JP7393253B2 - Ceramic sintered bodies and cutting tools - Google Patents

Ceramic sintered bodies and cutting tools Download PDF

Info

Publication number
JP7393253B2
JP7393253B2 JP2020035532A JP2020035532A JP7393253B2 JP 7393253 B2 JP7393253 B2 JP 7393253B2 JP 2020035532 A JP2020035532 A JP 2020035532A JP 2020035532 A JP2020035532 A JP 2020035532A JP 7393253 B2 JP7393253 B2 JP 7393253B2
Authority
JP
Japan
Prior art keywords
ceramic sintered
particles
sintered body
hard
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020035532A
Other languages
Japanese (ja)
Other versions
JP2021138558A (en
Inventor
恵人 小嶋
亮二 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK CUTTING TOOLS CO., LTD.
Original Assignee
NTK CUTTING TOOLS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTK CUTTING TOOLS CO., LTD. filed Critical NTK CUTTING TOOLS CO., LTD.
Priority to JP2020035532A priority Critical patent/JP7393253B2/en
Publication of JP2021138558A publication Critical patent/JP2021138558A/en
Application granted granted Critical
Publication of JP7393253B2 publication Critical patent/JP7393253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、セラミックス焼結体、及び切削工具に関する。 The present invention relates to a ceramic sintered body and a cutting tool.

炭化タングステンを主成分とする硬質相と、鉄族元素を主成分とする結合相とを備える超硬合金を基材とする切削工具が知られている(例えば特許文献1参照)。
また、アルミナを主成分とするセラミックス焼結体を基材とする切削工具も知られている(例えば特許文献2参照)。
BACKGROUND ART A cutting tool is known that uses a cemented carbide as a base material and includes a hard phase mainly composed of tungsten carbide and a binder phase mainly composed of an iron group element (see, for example, Patent Document 1).
Furthermore, a cutting tool whose base material is a ceramic sintered body containing alumina as a main component is also known (see, for example, Patent Document 2).

特開2016-020541号公報JP2016-020541A 特開平5-117020号公報Japanese Patent Application Publication No. 5-117020

ところで、超硬合金を基材とする切削工具は一般的に耐欠損性に優れるが、耐熱性に乏しく高速加工に向いていないとされている。参考までに、特許文献1においては、切削速度Vc=180~350m/minで使用されている。
また、セラミックス焼結体を基材とする切削工具は一般的に耐欠損性に劣るため、切削抵抗の高い被削材(例えば鋼材)への積極的な運用は検討し難い。
一方で、近年は切削抵抗の高い鋼材加工を高速加工(例えばVc=500m/min)する技術が求められている。
本発明は、上記実情を鑑みてなされたものであり、耐摩耗性能と耐欠損性能の両立を図り、鋼材を高速加工可能な工具を提供することを目的とする。本発明は、以下の形態として実現することが可能である。
By the way, cutting tools based on cemented carbide generally have excellent fracture resistance, but are said to have poor heat resistance and are not suitable for high-speed machining. For reference, in Patent Document 1, a cutting speed Vc of 180 to 350 m/min is used.
Furthermore, since cutting tools based on ceramic sintered bodies generally have poor fracture resistance, it is difficult to consider actively using them for work materials with high cutting resistance (for example, steel materials).
On the other hand, in recent years, there has been a demand for technology for machining steel materials with high cutting resistance at high speed (for example, Vc = 500 m/min).
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tool that achieves both wear resistance and chipping resistance and is capable of high-speed machining of steel materials. The present invention can be realized as the following forms.

〔1〕(Ti,M)(C,N)で表されるTi化合物(MはTa、Nb、及びWのうちの1種以上)を主成分とする硬質粒子と、Alの窒化物、酸化物、及び酸窒化物のうちの1種以上からなる分散粒子と、を含むセラミックス焼結体であって、
断面の100μm×100μmの観察範囲において、前記硬質粒子のうちの少なくとも一つは、前記硬質粒子中に固溶しているM元素が粒界に接する位置に偏析している、セラミックス焼結体。
[1] Hard particles mainly composed of a Ti compound (M is one or more of Ta, Nb, and W) represented by (Ti, M) (C, N), and nitrides and oxides of Al. A ceramic sintered body comprising dispersed particles made of one or more of the following:
In the observation range of 100 μm x 100 μm in cross section, at least one of the hard particles is a ceramic sintered body in which the M element dissolved in solid solution in the hard particles is segregated at a position in contact with a grain boundary.

〔2〕前記観察範囲における前記分散粒子の面積比率が3%以上40%以下であり、残部が前記硬質粒子である、〔1〕に記載のセラミックス焼結体。 [2] The ceramic sintered body according to [1], wherein the area ratio of the dispersed particles in the observation range is 3% or more and 40% or less, and the remainder is the hard particles.

〔3〕前記分散粒子はAlN粒子を少なくとも含む、〔1〕又は〔2〕に記載のセラミックス焼結体。 [3] The ceramic sintered body according to [1] or [2], wherein the dispersed particles include at least AlN particles.

〔4〕〔1〕から〔3〕のいずれか一項に記載のセラミックス焼結体から構成されている、切削工具。 [4] A cutting tool made of the ceramic sintered body according to any one of [1] to [3].

〔5〕〔1〕から〔3〕のいずれか一項に記載のセラミックス焼結体を基材とし、該基材の表面には被覆層が形成されている、切削工具。 [5] A cutting tool comprising the ceramic sintered body according to any one of [1] to [3] as a base material, and a coating layer is formed on the surface of the base material.

本発明のセラミックス焼結体は、被削材に含まれる鉄に対する耐反応性と硬度に優れるTi化合物(チタン化合物)を主成分とした硬質相とすることで、耐摩耗性に優れる。セラミックス焼結体は、分散粒子として、Al系(アルミニウム系)の窒(酸)化物を含むことで、硬質粒子の粒成長を抑制できることに加えて、高温下での拡散摩耗を抑制できるため、耐摩耗性に優れる。本発明における硬質粒子のうちの少なくとも一つは、硬質粒子中に固溶しているM元素が粒界に接する位置に偏析している。これにより、工具の耐熱性を向上でき、Vc=250m/min以上、例えば、Vc=500m/min程度での高速加工下においても工具の摩耗損傷を抑制できる。
セラミックス焼結体における分散粒子の面積比率を特定割合にすることで、粒成長抑制効果が効果的に得られ、耐摩耗性と耐欠損性に特に優れる。よって、切削効率を高めることができる。
セラミックス焼結体における分散粒子がAlN粒子(窒化アルミニウム粒子)を少なくとも含むことで、このセラミックス焼結体を用いた切削工具の熱伝導率を増加させ、熱膨張率を低下させることができる。よって、高速加工下において、より優れた耐摩耗性と耐欠損性を発揮でき、工具の寿命が著しく向上する。
本発明のセラミックス焼結体を切削工具に供することで、鋼材の高速加工下における耐摩耗性と耐欠損性を両立できる。
本発明のセラミックス焼結体を基材とし、被覆層が形成されている場合には、表面を硬質化するとともに表面における基材の酸化を抑制できるため、切削工具の耐摩耗性及び耐欠損性を向上できる。
The ceramic sintered body of the present invention has excellent wear resistance because it has a hard phase mainly composed of a Ti compound (titanium compound) that has excellent reaction resistance and hardness to iron contained in the work material. Ceramic sintered bodies contain Al-based (aluminum-based) nitride (oxide) oxides as dispersed particles, which not only suppresses grain growth of hard particles but also suppresses diffusion wear at high temperatures. Excellent wear resistance. In at least one of the hard particles in the present invention, the M element dissolved in solid solution in the hard particle is segregated at a position in contact with the grain boundary. Thereby, the heat resistance of the tool can be improved, and wear damage to the tool can be suppressed even under high-speed machining at Vc=250 m/min or higher, for example, about Vc=500 m/min.
By setting the area ratio of the dispersed particles in the ceramic sintered body to a specific ratio, the effect of suppressing grain growth can be effectively obtained, and the ceramic sintered body has particularly excellent wear resistance and chipping resistance. Therefore, cutting efficiency can be improved.
When the dispersed particles in the ceramic sintered body contain at least AlN particles (aluminum nitride particles), the thermal conductivity of a cutting tool using this ceramic sintered body can be increased and the coefficient of thermal expansion can be decreased. Therefore, it is possible to exhibit superior wear resistance and chipping resistance under high-speed machining, and the life of the tool is significantly improved.
By using the ceramic sintered body of the present invention in a cutting tool, it is possible to achieve both wear resistance and chipping resistance during high-speed machining of steel materials.
When the ceramic sintered body of the present invention is used as a base material and a coating layer is formed, the surface is hardened and oxidation of the base material on the surface can be suppressed, resulting in improved wear resistance and chipping resistance of cutting tools. can be improved.

セラミックス焼結体(セラミックス工具)の一例の斜視図である。FIG. 2 is a perspective view of an example of a ceramic sintered body (ceramic tool). セラミックス焼結体のSEM画像を模式的に示した図である。FIG. 2 is a diagram schematically showing a SEM image of a ceramic sintered body. 切削工具の一例を示す断面図である。It is a sectional view showing an example of a cutting tool.

以下、本発明を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 The present invention will be explained in detail below. In this specification, descriptions using "~" for numerical ranges include lower and upper limits unless otherwise specified. For example, the description "10 to 20" includes both the lower limit value of "10" and the upper limit value of "20". That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

1.セラミックス焼結体1
(1)セラミックス焼結体1の構成
セラミックス焼結体1は、(Ti,M)(C,N)で表されるTi化合物(MはTa、Nb、及びWのうちの1種以上)を主成分とする硬質粒子と、Alの窒化物、酸化物、及び酸窒化物のうちの1種以上からなる分散粒子と、を含む。セラミックス焼結体1の断面の100μm×100μmの観察範囲において、硬質粒子のうちの少なくとも一つは、硬質粒子中に固溶しているM元素が粒界に接する位置に偏析している。
1. Ceramic sintered body 1
(1) Configuration of ceramic sintered body 1 The ceramic sintered body 1 contains a Ti compound represented by (Ti, M) (C, N) (M is one or more of Ta, Nb, and W). It includes hard particles as a main component and dispersed particles made of one or more of Al nitrides, oxides, and oxynitrides. In the observation range of 100 μm×100 μm of the cross section of the ceramic sintered body 1, at least one of the hard particles is segregated at a position where the M element dissolved in the hard particle is in contact with the grain boundary.

(2)硬質粒子
硬質粒子は、(Ti,M)(C,N)で表されるTi化合物(MはTa(タンタル)、Nb(ニオブ)、及びW(タングステン)のうちの1種以上)を主成分とする。ここで「主成分」とは、硬質粒子を100体積%とした場合に、上記のTi化合物が60体積%以上であることを意味する。硬質粒子は、硬質相の高温特性改善を目的に、M元素以外の周期表4,5,6族の遷移金属元素を成分に含んでいてもよい。周期表4,5,6族の遷移金属元素は、V(バナジウム),Cr(クロム),Zr(ジルコニウム),Mo(モリブデン),Hf(ハフニウム)からなる群よりより選択される少なくとも1種の元素が好ましい。
硬質粒子は、1種のみ存在してもよく、複数種存在していてもよい。
異なる成分(例えば、含有される元素が異なる成分)の硬質粒子は、複数種の硬質粒子を構成する。
同一成分(例えば、含有される元素が同じ成分)の硬質粒子であっても、その成分比率が異なる場合は複数種の硬質粒子を構成する。この場合には、硬質粒子は、例えばアニオンの比率やカチオンの比率が異なる複数種の硬質粒子から構成されてもよい。
なお、アニオンのN比率は、被削材に含まれる鉄に対する耐反応性の観点から、(N/(C+N))で表される元素比率において、0.10~0.90の範囲が好ましく、0.20~0.80の範囲がより好ましく、0.30~0.70の範囲が更に好ましい。
カチオンのTi比率は、硬度の観点から、(Ti/(Ti+M))で表される元素比率において0.40~0.95の範囲が好ましく、0.50~0.95の範囲がより好ましく、0.70~0.95の範囲が更に好ましい。
(2) Hard particles Hard particles are Ti compounds represented by (Ti, M) (C, N) (M is one or more of Ta (tantalum), Nb (niobium), and W (tungsten)) is the main component. Here, the term "main component" means that the Ti compound is 60% by volume or more when the hard particles are 100% by volume. The hard particles may contain transition metal elements of groups 4, 5, and 6 of the periodic table other than element M for the purpose of improving the high-temperature characteristics of the hard phase. The transition metal elements of Groups 4, 5, and 6 of the periodic table are at least one selected from the group consisting of V (vanadium), Cr (chromium), Zr (zirconium), Mo (molybdenum), and Hf (hafnium). Elements are preferred.
Only one type of hard particles may be present, or a plurality of types may be present.
Hard particles of different components (for example, components containing different elements) constitute multiple types of hard particles.
Even if the hard particles have the same component (for example, the elements contained in the same component), if the component ratios differ, they constitute multiple types of hard particles. In this case, the hard particles may be composed of a plurality of types of hard particles having different anion ratios and cation ratios, for example.
Note that the N ratio of the anion is preferably in the range of 0.10 to 0.90 in the element ratio represented by (N / (C + N)) from the viewpoint of reaction resistance to iron contained in the work material. A range of 0.20 to 0.80 is more preferred, and a range of 0.30 to 0.70 is even more preferred.
From the viewpoint of hardness, the Ti ratio of the cation is preferably in the range of 0.40 to 0.95, more preferably in the range of 0.50 to 0.95 in terms of the element ratio represented by (Ti/(Ti+M)), A range of 0.70 to 0.95 is more preferred.

(3)分散粒子
分散粒子は、Al(アルミニウム)の窒化物、酸化物、及び酸窒化物のうちの1種以上からなる。分散粒子は、AlN粒子(窒化アルミニウム粒子)、Al粒子(酸化アルミニウム粒子)、及びAlON粒子(酸窒化アルミニウム粒子)のうちの1種以上からなることが好ましい。AlN粒子(窒化アルミニウム粒子)は、工具の熱伝導率を増加させ、熱膨張率を低下できる。よって、分散粒子としてAlN粒子(窒化アルミニウム粒子)を含むことで、高速加工下においてより優れた耐摩耗性と耐欠損性を発揮でき、工具の寿命が著しく向上する。このように、分散粒子は、AlN粒子(窒化アルミニウム粒子)を少なくとも含むことが好ましい。
(3) Dispersed Particles The dispersed particles are made of one or more of Al (aluminum) nitrides, oxides, and oxynitrides. The dispersed particles are preferably made of one or more of AlN particles (aluminum nitride particles), Al 2 O 3 particles (aluminum oxide particles), and AlON particles (aluminum oxynitride particles). AlN particles (aluminum nitride particles) can increase the thermal conductivity of the tool and reduce the coefficient of thermal expansion. Therefore, by including AlN particles (aluminum nitride particles) as dispersed particles, better wear resistance and chipping resistance can be exhibited under high-speed machining, and the life of the tool can be significantly improved. Thus, it is preferable that the dispersed particles include at least AlN particles (aluminum nitride particles).

(4)M元素の偏析
本発明は、硬質粒子中に固溶しているM元素が粒界に接する位置に偏析していることを特徴としている。この特徴について、図を用いて説明する。
図2は、セラミックス焼結体1を鏡面研磨加工後、鏡面研磨された面をSEM(Scanning Electron Microscope,走査型透過電子顕微鏡)にて観察し、セラミックス焼結体1の断面の100μm×100μmの観察範囲におけるSEM画像を模式的に示した図である。但し、図2は、セラミックス焼結体1のSEM画像を概念的に示したものであり、実際のSEM画像を正確に示したものではない。図2では、第1硬質粒子P1、第2硬質粒子P2、分散粒子P3が存在する場合を例示している。なお、硬質粒子は、1種類のみであってもよく、3種類以上存在していてもよい。また、分散粒子は、2種以上であってもよい。本発明において粒界Gは、硬質粒子同士の境界面、硬質粒子と分散粒子との境界面の両方を意味する。硬質粒子同士の境界面たる粒界Gには、異種の硬質粒子の境界面、及び同種の硬質粒子の境界面がある。図2に示された粒界Gは、第1硬質粒子P1と第2硬質粒子P2という異種の硬質粒子の境界面である。図2では、第1硬質粒子P1中に固溶しているM元素が粒界Gに接する位置に偏析している様子が示されている。点描で模式的に示された領域Rは、第1硬質粒子P1内の領域であって、M元素が偏析した領域である。本発明では、固溶しているM元素が粒界Gに接する位置に偏析している硬質粒子は、100μm×100μmの観察範囲において少なくとも1つ存在していればよい。図2では、この要件を満たす硬質粒子が複数観察されている様子が示されている。
(4) Segregation of M element The present invention is characterized in that the M element dissolved in solid solution in hard particles is segregated at positions in contact with grain boundaries. This feature will be explained using figures.
FIG. 2 shows a 100 μm x 100 μm cross-section of the ceramic sintered body 1 after mirror polishing the ceramic sintered body 1 and observing the mirror polished surface with an SEM (Scanning Electron Microscope). FIG. 3 is a diagram schematically showing a SEM image in an observation range. However, FIG. 2 conceptually shows a SEM image of the ceramic sintered body 1, and does not accurately show an actual SEM image. FIG. 2 illustrates a case where first hard particles P1, second hard particles P2, and dispersed particles P3 are present. Note that there may be only one type of hard particles, or three or more types of hard particles may be present. Moreover, two or more types of dispersed particles may be used. In the present invention, the grain boundary G means both the interface between hard particles and the interface between hard particles and dispersed particles. Grain boundaries G, which are interfaces between hard particles, include interfaces between different types of hard particles and interfaces between hard particles of the same type. The grain boundary G shown in FIG. 2 is an interface between different types of hard particles, the first hard particles P1 and the second hard particles P2. FIG. 2 shows that the M element dissolved in solid solution in the first hard particles P1 is segregated at a position in contact with the grain boundary G. The region R schematically shown in stippling is a region within the first hard particle P1, and is a region in which the M element is segregated. In the present invention, it is sufficient that at least one hard particle in which the M element in solid solution is segregated at a position in contact with the grain boundary G exists in the observation range of 100 μm×100 μm. FIG. 2 shows that a plurality of hard particles meeting this requirement are observed.

(5)各粒子の面積比率
セラミックス焼結体1において、上述の観察範囲(断面の100μm×100μmの観察範囲)における分散粒子の面積比率は、特に限定されない。分散粒子の面積比率は、断面の100μm×100μmの観察範囲を100%として求める。
分散粒子の面積比率は、粒成長を効果的に抑制して、耐摩耗性と耐欠損性に優れた工具を提供する観点から、3%以上が好ましく、7.5%以上がより好ましい。分散粒子の面積比率は、セラミックス焼結体1の硬度を維持して、耐摩耗性の低下を抑制する観点から、40%以下が好ましく、21.5%以下がより好ましい。分散粒子の面積比率は、3%以上40%以下が好ましく、7.5%以上21.5%以下がより好ましい。
なお、図2の場合は、上記観察範囲における分散粒子の占有部分以外の残部は、硬質粒子(第1硬質粒子P1及び第2硬質粒子P2)とされている。
(5) Area ratio of each particle In the ceramic sintered body 1, the area ratio of the dispersed particles in the above observation range (observation range of 100 μm x 100 μm in cross section) is not particularly limited. The area ratio of the dispersed particles is determined by setting the observation range of 100 μm×100 μm of the cross section as 100%.
The area ratio of the dispersed particles is preferably 3% or more, more preferably 7.5% or more, from the viewpoint of effectively suppressing grain growth and providing a tool with excellent wear resistance and chipping resistance. The area ratio of the dispersed particles is preferably 40% or less, more preferably 21.5% or less, from the viewpoint of maintaining the hardness of the ceramic sintered body 1 and suppressing a decrease in wear resistance. The area ratio of the dispersed particles is preferably 3% or more and 40% or less, more preferably 7.5% or more and 21.5% or less.
In the case of FIG. 2, the remainder other than the portion occupied by the dispersed particles in the observation range is made of hard particles (first hard particles P1 and second hard particles P2).

(6)固溶しているM元素が粒界に接する位置に偏析している硬質粒子の存在によって、高速加工下においても工具の摩耗損傷を抑制できる推測理由
固溶しているM元素が粒界に接する位置に偏析している硬質粒子の存在によって、高速加工下においても工具の摩耗損傷を抑制できる推測理由を説明する。
M元素が粒子全体に渡り、均質固溶した硬質粒子では、組織全体の耐酸化性を向上できる。しかし、この硬質粒子では、M元素の影響でTi成分濃度(チタン成分濃度)が粒子全体で低下するため、粒子の硬度が低下する。一方、本発明のようにM元素が粒界部で偏析した粒子では、M元素が偏析していない部分、例えば粒子の中心部分では、M元素の影響が少なく、Ti濃度低下がほとんど生じないため、粒子の硬度を十分に維持できる。また、その粒界部ではM元素(Ta,Nb,W)の濃度が高くなり、耐反応性に優れた部位となるため、高温下において、被削材に由来する鉄の粒界拡散を抑制できる。更に、M元素が偏析していない部位と、M元素が偏析した部位は一つの硬質粒子内で生じている現象であるから、これらの部位同士の結合力が強く、析出粒子のような脱粒が起こり難い。これらの要因から、本発明における硬質粒子を有することで、高速加工下において優れた耐摩耗性を発揮できるものと推定される。
(6) Possible reason why tool wear damage can be suppressed even under high-speed machining due to the presence of hard particles in which the M element in solid solution is segregated at positions in contact with grain boundaries. The reason why it is assumed that the existence of hard particles segregated in the position in contact with the field can suppress tool wear damage even under high-speed machining will be explained.
In hard particles in which the M element is homogeneously dissolved throughout the particles, the oxidation resistance of the entire structure can be improved. However, in these hard particles, the Ti component concentration (titanium component concentration) decreases in the entire particle due to the influence of the M element, so the hardness of the particle decreases. On the other hand, in the case of particles in which the M element is segregated at the grain boundaries as in the present invention, the influence of the M element is small in areas where the M element is not segregated, for example, in the center of the particle, and there is almost no decrease in the Ti concentration. , the hardness of the particles can be maintained sufficiently. In addition, the concentration of M elements (Ta, Nb, W) is high in the grain boundaries, making them areas with excellent reaction resistance, which suppresses the grain boundary diffusion of iron originating from the work material at high temperatures. can. Furthermore, since the region where the M element is not segregated and the region where the M element is segregated are phenomena that occur within one hard particle, the bonding force between these regions is strong, and the shedding like precipitated particles occurs. Hard to happen. From these factors, it is presumed that by having the hard particles of the present invention, excellent wear resistance can be exhibited under high-speed machining.

2.セラミックス焼結体1の製造方法
セラミックス焼結体1の製造方法は特に限定されない。セラミックス焼結体1の製造方法の一例を以下に示す。
2. Method for manufacturing the ceramic sintered body 1 The method for manufacturing the ceramic sintered body 1 is not particularly limited. An example of a method for manufacturing the ceramic sintered body 1 is shown below.

(1)原料
原料として次の原料粉末を使用する。
・Ti炭窒化物系原料粉末
・TaC粉末(炭化タンタル粉末)、NbC粉末(炭化ニオブ粉末)、及びWC粉末(炭化タングステン粉末)から選択される1種以上の原料粉末
・Al粉末(酸化アルミニウム粉末)、AlN粉末(窒化アルミニウム粉末)等の原料粉末
(1) Raw materials The following raw material powders are used as raw materials.
・Ti carbonitride-based raw material powder ・One or more raw material powders selected from TaC powder (tantalum carbide powder), NbC powder (niobium carbide powder), and WC powder (tungsten carbide powder) ・Al 2 O 3 powder ( Raw material powders such as aluminum oxide powder), AlN powder (aluminum nitride powder), etc.

(2)焼成用粉末の準備
原料粉末を所定の配合割合になる様に秤量する。容器(例えば樹脂ポット等)の中に、原料粉末、球石(例えばAl球石)、及び溶媒(例えばアセトン)を入れて混合粉砕する。得られたスラリーは湯煎乾燥にて処理し、乾燥混合粉末を得る。
(2) Preparation of powder for firing Raw material powders are weighed to a predetermined mixing ratio. A raw material powder, a coccule (eg, Al 2 O tricoccite ), and a solvent (eg, acetone) are placed in a container (eg, a resin pot, etc.) and mixed and pulverized. The obtained slurry is dried in a hot water bath to obtain a dry mixed powder.

(3)焼成
乾燥混合粉を冶具(例えばカーボン冶具)に投入し、ホットプレスしてセラミックス焼結体1を作製する。ホットプレスは、Ar又はN雰囲気下で行う。
(3) Firing The dry mixed powder is put into a jig (for example, a carbon jig) and hot pressed to produce the ceramic sintered body 1. Hot pressing is performed under an Ar or N2 atmosphere.

なお、セラミックス焼結体1におけるM元素の偏析の有無は、焼成温度とN分圧によって制御できる。すなわち、相互固溶を伴う焼結過程における硬質粒子への加窒の程度(N分圧)、及びTi炭窒化物系原料の相互固溶の進行度を制御することにより、M元素が均質に固溶した状態から、M元素が偏析して固溶した状態に変化させることができる。 Note that the presence or absence of segregation of the M element in the ceramic sintered body 1 can be controlled by the firing temperature and the N 2 partial pressure. In other words, by controlling the degree of carnidization of hard particles ( N2 partial pressure) during the sintering process that involves mutual solid solution, and the degree of progress of mutual solid solution of Ti carbonitride-based raw materials, the M element can be made homogeneous. It is possible to change the state from a state in which element M is in solid solution to a state in which element M is segregated and dissolved in solid solution.

3.切削工具2
切削工具2は、上記セラミックス焼結体1から構成されたことを特徴とする。切削工具2の形状は、特に限定されない。
3. cutting tool 2
The cutting tool 2 is characterized by being constructed from the ceramic sintered body 1 described above. The shape of the cutting tool 2 is not particularly limited.

セラミックス焼結体1は、切削、研削、及び研磨の少なくとも1つの加工法によって形状や表面の仕上げを行って、切削工具2とすることができる。もちろん、これらの仕上げが不要であれば、セラミックス焼結体1をそのまま切削工具2として用いてもよい。 The ceramic sintered body 1 can be made into a cutting tool 2 by finishing its shape and surface by at least one processing method of cutting, grinding, and polishing. Of course, if these finishes are not required, the ceramic sintered body 1 may be used as it is as the cutting tool 2.

切削工具2は、図3に示されるように、セラミックス焼結体1を基材5とし、基材5の表面に、被覆層7が形成されていてもよい。被覆層7は、特に限定されないが、例えば、チタン、ジルコニウム、及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、酸窒化物、及び炭窒酸化物より選択される少なくとも1種の化合物からなることが好ましい。被覆層7が形成されると、切削工具2の表面硬度が増加すると共に、被加工物との反応・溶着による摩耗進行が抑制される。その結果、切削工具2の耐摩耗性が向上する。
チタン、ジルコニウム、及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、酸窒化物、及び炭窒酸化物より選択される少なくとも1種の化合物としては、特に限定されないが、TiN、TiAlN、TiCrAlN、CrAlNが好適な例として挙げられる。耐酸化性及び潤滑性の観点から、Cr系のコーティング(例えばTiCrAlN、CrAlN)が、より好ましい。
被覆層7の形態は、単層膜であっても、単層膜が積層した積層膜であってもよい。
被覆層7の厚みは、特に限定されない。被覆層7の厚みは、耐摩耗性の観点から、0.02μm以上30μm以下が好ましい。
As shown in FIG. 3, the cutting tool 2 may have a ceramic sintered body 1 as a base material 5, and a coating layer 7 may be formed on the surface of the base material 5. The coating layer 7 is, for example, at least one selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, and aluminum, although not particularly limited thereto. It is preferable to consist of a compound of When the coating layer 7 is formed, the surface hardness of the cutting tool 2 increases, and the progression of wear due to reaction and welding with the workpiece is suppressed. As a result, the wear resistance of the cutting tool 2 is improved.
The at least one compound selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, and aluminum includes, but is not particularly limited to, TiN, Suitable examples include TiAlN, TiCrAlN, and CrAlN. From the viewpoint of oxidation resistance and lubricity, Cr-based coatings (eg, TiCrAlN, CrAlN) are more preferred.
The form of the covering layer 7 may be a single-layer film or a laminated film in which single-layer films are laminated.
The thickness of the covering layer 7 is not particularly limited. The thickness of the coating layer 7 is preferably 0.02 μm or more and 30 μm or less from the viewpoint of wear resistance.

以下、実施例により本発明を更に具体的に説明する。
なお、実験例1~11、実験例14~17は実施例であり、実験例12,13は比較例である。
表において、実験例を「No.」を用いて示す。また、表において「12*」のように、「*」が付されている場合には、比較例であることを示している。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
Note that Experimental Examples 1 to 11 and Experimental Examples 14 to 17 are examples, and Experimental Examples 12 and 13 are comparative examples.
In the table, experimental examples are indicated using "No.". In addition, in the table, when "*" is attached, such as "12*", it indicates that it is a comparative example.

1.実験1(実験例1~13)
実験1では、実験例1~13の各セラミックス焼結体を作製し、これらの各セラミックス焼結体を加工して、実験例1~13の各切削工具とした。
1. Experiment 1 (Experiment Examples 1 to 13)
In Experiment 1, each of the ceramic sintered bodies of Experimental Examples 1 to 13 was produced, and each of these ceramic sintered bodies was processed to obtain each of the cutting tools of Experimental Examples 1 to 13.

(1)原料粉末
以下に示す原料粉末を用いた。
Ti炭窒化物系原料粉末:平均粒径1.5μm以下
TaC粉末:平均粒径1.5μm以下
NbC粉末:平均粒径1.5μm以下
WC粉末:平均粒径1.5μm以下
Al粉末:平均粒径0.7μm以下
AlON粉末:平均粒径0.7μm以下
AlN粉末:平均粒径0.7μm以下
ZrO粉末:平均粒径0.7μm以下
(1) Raw material powder The raw material powder shown below was used.
Ti carbonitride-based raw material powder: Average particle size 1.5 μm or less TaC powder: Average particle size 1.5 μm or less NbC powder: Average particle size 1.5 μm or less WC powder: Average particle size 1.5 μm or less Al 2 O 3 powder : Average particle size 0.7 μm or less AlON powder: Average particle size 0.7 μm or less AlN powder: Average particle size 0.7 μm or less ZrO2 powder: Average particle size 0.7 μm or less

(2)セラミックス焼結体(実験例1~13)の作製
原料粉末を用いて混合粉末を調製し、混合粉末にアセトンを入れて、72hr粉砕・混合した。粉砕・混合後、得られたスラリーを湯煎乾燥することで、アセトンの抜気を行い、乾燥混合粉末を調製した。得られた乾燥混合粉末を用いて、ホットプレスを行ってセラミックス焼結体を作製した。ホットプレスの条件は、1500℃~1900℃,1MPa~30MPa,Ar又はN雰囲気下であった。
なお、M元素の偏析の有無は、焼成温度とN分圧によって制御した。すなわち、相互固溶を伴う焼結過程における硬質粒子への加窒の程度(N分圧)、及びTi炭窒化物系原料の相互固溶の進行度を制御することにより、M元素が均質に固溶した状態から、M元素が偏析して固溶した状態に変化させることができるため、焼成温度とN分圧の条件を調整することで、M元素が粒界に偏析したセラミックス焼結体を得た。例えば、Ta元素が偏析した実験例5は、N分圧を5KPa、焼成温度を1700℃とした。
(2) Production of ceramic sintered bodies (Experimental Examples 1 to 13) A mixed powder was prepared using the raw material powder, acetone was added to the mixed powder, and the mixture was ground and mixed for 72 hours. After pulverization and mixing, the obtained slurry was dried in a hot water bath to remove the acetone and prepare a dry mixed powder. Using the obtained dry mixed powder, hot pressing was performed to produce a ceramic sintered body. The hot pressing conditions were 1500° C. to 1900° C., 1 MPa to 30 MPa, and Ar or N 2 atmosphere.
Note that the presence or absence of segregation of the M element was controlled by the firing temperature and N2 partial pressure. In other words, by controlling the degree of carnidization of hard particles ( N2 partial pressure) during the sintering process that involves mutual solid solution, and the degree of progress of mutual solid solution of Ti carbonitride-based raw materials, the M element can be made homogeneous. It is possible to change the state from a state in which the M element is segregated into a solid solution to a state in which the M element is segregated into a solid solution. Obtained a body. For example, in Experimental Example 5 in which Ta element was segregated, the N 2 partial pressure was 5 KPa and the firing temperature was 1700°C.

(3)M元素の偏析の確認、分散粒子の面積比率
SEMによって各セラミックス焼結体の断面を観察した。この観察において、エネルギー分散型蛍光X線分光器(EDS)を用いて偏析組織を有する硬質粒子に対して線分析を行い、M元素の偏析有無及び、偏析元素種を確認した。M元素の偏析が存在する領域では、存在しない領域に比べてEDSの検出強度が高くなる。粒界部に向かってM元素の検出強度が増加傾向になる場合をM元素の偏析がある粒子と判断した。
同様にして得られたSEM像を用いて、硬質粒子と分散粒子の面積比率を画像解析ソフトウェア(winroof)にて評価し、各々の存在割合を算出した。
(3) Confirmation of segregation of M element, area ratio of dispersed particles The cross section of each ceramic sintered body was observed by SEM. In this observation, line analysis was performed on the hard particles having a segregated structure using an energy dispersive X-ray fluorescence spectrometer (EDS) to confirm the presence or absence of segregation of the M element and the species of the segregated element. In a region where M element segregation exists, the EDS detection intensity is higher than in a region where it does not exist. When the detection intensity of the M element tends to increase toward the grain boundary, it is determined that the particle has segregation of the M element.
Using the SEM image obtained in the same manner, the area ratio of hard particles and dispersed particles was evaluated using image analysis software (winroof), and the abundance ratio of each was calculated.

(4)切削工具の作製
実験例1~13のセラミックス焼結体を、ISO-CNGN120408型の寸法となるように研磨加工し、切削工具を作製した。
(4) Production of cutting tools The ceramic sintered bodies of Experimental Examples 1 to 13 were polished to the dimensions of the ISO-CNGN120408 type to produce cutting tools.

(5)炭素鋼に対する耐摩耗性能評価試験
(5.1)試験条件
各切削工具を用いて、切削試験を行った。試験条件は下記の通りである。
・チップ形状:CNGN120408T00520
・被削材:S45C(JIS)
・切削速度:500m/min
・切込み量:2.0mm
・送り量:0.2mm/rev.
・切削環境:乾式施削試験
(5.2)評価
耐摩耗性能(VB摩耗)及び耐欠損性能を次のように評価(判定)した。
(5.2.1)耐摩耗性能(VB摩耗)
0.5km加工後の摩耗量を以下の判定基準で評価した。
判定基準
「A」 摩耗量≦0.06mm
「B」 0.06mm<摩耗量≦0.16mm
「C」 0.16mm<摩耗量
(5.2.2)耐欠損性能
欠損時の加工距離を以下の判定基準で評価した。
判定基準
「A」 2.0km≦加工距離
「B」 1.0km≦加工距離<2.0km
「C」 加工距離<1.0km、又は即時欠損
(5) Wear resistance performance evaluation test for carbon steel (5.1) Test conditions A cutting test was conducted using each cutting tool. The test conditions are as follows.
・Chip shape: CNGN120408T00520
・Work material: S45C (JIS)
・Cutting speed: 500m/min
・Depth of cut: 2.0mm
・Feed amount: 0.2mm/rev.
- Cutting environment: Dry cutting test (5.2) evaluation Wear resistance performance (VB wear) and chipping resistance performance were evaluated (determined) as follows.
(5.2.1) Wear resistance performance (VB wear)
The amount of wear after machining 0.5 km was evaluated using the following criteria.
Judgment criteria “A” Wear amount ≦0.06mm
“B” 0.06mm<wear amount≦0.16mm
"C" 0.16 mm<wear amount (5.2.2) Fracture resistance performance The machining distance at the time of fracture was evaluated using the following criteria.
Judgment criteria “A” 2.0km≦machining distance “B” 1.0km≦machining distance<2.0km
"C" Machining distance <1.0km or immediate breakage

(6)評価結果
評価結果を表1に示す。
(6) Evaluation results The evaluation results are shown in Table 1.

Figure 0007393253000001
Figure 0007393253000001

(6.1)M元素の偏析有無、及びAl化合物以外の分散粒子について
実験例3,12,13を比較検討する。Ta元素の偏析の無い実験例12では耐摩耗性が劣るのに対し、Ta元素が偏析した実験例3では耐摩耗性が向上した。また、M元素の偏析がないことに加えてAl化合物以外の分散粒子(ZrO)を用いた実験例13は、摩耗量が0.27mmと非常に大きく、耐摩耗性が著しく劣っていた。
(6.2)分散粒子の面積比率について
実験例1の結果から分かるように、分散粒子の面積比率が3%未満となると、組織が粗大となるために、耐摩耗性が低下する傾向にあった。他方、実験例7の結果から分かるように、面積率が40%を超えても、硬度の低い分散粒子の影響を受けて、耐摩耗性が低下した。言い換えると、分散粒子の面積比率が3%以上40%以下である実験例2-6,8-11は、分散粒子の面積比率が3%未満である実験例1や、分散粒子の面積比率が40%を超える実験例7より、耐摩耗性に優れた。よって、耐摩耗性に優れる範囲としては、面積率は3%~40%が好ましい。実験例3,4の結果から、特に8%~22%にすると耐摩耗性が最大化できるため、この範囲がより好ましい。
(6.3)分散粒子種について
添加する分散粒子の種類はAlN(実験例3,4)、Al(実験例10)、AlON(実験例11)のいずれにおいても、優れた耐摩耗性と耐欠損性を示すことが確認された。実験例3,10は硬質粒子の面積比率が類似しているが、実験例3の方が耐摩耗性に優れた。実験例4,11は硬質粒子の面積比率が類似しているが、実験例4の方が耐摩耗性に優れた。よって、特にAlNを用いた場合では、焼結体の高熱伝導化と耐鉄反応性の向上により耐摩耗性が良化することに加えて、熱膨張係数の低下により耐欠損性が著しく向上するため、より好ましい。
(6.4)偏析元素種について(M元素の種類について)
実験例8,9,10の試験結果から、偏析する元素はNb(ニオブ)やW(タングステン)を用いてもよいことが分かる。ただし、偏析及び添加による性能強化の効果が最も高く得られるTa(タンタル)を用いることがより好ましい。
(6.1) Regarding segregation of M element and dispersed particles other than Al compounds Experimental Examples 3, 12, and 13 will be compared and studied. In Experimental Example 12 in which Ta element was not segregated, the wear resistance was poor, whereas in Experimental Example 3 in which Ta element was segregated, the wear resistance was improved. Further, in Experimental Example 13, in which there was no segregation of the M element and dispersed particles other than the Al compound (ZrO 2 ) were used, the amount of wear was as large as 0.27 mm, and the wear resistance was extremely poor.
(6.2) Regarding the area ratio of dispersed particles As can be seen from the results of Experimental Example 1, when the area ratio of dispersed particles is less than 3%, the structure becomes coarse and wear resistance tends to decrease. Ta. On the other hand, as can be seen from the results of Experimental Example 7, even when the area ratio exceeded 40%, the wear resistance decreased due to the influence of dispersed particles with low hardness. In other words, Experimental Examples 2-6 and 8-11 where the area ratio of dispersed particles is 3% or more and 40% or less are different from Experimental Example 1 where the area ratio of dispersed particles is less than 3% or The wear resistance was superior to that of Experimental Example 7, which exceeded 40%. Therefore, the area ratio is preferably 3% to 40% in terms of the range in which the wear resistance is excellent. From the results of Experimental Examples 3 and 4, the wear resistance can be maximized especially when the content is in the range of 8% to 22%, so this range is more preferable.
(6.3) Regarding the type of dispersed particles The types of dispersed particles added are AlN (Experimental Examples 3 and 4), Al 2 O 3 (Experimental Example 10), and AlON (Experimental Example 11), all of which have excellent wear resistance. It was confirmed that the material exhibited good durability and fracture resistance. Experimental Examples 3 and 10 had similar area ratios of hard particles, but Experimental Example 3 had better wear resistance. Experimental Examples 4 and 11 had similar area ratios of hard particles, but Experimental Example 4 had better wear resistance. Therefore, especially when AlN is used, in addition to improving wear resistance due to higher thermal conductivity and improved iron reactivity of the sintered body, chipping resistance is significantly improved due to a lower coefficient of thermal expansion. Therefore, it is more preferable.
(6.4) About the segregation element type (about the type of M element)
From the test results of Experimental Examples 8, 9, and 10, it can be seen that Nb (niobium) or W (tungsten) may be used as the element to be segregated. However, it is more preferable to use Ta (tantalum), which provides the highest performance enhancement effect through segregation and addition.

2.実験2(実験例14~17)
実験1と同様な方法で得た実験例3,6,10のセラミックス焼結体(基体)の表面に、表2に示すように、TiN、CrAlN、TiCrAlNを被覆して切削工具を作製し、耐摩耗性試験を行った。炭素鋼に対する耐摩耗性能評価試験は、実験1の場合と同様な方法で行った。
試験結果を表2に示す。
2. Experiment 2 (Experiment Examples 14 to 17)
The surfaces of the ceramic sintered bodies (substrates) of Experimental Examples 3, 6, and 10 obtained in the same manner as Experiment 1 were coated with TiN, CrAlN, and TiCrAlN as shown in Table 2 to prepare cutting tools. A wear resistance test was conducted. The wear resistance performance evaluation test for carbon steel was conducted in the same manner as in Experiment 1.
The test results are shown in Table 2.

Figure 0007393253000002
Figure 0007393253000002

実験例14~17では、いずれも摩耗量が低下し、耐摩耗性に優れる切削工具となった。 In all of Experimental Examples 14 to 17, the amount of wear decreased, resulting in cutting tools with excellent wear resistance.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications and changes can be made within the scope of the claims of the present invention.

1 …セラミックス焼結体
2 …切削工具
5 …基材
7 …被覆層
P1…第1硬質粒子
P2…第2硬質粒子
P3…分散粒子
G…粒界
R…M元素が偏析した領域
1 ... Ceramic sintered body 2 ... Cutting tool 5 ... Base material 7 ... Covering layer P1 ... First hard particle P2 ... Second hard particle P3 ... Dispersion particle G ... Grain boundary R ... Region where M element is segregated

Claims (4)

(Ti,M)(C,N)で表されるTi化合物(MはTa、Nb、及びWのうちの1種 以上)を主成分とする硬質粒子と、Alの窒化物、酸化物、及び酸窒化物のうちの1種以上からなる分散粒子と、を含むセラミックス焼結体であって、
断面の100μm×100μmの観察範囲において、前記硬質粒子のうちの少なくとも一つは、前記硬質粒子中に固溶しているM元素が粒界に接する位置に偏析し
前記観察範囲における前記分散粒子の面積比率が2.5%以上45.2%以下であり、残部が前記硬質粒子である、セラミックス焼結体。
(Ti, M) (C, N) Hard particles mainly composed of a Ti compound (M is one or more of Ta, Nb, and W), Al nitrides, oxides, and A ceramic sintered body comprising dispersed particles made of one or more types of oxynitrides,
In an observation range of 100 μm x 100 μm of the cross section, at least one of the hard particles is segregated at a position where the M element dissolved in solid solution in the hard particle is in contact with the grain boundary ,
A ceramic sintered body , wherein the area ratio of the dispersed particles in the observation range is 2.5% or more and 45.2% or less, and the remainder is the hard particles .
前記分散粒子はAlN粒子を少なくとも含む、請求項1に記載のセラミックス焼結体。 The ceramic sintered body according to claim 1 , wherein the dispersed particles include at least AlN particles. 請求項1又は2に記載のセラミックス焼結体から構成されている、切削工具。 A cutting tool comprising the ceramic sintered body according to claim 1 or 2 . 請求項1又は2に記載のセラミックス焼結体を基材とし、該基材の表面には被覆層が形成されている、切削工具。 A cutting tool comprising the ceramic sintered body according to claim 1 or 2 as a base material, and a coating layer is formed on the surface of the base material.
JP2020035532A 2020-03-03 2020-03-03 Ceramic sintered bodies and cutting tools Active JP7393253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020035532A JP7393253B2 (en) 2020-03-03 2020-03-03 Ceramic sintered bodies and cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020035532A JP7393253B2 (en) 2020-03-03 2020-03-03 Ceramic sintered bodies and cutting tools

Publications (2)

Publication Number Publication Date
JP2021138558A JP2021138558A (en) 2021-09-16
JP7393253B2 true JP7393253B2 (en) 2023-12-06

Family

ID=77667714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020035532A Active JP7393253B2 (en) 2020-03-03 2020-03-03 Ceramic sintered bodies and cutting tools

Country Status (1)

Country Link
JP (1) JP7393253B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114562A (en) 1999-10-19 2001-04-24 Toshiba Tungaloy Co Ltd Sintered ceramic part and coated sintered ceramic part
JP2007137709A (en) 2005-11-17 2007-06-07 Ngk Spark Plug Co Ltd Ceramic sintered compact, cutting insert, cutting tool, and milling cutter
WO2019065372A1 (en) 2017-09-27 2019-04-04 日本特殊陶業株式会社 Ceramic sintered body, insert, cutting tool, and friction stir welding tool
WO2019220533A1 (en) 2018-05-15 2019-11-21 住友電気工業株式会社 Cermet, cutting tool containing same, and method for producing cermet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114562A (en) 1999-10-19 2001-04-24 Toshiba Tungaloy Co Ltd Sintered ceramic part and coated sintered ceramic part
JP2007137709A (en) 2005-11-17 2007-06-07 Ngk Spark Plug Co Ltd Ceramic sintered compact, cutting insert, cutting tool, and milling cutter
WO2019065372A1 (en) 2017-09-27 2019-04-04 日本特殊陶業株式会社 Ceramic sintered body, insert, cutting tool, and friction stir welding tool
WO2019220533A1 (en) 2018-05-15 2019-11-21 住友電気工業株式会社 Cermet, cutting tool containing same, and method for producing cermet

Also Published As

Publication number Publication date
JP2021138558A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
EP2612719B1 (en) Cubic boron nitride sintered compact tool
ZA200604490B (en) Cubic boron nitride sintered body and method for making the same
WO2006068220A1 (en) Sialon insert and cutting tool equipped therewith
WO2010104094A1 (en) Cermet and coated cermet
CA2965651C (en) Sintered ceramic bodies and applications thereof
JPS61101482A (en) Silicon nitride cutting tool
KR20190073370A (en) Composite sintered body
JP7393253B2 (en) Ceramic sintered bodies and cutting tools
JP6683887B2 (en) Ceramics sintered body, insert, cutting tool, and friction stir welding tool
WO2023188871A1 (en) Sintered body and cutting tool
JP2001179507A (en) Cutting tool
KR100481075B1 (en) Titanium Carbonitride Complex Silicon Nitride Tools
WO2023188875A1 (en) Sintered body and cutting tool
WO2022113477A1 (en) Sintered compact and cutting tool
WO2023188876A1 (en) Sintered compact and cutting tool
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JP2021155282A (en) Ceramic sintered body, and cutting tool
JP7329323B2 (en) Ceramic sintered bodies, inserts, cutting tools, and tools for friction stir welding
WO2021124690A1 (en) Cutting tool
EP1132358A2 (en) Alumina-based composite sintered material, wear resistant member and a method of manufacturing alumina-based composite sintered material
JP2022085252A (en) Cutting tool
JP3544632B2 (en) Coated cemented carbide
JP2022096803A (en) Cutting tool
JPH04304332A (en) Sintered hard alloy excellent in wear resistance and breaking resistance
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7393253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150