WO2024034076A1 - Superabrasive grain and grindstone - Google Patents

Superabrasive grain and grindstone Download PDF

Info

Publication number
WO2024034076A1
WO2024034076A1 PCT/JP2022/030622 JP2022030622W WO2024034076A1 WO 2024034076 A1 WO2024034076 A1 WO 2024034076A1 JP 2022030622 W JP2022030622 W JP 2022030622W WO 2024034076 A1 WO2024034076 A1 WO 2024034076A1
Authority
WO
WIPO (PCT)
Prior art keywords
superabrasive
abrasive grain
less
mass
grindstone
Prior art date
Application number
PCT/JP2022/030622
Other languages
French (fr)
Japanese (ja)
Inventor
修一 網野
健 山村
真人 道内
克己 岡村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2022/030622 priority Critical patent/WO2024034076A1/en
Publication of WO2024034076A1 publication Critical patent/WO2024034076A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present disclosure relates to superabrasives and grindstones.
  • a grindstone containing abrasive grains and a binder is used as a tool for precision machining.
  • BACKGROUND ART Conventionally, a grindstone in which abrasive grains made of diamond, cubic boron nitride, alumina, silicon carbide, etc. are bonded together by a vitrified bond has been used (Patent Document 1).
  • the superabrasive grain according to one aspect of the present disclosure is A superabrasive grain comprising an abrasive grain body and an oxidation prevention film covering at least a part of the surface of the abrasive grain body,
  • the abrasive grain main body is made of cubic boron nitride or diamond,
  • the average grain size of the abrasive grain body is less than 1.0 ⁇ m.
  • a grindstone according to one aspect of the present disclosure a ring-shaped base metal, a superabrasive layer disposed on the surface of the base metal,
  • the superabrasive layer includes the superabrasive and a binder,
  • the softening point of the binder is 400°C or more and 1000°C or less.
  • FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the superabrasive grain of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating another embodiment of the superabrasive grain of the present disclosure.
  • FIG. 3 is a schematic plan view illustrating one embodiment of the grindstone of the present disclosure.
  • FIG. 4 is a cross-sectional view taken along the line IV--IV in FIG.
  • FIG. 5 is a schematic diagram showing a method of grinding a work material using a grindstone.
  • the manufacturing process of a grindstone that includes diamond or cubic boron nitride (cBN)-based abrasive grains and a binder includes a firing process in the atmosphere. Due to the firing process, the abrasive grains tend to be easily deteriorated by heat. In the case of abrasive grains made of diamond, the hardness of the diamond decreases due to a combustion reaction between the diamond and oxygen in the atmosphere. Further, due to the combustion reaction, the abrasive grains made of diamond themselves disappear, and the bonding strength at the interface between the abrasive grains and the binder decreases.
  • cBN cubic boron nitride
  • abrasive grains made of cBN the hardness of cBN decreases due to the reaction between cBN on the surface of the abrasive grains and oxygen to produce boron oxide. Therefore, the tool performance (sharpness) of a grindstone containing such abrasive grains may not be sufficient.
  • Thermal deterioration of abrasive grains as described above tends to occur particularly in ultrafine abrasive grains with a grain size of less than 1.0 ⁇ m, which are used under the processing conditions required to reduce the surface roughness of the machined surface.
  • an object of the present disclosure is to provide a superabrasive grain that can provide a whetstone with excellent grinding performance, and a whetstone that includes the superabrasive grain.
  • the abrasive grains according to one aspect of the present disclosure are: A superabrasive grain comprising an abrasive grain body portion and an oxidation prevention film covering at least a part of the surface of the abrasive grain body portion,
  • the abrasive grain main body is made of cubic boron nitride or diamond,
  • the average grain size of the abrasive grain main body portion is less than 1.0 ⁇ m.
  • a grindstone containing superabrasive grains according to one embodiment of the present disclosure can have excellent grinding performance.
  • thermogravimetric analysis is 70% or more,
  • the thermogravimetric analysis is preferably performed at a temperature of 900° C. and a holding time of 0.5 hours. This makes it possible to provide a grindstone with better grinding performance.
  • the antioxidant film is made of a first material,
  • the first material is made of ceramics or glass. This makes it possible to provide a grindstone with better grinding performance.
  • the superabrasive grains contain the first material in an amount of 0.1% by mass or more and less than 50% by mass. This makes it possible to provide a grindstone with better grinding performance.
  • the antioxidant film preferably covers 20% or more of the surface of the abrasive grain main body. This makes it possible to provide a grindstone with better grinding performance.
  • the grindstone of the present disclosure is a ring-shaped base metal, a superabrasive layer disposed on the surface of the base metal,
  • the superabrasive grain layer includes the superabrasive grains described in (1) to (5) above and a binder,
  • the softening point of the binder is 400°C or more and 1000°C or less. This makes it possible to provide a grindstone with excellent grinding performance.
  • the binder contains silicon, boron, and at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements,
  • the silicon content of the binder is 30% by mass or more and 70% by mass or less
  • the boron content of the bonding material is preferably 0% by mass or more and 30% by mass or less. This makes it possible to provide a grindstone with better grinding performance.
  • this embodiment An embodiment of the present disclosure (hereinafter referred to as “this embodiment”) will be described below. However, this embodiment is not limited to this.
  • the notation in the format "A to B” means the upper and lower limits of the range (i.e., from A to B), and when there is no unit described in A and only in B, The units of and the units of B are the same.
  • the superabrasive grain 10 is A superabrasive grain 10 comprising an abrasive grain main body part 1 and an oxidation prevention film 2 covering at least a part of the surface of the abrasive grain main body part 1,
  • the abrasive grain main body 1 is made of cubic boron nitride or diamond,
  • the average grain size of the abrasive main body portion 1 is less than 1.0 ⁇ m.
  • a grindstone containing superabrasive grains according to an embodiment of the present disclosure can have excellent grinding performance. The reason is presumed to be as follows.
  • the superabrasive grain 10 of the present disclosure at least a portion of the surface of the abrasive grain main body portion 1 is coated with an antioxidant film 2. Therefore, even in the firing process in the atmosphere when producing a grindstone using the superabrasive grains, the combustion reaction between the superabrasive grains and oxygen in the atmosphere can be suppressed. Therefore, it is presumed that the reduction in wear resistance caused by thermal deterioration and disappearance of the superabrasive grains can be suppressed, and the grinding performance of the grindstone is improved.
  • the superabrasive grains of the present disclosure do not require the addition of metals to lower the softening temperature of the binder during the manufacturing process of the grindstone, so the wear resistance of the grindstone due to elution of the metals into water is reduced. The decline can be prevented.
  • the grindstone containing the superabrasive grains according to this embodiment can have excellent grinding performance.
  • the abrasive grain main body portion according to this embodiment is made of cubic boron nitride or diamond.
  • cubic boron nitride or diamond is not limited to an embodiment consisting only of cubic boron nitride or diamond, but as long as the effects of the present disclosure are achieved, cubic boron nitride or diamond may be used together with cubic boron nitride or diamond.
  • This concept also includes embodiments containing components other than crystalline boron nitride and diamond (for example, unavoidable impurities).
  • unavoidable impurities in the abrasive grain body examples include carbon (C), aluminum (Al), silicon (Si), lithium (Li), calcium (Ca), and magnesium (Mg).
  • the content of unavoidable impurities in the abrasive grain body can be, for example, 0% or more and less than 1% on a mass basis.
  • the composition of the abrasive grain main body is determined by an energy dispersive X-ray analyzer (EDX) (Octane Elect Octane Elect) EDS System) (trademark).
  • EDX energy dispersive X-ray analyzer
  • the average grain size of the abrasive grain main body is less than 1.0 ⁇ m.
  • a grindstone including the abrasive grain main body has good sharpness, and the surface roughness of the machined surface can be made very small.
  • the average grain size of the abrasive grain body is 1.0 ⁇ m or more, the surface roughness of the machined surface tends to increase.
  • the lower limit of the average particle size of the abrasive grain main body is preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
  • the upper limit of the average particle diameter of the abrasive grain main body is preferably 0.9 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.7 ⁇ m or less. Further, the average particle diameter of the abrasive grain main body is preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.4 ⁇ m or more and 0.8 ⁇ m or less, and 0.5 ⁇ m or more and 0.7 ⁇ m or less. It is more preferable that
  • the average grain size of the abrasive grain main body can be specified by the following method. That is, after removing the antioxidant film by chemical treatment (the most suitable method is selected depending on the material), the volume-based D50 of the main body of the abrasive grain is measured using a particle size distribution meter.
  • the D50 is defined as the "average particle diameter of the abrasive grain main body". Note that the measurement method using the particle size distribution meter is the "laser diffraction method.”
  • the crystal structure of the abrasive grain main body can be single crystal or polycrystal.
  • the crystal structure of the abrasive grain body is single crystal, the strength of the abrasive grain body tends to improve.
  • the crystal structure of the abrasive grain main body is polycrystalline, the grinding ratio of a tool using an abrasive grain including the abrasive grain main body tends to be improved.
  • the crystal structure of the abrasive grain main body can be confirmed by X-ray diffraction.
  • the superabrasive according to this embodiment includes an oxidation-preventing film that covers at least a portion of the surface of the abrasive main body.
  • “coating at least a part of the surface of the abrasive grain body” means not only “coating the entire surface of the abrasive grain body” ( Figure 1), but also “covering the entire surface of the abrasive grain body” (Fig. 1). This concept also includes the case of "covering only a part of the surface” (FIG. 2).
  • the anti-oxidation film is preferably made of a first material described below.
  • “consisting of the first material” is not limited to an embodiment consisting only of the above first material, but as long as the effects of the present disclosure are achieved, components other than the above first material in addition to the above first material are used.
  • This concept also includes embodiments containing (for example, unavoidable impurities).
  • unavoidable impurities in the anti-oxidation film include C, Al, and Si.
  • the content of unavoidable impurities in the antioxidant film can be, for example, 0% or more and 1% or less on a mass basis.
  • the composition of the above-mentioned antioxidant film can be determined by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the first material is made of ceramic or glass.
  • thermal deterioration of the abrasive grains can be further suppressed in the production of whetstones, allowing the whetstone to have both superior sharpness and better abrasion resistance, resulting in better grinding performance. be able to.
  • the ceramics include one or more first elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements of the periodic table, aluminum (Al), and silicon (Si), and oxygen. , and at least one second element selected from the group consisting of nitrogen, carbon, and boron.
  • the first material is the above-mentioned ceramic
  • the oxidation-preventing film made of such a first material has excellent hardness and excellent wear resistance, so that the abrasive grain main body portion is not easily damaged.
  • the Group 4 elements of the periodic table are titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • Group 5 elements of the periodic table are vanadium (V), niobium (Nb), and tantalum (Ta).
  • Group 6 elements of the periodic table are chromium (Cr), molybdenum (Mo), and tungsten (W).
  • Examples of compounds (oxides) consisting of the first element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), vanadium oxide (V 2 O 5 ), and niobium oxide. (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) can be mentioned.
  • Examples of compounds (nitrides) consisting of the first element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), and tantalum nitride.
  • TiN titanium tantalum nitride
  • TiCrN titanium chromium nitride
  • TiMoN titanium molybdenum nitride
  • TiWN titanium tungsten nitride
  • ZrHfN zirconium hafnium nitride
  • ZrVN zirconium vanadium nitride
  • ZrNbN zirconium niobium nitride
  • Examples of compounds (carbides) consisting of the first element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), and tantalum carbide ( TaC), chromium carbide ( Cr2C ), molybdenum carbide (MoC), tungsten carbide (WC), titanium zirconium carbide (TiZrC), titanium hafnium carbide (TiHfC), titanium vanadium carbide (TiVC), titanium niobium carbide (TiNbC), Titanium tantalum carbide (TiTaC), titanium chromium carbide (TiCrC), titanium molybdenum carbide (TiMoC), titanium tungsten carbide (TiWC), zirconium hafnium carbide (ZrHfC), zirconium vanadium carbide (ZrVC), zirconium n
  • Examples of compounds (carbonitrides) consisting of the first element, carbon, and nitrogen include titanium carbonitride (TiCN), zirconium carbonitride (ZrCN), hafnium carbonitride (HfCN), aluminum carbonitride (AlCN), and carbonitride. Silicon nitride (SiCN) can be mentioned.
  • Examples of compounds (borides) consisting of the first element and boron include titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), hafnium boride (HfB 2 ), vanadium boride (VB 2 ), Niobium boride (NbB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB 2 ), molybdenum boride (MoB 2 ), tungsten boride (WB), aluminum boride (AlB 2 ), silicon boride (SiB 4 ) can be mentioned.
  • Examples of compounds (oxynitrides) consisting of the first element, nitrogen, and oxygen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), vanadium oxynitride (VON), and Niobium nitride (NbON), tantalum oxynitride (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), tungsten oxynitride (WON), aluminum oxynitride (AlON), silicon oxynitride (SiON), Sialon ( SiAlON).
  • the above compounds may be used alone or in combination of two or more.
  • the first material can include a solid solution derived from the compound described above.
  • the solid solution derived from the above compound means a state in which two or more types of the above compounds are dissolved in each other's crystal structure, and means an interstitial solid solution or a substitutional solid solution.
  • the glass examples include borosilicate glass (glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, Na 2 O, and K 2 O).
  • borosilicate glass glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, Na 2 O, and K 2 O.
  • the superabrasive grains preferably contain the first material in an amount of 0.1% by mass or more and less than 50% by mass. As a result, thermal deterioration of the abrasive grains can be further suppressed in the production of the whetstone, so that the whetstone can have both excellent sharpness and better wear resistance.
  • the lower limit of the content of the first material in the superabrasive grains is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of suppressing thermal deterioration of the abrasive grains.
  • the upper limit of the content of the first material of the superabrasive grains is preferably 49% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the content of the first material in the superabrasive grains is measured by the following procedure.
  • the superabrasive grains are subjected to ICP emission spectroscopy (high-frequency inductively coupled plasma emission spectroscopy).
  • the concentration of one element (group 4 element, group 5 element, group 6 element of the periodic table, aluminum (Al), and silicon (Si)) is measured.
  • the concentration of the compound (oxide, carbide, nitride, carbonitride, or boride) of the first element is converted to calculate the mass of the compound of the first element.
  • the first material is glass
  • elements other than oxygen for example, silicon ( Measure the concentrations of Si), boron (B), aluminum (Al), iron (Fe), calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K)).
  • Si silicon
  • B aluminum
  • Fe iron
  • Ca calcium
  • Mg magnesium
  • Na sodium
  • K potassium
  • the antioxidant film preferably covers 20% or more of the surface of the abrasive grain body. As a result, thermal deterioration of the abrasive grains can be further suppressed in the production of whetstones, allowing the whetstone to have both superior sharpness and better abrasion resistance, resulting in better grinding performance. be able to.
  • the antioxidant film more preferably covers 50% or more of the surface of the abrasive grain main body, and still more preferably covers 70% or more. Moreover, it is more preferable that the antioxidant film covers 100% of the surface of the abrasive grain main body. From a manufacturing standpoint, the antioxidant film can cover 99% or less, 98% or less, or 97% or less of the surface of the abrasive grain main body. Further, the antioxidant film preferably covers 20% or more and 100% or less of the surface of the abrasive grain body, more preferably 50% or more and 100% or less, and 70% or more and 100% or less. More preferably, it is coated.
  • the proportion of the surface of the abrasive grain body covered with the antioxidant film can be determined by the following method.
  • (a1) Observe at a magnification of 5,000 to 200,000 times using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDS) to obtain a backscattered electron image of the superabrasive grain.
  • a measurement area is set in the backscattered electron image. The measurement area is set so that 100 or more superabrasive grains are included in the measurement area.
  • (c1) In the measurement region, identify the antioxidant film by mapping and analyzing the constituent elements of the first material using EDS, and measure the area A2 occupied by the antioxidant film in the measurement region (as shown in the figure). none).
  • the constituent elements of the first material on which the mapping analysis is performed are elements other than carbon, boron, and nitrogen.
  • the residual rate of the superabrasive grains in thermogravimetric analysis is preferably 70% or more.
  • the thermogravimetric analysis is performed under conditions of a temperature of 900° C. and a holding time of 0.5 hours. This makes it possible to further suppress thermal deterioration of the superabrasive grains in the production of grinding wheels, allowing the grinding wheels to have both superior sharpness and better wear resistance, resulting in better grinding performance. can be done.
  • the lower limit of the residual rate in thermogravimetric analysis of the superabrasive grains is more preferably 80% or more, and even more preferably 90% or more.
  • the upper limit of the residual rate in thermogravimetric analysis of the superabrasive grains is preferably 100% or less.
  • the residual rate of the superabrasive grains in thermogravimetric analysis can be set to 99.5% or less, 99.0% or less, or 98.5% or less from the viewpoint of manufacturing.
  • the residual rate of the superabrasive grains in thermogravimetric analysis is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less, and even more preferably 90% or more and 100% or less. .
  • the residual rate of the superabrasive in thermogravimetric analysis can be determined by performing the following thermogravimetric analysis on the superabrasive at a temperature of 900° C. and a holding time of 0.5 hours.
  • 30 mg (initial weight) of superabrasive grains is prepared and applied to a thermogravimetric (TG) meter (the TG meter can measure the weight change of a substance during heating in real time).
  • TG thermogravimetric
  • the temperature is raised from room temperature to 900°C at a heating rate of 10°C/min, and then 900°C is maintained for 30 minutes.
  • the atmosphere is atmospheric.
  • the remaining weight at this time is measured.
  • the method for producing superabrasive grains includes a step of preparing an abrasive grain main body made of cubic boron nitride or diamond (hereinafter also referred to as a "preparation step"), and a step of preparing an abrasive grain main body made of cubic boron nitride or diamond, and oxidizing the surface of the abrasive grain main body.
  • the method may include a step of forming a preventive film (hereinafter also referred to as a "coating step").
  • Cubic boron nitride or diamond which is the raw material for the abrasive grain body, is prepared.
  • Cubic boron nitride and diamond are not particularly limited, and known ones can be used.
  • Pretreatment can be performed on the prepared abrasive grain main body made of cubic boron nitride or diamond. Pretreatment includes heat treatment, electron beam irradiation, plasma irradiation, and microwave irradiation.
  • an anti-oxidation film is formed on the surface of the prepared abrasive grain main body.
  • the anti-oxidation film can be formed by the sol-gel method, by using crushed ceramics or crushed glass as a binder and adsorbing it to the abrasive grain body, or by electrostatically adsorbing crushed ceramics or crushed glass to the abrasive grain body. method, chemical vapor deposition, or sputtering using a target material.
  • sol-gel method When the first material is made of glass, a sol-gel method can be applied.
  • the main body of the abrasive grain is mixed with an alkoxide such as tetraethoxysilane.
  • an alkoxide such as tetraethoxysilane.
  • the alkoxide is hydrolyzed and polycondensed, thereby coating the main body of the abrasive grain with a sol. This is dried to form a gel, and then sintered at an appropriate temperature to turn the gel into glass and form an antioxidant film.
  • the ceramic or glass used is one that has been crushed in advance.
  • the abrasive grain body and ceramic or glass are uniformly mixed in a solvent (eg, water, alcohol, etc.) by a method such as a bead mill.
  • a solvent eg, water, alcohol, etc.
  • the mixing ratio of the abrasive grain main body and ceramic or glass is adjusted to obtain the desired grain size and coverage.
  • an organic binder such as polyvinyl alcohol (PVA). Selection of the appropriate binder type varies depending on the type of solvent mentioned above) is added, and the organic binder and the ceramic or glass are combined with the abrasive grains. Adsorb it to the main body.
  • the first material consists of a ceramic or an oxide
  • chemical vapor deposition methods can be used.
  • the abrasive grain main body is placed in a reaction tube.
  • a compound that easily vaporizes usually a halide, hydride, organometallic compound, etc.
  • a chemical reaction reaction/thermal decomposition. etc.
  • the reaction may require high temperatures depending on the substance being vaporized, but low temperature coatings are also possible using plasma chemical vapor deposition.
  • the first material is made of ceramics
  • the following conditions may be mentioned as the coating conditions.
  • an oxidation-preventing film made of ceramics (first material) can be formed on the surface of the abrasive grain main body.
  • Target material aluminum (metal)
  • Atmosphere Vacuum Discharge voltage: 125V or more and 250V or less
  • the grindstone 20 according to an embodiment of the present disclosure will be described using FIGS. 3 and 4.
  • the grindstone 20 according to this embodiment is a ring-shaped base metal 120; a superabrasive layer 12 disposed on the surface of the base metal 120;
  • the superabrasive grain layer 12 includes the superabrasive grains 10 according to the first embodiment and a bonding material 11,
  • the softening point of the bonding material 11 is 400°C or more and 1000°C or less.
  • the grindstone 20 according to an embodiment of the present disclosure can have excellent grinding performance.
  • the reason is presumed to be as follows.
  • the grindstone 20 of the present disclosure includes an annular base metal 120 and a superabrasive grain layer 12 disposed on the surface of the base metal 120. More specifically, as shown in FIGS. 3 and 4, the grinding wheel 20 includes a cup-shaped base metal 120 and a cup-shaped base metal 120, and a pair of metal parts spaced apart from each other along the circumferential direction on one end surface 121 (use surface) of the base metal 120. It is composed of a plurality of flat plate-shaped superabrasive grain layers 12 that are spaced apart and fixed.
  • Each superabrasive layer 12 is attached to the base metal 120 so that the circumferential end surface 111 of the superabrasive layer 12 is substantially parallel to the rotation axis of the grinding wheel 20, and the length direction of the superabrasive layer 12 is in the radial direction of the grinding wheel 20. It is fixed to one end surface 121 (use surface) of.
  • Each superabrasive layer 12 has a working surface 112 substantially perpendicular to the axis of rotation of the grinding wheel 20.
  • the superabrasive grain layer 12 includes the superabrasive grains 10 according to the present embodiment 1, and the superabrasive grains 10 according to the present embodiment 1 cover at least one surface of the abrasive grain main body 1, as described above. portion is coated with an anti-oxidation film 2. Therefore, even in the firing process in the atmosphere when manufacturing the grindstone 20 using the superabrasive grains 10, the combustion reaction between the superabrasive grains 10 and oxygen in the atmosphere can be suppressed. Therefore, it is presumed that the decrease in wear resistance caused by thermal deterioration and disappearance of the superabrasive grains 10 can be suppressed, and the grinding performance of the grindstone 20 is improved.
  • the superabrasive grain 10 of the present disclosure does not require the addition of metals to lower the softening temperature of the bonding material 11 in the manufacturing process of the grinding wheel 20, the grinding wheel 20 may be reduced due to elution of the metals into water. Decrease in wear resistance can be prevented.
  • the superabrasive layer 12 includes a binder 11, and the softening point of the binder 11 is 400°C or more and 1000°C or less. Since such a bonding material has excellent mechanical strength, the grindstone 20 can have excellent grinding performance.
  • the grindstone 20 according to this embodiment can have excellent grinding performance.
  • Examples of the material of the base metal include Al, Al alloy, iron and iron alloy, carbon tool steel, high speed tool steel, alloy tool steel, cemented carbide, and cermet.
  • the size of the base metal (inner/outer diameter, thickness) can be appropriately selected depending on, for example, the size of a machine tool such as a machining center in which the grindstone is installed, that is, the size of the workpiece.
  • a base metal of a known grindstone can be used as the base metal.
  • Superabrasive layer 12 is disposed on the surface of base metal 120 (FIG. 4).
  • the size (thickness and width) of the superabrasive grain layer 12 can be appropriately selected depending on the size (thickness and width) of the base metal 120.
  • the thickness refers to the length of the grindstone 20 along the radial direction, and the width refers to the length of the grindstone 20 along the axial direction.
  • the superabrasive layer according to this embodiment includes the superabrasive and the bonding material.
  • the above-mentioned grindstone can be made of the above-mentioned superabrasive grains and the above-mentioned bonding material. Further, the superabrasive layer may include pores as long as it exhibits the effects of the present disclosure. In the grindstone, the content of the pores may be 40% by volume or more and 95% by volume or less.
  • the lower limit of the content of the superabrasive is preferably 10% by volume or more, 15% by volume or more, or 20% by volume or more.
  • the upper limit of the content of the superabrasive is preferably 60% by volume or less, 50% by volume or less, and 40% by volume or less.
  • the content of the superabrasive grains is preferably 10 vol% or more and 60 vol% or less, 15 vol% or more and 50 vol% or less, and 20 vol% or more and 40 vol% or less.
  • the content of super-abrasive grains is determined by separating the abrasive grains and binder from a 1 cm3 piece of the cutting edge of the abrasive stone by chemical treatment, measuring the weight of the abrasive grains, and measuring the weight of the abrasive grains.
  • the volume is determined by dividing by the density (g/cm 3 ). Since this is the volume (cm 3 ) contained in 1 cm 3 , it can be specified by multiplying the numerical value of the volume by 100.
  • the "superabrasive content" has been measured multiple times by arbitrarily setting the cutting point of the grinding wheel edge and following the above procedure. It was also confirmed that there was little variation in the measurement results, and that even if the cutting point of the grindstone edge was set arbitrarily, it would not be arbitrary.
  • the lower limit of the content of the binder is preferably 1% by volume or more, 2% by volume or more, or 3% by volume or more.
  • the upper limit of the content of the binder is preferably 30% by volume or less, 20% by volume or less, and 10% by volume or less.
  • the content of the binder is preferably 1 volume % or more and 30 volume % or less, 2 volume % or more and 20 volume % or less, and 3 volume % or more and 10 volume % or less.
  • the content of the binder is determined by separating the abrasive grains and the binder from a 1cm3 piece of the cutting edge of the grinding wheel by chemical treatment, measuring the weight of the binder, and determining the content of the binder.
  • the volume is determined by dividing by the density (g/cm 3 ). Since this is the volume (cm 3 ) contained in 1 cm 3 , it can be specified by multiplying the numerical value of the volume by 100.
  • the superabrasive grain of Embodiment 1 is used.
  • the number of superabrasive grains can be plural.
  • a portion of the superabrasive grains 10 on the surface side of the superabrasive grain layer 12 is exposed from the bonding material 11, and the exposed portion has a cutting edge portion for grinding the work material.
  • all of the superabrasive grains 10 on the base metal 120 side of the superabrasive grain layer 12 are embedded in the bonding material 11.
  • the buried superabrasive grains 10 are removed during grinding of a workpiece with the grindstone 20, in the process in which the superabrasive grains 10 on the surface side of the superabrasive grain layer 12 wear out and fall off, and the bonding material 11 wears out. The part is exposed from the bonding material 11 and the workpiece is ground (FIG. 4).
  • All of the plurality of superabrasive grains may be composed of an abrasive grain body portion having the same configuration (material and size) and an oxidation prevention film having the same configuration (material and thickness). Further, the abrasive grain main body portion and oxidation prevention film of some superabrasive grains may have a different configuration (material and size) from the abrasive grain main body portion and oxidation prevention film of other portions of the superabrasive grain. Moreover, known abrasive grains other than superabrasive grains may be mixed in the superabrasive grain layer.
  • the bonding material 11 fixes the superabrasive grains 10 to one end surface 121 (usable surface) of the base metal 120 (FIG. 4).
  • Examples of the type of bonding material include one type of bond selected from vitrified bond, metal bond, and a composite bond of these, or metal solder. As these bonds and metal solders, known bonds and metal solders can be used.
  • vitrified bond is that the main component is glass.
  • metal bonds include copper-tin alloys.
  • metal solder include silver (Ag) solder.
  • the type of bonding material can be selected as appropriate depending on the material of the anti-oxidation film of the superabrasive grains.
  • the bonding material can be, for example, vitrified bond, metal bond, or metal solder.
  • the binder is preferably vitrified bond.
  • the softening point of the binder is 400°C or more and 1000°C or less. Since such a binding material has excellent mechanical strength, the grindstone can have excellent grinding performance.
  • the lower limit of the softening point of the binder is preferably 500°C or higher, more preferably 600°C or higher, and even more preferably 700°C or higher.
  • the upper limit of the softening point of the binder is preferably 950°C or lower, more preferably 900°C or lower, and even more preferably 850°C or lower.
  • the softening point of the binder is preferably 500°C or more and 950°C or less, more preferably 600°C or more and 900°C or less, and even more preferably 700°C or more and 850°C or less.
  • the above-mentioned softening point can be determined by extrapolating a straight line from two points where the curvature of the expansion curve characteristically changes when thermal expansion is measured in compression mode measurement using thermomechanical measurement (TMA), and finding it from the intersection of these points. .
  • TMA thermomechanical measurement
  • the binder contains silicon, boron, and at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements, and the silicon content of the binder is 30% by mass or more. It is preferably 70% by mass or less, and the boron content of the bonding material is preferably 0% by mass or more and 30% by mass or less. This further increases the affinity between the superabrasive grains provided with the oxidation-preventing film and the binder via the oxidation-preventing film. As a result, the grindstone can have better grinding performance.
  • the alkali metal elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • examples of alkaline earth metal elements include calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • the silicon content of the bonding material is more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the silicon content of the bonding material is more preferably 60% by mass or less, and even more preferably 55% by mass or less.
  • the silicon content of the bonding material is more preferably 40% by mass or more and 60% by mass or less, and even more preferably 50% by mass or more and 55% by mass or less.
  • the boron content of the bonding material is more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the boron content of the bonding material is more preferably 25% by mass or less, and even more preferably 20% by mass or less.
  • the boron content of the bonding material is more preferably 5% by mass or more and 25% by mass or less, and even more preferably 10% by mass or more and 20% by mass or less.
  • the composition of the binder can be identified by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the grinding wheel 20 (FIGS. 3 and 4) is prepared by preparing a plurality of superabrasive grains 10 (FIGS. 1 and 2) in which at least a portion of the surface of the abrasive grain main body 1 is coated with an anti-oxidation film 2, and applying a bonding material. 11, by fixing a plurality of superabrasive grains 10 to one end surface 121 (usable surface) of the base metal 120 (FIG. 4).
  • the grinding wheel 20 is prepared by preparing a plurality of abrasive grain main bodies 1 that are not coated with the anti-oxidation film 2, and bonding the plurality of abrasive grain main body parts 1 to one end surface 121 (usable surface) of the base metal 120 using a bonding material 11. After the abrasive particles are fixed, the anti-oxidation film 2 may be formed to cover the surface (cutting edge portion) of the abrasive grain body 1.
  • coating methods include the above-mentioned sol-gel method, a method in which crushed ceramics or crushed glass is adsorbed onto the abrasive grain body using a binder, and a method in which crushed ceramics or crushed glass is electrostatically applied to the abrasive grain body. Any of an adsorption method, a chemical vapor deposition method, and a sputtering method using a target material can be used.
  • the grindstone according to the embodiment can be suitably used for grinding automobile parts, optical glass, magnetic materials, semiconductor materials, etc., groove grinding of end mills, drills, reamers, etc., breaker grinding of indexable tips, and heavy grinding of various tools. .
  • thermogravimetric analysis residual rate [%] the residual ratio in thermogravimetric analysis of the superabrasive grains was determined by the method described in Embodiment 1. The obtained results are recorded in the "thermogravimetric analysis residual rate [%]" column in the "superabrasive” column of Tables 4 and 5.
  • the workpiece 130 is fixed on the table 110.
  • the table 110 is rotatable in the direction indicated by an arrow 110R.
  • the grindstone 20 is rotatable in the direction indicated by the arrow 1R.
  • the direction indicated by arrow 1F is the cutting direction.
  • the above samples 1 to 3, 9, 11 to 17, and 20 to 42 correspond to examples, and the above samples 4 to 6, 10, 18, and 19 correspond to comparative examples.
  • the grinding wheels of Samples 1 to 3, 9, 11 to 17, and 20 to 42 exhibited exceptionally high grinding ratios compared to the grinding wheels of Samples 4 to 6, 10, 18, and 19. Comparing samples with the same average particle diameter of the abrasive grain body, the grinding wheels of samples 1 to 3, 9, 11 to 17, and 20 to 42 are superior to those of samples 4 to 6, 10, 18, and 19. In comparison, it has exceptionally excellent sharpness and exceptionally excellent wear resistance. That is, the grindstones of Samples 1 to 3, 9, 11 to 17, and 20 to 42 have exceptionally excellent grinding performance compared to the grindstones of Samples 4 to 6, 10, 18, and 19.

Abstract

This superabrasive grain comprises an abrasive grain body section and an antioxidant film that coats at least a portion of the surface of the abrasive grain body section, wherein the abrasive grain body section comprises cubic boron nitride or diamond and the average particle diameter of the abrasive grain body section is less than 1.0 µm.

Description

超砥粒および砥石Superabrasives and grinding wheels
 本開示は、超砥粒および砥石に関する。 The present disclosure relates to superabrasives and grindstones.
 精密加工に用いられる工具として、砥粒と結合材とを含む砥石が用いられる。従来より、ダイヤモンド、立方晶窒化硼素、アルミナ、炭化珪素などからなる砥粒をビトリファイドボンドによって結合した砥石が用いられている(特許文献1)。 A grindstone containing abrasive grains and a binder is used as a tool for precision machining. BACKGROUND ART Conventionally, a grindstone in which abrasive grains made of diamond, cubic boron nitride, alumina, silicon carbide, etc. are bonded together by a vitrified bond has been used (Patent Document 1).
特開2014-12328号公報JP2014-12328A
 本開示の一態様に係る超砥粒は、
 砥粒本体部と、該砥粒本体部の表面の少なくとも一部を被覆する酸化防止膜とを備える、超砥粒であって、
 該砥粒本体部は、立方晶窒化硼素又はダイヤモンドからなり、
 該砥粒本体部の平均粒径は、1.0μm未満である。
The superabrasive grain according to one aspect of the present disclosure is
A superabrasive grain comprising an abrasive grain body and an oxidation prevention film covering at least a part of the surface of the abrasive grain body,
The abrasive grain main body is made of cubic boron nitride or diamond,
The average grain size of the abrasive grain body is less than 1.0 μm.
 本開示の一態様に係る砥石は、
 環状の台金と、
 該台金の表面上に配置された超砥粒層と、を備え、
 該超砥粒層は、上記超砥粒と、結合材とを含み、
 該結合材の軟化点は、400℃以上1000℃以下である。
A grindstone according to one aspect of the present disclosure,
a ring-shaped base metal,
a superabrasive layer disposed on the surface of the base metal,
The superabrasive layer includes the superabrasive and a binder,
The softening point of the binder is 400°C or more and 1000°C or less.
図1は、本開示の超砥粒の一態様を例示する模式断面図である。FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the superabrasive grain of the present disclosure. 図2は、本開示の超砥粒の他の態様を例示する模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating another embodiment of the superabrasive grain of the present disclosure. 図3は、本開示の砥石の一態様を例示する模式平面図である。FIG. 3 is a schematic plan view illustrating one embodiment of the grindstone of the present disclosure. 図4は、図3のIV-IV線断面図である。FIG. 4 is a cross-sectional view taken along the line IV--IV in FIG. 図5は、砥石により被削材を研削加工する方式を示す模式図である。FIG. 5 is a schematic diagram showing a method of grinding a work material using a grindstone.
[本開示が解決しようとする課題]
 ダイヤモンドや立方晶窒化硼素(cBN)をベースとする砥粒と、結合材とを含む砥石の製造工程は、大気下での焼成工程を含む。該焼成工程により、砥粒が熱劣化し易い傾向がある。ダイヤモンドからなる砥粒の場合、ダイヤモンドが大気中の酸素と燃焼反応を生じることによって、ダイヤモンドの硬度が低下する。また、燃焼反応により、ダイヤモンドからなる砥粒自体が消失して、砥粒と結合材との界面の接合強度が低下する。cBNからなる砥粒の場合、砥粒表面のcBNと酸素とが反応して酸化硼素を生じることに起因して、cBNの硬度は低下する。その為、そのような砥粒を含む砥石の工具性能(切れ味)は十分でない場合があった。上記のような砥粒の熱劣化は、特に加工面の表面粗さを小さくする為に必要な加工条件に用いられる粒径が1.0μm未満の超微粒の砥粒において生じやすい傾向がある。
[Problems that this disclosure seeks to solve]
The manufacturing process of a grindstone that includes diamond or cubic boron nitride (cBN)-based abrasive grains and a binder includes a firing process in the atmosphere. Due to the firing process, the abrasive grains tend to be easily deteriorated by heat. In the case of abrasive grains made of diamond, the hardness of the diamond decreases due to a combustion reaction between the diamond and oxygen in the atmosphere. Further, due to the combustion reaction, the abrasive grains made of diamond themselves disappear, and the bonding strength at the interface between the abrasive grains and the binder decreases. In the case of abrasive grains made of cBN, the hardness of cBN decreases due to the reaction between cBN on the surface of the abrasive grains and oxygen to produce boron oxide. Therefore, the tool performance (sharpness) of a grindstone containing such abrasive grains may not be sufficient. Thermal deterioration of abrasive grains as described above tends to occur particularly in ultrafine abrasive grains with a grain size of less than 1.0 μm, which are used under the processing conditions required to reduce the surface roughness of the machined surface.
 このような砥粒の熱劣化を抑制する手段として、砥石の結合材であるガラスに金属類を添加することにより、結合材(ガラス)の軟化温度を下げることが考えられる。しかしながら、このような手段は、実用上望ましくない結果を招くことがある。このような金属類の多くは砥石の結合材(ガラス)の化学的安定性を低下させる為、該金属類が水に溶出し易くなる。その結果、該金属類の水への溶出によって、砥石の強度が低下する場合があった。また、そのような金属類が添加された砥石は、使用に伴って強度を低下し易い為、該砥石の研削性能(耐摩耗性)が低下する場合があった。その為、切れ味と耐摩耗性とに優れ、優れた研削性能を有する砥石が求められている。 As a means of suppressing such thermal deterioration of the abrasive grains, it is conceivable to lower the softening temperature of the bonding material (glass) by adding metals to the glass, which is the bonding material of the grindstone. However, such measures may lead to practically undesirable results. Many of these metals reduce the chemical stability of the bonding material (glass) of the grindstone, making them more likely to dissolve into water. As a result, the strength of the grindstone may be reduced due to elution of the metals into water. In addition, since a grindstone to which such metals are added tends to decrease in strength with use, the grinding performance (wear resistance) of the grindstone may deteriorate. Therefore, there is a need for a grindstone that has excellent sharpness, wear resistance, and excellent grinding performance.
 そこで、本開示は、砥石に優れた研削性能を備えさせることが可能な超砥粒、および該超砥粒を含む砥石を提供することを目的とする。
[本開示の効果]
Therefore, an object of the present disclosure is to provide a superabrasive grain that can provide a whetstone with excellent grinding performance, and a whetstone that includes the superabrasive grain.
[Effects of this disclosure]
 本開示によれば、砥石に優れた研削性能を備えさせることが可能な超砥粒、及びそれを含む砥石を提供することができる。 According to the present disclosure, it is possible to provide superabrasive grains that can provide a whetstone with excellent grinding performance, and a whetstone that includes the superabrasive grains.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る砥粒は、
 砥粒本体部と、前記砥粒本体部の表面の少なくとも一部を被覆する酸化防止膜とを備える、超砥粒であって、
 前記砥粒本体部は、立方晶窒化硼素又はダイヤモンドからなり、
 前記砥粒本体部の平均粒径は、1.0μm未満である。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
(1) The abrasive grains according to one aspect of the present disclosure are:
A superabrasive grain comprising an abrasive grain body portion and an oxidation prevention film covering at least a part of the surface of the abrasive grain body portion,
The abrasive grain main body is made of cubic boron nitride or diamond,
The average grain size of the abrasive grain main body portion is less than 1.0 μm.
 本開示の一態様に係る超砥粒を含む砥石は、優れた研削性能を有することができる。 A grindstone containing superabrasive grains according to one embodiment of the present disclosure can have excellent grinding performance.
 (2)上記(1)において、前記超砥粒の熱重量分析における残存率は、70%以上であり、
 前記熱重量分析は、温度900℃かつ保持時間0.5時間の条件下で実行されることが好ましい。これによって、より優れた研削性能を有する砥石を提供することができる。
(2) In (1) above, the residual rate of the superabrasive grains in thermogravimetric analysis is 70% or more,
The thermogravimetric analysis is preferably performed at a temperature of 900° C. and a holding time of 0.5 hours. This makes it possible to provide a grindstone with better grinding performance.
 (3)上記(1)または(2)において、前記酸化防止膜は、第1材料からなり、
 前記第1材料は、セラミックスまたはガラスからなることが好ましい。これによって、より優れた研削性能を有する砥石を提供することができる。
(3) In (1) or (2) above, the antioxidant film is made of a first material,
Preferably, the first material is made of ceramics or glass. This makes it possible to provide a grindstone with better grinding performance.
 (4)上記(3)において、前記超砥粒は、前記第1材料を0.1質量%以上50質量%未満で含むことが好ましい。これによって、より優れた研削性能を有する砥石を提供することができる。 (4) In (3) above, it is preferable that the superabrasive grains contain the first material in an amount of 0.1% by mass or more and less than 50% by mass. This makes it possible to provide a grindstone with better grinding performance.
 (5)上記(1)から(4)のいずれかにおいて、前記酸化防止膜は、前記砥粒本体部の表面の20%以上を被覆することが好ましい。これによって、より優れた研削性能を有する砥石を提供することができる。 (5) In any one of (1) to (4) above, the antioxidant film preferably covers 20% or more of the surface of the abrasive grain main body. This makes it possible to provide a grindstone with better grinding performance.
 (6)本開示の砥石は、
 環状の台金と、
 前記台金の表面上に配置された超砥粒層と、を備え、
 前記超砥粒層は、上述の(1)から(5)に記載の超砥粒と、結合材とを含み、
 前記結合材の軟化点は、400℃以上1000℃以下である。これによって、優れた研削性能を有する砥石を提供することができる。
(6) The grindstone of the present disclosure is
a ring-shaped base metal,
a superabrasive layer disposed on the surface of the base metal,
The superabrasive grain layer includes the superabrasive grains described in (1) to (5) above and a binder,
The softening point of the binder is 400°C or more and 1000°C or less. This makes it possible to provide a grindstone with excellent grinding performance.
 (7)上記(6)において、前記結合材は、珪素と、硼素と、アルカリ金属元素およびアルカリ土類金属元素からなる群より選択される少なくとも1種の元素とを含み、
 前記結合材の珪素の含有率は、30質量%以上70質量%以下であり、
 前記結合材の硼素の含有率は、0質量%以上30質量%以下であることが好ましい。これによって、より優れた研削性能を有する砥石を提供することができる。
(7) In (6) above, the binder contains silicon, boron, and at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements,
The silicon content of the binder is 30% by mass or more and 70% by mass or less,
The boron content of the bonding material is preferably 0% by mass or more and 30% by mass or less. This makes it possible to provide a grindstone with better grinding performance.
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
[Details of embodiments of the present disclosure]
An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this. In this specification, the notation in the format "A to B" means the upper and lower limits of the range (i.e., from A to B), and when there is no unit described in A and only in B, The units of and the units of B are the same.
 [実施形態1:超砥粒]
 本開示の一実施形態に係る超砥粒について、図1および図2を用いて説明する。
 本開示の一実施形態(以下、「本実施形態」とも記す。)に係る超砥粒10は、
 砥粒本体部1と、該砥粒本体部1の表面の少なくとも一部を被覆する酸化防止膜2とを備える、超砥粒10であって、
 該砥粒本体部1は、立方晶窒化硼素又はダイヤモンドからなり、
 該砥粒本体部1の平均粒径は、1.0μm未満である。
[Embodiment 1: Super abrasive]
A superabrasive grain according to an embodiment of the present disclosure will be described using FIGS. 1 and 2.
The superabrasive grain 10 according to an embodiment of the present disclosure (hereinafter also referred to as "this embodiment") is
A superabrasive grain 10 comprising an abrasive grain main body part 1 and an oxidation prevention film 2 covering at least a part of the surface of the abrasive grain main body part 1,
The abrasive grain main body 1 is made of cubic boron nitride or diamond,
The average grain size of the abrasive main body portion 1 is less than 1.0 μm.
 本開示の一実施形態に係る超砥粒を含む砥石は、優れた研削性能を有することが可能である。その理由は、以下の通りと推察される。 A grindstone containing superabrasive grains according to an embodiment of the present disclosure can have excellent grinding performance. The reason is presumed to be as follows.
 本開示の超砥粒10では、該砥粒本体部1の表面の少なくとも一部が酸化防止膜2で被覆されている。このため、該超砥粒を用いた砥石を製造する際の大気中での焼成工程においても、該超砥粒と大気中の酸素との燃焼反応を抑制できる。よって、該超砥粒の熱劣化及び消失に起因する耐摩耗性の低下を抑制でき、砥石の研削性能が向上すると推察される。 In the superabrasive grain 10 of the present disclosure, at least a portion of the surface of the abrasive grain main body portion 1 is coated with an antioxidant film 2. Therefore, even in the firing process in the atmosphere when producing a grindstone using the superabrasive grains, the combustion reaction between the superabrasive grains and oxygen in the atmosphere can be suppressed. Therefore, it is presumed that the reduction in wear resistance caused by thermal deterioration and disappearance of the superabrasive grains can be suppressed, and the grinding performance of the grindstone is improved.
 また、本開示の超砥粒は、砥石の製造工程において結合材の軟化温度を下げるための金属類の添加を要しない為、該金属類の水への溶出に起因する砥石の耐摩耗性の低下を防ぐことができる。 In addition, the superabrasive grains of the present disclosure do not require the addition of metals to lower the softening temperature of the binder during the manufacturing process of the grindstone, so the wear resistance of the grindstone due to elution of the metals into water is reduced. The decline can be prevented.
 よって、本実施形態に係る超砥粒を含む砥石は、優れた研削性能を有することができる。 Therefore, the grindstone containing the superabrasive grains according to this embodiment can have excellent grinding performance.
 ≪砥粒本体部≫
 <砥粒本体部の組成>
 本実施形態に係る砥粒本体部は、立方晶窒化硼素又はダイヤモンドからなる。ここで、「立方晶窒化硼素又はダイヤモンドからなる」とは、立方晶窒化硼素又はダイヤモンドのみからなる態様に限られず、本開示の効果が奏される限りにおいて、立方晶窒化硼素又はダイヤモンドとともに、立方晶窒化硼素およびダイヤモンド以外の成分(例えば、不可避不純物)を含む態様をも包含する概念である。上記砥粒本体部の不可避不純物としては、例えば炭素(C)、アルミニウム(Al)、珪素(Si)、リチウム(Li)、カルシウム(Ca)、マグネシウム(Mg)が挙げられる。砥粒本体部中の不可避不純物の含有率は、例えば、質量基準で、0%以上1%未満とすることができる。
≪Abrasive grain body≫
<Composition of the abrasive grain body>
The abrasive grain main body portion according to this embodiment is made of cubic boron nitride or diamond. Here, "consisting of cubic boron nitride or diamond" is not limited to an embodiment consisting only of cubic boron nitride or diamond, but as long as the effects of the present disclosure are achieved, cubic boron nitride or diamond may be used together with cubic boron nitride or diamond. This concept also includes embodiments containing components other than crystalline boron nitride and diamond (for example, unavoidable impurities). Examples of unavoidable impurities in the abrasive grain body include carbon (C), aluminum (Al), silicon (Si), lithium (Li), calcium (Ca), and magnesium (Mg). The content of unavoidable impurities in the abrasive grain body can be, for example, 0% or more and less than 1% on a mass basis.
 超砥粒において、砥粒本体部の組成は、走査電子顕微鏡(SEM)(日本電子社製の「JSM-7800F」(商標))付帯のエネルギー分散型X線分析装置(EDX)(Octane Elect(オクタンエレクト)EDS システム)(商標)により特定することができる。 In superabrasive grains, the composition of the abrasive grain main body is determined by an energy dispersive X-ray analyzer (EDX) (Octane Elect Octane Elect) EDS System) (trademark).
 <砥粒本体部の平均粒径>
 上記砥粒本体部の平均粒径は、1.0μm未満である。該砥粒本体部を含む砥石は切れ味が良好であり、加工面の表面粗さを非常に小さくすることができる。一方、砥粒本体部の平均粒径が1.0μm以上である場合、加工面の表面粗さが大きくなり易い傾向がある。上記砥粒本体部の平均粒径の下限は、0.3μm以上であることが好ましく、0.4μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。また、上記砥粒本体部の平均粒径の上限は、0.9μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.7μm以下であることが更に好ましい。また、上記砥粒本体部の平均粒径は、0.3μm以上1.0μm以下であることが好ましく、0.4μm以上0.8μm以下であることがより好ましく、0.5μm以上0.7μm以下であることが更に好ましい。
<Average grain size of the abrasive grain body>
The average grain size of the abrasive grain main body is less than 1.0 μm. A grindstone including the abrasive grain main body has good sharpness, and the surface roughness of the machined surface can be made very small. On the other hand, when the average grain size of the abrasive grain body is 1.0 μm or more, the surface roughness of the machined surface tends to increase. The lower limit of the average particle size of the abrasive grain main body is preferably 0.3 μm or more, more preferably 0.4 μm or more, and even more preferably 0.5 μm or more. Further, the upper limit of the average particle diameter of the abrasive grain main body is preferably 0.9 μm or less, more preferably 0.8 μm or less, and even more preferably 0.7 μm or less. Further, the average particle diameter of the abrasive grain main body is preferably 0.3 μm or more and 1.0 μm or less, more preferably 0.4 μm or more and 0.8 μm or less, and 0.5 μm or more and 0.7 μm or less. It is more preferable that
 超砥粒において、上記砥粒本体部の平均粒径は、以下の方法により特定できる。すなわち、酸化防止膜を化学的処理により除去(方法は材質によって最適なものを選択)した後、砥粒本体部の体積基準のD50を粒度分布計によって測定する。該D50を「砥粒本体部の平均粒径」とする。なお、粒度分布計による測定方式は、「レーザー回折方式」とする。 In the superabrasive grain, the average grain size of the abrasive grain main body can be specified by the following method. That is, after removing the antioxidant film by chemical treatment (the most suitable method is selected depending on the material), the volume-based D50 of the main body of the abrasive grain is measured using a particle size distribution meter. The D50 is defined as the "average particle diameter of the abrasive grain main body". Note that the measurement method using the particle size distribution meter is the "laser diffraction method."
 <砥粒本体部の結晶組織>
 砥粒本体部の結晶組織は、単結晶又は多結晶とすることができる。砥粒本体部の結晶組織が単結晶であると、砥粒本体部の強度が向上しやすい。一方、砥粒本体部の結晶組織が多結晶であると、該砥粒本体部を含む砥粒を用いた工具の研削比が向上しやすい。
<Crystal structure of the abrasive grain body>
The crystal structure of the abrasive grain main body can be single crystal or polycrystal. When the crystal structure of the abrasive grain body is single crystal, the strength of the abrasive grain body tends to improve. On the other hand, when the crystal structure of the abrasive grain main body is polycrystalline, the grinding ratio of a tool using an abrasive grain including the abrasive grain main body tends to be improved.
 砥粒本体部の結晶組織は、X線回折により確認することができる。 The crystal structure of the abrasive grain main body can be confirmed by X-ray diffraction.
 ≪酸化防止膜≫
 本実施形態に係る超砥粒は、上記砥粒本体部の表面の少なくとも一部を被覆する酸化防止膜を備える。ここで、「砥粒本体部の表面の少なくとも一部を被覆する」とは、「砥粒本体部の表面の全てを被覆する」場合のみならず(図1)、「砥粒本体部の表面の一部のみを被覆する」場合(図2)をも包含する概念である。
<<Antioxidant film>>
The superabrasive according to this embodiment includes an oxidation-preventing film that covers at least a portion of the surface of the abrasive main body. Here, "coating at least a part of the surface of the abrasive grain body" means not only "coating the entire surface of the abrasive grain body" (Figure 1), but also "covering the entire surface of the abrasive grain body" (Fig. 1). This concept also includes the case of "covering only a part of the surface" (FIG. 2).
 <酸化防止膜の組成>
 上記酸化防止膜は、後述する第1材料からなることが好ましい。ここで、「第1材料からなる」とは、上記第1材料のみからなる態様に限られず、本開示の効果が奏される限りにおいて、上記第1材料に加えて上記第1材料以外の成分(例えば、不可避不純物)を含む態様をも包含する概念である。上記酸化防止膜の不可避不純物としては、例えばC、Al、Siが挙げられる。上記酸化防止膜の不可避不純物の含有率は、例えば、質量基準で、0%以上1%以下とすることができる。上記酸化防止膜の組成は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により特定できる。
<Composition of antioxidant film>
The anti-oxidation film is preferably made of a first material described below. Here, "consisting of the first material" is not limited to an embodiment consisting only of the above first material, but as long as the effects of the present disclosure are achieved, components other than the above first material in addition to the above first material are used. This concept also includes embodiments containing (for example, unavoidable impurities). Examples of unavoidable impurities in the anti-oxidation film include C, Al, and Si. The content of unavoidable impurities in the antioxidant film can be, for example, 0% or more and 1% or less on a mass basis. The composition of the above-mentioned antioxidant film can be determined by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
 (第1材料)
 上記第1材料は、セラミックスまたはガラスからなることが好ましい。これによって、砥石の製造において、砥粒の熱劣化を更に抑制することができる為、砥石により優れた切れ味とより優れた耐摩耗性とを兼備させることができ、より優れた研削性能を備えさせることができる。
(First material)
Preferably, the first material is made of ceramic or glass. As a result, thermal deterioration of the abrasive grains can be further suppressed in the production of whetstones, allowing the whetstone to have both superior sharpness and better abrasion resistance, resulting in better grinding performance. be able to.
 上記セラミックスとしては、周期表の第4族元素、第5族元素、第6族元素、アルミニウム(Al)、及びケイ素(Si)からなる群より選択される1種以上の第1元素と、酸素、窒素、炭素及び硼素からなる群より選ばれる少なくとも1種の第2元素とからなる化合物が挙げられる。第1材料が上記セラミックスである場合、そのような第1材料からなる酸化防止膜は優れた硬度と優れた耐摩耗性とを有する為、砥粒本体部は損傷し難い。なお、周期表の第4族元素は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)である。周期表の第5族元素は、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)である。周期表の第6族元素は、クロム(Cr)、モリブデン(Mo)、タングステン(W)である。 The ceramics include one or more first elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements of the periodic table, aluminum (Al), and silicon (Si), and oxygen. , and at least one second element selected from the group consisting of nitrogen, carbon, and boron. When the first material is the above-mentioned ceramic, the oxidation-preventing film made of such a first material has excellent hardness and excellent wear resistance, so that the abrasive grain main body portion is not easily damaged. Note that the Group 4 elements of the periodic table are titanium (Ti), zirconium (Zr), and hafnium (Hf). Group 5 elements of the periodic table are vanadium (V), niobium (Nb), and tantalum (Ta). Group 6 elements of the periodic table are chromium (Cr), molybdenum (Mo), and tungsten (W).
 第1元素と酸素とからなる化合物(酸化物)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化アルミニウム(Al)、酸化珪素(SiO)を挙げることができる。 Examples of compounds (oxides) consisting of the first element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), vanadium oxide (V 2 O 5 ), and niobium oxide. (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) can be mentioned.
 第1元素と窒素とからなる化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンタングステン(MoWN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)を挙げることができる。 Examples of compounds (nitrides) consisting of the first element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), and tantalum nitride. (TaN), chromium nitride ( Cr2N ), molybdenum nitride (MoN), tungsten nitride (WN), titanium zirconium nitride (TiZrN), titanium hafnium nitride (TiHfN), titanium vanadium nitride (TiVN), titanium niobium nitride (TiNbN) , titanium tantalum nitride (TiTaN), titanium chromium nitride (TiCrN), titanium molybdenum nitride (TiMoN), titanium tungsten nitride (TiWN), zirconium hafnium nitride (ZrHfN), zirconium vanadium nitride (ZrVN), zirconium niobium nitride (ZrNbN), Zirconium tantalum nitride (ZrTaN), zirconium chromium nitride (ZrCrN), zirconium molybdenum nitride (ZrMoN), zirconium tungsten nitride (ZrWN), hafnium vanadium nitride (HfVN), hafnium niobium nitride (HfNbN), hafnium tantalum nitride (HfTaN), nitride Hafnium chromium (HfCrN), hafnium molybdenum nitride (HfMoN), hafnium tungsten nitride (HfWN), vanadium niobium nitride (VNbN), vanadium tantalum nitride (VTaN), vanadium chromium nitride (VCrN), vanadium molybdenum nitride (VMoN), vanadium nitride Tungsten (VWN), niobium tantalum nitride (NbTaN), niobium chromium nitride (NbCrN), niobium molybdenum nitride (NbMoN), niobium tungsten nitride (NbWN), tantalum chromium nitride (TaCrN), tantalum molybdenum nitride (TaMoN), tantalum tungsten nitride ( Examples include TaWN), chromium molybdenum nitride (CrMoN), chromium tungsten nitride (CrWN), molybdenum tungsten nitride (MoWN), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ).
 第1元素と炭素とからなる化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(CrC)、炭化モリブデン(MoC)、炭化タングステン(WC)、炭化チタンジルコニウム(TiZrC)、炭化チタンハフニウム(TiHfC)、炭化チタンバナジウム(TiVC)、炭化チタンニオブ(TiNbC)、炭化チタンタンタル(TiTaC)、炭化チタンクロム(TiCrC)、炭化チタンモリブデン(TiMoC)、炭化チタンタングステン(TiWC)、炭化ジルコニウムハフニウム(ZrHfC)、炭化ジルコニウムバナジウム(ZrVC)、炭化ジルコニウムニオブ(ZrNbC)、炭化ジルコニウムタンタル(ZrTaC)、炭化ジルコニウムクロム(ZrCrC)、炭化ジルコニウムモリブデン(ZrMoC)、炭化ジルコニウムタングステン(ZrWC)、炭化ハフニウムバナジウム(HfVC)、炭化ハフニウムニオブ(HfNbC)、炭化ハフニウムタンタル(HfTaC)、炭化ハフニウムクロム(HfCrC)、炭化ハフニウムモリブデン(HfMoC)、炭化ハフニウムタングステン(HfWC)、炭化バナジウムニオブ(VNbC)、炭化バナジウムタンタル(VTaC)、炭化バナジウムクロム(VCrC)、炭化バナジウムモリブデン(VMoC)、炭化バナジウムタングステン(VWC)、炭化ニオブタンタル(NbTaC)、炭化ニオブクロム(NbCrC)、炭化ニオブモリブデン(NbMoC)、炭化ニオブタングステン(NbWC)、炭化タンタルクロム(TaCrC)、炭化タンタルモリブデン(TaMoC)、炭化タンタルタングステン(TaWC)、炭化クロムモリブデン(CrMoC)、炭化クロムタングステン(CrWC)、炭化モリブデンタングステン(MoWC)、炭化アルミニウム(Al)、炭化珪素(SiC)を挙げることができる。 Examples of compounds (carbides) consisting of the first element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), and tantalum carbide ( TaC), chromium carbide ( Cr2C ), molybdenum carbide (MoC), tungsten carbide (WC), titanium zirconium carbide (TiZrC), titanium hafnium carbide (TiHfC), titanium vanadium carbide (TiVC), titanium niobium carbide (TiNbC), Titanium tantalum carbide (TiTaC), titanium chromium carbide (TiCrC), titanium molybdenum carbide (TiMoC), titanium tungsten carbide (TiWC), zirconium hafnium carbide (ZrHfC), zirconium vanadium carbide (ZrVC), zirconium niobium carbide (ZrNbC), carbide Zirconium tantalum (ZrTaC), zirconium chromium carbide (ZrCrC), zirconium molybdenum carbide (ZrMoC), zirconium tungsten carbide (ZrWC), hafnium vanadium carbide (HfVC), hafnium niobium carbide (HfNbC), hafnium tantalum carbide (HfTaC), hafnium carbide Chromium (HfCrC), hafnium molybdenum carbide (HfMoC), hafnium tungsten carbide (HfWC), vanadium niobium carbide (VNbC), vanadium tantalum carbide (VTaC), vanadium chromium carbide (VCrC), vanadium molybdenum carbide (VMoC), vanadium tungsten carbide (VWC), niobium tantalum carbide (NbTaC), niobium chromium carbide (NbCrC), niobium molybdenum carbide (NbMoC), niobium tungsten carbide (NbWC), tantalum chromium carbide (TaCrC), tantalum molybdenum carbide (TaMoC), tantalum tungsten carbide (TaWC) ), chromium molybdenum carbide (CrMoC), chromium tungsten carbide (CrWC), molybdenum tungsten carbide (MoWC), aluminum carbide (Al 4 C 3 ), and silicon carbide (SiC).
 第1元素と炭素と窒素とからなる化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)、炭窒化アルミニウム(AlCN)、炭窒化珪素(SiCN)を挙げることができる。 Examples of compounds (carbonitrides) consisting of the first element, carbon, and nitrogen include titanium carbonitride (TiCN), zirconium carbonitride (ZrCN), hafnium carbonitride (HfCN), aluminum carbonitride (AlCN), and carbonitride. Silicon nitride (SiCN) can be mentioned.
 第1元素と硼素とからなる化合物(硼化物)としては、例えば、硼化チタン(TiB)、硼化ジルコニウム(ZrB)、硼化ハフニウム(HfB)、硼化バナジウム(VB)、硼化ニオブ(NbB)、硼化タンタル(TaB)、硼化クロム(CrB)、硼化モリブデン(MoB)、硼化タングステン(WB)、硼化アルミニウム(AlB)、硼化珪素(SiB)を挙げることができる。 Examples of compounds (borides) consisting of the first element and boron include titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), hafnium boride (HfB 2 ), vanadium boride (VB 2 ), Niobium boride (NbB 2 ), tantalum boride (TaB 2 ), chromium boride (CrB 2 ), molybdenum boride (MoB 2 ), tungsten boride (WB), aluminum boride (AlB 2 ), silicon boride (SiB 4 ) can be mentioned.
 第1元素と窒素と酸素とからなる化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)、酸窒化アルミニウム(AlON)、酸窒化珪素(SiON)、サイアロン(SiAlON)を挙げることができる。 Examples of compounds (oxynitrides) consisting of the first element, nitrogen, and oxygen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), vanadium oxynitride (VON), and Niobium nitride (NbON), tantalum oxynitride (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), tungsten oxynitride (WON), aluminum oxynitride (AlON), silicon oxynitride (SiON), Sialon ( SiAlON).
 上記の化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
 第1材料は、上記の化合物由来の固溶体を含むことができる。ここで、上記の化合物由来の固溶体とは、2種類以上の上記の化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
The above compounds may be used alone or in combination of two or more.
The first material can include a solid solution derived from the compound described above. Here, the solid solution derived from the above compound means a state in which two or more types of the above compounds are dissolved in each other's crystal structure, and means an interstitial solid solution or a substitutional solid solution.
 上記ガラスとしては、例えばホウケイ酸ガラス(SiO、B、Al、Fe、CaO、MgO、NaO、及びKOを含むガラス)が挙げられる。これによって、第1材料が上記ガラスである場合、そのような第1材料からなる酸化防止膜は優れた硬度と優れた耐摩耗性とを有する為、砥粒本体部は損傷し難い。 Examples of the glass include borosilicate glass (glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, Na 2 O, and K 2 O). As a result, when the first material is the above-mentioned glass, the anti-oxidation film made of the first material has excellent hardness and excellent abrasion resistance, so that the abrasive grain main body is not easily damaged.
 上記超砥粒は、上記第1材料を0.1質量%以上50質量%未満で含むことが好ましい。これによって、砥石の製造において、砥粒の熱劣化を更に抑制することができる為、砥石により優れた切れ味とより優れた耐摩耗性とを兼備させることができる。超砥粒の第1材料の含有率の下限は、砥粒の熱劣化の抑制する観点から、0.1質量%以上が好ましく、1質量%以上がより好ましく、10質量%以上が更に好ましい。超砥粒の第1材料の含有率の上限は、49質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。 The superabrasive grains preferably contain the first material in an amount of 0.1% by mass or more and less than 50% by mass. As a result, thermal deterioration of the abrasive grains can be further suppressed in the production of the whetstone, so that the whetstone can have both excellent sharpness and better wear resistance. The lower limit of the content of the first material in the superabrasive grains is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of suppressing thermal deterioration of the abrasive grains. The upper limit of the content of the first material of the superabrasive grains is preferably 49% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
 上記超砥粒における上記第1材料の含有率は、以下の手順で測定される。 The content of the first material in the superabrasive grains is measured by the following procedure.
(A1)超砥粒を1g準備する。 (A1) Prepare 1 g of superabrasive grains.
(B1)第1材料がセラミックスである場合には、上記超砥粒に対してICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)を実行することにより、第1材料を構成する上記第1元素(周期表の第4族元素、第5族元素、第6族元素、アルミニウム(Al)、及びケイ素(Si))の濃度を測定する。該第1元素の濃度に基づき、該第1元素の化合物(酸化物、炭化物、窒化物、炭窒化物、または硼化物)濃度を換算し、該第1元素の化合物の質量を算出する。また、第1材料がガラスである場合には、上記超砥粒に対してICP発光分光分析法を実行することにより、第1材料を構成するガラスに含まれる酸素以外の元素(例えば、ケイ素(Si)、硼素(B)、アルミニウム(Al)、鉄(Fe)、カルシウム(Ca)、マグネシウム(Mg)、ナトリウム(Na)、及びカリウム(K))の濃度を測定する。該「ガラスに含まれる酸素以外の元素」の濃度に基づき、該「ガラスに含まれる酸素以外の元素」の酸化物の濃度を換算し、該「ガラスに含まれる酸素以外の元素」の酸化物の質量を算出する。 (B1) When the first material is ceramic, the superabrasive grains are subjected to ICP emission spectroscopy (high-frequency inductively coupled plasma emission spectroscopy). The concentration of one element (group 4 element, group 5 element, group 6 element of the periodic table, aluminum (Al), and silicon (Si)) is measured. Based on the concentration of the first element, the concentration of the compound (oxide, carbide, nitride, carbonitride, or boride) of the first element is converted to calculate the mass of the compound of the first element. In addition, when the first material is glass, by performing ICP emission spectroscopy on the superabrasive grains, elements other than oxygen (for example, silicon ( Measure the concentrations of Si), boron (B), aluminum (Al), iron (Fe), calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K)). Based on the concentration of the "element other than oxygen contained in the glass", convert the concentration of the oxide of the "element other than oxygen contained in the glass", and calculate the oxide of the "element other than oxygen contained in the glass". Calculate the mass of
(C1)超砥粒全体の質量(1g)に対する上記第1元素の化合物の質量の百分率を算出する。該百分率が、超砥粒における第1材料の含有率に該当する。 (C1) Calculate the percentage of the mass of the compound of the first element with respect to the mass (1 g) of the entire superabrasive grain. This percentage corresponds to the content of the first material in the superabrasive grains.
 上記酸化防止膜は、上記砥粒本体部の表面の20%以上を被覆することが好ましい。これによって、砥石の製造において、砥粒の熱劣化を更に抑制することができる為、砥石により優れた切れ味とより優れた耐摩耗性とを兼備させることができ、より優れた研削性能を備えさせることができる。上記酸化防止膜は、上記砥粒本体部の表面の50%以上を被覆することがより好ましく、70%以上を被覆することが更に好ましい。また、上記酸化防止膜は、上記砥粒本体部の表面の100%を被覆することがより好ましい。製造上の観点で、上記酸化防止膜は、上記砥粒本体部の表面の99%以下、98%以下、97%以下を被覆することができる。また、上記酸化防止膜は、上記砥粒本体部の表面の20%以上100%以下を被覆することが好ましく、50%以上100%以下を被覆することがより好ましく、70%以上100%以下を被覆することが更に好ましい。 The antioxidant film preferably covers 20% or more of the surface of the abrasive grain body. As a result, thermal deterioration of the abrasive grains can be further suppressed in the production of whetstones, allowing the whetstone to have both superior sharpness and better abrasion resistance, resulting in better grinding performance. be able to. The antioxidant film more preferably covers 50% or more of the surface of the abrasive grain main body, and still more preferably covers 70% or more. Moreover, it is more preferable that the antioxidant film covers 100% of the surface of the abrasive grain main body. From a manufacturing standpoint, the antioxidant film can cover 99% or less, 98% or less, or 97% or less of the surface of the abrasive grain main body. Further, the antioxidant film preferably covers 20% or more and 100% or less of the surface of the abrasive grain body, more preferably 50% or more and 100% or less, and 70% or more and 100% or less. More preferably, it is coated.
 上記超砥粒において、上記酸化防止膜が上記砥粒本体部の表面を被覆する割合は、以下の方法により特定できる。 In the superabrasive grain, the proportion of the surface of the abrasive grain body covered with the antioxidant film can be determined by the following method.
(a1)エネルギー分散型X線分析(EDS)を備える走査電子顕微鏡(SEM)を用いて、5,000~200,000倍の倍率で観察して、上記超砥粒の反射電子像を得る。該反射電子像中に測定領域を設定する。該測定領域は、該測定領域中に超砥粒が100個以上含まれるように設定される。 (a1) Observe at a magnification of 5,000 to 200,000 times using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDS) to obtain a backscattered electron image of the superabrasive grain. A measurement area is set in the backscattered electron image. The measurement area is set so that 100 or more superabrasive grains are included in the measurement area.
(b1)上記反射電子像に対して画像解析ソフト(三谷商事社製の「WinRoof」(商標))を用いてEDSにより超砥粒の元素をマッピング分析することによって、上記測定領域において、超砥粒全体が占める面積A1を測定する。 (b1) By mapping the elements of the superabrasive grains using EDS on the backscattered electron image using image analysis software (“WinRoof” (trademark) manufactured by Mitani Shoji Co., Ltd.), The area A1 occupied by the entire grain is measured.
(c1)上記測定領域において、EDSにより、第1材料の構成元素をマッピング分析することにより、上記酸化防止膜を特定し、上記測定領域において、該酸化防止膜が占める面積A2を測定する(図示なし)。マッピング分析が行われる上記第1材料の構成元素は、炭素、硼素及び窒素以外の元素とする。 (c1) In the measurement region, identify the antioxidant film by mapping and analyzing the constituent elements of the first material using EDS, and measure the area A2 occupied by the antioxidant film in the measurement region (as shown in the figure). none). The constituent elements of the first material on which the mapping analysis is performed are elements other than carbon, boron, and nitrogen.
(d1)上記A2を上記A1で除することにより、酸化防止膜が砥粒本体部の表面を被覆する割合を算出する。 (d1) By dividing the above A2 by the above A1, the proportion of the surface of the abrasive grain body covered by the antioxidant film is calculated.
 ≪超砥粒の熱重量分析における残存率≫
 上記超砥粒の熱重量分析における残存率は、70%以上であることが好ましい。ここで、上記熱重量分析は、温度900℃かつ保持時間0.5時間の条件下で実行される。これによって、砥石の製造において、超砥粒の熱劣化を更に抑制することができる為、砥石により優れた切れ味とより優れた耐摩耗性とを兼備させることができ、より優れた研削性能を備えさせることができる。上記超砥粒の熱重量分析における残存率の下限は、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、上記超砥粒の熱重量分析における残存率の上限は、100%以下であることが好ましい。上記超砥粒の熱重量分析における残存率は、製造上の観点で99.5%以下、99.0%以下、98.5%以下とすることができる。上記超砥粒の熱重量分析における残存率は、70%以上100%以下であることが好ましく、80%以上100%以下であることがより好ましく、90%以上100%以下であることが更に好ましい。
≪Residual rate in thermogravimetric analysis of superabrasive particles≫
The residual rate of the superabrasive grains in thermogravimetric analysis is preferably 70% or more. Here, the thermogravimetric analysis is performed under conditions of a temperature of 900° C. and a holding time of 0.5 hours. This makes it possible to further suppress thermal deterioration of the superabrasive grains in the production of grinding wheels, allowing the grinding wheels to have both superior sharpness and better wear resistance, resulting in better grinding performance. can be done. The lower limit of the residual rate in thermogravimetric analysis of the superabrasive grains is more preferably 80% or more, and even more preferably 90% or more. Further, the upper limit of the residual rate in thermogravimetric analysis of the superabrasive grains is preferably 100% or less. The residual rate of the superabrasive grains in thermogravimetric analysis can be set to 99.5% or less, 99.0% or less, or 98.5% or less from the viewpoint of manufacturing. The residual rate of the superabrasive grains in thermogravimetric analysis is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less, and even more preferably 90% or more and 100% or less. .
 上記超砥粒の熱重量分析における残存率は、上記超砥粒に対し、温度900℃かつ保持時間0.5時間の条件下で、以下の様な熱重量分析を実行することにより特定できる。超砥粒30mg(初期重量)を準備し、熱重量分析(TG)計にかける(該TG計は昇温中の物質の重量変化をリアルタイムで測定できる)。TG測定の条件として、昇温速度10℃/分にて室温から900℃まで昇温した後、30分間900℃を維持する。雰囲気は大気である。このときの残存重量を測定する。残存率は、「(残存率)=[(残存重量)/(初期重量)]×100」で定義される。 The residual rate of the superabrasive in thermogravimetric analysis can be determined by performing the following thermogravimetric analysis on the superabrasive at a temperature of 900° C. and a holding time of 0.5 hours. 30 mg (initial weight) of superabrasive grains is prepared and applied to a thermogravimetric (TG) meter (the TG meter can measure the weight change of a substance during heating in real time). As conditions for TG measurement, the temperature is raised from room temperature to 900°C at a heating rate of 10°C/min, and then 900°C is maintained for 30 minutes. The atmosphere is atmospheric. The remaining weight at this time is measured. The residual rate is defined as “(residual rate)=[(residual weight)/(initial weight)]×100”.
 ≪超砥粒の製造方法≫
 本実施形態に係る超砥粒の製造方法は、立方晶窒化硼素又はダイヤモンドからなる砥粒本体部を準備する工程(以下、「準備工程」とも記す)と、該砥粒本体部の表面に酸化防止膜を形成する工程(以下、「被覆工程」とも記す)とを備えることができる。
≪Production method of super abrasive grains≫
The method for producing superabrasive grains according to the present embodiment includes a step of preparing an abrasive grain main body made of cubic boron nitride or diamond (hereinafter also referred to as a "preparation step"), and a step of preparing an abrasive grain main body made of cubic boron nitride or diamond, and oxidizing the surface of the abrasive grain main body. The method may include a step of forming a preventive film (hereinafter also referred to as a "coating step").
 <準備工程>
 砥粒本体部の原料である立方晶窒化硼素又はダイヤモンドを準備する。立方晶窒化硼素およびダイヤモンドは特に限定されず、公知のものを用いることができる。
<Preparation process>
Cubic boron nitride or diamond, which is the raw material for the abrasive grain body, is prepared. Cubic boron nitride and diamond are not particularly limited, and known ones can be used.
 準備した立方晶窒化硼素又はダイヤモンドからなる砥粒本体部に対して、前処理を行うことができる。前処理としては、熱処理、電子線照射、プラズマ照射、マイクロ波照射が挙げられる。 Pretreatment can be performed on the prepared abrasive grain main body made of cubic boron nitride or diamond. Pretreatment includes heat treatment, electron beam irradiation, plasma irradiation, and microwave irradiation.
 <被覆工程>
 次に、準備した砥粒本体部の表面に酸化防止膜を形成する。酸化防止膜の形成は、ゾルゲル法、粉砕したセラミックスまたは粉砕したガラスをバインダとして用いて砥粒本体部に吸着させる方法、粉砕したセラミックスまたは粉砕したガラスを静電的に砥粒本体部に吸着させる方法、化学蒸着法、またはターゲット材を用いたスパッタリングを用いて実行される。該被覆工程において、砥粒本体部の表面に均一に酸化防止膜を形成し易い為、ゾルゲル法を用いることが好ましい。
<Coating process>
Next, an anti-oxidation film is formed on the surface of the prepared abrasive grain main body. The anti-oxidation film can be formed by the sol-gel method, by using crushed ceramics or crushed glass as a binder and adsorbing it to the abrasive grain body, or by electrostatically adsorbing crushed ceramics or crushed glass to the abrasive grain body. method, chemical vapor deposition, or sputtering using a target material. In the coating step, it is preferable to use a sol-gel method since it is easy to uniformly form an antioxidant film on the surface of the abrasive grain body.
 (ゾルゲル法)
 上記第1材料がガラスからなる場合、ゾルゲル法を適用できる。砥粒本体部を、テトラエトキシシランなどに代表されるアルコキシドと混合しておく。これに適当な温度・撹拌条件のもと、水を添加することで、アルコキシドを加水分解・縮重合させることで砥粒本体部をゾルで被覆する。これを乾燥させることでゲル化させたのち、適当な温度で焼結することでゲルをガラスに変え、酸化防止膜を形成することができる。
(Sol-gel method)
When the first material is made of glass, a sol-gel method can be applied. The main body of the abrasive grain is mixed with an alkoxide such as tetraethoxysilane. By adding water to this under appropriate temperature and stirring conditions, the alkoxide is hydrolyzed and polycondensed, thereby coating the main body of the abrasive grain with a sol. This is dried to form a gel, and then sintered at an appropriate temperature to turn the gel into glass and form an antioxidant film.
 (粉砕したセラミックスまたは粉砕したガラスを砥粒本体部に吸着させる方法)
 セラミックまたはガラスは、予め粉砕されているものを用いる。砥粒本体部と、セラミックまたはガラスとをビーズミルなどの方法により、溶媒(例えば、水、アルコールなど)中で均一に混合する。砥粒本体部と、セラミックまたはガラスとの混合比は、所望の粒径、被覆率となるように調整する。この混合工程の途中で、有機バインダ(ポリビニルアルコール(PVA)など。上記溶媒の種類によって適切なバインダ種の選定は異なる。)を添加し、該有機バインダと、セラミックまたはガラスとを、該砥粒本体部に吸着させる。
(Method of adsorbing crushed ceramics or crushed glass to the abrasive grain body)
The ceramic or glass used is one that has been crushed in advance. The abrasive grain body and ceramic or glass are uniformly mixed in a solvent (eg, water, alcohol, etc.) by a method such as a bead mill. The mixing ratio of the abrasive grain main body and ceramic or glass is adjusted to obtain the desired grain size and coverage. During this mixing process, an organic binder (such as polyvinyl alcohol (PVA). Selection of the appropriate binder type varies depending on the type of solvent mentioned above) is added, and the organic binder and the ceramic or glass are combined with the abrasive grains. Adsorb it to the main body.
 (化学蒸着法)
 第1材料がセラミックスまたは酸化物から成る場合、化学蒸着法を用いることができる。砥粒本体部は反応管中に静置してある。被覆したい元素を含む、気化し易い化合物(通常ハロゲン化物、水素化物、有機金属化合物など)を気化させ、それを適当なキャリアガスで反応管に導き、反応管中で化学反応(還元・熱分解など)させることで砥粒本体部に被覆を施す。反応には気化させた物質に応じた高温が要求されることがあるが、プラズマ化学蒸着法を用いることで、低温での被覆も可能である。
(chemical vapor deposition method)
If the first material consists of a ceramic or an oxide, chemical vapor deposition methods can be used. The abrasive grain main body is placed in a reaction tube. A compound that easily vaporizes (usually a halide, hydride, organometallic compound, etc.) containing the element to be coated is vaporized and introduced into a reaction tube with an appropriate carrier gas, where it undergoes a chemical reaction (reduction/thermal decomposition). etc.) to coat the abrasive grain body. The reaction may require high temperatures depending on the substance being vaporized, but low temperature coatings are also possible using plasma chemical vapor deposition.
 (スパッタリング)
 上記第1材料がセラミックスからなる場合、被覆条件として以下の条件が挙げられる。これにより、セラミックス(第1材料)からなる酸化防止膜を上記砥粒本体部の表面に形成することができる。
 (被覆条件)
 ターゲット材:アルミニウム(金属)
 雰囲気:真空
 放電電圧:125V以上250V以下
 放電周波数:3Hz以上10Hz以下
 コンデンサ容量:10μF以上500μF以下
 Shot数:2,000以上100,000以下
(sputtering)
When the first material is made of ceramics, the following conditions may be mentioned as the coating conditions. Thereby, an oxidation-preventing film made of ceramics (first material) can be formed on the surface of the abrasive grain main body.
(Covering conditions)
Target material: aluminum (metal)
Atmosphere: Vacuum Discharge voltage: 125V or more and 250V or less Discharge frequency: 3Hz or more and 10Hz or less Capacitor capacity: 10μF or more and 500μF or less Number of shots: 2,000 or more and 100,000 or less
 [実施形態2:砥石]
 本開示の一実施形態に係る砥石20について、図3および図4を用いて説明する。
 本実施形態に係る砥石20は、
 環状の台金120と、
 該台金120の表面上に配置された超砥粒層12と、を備え、
 該超砥粒層12は、本実施形態1に係る超砥粒10と、結合材11とを含み、
 該結合材11の軟化点は、400℃以上1000℃以下である。
[Embodiment 2: Grindstone]
A grindstone 20 according to an embodiment of the present disclosure will be described using FIGS. 3 and 4.
The grindstone 20 according to this embodiment is
a ring-shaped base metal 120;
a superabrasive layer 12 disposed on the surface of the base metal 120;
The superabrasive grain layer 12 includes the superabrasive grains 10 according to the first embodiment and a bonding material 11,
The softening point of the bonding material 11 is 400°C or more and 1000°C or less.
 本開示の一実施形態に係る砥石20は、優れた研削性能を有することが可能である。その理由は、以下の通りと推察される。 The grindstone 20 according to an embodiment of the present disclosure can have excellent grinding performance. The reason is presumed to be as follows.
 本開示の砥石20は、環状の台金120と、該台金120の表面上に配置された超砥粒層12と、を備える。より具体的には、図3、4に示す様に、砥石20は、カップ状の台金120と、該台金120の一方端面121(使用面)上に周方向に沿って相互に間隔をあけて配置されて固着された複数個の平板状の超砥粒層12とから構成される。超砥粒層12の厚みを規定する面、すなわち厚み方向に沿った面113が、台金120の一方端面121(使用面)に形成された所定幅の円周方向の溝に固着されている。超砥粒層12の周側端面111が砥石20の回転軸とほぼ平行となり、超砥粒層12の長さ方向が砥石20の半径方向となるように各超砥粒層12が台金120の一方端面121(使用面)に固着されている。各超砥粒層12は砥石20の回転軸にほぼ垂直な作用面112を有する。台金120(使用面)の中央部には砥石20の回転軸を挿入するための孔122が形成されている。また、該超砥粒層12は、本実施形態1に係る超砥粒10を含み、本実施形態1に係る超砥粒10は、上述の通り、上記砥粒本体部1の表面の少なくとも一部が酸化防止膜2で被覆されている。このため、該超砥粒10を用いた砥石20を製造する際の大気中での焼成工程においても、該超砥粒10と大気中の酸素との燃焼反応を抑制できる。よって、該超砥粒10の熱劣化及び消失に起因する耐摩耗性の低下を抑制でき、砥石20の研削性能が向上すると推察される。 The grindstone 20 of the present disclosure includes an annular base metal 120 and a superabrasive grain layer 12 disposed on the surface of the base metal 120. More specifically, as shown in FIGS. 3 and 4, the grinding wheel 20 includes a cup-shaped base metal 120 and a cup-shaped base metal 120, and a pair of metal parts spaced apart from each other along the circumferential direction on one end surface 121 (use surface) of the base metal 120. It is composed of a plurality of flat plate-shaped superabrasive grain layers 12 that are spaced apart and fixed. A surface that defines the thickness of the superabrasive grain layer 12, that is, a surface 113 along the thickness direction, is fixed in a circumferential groove of a predetermined width formed on one end surface 121 (use surface) of the base metal 120. . Each superabrasive layer 12 is attached to the base metal 120 so that the circumferential end surface 111 of the superabrasive layer 12 is substantially parallel to the rotation axis of the grinding wheel 20, and the length direction of the superabrasive layer 12 is in the radial direction of the grinding wheel 20. It is fixed to one end surface 121 (use surface) of. Each superabrasive layer 12 has a working surface 112 substantially perpendicular to the axis of rotation of the grinding wheel 20. A hole 122 for inserting the rotating shaft of the grindstone 20 is formed in the center of the base metal 120 (usable surface). Further, the superabrasive grain layer 12 includes the superabrasive grains 10 according to the present embodiment 1, and the superabrasive grains 10 according to the present embodiment 1 cover at least one surface of the abrasive grain main body 1, as described above. portion is coated with an anti-oxidation film 2. Therefore, even in the firing process in the atmosphere when manufacturing the grindstone 20 using the superabrasive grains 10, the combustion reaction between the superabrasive grains 10 and oxygen in the atmosphere can be suppressed. Therefore, it is presumed that the decrease in wear resistance caused by thermal deterioration and disappearance of the superabrasive grains 10 can be suppressed, and the grinding performance of the grindstone 20 is improved.
 また、本開示の超砥粒10は、砥石20の製造工程において結合材11の軟化温度を下げるための金属類の添加を要しない為、該金属類の水への溶出に起因する砥石20の耐摩耗性の低下を防ぐことができる。 Furthermore, since the superabrasive grain 10 of the present disclosure does not require the addition of metals to lower the softening temperature of the bonding material 11 in the manufacturing process of the grinding wheel 20, the grinding wheel 20 may be reduced due to elution of the metals into water. Decrease in wear resistance can be prevented.
 更に、上記超砥粒層12は、結合材11を含み、該結合材11の軟化点は、400℃以上1000℃以下である。このような結合材は、機械的強度に優れるため、砥石20は優れた研削性能を有することができる。 Furthermore, the superabrasive layer 12 includes a binder 11, and the softening point of the binder 11 is 400°C or more and 1000°C or less. Since such a bonding material has excellent mechanical strength, the grindstone 20 can have excellent grinding performance.
 よって、本実施形態に係る砥石20は、優れた研削性能を有することができる。 Therefore, the grindstone 20 according to this embodiment can have excellent grinding performance.
 [台金]
 台金の材質は、AlやAl合金、鉄や鉄合金、炭素工具鋼、高速度工具鋼、合金工具鋼、超硬合金、サーメットなどが挙げられる。台金のサイズ(内・外径、厚さ)は、例えば、砥石を設置するマシニングセンタなどの工作機械のサイズ、即ち被削材のサイズに応じて適宜選択できる。台金としては、公知の砥石の台金を利用できる。
[base money]
Examples of the material of the base metal include Al, Al alloy, iron and iron alloy, carbon tool steel, high speed tool steel, alloy tool steel, cemented carbide, and cermet. The size of the base metal (inner/outer diameter, thickness) can be appropriately selected depending on, for example, the size of a machine tool such as a machining center in which the grindstone is installed, that is, the size of the workpiece. As the base metal, a base metal of a known grindstone can be used.
 [超砥粒層]
 ≪超砥粒層の構造≫
 超砥粒層12は、台金120の表面上に配置される(図4)。超砥粒層12のサイズ(厚さ及び幅)は、台金120のサイズ(厚さ及び幅)に応じて適宜選択できる。厚さは、砥石20の径方向に沿った長さをいい、幅は、砥石20の軸方向に沿った長さをいう。
 ≪超砥粒層の組成≫
 本実施形態に係る超砥粒層は、上記超砥粒と、上記結合材とを含む。上記砥石は、上記超砥粒と、上記結合材とからなることができる。また、上記超砥粒層は、本開示の効果を示す限りにおいて、気孔を含んでも良い。上記砥石において、上記気孔の含有率は、40体積%以上95体積%以下とすることができる。
[Super abrasive layer]
≪Structure of super abrasive layer≫
Superabrasive layer 12 is disposed on the surface of base metal 120 (FIG. 4). The size (thickness and width) of the superabrasive grain layer 12 can be appropriately selected depending on the size (thickness and width) of the base metal 120. The thickness refers to the length of the grindstone 20 along the radial direction, and the width refers to the length of the grindstone 20 along the axial direction.
≪Composition of superabrasive layer≫
The superabrasive layer according to this embodiment includes the superabrasive and the bonding material. The above-mentioned grindstone can be made of the above-mentioned superabrasive grains and the above-mentioned bonding material. Further, the superabrasive layer may include pores as long as it exhibits the effects of the present disclosure. In the grindstone, the content of the pores may be 40% by volume or more and 95% by volume or less.
 上記超砥粒層において、上記超砥粒の含有率の下限は、10体積%以上、15体積%以上、20体積%以上が好ましい。また、上記超砥粒層において、上記超砥粒の含有率の上限は、60体積%以下、50体積%以下、40体積%以下が好ましい。また、上記超砥粒層において、上記超砥粒の含有率は、10体積%以上60体積%以下、15体積%以上50体積%以下、20体積%以上40体積%以下が好ましい。超砥粒層において、超砥粒の含有率は、砥石刃先1cmを切り出したものから、化学的な処理により砥粒と結合材を分離し、砥粒の重量を測定した後、砥粒の密度(g/cm)で除することでその体積を求める。これが1cm中に含まれる体積(cm)であるため、該体積の数値に100を乗じることにより特定できる。なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、砥石刃先の切り出し箇所を任意に設定して上記の手順に従い「超砥粒の含有率」の測定を複数回行っても、測定結果のばらつきは少なく、砥石刃先の切り出し箇所を任意に設定しても恣意的にはならないことが確認された。 In the superabrasive layer, the lower limit of the content of the superabrasive is preferably 10% by volume or more, 15% by volume or more, or 20% by volume or more. Further, in the superabrasive layer, the upper limit of the content of the superabrasive is preferably 60% by volume or less, 50% by volume or less, and 40% by volume or less. Further, in the superabrasive grain layer, the content of the superabrasive grains is preferably 10 vol% or more and 60 vol% or less, 15 vol% or more and 50 vol% or less, and 20 vol% or more and 40 vol% or less. In the super-abrasive layer, the content of super-abrasive grains is determined by separating the abrasive grains and binder from a 1 cm3 piece of the cutting edge of the abrasive stone by chemical treatment, measuring the weight of the abrasive grains, and measuring the weight of the abrasive grains. The volume is determined by dividing by the density (g/cm 3 ). Since this is the volume (cm 3 ) contained in 1 cm 3 , it can be specified by multiplying the numerical value of the volume by 100. In addition, as far as the applicant has measured, as long as the measurements are made on the same sample, the "superabrasive content" has been measured multiple times by arbitrarily setting the cutting point of the grinding wheel edge and following the above procedure. It was also confirmed that there was little variation in the measurement results, and that even if the cutting point of the grindstone edge was set arbitrarily, it would not be arbitrary.
 上記超砥粒層において、上記結合材の含有率の下限は、1体積%以上、2体積%以上、3体積%以上が好ましい。また、上記超砥粒層において、上記結合材の含有率の上限は、30体積%以下、20体積%以下、10体積%以下が好ましい。また、上記超砥粒層において、上記結合材の含有率は、1体積%以上30体積%以下、2体積%以上20体積%以下、3体積%以上10体積%以下が好ましい。超砥粒層において、結合材の含有率は、砥石刃先1cmを切り出したものから、化学的な処理により砥粒と結合材とを分離し、結合材の重量を測定した後、結合材の密度(g/cm)で除することでその体積を求める。これが1cm中に含まれる体積(cm)であるため、該体積の数値に100を乗じることにより特定できる。なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、砥石刃先の切り出し箇所を任意に設定して上記の手順に従い「結合材の含有率」の測定を複数回行っても、測定結果のばらつきは少なく、砥石刃先の切り出し箇所を任意に設定しても恣意的にはならないことが確認された。 In the superabrasive grain layer, the lower limit of the content of the binder is preferably 1% by volume or more, 2% by volume or more, or 3% by volume or more. Further, in the superabrasive grain layer, the upper limit of the content of the binder is preferably 30% by volume or less, 20% by volume or less, and 10% by volume or less. Further, in the superabrasive grain layer, the content of the binder is preferably 1 volume % or more and 30 volume % or less, 2 volume % or more and 20 volume % or less, and 3 volume % or more and 10 volume % or less. In the super abrasive grain layer, the content of the binder is determined by separating the abrasive grains and the binder from a 1cm3 piece of the cutting edge of the grinding wheel by chemical treatment, measuring the weight of the binder, and determining the content of the binder. The volume is determined by dividing by the density (g/cm 3 ). Since this is the volume (cm 3 ) contained in 1 cm 3 , it can be specified by multiplying the numerical value of the volume by 100. In addition, as far as the applicant has measured, as long as the measurement is made on the same sample, it is possible to arbitrarily set the cutting point of the grinding wheel edge and measure the "bind material content" multiple times according to the above procedure. It was confirmed that there was little variation in the measurement results, and that even if the cutting point of the grindstone edge was set arbitrarily, it would not be arbitrary.
 <超砥粒>
 超砥粒としては、実施形態1の超砥粒を用いる。超砥粒の数は複数とすることができる。超砥粒層12の表面側の超砥粒10は、その一部が結合材11から露出しており、その露出箇所が被削材を研削する切刃部を有する。
<Super abrasive>
As the superabrasive grain, the superabrasive grain of Embodiment 1 is used. The number of superabrasive grains can be plural. A portion of the superabrasive grains 10 on the surface side of the superabrasive grain layer 12 is exposed from the bonding material 11, and the exposed portion has a cutting edge portion for grinding the work material.
 一方、超砥粒層12の台金120側の超砥粒10は、その全てが結合材11に埋設されている。埋設された超砥粒10は、砥石20で被削材を研削中に超砥粒層12の表面側の超砥粒10が摩耗して脱落すると共に結合材11が摩耗する過程で、その一部が結合材11から露出し被削材を研削する(図4)。 On the other hand, all of the superabrasive grains 10 on the base metal 120 side of the superabrasive grain layer 12 are embedded in the bonding material 11. The buried superabrasive grains 10 are removed during grinding of a workpiece with the grindstone 20, in the process in which the superabrasive grains 10 on the surface side of the superabrasive grain layer 12 wear out and fall off, and the bonding material 11 wears out. The part is exposed from the bonding material 11 and the workpiece is ground (FIG. 4).
 複数の超砥粒は全て、同一構成(材質やサイズ)の砥粒本体部と同一構成(材質や厚さ)の酸化防止膜とで構成されていてもよい。また、一部の超砥粒の砥粒本体部や酸化防止膜は、他部の超砥粒の砥粒本体部や酸化防止膜と異なる構成(材質やサイズ)であってもよい。また、超砥粒層には超砥粒以外の公知の砥粒が混在していてもよい。 All of the plurality of superabrasive grains may be composed of an abrasive grain body portion having the same configuration (material and size) and an oxidation prevention film having the same configuration (material and thickness). Further, the abrasive grain main body portion and oxidation prevention film of some superabrasive grains may have a different configuration (material and size) from the abrasive grain main body portion and oxidation prevention film of other portions of the superabrasive grain. Moreover, known abrasive grains other than superabrasive grains may be mixed in the superabrasive grain layer.
 <結合材>
 結合材11は、超砥粒10を台金120の一方端面121(使用面)(図4)に固着する。結合材の種類は、例えば、ビトリファイドボンド、メタルボンド、及びこれらを複合したボンドの中から選択される1種のボンド、又は金属ロウが挙げられる。これらのボンドや金属ロウは、公知のボンドや金属ロウを利用できる。
<Binding material>
The bonding material 11 fixes the superabrasive grains 10 to one end surface 121 (usable surface) of the base metal 120 (FIG. 4). Examples of the type of bonding material include one type of bond selected from vitrified bond, metal bond, and a composite bond of these, or metal solder. As these bonds and metal solders, known bonds and metal solders can be used.
 ビトリファイドボンドは、ガラス質を主成分とすることが挙げられる。メタルボンドは、銅錫合金が挙げられる。金属ロウは、銀(Ag)ロウなどが挙げられる。 One example of vitrified bond is that the main component is glass. Examples of metal bonds include copper-tin alloys. Examples of the metal solder include silver (Ag) solder.
 結合材の種類は、超砥粒の酸化防止膜の材質などに応じて適宜選択できる。例えば、超砥粒の酸化防止膜が導電性を有する場合、結合材は、例えばビトリファイドボンド、メタルボンド、及び金属ロウを利用できる。但し、超砥粒と結合材との親和性の観点で、結合材は、ビトリファイドボンドであることが好ましい。 The type of bonding material can be selected as appropriate depending on the material of the anti-oxidation film of the superabrasive grains. For example, if the anti-oxidation film of the superabrasive grains has conductivity, the bonding material can be, for example, vitrified bond, metal bond, or metal solder. However, from the viewpoint of affinity between the superabrasive grains and the binder, the binder is preferably vitrified bond.
 (結合材の軟化点)
 結合材の軟化点は、400℃以上1000℃以下である。このような結合材は、機械的強度に優れるため、砥石は優れた研削性能を有することができる。上記結合材の軟化点の下限は、500℃以上であることが好ましく、600℃以上であることがより好ましく、700℃以上であることが更に好ましい。また、上記結合材の軟化点の上限は、950℃以下であることが好ましく、900℃以下であることがより好ましく、850℃以下であることが更に好ましい。また、上記結合材の軟化点は、500℃以上950℃以下であることが好ましく、600℃以上900℃以下であることがより好ましく、700℃以上850℃以下であることが更に好ましい。
(Softening point of binding material)
The softening point of the binder is 400°C or more and 1000°C or less. Since such a binding material has excellent mechanical strength, the grindstone can have excellent grinding performance. The lower limit of the softening point of the binder is preferably 500°C or higher, more preferably 600°C or higher, and even more preferably 700°C or higher. Further, the upper limit of the softening point of the binder is preferably 950°C or lower, more preferably 900°C or lower, and even more preferably 850°C or lower. Further, the softening point of the binder is preferably 500°C or more and 950°C or less, more preferably 600°C or more and 900°C or less, and even more preferably 700°C or more and 850°C or less.
 上記軟化点は、熱機械測定(TMA)の圧縮モード測定で熱膨張を測定した際、膨張の曲線の曲率が特徴的に変わる2点から直線を外挿し、それらの交点から求めることにより特定できる。 The above-mentioned softening point can be determined by extrapolating a straight line from two points where the curvature of the expansion curve characteristically changes when thermal expansion is measured in compression mode measurement using thermomechanical measurement (TMA), and finding it from the intersection of these points. .
 (結合材の組成)
 上記結合材は、珪素と、硼素と、アルカリ金属元素およびアルカリ土類金属元素からなる群より選択される少なくとも1種の元素とを含み、該結合材の珪素の含有率は、30質量%以上70質量%以下であり、該結合材の硼素の含有率は、0質量%以上30質量%以下であることが好ましい。これによって、上記酸化防止膜を介して、該酸化防止膜を備える超砥粒と結合材との親和性が更に高まる。その結果、砥石はより優れた研削性能を有することができる。なお、アルカリ金属元素として、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられる。また、アルカリ土類金属元素として、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
(Composition of binding material)
The binder contains silicon, boron, and at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements, and the silicon content of the binder is 30% by mass or more. It is preferably 70% by mass or less, and the boron content of the bonding material is preferably 0% by mass or more and 30% by mass or less. This further increases the affinity between the superabrasive grains provided with the oxidation-preventing film and the binder via the oxidation-preventing film. As a result, the grindstone can have better grinding performance. Note that examples of the alkali metal elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Furthermore, examples of alkaline earth metal elements include calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
 該結合材の珪素の含有率は、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。該結合材の珪素の含有率は、60質量%以下であることがより好ましく、55質量%以下であることが更に好ましい。該結合材の珪素の含有率は、40質量%以上60質量%以下であることがより好ましく、50質量%以上55質量%以下であることが更に好ましい。 The silicon content of the bonding material is more preferably 40% by mass or more, and even more preferably 50% by mass or more. The silicon content of the bonding material is more preferably 60% by mass or less, and even more preferably 55% by mass or less. The silicon content of the bonding material is more preferably 40% by mass or more and 60% by mass or less, and even more preferably 50% by mass or more and 55% by mass or less.
 該結合材の硼素の含有率は、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。該結合材の硼素の含有率は、25質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。該結合材の硼素の含有率は、5質量%以上25質量%以下であることがより好ましく、10質量%以上20質量%以下であることが更に好ましい。 The boron content of the bonding material is more preferably 5% by mass or more, and even more preferably 10% by mass or more. The boron content of the bonding material is more preferably 25% by mass or less, and even more preferably 20% by mass or less. The boron content of the bonding material is more preferably 5% by mass or more and 25% by mass or less, and even more preferably 10% by mass or more and 20% by mass or less.
 上記結合材の組成は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)することにより特定できる。 The composition of the binder can be identified by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
 ≪砥石の製造方法≫
 砥石20(図3および図4)は、砥粒本体部1の表面の少なくとも一部に酸化防止膜2が被覆された複数の超砥粒10(図1および図2)を準備し、結合材11により複数の超砥粒10を台金120の一方端面121(使用面)に固着することで製造できる(図4)。また、砥石20は、酸化防止膜2が被覆されていない複数の砥粒本体部1を準備し、結合材11により複数の砥粒本体部1を台金120の一方端面121(使用面)に固着した後、砥粒本体部1の表面(切刃部)を覆うように酸化防止膜2を形成することで製造してもよい。この場合、被覆方法は、上述のゾルゲル法、粉砕したセラミックスまたは粉砕したガラスをバインダとして用いて砥粒本体部に吸着させる方法、粉砕したセラミックスまたは粉砕したガラスを静電的に砥粒本体部に吸着させる方法、化学蒸着法、及びターゲット材を用いたスパッタリングのいずれも利用できる。
≪Whetstone manufacturing method≫
The grinding wheel 20 (FIGS. 3 and 4) is prepared by preparing a plurality of superabrasive grains 10 (FIGS. 1 and 2) in which at least a portion of the surface of the abrasive grain main body 1 is coated with an anti-oxidation film 2, and applying a bonding material. 11, by fixing a plurality of superabrasive grains 10 to one end surface 121 (usable surface) of the base metal 120 (FIG. 4). In addition, the grinding wheel 20 is prepared by preparing a plurality of abrasive grain main bodies 1 that are not coated with the anti-oxidation film 2, and bonding the plurality of abrasive grain main body parts 1 to one end surface 121 (usable surface) of the base metal 120 using a bonding material 11. After the abrasive particles are fixed, the anti-oxidation film 2 may be formed to cover the surface (cutting edge portion) of the abrasive grain body 1. In this case, coating methods include the above-mentioned sol-gel method, a method in which crushed ceramics or crushed glass is adsorbed onto the abrasive grain body using a binder, and a method in which crushed ceramics or crushed glass is electrostatically applied to the abrasive grain body. Any of an adsorption method, a chemical vapor deposition method, and a sputtering method using a target material can be used.
 [用途]
 実施形態に係る砥石は、自動車部品、光学ガラス、磁性材料、半導体材料などの研削や、エンドミル、ドリル、リーマなどの溝研削、刃先交換チップのブレーカ研削、各種工具の重研削に好適に利用できる。
[Application]
The grindstone according to the embodiment can be suitably used for grinding automobile parts, optical glass, magnetic materials, semiconductor materials, etc., groove grinding of end mills, drills, reamers, etc., breaker grinding of indexable tips, and heavy grinding of various tools. .
 以下、本開示の実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described based on examples of the present disclosure, but the present invention is not limited to the following examples.
 ≪超砥粒の製造≫
 以下のようにして、試料1~試料6、試料9~試料42の超砥粒を製造した。
≪Manufacture of super abrasive particles≫
Superabrasive grains of Samples 1 to 6 and Samples 9 to 42 were produced as follows.
 <準備工程>
 試料1~試料6、試料9~試料42に係る超砥粒を作製する為、表1に記載の原料(立方晶窒化硼素(cBN)またはダイヤモンド)からなり、且つ表1に記載の平均粒径を有する砥粒本体部を準備した。
<Preparation process>
In order to produce the superabrasive grains according to Samples 1 to 6 and Samples 9 to 42, they are made of the raw materials (cubic boron nitride (cBN) or diamond) listed in Table 1, and have the average grain size listed in Table 1. An abrasive grain main body having the following properties was prepared.
 <被覆工程>
 (ゾルゲル法)
 試料2、9に係る超砥粒を作製する為、表1に記載の組成で、上記の砥粒本体部とテトラエトキシシラン(アルコキシド)とを混合することにより混合物を得た。次いで、表1に記載の量の水を添加しながら、表1に記載の撹拌条件で該第1混合物を撹拌することにより、砥粒本体部をゾルで被覆させた。これを表1に記載の条件で乾燥させた後、表1に記載の条件で焼結することで、試料2、9に係る超砥粒を得た。
<Coating process>
(Sol-gel method)
In order to produce superabrasive grains according to Samples 2 and 9, a mixture was obtained by mixing the above abrasive grain main body and tetraethoxysilane (alkoxide) with the composition shown in Table 1. Next, the first mixture was stirred under the stirring conditions shown in Table 1 while adding water in the amount shown in Table 1, thereby coating the abrasive grain body with the sol. After drying this under the conditions listed in Table 1, it was sintered under the conditions listed in Table 1 to obtain superabrasive grains according to Samples 2 and 9.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (粉砕したセラミックスまたは粉砕したガラスを吸着させる方法)
 試料24~37に係る超砥粒を作製する為、表4~5に記載の第1材料であって、予め粉砕されているものを用意した。次いで、上記砥粒本体部と、該第1材料とを水(溶媒)中で、表2に記載の組成でビーズミルを用いて混合しながら、ポリビニルアルコール(PVA)(有機バインダ)を表2に記載の量で添加した。これによって、試料24~37に係る超砥粒を得た。
(Method of adsorbing crushed ceramics or crushed glass)
In order to produce superabrasive grains according to Samples 24 to 37, the first materials listed in Tables 4 to 5, which had been ground in advance, were prepared. Next, while mixing the abrasive grain main body and the first material in water (solvent) with the composition shown in Table 2 using a bead mill, polyvinyl alcohol (PVA) (organic binder) was added as shown in Table 2. Added in the amounts listed. As a result, superabrasive grains related to Samples 24 to 37 were obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (スパッタリング)
 試料1、3、11~23、38~42に係る超砥粒を作製する為、上記砥粒本体部に対し、表3に記載の条件でスパッタリングを実行した。これによって、試料1、3、11~23、38~42に係る超砥粒を得た。
(sputtering)
In order to produce superabrasive grains according to Samples 1, 3, 11-23, and 38-42, sputtering was performed on the abrasive grain body portions under the conditions listed in Table 3. As a result, superabrasive grains according to Samples 1, 3, 11-23, and 38-42 were obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、試料4~6、および10に関し、上記被覆工程は実行されなかった。 Note that for Samples 4 to 6 and 10, the above coating step was not performed.
 以上の工程を実行することにより、表4~5に示した構成を有する試料1~試料6、試料9~試料42に係る超砥粒を製造した。 By carrying out the above steps, superabrasives according to Samples 1 to 6 and Samples 9 to 42 having the configurations shown in Tables 4 to 5 were manufactured.
 ≪超砥粒の特性評価≫
 <砥粒本体部の平均粒径>
 試料1~試料6、試料9~試料42に係る超砥粒について、砥粒本体部の平均粒径を実施形態1に記載の方法により求めた。得られた結果を、表4~5の「平均粒径[μm]」欄に記す。
≪Characteristics evaluation of super abrasive particles≫
<Average grain size of the abrasive grain body>
For the superabrasive grains of Samples 1 to 6 and Samples 9 to 42, the average particle diameter of the abrasive grain body was determined by the method described in Embodiment 1. The obtained results are listed in the "Average particle size [μm]" column of Tables 4 and 5.
 <超砥粒の熱重量分析における残存率>
 試料1~試料6、試料9~試料42に係る超砥粒について、上記超砥粒の熱重量分析における残存率を実施形態1に記載の方法により求めた。得られた結果を、表4~5の「超砥粒」の欄における「熱重量分析残存率[%]」の欄に記す。
<Survival rate in thermogravimetric analysis of superabrasive grains>
Regarding the superabrasive grains of Samples 1 to 6 and Samples 9 to 42, the residual ratio in thermogravimetric analysis of the superabrasive grains was determined by the method described in Embodiment 1. The obtained results are recorded in the "thermogravimetric analysis residual rate [%]" column in the "superabrasive" column of Tables 4 and 5.
 <超砥粒における第1材料の含有率>
 試料1~試料6、試料9~試料42に係る超砥粒について、上記超砥粒における上記第1材料の含有率を実施形態1に記載の方法により求めた。得られた結果を、表4~5の「第1材料含有率[質量%]」の欄に記す。
<Content of first material in superabrasive>
Regarding the superabrasive grains of Samples 1 to 6 and Samples 9 to 42, the content of the first material in the superabrasive grains was determined by the method described in Embodiment 1. The obtained results are listed in the "First material content [mass %]" column of Tables 4 and 5.
 <酸化防止膜が砥粒本体部の表面を被覆する割合>
 試料1~試料6、試料9~試料42に係る超砥粒について、上記酸化防止膜が上記砥粒本体部の表面を被覆する割合を実施形態1に記載の方法により求めた。得られた結果を、表4~5の「砥粒本体部表面被覆率[%]」の欄に記す。
<Ratio that the antioxidant film covers the surface of the abrasive grain body>
Regarding the superabrasive grains of Samples 1 to 6 and Samples 9 to 42, the proportion of the surface of the abrasive grain body covered by the antioxidant film was determined by the method described in Embodiment 1. The obtained results are listed in the column of "Abrasive grain main body surface coverage [%]" in Tables 4 and 5.
 ≪砥石の製造≫
 上記試料1~試料6、試料9~試料42に係る超砥粒、および表4~5に記載の軟化点と組成とを有する結合材と、環状の台金を用いて、砥石(研削ホイール)を製造した。なお、超砥粒の使用量(g)と結合材の使用量(g)とは、表4~5に記載の通りとした。
≪Manufacture of whetstones≫
Using the superabrasive grains according to Samples 1 to 6 and Samples 9 to 42, and a binder having the softening point and composition shown in Tables 4 to 5, and a ring-shaped base metal, a grinding wheel (grinding wheel) is manufactured. was manufactured. The amount of superabrasive grains used (g) and the amount of binder used (g) were as shown in Tables 4 and 5.
 ≪超砥粒層における超砥粒の含有率、および超砥粒層における結合材の含有率≫
 各試料の超砥粒に係る砥石に関し、超砥粒層における超砥粒の含有率を実施形態2に記載の方法により求めた。得られた結果を、表4~5の「超砥粒」の欄における「超砥粒層における含有率[体積%]」の欄に記す。また、各試料の超砥粒に係る砥石に関し、超砥粒層における結合材の含有率を実施形態2に記載の方法により求めた。得られた結果を、表4~5の「結合材」の欄における「超砥粒層における含有率[体積%]」の欄に記す。
≪Content of superabrasive in the superabrasive layer and content of binder in the superabrasive layer≫
Regarding the grindstone related to the superabrasive grains of each sample, the content rate of the superabrasive grains in the superabrasive grain layer was determined by the method described in Embodiment 2. The obtained results are recorded in the "Content in superabrasive layer [volume %]" column in the "Superabrasive" column of Tables 4 and 5. In addition, regarding the grinding wheel related to the superabrasive grain of each sample, the content of the binder in the superabrasive grain layer was determined by the method described in Embodiment 2. The obtained results are listed in the "Content in superabrasive layer [volume %]" column in the "Binding material" column of Tables 4 and 5.
 ≪研削比(切れ味および耐摩耗性)の評価≫
 各試料の超砥粒に係る砥石の切れ味と耐摩耗性との評価は、研削比を求めることで行った。研削比は、以下の装置に各試料の超砥粒に係る砥石を設置し、以下の条件で被削材を研削して、「研削によって除去された被削材の体積/超砥粒の総損耗体積」から求めた。即ち、研削比が高いほど、切れ味と耐摩耗性とが優れ、研削性能が高いことを示す。得られた結果を、表4~5の「研削比」の欄に記す。
≪Evaluation of grinding ratio (cutting quality and wear resistance)≫
The sharpness and wear resistance of the grinding wheel for each sample using superabrasive grains were evaluated by determining the grinding ratio. The grinding ratio is determined by installing a grinding wheel related to the superabrasive grains of each sample in the following equipment, and grinding the workpiece under the following conditions. It was calculated from "loss volume". That is, the higher the grinding ratio, the better the sharpness and wear resistance, and the higher the grinding performance. The obtained results are listed in the "grinding ratio" column of Tables 4 and 5.
 被削材:ケイ素ウェーハ(Φ150mm×0.7mm厚)
 装置:RGS34N(不二越製)
 砥石周速度:40m/s
 加工厚み:0.010mm
 送り速度:0.024mm/min
 クーラント:純水
Work material: Silicon wafer (Φ150mm x 0.7mm thick)
Equipment: RGS34N (manufactured by Fujikoshi)
Grinding wheel peripheral speed: 40m/s
Processing thickness: 0.010mm
Feed speed: 0.024mm/min
Coolant: pure water
 なお、上記研削は、図5で示す研削加工方式100を用いて実行された。より具体的には、研削加工方式100は、テーブル110上に上記被削材130を固定した。ここで、テーブル110は矢印110Rで示す方向に回転可能である。砥石20は、矢印1Rで示す方向に回転可能である。さらに矢印1Fで示す方向が切込み方向である。 Note that the above grinding was performed using a grinding method 100 shown in FIG. More specifically, in the grinding method 100, the workpiece 130 is fixed on the table 110. Here, the table 110 is rotatable in the direction indicated by an arrow 110R. The grindstone 20 is rotatable in the direction indicated by the arrow 1R. Further, the direction indicated by arrow 1F is the cutting direction.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記試料1~3、9、11~17、20~42は実施例に該当し、上記試料4~6、10、18、19は比較例に該当する。上記試料1~3、9、11~17、20~42の砥石は、上記試料4~6、10、18、19の砥石に比して、格別に高い研削比を示した。砥粒本体部の平均粒径を同じくする試料同士で比較すると、上記試料1~3、9、11~17、20~42の砥石は、上記試料4~6、10、18、19の砥石に比して、格別に優れた切れ味と、格別に優れた耐摩耗性とを有する。すなわち、上記試料1~3、9、11~17、20~42の砥石は、上記試料4~6、10、18、19の砥石に比して、格別に優れた研削性能を有する。 The above samples 1 to 3, 9, 11 to 17, and 20 to 42 correspond to examples, and the above samples 4 to 6, 10, 18, and 19 correspond to comparative examples. The grinding wheels of Samples 1 to 3, 9, 11 to 17, and 20 to 42 exhibited exceptionally high grinding ratios compared to the grinding wheels of Samples 4 to 6, 10, 18, and 19. Comparing samples with the same average particle diameter of the abrasive grain body, the grinding wheels of samples 1 to 3, 9, 11 to 17, and 20 to 42 are superior to those of samples 4 to 6, 10, 18, and 19. In comparison, it has exceptionally excellent sharpness and exceptionally excellent wear resistance. That is, the grindstones of Samples 1 to 3, 9, 11 to 17, and 20 to 42 have exceptionally excellent grinding performance compared to the grindstones of Samples 4 to 6, 10, 18, and 19.
 以上により、試料1~3、9、11~17、20~42の超砥粒は、砥石に優れた研削性能を備えさせることが分かった。 From the above, it was found that the superabrasive grains of Samples 1 to 3, 9, 11 to 17, and 20 to 42 provided the grindstone with excellent grinding performance.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is planned from the beginning to combine the configurations of the above-described embodiments and examples as appropriate.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the claims rather than the embodiments described above, and it is intended that equivalent meanings to the claims and all changes within the scope are included.
 1 砥粒本体部、2 酸化防止膜、10 超砥粒、11 結合材、20 砥石、12 超砥粒層、111 周側端面、112 作用面、113 厚み方向に沿った面、120 台金、121 端面、122 孔、100 研削加工方式、130 被削材、1F,1R,110R 矢印 1 Abrasive grain main body, 2 Anti-oxidation film, 10 Super abrasive, 11 Binding material, 20 Grindstone, 12 Super abrasive layer, 111 Circumferential end surface, 112 Working surface, 113 Surface along the thickness direction, 120 Base metal, 121 End face, 122 Hole, 100 Grinding method, 130 Work material, 1F, 1R, 110R Arrow

Claims (7)

  1.  砥粒本体部と、前記砥粒本体部の表面の少なくとも一部を被覆する酸化防止膜とを備える、超砥粒であって、
     前記砥粒本体部は、立方晶窒化硼素又はダイヤモンドからなり、
     前記砥粒本体部の平均粒径は、1.0μm未満である、超砥粒。
    A superabrasive grain comprising an abrasive grain body portion and an oxidation prevention film covering at least a part of the surface of the abrasive grain body portion,
    The abrasive grain main body is made of cubic boron nitride or diamond,
    A superabrasive grain in which the average grain size of the abrasive grain main body is less than 1.0 μm.
  2.  前記超砥粒の熱重量分析における残存率は、70%以上であり、
     前記熱重量分析は、温度900℃かつ保持時間0.5時間の条件下で実行される、請求項1に記載の超砥粒。
    The residual rate of the superabrasive grains in thermogravimetric analysis is 70% or more,
    The superabrasive according to claim 1, wherein the thermogravimetric analysis is performed at a temperature of 900° C. and a holding time of 0.5 hours.
  3.  前記酸化防止膜は、第1材料からなり、
     前記第1材料は、セラミックスまたはガラスからなる、請求項1または請求項2に記載の超砥粒。
    The antioxidant film is made of a first material,
    The superabrasive according to claim 1 or 2, wherein the first material is made of ceramics or glass.
  4.  前記超砥粒は、前記第1材料を0.1質量%以上50質量%未満で含む、請求項3に記載の超砥粒。 The superabrasive according to claim 3, wherein the superabrasive contains the first material in an amount of 0.1% by mass or more and less than 50% by mass.
  5.  前記酸化防止膜は、前記砥粒本体部の表面の20%以上を被覆する、請求項1から請求項4のいずれか1項に記載の超砥粒。 The superabrasive according to any one of claims 1 to 4, wherein the antioxidant film covers 20% or more of the surface of the abrasive grain main body.
  6.  環状の台金と、
     前記台金の表面上に配置された超砥粒層と、を備え、
     前記超砥粒層は、請求項1から請求項5のいずれか1項に記載の超砥粒と、結合材とを含み、
     前記結合材の軟化点は、400℃以上1000℃以下である、砥石。
    a ring-shaped base metal,
    a superabrasive layer disposed on the surface of the base metal,
    The superabrasive layer includes the superabrasive according to any one of claims 1 to 5 and a binder,
    A grindstone, wherein the softening point of the binder is 400°C or more and 1000°C or less.
  7.  前記結合材は、珪素と、硼素と、アルカリ金属元素およびアルカリ土類金属元素からなる群より選択される少なくとも1種の元素とを含み、
     前記結合材の珪素の含有率は、30質量%以上70質量%以下であり、
     前記結合材の硼素の含有率は、0質量%以上30質量%以下である、請求項6に記載の砥石。
    The binder contains silicon, boron, and at least one element selected from the group consisting of alkali metal elements and alkaline earth metal elements,
    The silicon content of the binder is 30% by mass or more and 70% by mass or less,
    The grindstone according to claim 6, wherein the boron content of the binder is 0% by mass or more and 30% by mass or less.
PCT/JP2022/030622 2022-08-10 2022-08-10 Superabrasive grain and grindstone WO2024034076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030622 WO2024034076A1 (en) 2022-08-10 2022-08-10 Superabrasive grain and grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030622 WO2024034076A1 (en) 2022-08-10 2022-08-10 Superabrasive grain and grindstone

Publications (1)

Publication Number Publication Date
WO2024034076A1 true WO2024034076A1 (en) 2024-02-15

Family

ID=89851171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030622 WO2024034076A1 (en) 2022-08-10 2022-08-10 Superabrasive grain and grindstone

Country Status (1)

Country Link
WO (1) WO2024034076A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072912A1 (en) * 2004-01-28 2005-08-11 Kure-Norton Co., Ltd. Method for producing vitrified diamond whetstone
JP2008513566A (en) * 2004-09-23 2008-05-01 エレメント シックス (プロプライエタリイ)リミテッド Coated abrasive material and method for producing the same
JP2017521274A (en) * 2014-07-01 2017-08-03 ダイヤモンド イノヴェーションズ インコーポレイテッド Glass-coated CBN abrasive and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072912A1 (en) * 2004-01-28 2005-08-11 Kure-Norton Co., Ltd. Method for producing vitrified diamond whetstone
JP2008513566A (en) * 2004-09-23 2008-05-01 エレメント シックス (プロプライエタリイ)リミテッド Coated abrasive material and method for producing the same
JP2017521274A (en) * 2014-07-01 2017-08-03 ダイヤモンド イノヴェーションズ インコーポレイテッド Glass-coated CBN abrasive and method for producing the same

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
KR100955455B1 (en) Cubic boron nitride sintered material and cutting tool using the same
EP2980046B1 (en) Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
JP5344204B2 (en) Surface coated cutting tool
EP2612719B1 (en) Cubic boron nitride sintered compact tool
JP2004042192A (en) Coated cutting tool
KR20040078062A (en) Surface coated cutting tool of cermet
JP5879664B2 (en) Cutting tools
RU2372371C2 (en) Coated abrasives
KR20170103626A (en) Cermet, cutting tool, and method for manufacturing cermet
JP2001310203A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP6784345B1 (en) Cutting tools
JP6912032B2 (en) Cutting tools
WO2010104094A1 (en) Cermet and coated cermet
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
WO2004000494A1 (en) Coated cutting tool member
JP2004042193A (en) Coated cutting tool
WO2024034076A1 (en) Superabrasive grain and grindstone
JP4304438B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP7393253B2 (en) Ceramic sintered bodies and cutting tools
JP7336062B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP6926387B2 (en) Cutting tools
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
JP4507308B2 (en) Surface coated cemented carbide milling tool throwaway tip with excellent fracture resistance
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954993

Country of ref document: EP

Kind code of ref document: A1