WO2024033102A1 - Leistungsmodul mit flexibler leiterplatte - Google Patents

Leistungsmodul mit flexibler leiterplatte Download PDF

Info

Publication number
WO2024033102A1
WO2024033102A1 PCT/EP2023/070869 EP2023070869W WO2024033102A1 WO 2024033102 A1 WO2024033102 A1 WO 2024033102A1 EP 2023070869 W EP2023070869 W EP 2023070869W WO 2024033102 A1 WO2024033102 A1 WO 2024033102A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
flexible circuit
power module
power
electronic components
Prior art date
Application number
PCT/EP2023/070869
Other languages
English (en)
French (fr)
Inventor
Adrian Schiffer
Franz KOENIGSEDER
Original Assignee
Magna powertrain gmbh & co kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna powertrain gmbh & co kg filed Critical Magna powertrain gmbh & co kg
Publication of WO2024033102A1 publication Critical patent/WO2024033102A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10272Busbars, i.e. thick metal bars mounted on the printed circuit board [PCB] as high-current conductors

Definitions

  • the invention relates to a power module with at least one flexible circuit board, which takes on at least one function in the power module.
  • a power module or power electronics module provides the physical enclosure for multiple power components, typically power semiconductor devices.
  • Such high-performance components such as IGBT, SiC, GaN, are manufactured by connecting dozens of chips in parallel and are installed as power electronic components.
  • the use of flexible circuit boards in the high-current range is known from US 10 644 292 A1.
  • the document discloses a battery wiring module attached to a cell group that includes an array of multiple cells with positive pole and negative pole electrode terminals, the battery wiring module including a plurality of connectors connecting the positive pole and negative pole electrode terminals of adjacent cells of the plurality of cells; and a flexible circuit board including a plurality of voltage sensing wires for sensing voltages of the plurality of cells across the plurality of connection elements.
  • the task is solved with a power module with at least one solid circuit board and power electronic components with connected busbars, the power electronic components having contact with at least one flexible circuit board.
  • any type of connection that is made electrically via an electrical line or radiantly via a light or heat measurement is seen as a contact.
  • the flexible circuit board offers a cost-effective, flexible and easy-to-integrate way to address and evaluate passive and active components in the power module.
  • the flexible circuit board is designed as a strip.
  • the flexible circuit board has tabs protruding from strips.
  • the flexible circuit board consists of island areas that are connected to one another via contacts.
  • the flexible circuit board can take on at least one function from the group: signal line, temperature measurement, current measurement, shielding, control and is thus a relief for the otherwise installed circuit boards in the power module.
  • the flexible circuit board allows a temperature measurement to be carried out on at least one of the power electronics components via a photodiode and an opening in the flexible circuit board, or through an NTC sensor on the flexible circuit board adjacent to at least one power electronics component or by direct contact with a meander/snake area of an electrical contact.
  • a current measurement is carried out by a Hall sensor on the flexible circuit board adjacent to a busbar.
  • the power electronic components are contacted directly through the flexible circuit board to transmit gate signals.
  • a microcontroller is installed on the flexible circuit board.
  • the functions shifted from the solid circuit boards to the flexible circuit board can be gate control, current sensors or even temperature sensors.
  • the advantage lies in the high level of integration within the power module and either improves performance or allows structural improvements by moving components from the gate or controller PCB into the flexible circuit board.
  • Figure 1 shows a schematic view of a power module with a Hall sensor
  • Figure 2 shows a schematic view of a power module with a temperature measuring arrangement
  • Figure 3 shows a schematic view of a power module with a temperature measuring arrangement and a controller
  • Figure 4 shows a sectional view through the power module in the area of a photodiode
  • Figure 5 shows a sectional view through the power module in the area of a temperature sensor
  • FIG 6 shows an alternative solution with flexible circuit boards.
  • a circuit board 4 is shown schematically, as is normally used in a power module 1.
  • the circuit board 4 is a rigid circuit board.
  • For printed circuit boards, for example, technical ceramic substrates are suitable for power applications that process high voltages and currents.
  • the materials feature thick copper plating for use in high performance circuits.
  • the connection from the copper to the substrate is made directly using a direct copper bonded, DCB process or by soldering using an active metal brazing, AMB process.
  • AMB process the copper is brazed to the ceramic carrier material at high temperatures.
  • Power electronic components 2 are soldered or sintered onto the circuit board 4. These power electronic components 2 are connected via wiring 6 to a flexible circuit board 3, which extends above the fixed circuit board 4 along the power electronic components 2.
  • a busbar 5 is shown schematically on the right, which is guided at least as far as the fixed circuit board 4.
  • the flexible circuit board 3 extends partially over the busbar 5 and carries a Hall sensor 7 in the area of the overlap.
  • Hall sensors can be attached above all busbars 5 of the power module 1 to measure the current. This reduces the space required at the AC outputs outside the power module 1.
  • the flexible circuit board 3 In order to implement this, the flexible circuit board 3 must be guided past the busbars 5 at one point or at several points.
  • the geometric design of the flexible circuit board 3 must be tailored to the task be adjusted.
  • the flexible circuit board 3 can be designed as a strip 3a, as shown in Figure 1, or as a strip 3a connected to several flags 3b. If the flexible circuit board 3 protrudes from the encapsulation, the flexible circuit board 3 can be used to transmit the gate signals to an adjacent circuit board that has circuits for the control.
  • Figure 2 shows another function that is transferred to the flexible circuit board 3. This involves a temperature measurement directly on or on the power electronic components 2.
  • the flexible circuit board 3 extends as a strip 3a along the fixed circuit board 4, with four flags 3b being formed, for example.
  • the flags 3b carry a printed line in a meander/snake structure 8, which rests on the power electronic components 2 and is used for measurement.
  • An NTC sensor i.e. a negative temperature coefficient sensor, can also be used for temperature measurement. It is a type of sensor whose characteristic is that its resistance decreases as the temperature increases.
  • NTC sensor 9 is applied directly to the flexible circuit board 3, as shown in Figure 5.
  • An NTC sensor does not have the dynamics of other temperature measurements, but it is a robust solution.
  • the photodiode 10 can be designed as an infrared measuring unit, which is suitable for IGBT components. Other, more specific light spectra can also be considered for temperature measurements on SiC components. In Figure 3, different temperature measurement sensors are installed as examples. You can see an NTC sensor 9 in one position of the power electronics component 2, a photodiode 10 in another position, while further power electronics components 2 are contacted with a line meander.
  • FIG. 6 Another embodiment is shown in Figure 6.
  • the flexible circuit board is divided.
  • a strip 3a is used, from which flags 3b extend perpendicular to the strip.
  • island areas 3c of the flexible circuit board 3 are provided, which cover power electronics components 2.
  • island areas 3c are applied directly to the power electronic components 2 by soldering or sintering or other connection techniques.
  • the connection from the island areas 3c to the rest of the periphery would have to go through other connections can still be ensured, which is shown in the figure as an example by connecting wires.
  • Another conceivable function is a shield that is attached to the flexible circuit board 3.
  • a shield that is attached to the flexible circuit board 3.
  • Using the flexible circuit board, such a shield can be easily positioned precisely over a radiating component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Leistungsmodul (1) mit mindestens einer festen Leiterplatte (4) und Leistungselektronikbauteilen (2) mit angeschlossenen Stromschienen (5), wobei die Leistungselektronikbauteile (2) Kontakt zu mindestens einer flexiblen Leiterplatte (3) aufweisen.

Description

Leistunqsmodul mit flexibler Leiterplatte
Die Erfindung betrifft ein Leistungsmodul mit mindestens einer flexiblen Leiterplatte, die mindestes eine Funktion im Leistungsmodul übernimmt.
Stand der Technik
Ein Leistungsmodul oder Leistungselektronikmodul stellt den physischen Einschluss für mehrere Leistungskomponenten bereit, üblicherweise Leistungshalbleiterbauelemente. Solche Hochleistungsbauteile, wie IGBT, SiC, GaN, werden durch Parallelschaltung von Dutzenden von Chips hergestellt und werden als Leistungselektronikkomponenten verbaut.
Ein Problem beim Aufbau von Leistungsmodulen ist immer der Bauraum, sowie die elektrische Schirmung, die Wärmeabfuhr und die Verbindungstechnologie der Leistungselektronikkomponenten. Gerade um den Bauraum besser zu nutzen werden flexible gedruckte Schaltungen, flexible Leiterplatten eingesetzt.
Die Verwendung von flexiblen Leiterplatten im Hochstrombereich ist aus der US 10 644 292 A1 bekannt. Das Dokument offenbart ein Batterieverdrahtungsmodul, das an einer Zellengruppe angebracht ist, die eine Anordnung mehrerer Zellen mit positiven Pol- und negativen Polelektrodenanschlüssen enthält, wobei das Batterieverdrahtungsmodul mehrere Verbindungselemente enthält, die die positiven Pol- und negativen Polelektrodenanschlüsse verbinden benachbarter Zellen der Vielzahl von Zellen; und eine flexible Leiterplatte, die mehrere Spannungserfassungsdrähte zum Erfassen von Spannungen der mehreren Zellen über die mehreren Verbindungselemente enthält.
Es ist Aufgabe der Erfindung ein Leistungsmodul mit mindestens einer flexiblen Leiterplatte zu schaffen, in dem bisher an festen Leiterplatten oder Bauteilen angebrachte Funktionen, auf die mindestens eine flexible Leiterplatte auslagert, sind. Beschreibung der Erfindung
Die Aufgabe wird gelöst mit einem Leistungsmodul mit mindestens einer festen Leiterplatte und Leistungselektronikbauteilen mit angeschlossenen Stromschienen, wobei die Leistungselektronikbauteile Kontakt zu mindestens einer flexiblen Leiterplatte aufweisen.
Als Kontakt wird in diesem Zusammenhang jede Art von Verbindung gesehen, die elektrisch über eine elektrische Leitung oder strahlend über eine Licht- oder Wärmemessung erfolgt. Die flexible Leiterplatte bietet eine kostengünstige, flexible und einfach zu integrierende Möglichkeit, um passive und aktive Bauelemente im Leistungsmodul anzusprechen und auszuwerten.
In einer vorteilhaften Ausführungsform ist die flexible Leiterplatte als Streifen ausgebildet.
Zur weiteren und besseren Einbindung von Komponenten weist die flexible Leiterplatte von Streifen abstehende Fahnen auf.
Um noch flexibler zu sein ist es vorteilhaft, dass die flexible Leiterplatte aus Inselbereichen besteht, die miteinander über Kontakte verbunden sind.
Die flexible Leiterplatte kann mindestens eine Funktion aus der Gruppe: Signalleitung, Temperaturmessung, Stromstärkemessung, Abschirmung, Kontrolle übernehmen und ist so eine Entlastung für die ansonsten verbauten Leiterplatten im Leistungsmodul.
Die flexible Leiterplatte erlaubt es, dass eine Temperaturmessung an mindestens einem der Leistungselektronikbauteilen über eine Fotodiode und eine Öffnung in der flexiblen Leiterplatte erfolgt, oder durch einen NTC-Sensor auf der flexiblen Leiterplatte benachbart zu mindestens einem Leistungselektronikbauteil oder durch direkt Kontaktierung mit einem Meander/Schlangen-Bereich eines elektrischen Kontakts.
Eine Strommessung erfolgt durch einen Hall-Sensor auf der flexiblen Leiterplatte benachbart zu einer Stromschiene.
Eine direkte Kontaktierung der Leistungselektronikbauteile durch die flexible Leiterplatte erfolgt zur Übertragung von Gate-Signalen.
Auf der flexiblen Leiterplatte ist ein Mikrokontroller verbaut.
Die von den festen Leiterplatten auf die flexible Leiterplatte verlagerten Funktionen können die Gate Steuerung, Stromsensoren oder auch Temperatursensoren sein. Der Vorteil liegt in der hohen Integration innerhalb des Leistungsmoduls und verbessern entweder die Leistungsfähigkeit oder erlauben bauliche Verbesserungen, indem sie Komponenten von der Gate- oder Controller-PCB in die flexible Leiterplatte bewegen.
Beschreibung der Figuren
Figur 1 zeigt eine schematische Ansicht auf ein Leistungsmodul mit Hallsensor, Figur 2 zeigt eine schematische Ansicht auf ein Leistungsmodul mit Temperaturmessanordnung,
Figur 3 eine schematische Ansicht auf ein Leistungsmodul mit Temperaturmessanordnung und einem Kontroller,
Figur 4 zeigt ein Schnittbild durch das Leistungsmodul im Bereich einer Fotodiode, Figur 5 zeigt ein Schnittbild durch das Leistungsmodul im Bereich eines Temperatursensors,
Figur 6 zeigt eine alternative Lösung mit flexiblen Leiterplatten. In Figur 1 ist eine Leiterplatte 4 schematisch dargestellt, wie sie in einem Leistungsmodul 1 normalerweise verwendet wird. Die Leiterplatte 4 ist eine starre Leiterplatte.
Für Leiterplatten eignen sich beispielsweise technische Keramiksubstrate für Leistungsapplikationen, die hohe Spannungen und Ströme verarbeiten. Die Materialien sind mit dicker Kupferbeschichtung für den Einsatz in Hochleistungsschaltungen versehen. Abhängig vom Substrat erfolgt die Verbindung vom Kupfer zum Substrat direkt mit einem Direct-Copper-Bonded, DCB- Verfahren oder mittels Lötung mit einem Active Metal Brazing, AMB-Verfahren. Beim AMB-Verfahren wird das Kupfer bei hoher Temperatur mit dem keramischen Trägermaterial hartverlötet.
Auf der Leiterplatte 4 sind Leistungselektronikbauteile 2 aufgelötet oder gesintert. Diese Leistungselektronikbauteile 2 werden über Verdrahtungen 6 mit einer flexiblen Leiterplatte 3 verbunden, die sich oberhalb der festen Leiterplatte 4 entlang der Leistungselektronikbauteile 2 erstreckt.
Der Verlauf der aufgebrachten elektrischen Leitungen in der flexiblen Leiterplatte 3 ist nicht dargestellt.
Schematisch ist auf der rechten Seite eine Stromschiene 5 dargestellt, die mindestens bis zur festen Leiterplatte 4 geführt ist. Die flexible Leiterplatte 3 erstreckt sich teilweise über die Stromschiene 5 hinweg und trägt im Bereich des Überlapp einen Hall-Sensor 7.
Hall-Sensoren können oberhalb aller Stromschienen 5 des Leistungsmoduls 1 angebracht werden, um den Strom zu messen. Das reduziert den Platzbedarf an den AC-Ausgängen außerhalb des Leistungsmoduls 1 .
Um das umzusetzen, muss die flexible Leiterplatte 3 an einer Stelle oder auch an mehreren Stellen an den Stromschienen 5 vorbeigeführt werden. Die geometrische Ausgestaltung der flexiblen Leiterplatte 3 muss dabei an die Aufgabe angepasst sein. Die flexible Leiterplatte 3 kann als Streifen 3a ausgeführt sein, wie in der Figur 1 dargestellt, oder als Streifen 3a verbunden mit mehreren Fahnen 3b. Wenn die flexible Leiterplatte 3 aus der Verkapselung herausragt, kann die flexible Leiterplatte 3 zur Übertragung der Gate-Signale bis zu einer benachbarten Leiterplatte dienen, die Schaltungen für die Ansteuerung aufweist.
Figur 2 zeigt eine weitere Funktion, die auf die flexible Leiterplatte 3 übertragen wird. Dabei handelt es sich um eine Temperaturmessung direkt an oder auf den Leistungselektronikbauteilen 2.
Die flexible Leiterplatte 3 erstreckt sich als Streifen 3a entlang der festen Leiterplatte 4, wobei beispielhaft vier Fahnen 3b ausgebildet sind. Die Fahnen 3b tragen eine aufgedruckte Leitung in Meander /Schlangen-Struktur 8, die auf den Leistungselektronikbauteilen 2 aufliegt und zur Messung dient.
Für eine Temperaturmessung kann auch ein NTC-Sensor, also ein negativer Temperaturkoeffizient-Sensor verwendet werden. Es handelt sich um einen Sensortyp, dessen Eigenschaft es ist, dass sein Widerstand bei steigender Temperatur abnimmt.
Ein solcher NTC-Sensor 9 wird direkt auf der flexiblen Leiterplatte 3 aufgetragen, wie in der Figur 5 gezeigt ist. Ein NTC-Sensor besitzt nicht die Dynamik anderer Temperaturmessungen, aber er ist eine robuste Lösung.
Andere Möglichkeiten zur Temperaturmessung bietet eine Fotodiode 10, die auf der flexiblen Leiterplatte 3 angebracht ist. Nach Figur 4 blickt der Fotodiode 10 durch eine Öffnung 12 der flexiblen Leiterplatte 3 auf ein Leistungselektronikbauteil 2, um die Temperatur zu messen.
Der Fotodiode 10 kann als Infrarot-Messeinheit ausgeführt sein, was für IGBT- Bausteine geeignet ist. Für Temperaturmessungen an SiC- Komponenten können auch andere spezifischere Lichtspektren betrachtet werden. In der Figur 3 sind beispielhaft unterschiedliche Temperaturmesssensoren verbaut. Man erkennt an einer Position des Leistungselektronik Bauteils 2 einen NTC- Sensor 9 in einer anderen Position eine Fotodiode 10, während weitere Leistungselektronikbauteile 2 mit Leitungsmeander kontaktiert sind.
In Figur 3 sind entlang des Streifens 3a geführte Leitungen nicht komplett dargestellt.
Wenn man zur Temperaturmessung die Meander /Schlangen-Struktur 8 verwendet und somit die Leistungselektronik Bauteile 2 direkt kontaktiert, ist es auch sinnvoll, wenn direkt Gatesignale für die Leistungselektronikbauteile 2 ebenfalls ohne Verbindungsdrähte auf die Leistungselektronikbauteilen 2 übertragen werden. Dadurch kann man kostengünstig die Temperatur aller Leistungselektronikbauteile 2 über eine Widerstandsmessung ermitteln und hat gleichzeitig eine höhere Dynamik und Genauigkeit. Eine aktive Beschaltung kann die nötigen Leitungen reduzieren und z.B. bereits nur die höchste Temperatur nach außen kommunizieren oder direkt ein über entsprechendes Protokoll kommunizieren.
Weiterhin bietet sich die Möglichkeit, einen Mikroprozessor 11 auf der flexiblen Leiterplatte 3 zu befestigen, um Messwerte zum Controllerboard senden.
Eine weitere Ausführungsform ist in der Figur 6 dargestellt. Die flexible Leiterplatte ist dabei aufgeteilt. Es wird, wie bereits in der ersten Ausführungsform, ein Streifen 3a verwendet, von dem Fahnen 3b senkrecht zum Streifen abgehen.
Weiterhin sind Inselbereiche 3c der flexiblen Leiterplatte 3 vorgesehen, die Leistungselektronik Bauteile 2 bedecken.
Diese Inselbereiche 3c werden direkt auf die Leistungselektronikbauteile 2 durch Löten oder Sintern oder weiteren Verbindungstechniken aufgebracht. Dabei müsste die Verbindung von den Inselbereichen 3c zur restlichen Peripherie durch andere Verbindungen weiterhin gewährleistet werden, was in der Figur beispielhaft durch Verbindungsdrähte dargestellt ist.
Eine solche Lösung reduziert den Verschnitt bei der Herstellung der flexiblen Leiterplatte 3. Auch ist eine Anpassung an die baulichen Gegebenheiten durch die modulare Struktur einfacher.
Als eine weitere Funktion ist eine Abschirmung denkbar, die auf der flexiblen Leiterplatte 3 angebracht ist. Über die flexible Leiterplatte ist eine Positionierung einer solchen Abschirmung genau über einem strahlenden Bauteil einfach umsetzbar.

Claims

Ansprüche
1 . Leistungsmodul (1 ) mit mindestens einer festen Leiterplatte (4) und Leistungselektronikbauteilen (2) mit angeschlossenen Stromschienen (5), dadurch gekennzeichnet, dass die Leistungselektronikbauteile (2) Kontakt zu mindestens einer flexiblen Leiterplatte (3) aufweisen.
2. Leistungsmodul (1 ) nach Anspruch 1 dadurch gekennzeichnet, dass die flexible Leiterplatte (3) als Streifen (3a) ausgebildet ist.
3. Leistungsmodul (1 ) nach Anspruch 2 dadurch gekennzeichnet, dass die flexible Leiterplatte (3) vom Streifen (3a) abstehende Fahnen (3b) aufweist.
4. Leistungsmodul (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die flexible Leiterplatte (3) zumindest teilweise aus Inselbereichen (3c) besteht, die miteinander über Kontakte verbunden sind.
5. Leistungsmodul (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der mindestens einen flexiblen Leiterplatte (3) mindestens eine Funktion aus der Gruppe
- Signalleitung,
- Temperaturmessung
- Stromstärkemessung
- Abschirmung
- Kontrolle verbaut ist.
6. Leistungsmodul (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass eine Temperaturmessung an mindestens einem der Leistungselektronikbauteilen (2) über eine Fotodiode (10) und eine Öffnung (12) in der flexiblen Leiterplatte (3) erfolgt, oder durch einen NTC-Sensor (9) auf der flexiblen Leiterplatte (3) benachbart zu mindestens einem Leistungselektronikbauteil (2) oder durch direkte Kontaktierung mit einem Meander/Schlangen-Bereich (8) eines elektrischen Kontakts. Leistungsmodul (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass eine Strommessung durch einen Hall-Sensor (7) auf der flexiblen Leiterplatte (3) be- nachbart zu einer Stromschiene (5) erfolgt. Leistungsmodul (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass eine direkte Kontaktierung der Leistungselektronikbauteile (2) durch die flexible Leiterplatte (3) erfolgt zur Übertragung von Gate-Signalen. Leistungsmodul (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass auf der flexiblen Leiterplatte ein Mikrokontroller (11) oder passive Bauteile verbaut sind.
PCT/EP2023/070869 2022-08-09 2023-07-27 Leistungsmodul mit flexibler leiterplatte WO2024033102A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022208266.4A DE102022208266A1 (de) 2022-08-09 2022-08-09 Leistungsmodul mit flexibler Leiterplatte
DE102022208266.4 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024033102A1 true WO2024033102A1 (de) 2024-02-15

Family

ID=87556414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070869 WO2024033102A1 (de) 2022-08-09 2023-07-27 Leistungsmodul mit flexibler leiterplatte

Country Status (2)

Country Link
DE (1) DE102022208266A1 (de)
WO (1) WO2024033102A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645636C1 (de) * 1996-11-06 1998-03-12 Telefunken Microelectron Leistungsmodul zur Ansteuerung von Elektromotoren
US20140264519A1 (en) * 2012-01-31 2014-09-18 Aisin Aw Co., Ltd. Switching element unit
DE102013213448A1 (de) * 2013-07-09 2015-01-15 Siemens Aktiengesellschaft Elektronikbaugruppe mit Leistungshalbleiter
US10644292B2 (en) 2015-07-24 2020-05-05 Autonetworks Technologies, Ltd. Battery wiring module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645636C1 (de) * 1996-11-06 1998-03-12 Telefunken Microelectron Leistungsmodul zur Ansteuerung von Elektromotoren
US20140264519A1 (en) * 2012-01-31 2014-09-18 Aisin Aw Co., Ltd. Switching element unit
DE102013213448A1 (de) * 2013-07-09 2015-01-15 Siemens Aktiengesellschaft Elektronikbaugruppe mit Leistungshalbleiter
US10644292B2 (en) 2015-07-24 2020-05-05 Autonetworks Technologies, Ltd. Battery wiring module

Also Published As

Publication number Publication date
DE102022208266A1 (de) 2024-02-15

Similar Documents

Publication Publication Date Title
DE102013213448B4 (de) Elektronikbaugruppe mit Leistungshalbleiter
DE102012211924B4 (de) Halbleitermodul mit einem in einer Anschlusslasche integrierten Shunt-Widerstand und Verfahren zur Ermittlung eines durch einen Lastanschluss eines Halbleitermoduls fließenden Stromes
DE102008017454B4 (de) Leistungshalbleitermodul mit hermetisch dichter Schaltungsanordnung und Herstellungsverfahren hierzu
DE102009029476B4 (de) Elektronische Vorrichtung zum Schalten von Strömen und Herstellungsverfahren für dieselbe
EP1450404B1 (de) Anordnung in Druckkontaktierung mit einem Leistungshalbleitermodul
DE112016005766B4 (de) Schaltungsanordnung und elektrischer anschlusskasten
DE102019211733A1 (de) Temperatursensor eines thermoüberwachungssystems zur verwendung in stromverteilungssystemen
DE102017118913A1 (de) Leistungshalbleiter mit einem Shuntwiderstand
DE102010046992A1 (de) Energiespeichersystem
DE19630902A1 (de) Einrichtung zur Temperaturüberwachung in einer leistungselektronischen Anordnung
DE102013211640A1 (de) Optoelektronische Anordnung
EP2327284B1 (de) Sensorvorrichtung und verfahren zur herstellung
DE102008012256A1 (de) Elektronik-Komponenten-Montageplatte
WO2024033102A1 (de) Leistungsmodul mit flexibler leiterplatte
DE102016207334A1 (de) Messvorrichtung zur Bestimmung einer Temperatur sowie Batterievorrichtung
WO2020104281A1 (de) Leistungselektronikanordnung mit einem temperatursensor
DE102014107742B4 (de) Vorlademodul und Vorladeschaltung
DE102016216660A1 (de) Batterieeinheit und Verdrahtungseinheit für eine Batterieeinheit
EP3625805B1 (de) Leistungswiderstand
DE4020577C3 (de) Halbleiteranordnung mit Lötverbindung zwischen Halbleiterbauelement, Isolierplatte und Wärmeableitplatte
EP0895446B1 (de) Regler für einen Elektromotor mit Regelschaltung und Leistungshalbleiter
EP2037553A1 (de) Generatoranschluss einer Photovoltaikanlage
DE102011103828B4 (de) Massenproduktion kleiner Temepratursensoren mit Flip-Chips
EP1609220B1 (de) Temperaturausgleichselement für eine anschlusseinheit
DE102022210803A1 (de) Leistungsmodul und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23750952

Country of ref document: EP

Kind code of ref document: A1