is effective for rank or multi-layer transmission).
  • SINR Signal-to-Interference and Noise power Ratio
  • FIG. 1 shows a method for determining the PUSCH transmission waveform in NR up to Rel.17.
  • the transmission waveform of PUSCH is determined based on msg3-transformPrecoder, which is a parameter set in RRC.
  • the transmission waveform of Message A PUSCH is determined based on msgA-transformPrecoder, which is a parameter set in RRC. If msgA-transformPrecoder is not set in RRC, the transmission waveform is determined based on msg3-transformPrecoder.
  • the transmission waveform of PUSCH (for example, DG-PUSCH: Dynamic Grant-PUSCH) that is dynamically scheduled with DCI format 0-0 is determined based on msg3-transformPrecoder, which is a parameter set in RRC.
  • the PUSCH transmission waveform dynamically scheduled in DCI format 0-1 or DCI format 0-2 is determined based on transformPrecoder, which is a parameter included in pushch-Config configured in RRC. If transformPrecoder is not set in RRC, the transmission waveform is determined based on msg3-transformPrecoder.
  • the transmission waveform of PUSCH (for example, CG-PUSCH: Configured grant-PUSCH) that transmits PUSCH with resource allocation instructed by RRC, which is layer 3, or semi-fixed resource allocation by Activation DCI, is configuredGrantConfig configured in RRC. It is determined based on the transformPrecoder, which is a parameter included in . If transformPrecoder is not set in RRC, the transmission waveform is determined based on msg3-transformPrecoder.
  • the number of transmission layers for PUSCH transmission by DFT-s-OFDM is limited to 1.
  • DFT-s-OFDM In a typical cellular system, it is assumed that DFT-s-OFDM is configured to ensure coverage for cell-edge terminals where it is important to improve uplink coverage.
  • PUSCH Uplink Physical Broadcast
  • the transmit waveform can only be set quasi-statically, the cell-edge terminal whose transmit waveform is set to DFT-s-OFDM will switch the transmit waveform to CP-OFDM in accordance with the instantaneous fluctuations. It is difficult to perform highly efficient transmission (for example, multi-layer transmission using MIMO spatial multiplexing), and it is not possible to improve the transmission efficiency of cell-edge terminals.
  • Dynamically switching the DCI format for scheduling PUSCH and dynamically changing the PUSCH transmission waveform is being considered.
  • DFT-s-OFDM can be configured for PUSCH scheduled with DCI format 0-0
  • CP-OFDM can be configured for PUSCH scheduled with DCI format 0-1.
  • DCI format 0-0 since DCI format 0-0 only supports the allocation of PUSCHs with the minimum necessary functions, there are significant restrictions on PUSCH scheduling using DFT-s-OFDM transmission waveforms. Specifically, cross-carrier scheduling in carrier aggregation cannot be performed, Bandwidth Part (BWP) switching cannot be performed, precoding or antenna port notification cannot be performed, and Code Block Group (CBG) Based retransmission control may not be possible.
  • BWP Bandwidth Part
  • CBG Code Block Group
  • CP-OFDM can be configured for PUSCH scheduled with DCI format 0-0
  • DFT-s-OFDM can be configured for PUSCH scheduled with DCI format 0-1.
  • DCI format 0-0 only supports one layer transmission
  • PUSCH transmission of the DFT-s-OFDM transmission waveform only supports one layer transmission, so high efficiency is achieved by multi-layer transmission of two or more layers. Cannot transmit.
  • DCI format 0-2 is a DCI designed for URLLC, and it is desirable to increase the reliability of DCI reception by reducing the number of DCI bits as much as possible, so it is desirable to increase the number of DCI bits. do not have.
  • the base station when dynamic transmission waveform switching is configured for a terminal, the base station changes the field size of each existing DCI to the field size when the transmission waveform is configured as CP-OFDM. PUSCH transmission waveform is notified using the existing DCI field. This enables dynamic transmission waveform notification without increasing the number of DCI bits.
  • Dynamic transmission waveform switching for DG-PUSCH by DCI format 0-1 or DCI format 0-2 is enabled via RRC.
  • the DCI field size when dynamic transmit waveform switching is enabled, the DCI field size must be determined, but the DCI field size is based on the size of CP-OFDM, which is larger than the size of DFT-s-OFDM. It is determined. Note that if the DCI field size of DFT-s-OFDM is larger than the field size of CP-OFDM, it may be determined based on the size of DFT-OFDM.
  • the transmission waveform is not limited to DFT-s-OFDM and CP-OFDM, and three or more transmission waveforms are also applicable. When there are three or more transmission waveforms, the size is determined based on the largest size, but it is also possible to adopt a transmission waveform that is not the largest size.
  • the DCI field includes: ⁇ Frequency domain resource assignment ⁇ Precoding information and number of layers ⁇ Antenna ports ⁇ PTRS-DMRS association ⁇ DMRS sequence initialization
  • the transmitted waveform is CP-OFDM or DFT-s-OFDM, enabling or disabling transform precoding, repurposes existing fields present in DCI format 0-1 or DCI format 0-2 be notified by.
  • step 1 the terminal determines whether dynamic transmission waveform switching is enabled.
  • the terminal determines the DCI field size based on CP-OFDM in step 2. Further, the terminal receives the DCI according to the determined DCI field size and determines the number of transmission layers.
  • the terminal determines the transmission waveform based on the number of transmission layers. For example, if one layer transmission is indicated, the terminal determines the transmission waveform to be DFT-s-OFDM, and if two or more layer transmission is indicated, the terminal determines the transmission waveform to be CP-OFDM.
  • the terminal determines the transmission waveform based on the RRC parameters, and determines the DCI field size based on the quasi-statically set transmission waveform.
  • the terminal determines the PUSCH transmission waveform based on the number of transmission layers notified to the terminal by the Precoding information and number of layers field or the SRI field included in the DCI.
  • Step 1 Whether dynamic transmission waveform switching is enabled or disabled for DG-PUSCH dynamically scheduled with DCI format 0-1 or DCI format 0-2 is set by RRC. Ru.
  • dynamic transmission waveform switching may be enabled by the following method. When set to Disabled, the terminal performs quasi-static transmission waveform switching.
  • Dynamic transmission waveform switching is enabled based on dynamicSwitch, a new parameter value of transformPrecoder included in pushch-Config for PUSCH dynamically scheduled in DCI format 0-1 or DCI format 0-2.
  • the terminal dynamically determines the PUSCH transmission waveform based on information notified by DCI, which will be described later. In other words, the terminal determines whether to apply DFT-s-OFDM or CP-OFDM to PUSCH.
  • DCI information notified by DCI
  • the terminal determines whether to apply DFT-s-OFDM or CP-OFDM to PUSCH.
  • dynamicSwitch set in transformPrecoder is an example, and the value is not limited to this.
  • the terminal may enable quasi-static transmission waveform switching of PUSCH.
  • the terminal may semi-statically set the PUSCH transmission waveform to DFT-s-OFDM instead of enabling quasi-static transmission waveform switching.
  • the terminal may disable quasi-static transmission waveform switching of PUSCH. Instead of quasi-statically disabling transmission waveform switching, the terminal may semi-statically set the PUSCH transmission waveform to CP-OFDM.
  • the terminal determines the transmission waveform based on msg3-transformPrecoder.
  • the terminal determines that the existing RRC parameter transformPrecoder value is invalid (that is, discards the transformPrecoder value) and dynamically sends Activate waveform switching and perform steps 2 and 3 shown in FIG. 28.
  • the terminal may enable quasi-static transmission waveform switching for the PUSCH transmission waveform.
  • the terminal may semi-statically set the PUSCH transmission waveform to DFT-s-OFDM instead of enabling quasi-static transmission waveform switching.
  • the terminal may disable the quasi-static transmission waveform switching of PUSCH. Instead of quasi-statically disabling transmission waveform switching, the terminal may semi-statically set the PUSCH transmission waveform to CP-OFDM.
  • the terminal determines the transmission waveform based on msg3-transformPrecoder.
  • the terminal uses the Precoding information and number of layers field to determine the number of layers among the parameters included in the DCI.
  • the size (number of bits) of the Precoding information and number of layers field necessary for receiving the Precoding information and number of layers field will be explained.
  • the size (number of bits) of the DCI Precoding information and number of layers field is the same number of bits as when the CP-OFDM transmit waveform is set quasi-statically. Set. Specifically, it is as follows.
  • the size of the Precoding information and number of layers field (number of bits) can be determined.
  • the terminal can receive the Precoding information and number of layers field when the number of bits in the Precoding information and number of layers field is determined.
  • the terminal determines the number of transmission layers for PUSCH transmission based on, for example, information in the DCI Precoding information and number of layers field or the SRI field. Furthermore, the terminal determines the PUSCH transmission waveform based on the determined number of transmission layers.
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM.
  • the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers based on the information in the SRI field. For example, if the determined number of transmission layers is 1, the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and if the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM. do.
  • the terminal determines the number of transmission layers to be 1 and the transmission waveform to DFT-s-OFDM.
  • the terminal determines the number of transmission layers and TPMI ( Determine the Transmit Precoding Matrix Index).
  • TPMI Determine the Transmit Precoding Matrix Index
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and when the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers to be 1 and the transmission waveform to DFT-s-OFDM. Further, the terminal determines the TPMI based on the mapping table given in FIG. 3 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in FIG. 3).
  • the terminal determines the number of transmission layers and TPMI based on the mapping table given in Figure 4 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in Figure 4). decide.
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and when the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers and TPMI based on the mapping table given in Figure 5 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in Figure 5). decide.
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and when the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers to be 1 and the transmission waveform to DFT-s-OFDM. Further, the terminal determines the TPMI based on the mapping table given in FIG. 6 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in FIG. 6).
  • the terminal determines the number of transmission layers and TPMI based on the mapping table given in Figure 7 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in Figure 7). decide.
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and when the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers to be 1 and the transmission waveform to DFT-s-OFDM. Further, the TPMI is determined based on the mapping table given in FIG. 8 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in FIG. 8).
  • the terminal determines the number of transmission layers and TPMI based on the mapping table given in Figure 9 and the information in the Precoding information and number of layers field (for example, the value of Bit field mapped to index in Figure 9). .
  • the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM, and when the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the PUSCH transmission waveform can be notified using the existing DCI field Precoding information and number of layers or the SRI field, so the number of DCI bits for switching transmission waveforms can be increased. It becomes possible to dynamically notify transmission waveforms without any trouble. By dynamically switching the transmission waveform depending on the number of transmission layers, it is possible to secure coverage using DFT-s-OFDM and one-layer transmission, and flexibly switch between high-efficiency transmission using CP-OFDM and multi-layer transmission.
  • the terminal when dynamically switching the transmission waveform between CP-OFDM and DFT-s-OFDM, the terminal Determine the DCI field size.
  • the terminal can display the DCI field regardless of the switched transmit waveform. Understand the size and receive DCI appropriately.
  • the terminal determines the PUSCH transmission waveform based on the number of transmission layers and TPMI that are notified to the terminal by the Precoding information and number of layers field or the SRI field included in the DCI.
  • the Precoding information and number of layers field is used to determine the number of layers, but the Precoding information and number of layers field necessary for receiving the Precoding information and number of layers field is
  • the method for determining the size (number of bits) of the and number of layers field ie, step 1 and step 2) is the same as in the first embodiment.
  • step 3 when the number of transmission layers is 1, the PUSCH transmission waveform is determined based on the value of TPMI.
  • the mapping between TPMI and transmission waveforms may be determined in advance, or may be notified by RRC.
  • a threshold is set for TPMI, and when the notified TPMI is greater than the threshold, the transmission waveform is set to DFT-s-OFDM, and when TPMI is less than the threshold, the transmission waveform is set to CP-OFDM. Good too.
  • the transmission waveform may be set to CP-OFDM when the notified TPMI is greater than the threshold, and the transmission waveform may be set to DFT-s-OFDM when the TPMI is less than or equal to the threshold.
  • Step 3 The terminal determines the PUSCH transmission waveform based on the determined number of transmission layers and TPMI.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value.
  • the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the method for determining the transmission waveform in step 3 in each case of step 2 described above is as follows.
  • the terminal determines the number of transmission layers based on the information in the SRI field. If the determined number of transmission layers is 1, the terminal determines the PUSCH transmission waveform based on SRI, and if the determined number of transmission layers is 2 or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM.
  • the terminal determines the number of transmission layers to be 1 and the transmission waveform to DFT-s-OFDM.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value, and the determined number of transmission layers is 1. If the number is 2 or more, the PUSCH transmission waveform is determined to be CP-OFDM.
  • the terminal determines the PUSCH transmission waveform based on the value of TPMI based on the mapping table given in FIG.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value, and the determined number of transmission layers is 1. If the number is 2 or more, the PUSCH transmission waveform is determined to be CP-OFDM.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value, and the determined number of transmission layers is 1. If the number is 2 or more, the PUSCH transmission waveform is determined to be CP-OFDM.
  • the terminal determines the PUSCH transmission waveform based on the value of TPMI based on the mapping table given in FIG.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value, and the determined number of transmission layers is 1. If the number is 2 or more, the PUSCH transmission waveform is determined to be CP-OFDM.
  • the terminal determines the PUSCH transmission waveform based on the value of TPMI based on the mapping table given in FIG.
  • the terminal determines the PUSCH transmission waveform based on the TPMI value, and the determined number of transmission layers is 2 or more.
  • the PUSCH transmission waveform is determined to be CP-OFDM.
  • the correspondence between the value of TPMI and the transmission waveform of PUSCH may be determined in advance, or the correspondence may be set by RRC.
  • the association between each TPMI number and the transmission waveform may be notified, or a threshold value of the TPMI number for switching the transmission waveform may be notified.
  • a threshold for example, a TPMI number less than or equal to the threshold may be associated with DFT-s-OFDM, and a TPMI number greater than the threshold may be associated with CP-OFDM.
  • a TPMI number less than or equal to a threshold may be associated with CP-OFDM, and a TPMI number greater than the threshold may be associated with DFT-s-OFDM.
  • multiple thresholds can be provided depending on the number of transmitted waveforms.
  • a TPMI number that is less than or equal to a first threshold is associated with a first transmitted waveform
  • a TPMI number that is greater than the first threshold and less than or equal to a second threshold is associated with a second transmitted waveform that is greater than or equal to the second threshold.
  • the TPMI number may be associated with the third transmission waveform.
  • the number N TPMI of TPMI numbers associated with DFT-s-OFDM may be notified.
  • the correspondence between the TPMI value and the PUSCH transmission waveform may be different for each case described above, or the same correspondence may be used.
  • the number of TPMI numbers associated with DFT-s-OFDM and the number of TPMI numbers associated with CP-OFDM may be different.
  • the PUSCH transmission waveform can be notified using the existing DCI field Precoding information and number of layers or the SRI field, so the number of DCI bits for switching transmission waveforms can be increased. It becomes possible to dynamically notify transmission waveforms without any trouble.
  • dynamically switching the transmission waveform depending on the number of transmission layers it is possible to secure coverage using DFT-s-OFDM and one-layer transmission, and flexibly switch between high-efficiency transmission using CP-OFDM and multi-layer transmission.
  • the transmission waveform since the transmission waveform is determined based on TPMI as well, the transmission waveform can be switched more flexibly.
  • Step 1 of the operation example of the third embodiment may be the same as that of the first embodiment.
  • the terminal determines the PUSCH transmission waveform based on the index notified to the terminal by the Time domain resource assignment (TDRA) field included in the DCI, so in step 2, in order to receive the TDRA,
  • TDRA Time domain resource assignment
  • Step 2 The number of bits of TDRA is the same for both CP-OFDM and DFT-s-OFDM.
  • the terminal determines the size (number of bits) of the DCI TDRA field. Set to bit.
  • I is the number of registrations of the RRC parameter push-TimeDomainAllocationList.
  • the size (number of bits) of other fields is determined based on CP-OFDM. As described in Embodiment 1, it can also be determined based on DFT-s-OFDM.
  • TDRA includes slot offset K2, start/length indicator SLIV or start symbol S and number of symbols (PUSCH length) L, PUSCH mapping type, number of repeated transmissions, and transmission waveform applied to PUSCH. good.
  • the terminal may determine the size (number of bits) of the Precoding information and number of layers field of the DCI.
  • the method for determining the size (number of bits) of the Precoding information and number of layers field is the same as in the first and second embodiments.
  • Step 3 The terminal determines time-domain resource allocation and transmission waveform for PUSCH transmission based on information in the TDRA field of the DCI. Specifically, based on the index notified in the TDRA field, the terminal selects the time domain allocation resource candidates (i.e., K2, S, L, PUSCH mapping type, number of repetitions, transmission waveform) associated with the index. combination).
  • the time domain allocation resource candidates i.e., K2, S, L, PUSCH mapping type, number of repetitions, transmission waveform
  • the association between the TDRA index value and the PUSCH transmission waveform (for example, the transmission waveform when index n is notified) may be set by RRC. Further, the number of indexes associated with DFT-s-OFDM and the number of indexes associated with CP-OFDM may be different.
  • the terminal determines the PUSCH transmission waveform to be DTF-s-OFDM based on the information in the TDRA field, it does not assume that the number of transmission layers 2 or more will be notified by the Precoding information and number of layers field.
  • the PUSCH transmission waveform can be notified using the TDRA field, which is an existing DCI field, dynamic transmission can be performed without increasing the number of DCI bits for switching transmission waveforms. Waveform notifications are now possible.
  • Embodiment 4 the terminal determines the PUSCH transmission waveform based on the index notified to the terminal by the Modulation and Coding Scheme (MCS) field included in the DCI.
  • MCS Modulation and Coding Scheme
  • Step 1 of the fourth embodiment may be the same as that of the first embodiment.
  • Step 2 Since the size (number of bits) of the DCI MCS field is 5 bits in both CP-OFDM and DFT-s-OFDM, the terminal sets the size (number of bits) of the MCS field to 5 bits.
  • the size (number of bits) of other fields such as DCI's Precoding information and number of layers field and antenna ports are determined based on CP-OFDM. As described in Embodiment 1, it can also be determined based on DFT-s-OFDM.
  • Step 3 The terminal uses the DCI I MCS to determine the modulation level Q m and target coding rate R from the MCS table. Specifically, the terminal determines the transmission waveform based on the index I MCS notified in the MCS field.
  • the correspondence between the I MCS value and the PUSCH transmission waveform may be determined in advance by the standard, or the correspondence may be set by RRC. Good too. Furthermore, in the association using RRC, the association between each I MCS and the transmission waveform may be notified, or the threshold value (waveform-MCS) of the MCS number for switching the transmission waveform may be notified.
  • the threshold value (waveform-MCS) of the MCS number for switching the transmission waveform may be notified.
  • a threshold for example, an MCS number less than or equal to the threshold may be associated with DFT-s-OFDM, and an MCS number greater than the threshold may be associated with CP-OFDM.
  • a high coding rate high MCS number
  • CP-OFDM aims for high efficiency, so a high coding rate (high MCS number) is -It is effective to allocate to OFDM.
  • MCS numbers below the threshold are associated with CP-OFDM, and MCS numbers greater than the threshold are associated with DFT-s-OFDM, making it possible to increase the reliability of encoding when aiming for high transmission waveform efficiency. You may also do so.
  • N MCS of MCS numbers associated with DFT-s-OFDM may be notified.
  • the number of MCS numbers associated with DFT-s-OFDM and the number of MCS numbers associated with CP-OFDM may be different.
  • the PUSCH transmission waveform can be notified using the MCS field, which is an existing DCI field, dynamic transmission can be performed without increasing the number of DCI bits for switching transmission waveforms. Waveform notifications are now possible.
  • the NR MCS table includes the I MCS value that determines the modulation level Q m and the target coding rate R , and the I MCS value that determines only the modulation level Q m .
  • the I MCS value that determines the modulation level Q m and the target coding rate R
  • the I MCS value that determines only the modulation level Q m .
  • the value of I MCS that determines the modulation level Q m and target coding rate R is notified, and at the time of retransmission, the value of I MCS that determines only the modulation level Q m is notified.
  • Modifications 1 to 3 below describe the determination of the transmission waveform at the time of retransmission, and the transmission waveform determination method in Embodiment 4 may be used to determine the transmission waveform at the time of initial transmission.
  • the threshold value of the MCS number for switching the transmission waveform at the time of initial transmission (waveform-MCS) or the number of MCS numbers associated with DFT-s-OFDM N
  • the range of values that MCS can take depends on the number of modulation levels Q m and the target code It may also be the value of I MCS that determines the conversion rate R.
  • a threshold for example, an MCS number below the threshold is associated with DFT-s-OFDM, and a threshold in the range of I MCS values that determines the modulation level Q m and target coding rate R is set. Larger MCS numbers may be associated with CP-OFDM.
  • I MCS 0 to N MCS -1 is associated with DFT-s-OFDM
  • the number of modulation multi-levels is Other I MCSs within the range of I MCS values that determine Q m and target coding rate R may be associated with CP-OFDM.
  • the transmission waveform at the time of retransmission is determined to be the same as the transmission waveform of the PUSCH that previously transmitted the same transport block. According to this modification, since the process for determining the transmission waveform can be omitted at the time of retransmission, there is an advantage that the process for determining the transmission waveform can be simplified.
  • the transmission waveform at the time of retransmission is determined based on the number of transmission layers notified to the terminal. For example, when the number of transmission layers is 1, the terminal determines the PUSCH transmission waveform to be DFT-s-OFDM. On the other hand, when the number of transmission layers is two or more, the terminal determines the PUSCH transmission waveform to be CP-OFDM. According to this modification, it is possible to dynamically notify the transmission waveform even during retransmission. By dynamically switching the transmission waveform depending on the number of transmission layers, it is possible to secure coverage with DFT-s-OFDM and single-layer transmission, and to flexibly switch between high-efficiency transmission with CP-OFDM and multi-layer transmission.
  • the transmission waveform at the time of retransmission is determined based on the modulation level notified to the terminal. Any of the following options may be applied to the correspondence between the modulation level and the transmission waveform.
  • the correspondence between the modulation level and the transmission waveform may be determined in advance according to the standard, or may be set by an upper layer (RRC signaling).
  • the threshold value of MCS numbers (waveform-MCS) or the number of MCS numbers associated with DFT-s-OFDM N MCS may be notified.
  • the correspondence between the I MCS value, which determines only the modulation level Q m , and the I MCS value, which determines the modulation level Q m and the target coding rate R, is determined in advance.
  • the transmission waveform is determined in the same way as the first transmission from the modulation multi-level number Q m that corresponds to the value of I MCS that determines only the modulation multi-level number Q m and the value of I MCS that determines the target coding rate R. be done.
  • the corresponding "I MCS value that determines the modulation multi-level number Q m and target coding rate R” select the smallest I MCS value among multiple I MCS values with the same modulation multi-level number Q m May be used as a value.
  • the index for each modulation level Q m of the I MCS that determines the modulation level Q m associated with the modulation level during retransmission and the target coding rate R is not limited to the minimum index value.
  • An index maximum value may be associated. Alternatively, it may be a value offset from the index minimum value (or maximum value). Further, the index value may be predetermined according to the standard, or may be set by an upper layer (RRC signaling). Furthermore, the value of the offset from the minimum index value (or maximum value) may be determined in advance according to the standard, or may be set by an upper layer (RRC signaling).
  • MCS table determination method MCS table determination method
  • mcs-Table MCS table used when the transmission waveform is CP-OFDM
  • MCS table MCS table used when the transmission waveform is DFT-s-OFDM
  • -TableTransformPrecoder may be set. That is, the terminal first determines the transmission waveform, and then determines the MCS table used for transmission to be the MCS table corresponding to the transmission waveform.
  • Step 1 The terminal determines a transmission waveform based on the MCS index using the method of Embodiment 4.
  • the terminal determines an MCS table based on the determined transmission waveform and the RRC parameters corresponding to the transmission waveform.
  • the RRC parameter is, for example, mcs-Table when the transmission waveform is CP-OFDM, and mcs-TableTransformPrecoder when the transmission waveform is DFT-s-OFDM.
  • Step 3 The terminal determines the modulation level Q m and target coding rate R based on the determined MCS table and MCS index.
  • the terminal determines the MCS table to be used before determining the transmission waveform. For example, it is determined to use the MCS table based on the RRC parameters (eg, mcs-Table) corresponding to CP-OFDM. Alternatively, it may be determined to use the MCS table based on the RRC parameter (for example, mcs-TableTransformPrecoder) corresponding to DFT-s-OFDM.
  • RRC parameters eg, mcs-Table
  • mcs-TableTransformPrecoder for example, mcs-TableTransformPrecoder
  • Step 2 The terminal determines a transmission waveform based on the MCS index using the method of Embodiment 4. Furthermore, the modulation level Q m and target coding rate R are determined based on the determined MCS table and MCS index.
  • Step 1 The terminal determines the MCS table to be the same as the MCS table used in the PUSCH that previously transmitted the same transport block.
  • Step 2 The terminal determines the modulation method and transmission waveform based on the MCS index using the method of the third modification of the fourth embodiment.
  • the terminal determines the MCS table to be used before determining the transmission waveform. For example, it is determined to use the MCS table based on the RRC parameters (eg, mcs-Table) corresponding to CP-OFDM. Alternatively, it may be determined to use the MCS table based on the RRC parameter (for example, mcs-TableTransformPrecoder) corresponding to DFT-s-OFDM.
  • RRC parameters eg, mcs-Table
  • mcs-TableTransformPrecoder for example, mcs-TableTransformPrecoder
  • Step 2 The terminal determines the modulation method and transmission waveform based on the MCS index using the method of Modification 3 of Embodiment 4.
  • Embodiment 5 the terminal determines the PUSCH transmission waveform based on the resource allocation type notified to the terminal by the Frequency domain resource assignment (FDRA) field included in the DCI.
  • FDRA Frequency domain resource assignment
  • Step 1 of the operation example of the fifth embodiment may be the same as that of the first embodiment.
  • Step 2 of the operation example of Embodiment 5 may be the same as the case where dynamic resource allocation type switching of the Frequency domain resource assignment field determination method in other Embodiment 2 described below is enabled.
  • Step 3 The terminal determines frequency resource allocation and transmission waveform for PUSCH transmission based on information in the FDRA field of the DCI. Specifically, the terminal determines the transmission waveform based on the resource allocation type notified in the FDRA field. Specifically, if resource allocation type 0 is notified as the frequency domain resource allocation method, the transmission waveform is determined to be CP-OFDM. On the other hand, if resource allocation type 1 is notified as the frequency domain resource allocation method, the transmission waveform is determined to be DFT-s-OFDM.
  • the PUSCH transmission waveform can be notified using the FDRA field, which is an existing DCI field, dynamic transmission can be performed without increasing the number of DCI bits for switching transmission waveforms. Waveform notifications are now possible.
  • Dynamic transmission waveform switching may be applied to Message 3 or Message A, which is the first uplink data transmission during initial access.
  • the terminal may transmit using a physical random access channel (PRACH), and the terminal may transmit by switching the PRACH preamble depending on whether dynamic transmission waveform switching is supported or not.
  • PRACH physical random access channel
  • the terminal may be notified of the RSRP or RSRQ threshold for switching the transmission waveform. For example, if the RSRP or RSRQ of the reference signal at the time of initial access is less than the threshold, the terminal does not select dynamic transmission waveform switching for PUSCH transmission of Message 3 or Message A, and if it is larger than the threshold, the terminal selects dynamic transmission waveform switching. You may also choose to switch. Alternatively, the terminal selects dynamic transmission waveform switching for PUSCH transmission of Message 3 or Message A if RSRP or RSRQ at the time of initial access is less than the threshold, and does not select dynamic transmission waveform switching if it is greater than the threshold. You can do it like this.
  • a new parameter msg3-transformPrecoderDynamic may be introduced to the System Information Block (SIB), and dynamic transmission waveform switching may be enabled based on msg3-transformPrecoderDynamic. Specifically, if msg3-transformPrecoderDynamic is set in the SIB, the terminal determines that the value of the existing RRC parameter msg3-transformPrecoder is invalid (that is, discards the value of msg3-transformPrecoder); Enable dynamic transmit waveform switching. Alternatively, a new parameter value (msg3-transformPrecodeDynamic) may be introduced to msg3-transformPrecode of SIB.
  • SIB System Information Block
  • RAR Random Access Response
  • DCI format 0-1 or RNR UL grant scrambled with TC-RNTI can be used as method 1, and the number of bits can be increased by using the reserved bit field. I won't let you.
  • Method 2 may be based on number of transmission layers or number of repetitions.
  • Method 3 may be based on the index of the TDRA table.
  • Method 4 may be based on the MCS index.
  • the following method may be used to determine the number of bits for other parameters included in the DCI, such as Frequency domain resource assignment, antenna ports, PTRS-DMRS association, and DMRS sequence initialization.
  • the terminal determines the size (number of bits) of the DCI Frequency domain resource assignment field using the following method.
  • the terminal determines to use DFT-s-OFDM for PUSCH transmission according to the embodiment described above, it applies resource allocation type 1 to the frequency domain resource allocation method. Also, in the Frequency domain resource assignment field. resource allocation is notified by.
  • the terminal determines to use CP-OFDM for PUSCH transmission according to the embodiment described above, it applies resource type 0 to frequency domain resource allocation.
  • resource assignment is notified by N RBG LSB in the Frequency domain resource assignment field.
  • N RB UL,BWP is the number of resource blocks included in the uplink BWP (Bandwith Part) configured in the terminal
  • N RBG is the number of resource block groups (RBG).
  • the number of bits in the Frequency domain resource assignment field is It's a bit.
  • the number of bits in the Frequency domain resource assignment field is determined based on the larger bit of type 0 and type 1, so It's a bit.
  • the terminal determines to use DFT-s-OFDM for PUSCH transmission according to the embodiment described above, it applies resource allocation type 1 to the frequency domain resource allocation method. Also, in the Frequency domain resource assignment field. resource allocation is notified by.
  • the terminal decides to use CP-OFDM for PUSCH transmission according to the embodiment described above, it determines whether to apply resource allocation type 0 or resource allocation type 1 based on the MSB of the Frequency domain resource assignment field. do.
  • resource allocation is notified by N RBG LSB in the Frequency domain resource assignment field.
  • resource allocation type 1 the Frequency domain resource assignment field resource allocation is notified by.
  • ⁇ Method 2> The terminal does not expect resource allocation type 0 to be set when dynamic transmit waveform switching is enabled. In other words, when dynamic transmission waveform switching is enabled, resource allocation type 1 may always be determined as the resource allocation method.
  • the number of bits in the Frequency domain resource assignment field is It's a bit.
  • the antenna port is notified by 2LSB (or 2MSB) of the Antenna ports field. Furthermore, the terminal determines the antenna port based on the mapping table given in FIG. 10 and the information in the antenna ports field.
  • the terminal when it is decided to use CP-OFDM for PUSCH transmission according to the embodiments described above, the terminal performs the process in FIGS. Determine the antenna ports based on the provided mapping table and the information in the Antenna ports field.
  • the terminal determines DFT-s-OFDM for PUSCH transmission, instead of using the mapping table of FIG. 10, the terminal may use the mapping table of FIG. 11 similarly to CP-OFDM.
  • the terminal determines the antenna port based on the mapping table given in FIG. 15 and the information in the antenna ports field.
  • the terminal can perform the operations shown in FIGS. 16, 17, 18 or The antenna port is determined based on the mapping table given in step 19 and the information in the antenna ports field.
  • mapping between Values 0-11 and antenna ports in FIG. 15 and the mapping between Values 2-13 and antenna ports in FIG. 16 are the same. Therefore, when the terminal decides to use DFT-s-OFDM (or enable transform precoding) for PUSCH transmission, instead of using the mapping table in Figure 15, it uses the mapping table in Figure 16 in the same way as CP-OFDM. It's okay.
  • the DMRS type may be dynamically switched based on the transmitted waveform. Specifically, it is as follows.
  • antenna ports are notified by 2LSB (or 2MSB) of the Antenna ports field. Furthermore, the terminal determines the antenna port based on the mapping table given in FIG. 10 and the information in the antenna ports field.
  • the terminal determines to use CP-OFDM for PUSCH transmission according to the embodiments described above, the terminal performs the following in FIG. Determine the antenna ports based on the provided mapping table and the information in the Antenna ports field.
  • the terminal may use the mapping table of FIG. 20 similarly to CP-OFDM.
  • the terminal can perform the operations shown in FIGS.
  • the antenna port is determined based on the mapping table given in 27 and the information in the antenna ports field.
  • the terminal changes the size (number of bits) of the PTRS-DMRS association field of the DCI to a quasi-static CP-OFDM transmission waveform. It may be set to the same number of bits as when it is set manually.
  • the number of bits in the PTRS-DMRS association field is 0 bits. Otherwise, the number of bits in the PTRS-DMRS association field is 2 bits.
  • the value of the PTRS-DMRS association field is valid only when the terminal decides to use CP-OFDM for PUSCH transmission according to the embodiment described above. That is, if the terminal decides to use DFT-s-OFDM for PUSCH transmission according to the embodiment described above, the terminal does not need to consider the value of the PTRS-DMRS association field.
  • the terminal changes the size (number of bits) of the DMRS sequence intitialization field of the DCI to a quasi-static CP-OFDM transmission waveform. It may be set to the same number of bits as when it is set to .
  • the number of bits in the PTRS-DMRS association field is 1 bit.
  • the DCI field size is determined based on the CP-OFDM field size, but the total DCI size (i.e., the number of DCI bits) is determined based on the CP-OFDM field size. - May be determined based on OFDM.
  • each DCI field size may be determined based on the transmission waveform determined by dynamic transmission waveform switching.
  • zero insertion zero padding
  • the DCI field that determines the field size based on CP-OFDM when dynamic transmit waveform switching is enabled may be part of the following DCI fields (e.g., Frequency domain resource assignment): good.
  • DCI fields e.g., Frequency domain resource assignment
  • Precoding information and number of layers e.g., Precoding information and number of layers
  • ⁇ PTRS-DMRS association e.g., PTRS-DMRS association
  • each DCI field size may be determined based on the transmission waveform determined by dynamic transmission waveform switching.
  • the DCI format is not limited to DCI format 0-1 or DCI format 0-2, but may be applied to other DCI formats.
  • the embodiments described above may be applied to a DCI format other than the one used for initial access, that is, a DCI format used after the dedicated RRC parameter is set. Further, the present embodiment may be applied to a DCI format that can notify a transmission rank higher than Rank 1. It may also be applied to the DCI format set in the terminal-specific RRC.
  • the embodiments described above are not limited to DG-PUSCH, but may be applied to PUSCH (Type-2 CG-PUSCH) that transmits PUSCH with semi-fixed resource allocation based on Activation DCI.
  • the above-mentioned transmission waveform notification may be performed based on the field included in the Activation DCI.
  • the DFT-s-OFDM transmission waveform only supported transmission with one layer, and the CP-OFDM transmission waveform supported transmission with two or more layers.
  • the relationship is not limited to the above.
  • the DFT-s-OFDM transmission waveform may support two or more layers. In that case, the number of layers for switching the transmission waveform is replaced from 1 to N, and the DFT-s-OFDM transmission waveform supports transmission with the number of layers N or less, and the CP-OFDM transmission waveform supports transmission with the number of layers N+1 or more. It's okay.
  • FIG. 28 is a flow chart of the present invention.
  • step 3 the terminal determines the transmission waveform based only on the transmission layer.
  • step 3 the terminal determines the transmission waveform based on the transmission layer and TPMI.
  • step 3 the terminal determines the transmission waveform based on TDRA.
  • step 3 the terminal determines the transmission waveform based on the MCS index.
  • FIG. 36 is a block diagram illustrating a partial configuration example of base station 100 according to an embodiment of the present disclosure
  • FIG. 37 illustrates a partial configuration example of terminal 200 according to an embodiment of the present disclosure. It is a block diagram.
  • a control unit uses a first transmission waveform (e.g., DFT-s-OFDM) of an uplink signal (e.g., PUSCH) and a first transmission waveform.
  • a first transmission waveform e.g., DFT-s-OFDM
  • an uplink signal e.g., PUSCH
  • a second transmission waveform e.g., CP-OFDM
  • the field size of control information e.g., DCI
  • a transmitting unit (corresponding to a transmitting circuit, for example) transmits control information based on the determined field size.
  • FIG. 29 is a block diagram showing the configuration of base station 100 according to an embodiment of the present invention.
  • control section 101 upper control signal generation section 102, downlink control information generation section 103, encoding section 104, modulation section 105, signal allocation section 106, extraction section 109, demodulation section 110, and decoding section shown in FIG.
  • At least one of the units 111 may be included in the control unit shown in FIG.
  • the transmitting section 107 shown in FIG. 29 may be included in the transmitting section shown in FIG. 36.
  • the control section 101 determines the encoding/modulation method and radio resource allocation for the downlink signal for transmitting the upper control signal and downlink control information, and transmits the determined information to the encoding section 104, the modulation section 105, and the signal. It is output to the allocation unit 106. Further, the control section 101 outputs the encoding/modulation method and radio resource allocation information for the data signal and higher-level control signal to the downlink control information generation section 103.
  • the upper control signal generation unit 102 generates an upper layer control signal bit string using the control information input from the control unit 101 and outputs it to the encoding unit 104.
  • the downlink control information generation section 103 generates a DCI bit string using the control information input from the control section 101 and outputs the generated DCI bit string to the encoding section 104. Note that control information may be transmitted to multiple terminals.
  • Encoding section 104 encodes the bit string obtained from upper control signal generation section 102 or the DCI bit string input from downlink control information generation section 103, and outputs the encoded bit string to modulation section 105.
  • Modulation section 105 modulates the encoded bit string received from encoding section 104 and outputs it to signal allocation section 106.
  • the signal allocation section 106 maps the downlink data signal or control signal input as a symbol string from the modulation section to the radio resource instructed by the control section 101. Further, signal allocation section 106 inputs the mapped signal to transmitting section 107 .
  • the transmitting unit 107 performs transmission waveform generation such as OFDM on the signal output from the signal allocation unit 106.
  • transmission waveform generation such as OFDM on the signal output from the signal allocation unit 106.
  • the CP is added after applying Inverse Fast Fourier Transform (IFFT).
  • IFFT Inverse Fast Fourier Transform
  • the transmitter 107 performs Radio Frequency (RF) processing such as Digital to Analog (D/A) conversion and up-conversion, and transmits a radio signal to the terminal 200 via the antenna.
  • RF Radio Frequency
  • the receiving unit 108 performs RF processing such as down-conversion or analog-to-digital (A/D) conversion on uplink transmission transmitted from the terminal 200 and received via the antenna. Furthermore, in the case of OFDM transmission, receiving section 108 applies FFT to the received signal to obtain a frequency domain signal and outputs it to extracting section 109 .
  • RF processing such as down-conversion or analog-to-digital (A/D) conversion
  • A/D analog-to-digital
  • the extraction unit 109 Based on the information received from the control unit 101, the extraction unit 109 extracts the radio resource portion where the PUSCH was transmitted from the received signal, and outputs them to the demodulation unit 110.
  • the demodulation unit 110 demodulates PUSCH based on the information received from the control unit 101 and outputs the demodulation result to the decoding unit 111.
  • the decoding unit 111 performs error correction decoding of the PUSCH using the information received from the control unit 101 and the demodulation result obtained from the demodulation unit, and obtains a decoded received bit string.
  • the extraction section 202, demodulation section 203, decoding section 204, control section 205, encoding section 206, modulation section 207, and signal allocation section 208 shown in FIG. 30 is included in the control section shown in FIG. 37.
  • the receiving section 201 shown in FIG. 30 may be included in the receiving section shown in FIG. 37.
  • Extracting section 202 extracts a radio resource portion including a downlink control signal from the received signal received from receiving section 201 using information regarding the radio resource of the control signal input from control section 205, and sends it to demodulating section 203. Output. Further, extraction section 202 extracts a radio resource portion including the data signal using information regarding the radio resource of the data signal inputted from control section 205 and outputs it to demodulation section 203 .
  • Demodulation section 203 demodulates PDCCH or PDSCH based on information received from control section 205 and outputs the demodulation result to decoding section 204.
  • the decoding unit 204 performs error correction decoding of the PDCCH or PDSCH using the information received from the control unit 205 and the demodulation result obtained from the demodulation unit 203, and obtains upper layer control information or downlink control information.
  • Decoding section 204 outputs the obtained upper layer control information and downlink control information to control section 205. Further, the decoding unit 204 may generate an acknowledgment (ACK)/negative ACK (NACK) signal from the decoding result of the PDSCH.
  • ACK acknowledgment
  • NACK negative ACK
  • the control unit 205 uses the method described above to specify the transmission waveform etc. for PUSCH transmission from the information regarding PUSCH transmission obtained from the upper layer control signal and downlink control information, and sends the information to the encoding unit 206, modulation unit 207 and signal allocation. 208. Further, control section 205 outputs the determined information to extraction section 202, demodulation section 203, and decoding section 204.
  • the encoding section 206 encodes the uplink data signal or the uplink control signal from the information input from the control section 205, and outputs the encoded bit string to the modulation section 207.
  • Modulating section 207 modulates the encoded bit sequence received from encoding section 206 based on information input from control section 205 to generate a modulated symbol string, and outputs it to signal allocation section 208.
  • the signal allocation unit 208 maps the signal input from the modulation unit 207 to the radio resource instructed by the control unit 205. Further, signal allocation section 208 outputs the mapped signal to transmission section 209.
  • the transmitting unit 209 performs transmission waveform generation such as OFDM on the signal input from the signal allocation unit 208.
  • transmission waveform generation such as OFDM on the signal input from the signal allocation unit 208.
  • CP is added after IFFT.
  • a DFT section may be added after the modulation section or before the signal allocation section.
  • the transmitter 209 performs RF processing such as D/A conversion and upconversion on the transmission signal. Furthermore, the transmitter 209 transmits a wireless signal to the base station 100 via an antenna.
  • PUSCH transmission has been described as uplink transmission, but the channel used for uplink transmission is not limited to PUSCH, and may be any other channel.
  • the type of information to be transmitted is not limited to data, and may be other types of information (for example, uplink control signals).
  • an embodiment of the present disclosure is not limited to uplink transmission, and may be applied to downlink transmission or sidelink transmission.
  • the transmission waveform is not limited to CP-OFDM and DFT-s-OFDM, and may be a waveform of multi-carrier transmission or another transmission waveform of single-carrier transmission.
  • parameters such as the number of transmission layers, transmission precoding matrix (TPMI), number of slots, number of symbols, symbol position, value of K 2 , and number of repetitions illustrated in this disclosure are merely examples, and other values may be used.
  • the tables illustrated in FIGS. 2 to 27 in this disclosure are merely examples, and the values associated in the tables may be other values, and the types of parameters associated in the tables may be It does not have to be limited to.
  • the present disclosure may be applied to communication between terminals, such as sidelink communication, for example.
  • a downlink control channel, a downlink data channel, an uplink control channel, and an uplink data channel are not limited to PDCCH, PDSCH, PUCCH, and PUSCH, respectively, but are also control channels with other names. and a data channel.
  • RRC signaling is assumed for upper layer signaling, but it may be replaced with Medium Access Control (MAC) signaling and DCI notification, which is physical layer signaling.
  • MAC Medium Access Control
  • (supplement) Information indicating whether or not the terminal 200 supports the functions, operations, or processes shown in each of the above-described embodiments and supplements may be stored in the terminal 200 as, for example, capability information or capability parameters of the terminal 200.
  • the information may be transmitted (or notified) from the base station 100 to the base station 100.
  • the capability information includes an information element (IE) that individually indicates whether or not the terminal 200 supports at least one of the functions, operations, or processes shown in each of the above-described embodiments, modifications, and supplements. May include.
  • the capability information may include an information element indicating whether or not the terminal 200 supports any combination of two or more of the functions, operations, or processes shown in each of the above-described embodiments, modifications, and supplements. May include.
  • the base station 100 may determine (or determine or assume) the functions, operations, or processes that are supported (or not supported) by the terminal 200 that is the source of the capability information.
  • the base station 100 may perform operations, processing, or control according to the determination result based on the capability information.
  • base station 100 may control processing related to uplinks based on capability information received from terminal 200.
  • the terminal 200 does not support some of the functions, operations, or processes shown in each of the embodiments, modifications, and supplements described above. Alternatively, it may be interpreted as limiting the processing. For example, information or requests regarding such restrictions may be notified to the base station 100.
  • Information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly transmitted to the base station 100 in association with information known in the base station 100 or information transmitted to the base station 100. may be notified.
  • the downlink control signal (information) related to the present disclosure may be a signal (information) transmitted on the PDCCH of the physical layer, or a signal (information) transmitted on the MAC CE (Control Element) or RRC of the upper layer. ) is also fine. Further, the downlink control signal may be a predefined signal (information).
  • the uplink control signal (information) related to the present disclosure may be a signal (information) transmitted on the physical layer PUCCH, or a signal (information) transmitted on the upper layer MAC CE or RRC. Further, the uplink control signal may be a predefined signal (information). Further, the uplink control signal may be replaced with UCI (uplink control information), 1st stage SCI (sidelink control information), or 2nd stage SCI.
  • UCI uplink control information
  • 1st stage SCI sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • base stations include TRP (Transmission Reception Point), cluster head, access point, RRH (Remote Radio Head), eNodeB (eNB), gNodeB (gNB), BS (Base Station), and BTS (Base Transceiver Station). , a base unit, a gateway, etc.
  • the base station may be replaced by a terminal.
  • the base station may be a relay device that relays communication between an upper node and a terminal. Further, the base station may be a roadside device.
  • Uplink/Downlink/Sidelink The present disclosure may be applied to any of uplink, downlink, and sidelink.
  • this disclosure can be applied to uplink PUSCH, PUCCH, PRACH, downlink PDSCH, PDCCH, PBCH, sidelink PSSCH (Physical Sidelink Shared Channel), PSCCH (Physical Sidelink Control Channel), PSBCH (Physical Sidelink Broadcast Channel). May be applied.
  • PDCCH, PDSCH, PUSCH, and PUCCH are examples of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel.
  • PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel.
  • PBCH and PSBCH are examples of broadcast channels, and PRACH is an example of a random access channel.
  • the present disclosure may be applied to both data channels and control channels.
  • the channels of the present disclosure may be replaced with data channels PDSCH, PUSCH, and PSSCH, and control channels PDCCH, PUCCH, PBCH, PSCCH, and PSBCH.
  • a reference signal is a signal known to both the base station and the terminal, and is sometimes referred to as an RS (Reference Signal) or a pilot signal.
  • the reference signal can be DMRS, CSI-RS (Channel State Information - Reference Signal), TRS (Tracking Reference Signal), PTRS (Phase Tracking Reference Signal), CRS (Cell-specific Reference Signal), or SRS (Sounding Reference Signal). It may be
  • the unit of time resource is not limited to one or a combination of a slot and a symbol, but is, for example, a frame, a superframe, a subframe, a slot, a timeslot, a subslot, a minislot, or a symbol, OFDM (Orthogonal Frequency
  • the time resource unit may be a time resource unit such as a division multiplexing (SC-FDMA) symbol or an SC-FDMA (Single Carrier - Frequency Division Multiple Access) symbol, or another time resource unit.
  • SC-FDMA division multiplexing
  • SC-FDMA Single Carrier - Frequency Division Multiple Access
  • the present disclosure may be applied to either licensed bands or unlicensed bands.
  • the present disclosure may be applied to any of communication between a base station and a terminal (Uu link communication), communication between a terminal and a terminal (Sidelink communication), and V2X (Vehicle to Everything) communication.
  • the channel of the present disclosure may be replaced with PSCCH, PSSCH, PSFCH (Physical Sidelink Feedback Channel), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, or PBCH.
  • the present disclosure may be applied to either a terrestrial network or a non-terrestrial network (NTN) using satellites or advanced pseudo-satellites (HAPS). Further, the present disclosure may be applied to terrestrial networks with large transmission delays compared to symbol lengths and slot lengths, such as networks with large cell sizes and ultra-wideband transmission networks.
  • NTN non-terrestrial network
  • HAPS advanced pseudo-satellites
  • An antenna port refers to a logical antenna (antenna group) composed of one or more physical antennas. That is, the antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna or the like composed of a plurality of antennas. For example, it is not specified how many physical antennas an antenna port consists of, but is specified as the minimum unit in which a terminal can transmit a reference signal. Further, the antenna port may be defined as the minimum unit by which the weighting of the precoding vector is multiplied.
  • 5G fifth generation mobile phone technology
  • NR new radio access technologies
  • the system architecture as a whole assumes an NG-RAN (Next Generation-Radio Access Network) that includes gNBs.
  • the gNB provides the UE-side termination of the user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols for NG radio access.
  • gNBs are connected to each other by an Xn interface.
  • the gNB also communicates with the NGC (Next Generation Core) through the Next Generation (NG) interface, and more specifically, with the AMF (Access and Mobility Management Function) (e.g., a specific core entity that performs AMF) through the NG-C interface.
  • NGC Next Generation Core
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • NG-U interface a specific core entity that performs UPF
  • the NG-RAN architecture is shown in Figure 31 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack (e.g. 3GPP TS 38.300, see section 4.4.1) includes a PDCP (Packet Data Convergence Protocol (see TS 38.300, section 6.4)) sublayer, which is terminated on the network side in the gNB; It includes the RLC (Radio Link Control (see TS 38.300, Section 6.3)) sublayer and the MAC (Medium Access Control (see TS 38.300, Section 6.2)) sublayer. Additionally, a new Access Stratum (AS) sublayer (SDAP: Service Data Adaptation Protocol) has been introduced on top of PDCP (see, for example, Section 6.5 of 3GPP TS 38.300).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is defined for NR (see e.g. TS 38.300, section 4.4.2).
  • An overview of Layer 2 functionality is provided in Section 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in Sections 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in Section 7 of TS 38.300.
  • the Medium-Access-Control layer handles logical channel multiplexing and scheduling and scheduling-related functions, including handling various numerologies.
  • the physical layer is responsible for encoding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • physical channels include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and PDSCH (Physical Downlink Shared Channel) as downlink physical channels.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communications (mMTC) with diverse requirements in terms of data rates, latency, and coverage.
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and user-experienced data rates that are around three times the data rates offered by IMT-Advanced.
  • URLLC on the other hand, more stringent requirements are imposed for ultra-low latency (0.5 ms for user plane latency in each of UL and DL) and high reliability (1-10-5 within 1 ms).
  • mmTC preferably offers high connection density (1,000,000 devices/km2 in urban environments), wide coverage in harsh environments, and extremely long battery life (15 years) for low-cost devices. can be sought.
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling period
  • the OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling period
  • CP cyclic prefix
  • TTI time-to-live
  • Subcarrier spacing may be optionally optimized so that similar CP overhead is maintained.
  • the NR may support one or more subcarrier spacing values.
  • resource element may be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM/SC-FDMA symbol.
  • resource grids of subcarriers and OFDM symbols are defined for each uplink and downlink.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • FIG. 32 shows functional separation between NG-RAN and 5GC.
  • a logical node of NG-RAN is gNB or ng-eNB.
  • 5GC has logical nodes AMF, UPF, and SMF.
  • gNB and ng-eNB host the following main functions: - Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation of resources to UEs (scheduling) in both uplink and downlink, etc. Radio Resource Management functions; - IP header compression, encryption, and integrity protection of data; - AMF selection upon UE attachment if the routing to the AMF cannot be determined from the information provided by the UE; - Routing of user plane data towards the UPF; - Routing of control plane information towards AMF; - setting up and tearing down connections; - scheduling and sending paging messages; - Scheduling and transmission of system broadcast information (sourced from AMF or OAM: Operation, Admission, Maintenance); - configuration of measurements and measurement reports for mobility and scheduling; - transport level packet marking in the uplink; - Session management; - Support for network slicing; - management of QoS flows and mapping to data radio bearers; - Support for UE in RRC_INACTIVE state; - NAS message distribution
  • Access and Mobility Management Function hosts the following main functions: - Ability to terminate Non-Access Stratum (NAS) signaling; - NAS signaling security; - Access Stratum (AS) security controls; - Core Network (CN) inter-node signaling for mobility between 3GPP access networks; - Reachability of UEs in idle mode (including controlling and performing paging retransmissions); - Management of registration area; - Support for intra-system and inter-system mobility; - Access authentication; - access authorization, including checking roaming privileges; - Mobility management controls (subscription and policies); - Support for network slicing; - Selection of Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - Anchor points for intra-RAT mobility/inter-RAT mobility (if applicable); - External PDU (Protocol Data Unit) session point for interconnection with the data network; - Packet routing and forwarding; - Packet inspection and user plane policy rule enforcement; - Traffic usage reporting; - uplink classifier to support the routing of traffic flows to the data network; - Branching Point to support multi-homed PDU sessions; - QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement); - Verification of uplink traffic (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification triggering functions.
  • Anchor points for intra-RAT mobility/inter-RAT mobility if applicable
  • External PDU Protocol Data Unit
  • Packet inspection and user plane policy rule enforcement Packet inspection and user plane policy rule enforcement
  • Traffic usage reporting - uplink classifier to support the routing of traffic flows to the data network
  • Session Management Function hosts the following main functions: - Session management; - IP address assignment and management for the UE; - UPF selection and control; - ability to configure traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination; - Control part policy enforcement and QoS; - Downlink data notification.
  • UPF User Plane Function
  • Figure 33 shows some of the interactions between the UE, gNB, and AMF (5GC entity) when the UE transitions from RRC_IDLE to RRC_CONNECTED in the NAS part (see TS 38.300 v15.6.0).
  • RRC is upper layer signaling (protocol) used for UE and gNB configuration.
  • the AMF prepares the UE context data (which includes, for example, the PDU session context, security keys, UE Radio Capability, UE Security Capabilities, etc.) and configures the initial context. Send it to gNB along with the setup request (INITIAL CONTEXT SETUP REQUEST).
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
  • the gNB sends an RRCReconfiguration message to the UE, and in response to this, the gNB receives RRCReconfigurationComplete from the UE, thereby performing reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). .
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • the steps regarding RRCReconfiguration are omitted since SRB2 and DRB are not set up.
  • the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • the present disclosure provides a control circuit that establishes a Next Generation (NG) connection with a gNodeB during operation, and a control circuit that establishes a Next Generation (NG) connection during operation so that a signaling radio bearer between the gNodeB and User Equipment (UE) is set up.
  • a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
  • RRC Radio Resource Control
  • IE resource allocation configuration information element
  • Figure 34 shows some use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) is considering three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first stage of specifications for enhanced mobile-broadband (eMBB) communications has been completed.
  • eMBB enhanced mobile-broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massively simultaneous machine type communications
  • Standardization for massive machine-type communications is included.
  • Figure 34 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see eg ITU-R M.2083 Figure 2).
  • URLLC use cases have strict performance requirements such as throughput, latency, and availability.
  • the URLLC use case is envisioned as one of the elemental technologies to realize future applications such as wireless control of industrial production or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and traffic safety. ing.
  • Ultra-high reliability of URLLC is supported by identifying technologies that meet the requirements set by TR 38.913.
  • important requirements include a target user plane latency of 0.5 ms on the UL (uplink) and 0.5 ms on the DL (downlink).
  • the general URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes when the user plane latency is 1 ms.
  • BLER block error rate
  • Technological enhancements targeted by NR URLLC aim to improve latency and reliability.
  • Technological enhancements to improve latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free uplink (of configured grants), slot-level repetition in data channels, and downlink pre-emption.
  • Preemption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, transmissions that were already authorized are replaced by later transmissions. Preemption is applicable regardless of the specific service type. For example, transmission of service type A (URLLC) may be replaced by transmission of service type B (eMBB, etc.).
  • Technical enhancements for reliability include a dedicated CQI/MCS table for the 1E-5 target BLER.
  • Massive machine type communication (mMTC) use cases are characterized by a very large number of connected devices, typically transmitting relatively small amounts of data that are not sensitive to delay.
  • the device is required to be low cost and have a very long battery life. From an NR point of view, utilizing a very narrow bandwidth portion is one solution that saves power and allows longer battery life from the UE's perspective.
  • NR URLLC radio access control
  • the strict requirements are: high reliability (up to 10-6 level reliability), high availability, packet size up to 256 bytes, time synchronization up to a few microseconds (values can vary depending on the use case).
  • the latency as short as 0.5ms to 1ms (eg, 0.5ms latency in the targeted user plane), it can be 1 ⁇ s or a few ⁇ s).
  • NR URLLC there may be some technological enhancements from the physical layer perspective. These technology enhancements include PDCCH (Physical Downlink Control Channel) enhancements for compact DCI, PDCCH repetition, and increased PDCCH monitoring. Further, the enhancement of UCI (Uplink Control Information) relates to enhanced HARQ (Hybrid Automatic Repeat Request) and enhancement of CSI feedback. There may also be PUSCH enhancements related to minislot level hopping and retransmission/repetition enhancements.
  • minislot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • the 5G QoS (Quality of Service) model is based on QoS flows, including QoS flows that require a guaranteed flow bit rate (GBR: Guaranteed Bit Rate QoS flows), and QoS flows that require a guaranteed flow bit rate. (non-GBR QoS flows). Therefore, at the NAS level, a QoS flow is the most fine-grained QoS partition in a PDU session.
  • a QoS flow is identified within a PDU session by a QoS Flow ID (QFI) carried in an encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • the 5GC establishes one or more PDU sessions.
  • the NG-RAN establishes at least one Data Radio Bearers (DRB), eg, as shown above with reference to FIG. 33. Additionally, additional DRBs for the QoS flow of that PDU session can be configured later (it is up to the NG-RAN to decide when to configure them).
  • DRB Data Radio Bearers
  • the NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas AS level mapping rules in the UE and NG-RAN associate UL QoS flows and DL QoS flows with DRBs.
  • FIG. 35 shows the 5G NR non-roaming reference architecture (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function eg, an external application server hosting 5G services, illustrated in FIG. 34
  • AF Application Function
  • NEF Network Exposure Function
  • Policy control e.g. QoS control
  • Application Functions that are considered trusted by the Operator based on deployment by the Operator may interact directly with the associated Network Function.
  • Application Functions that are not allowed by the operator to access Network Functions directly interact with their associated Network Functions using an externally open framework via the NEF.
  • the present disclosure determines the QoS requirements for at least one of the URLLC service, the eMMB service, and the mmTC service in order to establish a PDU session including a radio bearer between the gNodeB and the UE according to the QoS requirements.
  • a transmitter for transmitting a request containing the request to at least one of the functions of the 5GC (e.g., NEF, AMF, SMF, PCF, UPF, etc.); and a control circuit for, in operation, servicing using the established PDU session;
  • An application server eg, 5G architecture AF is provided.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process explained in the above embodiment is partially or entirely realized as an LSI, which is an integrated circuit. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of a single chip that includes some or all of the functional blocks.
  • the LSI may include data input and output.
  • LSIs are sometimes called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized using a dedicated circuit, a general-purpose processor, or a dedicated processor. Furthermore, a field programmable gate array (FPGA) that can be programmed after the LSI is manufactured or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • FPGA field programmable gate array
  • the present disclosure may be implemented as digital or analog processing.
  • the present disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) that have communication capabilities.
  • the communication device may include a wireless transceiver and processing/control circuitry.
  • the wireless transceiver may include a receiving section and a transmitting section, or both as functions.
  • the wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.) ), digital players (e.g.
  • Communication equipment is not limited to portable or movable, but also non-portable or fixed equipment, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "things” that can exist on an Internet of Things (IoT) network.
  • IoT Internet of Things
  • Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform communication functions of a communication device.
  • a terminal is configured to dynamically switch between a first transmission waveform of an uplink signal and a second transmission waveform having a data size larger than the first transmission waveform. , the field size of the control information is determined based on the field size when the second transmission waveform is set.
  • the terminal in (1) above determines the transmission waveform of the uplink signal based on a value notified by a field included in the control information.
  • the terminal in (2) above is configured based on an index notified by a Time domain resource assignment (TDRA) field or a Frequency domain resource assignment (FDRA) field included in the control information. , determining a transmission waveform of the uplink signal.
  • TDRA Time domain resource assignment
  • FDRA Frequency domain resource assignment
  • the terminal of (3) determines the transmission waveform of the uplink signal to be a waveform of single carrier transmission, and the terminal of If the number is 2 or more, the transmission waveform of the uplink signal is determined to be a waveform for multicarrier transmission.
  • the terminal in (4) determines the transmission waveform of the uplink signal based on a value indicating the transmission precoding matrix.
  • the transmission waveform of the uplink signal is determined to be a waveform of multicarrier transmission.
  • the terminal in (5) above determines, based on the index, a time domain allocation resource candidate associated with the index.
  • the association between the index value and the transmission waveform of the uplink signal is set by upper layer signaling.
  • the base station is configured to dynamically switch between a first transmission waveform of an uplink signal and a second transmission waveform having a data size larger than the first transmission waveform.
  • the field size of the control information is determined based on the field size when the second transmission waveform is set.
  • Base station 101 Base station 101, 205 Control unit 102 Upper control signal generation unit 103 Downlink control information generation unit 104, 206 Encoding unit 105, 207 Modulation unit 106, 208 Signal allocation unit 107, 209 Transmission unit 108, 201 Receiving unit 109, 202 extraction unit 110, 203 demodulation unit 111, 204 decoding unit 200 terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する制御回路と、前記フィールドサイズに基づいて、前記制御情報を受信する受信回路と、を具備する。

Description

端末、基地局及び通信方法
 本開示は、端末、基地局及び通信方法に関する。
 近年、無線サービスの拡張・多様化を背景として、Internet of Things(IoT)の飛躍的な発展が期待されており、モバイル通信の活用はスマートフォンなどの情報端末だけではなく、車、住宅、家電、産業用機器などあらゆる分野へ拡大している。サービスの多様化を支えるためには、システム容量の増加だけではなく、接続デバイス数の増加や低遅延性など様々な要件について、モバイル通信システムの大幅な性能および機能の向上が必須である。第5世代移動通信システム(5G:5th Generation mobile communication systems)は、大容量・超高速(eMBB:enhanced Mobile BroadBand)、多数機器間接続(mMTC:massive Machine Type Communication)および超高信頼・低遅延通信(URLLC:Ultra Reliable and Low Latency Communication)の特徴を有し、その特徴を活かして、多種多様なニーズに応じて柔軟な無線通信を提供する。
 国際標準化団体である3rd Generation Partnership Project(3GPP)では、5G無線インターフェースの一つとしてNew Radio(NR)の仕様化が進められている。
 NRで用いる送信信号において、更なる検討が必要である。
 本開示の非限定的な実施例は、上りリンクにおける信号の受信性能を向上できる端末、基地局及び通信方法の提供に資する。
 本開示の一実施例に係る端末は、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定された場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する制御回路と、前記フィールドサイズに基づいて、前記制御情報を受信する受信回路と、を具備する。
 本開示の一実施例によれば、送信信号を適切に送信することができる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Release 17までのNRにおけるPUSCHの送信波形の決定方法 ケース3-1におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース3-2におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース4-1におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース4-2におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース4-3におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース5-1におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース5-2におけるPrecoding information and number of layersフィールドのマッピングテーブル ケース6におけるPrecoding information and number of layersフィールドのマッピングテーブル ケースA1におけるDFT-s-OFDMに対するAntenna portsフィールドのマッピングテーブル ケースA1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数1) ケースA1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数2) ケースA1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数3) ケースA1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数4) ケースA2におけるDFT-s-OFDMに対するAntenna portsフィールドのマッピングテーブル ケースA2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数1) ケースA2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数2) ケースA2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数3) ケースA2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数4) ケースB1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数1) ケースB1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数2) ケースB1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数3) ケースB1におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数4) ケースB2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数1) ケースB2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数2) ケースB2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数3) ケースB2におけるCP-OFDMに対するAntenna portsフィールドのマッピングテーブル(送信レイヤ数4) フローチャート 基地局の構成 端末の構成 NG-RANアーキテクチャ NG-RANと5GCとの間の機能分離 UE、gNB、およびAMF(5GCエンティティ)の間のやり取り 5G NRのためのユースケース 5G NRの非ローミング参照アーキテクチャ 基地局100の一部の構成例を示すブロック図 端末200の一部の構成例を示すブロック図 MCSテーブルの例 MCSテーブルの別の例
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 NRでは、従来セルラ向けに利用されてきた主に700MHz~3.5GH帯などの6GHz以下の周波数帯(FR1:Frequency Range 1)に加えて、広帯域が確保可能な28GHzや39GHzなどのミリ波帯(FR2)が活用される(非特許文献1)。また、FR1においても、3.5GHzといったLong Term Evolution(LTE)や3Gに比べて高い周波数帯が利用される可能性がある。
 周波数帯が高くなるにつれて、伝搬損失が大きく受信品質が劣化するため、NRではLTEや3Gなど従来の無線アクセス技術(RAT:Radio Access Technology)と同程度の通信エリア(カバレッジ)に対して、適切な通信品質を保つことが期待される。3GPP Release 17(Rel.17)およびRelease 18(Rel.18)では、NRのカバレッジを改善することが検討されている(非特許文献2、3)。
 NRでは、端末(例えば、user equipment(UE)とも呼ぶ)は基地局(例えば、gNBとも呼ぶ)からの下りリンク制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)上のレイヤ1制御信号(例えば、DCI:Downlink Control Information)またはレイヤ3であるRadio Resource Control(RRC)で指示されるリソース割当に従って、データを送受信する非特許文献4~7)。
 上りリンク(UL:Uplink)では、端末が基地局からのリソース割当(例えば、Grant又はUL grant)に従って、上りリンクデータチャネル(例えば、PUSCH:Physical Uplink Shared Chanel)を送信する。
 NRでは、PUSCHの送信の送信波形(waveform)として、Discrete Frourier Transform-spread-orthogonal frequency division multiplexing(DFT-s-OFDM)とCyclic prefix-OFDM(CP-OFDM)の両方がサポートされている。DFT-s-OFDMは、送信信号のピーク対平均電力比(PAPR:Peak-to-Average Power Ratio)が低く電力利用効率が高いため、CP-OFDMと比較して広い上りリンクカバレッジを確保できる。一方、CP-OFDMは、Multiple-Input Multuple-Output(MIMO)との親和性が高いことから高Signal-to-Interference and Noise power Ratio(SINR)環境における高効率伝送(例えば、空間多重伝送における複数ランクまたは複数レイヤ送信)に有効な送信波形である。
 Rel.17までのNRでは、PUSCHの送信波形はRRCにより準静的に設定される。図1は、Rel.17までのNRにおけるPUSCHの送信波形の決定方法である。
 Message 3 PUSCHの送信波形は、RRCで設定されるパラメータであるmsg3-transformPrecoderに基づいて決定される。Message A PUSCHの送信波形は、RRCで設定されるパラメータであるmsgA-transformPrecoderに基づいて決定される。RRCでmsgA-transformPrecoderが設定されていない場合は、msg3-transformPrecoderに基づいて送信波形が決定される。
 DCI format 0-0で動的にスケジューリングされるPUSCH(例えば、DG-PUSCH:Dynamic Grant-PUSCH)の送信波形は、RRCで設定されるパラメータであるmsg3-transformPrecoderに基づいて決定される。
 DCI format 0-1またはDCI format 0-2で動的にスケジューリングされるPUSCHの送信波形は、RRCで設定されるpusch-Configに含まれるパラメータであるtransformPrecoderに基づいて決定される。RRCでtransformPrecoderが設定されていない場合は、msg3-transformPrecoderに基づいて送信波形が決定される。
 レイヤ3であるRRCで指示されるリソース割当もしくはActivation DCIによる半固定的なリソース割当でPUSCHを送信するPUSCH(例えば、CG-PUSCH:Configured grant-PUSCH)の送信波形は、RRCで設定されるconfiguredGrantConfigに含まれるパラメータであるtransformPrecoderに基づいて決定される。RRCでtransformPrecoderが設定されていない場合は、msg3-transformPrecoderに基づいて送信波形が決定される。
 また、Rel.17までのNRでは、DFT-s-OFDMによるPUSCH送信の送信レイヤ数は1に制限されている。
 一般的なセルラーシステムでは、上りリンクのカバレッジ改善が重要なセル端の端末に対しては、DFT-s-OFDMを設定してカバレッジを確保する運用が想定される。しかし、セル端の端末においても、チャネルや干渉環境の瞬時変動により高いSINRを確保してPUSCHを送信する状況があり得る。このような場合、送信波形が準静的にしか設定できない制約があると、送信波形をDFT-s-OFDMに設定されたセル端の端末が送信波形を瞬時変動に合わせてCP-OFDMに切り替えて高効率伝送(例えば、MIMO空間多重による複数レイヤ送信など)を行うことが困難であり、セル端端末の伝送効率を向上させることができない。
 PUSCHをスケジューリングするDCI formatを動的に切り替えて、PUSCHの送信波形を動的に変更することが検討されている。
 一つの例として、DCI format 0-0でスケジューリングするPUSCHにDFT-s-OFDMを設定し、DCI format 0-1でスケジューリングするPUSCHにCP-OFDMを設定することができる。しかし、DCI format 0-0は必要最低限の機能を有するPUSCHの割当しかサポートしていないため、DFT-s-OFDM送信波形を用いるPUSCHのスケジューリングへの制約が大きい。具体的には、キャリアアグリゲーションにおけるクロスキャリアスケジューリングができなかったり、Bandwidth Part(BWP)の切り替えが行えなかったり、プリコーディングやアンテナポートの通知ができなかったり、コードブロックグループ(CBG:Code Block Group)ベースの再送制御ができなかったりする。
 もう一つの例として、例えば、DCI format 0-0でスケジューリングするPUSCHにCP-OFDMを設定し、DCI format 0-1でスケジューリングするPUSCHにDFT-s-OFDMを設定することができる。しかし、DCI format 0-0は1レイヤ送信しかサポートしておらず、またDFT-s-OFDM送信波形のPUSCH送信も1レイヤ送信しかサポートしていないため、2レイヤ以上の複数レイヤ送信による高効率伝送ができない。
 単一のDCI format(例えば、DCI format 0-1またはDCI format 0-2のみ)で送信波形を動的に切り替える方法として、DCI formatに送信波形を通知するフィールドを追加することが考えられる。しかし、送信波形通知フィールドの導入は、DCIビット数の増加を招く。特に、DCI format 0-2は、URLLC向けに設計されたDCIであり、可能な限りDCIビット数を削減することでDCIの受信の信頼性を高めることが望ましいから、DCIビット数の増加は望ましくない。
 送信波形を通知するフィールドをDCIに追加することなく、単一のDCIでPUSCHの送信波形を動的に通知することができる端末装置、基地局装置、通信方法および制御方式を提供することが期待される。
 具体的には、基地局は、端末に対して動的な送信波形の切り替えが設定された場合、それぞれの既存DCIのフィールドサイズを、送信波形がCP-OFDMが設定された場合のフィールドサイズに基づいて決定し、かつ既存DCIフィールドを用いてPUSCHの送信波形を通知する。これにより、DCIビット数を増加させることなく、動的な送信波形の通知が可能になる。
 DCI format 0-1又はDCI format 0-2によるDG-PUSCHのための動的送信波形切替は、RRCを介して有効化される。
 動的送信波形切替が有効化された後、有効化された動的送信波形切替を実際に行うにはDCIを受信する必要があり、DCIを受信するためにはDCIフィールドサイズを決定しておく必要がある。
 つまり、動的送信波形切替が有効化されると、DCIフィールドサイズを決定しておく必要があるが、DCIフィールドサイズは、DFT-s-OFDMのサイズよりも大きいCP-OFDMのサイズに基づいて決定される。なお、DFT-s-OFDMのDCIフィールドサイズがCP-OFDMのフィールドサイズよりも大きい場合は、DFT-OFDMのサイズに基づいて決定してもよい。送信波形はDFT-s-OFDMとCP-OFDMに限定されず、3以上の送信波形についても適用可能である。送信波形が3以上の場合は、最も大きいサイズに基づいて決定されるが、最も大きいサイズでない送信波形を採用することも可能である。
 1つの例では、DCIフィールドは下記を含む。
 ・Frequency domain resource assignment
 ・Precoding information and number of layers
 ・Antenna ports
 ・PTRS-DMRS associsation
 ・DMRS sequence initialization
 送信波形がCP-OFDMであるかDFT-s-OFDMであるか、transform precodingの有効化または無効化、はDCI format 0-1またはDCI format 0-2に存在する既存のフィールドを読み替える(repurpose)ことによって通知される。
 これにより、DCIビット数を増加させることなく動的送信波形切替が可能となる。
 以下、本開示の非限定な実施の形態について説明する。
 図28を参照すれば、端末は、ステップ1で、動的送信波形切替が有効か否かを判断する。
 ステップ1で動的送信波形切替が有効な場合、端末は、ステップ2でCP-OFDMに基づいたDCIフィールドサイズを決定する。また、端末は、決定したDCIフィールドサイズに従ってDCIを受信して送信レイヤ数を決定する。
 端末は、ステップ3において、送信レイヤ数に基づいて、送信波形を決定する。例えば、端末は、1レイヤ送信が示されれば、送信波形をDFT-s-OFDMに決定し、2以上のレイヤ送信が示されれば、送信波形をCP-OFDMに決定する。
 ステップ1で動的送信波形切替が有効ではない場合、端末は、送信波形をRRCパラメータに基づいて決定し、DCIフィールドサイズを、準静的に設定されている送信波形に基づいて決定する。
(実施の形態1)
 本実施の形態では、端末は、DCIに含まれるPrecoding information and number of layersフィールドまたはSRIフィールド、によって端末に通知される送信レイヤ数に基づいて、PUSCHの送信波形を決定する。
 [ステップ1]
 DCI format 0-1またはDCI format 0-2で動的にスケジューリングされるDG-PUSCHに対して動的送信波形切替を有効化する(enabled)か無効化する(disabled)かは、RRCにより設定される。例えば、以下の方法により、動的送信波形切替が有効化されてもよい。端末は、Disabledに設定された場合は、準静的な送信波形切替を行う。
<動的送信波形切替の有効化方法1>
 PUSCH-ConfigIEのパラメータ(transformPrecoder)の新たなパラメータ値(dynamicSwitch)により動的送信波形切替を有効化する。DCI format 0-1またはDCI format 0-2で動的にスケジューリングされるPUSCHに対するpusch-Configに含まれるtransformPrecoderの新たなパラメータ値であるdynamicSwitchに基づいて、動的送信波形切替を有効化する。
 具体的には、transformPrecoderの値が、dynamicSwitchに設定された場合、端末は後述するDCIで通知された情報に基づいて、PUSCHの送信波形を動的に決定する。つまり、端末は、PUSCHに対して、DFT-s-OFDMを適用するかCP-OFDMを適用するかを決定する。なお、transformPrecoderに設定される値の「dynamicSwitch」は一例であり、それに限らない。
 一方、transformPrecoderの値が、enabledに設定されている場合、端末は、PUSCHの準静的な送信波形切替を有効化しても良い。端末は、準静的な送信波形切替の有効化の代わりにPUSCHの送信波形を準静的にDFT-s-OFDMに設定しても良い。
 また、transformPrecoderの値が、disabledに設定されている場合、端末は、PUSCHの準静的な送信波形切替を無効化しても良い。端末は、準静的な送信波形切替の無効化の代わりに、PUSCHの送信波形を準静的にCP-OFDMに設定しても良い。
 さらに、transformPrecoderが設定されていない場合は、端末はmsg3-transformPrecoderに基づいて送信波形を決定する。
<動的な送信波形切り替えの有効化方法2>
 DCI format 0-1またはDCI format 0-2で動的にスケジューリングされるPUSCHに対するpusch-ConfigIEに新たなRRCパラメータtransformPrecoderDynamicを導入し、transformPrecoderDynamicに基づいて、動的な送信波形切替を有効化する。
 具体的には、pusch-ConfigIEにtransformPrecoderDynamicが設定された場合、端末は、既存のRRCパラメータであるtransformPrecoderの値は無効であると判断し(つまり、transformPrecoderの値を破棄する)、動的な送信波形切替を有効化し、図28に示すステップ2とステップ3を行う。
 transformPrecoderDynamicが設定されていない場合で、transformPrecoderの値がenabledに設定されている場合は、端末はPUSCHの送信波形を準静的な送信波形切替を有効化しても良い。端末は、準静的な送信波形切替の有効化の代わりにPUSCHの送信波形を準静的にDFT-s-OFDMに設定しても良い。
 transformPrecoderDynamicが設定されていない場合で、transformPrecoderの値がdisabledに設定されている場合、端末はPUSCHの準静的な送信波形切替を無効化しても良い。端末は、準静的な送信波形切替の無効化の代わりに、PUSCHの送信波形を準静的にCP-OFDMに設定しても良い。
 transformPrecoderDynamicが設定されていない場合で、transformPrecoderが設定されていない場合、端末はmsg3-transformPrecoderに基づいて送信波形を決定する。
 [ステップ2]
 実施の形態1では、端末は、DCIに含まれるパラメータのうち、レイヤ数を決定するためにPrecoding information and number of layersフィールドを用いる。以下では、Precoding information and number of layersフィールドを受信するために必要なPrecoding information and number of layersフィールドのサイズ(ビット数)の決定方法について説明する。
 端末は動的な送信波形切替が有効化された場合、DCIのPrecoding information and number of layersフィールドのサイズ(ビット数)はCP-OFDM送信波形が準静的に設定される場合と同じビット数に設定される。具体的には、下記のとおりである。
 なお、ステップ1でCP-ODFM以外の送信波形が設定される場合のDCIフィールドサイズを用いた場合には、用いた送信波形のDCIフィールドサイズに基づいて、Precoding information and number of layersフィールドのサイズ(ビット数)が決定することができる。
 (ケース1)pusch-Config IEに含まれるRRCパラメータtxConfigがnonCodeBookに設定される場合、Precoding information and number of layersフィールドのビット数は0ビットである。
 (ケース2)pusch-Config IEに含まれるRRCパラメータtxConfigがcodebookに設定され、かつアンテナポート数が1に設定される場合、Precoding information and number of layersフィールドのビット数は0ビットである。
 (ケース3)pusch-Config IEに含まれるRRCパラメータtxConfigがcodebookに設定され、アンテナポート数が4に設定され、かつ、ul-FullPowerTransmissionが設定されていない場合もしくはul-FullPowerTransmissionの値がfullpowerMode2またはfullpowerに設定されている場合、
 (ケース3-1)RRCパラメータmaxRankが2、3または4に設定される場合、Precoding information and number of layersフィールドのビット数は4、5または6ビットのいずれかである。
 (ケース3-2)RRCパラメータmaxRankが1に設定される場合、Precoding information and number of layersフィールドのビット数は2、4または5ビットのいずれかである。
 (ケース4)pusch-Config IEに含まれるRRCパラメータtxConfigがcodebookに設定され、アンテナポート数が4に設定され、かつul-FullPowerTransmissionの値がfullpowerMode1に設定されている場合、
 (ケース4-1)RRCパラメータmaxRankが2に設定される場合、Precoding information and number of layersフィールドのビット数は4または5ビットのいずれかである。
 (ケース4-2)RRCパラメータmaxRankが3または4に設定される場合、Precoding information and number of layersフィールドのビット数は4または6ビットのいずれかである。
 (ケース4-3)RRCパラメータmaxRankが1に設定される場合、Precoding information and number of layersフィールドのビット数は3または4ビットのいずれかである。
 (ケース5)pusch-Config IEに含まれるRRCパラメータtxConfigがcodebookに設定され、アンテナポート数が2に設定され、かつ、ul-FullPowerTransmissionが設定されていない場合もしくはul-FullPowerTransmissionの値がfullpowerMode2またはfullpowerに設定されている場合、
 (ケース5-1)RRCパラメータmaxRankが2に設定される場合、Precoding information and number of layersフィールドのビット数は2または4ビットのいずれかである。
 (ケース5-2)RRCパラメータmaxRankが1に設定される場合、Precoding information and number of layersフィールドのビット数は1または3ビットのいずれかである。
 (ケース6)pusch-Config IEに含まれるRRCパラメータtxConfigがcodebookに設定され、アンテナポート数が2に設定され、かつul-FullPowerTransmissionの値が、fullpowerMode1に設定されている場合、Precoding information and number of layersフィールドのビット数は2ビットである。
 [ステップ3]
 端末は、Precoding information and number of layersフィールドのビット数が決定するとPrecoding information and number of layersフィールドを受信することができる。端末は、例えば、DCIのPrecoding information and number of layersフィールドまたはSRIフィールドの情報に基づいて、PUSCH送信の送信レイヤ数を決定する。また、端末は、決定した送信レイヤ数に基づいてPUSCHの送信波形を決定する。
 具体的には、送信レイヤ数が1の場合、端末は、PUSCHの送信波形をDFT-s-OFDMに決定する。一方、送信レイヤ数が2以上の場合、端末は、PUSCHの送信波形をCP-OFDMに決定する。上述したステップ2の各ケースにおけるステップ3での送信波形の決定方法は以下の通りである。
 (ケース1) Precoding information and number of layersのビット数は0なので、端末は、SRIフィールドの情報に基づいて送信レイヤ数を決定する。例えば、端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース2)端末は、送信レイヤ数を1に決定し、送信波形をDFT-s-OFDMに決定する。
 (ケース3-1)端末は、図2で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図2のBit field mapped to indexの値)に基づいて、送信レイヤ数およびTPMI(Transmit Precoding Matrix Index)を決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース3-2)端末は、送信レイヤ数を1に決定し、送信波形をDFT-s-OFDMに決定する。また、端末は、図3で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図3のBit field mapped to indexの値)に基づいて、TPMIを決定する。
 (ケース4-1)端末は、図4で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図4のBit field mapped to indexの値)に基づいて、送信レイヤ数およびTPMIを決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース4-2)端末は、図5で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図5のBit field mapped to indexの値)に基づいて、送信レイヤ数およびTPMIを決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース4-3)端末は、送信レイヤ数を1に決定し、送信波形をDFT-s-OFDMに決定する。また、端末は、図6で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図6のBit field mapped to indexの値)に基づいて、TPMIを決定する。
 (ケース5-1)端末は、図7で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図7のBit field mapped to indexの値)に基づいて、送信レイヤ数およびTPMIを決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース5-2)端末は、送信レイヤ数を1に決定し、送信波形をDFT-s-OFDMに決定する。また、図8で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図8のBit field mapped to indexの値)に基づいて、TPMIを決定する。
 (ケース6)端末は、図9で与えられるマッピングテーブルとPrecoding information and number of layersフィールドの情報(例えば、図9のBit field mapped to indexの値)に基づいて、送信レイヤ数およびTPMIを決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をDFT-s-OFDMに決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 本実施の形態によれば、既存のDCIフィールドであるPrecoding information and number of layersまたはSRIフィールドを用いてPUSCHの送信波形を通知することができるので、送信波形切り替えのためのDCIビット数を増加させることなく、動的な送信波形の通知が可能になる。送信レイヤ数により送信波形を動的に切り替えることで、DFT-s-OFDMおよび1レイヤ送信によるカバレッジの確保と、CP-OFDMおよび複数レイヤ送信による高効率送信の柔軟な切り替えが可能である。
 また、本実施の形態によれば、端末は、CP-OFDMとDFT-s-OFDMとの動的な送信波形の切替を行う場合、CP-OFDMが設定される場合のDCIのフィールドサイズに基づいて、DCIのフィールドサイズを決定する。これにより、単一のDCI format(例えば、DCI format 0-1またはDCI format 0-2)で送信波形を動的に切り替える場合でも、端末は、切り替えられた送信波形に依らずに、DCIのフィールドサイズを把握して、DCIを適切に受信できる。
(実施の形態2)
 本実施の形態では、端末は、DCIに含まれるPrecoding information and number of layersフィールドまたはSRIフィールドによって端末に通知される送信レイヤ数およびTPMIに基づいて、PUSCHの送信波形を決定する。
 実施の形態2では、DCIに含まれるパラメータのうち、レイヤ数を決定するためにPrecoding information and number of layersフィールドを用いているが、Precoding information and number of layersフィールドを受信するために必要なPrecoding information and number of layersフィールドのサイズ(ビット数)の決定方法(すなわちステップ1とステップ2)については、実施の形態1と同じである。
 ステップ3において、送信レイヤ数が1の場合にTPMIの値に基づいてPUSCHの送信波形を決定する点、が実施の形態1と異なる。TPMIと送信波形のマッピングはあらかじめ決めておいても良いし、RRCにより通知されても良い。さらに、TPMIに対して閾値を設定し、通知されるTPMIが閾値より大きい場合に送信波形はDFT-s-OFDMに設定され、TPMIが閾値以下の場合に送信波形はCP-OFDMに設定されてもよい。なお、通知されるTPMIが閾値より大きい場合に送信波形はCP-OFDMに設定され、TPMIが閾値以下の場合に送信波形はDFT-s-OFDMに設定されてもよい。
 [ステップ3]
 端末は、決定した送信レイヤ数およびTPMIに基づいてPUSCHの送信波形を決定する。
 具体的には、端末は、送信レイヤ数が1の場合、TPMIの値に基づいて、PUSCHの送信波形を決定する。一方、端末は、送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。上述したステップ2の各ケースにおけるステップ3での送信波形の決定方法は以下の通りである。
 (ケース1)端末は、SRIフィールドの情報に基づいて送信レイヤ数を決定する。端末は、決定した送信レイヤ数が1の場合、PUSCHの送信波形をSRIに基づいて決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース2)端末は、送信レイヤ数を1に決定し、送信波形をDFT-s-OFDMに決定する。
(ケース3-1)端末は、図2で与えられるマッピングテーブルに基づいて、決定した送信レイヤ数が1の場合、TPMIの値に基づいてPUSCHの送信波形を決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
(ケース3-2)端末は、図3で与えられるマッピングテーブルに基づいて、TPMIの値に基づいてPUSCHの送信波形を決定する。
 (ケース4-1)端末は、図4で与えられるマッピングテーブルに基づいて、決定した送信レイヤ数が1の場合、TPMIの値に基づいてPUSCHの送信波形を決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース4-2)端末は、図5で与えられるマッピングテーブルに基づいて、決定した送信レイヤ数が1の場合、TPMIの値に基づいてPUSCHの送信波形を決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース4-3)端末は、図6で与えられるマッピングテーブルに基づいて、TPMIの値に基づいてPUSCHの送信波形を決定する。
 (ケース5-1)端末は、図7で与えられるマッピングテーブルに基づいて、決定した送信レイヤ数が1の場合、TPMIの値に基づいてPUSCHの送信波形を決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 (ケース5-2)端末は、図8で与えられるマッピングテーブルに基づいて、TPMIの値に基づいてPUSCHの送信波形を決定する。
 (ケース6)端末は、図9で与えられるマッピングテーブルに基づいて、決定した送信レイヤ数が1の場合、TPMIの値に基づいてPUSCHの送信波形を決定し、決定した送信レイヤ数が2以上の場合、PUSCHの送信波形をCP-OFDMに決定する。
 TPMIの値とPUSCHの送信波形との対応付け(例えば、TPMI=nが通知された場合の送信波形)は、予め決められていてもよいし、RRCにより対応付けが設定されてもよい。
 RRCによる対応付けでは、TPMI番号それぞれの送信波形との対応付けが通知されてもよいし、送信波形を切り替えるTPMI番号の閾値が通知されてもよい。
 閾値が設定された場合は、例えば、閾値以下のTPMI番号は、DFT-s-OFDMに対応づけられ、閾値より大きいTPMI番号はCP-OFDMに対応づけられてもよい。または、例えば、閾値以下のTPMI番号は、CP-OFDMに対応づけられ、閾値より大きいTPMI番号はDFT-s-OFDMに対応づけられてもよい。
 また、送信波形の数に応じて複数の閾値を設けることができる。第1の閾値以下のTPMI番号は第1の送信波形に対応づけられ、第1の閾値より大きく第2の閾値以下のTPMI番号は第2の送信波形に対応づけられ、第2の閾値より大きいTPMI番号は第3の送信波形に対応づけられても良い。
 また、DFT-s-OFDMに対応づけられるTPMI番号の数NTPMIが通知されてもよい。この場合は、例えば、TPMI=0~NTPMI-1までがDFT-s-OFDMに対応づけられ、それ以外のTPMI番号がCP-OFDMに対応づけられてもよい。また、TPMIの値とPUSCHの送信波形との対応付けは、上述したケース毎に異なっていてもよいし、同一の対応付けが用いられてもよい。またDFT-s-OFDMに対応づけられるTPMI番号の数とCP-OFDMに対応づけられれるTPMI番号の数は異なってもよい。
 本実施の形態によれば、既存のDCIフィールドであるPrecoding information and number of layersまたはSRIフィールドを用いてPUSCHの送信波形を通知することができるので、送信波形切り替えのためのDCIビット数を増加させることなく、動的な送信波形の通知が可能になる。送信レイヤ数により送信波形を動的に切り替えることで、DFT-s-OFDMおよび1レイヤ送信によるカバレッジの確保と、CP-OFDMおよび複数レイヤ送信による高効率送信の柔軟な切り替えが可能である。また、1レイヤ送信において、TPMIにも基づいて送信波形が決定されるので、より柔軟に送信波形を切り替えることができる。
(実施の形態3)
 実施の形態3の動作例のステップ1は実施の形態1と同じで良い。
 実施の形態3では、端末は、DCIに含まれるTime domain resource assignment (TDRA)フィールドによって端末に通知されるインデックスに基づいて、PUSCHの送信波形を決定するので、ステップ2ではTDRAを受信するために必要なTDRAのビット数の決定方法について説明する。
 [ステップ2]
 TDRAのビット数はCP-OFDMでもDFT-s-OFDMでも同じである。端末はDCIのTDRAフィールドのサイズ(ビット数)を
Figure JPOXMLDOC01-appb-M000001
 ビットに設定する。ここで、Iは、RRCパラメータpusch-TimeDomainAllocationListの登録数である。
 DCIのPrecoding information and number of layersフィールドやAntenna portsを例とする他のフィールドのサイズ(ビット数)はCP-OFDMに基づいて決められる。実施の形態1で記載したように、DFT-s-OFDMに基づいて決めることもできる。
 TDRAには、PUSCHで適用される、スロットオフセットK2、開始・長さインジケータSLIV又は開始シンボルSとシンボル数(PUSCH長)L、PUSCHマッピングタイプ、繰り返し送信回数、および送信波形が含まれていてもよい。
 また、端末は、DCIのPrecoding information and number of layersフィールドのサイズ(ビット数)を決定してもよい。Precoding information and number of layersフィールドのサイズ(ビット数)の決定方法は実施の形態1および2と同様である。
[ステップ3]
 端末は、DCIのTDRAフィールドの情報に基づいて、PUSCH送信の時間領域リソース割当および送信波形を決定する。具体的には、端末は、TDRAフィールドで通知されたインデックスに基づいて、そのインデックスに対応付けられた時間領域割当リソース候補(つまり、K2、S、L、PUSCHマッピングタイプ、繰り返し回数、送信波形の組み合わせ)を決定する。
 TDRAのインデックスと対応付けられた時間領域リソース候補の情報は、RRCで通知することができる。
 TDRAのインデックスの値とPUSCHの送信波形との対応付け(例えば、インデックスnが通知された場合の送信波形)は、RRCにより設定されてよい。またDFT-s-OFDMに対応づけられるインデックスの数とCP-OFDMに対応づけられるインデックスの数は異なってもよい。
 また、端末はTDRAフィールドの情報に基づいて、PUSCHの送信波形をDTF-s-OFDMに決定した場合、Precoding information and number of layersフィールドによって、送信レイヤ数2以上が通知されることを想定しない。
 本実施の形態によれば、既存のDCIフィールドであるTDRAフィールドを用いてPUSCHの送信波形を通知することができるので、送信波形切り替えのためのDCIビット数を増加させることなく、動的な送信波形の通知が可能になる。
(実施の形態4)
 実施の形態4では、端末は、DCIに含まれるModulation and coding scheme(MCS)フィールドによって端末に通知されるインデックスに基づいて、PUSCHの送信波形を決定する。以下では、MCSフィールドを受信するために必要なMCSフィールドのサイズの決定方法について説明する。
 実施の形態4のステップ1は、実施の形態1と同じで良い。
[ステップ2]
 DCIのMCSフィールドのサイズ(ビット数)は、CP-OFDMでもDFT-s-OFDMでも5ビットであるから、端末はMCSフィールドのサイズ(ビット数)を5ビットに設定する。
 DCIのPrecoding information and number of layersフィールドやAntenna portsを例とする他のフィールドのサイズ(ビット数)はCP-OFDMに基づいて決められる。実施の形態1で記載したように、DFT-s-OFDMに基づいて決めることもできる。
[ステップ3]
 端末は、DCIのIMCSを用いて、MCSテーブルから変調多値数Qm、ターゲット符号化率Rを決定する。具体的には、端末は、MCSフィールドで通知されたインデックスIMCSに基づいて、送信波形を決定する。
 IMCSの値とPUSCHの送信波形との対応付け(例えば、IMCS=nが通知された場合の送信波形)は、予め規格で決められていてもよいし、RRCにより対応付けが設定されてもよい。また、RRCによる対応付けでは、IMCSそれぞれの送信波形との対応付けが通知されてもよいし、送信波形を切り替えるMCS番号の閾値(waveform-MCS)が通知されてもよい。
 閾値が設定された場合は、例えば、閾値以下のMCS番号は、DFT-s-OFDMに対応づけられ、閾値より大きいMCS番号はCP-OFDMに対応づけられてもよい。DFT-s-OFDMを用いる広範囲を対象とする場合は、符号化率を下げて信頼度を上げることが多く、CP-OFDMは高効率を目指すので、高い符号化率(高いMCS番号)をCP-OFDMに割り当てることが効果的である。
 しかし、閾値以下のMCS番号はCP-OFDMに対応づけられ、閾値より大きいMCS番号は、DFT-s-OFDMに対応づけることで、送信波形が高効率を目指す場合に符号化で信頼度を高くするようにしてもよい。
 また、DFT-s-OFDMに対応づけられるMCS番号の数NMCSが通知されてもよい。この場合は、例えば、IMCS=0~NMCS-1までがDFT-s-OFDMに対応づけられ、それ以外のIMCSがCP-OFDMに対応づけられてもよい。逆に、IMCS=0~NMCS-1までがCP-OFDMに対応づけられ、それ以外のIMCSがDFT-s-OFDMに対応づけられてもよい。
 また、DFT-s-OFDMに対応づけられるMCS番号の数とCP-OFDMに対応づけられるMCS番号の数は異なってもよい。
 本実施の形態によれば、既存のDCIフィールドであるMCSフィールドを用いてPUSCHの送信波形を通知することができるので、送信波形切り替えのためのDCIビット数を増加させることなく、動的な送信波形の通知が可能になる。
(実施の形態4の変形例)
 非特許文献7によれば、NRのMCSテーブルには、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値、及び変調多値数Qmのみを決定するIMCSの値がある。例えば、CP-OFDMに対する256QAMを含むMCSテーブル又はDFT-s-OFDMに対するMCSテーブルでは、0<=IMCS<=27が変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値であり(図38)、28<=IMCS<=31が変調多値数Qmのみを決定するIMCSの値である。また、CP-OFDMに対する64QAMまでを含む(つまり,256QAMを含まない)MCSテーブルでは、0<=IMCS<=28が変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値であり、29<=IMCS<=31が変調多値数Qmのみを決定するIMCSの値である(図39)。一般に、初回送信時には、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値が通知され、再送時には、変調多値数Qmのみを決定するIMCSの値が通知される。
 変調多値数Qmのみを決定するIMCSの値は、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値から連続して、MCS番号が大きくなるごとにスペクトル効率が高くなるという性質ではなく、図38ではIMCS=28、図39ではIMCS=29で、変調多値数Qmが一度小さくなり、また、MCS番号が大きくなってもターゲット符号化率Rが決定されていないからスペクトル効率も未定である。したがって、実施の形態4を再送時にそのまま適用することはできない。そこで、本変形例では、再送時(つまり、変調多値数Qmのみを決定するIMCSの値が通知された場合)における送信波形決定方法について述べる。
 以下の変形例1~3は、再送時における送信波形の決定について記載しており、初回送信時における送信波形決定は、実施の形態4における送信波形決定方法を用いてよい。初回送信時における送信波形を切り替えるMCS番号の閾値(waveform-MCS)もしくはDFT-s-OFDMに対応づけられるMCS番号の数NMCSがとり得る値の範囲は、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値としてもよい。
 閾値が設定された場合は、例えば、閾値以下のMCS番号は、DFT-s-OFDMに対応づけられ、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値の範囲における閾値より大きいMCS番号はCP-OFDMに対応づけられてもよい。
 また、DFT-s-OFDMに対応づけられるMCS番号の数NMCSが通知される場合は、例えば、IMCS=0~NMCS-1がDFT-s-OFDMに対応づけられ、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値の範囲におけるそれ以外のIMCSがCP-OFDMに対応づけられてもよい。
(実施の形態4の変形例1)
 本変形例では、再送時の送信波形は、一つ前に同じトランスポートブロックを送信したPUSCHの送信波形と同一に決定される。本変形例によれば、再送時に送信波形決定のための処理を省くことができるため、送信波形決定処理を簡易にできる利点がある。
(実施の形態4の変形例2)
 本変形例では、再送時の送信波形は、端末に通知される送信レイヤ数に基づいて決定される。例えば、送信レイヤ数が1の場合、端末は、PUSCHの送信波形をDFT-s-OFDMに決定する。一方、送信レイヤ数が2以上の場合、端末は、PUSCHの送信波形をCP-OFDMに決定する。本変形例によれば、再送時も動的な送信波形の通知が可能になる。送信レイヤ数により送信波形を動的に切り替えることで、DFT-s-OFDMおよび1レイヤ送信によるカバレッジの確保及び、CP-OFDMおよび複数レイヤ送信による高効率送信の柔軟な切り替えが可能である。
(実施の形態4の変形例3)
 本変形例では、再送時の送信波形は、端末に通知される変調多値数に基づいて決定される。変調多値数と送信波形との対応付けには、以下のいずれかのオプションが適用されてよい。
<Option 1>
 変調多値数と送信波形との対応付けが予め決定されている。例えば、QPSK(Qm=2)又は16QAM(Qm=4)の場合はDFT-s-OFDMとし、64QAM(Qm=6)256QAM(Qm=8)の場合はCP-OFDMとする、のような対応付けが決められていてもよい。変調多値数と送信波形の対応付けは規格上予め決まられていてもよいし、上位レイヤ(RRCシグナリング)により設定されてもよい。また、実施の形態4と同様に変調多値数Qmのみを決定するIMCSの値に対して、MCS番号の閾値(waveform-MCS)もしくはDFT-s-OFDMに対応づけられるMCS番号の数NMCSが通知されてもよい。
<Option 2>
 変調多値数Qmのみを決定するIMCSの値に対して、変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値、の対応付けが予め決定されていて、再送時は、変調多値数Qmのみを決定するIMCSの値に対応する変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値、から初回送信時と同様に送信波形が決定される。対応先の「変調多値数Qm及びターゲット符号化率Rを決定するIMCSの値」として、同じ変調多値数Qmを有する複数のIMCSの値のうち、一番小さいIMCSの値としてもよい。例えば、図38に示す、CP-OFDMに対する256QAMを含むMCSテーブルでは変調多値数Qm及びターゲット符号化率Rを決定するIMCSの各変調多値数に対するインデックス最小値は、QPSK(Qm=2)ではIMCS=0、16QAM(Qm=4)ではIMCS=5、64QAM(Qm=6)ではIMCS=11、256QAM(Qm=8)ではIMCS=20である。つまり、送信波形の決定については、再送時のIMCS=28(Qm=2)に対してはIMCS=0、IMCS=29(Qm=4)に対してはIMCS=5、IMCS=30(Qm=6)に対してはIMCS=11、IMCS=31(Qm=8)に対してはIMCS=20、であるとして初回送信時と同様に送信波形が決定されてもよい。
 なお、再送時の変調多値数と対応づけられる変調多値数Qmとターゲット符号化率Rを決定するIMCSの各変調多値数に対するインデックスは、インデックス最小値に限らない。インデックス最大値が対応付けられてもよい。また、インデックス最小値(又は最大値)からオフセットされた値としてもよい。また、インデックスの値が規格上予め決まられていてもよいし、上位レイヤ(RRCシグナリング)により設定されてもよい。また、インデックス最小値(または最大値)からのオフセットの値は、規格上予め決まられていてもよいし、上位レイヤ(RRCシグナリング)により設定されてもよい。
(MCSテーブル決定方法)
 非特許文献7によれば、NRでは、端末に対して、送信波形がCP-OFDMの場合に用いるMCSテーブル(mcs-Table)および送信波形がDFT-s-OFDMの場合に用いるMCSテーブル(mcs-TableTransformPrecoder)が設定され得る。つまり、端末は、まず送信波形を決定し、その後、送信に用いるMCSテーブルを送信波形に対応するMCSテーブルに決定する。
 一方,実施の形態4の変形例3では、再送時の送信波形決定にMCSテーブルが必要であるため、送信波形を決定する前にMCSテーブルを決定しておく必要がある。MCSテーブル決定方法については、以下のオプションが適用されてよい。
<初回送信時,Option 1>
 [Step 1]端末は、実施の形態4の方法により、MCSインデックスに基づいて送信波形を決定する。
 [Step 2]端末は、決定した送信波形とその送信波形に対応するRRCパラメータに基づいてMCSテーブルを決定する。RRCパラメータは、例えば、送信波形がCP-OFDMの場合はmcs-Table、送信波形がDFT-s-OFDMの場合はmcs-TableTransformPrecoderである。
 [Step 3]端末は、決定したMCSテーブルとMCSインデックスに基づいて変調多値数Qmとターゲット符号化率Rを決定する。
 なお、本オプションは、実施の形態4の変形例3に限らず、実施の形態4および実施の形態4の変形例すべてに適用されてよい。<初回送信時,Option 2>
 [Step 1]端末は、送信波形決定前に予め使用するMCSテーブルを決定しておく。例えば、CP-OFDMに対応するRRCパラメータ(例えば、mcs-Table)に基づいてMCSテーブルを使用すると決定する。又は、DFT-s-OFDMに対応するRRCパラメータ(例えば、mcs-TableTransformPrecoder)に基づいてMCSテーブルを使用すると決定してもよい。
 [Step 2]端末は、実施の形態4の方法により、MCSインデックスに基づいて送信波形を決定する。また、決定したMCSテーブルとMCSインデックスに基づいて変調多値数Qmとターゲット符号化率Rを決定する。
 なお、本オプションは、実施の形態4の変形例3に限らず、実施の形態4および実施の形態4の変形例すべてに適用されてよい。
<再送時,Option 1>
 [Step 1]端末は、MCSテーブルを、一つ前に同じトランスポートブロックを送信したPUSCHで用いたMCSテーブルと同一に決定する。
 [Step 2]端末は、実施の形態4変形例3の方法により、MCSインデックスに基づいて変調方式および送信波形を決定する。
<再送時,Option 2>
 [Step 1]端末は、送信波形決定前に予め使用するMCSテーブルを決定しておく。例えば、CP-OFDMに対応するRRCパラメータ(例えば、mcs-Table)に基づいてMCSテーブルを使用すると決定する。または、DFT-s-OFDMに対応するRRCパラメータ(例えば、mcs-TableTransformPrecoder)に基づいてMCSテーブルを使用すると決定してもよい。
 [Step 2]端末は、実施の形態4の変形例3の方法により、MCSインデックスに基づいて変調方式および送信波形を決定する。
(実施の形態5)
 実施の形態5では、端末は、DCIに含まれるFrequency domain resource assignment (FDRA)フィールドによって端末に通知されるリソース割当タイプに基づいて、PUSCHの送信波形を決定する。
 実施の形態5の動作例のステップ1は、実施の形態1と同じで良い。
 実施の形態5の動作例のステップ2は、下記に記載する他の実施の形態2におけるFrequency domain resource assignmentフィールド決定方法の動的resource allocation type切替が有効化された場合と同じでよい。
 [ステップ3]
 端末は、DCIのFDRAフィールドの情報に基づいて、PUSCH送信の周波数リソース割当および送信波形を決定する。具体的には、端末は、FDRAフィールドで通知されたリソース割当タイプに基づいて、送信波形を決定する。具体的には,周波数領域リソース割当方法にresource allocation type 0が通知された場合は,送信波形をCP-OFDMに決定する.一方,周波数領域リソース割当方法にresource allocation type 1が通知された場合は,送信波形をDFT-s-OFDMに決定する。
 本実施の形態によれば、既存のDCIフィールドであるFDRAフィールドを用いてPUSCHの送信波形を通知することができるので、送信波形切り替えのためのDCIビット数を増加させることなく、動的な送信波形の通知が可能になる。
(他の実施の形態1)
 動的な送信波形切替は、初期アクセス時の最初の上りリンクデータ送信であるMessage 3またはMessage Aに適用されてもよい。
 この場合、端末はランダムアクセスチャネル(PRACH:Physical Random Acecss Channel)で送信し、動的送信波形切替をサポートする場合とサポートしない場合とでPRACHのPreambleを切り替えて端末が送信しても良い。
 さらに、送信波形を切り替えるRSRPまたはRSRQの閾値が端末に通知されてもよい。例えば、端末は、初期アクセス時の参照信号のRSRPまたはRSRQが閾値以下の場合は、Message 3またはMessage AのPUSCH送信に動的送信波形切替を選択せず、閾値より大きい場合は動的送信波形切替を選択してもよい。または、端末は、初期アクセス時のRSRPまたはRSRQが閾値以下の場合は、Message 3またはMessage AのPUSCH送信に動的送信波形切替を選択し、閾値より大きい場合に動的送信波形切替を選択しないようにしても良い。
 また、System Information Block(SIB)に新たなパラメータmsg3-transformPrecoderDynamicを導入し、msg3-transformPrecoderDynamicに基づいて、動的な送信波形切り替えを有効化してもよい。具体的には、SIBでmsg3-transformPrecoderDynamicが設定された場合、端末は、既存のRRCパラメータであるmsg3-transformPrecoderの値は無効であると判断し(つまり、msg3-transformPrecoderの値を破棄する)、動的な送信波形切り替えを有効化する。または、SIBのmsg3-transformPrecodeに新たなパラメータ値(msg3-transformPrecodeDynamic)を導入しても良い。
 端末は、Temporary Cell-Radio Network Temporary identifie(TC-RNTI)でスクランブルされたDCI format 0-1またはRandom Access Response(RAR) ULグラントに含まれる情報に基づいて、動的送信波形切替が有効か無効かを決定してもよい。
 送信波形の通知(waveform indication)には、方法1としてTC-RNTIでスクランブルされたDCI format 0-1またはRNR ULグラントを用いてよく、さらに予約ビット(reserved bit)フィールドを用いるとビット数を増加させない。
 方法2としてnumber of transmission layer or number of repetitionsに基づいても良い。
 方法3としてTDRAテーブルのインデックスに基づいても良い。
 方法4としてMCSインデックスに基づいても良い。
(他の実施の形態2)
 上述した実施の形態において、DCIに含まれるその他のパラメータ、例えば、Frequency domain resource assignment、Antenna ports、PTRS-DMRS associsation、DMRS sequence initializationのビット数の決定方法については以下の方法を用いてもよい。
[Frequency domain resource assignmentフィールド]
<方法1>
 端末は動的な送信波形の切り替えが有効化された場合、DCIのFrequency domain resource assignmentフィールドのサイズ(ビット数)を以下の方法により決定する。
 端末は、上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、周波数領域リソース割当方法にresource allocation type 1を適用する。また、Frequency domain resource assignment フィールドの
Figure JPOXMLDOC01-appb-M000002
によってリソース割当が通知される。
 一方、端末は、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、周波数領域リソース割当にresource allocation type 0を適用する。また、Frequency domain resource assignment フィールドのNRBG LSBによってリソース割当が通知される。
(resource allocation type 0が設定された場合)
 Frequency domain resource assignment フィールドのビット数は、
Figure JPOXMLDOC01-appb-M000003
ビットである。ここで、NRB UL,BWPは、端末に設定された上りリンクBWP(Bandwith Part)に含まれるリソースブロック数、NRBGはリソースブロックグループ(RBG)数である。
(resource allocation type 1が設定された場合)
 Frequency domain resource assignment フィールドのビット数は、
Figure JPOXMLDOC01-appb-M000004
ビットである。
(動的resource allocation tyoe切替が有効化された場合)
 Frequency domain resource assignment フィールドのビット数は、type 0とtype 1の大きい方のビットに基づいて決定するから、
Figure JPOXMLDOC01-appb-M000005
ビットである。
 端末は、上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、周波数領域リソース割当方法にresource allocation type 1を適用する。また、Frequency domain resource assignment フィールドの
Figure JPOXMLDOC01-appb-M000006
によってリソース割当が通知される。
 一方、端末は、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、Frequency domain resource assignment フィールドのMSBによって、resource allocation type 0かresource allocation type 1を適用するかを決定する。
 resource allocation type 0を適用する場合、Frequency domain resource assignment フィールドのNRBG LSBによってリソース割当が通知される。resource allocation type 1を適用する場合、Frequency domain resource assignment フィールドの
Figure JPOXMLDOC01-appb-M000007
によってリソース割当が通知される。
<方法2>
 端末は動的な送信波形の切り替えが有効化された場合、resource allocation type 0が設定されることを想定しない。つまり、動的な送信波形の切り替えが有効化された場合、常にリソース割当方法をresource allocation type 1に決定してもよい。
 そうすると、Frequency domain resource assignment フィールドのビット数は、
Figure JPOXMLDOC01-appb-M000008
ビットである。
[Antenna portsフィールド]
 (ケースA1)
 RRCパラメータがdmrs-Type=1およびmaxLength=1に設定される場合、Antenna portsフィールドのビット数は3ビットである。
 上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、Antenna portsフィールドの2LSB(もしくは2MSB)によってアンテナポートが通知される。また、端末は、図10で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 一方、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、端末は、送信レイヤ数が1、2、3または4のそれぞれについて、図11、12、13または14で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 なお、図10のValue0、1、2および3とアンテナポートのマッピングと図11のValue 2、3、4および5とアンテナポートのマッピングは同一である。そのため、端末は、PUSCH送信にDFT-s-OFDMを決定した場合、図10のマッピングテーブルを用いる代わりに、CP-OFDMと同様に図11のマッピングテーブルを用いてもよい。
 (ケースA2)RRCパラメータがdmrs-Type=1およびmaxLength=2に設定される場合、Antenna portsフィールドのビット数は4ビットである。
 端末は、上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、図15で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 一方、端末は、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、送信レイヤ数が1、2、3または4の場合のそれぞれについて、図16、17、18または19で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 なお、図15のValue 0-11とアンテナポートのマッピングと図16のValue 2-13とアンテナポートのマッピングは同一である。そのため、端末は、PUSCH送信にDFT-s-OFDM(または、transform precodingを有効化)を決定した場合、図15のマッピングテーブルを用いる代わりに、CP-OFDMと同様に図16のマッピングテーブルを用いてもよい。
 Rel.17までのNRでは、送信波形にDFT-s-OFDMを用いるPUSCHは、RRCパラメータがdmrs-Type=2に設定されることをサポートしていない。そのため、端末は動的な送信波形の切り替えが有効化された場合、dmrs-Type=2が設定されることを想定しないとしてもよい。つまり、動的な送信波形の切り替えが有効化された場合、DMRSタイプは常にdmrs-Type=1に決定されてもよい。
 一方、端末は動的な送信波形の切り替えが有効化された場合、dmrs-Type=2が設定されることを想定してもよい。この場合、DMRSタイプが送信波形に基づいて動的に切り替えられてもよい。具体的には、以下の通りである。
 (ケースB1)RRCパラメータがdmrs-Type=2およびmaxLength=1に設定される場合、Antenna portsフィールドのビット数は4ビットである。
 上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、 Antenna portsフィールドの2LSB(もしくは2MSB)によってアンテナポートが通知される。また、端末は、図10で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 端末は、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、送信レイヤ数が1、2、3または4の場合のそれぞれについて、図20、21、22または23で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 なお、図10のValue0、1、2および3とアンテナポートのマッピングと図20のValue 2、3、4および5とアンテナポートのマッピングは同一である。そのため、端末は、PUSCH送信にDFT-s-OFDMを決定した場合、図10のマッピングテーブルを用いる代わりに、CP-OFDMと同様に図20のマッピングテーブルを用いてもよい。
 (ケースB2)RRCパラメータがdmrs-Type=2およびmaxLength=2に設定される場合、Antenna portsフィールドのビット数は5ビットである。
 上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合、DMRSタイプをdmrs-Type=1に決定し、Antenna portsフィールドの4LSB(もしくは4MSB)によってアンテナポートが通知される。また、端末は、図15で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
 一方、端末は、上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合、送信レイヤ数が1、2、3または4の場合のそれぞれについて、図24、25、26または27で与えられるマッピングテーブルとAntenna portsフィールドの情報に基づいて、アンテナポートを決定する。
[PTRS-DMRS associationフィールド]
 上述した実施の形態のステップ2と同様に、端末は動的な送信波形の切り替えが有効化された場合、DCIのPTRS-DMRS associationフィールドのサイズ(ビット数)をCP-OFDM送信波形が準静的に設定される場合と同じビット数に設定してよい。
 具体的には、RRCパラメータPTRS-UplinkConfigが設定されない場合およびmaxRank=1が設定された場合、PTRS-DMRS associationフィールドのビット数は0ビットである。それ以外の場合は、PTRS-DMRS associationフィールドのビット数は2ビットである。
 ここで、PTRS-DMRS associationフィールドの値は、端末が上述した実施の形態によりPUSCH送信にCP-OFDMを使用することを決定した場合のみ有効である。つまり、端末が上述した実施の形態によりPUSCH送信にDFT-s-OFDMを使用することを決定した場合は、端末はPTRS-DMRS associationフィールドの値を考慮しなくてよい。
[DMRS sequence intitializationフィールド]
 上述した実施の形態のステップ2と同様に、端末は動的な送信波形の切り替えが有効化された場合、DCIのDMRS sequence intitializationフィールドのサイズ(ビット数)をCP-OFDM送信波形が準静的に設定される場合と同じビット数に設定してよい。
 具体的には、動的な送信波形の切り替えが有効化された場合、PTRS-DMRS associationフィールドのビット数は1ビットである。
(他の実施の形態3)
 上述した実施の形態では、動的な送信波形の切り替えが有効化されると、DCIフィールドサイズをCP-OFDMのフィールドサイズに基づいて決定したが、合計DCIサイズ(つまり、DCIビット数)をCP-OFDMに基づいて決定してもよい。この場合、動的な送信波形の切り替えで決定された送信波形に基づいて、各DCIフィールドサイズを決定してもよい。また、すべてのDCIフィールドのビット数の合計がDCIサイズよりも小さい場合は、ゼロ挿入(ゼロパディング)を適用してもよい。
 また、動的な送信波形の切り替えが有効化された際にCP-OFDMに基づいてフィールドサイズを決定するDCIフィールドは、以下のDCIフィールドの一部(例えば、Frequency domain resource assignment)であってもよい。
 ・Frequency domain resource assignment
 ・Precoding information and number of layers
 ・Antenna ports
 ・PTRS-DMRS associsation
 ・DMRS sequence initialization
 CP-OFDMに基づいてフィールドサイズを決定するDCIフィールド以外は、動的な送信波形の切り替えで決定された送信波形に基づいて、各DCIフィールドサイズを決定してもよい。
(変形例)
 上述した実施の形態はDCI formatはDCI format 0-1やDCI format 0-2に限らず、他のDCI formatに適用されてもよい。
 例えば、上述した実施の形態は、初期アクセスに用いるDCI format以外、つまり、dedicated RRCパラメータが設定された後に用いられるDCI formatに適用されてもよい。また、Rank 1より大きい送信ランクを通知できるDCI formatに本実施の形態が適用されてもよい。また、端末固有のRRCで設定されたDCI formatに適用されてもよい。
 上述した実施の形態はDG-PUSCHに限らず、Activation DCIによる半固定的なリソース割当でPUSCHを送信するPUSCH(Type-2 CG-PUSCH)に適用されてもよい。この場合、Activation DCIに含まれるフィールドに基づいて上述した送信波形の通知が行われてもよい。
 上述した実施の形態では、DFT-s-OFDM送信波形はレイヤ数1の送信のみをサポートし、CP-OFDM送信波形でレイヤ数2以上の送信をサポートしていたが、送信波形とレイヤ数の関係は上記に限らない。例えば、DFT-s-OFDM送信波形がレイヤ数2以上をサポートしてもよい。その場合、送信波形を切り替えるレイヤ数を1からNに置き換えて、DFT-s-OFDM送信波形はレイヤ数N以下の送信をサポートし、CP-OFDM送信波形でレイヤ数N+1以上の送信をサポートしてもよい。
(フローチャート)
 図28は、本発明のフローチャートである。
 実施の形態1では、ステップ3において、端末は、送信レイヤのみに基づいて送信波形を決定する。
 実施の形態2では、ステップ3において、端末は送信レイヤおよびTPMIに基づいて送信波形を決定する。
 実施の形態3では、ステップ3において、端末はTDRAに基づいて送信波形を決定する。
 実施の形態4では、ステップ3において、端末はMCSインデックスに基づいて送信波形を決定する。
 図36は、本開示の一実施例に係る基地局100の一部の構成例を示すブロック図であり、図37は、本開示の一実施例に係る端末200の一部の構成例を示すブロック図である。
 図36に示す基地局100において、制御部(例えば、制御回路に対応)は、上りリンク信号(例えば、PUSCH)の第1送信波形(例えば、DFT-s-OFDM)と、第1送信波形よりもデータサイズが大きい第2送信波形(例えば、CP-OFDM)との動的な切替が設定された場合、制御情報(例えば、DCI)のフィールドサイズを、第2送信波形が設定される場合のフィールドサイズに基づいて決定する。送信部(例えば、送信回路に対応)は、決定したフィールドサイズに基づいて、制御情報を送信する。
 図37に示す端末200において、制御部(例えば、制御回路に対応)は、上りリンク信号(例えば、PUSCH)の第1送信波形(例えば、DFT-s-OFDM)と、第1送信波形よりもデータサイズが大きい第2送信波形(例えば、CP-OFDM)との動的な切替が設定された場合、制御情報(例えば、DCI)のフィールドサイズを、第2送信波形が設定される場合のフィールドサイズに基づいて決定する。受信部(例えば、受信回路に対応)は、決定したフィールドサイズに基づいて、制御情報を受信する。
(基地局の構成)
 図29は、本発明の形態に係る基地局100の構成を示すブロック図である。
 なお、図29に示す制御部101、上位制御信号生成部102、下りリンク制御情報生成部103、符号化部104、変調部105、信号割当部106、抽出部109、復調部110、及び、復号部111の少なくとも一つは図36に示す制御部に含まれてもよい。また、図29に示す送信部107は、図36に示す送信部に含まれてもよい。
 制御部101は、端末200に対するPUSCH送信に関する情報を決定し、決定した情報を上位制御信号生成部または下りリンク制御情報生成部103へ出力する。PUSCH送信に関する情報には、例えば、上述した送信波形に関する情報、Precoding information and number of layersに関する情報、時間領域リソース割当(TDRA)に関する情報、MCSに関する情報が含まれてもよい。また、制御部101は、決定した情報を抽出部109、復調部110および復号部111へ出力する。
 制御部101は、上位制御信号および下りリンク制御情報を送信するための下りリンク信号に対する符号化・変調方式および無線リソース割当を決定し、決定した情報を符号化部104、変調部105、および信号割当部106へ出力する。また、制御部101は、データ信号や上位制御信号に対する符号化・変調方式および無線リソース割当情報を下りリンク制御情報生成部103へ出力する。
 上位制御信号生成部102は、制御部101から入力される制御情報を用いて、上位レイヤ制御信号ビット列を生成し、それを符号化部104へ出力する。
 下り制御情報生成部103は、制御部101から入力される制御情報を用いて、DCIビット列を生成し、生成されたDCIビット列を符号化部104へ出力する。なお、制御情報が複数端末向けに送信されることもある。
 符号化部104は、上位制御信号生成部102から得られたビット列、または下りリンク制御情報生成部103から入力されるDCIビット列を符号化し、符号化ビット列を変調部105へ出力する。
 変調部105は、符号化部104から受け取る符号化ビット列を変調して、信号割当部106へ出力する。
 信号割当部106は、変調部からシンボル列として入力された下りデータ信号または制御信号を制御部101から指示される無線リソースにマッピングする。また、信号割当部106は、マッピング後の信号を送信部107に入力する。
 送信部107は、信号割当部106から出力された信号に対してOFDM等の送信波形生成を施す。CPを用いるOFDM伝送の場合は、Inverse Fast Fourier Transform(IFFT)適用後に、CPを付加する。
 送信部107は、Digital to Analog(D/A)変換、アップコンバート等のRadio Frequency(RF)処理を行い、アンテナを介して端末200に無線信号を送信する。
 受信部108は、端末200から送信されアンテナを介して受信された上りリンク伝送に対してダウンコンバートまたはAnalog to Digital(A/D)変換などのRF処理を行う。また、受信部108は、OFDM伝送の場合、受信信号に対して、FFTを適用し、周波数領域信号を得て、抽出部109へ出力する。
 抽出部109は、制御部101から受け取る情報に基づいて、受信信号からPUSCHが送信された無線リソース部分を抽出し、それらを復調部110へ出力する。
 復調部110は、制御部101から受け取る情報に基づいて、PUSCHの復調を行い、復調結果を復号部111へ出力する。
 復号部111は、制御部101から受け取る情報および復調部から得られる復調結果を用いて、PUSCHの誤り訂正復号を行い、復号後の受信ビット列を得る。
(端末の構成)
 図30は、本発明の実施の形態に係る端末200の構成を示すブロック図である。
 なお、図30に示す抽出部202、復調部203、復号部204、制御部205、符号化部206、変調部207、及び、信号割当部208の少なくとも一つは図37に示す制御部に含まれてもよい。また、図30に示す受信部201は、図37に示す受信部に含まれてもよい。
 受信部201は、基地局100から送信されたデータ信号または下りリンク制御信号をアンテナを介して受信し、無線受信信号に対してダウンコンバートまたはA/D変換などのRF処理を行い、ベースバンド信号を得る。また、受信部201は、OFDM信号を受信する場合、受信信号に対してFFT処理を行い、受信信号を周波数領域に変換する。
 抽出部202は、受信部201から受け取る受信信号から、制御部205から入力される制御信号の無線リソースに関する情報を用いて、下りリンク制御信号が含まれる無線リソース部分を抽出し、復調部203へ出力する。また、抽出部202は、制御部205から入力されるデータ信号の無線リソースに関する情報を用いて、データ信号が含まれる無線リソース部分を抽出し、復調部203へ出力する。
 復調部203は、制御部205から受け取る情報に基づいて、PDCCHまたはPDSCHの復調を行い、復調結果を復号部204へ出力する。
 復号部204は、制御部205から受け取る情報および復調部203から得られる復調結果を用いて、PDCCHまたはPDSCHの誤り訂正復号を行い、上位レイヤ制御情報、または下りリンク制御情報を得る。復号部204は、得られた上位レイヤ制御情報および下りリンク制御情報を制御部205へ出力する。また、復号部204はPDSCHの復号結果からacknowledgement(ACK)/negative ACK(NACK)信号を生成してもよい。
 制御部205は、上位レイヤ制御信号および下りリンク制御情報から得られるPUSCH送信に関する情報から、上述した方法により、PUSCH送信に対する送信波形などを特定して、符号化部206、変調部207及び信号割当部208を制御する。また、制御部205は、決定した情報を、抽出部202、復調部203、及び復号部204へ出力する。
 符号化部206は、制御部205から入力される情報から、上りリンクデータ信号または上りリンク制御信号を符号化し、符号化ビット列を変調部207へ出力する。
 変調部207は、制御部205から入力される情報から、符号化部206から受け取る符号化後のビット系列を変調して、変調シンボル列を生成し、信号割当部208へ出力する。
 信号割当部208は、変調部207から入力された信号を制御部205から指示される無線リソースにマッピングする。また、信号割当部208は、マッピング後の信号を送信部209へ出力する。
 送信部209は、信号割当部208から入力される信号に対して、OFDM等の送信波形生成を施す。CPを用いるOFDM伝送またはDFT-s-OFDM伝送の場合は、IFFT後にCPを付加する。なお、DFT-s-OFDM送信波形を生成する場合は、変調部の後段もしくは信号割当部の前段に、DFT部が追加されてもよい。また、送信部209は、送信信号に対してD/A変換およびアップコンバート等のRF処理を行う。また、送信部209は、アンテナを介して基地局100に無線信号を送信する。
 なお、上述した各実施の形態では、上りリンク送信としてPUSCH送信について説明したが、上りリンク送信に用いるチャネルは、PUSCHに限らず、他のチャネルでもよい。また、送信する情報の種類は、データに限らず、他の種類の情報(例えば、上りリンク制御信号)であってもよい。また、本開示の一実施例は、上りリンク送信に限定されず、下りリンク送信又はサイドリンク送信に適用されてもよい。
 また、上述した各実施の形態において、送信波形は、CP-OFDM及びDFT-s-OFDMに限定されず、マルチキャリア伝送の波形及びシングルキャリア伝送の他の送信波形でもよい。
 また、本開示において例示した、送信レイヤ数、送信プリコーディング行列(TPMI)、スロット数、シンボル数、シンボル位置、K2の値、repetition数といったパラメータは一例であって、他の値でもよい。また、本開示において例示した、図2~図27に示すテーブルは、一例であって、テーブルにおいて対応付けられる値は、他の値でもよく、また、テーブルにおいて対応付けられるパラメータの種別は、これらに限定されなくてよい。
 本開示は、例えば、sidelinkの通信のような端末間の通信に適用されてもよい。
 また、本開示において、下りリンク制御チャネル、下りリンクデータチャネル、上りリンク制御チャネル、及び、上りリンクデータチャネルは、それぞれ、PDCCH、PDSCH、PUCCH、及び、PUSCHに限らず、他の名称の制御チャネル及びデータチャネルでもよい。
 また、本開示において、上位レイヤのシグナリングには、RRCシグナリングを想定しているが、Medium Access Control(MAC)のシグナリング、及び、物理レイヤのシグナリングであるDCIでの通知に置き換えてもよい。
 (補足)
 上述した各実施の形態、及び、各補足に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した各実施の形態、各変形例、及び、各補足に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した各実施の形態、各変形例、及び、各補足に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。
 基地局100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局100は、端末200から受信した能力情報に基づいて、上りリンクに関する処理を制御してよい。
 なお、上述した各実施の形態、各変形例、及び、各補足に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局100に通知されてもよい。
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局100において既知の情報あるいは基地局100へ送信される情報に関連付けられて暗黙的(implicit)に基地局100に通知されてもよい。
 以上、本開示の非限定的な一実施例に係る各実施の形態、各変形例、および、補足について説明した。
 (制御信号)
 本開示において、本開示に関連する下り制御信号(情報)は、物理層のPDCCHで送信される信号(情報)でもよく、上位レイヤのMAC CE(Control Element)又はRRCで送信される信号(情報)でもよい。また、下り制御信号は、予め規定されている信号(情報)としてもよい。
 本開示に関連する上り制御信号(情報)は、物理層のPUCCHで送信される信号(情報)でもよく、上位レイヤのMAC CE又はRRCで送信される信号(情報)でもよい。また、上り制御信号は、予め規定されている信号(情報)としてもよい。また、上り制御信号は、UCI(uplink control information)、1st stage SCI (sidelink control information)、2nd stage SCIに置き換えてもよい。
 (基地局)
 本開示において、基地局は、TRP(Transmission Reception Point)、クラスタヘッド、アクセスポイント、RRH(Remote Radio Head)、eNodeB (eNB)、gNodeB(gNB)、BS(Base Station)、BTS(Base Transceiver Station)、親機、ゲートウェイ等でもよい。また、サイドリンク通信においては、基地局は端末に置き換えられてもよい。基地局は、上位ノードと端末の通信を中継する中継装置であってもよい。また、基地局は、路側器であってもよい。
 (上りリンク/下りリンク/サイドリンク)
 本開示は、上りリンク、下りリンク、サイドリンクのいずれに適用してもよい。例えば、本開示を上りリンクのPUSCH、PUCCH、PRACH、下りリンクのPDSCH、PDCCH、PBCH、サイドリンクのPSSCH(Physical Sidelink Shared Channel)、PSCCH(Physical Sidelink Control Channel)、PSBCH(Physical Sidelink Broadcast Channel)に適用してもよい。
 なお、PDCCH、PDSCH、PUSCH、PUCCHは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、上りリンク制御チャネルの一例である。PSCCH、PSSCHは、サイドリンク制御チャネル、サイドリンクデータチャネルの一例である。PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。
 (データチャネル/制御チャネル)
 本開示は、データチャネル及び制御チャネルのいずれに適用してもよい。例えば、本開示のチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHに置き換えてもよい。
 (参照信号)
 本開示において、参照信号は、基地局及び端末の双方で既知の信号であり、RS (Reference Signal)又はパイロット信号と呼ばれることもある。参照信号は、DMRS、CSI-RS(Channel State Information - Reference Signal)、TRS(Tracking Reference Signal)、PTRS(Phase Tracking Reference Signal)、CRS(Cell-specific Reference Signal)、SRS(Sounding Reference Signal)のいずれかであってもよい。
 (時間間隔)
 本開示において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロット、サブスロット、ミニスロット又は、シンボル、OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier - Frequency Division Multiple Access)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
 (周波数帯域)
 本開示は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
 (通信)
 本開示は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、V2X(Vehicle to Everything)の通信のいずれに適用してもよい。例えば、本開示のチャネルをPSCCH、PSSCH、PSFCH(Physical Sidelink Feedback Channel)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、PBCHに置き換えてもよい。
 また、本開示は、地上のネットワーク、衛星や高度疑似衛星(HAPS)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。
 (アンテナポート)
 アンテナポートは、1本または複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末が参照信号(Reference signal)を送信できる最小単位として規定される。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図31に示す(例えば、3GPP TS 38.300 v15.6.0、 section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300、 section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300、 section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1、000、000台/km2)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図32は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation、 Admission、 Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップおよび再設定の手順>
 図33は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図34は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図34は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図33を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。
 図35は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0、 section 4.23参照)。Application Function(AF)(例えば、図34に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図35は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 本開示において使用した「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に相互に置換されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なField Programmable Gate Array(FPGA)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 (1)本開示の一実施例に係る端末は、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する。
 (2)本開示の一実施例において、前記(1)の端末は、前記制御情報に含まれるフィールドによって通知される値に基づいて、前記上りリンク信号の送信波形を決定する。
 (3)本開示の一実施例において、前記(2)の端末は、前記制御情報に含まれるPrecoding information and number of layersフィールドまたはSRIフィールドによって通知される送信レイヤ数に基づいて、前記上りリンク信号の送信波形を決定する。
 (4)本開示の一実施例において、前記(2)の端末は、前記制御情報に含まれるPrecoding information and number of layersフィールドまたはSRIフィールドによって通知される、送信レイヤ数および送信プリコーディング行列に基づいて、前記上りリンク信号の送信波形を決定する。
 (5)本開示の一実施例において、前記(2)の端末は、前記制御情報に含まれるTime domain resource assignment (TDRA)フィールドまたはFrequency domain resource assignment (FDRA)フィールドによって通知されるインデックスに基づいて、前記上りリンク信号の送信波形を決定する。
 (6)本開示の一実施例において、前記(2)の端末は、前記制御情報に含まれるModulation and coding scheme (MCS)フィールドによって通知されるインデックスに基づいて、前記上りリンク信号の送信波形を決定する。
 (7)本開示の一実施例において、前記(6)の前記インデックスが、変調多値数及びターゲット符号化率が決定されている前記インデックスの場合、前記インデックスと前記上りリンク信号の送信波形の対応に基づいて、変調多値数のみが決定されている前記インデックスの場合、前記インデックス以外と前記上りリンク信号の送信波形の対応に基づいて、前記上りリンク信号の送信波形を決定する。
 (8)本開示の一実施例において、前記(3)の端末は、前記送信レイヤ数が1の場合、前記上りリンク信号の送信波形をシングルキャリア伝送の波形に決定し、前記送信レイヤ数が2以上の場合、前記上りリンク信号の送信波形をマルチキャリア伝送の波形に決定する。
 (9)本開示の一実施例において、前記(4)の端末は、前記送信レイヤ数が1の場合、前記送信プリコーディング行列を示す値に基づいて、前記上りリンク信号の送信波形を決定し、前記送信レイヤ数が2以上の場合、前記上りリンク信号の送信波形をマルチキャリア伝送の波形に決定する。
 (10)本開示の一実施例において、前記(9)の端末は、前記送信プリコーディング行列を示す値と、前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される。
 (11)本開示の一実施例において、前記(5)の端末は、前記インデックスに基づいて、当該インデックスに対応付けられた時間領域割当リソース候補を決定する。
 (12)本開示の一実施例において、前記(11)の端末は、前記インデックスの値と、前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される。
 (13)本開示の一実施例において、前記(6)の端末は、送前記インデックスの値と前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される。
 (14)本開示の一実施例において、前記(13)の端末は、前記上りリンク信号の送信波形を切り替えるための前記インデックスの閾値に関する情報を受信する
 (15)本開示の一実施例に係る基地局は、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する。
 (16)本開示の一実施例に係る通信方法は、端末が、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定し、前記フィールドサイズに基づいて、前記制御情報を受信する。
 (17)本開示の一実施例に係る通信方法は、基地局が、上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定し、前記フィールドサイズに基づいて、前記制御情報を送信する。
 2022年6月14日出願の特願2022-095920及び2022年9月30日出願の特願2022-158782の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100 基地局
 101、205 制御部
 102 上位制御信号生成部
 103 下りリンク制御情報生成部
 104、206 符号化部
 105、207 変調部
 106、208 信号割当部
 107、209 送信部
 108、201 受信部
 109、202 抽出部
 110、203 復調部
 111、204 復号部
 200 端末

 

Claims (17)

  1.  上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する制御回路と、
     前記フィールドサイズに基づいて、前記制御情報を受信する受信回路と、
     を具備する端末。
  2.  前記制御回路は、前記制御情報に含まれるフィールドによって通知される値に基づいて、前記上りリンク信号の送信波形を決定する、
     請求項1に記載の端末。
  3.  前記制御回路は、前記制御情報に含まれるPrecoding information and number of layersフィールドまたはSRIフィールドによって通知される送信レイヤ数に基づいて、前記上りリンク信号の送信波形を決定する、
     請求項2に記載の端末。
  4.  前記制御回路は、前記制御情報に含まれるPrecoding information and number of layersフィールドまたはSRIフィールドによって通知される、送信レイヤ数および送信プリコーディング行列に基づいて、前記上りリンク信号の送信波形を決定する、
     請求項2に記載の端末。
  5.  前記制御回路は、前記制御情報に含まれるTime domain resource assignment (TDRA)フィールドまたはFrequency domain resource assignment (FDRA)フィールドによって通知されるインデックスに基づいて、前記上りリンク信号の送信波形を決定する、
     請求項2に記載の端末。
  6.  前記制御回路は、前記制御情報に含まれるModulation and coding scheme (MCS)フィールドによって通知されるインデックスに基づいて、前記上りリンク信号の送信波形を決定する、
     請求項2に記載の端末。
  7.  前記制御回路は、前記インデックスが、
     変調多値数及びターゲット符号化率が決定されている前記インデックスの場合、前記インデックスと前記上りリンク信号の送信波形の対応に基づいて、
     変調多値数のみが決定されている前記インデックスの場合、前記インデックス以外と前記上りリンク信号の送信波形の対応に基づいて、
     前記上りリンク信号の送信波形を決定する、
     請求項6に記載の端末。
  8.  前記制御回路は、前記送信レイヤ数が1の場合、前記上りリンク信号の送信波形をシングルキャリア伝送の波形に決定し、前記送信レイヤ数が2以上の場合、前記上りリンク信号の送信波形をマルチキャリア伝送の波形に決定する、
     請求項3に記載の端末。
  9.  前記制御回路は、前記送信レイヤ数が1の場合、前記送信プリコーディング行列を示す値に基づいて、前記上りリンク信号の送信波形を決定し、前記送信レイヤ数が2以上の場合、前記上りリンク信号の送信波形をマルチキャリア伝送の波形に決定する、
     請求項4に記載の端末。
  10.  前記送信プリコーディング行列を示す値と、前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される、
     請求項9に記載の端末。
  11.  前記制御回路は、前記インデックスに基づいて、当該インデックスに対応付けられた時間領域割当リソース候補を決定する、
     請求項5に記載の端末。
  12.  前記インデックスの値と、前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される、
     請求項11に記載の端末。
  13.  前記インデックスの値と前記上りリンク信号の送信波形との対応付けは、上位レイヤシグナリングによって設定される、
     請求項6に記載の端末。
  14.  前記受信回路は、前記上りリンク信号の送信波形を切り替えるための前記インデックスの閾値に関する情報を受信する、
     請求項13に記載の端末。
  15.  上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定する制御回路と、
     前記フィールドサイズに基づいて、前記制御情報を送信する送信回路と、
     を具備する基地局。
  16.  端末は、
     上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定し、
     前記フィールドサイズに基づいて、前記制御情報を受信する、
     通信方法。
  17.  基地局は、
     上りリンク信号の第1送信波形と、前記第1送信波形よりもデータサイズが大きい第2送信波形との動的な切替が設定される場合、制御情報のフィールドサイズを、前記第2送信波形が設定される場合のフィールドサイズに基づいて決定し、
     前記フィールドサイズに基づいて、前記制御情報を送信する、
     通信方法。
PCT/JP2023/021793 2022-06-14 2023-06-12 端末、基地局及び通信方法 WO2023243614A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022095920 2022-06-14
JP2022-095920 2022-06-14
JP2022-158782 2022-09-30
JP2022158782 2022-09-30

Publications (1)

Publication Number Publication Date
WO2023243614A1 true WO2023243614A1 (ja) 2023-12-21

Family

ID=89191311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021793 WO2023243614A1 (ja) 2022-06-14 2023-06-12 端末、基地局及び通信方法

Country Status (1)

Country Link
WO (1) WO2023243614A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220947A (ja) * 2018-05-11 2019-12-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアップリンク送信を行う方法及びそのための装置
US20200162225A1 (en) * 2017-05-05 2020-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Selection of waveform for uplink communications
WO2020262202A1 (en) * 2019-06-26 2020-12-30 Sharp Kabushiki Kaisha User equipment and base stations that achieve uplink multiplexing
WO2023012952A1 (ja) * 2021-08-04 2023-02-09 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200162225A1 (en) * 2017-05-05 2020-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Selection of waveform for uplink communications
JP2019220947A (ja) * 2018-05-11 2019-12-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアップリンク送信を行う方法及びそのための装置
WO2020262202A1 (en) * 2019-06-26 2020-12-30 Sharp Kabushiki Kaisha User equipment and base stations that achieve uplink multiplexing
WO2023012952A1 (ja) * 2021-08-04 2023-02-09 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NTT DOCOMO, INC.): "Summary on Rel-17 TEIs", 3GPP TSG RAN WG1 #106B-E R1-2109722, 21 October 2021 (2021-10-21), XP052065826 *

Similar Documents

Publication Publication Date Title
US20230053388A1 (en) Terminal and communication method
CN115428558A (zh) 移动台、基站、接收方法及发送方法
WO2022014272A1 (ja) 端末、基地局及び通信方法
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2021070508A1 (ja) 基地局、端末、送信方法及び受信方法
WO2023243614A1 (ja) 端末、基地局及び通信方法
WO2023181556A1 (ja) 端末、基地局及び通信方法
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2023181557A1 (ja) 端末、基地局及び通信方法
WO2024100918A1 (ja) 端末、基地局及び通信方法
WO2023181579A1 (ja) 端末、基地局及び通信方法
WO2024029157A1 (ja) 端末、基地局、及び、通信方法
WO2022079955A1 (ja) 端末、基地局及び通信方法
WO2022239289A1 (ja) 通信装置、及び、通信方法
WO2024034198A1 (ja) 端末、基地局及び通信方法
WO2024024259A1 (ja) 端末、基地局、及び、通信方法
WO2022064795A1 (ja) 端末及び通信方法
WO2022014281A1 (ja) 端末、基地局及び通信方法
WO2022201651A1 (ja) 基地局、端末、及び、通信方法
WO2022014279A1 (ja) 端末、基地局及び通信方法
WO2023188912A1 (ja) 基地局、端末及び通信方法
WO2022195952A1 (ja) 端末、基地局及び通信方法
WO2023188913A1 (ja) 基地局、端末及び通信方法
WO2023100471A1 (ja) 基地局、端末及び通信方法
WO2023013192A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823904

Country of ref document: EP

Kind code of ref document: A1