WO2024032417A1 - 参考信号传输方法及通信装置 - Google Patents

参考信号传输方法及通信装置 Download PDF

Info

Publication number
WO2024032417A1
WO2024032417A1 PCT/CN2023/110375 CN2023110375W WO2024032417A1 WO 2024032417 A1 WO2024032417 A1 WO 2024032417A1 CN 2023110375 W CN2023110375 W CN 2023110375W WO 2024032417 A1 WO2024032417 A1 WO 2024032417A1
Authority
WO
WIPO (PCT)
Prior art keywords
hopping
parameter
mode
configuration
domain position
Prior art date
Application number
PCT/CN2023/110375
Other languages
English (en)
French (fr)
Inventor
刘晓晴
刘江华
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032417A1 publication Critical patent/WO2024032417A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technology, and in particular, to a reference signal transmission method and communication device.
  • the reference signal is a known signal provided by the transmitting end to the receiving end for estimating or detecting wireless channel information.
  • Reference signals can be divided into uplink reference signals and downlink reference signals.
  • the UE can obtain the downlink reference signal by measuring it, and then report the measured channel information to the network, and then the network sets appropriate transmission parameters for subsequent downlink transmission based on this channel information.
  • the downlink channel information of time division duplex (TDD) system it can also be obtained based on channel heterogeneity, that is, the uplink and downlink channels are considered to be the same in some channel characteristics.
  • TDD time division duplex
  • the network can obtain the uplink channel information by measuring the uplink reference signal, and then estimate the relevant downlink channel information.
  • New radio introduces multi-transmission and reception point (TRP) transmission technology.
  • TRP multi-transmission and reception point
  • multiple TRPs can provide data transmission services for the same user equipment (user equipment, UE) at the same time.
  • Multi-TRP transmission technology can be divided into coherent joint transmission (CJT) technology and non-coherent joint transmission (NCJT) technology.
  • Embodiments of the present application provide a reference signal transmission method and communication device, which can reduce interference between reference signals and improve scheduling flexibility.
  • this application provides a reference signal transmission method.
  • the method may include: receiving configuration information, where the configuration information includes a first configuration parameter; determining to use the first hopping method according to the first configuration parameter;
  • the reference signal is transmitted in a changing mode; wherein the first hopping mode is one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the first hopping method can be determined through the first configuration parameter. Reduce interference between reference signals and increase scheduling flexibility.
  • the first hopping mode when it is determined to adopt the first hopping mode according to the first configuration parameter, it may be determined to adopt the first hopping mode according to the value of the first configuration parameter.
  • different values of the first configuration parameter indicate the use of different first hopping methods, so that the corresponding first hopping method can be used according to the value of the first configuration parameter to reduce interference between reference signals.
  • the first hopping mode when it is determined to adopt the first hopping mode according to the first configuration parameter, if the value of the first configuration parameter is the first value, it is determined to adopt the first hopping mode, and the first hopping mode is determined to be used.
  • the changing mode is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; if the value of the first configuration parameter is the second value, it is determined to use the first hopping mode, and the first hopping mode is used.
  • One hopping mode is group hopping and/or sequence hopping. It can be seen that signaling overhead can be saved by using two different values of the first configuration parameter to respectively indicate the hopping modes of different types of sets.
  • the first hopping method is specifically one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the above configuration information also includes second configuration parameters , then it can also be determined to adopt the second hopping mode according to the value of the second configuration parameter, and the second hopping mode is group hopping and/or sequence hopping.
  • the configuration information includes two configuration parameters to respectively indicate the use of hopping modes of different types of sets.
  • the first configuration parameter indicates the use of one of cyclic shift hopping, frequency domain position hopping or time domain position hopping.
  • the second configuration parameter indicates the use of group hopping and/or sequence hopping, so as to distinguish the hopping modes of different types of sets, which is beneficial to improving the flexibility of scheduling.
  • the reference signal when sending the reference signal, may be sent according to the first hopping method and the second hopping method. That is to say, the first hopping method and the second hopping method can be used to transmit the reference signal at the same time to further reduce interference between reference signals.
  • the above configuration information also includes a first initial value parameter and a second initial value parameter.
  • the first initial value parameter Used for the first hopping method, the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the second initial value parameter is used for the second hopping mode, the second hopping mode is group hopping and/or sequence hopping, and the first initial value parameter is different from the second initial value parameter. That is to say, the above configuration information also includes initial value parameters for the first hopping mode and initial value parameters for the second hopping mode.
  • the hopping modes of different types of sets correspond to different initial value parameters to improve scheduling. flexibility.
  • the first initial value parameter is associated with a cooperative set identifier
  • the cooperative set identifier is associated with one or more downlink reference signal resources
  • the cooperative set identifier is used to identify the cooperative set.
  • the cooperation set identifier is associated with one or more channel state information reference signal (channel state information-reference signal, CSI-RS) resources, or the cooperation set is associated with one or more CSI-RS.
  • the cooperation set identifier is associated with one or more path loss reference signal resources.
  • the first initial value is associated with the protocol set identifier to further improve scheduling flexibility.
  • the cooperation set identifier may be configured, or predefined, or indicated by dynamic signaling, or reported by the terminal device.
  • the initial value of the first hopping mode is determined according to the first initial value parameter; the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping, and the above configuration information does not include the first initial value parameter, also includes a second initial value parameter, the first initial value parameter is used for the first hopping mode, the second initial value parameter is used for the second hopping mode and/or the first hopping mode, the second hopping mode For group hopping and/or sequence hopping. That is to say, if the initial value parameter is not configured for the first hopping mode, then the initial value parameter corresponding to the first hopping mode may be the second initial value parameter, thereby saving signaling.
  • the initial value of the first hopping mode is determined according to the second initial value parameter; and the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the above method further includes: generating an initial value parameter of the first hopping mode; when transmitting the reference signal according to the first hopping mode, determining based on the initial value parameter of the first hopping mode The reference signal is sent according to the hopping parameters of the first hopping mode.
  • the initial value parameters of the first hopping mode can be independently generated, thereby reducing the implementation complexity.
  • the above method further includes: determining a first hopping parameter according to the first configuration parameter, where the first hopping parameter is one or more of the following: group hopping parameter, sequence hopping parameter, Cyclic shift hopping parameters, frequency domain position hopping parameters, and time domain position hopping parameters; furthermore, when the reference signal is sent according to the first hopping mode, the reference signal is sent according to the first hopping mode and the first hopping parameter. reference signal. That is to say, the first configuration parameter also has a corresponding relationship with the first hopping parameter, so that the reference signal is sent according to the first hopping parameter, thereby saving signaling overhead.
  • the hopping parameter is determined to be the first hopping parameter according to the value of the first configuration parameter.
  • the first hopping parameter is one or more of the following: cyclic shift hopping parameter, frequency domain position hopping parameter, time domain position hopping parameter; the above configuration information also includes a second configuration parameter; further, according to The second configuration parameter determines the second hopping parameter, and the second hopping parameter is the group hopping parameter and/or the sequence hopping parameter; and sends the reference signal according to the first hopping parameter and the second hopping parameter.
  • the configuration information includes two configuration parameters to respectively indicate hopping parameters of different types of sets.
  • the first configuration parameter indicates one of a cyclic shift hopping parameter, a frequency domain location hopping parameter, and a time domain location hopping parameter. or more, the second configuration parameter indicates the group hopping parameter and/or the sequence hopping parameter, so as to distinguish different types of hopping parameters, which is beneficial to improving the flexibility of scheduling.
  • the above method further includes: determining a first hopping parameter according to the first configuration parameter and the first formula, and the first hopping parameter is one or more of the following: group hopping parameter, sequence hopping parameters, cyclic shift hopping parameters, frequency domain position hopping parameters, time domain position hopping parameters; according to the first hopping method, when sending the reference signal, according to the first hopping method and the first hopping parameter, Send reference signal.
  • this application provides another reference signal transmission method.
  • the method may include: receiving configuration information; if the configuration information includes the first configuration parameter, determining to use the first hopping method, and according to the first hopping method, Send a reference signal; and/or, if the configuration information does not include the first configuration parameter, determine not to use the first hopping method; wherein the first hopping method is one or more of the following: group hopping, sequence hopping , cyclic shift hopping, frequency domain position hopping, time domain position hopping.
  • determining whether to use the first hopping method by whether the configuration information includes the first configuration parameter can save signaling overhead; when the first hopping method is used, the interference between reference signals can be reduced and scheduling can be improved. Flexibility; the implementation complexity can be reduced without using the first transition method.
  • the configuration information includes the first configuration parameter, it is determined to adopt the first jump based on the first configuration parameter. Way.
  • the hopping mode may be determined to be the first hopping mode according to the value of the first configuration parameter, and the first hopping mode may be determined to be used. It can be understood that different values of the first configuration parameter indicate different hopping modes, so that the first hopping mode can be determined according to the value of the first configuration parameter, so that the first hopping mode can be used to reduce the number of errors between the reference signals. interference.
  • the value of the first configuration parameter is the first value, it is determined to use the first hopping method.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, Time domain position hopping; if the value of the first configuration parameter is the second value, it is determined to use the first hopping method, and the first hopping method is group hopping and/or sequence hopping. It can be seen that signaling overhead can be saved by using two different values of the first configuration parameter to respectively indicate the hopping modes of different types of sets.
  • the first hopping method is specifically one or more of the following: cyclic shift hopping, frequency domain location hopping or time domain location hopping, if the configuration information includes the first configuration parameter and the second configuration parameter, then it can also be determined to adopt the second hopping mode according to the value of the second configuration parameter, and the second hopping mode is group hopping and/or sequence hopping.
  • the configuration information includes two configuration parameters to respectively indicate the hopping modes of different types of sets.
  • the first configuration parameter indicates one or more of cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the second configuration parameter indicates group hopping and/or sequence hopping, so as to distinguish the hopping modes of different types of sets, which is beneficial to improving the flexibility of scheduling.
  • the reference signal when sending the reference signal, may be sent according to the first hopping method and the second hopping method. That is to say, the first hopping method and the second hopping method can be used to transmit the reference signal at the same time to further reduce interference between reference signals.
  • the configuration information includes a first configuration parameter, and the configuration information also includes a first initial value parameter and a second initial value parameter.
  • the first initial value parameter is used in the first hopping mode, and the first initial value parameter is used in the first hopping mode.
  • the hopping mode is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the second initial value parameter is used for the second hopping mode, and the second hopping mode is group hopping. change and/or sequence jump, the first initial value parameter is different from the second initial value parameter. That is to say, the above configuration information also includes initial value parameters for the first hopping mode and initial value parameters for the second hopping mode.
  • the hopping modes of different types of sets correspond to different initial value parameters to improve scheduling. flexibility.
  • the first initial value parameter is associated with a coordination set identifier
  • the coordination set identifier is used to identify the coordination set
  • the coordination set identifier is associated with one or more downlink reference signal resources.
  • the first initial value is associated with the protocol set identifier to further improve scheduling flexibility.
  • the cooperation set identifier may be configured, or predefined, or indicated by dynamic signaling, or reported by the terminal device.
  • the initial value of the first hopping mode is determined according to the first initial value parameter; the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain location hopping, time domain location hopping,
  • the above configuration information does not include the first initial value parameter, but also includes the second initial value parameter.
  • the first initial value parameter is used for the first hopping mode
  • the second initial value parameter is used for the second hopping mode and/or the first hop.
  • the second hopping mode is group hopping and/or sequence hopping. That is to say, if the initial value parameter is not configured for the first hopping mode, then the initial value parameter corresponding to the first hopping mode may be the second initial value parameter, thereby saving signaling.
  • the initial value of the first hopping mode is determined according to the second initial value parameter; and the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the above method further includes: generating an initial value parameter of the first hopping mode; when transmitting the reference signal according to the first hopping mode, determining based on the initial value parameter of the first hopping mode The reference signal is sent according to the hopping parameters of the first hopping mode.
  • the initial value parameters of the first hopping mode can be independently generated, thereby reducing the implementation complexity.
  • the above method further includes: determining a first hopping parameter according to the first configuration parameter, and the first hopping parameter is one or more of the following: group hopping parameters, sequence hopping parameters, cyclic shift hopping parameters, frequency domain position hopping parameters, time domain position hopping parameters; further, when transmitting the reference signal according to the first hopping method, according to the first hopping method mode and the first hopping parameter to send the reference signal. That is to say, the first configuration parameter also has a corresponding relationship with the first hopping parameter, so that the reference signal is sent according to the first hopping parameter, thereby saving signaling overhead.
  • the hopping parameter is determined to be the first hopping parameter according to the value of the first configuration parameter.
  • the first hopping parameter is one or more of the following: cyclic shift hopping parameter, frequency domain position hopping parameter, time domain position hopping parameter parameters; the above configuration information also includes a second configuration parameter; further, a second hopping parameter is determined according to the second configuration parameter, and the second hopping parameter is a group hopping parameter and/or a sequence hopping parameter; according to the first hopping parameter parameters and the second hopping parameter to send the reference signal.
  • the configuration information includes two configuration parameters to respectively indicate hopping parameters of different types of sets.
  • the first configuration parameter indicates one of a cyclic shift hopping parameter, a frequency domain location hopping parameter, and a time domain location hopping parameter. or more, the second configuration parameter indicates the group hopping parameter and/or the sequence hopping parameter, so as to distinguish the hopping parameters of different types of sets, which is beneficial to improving the flexibility of scheduling.
  • the first hopping parameter is determined based on the first formula, and then the reference signal is sent according to the first hopping mode and the first hopping parameter.
  • the hopping parameter is determined based on the second formula, and the reference signal is sent according to the hopping parameter.
  • this application provides another reference signal transmission method.
  • the method may include: receiving configuration information; if the configuration information includes the first configuration parameter, determining to use the first hopping method, and according to the first hopping method, To send the reference signal, the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; and/or, if the configuration information does not include the first configuration parameter, then It is determined to adopt the second hopping mode, and the second hopping mode is group hopping and/or sequence hopping.
  • whether the configuration information includes the first configuration parameter is used to determine whether to adopt the first hopping mode or the second hopping mode, which can save signaling overhead; in the case of using the first hopping mode or the second hopping mode, it can Reduce interference between reference signals and increase scheduling flexibility.
  • the configuration information includes a first configuration parameter, it is determined to adopt the first hopping method according to the first configuration parameter.
  • the first hopping mode may be determined based on the value of the first configuration parameter. It can be understood that different values of the first configuration parameter indicate different first hopping methods, so that the first hopping method can be used to reduce interference between reference signals according to the value of the first configuration parameter.
  • the configuration information includes a first configuration parameter
  • the configuration information also includes a first initial value parameter and a second initial value parameter.
  • the first initial value parameter is used for the first hopping mode
  • the second initial value parameter is used for the first hopping mode.
  • the initial value parameter is used in the second transition mode, and the first initial value parameter is different from the second initial value parameter. That is to say, the above configuration information also includes initial value parameters for the first hopping mode and initial value parameters for the second hopping mode.
  • the hopping modes of different types of sets correspond to different initial value parameters to improve scheduling. flexibility.
  • the first initial value parameter is associated with a coordination set identifier
  • the coordination set identifier is used to identify the coordination set
  • the coordination set identifier is associated with one or more downlink reference signal resources.
  • the first initial value is associated with the protocol set identifier to further improve scheduling flexibility.
  • the cooperation set identifier may be configured, or predefined, or indicated by dynamic signaling, or reported by the terminal device.
  • the initial value of the first hopping mode is determined according to the first initial value parameter; the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the configuration information includes a first configuration parameter
  • the above configuration information does not include a first initial value parameter, but also includes a second initial value parameter
  • the first initial value parameter is used in the first hopping mode.
  • the second initial value parameter is used for the second hopping mode and the first hopping mode. That is to say, if the initial value parameter is not configured for the first hopping mode, then the initial value parameter corresponding to the first hopping mode may be the second initial value parameter, thereby saving signaling.
  • the initial value of the first hopping mode is determined according to the second initial value parameter; and the hopping of the first hopping mode is determined according to the initial value of the first hopping mode. Parameters; transmit reference signals according to the hopping parameters of the first hopping mode to reduce interference with reference signals sent by other terminal devices.
  • the above method further includes: generating an initial value parameter of the first hopping mode; when transmitting the reference signal according to the first hopping mode, determining based on the initial value parameter of the first hopping mode The reference signal is sent according to the hopping parameters of the first hopping mode.
  • the initial value parameters of the first hopping mode can be independently generated, thereby reducing the implementation complexity.
  • the above method further includes: determining a first hopping parameter according to the first configuration parameter, and the first hopping parameter is one or more of the following: Loop Shift hopping parameters, frequency domain position hopping parameters, and time domain position hopping parameters; furthermore, when the reference signal is sent according to the first hopping mode, the reference signal is sent according to the first hopping mode and the first hopping parameter. Signal. That is to say, the first configuration parameter also has a corresponding relationship with the first hopping parameter, so that the reference signal is sent according to the first hopping parameter, thereby saving signaling overhead.
  • the hopping parameter is determined to be the first hopping parameter according to the value of the first configuration parameter.
  • the configuration information does not include the first configuration parameter but includes the second configuration parameter; then according to the second configuration parameters to determine the second hopping parameter, and the second hopping parameter is the group hopping parameter and/or the sequence hopping parameter; further, when the reference signal is sent according to the second hopping mode, the second hopping parameter is determined according to the second hopping mode and the third hopping mode.
  • Second jump parameter send reference signal.
  • the first hopping parameter is determined based on the third formula, and the first hopping parameter is used for the first hopping mode; if the configuration information does not include the first Configuring parameters, the second hopping parameter is determined based on the fourth formula, and the second hopping parameter is used in the second hopping mode.
  • the method provided in any one of the first to third aspects may be executed by a terminal device, or may be executed by a module in the terminal device, for example, by a chip in the terminal device.
  • the method provided in any one of the first to third aspects may be executed by the receiving end of the configuration information, or may be executed by a module in the receiving end, for example, by a chip in the receiving end.
  • the present application provides a reference signal transmission method.
  • the method may include: sending configuration information.
  • the configuration includes a first configuration parameter.
  • the first configuration parameter is used to determine the first hopping mode.
  • the first hopping mode It is one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, time domain position hopping.
  • the value of the first configuration parameter is used to determine the first hopping mode. Different values of the first configuration parameter indicate that different first hopping modes are adopted.
  • the value of the first configuration parameter is the first value, it is used to determine to use the first hopping mode, and the first hopping mode is one or more of the following: cyclic shift hopping Change, frequency domain position hopping, time domain position hopping; if the value of the first configuration parameter is the second value, it is used to determine the first hopping method, and the first hopping method is group hopping and/or sequence jump.
  • the first hopping method is specifically one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the above configuration information also includes second configuration parameters , the value of the second configuration parameter is used to determine the use of the second hopping mode, and the second hopping mode is group hopping and/or sequence hopping.
  • the above configuration information also includes a first initial value parameter and a second initial value parameter.
  • the first initial value parameter is used for a first hopping method.
  • the first hopping method is one or more of the following: Types: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the second initial value parameter is used for the second hopping mode, the second hopping mode is group hopping and/or sequence hopping, and the second initial value parameter is used for group hopping and/or sequence hopping.
  • One initial value parameter is different from the second initial value parameter.
  • the first initial value parameter is associated with a coordination set identifier
  • the coordination set identifier is associated with one or more downlink reference signal resources.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping, and the above configuration information does not include the first initial value parameter, also includes a second initial value parameter, the first initial value parameter is used for the first hopping mode, the second initial value parameter is used for the second hopping mode and/or the first hopping mode, the second hopping mode For group hopping and/or sequence hopping.
  • the first configuration parameter is also used to determine the first hopping parameter
  • the first hopping parameter is one or more of the following: group hopping parameters, sequence hopping parameters, cyclic shift hopping Variable parameters, frequency domain position hopping parameters, time domain position hopping parameters.
  • the first hopping parameter is used for the first hopping mode.
  • the present application provides a reference signal transmission method.
  • the method may include: sending configuration information, where the configuration includes or does not include a first configuration parameter; the configuration information includes a first configuration parameter for determining to use the first hopping method. ; And/or, the configuration information does not include the first configuration parameter, which is used to determine not to use the first hopping method;
  • the first hopping mode is one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • determining whether to use the first hopping method by whether the configuration information includes the first configuration parameter can save signaling overhead; when the first hopping method is used, the interference between reference signals can be reduced and scheduling can be improved. Flexibility; the implementation complexity can be reduced without using the first transition method.
  • Various possible implementation methods of the fifth aspect may refer to various possible implementation methods of the second aspect.
  • the present application provides a reference signal transmission method.
  • the method may include: sending configuration information, where the configuration includes or does not include a first configuration parameter; the configuration information includes a first configuration parameter for determining to use the first hopping method.
  • the first hopping mode is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; and/or the configuration information does not include the first configuration parameter, which is used to determine the use of the first hopping method.
  • Two hopping modes, the second hopping mode is group hopping and/or sequence hopping.
  • whether the configuration information includes the first configuration parameter is used to determine whether to adopt the first hopping mode or the second hopping mode, which can save signaling overhead; in the case of using the first hopping mode or the second hopping mode, it can Reduce interference between reference signals and improve scheduling flexibility sex.
  • Various possible implementation methods of the sixth aspect may refer to various possible implementation methods of the third aspect.
  • the method provided in any one of the fourth to sixth aspects may be executed by a network device, or may be executed by a module in the network device, for example, by a chip in the network device.
  • the method provided in any one of the fourth to sixth aspects may be executed by the sending end of the configuration information, or may be executed by a module in the sending end, for example, by a chip in the sending end.
  • the present application provides a communication device.
  • the communication device may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device may also be a chip system.
  • the communication device can perform the method described in the first aspect or the third aspect.
  • the functions of the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device can be referred to the method and beneficial effects described in the first aspect or the third aspect.
  • the present application provides a communication device.
  • the communication device may be a network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • the communication device may also be a chip system.
  • the communication device can perform the method described in the fourth aspect or the sixth aspect.
  • the functions of the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device may refer to the method and beneficial effects described in the fourth aspect or the sixth aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, and the processor is configured to perform the method as described in any one of the first to third aspects, or as described in the fourth to sixth aspects. The method described in any of the aspects.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory. Instructions are stored in the storage medium. When the instructions are executed by the processor, the communication device executes the first aspect as described in the first aspect. to the method described in any one of the third aspects, or the method described in any one of the fourth to sixth aspects.
  • the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor. Or the signal from the processor is sent to other communication devices other than the communication device, and the processor is used to implement any one of the first to third aspects through logic circuits or execution of code instructions.
  • the present application provides a computer-readable storage medium. Instructions are stored in the storage medium. When the computer program or instructions are executed by a communication device, any of the first to third aspects are implemented. The method described in one aspect, or the method described in any one of the fourth to sixth aspects.
  • the present application provides a computer program product including instructions that, when read and executed by a communication device, cause the communication device to perform the method in any one of the first to third aspects. , or the method of any one of the fourth to sixth aspects.
  • Figure 1A is an example diagram of interference between uplink reference signals
  • Figure 1B is an example diagram of SRS transmission
  • Figure 1C is an example diagram of another SRS transmission
  • Figure 2 is a schematic diagram of a communication system applying the present application
  • Figure 3 is a schematic flow chart of a reference signal transmission method provided by this application.
  • FIG. 4 is a schematic flow chart of another reference signal transmission method provided by this application.
  • FIG. 5 is a schematic flow chart of another reference signal transmission method provided by this application.
  • Figure 6 is a schematic diagram of one form of communication between a terminal device and a network device
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • the reference signal is a known signal provided by the transmitting end to the receiving end for estimating or detecting wireless channel information. That is to say, the wireless channel information in the wireless communication system is obtained through the reference signal.
  • the wireless channel information may be relatively rough, such as the path loss of the wireless channel.
  • the transmitting end can perform transmission power control after learning the path loss-related information.
  • the wireless channel information can also be relatively detailed, such as accurate channel amplitude and phase information of the wireless channel in the time domain, frequency domain, and spatial domain.
  • reference signals can be divided into uplink reference signals and downlink reference signals.
  • the uplink reference signal refers to the reference signal sent by the UE to the network equipment (such as the base station (BS) or TRP), that is, the transmitting end is the UE and the receiving end is the network equipment.
  • the uplink reference signal may be a sounding reference signal (SRS), or a demodulation reference signal (DMRS) of the uplink information, or a phase-tracking reference signal (PTRS), or Positioning reference signals, etc.
  • the uplink information may be a physical uplink shared channel (PUSCH), or data carried on the PUSCH, or a physical uplink control channel (physical uplink control channel, PUCCH), or data carried on the PUCCH, etc.
  • the uplink reference signal is DMRS of PUSCH or DMRS of PUCCH.
  • the downlink reference signal refers to the reference signal sent by the network device to the UE, that is, the transmitting end is the network device and the receiving end is the UE.
  • the downlink reference signal may be a channel-state information reference signal (CSI-RS), or DMRS for downlink information.
  • CSI-RS channel-state information reference signal
  • the downlink information can be the physical downlink shared channel (PDSCH), or the data carried on the PDSCH, or the physical downlink control channel (physical downlink control channel, PDCCH), or the data carried on the PDCCH, or physical broadcast Channel (physical broadcast channel, PBCH), etc.
  • the UE can obtain the downlink reference signal by measuring it, and then report the measured channel information to the network device, and then the network device sets appropriate transmission parameters for subsequent downlink transmission based on this channel information.
  • the downlink channel information of the TDD system can also be obtained based on channel heterogeneity, that is, the uplink and downlink channels are considered to be the same in some channel characteristics.
  • the network device can obtain the uplink channel information by measuring the uplink reference signal, and then estimate the relevant downlink channel information.
  • SRS is an uplink reference signal that is sent by the UE to network equipment for functions such as wireless channel information acquisition.
  • SRS can support the following functions: codebook-based uplink transmission, non-codebook-based uplink transmission, beam management (BM), antenna switching, etc.
  • network equipment can configure one or more SRS resource sets (resource sets) for UE through high-level parameters. The applicability of each SRS resource set is configured through high-level parameters (usage).
  • Each SRS resource set includes a or multiple SRS resources.
  • the SRS sequence of an SRS resource is generated according to the following formula:
  • K TC log 2 (K TC )
  • K TC ⁇ 2,4,8 ⁇ K TC refers to the number of transmission comb teeth, which is included in the high-level parameter transmissionComb;
  • -p i refers to the antenna port
  • ⁇ i refers to the cyclic shift corresponding to the antenna port p i ;
  • n corresponds to the index of the SRS sequence mapped on the frequency domain resource element (RE)
  • l' corresponds to the index of the SRS sequence mapped on the time domain symbol
  • -u refers to the group number of the sequence
  • v refers to the sequence number in the group
  • the SRS sequence is obtained by cyclic shifting based on the SRS base sequence.
  • the time domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols, Discrete Fourier Transform-spread OFDM (Discrete Fourier Transform-spread OFDM) symbols, or other symbols, which are not limited in this application.
  • OFDM orthogonal frequency division multiplexing
  • Discrete Fourier Transform-spread OFDM Discrete Fourier Transform-spread OFDM
  • the SRS base sequence is generated based on the Zadoff-Chu sequence (ZC sequence); for SRS whose sequence length is less than 36, the SRS base sequence is generated based on the computer exhaustive method.
  • ZC sequence Zadoff-Chu sequence
  • the SRS base sequence related to this application is a ZC sequence.
  • a ZC sequence with a sequence length of M is defined as follows:
  • q represents the root index of the ZC sequence.
  • the base sequence of SRS is: The base sequence is generated as follows:
  • x q (m) is the basic ZC sequence
  • x q (m) is related to the parameters u and v.
  • the SRS sequence can be obtained, which can be expressed as follows:
  • represents the cyclic shift parameter
  • the SRS base sequences of the two SRS sequences are the same and the values of the cyclic shift parameters are different, then orthogonality between the two SRS sequences can be achieved.
  • different SRS ports (or antenna ports) of the same UE, or different SRS ports of different UEs in the same cell can use the same SRS base sequence and different cyclic shifts.
  • the value of the bit parameter enables multiplexing on the same time-frequency resource.
  • the cyclic shift parameter can be configured in units of SRS resources through high-layer parameters. Each SRS port corresponding to each SRS resource determines the value of the cyclic shift parameter according to high-layer parameters and certain rules.
  • the SRS base sequence of two SRS sequences is the same and the value of the cyclic shift parameter is also the same, strong interference will be formed between the two SRS sequences, affecting the accuracy of channel measurement. Since the values of candidate cyclic shift parameters are limited, it is difficult to ensure that the SRS ports of all UEs are orthogonal. Therefore, between different UEs in different cells, the SRS ports are usually configured with different SRS base sequences, thereby reducing interference to a certain extent. .
  • the SRS can be configured with group hopping (group hopping) or sequence hopping (sequence hopping).
  • group hopping refers to the SRS sequence changing from one group to another group
  • sequence hopping refers to the SRS sequence changing from one sequence to another sequence.
  • Group hopping can also be described as group hopping or group frequency hopping, etc.
  • Sequence hopping can also be described as sequence hopping or sequence frequency hopping. This application takes the two terms group hopping and sequence hopping as examples. Other names used to describe group hopping can be replaced with group hopping, and other names used to describe sequence hopping can be replaced with sequence hopping.
  • the SRS base sequence is divided into 30 groups, each group contains one or two sequences.
  • u is used to define the group number
  • v is used to define the sequence number within the group. Among them, u is calculated as:
  • each group contains one sequence, 5RB means the sequence length is 60;
  • each group contains two sequences, 6RB means the sequence length is 72;
  • each SRS resource contains the sequenceId.
  • the range of candidate values for may vary. For example, it corresponds to SRS for multiple input multiple output (MIMO)
  • the range of candidate values corresponding to the SRS used for positioning The range of candidate values is different.
  • the respective configured The value range of may be different. For example when When configured by the high-level parameter sequenceId in SRS-Resource IE, The value range is ⁇ 0,1,...,1023 ⁇ ; when When configured by the high-level parameter sequenceId in SRS-PosResource-r16IE, The value range is ⁇ 0,1,...,65535 ⁇ .
  • sequence hopping can be performed through the sequence number v within the group. It should be noted that sequence hopping exists in the scenario where the sequence length of the SRS is greater than or equal to 6 RB. For sequence lengths greater than or equal to 6 RB, each group contains two sequences, so intra-group sequence hopping is possible.
  • v is calculated as:
  • c(i) indicates a pseudo-random sequence.
  • c init is determined based on the application of a pseudo-random sequence, for example for the SRS sequence,
  • the high-level parameter groupOrSequenceHopping is used to configure group hopping or sequence hopping or neither.
  • the high-level parameter groupOrSequenceHopping can be included in SRS-Resource IE or SRS-PosResource-r16IE.
  • the value range of the high-level parameter groupOrSequenceHopping can be ⁇ neither, groupHopping, sequenceHopping ⁇ .
  • Equation 1-11 For the high-level parameter groupOrSequenceHopping, the value is "neither", The values of and v are as shown in Equation 1-11.
  • groupHopping When the value of the high-level parameter groupOrSequenceHopping is "groupHopping", it indicates that group hopping is used. That is to say, when the UE receives the high-level parameter, it uses group hopping instead of sequence hopping when generating the SRS sequence.
  • Equation 1-12 c(i) represents a pseudo-random sequence, and at the beginning of each wireless frame c(i) is initialized as
  • sequenceHopping When the value of the high-level parameter groupOrSequenceHopping is "sequenceHopping", it indicates that sequence hopping is used. That is to say, when the UE receives the high-level parameter, it uses sequence hopping instead of group hopping when generating the SRS sequence.
  • Equation 1-13 c(i) represents a pseudo-random sequence, and at the beginning of each wireless frame c(i) is initialized as
  • TRP 1 is the serving TRP of UE 1 (that is, TRP 1 provides services for UE 1)
  • TRP 2 is the serving TRP of UE 2
  • UE The uplink reference signal sent by UE 2 to TRP 2 is a strong interference to the uplink reference signal sent by UE 1 to TRP 2.
  • the uplink reference signal may be an SRS, for example.
  • the SRS sent by UE 2 to TRP 2 is a strong interference to the SRS sent by UE 1 to TRP 2.
  • the uplink reference signal sent by UE 2 to TRP 2 is indicated by a gray arrow
  • the uplink reference signal sent by UE 1 to TRP 2 is indicated by a black arrow.
  • Cyclic shift hopping can be understood as the values of the cyclic shift parameters of SRS on different symbols are calculated based on pseudo-random sequences. For example, for two SRS sequences that have the same SRS base sequence and occupy the same time domain resources, since the values of the cyclic shift parameters of the SRS on different symbols are calculated based on the pseudo-random sequence, the cycle can be reduced. The probability that the shift parameter has the same value increases the probability that the two SRS sequences are orthogonal and reduces interference between the two SRSs. Cyclic shift hopping can also be described as cyclic shift randomization, or cyclic shift hopping, or cyclic shift frequency hopping, etc.
  • FIG. 1B For example, see an example diagram of SRS transmission shown in Figure 1B.
  • UE 1 sends SRS 1 to TRP 1
  • UE 2 sends SRS 2 to TRP 2.
  • Figure 1B shows sequence hopping, taking orthogonal frequency division multiplex symbol (OS) n1 to OS n4 as an example.
  • OS orthogonal frequency division multiplex symbol
  • OS n1 and OS n4 the value of v is the same, which may lead to
  • the SRS base sequences of SRS 1 and SRS 2 are the same. If the values of the cyclic shift parameters of the two are the same, there will be interference between SRS 1 and SRS 2.
  • cyclic shift hopping is used to increase the probability that SRS on OS n1 and OS n4 have different values of cyclic shift parameters to reduce the interference between SRS 1 and SRS 2. interference.
  • Frequency domain position hopping can be understood as the frequency domain position of the SRS on different symbols is calculated based on the pseudo-random sequence. For example, by randomizing the frequency domain starting positions of the two SRSs, the frequency domain positions of the two SRSs are as different as possible.
  • Frequency domain position hopping can also be described as frequency domain position randomization, or frequency domain transmitting position randomization, or frequency domain position hopping, or frequency domain transmitting position hopping, or frequency domain position frequency hopping, or frequency domain transmitting position frequency hopping. wait.
  • FIG. 1C For example, see another example diagram of SRS transmission shown in Figure 1C.
  • UE 1 sends SRS 1 to TRP 1
  • UE 2 sends SRS 2 to TRP 2.
  • frequency domain position hopping is used.
  • time slot n the frequency domain position of SRS 1 on the same symbol is as different as possible from the frequency domain position of SRS 2; for time slot n+T, the frequency domain position of SRS 1 on the same symbol is as different as possible; for time slot n+T, the frequency domain position of SRS 1 on the same symbol is as different as possible.
  • the frequency domain position of SRS 1 and the frequency domain position of SRS 2 are different, thereby reducing the interference between SRS 1 and SRS 2.
  • Time domain position hopping can be understood as the time domain positions of different SRSs are calculated based on pseudo-random sequences.
  • the time domain position hopping is a symbol level hopping, a slot level hopping, or a subframe level hopping.
  • Time-domain position hopping can also be described as time-domain position randomization, or time-domain transmitting position randomization, or time-domain position hopping, or time-domain transmitting position hopping, or time-domain position frequency hopping, or time-domain transmitting position frequency hopping wait.
  • hopping modes and the names of the hopping modes are used as examples and do not constitute a limitation on this application. In actual applications, other hopping modes may also be possible.
  • This application can be applied to wireless communication systems, such as fifth generation (5th generation, 5G) systems, which can also be called NR systems; and for example, sixth generation (6th generation, 6G) systems, or seventh generation (7th generation, 7G) systems. ) system, or other future communication systems; such as device to device (D2D) system, machine to machine (M2M) system, vehicle to everything (V2X), etc.
  • 5G fifth generation
  • 5G fifth generation
  • NR NR systems
  • 6th generation, 6G systems sixth generation, 6G systems
  • D2D device to device
  • M2M machine to machine
  • V2X vehicle to everything
  • a wireless communication system may include multiple base stations (BS), each base station capable of supporting communications for multiple communication devices (eg, UEs) simultaneously.
  • BS base stations
  • UEs communication devices
  • a set including one or more base stations may be defined as a next-generation NodeB (gNB).
  • gNB next-generation NodeB
  • a wireless communication system may include several distributed units (DUs) in communication with several central units (CUs).
  • DUs distributed units
  • CUs central units
  • a set including one or more DUs in communication with the CU may be defined as an access node (for example, it may be called a BS, a next-generation Node B (gNB), a multi-transmission receiving node (TRP), etc.).
  • a TRP or DU may be communicated with a set of UEs on a downlink channel (eg, for transmission from the TRP to the UE) and an uplink channel (eg, for transmission from the UE to the TRP).
  • the central unit and distributed unit may also use other names, which are not limited by this application.
  • the communication system 20 shown in FIG. 2 may include, but is not limited to: a network device 210 and a terminal device 220.
  • the number and form of the devices in Figure 2 are for example and do not constitute a limitation on the embodiments of the present application.
  • actual applications may include multiple terminal devices.
  • Terminal devices may include various handheld devices with wireless communication capabilities, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • Terminal equipment is also called UE, mobile station (MS), mobile terminal (MT), etc.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality devices Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), etc.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip or a chip module, etc., and the device may be installed in the terminal device or Used in conjunction with terminal equipment.
  • the technical solution provided by this application is described by taking the device for realizing the functions of the terminal device being a terminal device as an example.
  • Network equipment also called access network equipment or access nodes, refers to the radio access network (RAN) node (or equipment) that connects terminal equipment to the wireless network. It can also be called a base station (BS).
  • RAN nodes are: gNB, TRP, radio network controller (RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point, AP) etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • base band unit base band unit
  • BBU wireless fidelity (wireless
  • the network device can also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may include a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the device used to realize the function of the network device may be a network device; it may also be a device that can support the network device to realize the function, such as a chip or a chip module, etc., and the device may be installed in the network device or Used in conjunction with network equipment.
  • the technical solution provided by this application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • Figure 3 is a schematic flow chart of a reference signal transmission method provided by this application.
  • the method may include but is not limited to the following steps:
  • the network device sends configuration information to the terminal device.
  • the terminal device receives configuration information from the network device.
  • the configuration information includes the first configuration parameter.
  • the configuration information may be configured through high-layer signaling or indicated through control information.
  • the resource indication information of the reference signal is configured by the network device through radio resource control (RRC) signaling, or indicated by the quality access control element (medium access control-control element, MAC CE).
  • RRC radio resource control
  • MAC CE medium access control-control element
  • the resource indication information of the reference signal is indicated by downlink control information (DCI) or sidelink control information (SCI).
  • DCI downlink control information
  • SCI sidelink control information
  • configuration information can be used to configure information parameters.
  • Information refers to uplink signals, or uplink data, or downlink signals, or downlink data.
  • the information refers to the PDSCH, or the information refers to the information carried by the PDSCH.
  • the information refers to the PUSCH, or the information refers to the information carried by the PUSCH.
  • the information refers to the PDCCH, or refers to the PUCCH, or the information refers to the information carried by the PDCCH, or the information refers to the information carried by the PUCCH.
  • information refers to PBCH, or the information carried by PBCH.
  • “information” refers to SRS, or to CSI-RS, or to DMRS, or to positioning reference signal (PRS), or to phase tracking reference signal (phase -trackingreference signal, PTRS).
  • the information is SRS as an example, but it is also applicable to other information.
  • the configuration information may be reference signal resource configuration information.
  • the reference signal takes SRS as an example.
  • the configuration information is SRS resource configuration information.
  • the SRS resource configuration information is configured by the high-level parameter SRS-Resource, or the SRS resource configuration information is the high-level parameter SRS-Resource.
  • the configuration information is SRS resource set configuration information, and the SRS resource set configuration information is configured by the high-level parameter SRS-ResourceSet, or the SRS resource configuration information is the high-level parameter SRS-ResourceSet.
  • the network device can configure one or more SRS resource sets for the terminal device through the high-level parameter SRS-ResourceSet.
  • An SRS resource set includes one or more SRS resources, or a high-level parameter SRS-ResourceSet includes one or more high-level parameter SRS-Resource. , or a high-level parameter SRS-ResourceSet is used to configure one or more SRS resources.
  • the configuration information takes SRS resource configuration information as an example.
  • An SRS resource configuration information includes a configuration parameter, or a high-level parameter SRS-Resource includes a configuration parameter.
  • each high-level parameter SRS-Resource includes a configuration parameter.
  • This configuration parameter takes the first configuration parameter as an example.
  • the first configuration parameter is used to indicate which first hopping mode the terminal device adopts.
  • the first configuration parameter is used to indicate whether the terminal device adopts the first hopping mode.
  • the first configuration parameter may also be described as a first hopping enable parameter, or a first randomization enable parameter, or a first hopping indication parameter, or a first randomization indication parameter, or the like.
  • the first hopping method may be one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping. These five hopping modes are used as examples and do not constitute a limitation on this application. If there are other hopping modes in actual applications, they can be expanded based on this application.
  • the first configuration parameter When the first configuration parameter is used to indicate which first hopping method is used, it can be implemented through the following method 1 and method 2.
  • Mode 1 Different values of the first configuration parameter are used to indicate using different first hopping modes.
  • the value range of the first configuration parameter is ⁇ groupHopping, sequenceHopping, cyclicshiftHopping, frequencyHopping, timeHopping ⁇ , which respectively correspond to group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping and time domain position hopping.
  • the value range of the first configuration parameter is ⁇ groupHopping, sequenceHopping, cyclicshiftHopping, frequencyHopping, timeHopping, null ⁇ .
  • the value of the first configuration parameter is "null”, it indicates that the first hopping method is not used.
  • the value range of the first configuration parameter is ⁇ 1, 2, 3, 4, 5 ⁇ , which respectively corresponds to group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping and time domain position hopping. Change. When the value of the first configuration parameter is "3", it indicates that cyclic shift hopping is used.
  • the value range of the first configuration parameter is ⁇ 0,1,2,3,4,5 ⁇ . When the value of the first configuration parameter is "0", it indicates that the first hopping method is not used.
  • Method 1 Different values of the first configuration parameter indicate different hopping modes, making the scheduling more diverse.
  • the correspondence between different values of the first configuration parameter and different first hopping modes may be predefined by the protocol, configured by the network device, or dynamically indicated by the network device, etc.
  • the first hopping mode is reported by the terminal device.
  • the terminal device sends first reporting information.
  • the first reporting information is used to indicate that the hopping modes supported by the terminal device are one or more of the following: group hopping, sequence hopping, cyclic shift hopping, and frequency domain position hopping. and time domain position jumps.
  • the first hopping method is specifically one or more of the following: cyclic shift hopping, frequency domain position hopping. , time domain position hopping; when the value of the first configuration parameter is the second value, it indicates that the first hopping method is used, and the first hopping method is group hopping and/or sequence hopping. Taking cyclic shift hopping, frequency domain position hopping and time domain position hopping as a hopping type set, taking group hopping and/or sequence hopping as a hopping type set, the first configuration parameter is different The value indicates the hopping method of different types of collections.
  • the first value is “1", indicating that one or more of cyclic shift hopping, frequency domain position hopping, and time domain position hopping are used; the first value is "0", indicating that group hopping is used and/or sequence hopping.
  • Method 2 A field with a bit length of 1 can indicate which type of hopping method is used, thereby saving signaling overhead.
  • the first configuration parameter is "groupOrSequenceHopping", and the value range of the first configuration parameter is ⁇ groupHopping, sequenceHopping, neither ⁇ . When the value of the first configuration parameter is "neither", it indicates that cyclic shift hopping is used.
  • one or more of frequency domain position hopping and time domain position hopping when the value of the first configuration parameter is "groupHopping" or “sequenceHopping", it indicates that group hopping or sequence hopping is used respectively. There is no need to add new fields for indication, which can further save signaling overhead.
  • cyclic shift hopping, frequency domain position hopping and time domain position hopping are used as a hopping type set, and group hopping and/or sequence hopping are used as a hopping type set for example.
  • other classification methods can actually be used.
  • the corresponding relationship between different values of the first configuration parameter and the hopping modes of different types of sets may be predefined by the protocol, configured by the network device, or dynamically indicated by the network device, etc.
  • the value of the configuration parameter may be a numerical value or a status value.
  • the first value and the second value are numerical values, or the first value and the second value are status values.
  • the second value can be a single value or a set of multiple values.
  • Methods 1 and 2 are used as examples. In actual applications, other methods may be used to indicate which hopping method to use through the first configuration parameter.
  • the configuration information takes SRS resource configuration information as an example.
  • One SRS resource configuration information includes multiple configuration parameters, or one high-level parameter SRS-Resource includes multiple configuration parameters. That is to say, each high-level parameter SRS-Resource includes multiple configuration parameters.
  • These multiple configuration parameters take two configuration parameters as an example.
  • the two configuration parameters are, for example, a first configuration parameter and a second configuration parameter. Set parameters.
  • the first configuration parameter is used to indicate the use of the first hopping mode.
  • the first hopping mode is specifically one or more of the following: cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the second configuration parameter is used to indicate the use of the second hopping mode, and the first hopping mode is group hopping and/or sequence hopping.
  • the first configuration parameter is independent of the second configuration parameter.
  • the second configuration parameter can be a high-level parameter "groupOrSequenceHopping”.
  • the first configuration parameter can be a high-level parameter similar to "groupOrSequenceHopping".
  • the specific parameter name is not limited in this application, such as "cyclicshiftOrfrequencyOrtimeHopping” ” or “cyclicshiftOrfrequencyHopping” or “cyclicshiftOrtimeHopping” or “frequencyOrtimeHopping” etc.
  • the configuration information may include multiple configuration parameters.
  • One configuration parameter indicates a hopping method, for example, 5 configuration parameters are included, and each configuration parameter indicates a hopping method corresponding to the respective configuration parameter.
  • the first configuration parameter indicates the use of group hopping
  • the second configuration parameter indicates the use of sequence hopping
  • the third configuration parameter indicates the use of cyclic shift hopping
  • the fourth configuration parameter indicates the use of frequency domain position hopping
  • the third configuration parameter indicates the use of frequency domain position hopping.
  • the five configuration parameters indicate the use of time domain position hopping.
  • the correspondence between different configuration parameters and hopping modes can be predefined by the protocol, configured by the network device, or dynamically indicated by the network device, etc.
  • the terminal device determines to adopt the first hopping method according to the first configuration parameter.
  • the terminal device determines to adopt the first hopping method corresponding to the value according to the value of the first configuration parameter.
  • the terminal device determines to adopt the corresponding first hopping method according to whether the value of the first configuration parameter is the first value or the second value. For example, if the value of the first configuration parameter is the first value, it is determined to use one or more of cyclic shift hopping, frequency domain position hopping, and time domain position hopping; the value of the first configuration parameter is the first value. A value that determines whether to use group hopping and/or sequence hopping.
  • the terminal device determines the first hopping mode according to the value of the first configuration parameter, and determines the second hopping mode according to the value of the second configuration parameter.
  • the first hopping mode and the second hopping mode may be adopted at the same time, or described as the first hopping mode and the second hopping mode may be enabled at the same time.
  • the terminal device can determine the hopping method according to its own capabilities and/or the hopping method supported by the network device. , to specifically choose which type or types of hopping methods to use. For example, if the terminal device supports cyclic shift hopping but does not support frequency domain position hopping and time domain position hopping, then cyclic shift hopping is ultimately chosen.
  • S303 The terminal device generates a reference signal according to the first hopping mode.
  • the terminal device generates the reference signal according to the first hopping mode, which may include: the terminal device adopts the first hopping mode and generates the reference signal according to the hopping parameters of the first hopping mode.
  • the hopping parameters of the first hopping mode can be determined through the following methods.
  • the first hopping parameters may be one or more of the following: group hopping parameters, sequence hopping parameters, and cyclic shifts. hopping parameters, frequency domain position hopping parameters and time domain position hopping parameters.
  • the terminal device determines the first hopping parameter corresponding to the value according to the value of the first configuration parameter, and the first hopping parameter is the hopping parameter of the first hopping mode.
  • the group hopping parameter can be expressed as u, for example, and its calculation method can refer to (Formula 1-7) and/or (Formula 1-12); the sequence hopping parameter can be expressed as v, for example, and its calculation method can refer to (Formula 1-7). 1-8) and/or (Formula 1-13); the cyclic shift hopping parameter can be expressed as ⁇ , for example, and its calculation method can be associated with a pseudo-random sequence; the frequency domain position hopping parameter can be expressed as F, for example, and its calculation method The method can be associated with a pseudo-random sequence; the time domain position hopping parameter can be expressed as T, for example, and its calculation method can be associated with a pseudo-random sequence.
  • the first hopping parameter is obtained according to a pseudo-random sequence; when it is determined according to the first configuration parameter that the first hopping mode is not adopted, the hopping parameter is 0.
  • the corresponding relationship between different values of the first configuration parameter and different first hopping parameters may be predefined by the protocol, configured by the network device, or dynamically indicated by the network device, and so on.
  • the first hopping parameter may be determined according to the first formula.
  • the first hopping mode is group hopping
  • the first formula may be (Formula 1-12), and u is determined according to (Formula 1-12).
  • the first hopping mode is sequence hopping
  • the first formula may be (Formula 1-13), and v is determined according to (Formula 1-13).
  • the first formula may be different.
  • the hopping parameters can be determined according to the second formula.
  • Method B when the value of the first configuration parameter is the first value, the first hopping parameter is also indicated.
  • the first hopping parameter is specifically one or more of the following: cyclic shift hopping parameter, frequency domain position hopping variable parameters, time domain position hopping parameters; when the value of the first configuration parameter is the second value, the first hopping parameter is also indicated, and the first hopping parameter is a group hopping parameter and/or a sequence hopping parameter.
  • the terminal device determines the first hopping parameter according to whether the value of the first configuration parameter is the first value or the second value.
  • the indicated first hopping parameter is used for the cyclic shift hopping parameter, and the frequency Domain position hopping parameters, one or more of the time domain position hopping parameters.
  • the first configuration parameter is also used to indicate the first hopping parameter
  • the first hopping parameter is specifically one or more of the following: cyclic shift Hopping parameters, frequency domain position hopping parameters, time domain position hopping parameters, the first hopping parameter is used for the first hopping mode
  • the second configuration parameter is also used to indicate the second hopping parameter, the second hopping parameter It is a group hopping parameter and/or a sequence hopping parameter, and the second hopping parameter is used in the second hopping mode.
  • the configuration information also includes a first initial value parameter and a second initial value parameter.
  • value parameter the first initial value parameter is used for the first hopping mode
  • the second initial value parameter is used for the second hopping mode
  • the second hopping mode is the group hopping and/or sequence hopping
  • the first initial value parameter is used for the second hopping mode.
  • the value parameter is different from the second initial value parameter.
  • the terminal device determines the hopping parameters of the first hopping mode according to the first initial value parameter. For example, the initial value of the first hopping mode is determined based on the first initial value parameter, and the hopping parameters of the first hopping mode are determined based on the initial value of the first hopping mode.
  • the difference between the first initial value parameter and the second initial value parameter means that the first initial value parameter and the second initial value parameter are two high-level parameters.
  • the value of the first initial value parameter and the value of the second initial value parameter may be the same or different.
  • the first initial value parameter can be expressed as c init,1 and is used to generate a pseudo-random sequence for the first hopping mode, and then calculate the hopping parameters based on the pseudo-random sequence.
  • the second initial value parameter can be expressed as c init,2 and is used to generate a pseudo-random sequence for the second hopping mode, and then calculate the hopping parameters based on the pseudo-random sequence.
  • the second initial value parameter is Configured by the high-level parameter sequenceId.
  • the first hopping mode is cyclic shift hopping.
  • the terminal device generates a pseudo-random sequence of cyclic shift hopping according to the first initial value parameter c init,1 , and generates a cyclic shift hopping based on the pseudo-random sequence.
  • variable parameter ⁇ is a pseudo-random sequence of cyclic shift hopping according to the first initial value parameter c init,1 .
  • the first initial value parameter may be associated with a coordination set identifier, the coordination set identifier is used to identify the coordination set, and the coordination set identifier is associated with one or more downlink reference signal resources.
  • Downlink reference signal resources include CSI-RS resources or path loss reference signal resources.
  • a cooperation set can be understood as a set including one or more TRPs, and one TRP is associated with one CSI-RS resource.
  • the first initial value is associated with the protocol set identifier to further improve scheduling flexibility.
  • the cooperation set identifier may be configured, or predefined, or indicated by dynamic signaling, or reported by the terminal device.
  • the configuration information does not include the first initial value parameter, but the configuration information It also includes a second initial value parameter.
  • the first initial value parameter is used for the first hopping mode.
  • the second initial value parameter is used for the second hopping mode and the first hopping mode.
  • the second hopping mode is the group hopping. changes and/or sequence jumps.
  • the first initial value parameter used in the first hopping mode is the same as the second initial value parameter, but the first initial value parameter is not configured in the configuration information.
  • the terminal device determines the hopping parameters of the first hopping mode according to the second initial value parameter.
  • the initial value of the first hopping mode is determined based on the second initial value parameter, and the hopping parameters of the first hopping mode are determined based on the initial value of the first hopping mode. That is to say, if the initial value parameter is not configured for the first hopping mode in the configuration information, then the initial value parameter corresponding to the first hopping mode may be the second initial value parameter, thereby saving signaling.
  • the first hopping mode is cyclic shift hopping
  • the terminal device A pseudo-random sequence of cyclic shift hopping is generated, and a cyclic shift hopping parameter ⁇ is generated based on the pseudo-random sequence.
  • the terminal device can generate the initial value parameter of the first hopping mode, and determine the hopping of the first hopping mode based on the initial value parameter of the first hopping mode. parameter. For example, the terminal device can generate the initial value parameter of the first transition mode. That is, the default initial value parameter of the first transition mode is For the situation where the initial value parameters are not configured in the first hopping mode, the initial value parameters of the first hopping mode can be independently generated, thereby reducing the implementation complexity.
  • the terminal device sends a reference signal to the network device.
  • the network device receives the reference signal from the terminal device.
  • the network device Since the reference signal is generated according to the first hopping mode, the network device performs reception, channel estimation or demodulation and other processing on the reference signal according to the first hopping mode.
  • the first hopping method is determined through the first configuration parameter, which can reduce interference between reference signals and improve scheduling flexibility.
  • the terminal device determines the first hopping parameter according to the first configuration parameter, generates a reference signal according to the first hopping parameter, and sends the reference signal to the network device.
  • the terminal device can refer to the above-mentioned method A to determine the first hopping parameter based on the first configuration parameter.
  • the hopping method can be determined by determining the hopping parameter, and the first configuration parameter is not used to indicate which type of hopping to adopt. This method can reduce the calculation amount of the terminal device.
  • Figure 4 is a schematic flow chart of another reference signal transmission method provided by this application. This method may include but is not limited to the following steps:
  • the network device sends configuration information to the terminal device.
  • the terminal device receives configuration information from the network device.
  • the terminal device determines to adopt the first hopping method, and sends the reference signal according to the first hopping method.
  • step S402 reference may be made to the detailed description of steps S302 to S304 in the embodiment shown in FIG. 3, which will not be described again here.
  • the first hopping method may be one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping. Then, when the configuration information does not include the first configuration parameter, the terminal device does not adopt the hopping method.
  • the first hopping method may be one or more of the following: cyclic shift hopping, frequency domain position hopping, and time domain position hopping. Then, when the configuration information does not include the first configuration parameter, the terminal device does not adopt the hopping mode, or the terminal device adopts the second hopping mode, and the second hopping mode is group hopping or sequence hopping.
  • the terminal device determines the first hopping parameter based on the first formula, and the first hopping parameter is used in the first hopping mode, that is, the terminal device determines the first hopping mode according to the first hopping mode and The first jump parameter is to send the reference signal.
  • the first hopping mode is group hopping
  • the first formula may be (Formula 1-12), and u is determined according to (Formula 1-12).
  • the first hopping mode is sequence hopping
  • the first formula may be (Formula 1-13), and v is determined according to (Formula 1-13).
  • the first formula may be different.
  • the terminal device determines the hopping parameter based on the second formula.
  • Figure 5 is a schematic flow chart of another reference signal transmission method provided by this application.
  • the method may include but is not limited to the following steps:
  • S501 The network device sends configuration information to the terminal device.
  • the terminal device receives configuration information from the network device.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the terminal device determines to use the second hopping method, and sends the reference signal according to the second hopping method.
  • the second hopping mode is group hopping and/or sequence hopping.
  • step S502 reference may be made to the specific description of steps S302 to S304 in the embodiment shown in FIG. 3, which will not be described again here.
  • the first hopping parameter is determined based on the third formula, and the first hopping parameter is used in the first hopping mode; if the configuration information does not include the first configuration parameter, the first hopping parameter is determined based on The fourth formula determines the second hopping parameter, and the second hopping parameter is used in the second hopping mode.
  • is determined based on the formula for calculating ⁇ (related to a pseudo-random sequence); if the configuration information does not include the first configuration Parameter "cyclicshiftOrfrequencyOrtimeHopping", then u is determined according to (Formula 1-12), or v is determined according to (Formula 1-13).
  • the terminal device and/or the network device may perform some or all of the steps in each embodiment. These steps or operations are only examples, and embodiments of the present application may also perform other operations or variations of various operations. In addition, various steps may be performed in a different order presented in each embodiment, and it is possible that not all operations in the embodiments of the present application are performed. Moreover, the size of the serial number of each step does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the terminal device and the network device may respectively include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • Figure 6 shows a schematic diagram of a form of communication between a terminal device and a network device.
  • the terminal device 610 includes a processor 6101, a memory 6102 and a transceiver 6103.
  • the transceiver 6103 includes a transmitter 6131 , receiver 6132 and antenna 6133.
  • the network device 620 includes a processor 6201, a memory 6202, and a transceiver 6203.
  • the transceiver 6203 includes a transmitter 6231, a receiver 6232, and an antenna 6233.
  • the receiver 6132 can be used to receive information sent by the network device 620 through the antenna 6133
  • the transmitter 6131 can be used to send information to the network device 620 through the antenna 6133.
  • the transmitter 6231 can be used to send messages to the terminal device 610 through the antenna 6233, and the receiver 6232 can be used to receive information sent by the terminal device 610 through the antenna 6233.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 700 shown in FIG. 7 may include a communication unit 701 and a processing unit 702.
  • the communication unit 701 may include a sending unit and/or a receiving unit.
  • the sending unit is used to implement the sending function
  • the receiving unit is used to implement the receiving function.
  • the communication unit 701 may implement the sending function and/or the receiving function.
  • the communication unit can also be described as a transceiver unit.
  • the communication device 700 may be a terminal device, a device in a terminal device, or a device having terminal device functions.
  • the communication device 700 may also be a chip or a chip system of a terminal device.
  • the communication device 700 can perform related operations of the terminal device in the embodiment shown in FIG. 3 .
  • Communication unit 701 configured to receive configuration information, where the configuration information includes first configuration parameters
  • the processing unit 702 is configured to determine to use the first hopping method according to the first configuration parameter; and generate a reference signal according to the first hopping method; wherein the first hopping method is one or more of the following: group hopping, Sequence hopping, cyclic shift hopping, frequency domain position hopping, time domain position hopping;
  • the communication unit 701 is also used to send reference signals.
  • the processing unit 702 is specifically configured to determine to adopt the first hopping mode according to the value of the first configuration parameter.
  • the processing unit 702 is specifically used to determine the first hopping method when the value of the first configuration parameter is the first value; the first hopping method is one or more of the following: cyclic shift hopping, Frequency domain position hopping, time domain position hopping; the value of the first configuration parameter is the second value, and the first hopping mode is determined to be used; the first hopping mode is group hopping and/or sequence hopping.
  • the first hopping method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the above configuration information also includes second configuration parameters;
  • the processing unit 702 is also configured to determine to adopt a second hopping method according to the value of the second configuration parameter, and the second hopping method is group hopping and/or sequence hopping.
  • the processing unit 702 is specifically configured to generate a reference signal according to the first hopping mode and the second hopping mode.
  • the configuration information also includes a first initial value parameter and a second initial value parameter; the first initial value parameter is used for the first hopping mode, and the second initial value parameter is used for the second hopping mode; the first hopping mode
  • the method is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping; the second hopping method is group hopping and/or sequence hopping; the first initial value parameter is the same as the first initial value parameter.
  • the two initial value parameters are different.
  • the first initial value parameter is associated with a coordination set identifier
  • the coordination set identifier is associated with one or more downlink reference signal resources.
  • the processing unit 702 is specifically configured to determine the initial value of the first hopping mode according to the first initial value parameter; determine the hopping parameters of the first hopping mode according to the initial value of the first hopping mode; The hopping parameters of the first hopping mode generate a reference signal.
  • the first hopping mode is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping, and the configuration information also includes a second initial value parameter;
  • the processing unit 702 is specifically configured to, if the configuration information also includes a first initial value parameter, determine the initial value of the first hopping mode according to the first initial value parameter; determine the first hopping mode according to the initial value of the first hopping mode.
  • the hopping parameters of the changing mode generate a reference signal according to the hopping parameters of the first hopping mode; if the configuration information does not include the first initial value parameter, determine the initial value of the first hopping mode according to the second initial value parameter; Determine the hopping parameters of the first hopping mode according to the initial value of the first hopping mode; generate a reference signal according to the hopping parameters of the first hopping mode;
  • the first initial value parameter is used for the first hopping mode
  • the second initial value parameter is used for the second hopping mode and/or the first hopping mode
  • the second hopping mode is group hopping and/or sequence hopping. Change.
  • the processing unit 702 is also configured to determine the first hopping parameter according to the first configuration parameter.
  • the first hopping parameter is one or more of the following: group hopping parameter, sequence hopping parameter, and cyclic shift. hopping parameters, frequency domain position hopping parameters, time domain position hopping parameters;
  • the processing unit 702 is specifically configured to generate a reference signal according to the first hopping mode and the first hopping parameter.
  • the first hopping parameter is one or more of the following: cyclic shift hopping parameter, frequency domain position hopping parameter, time domain position hopping parameter; the configuration information also includes a second configuration parameter;
  • the processing unit 702 is also configured to determine a second hopping parameter according to the second configuration parameter.
  • the second hopping parameter is a group hopping parameter and/or a sequence hopping parameter; the second hopping parameter is used in the second hopping mode.
  • the second hopping mode is group hopping and/or sequence hopping.
  • the processing unit 702 is also configured to determine the first hopping parameter according to the first configuration parameter and the first formula;
  • the first hopping parameter is one or more of the following: group hopping parameter, sequence hopping parameter , cyclic shift hopping parameters, frequency domain position hopping parameters, time domain position hopping parameters;
  • the processing unit 702 is specifically configured to generate a reference signal according to the first hopping mode and the first hopping parameter.
  • the communication device 700 can perform related operations of the terminal device in the embodiment shown in FIG. 4 .
  • Communication unit 701 used to receive configuration information
  • the processing unit 702 is configured to determine to use the first hopping mode if the configuration information includes the first configuration parameter, and generate a reference signal according to the first hopping mode; the communication unit 701 is also configured to send the reference signal;
  • the processing unit 702 is also configured to determine not to adopt the first hopping method if the configuration information does not include the first configuration parameter;
  • the first hopping mode is one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the processing unit 702 is also configured to determine the first hopping parameter based on the first formula if the configuration information includes the first configuration parameter;
  • the processing unit 702 is specifically configured to generate a reference signal according to the first hopping mode and the first hopping parameter.
  • the processing unit 702 is also configured to determine the hopping parameters based on the second formula if the configuration information does not include the first configuration parameters; and generate a reference signal according to the hopping parameters.
  • the communication device 700 can perform related operations of the terminal device in the embodiment shown in FIG. 5 .
  • Communication unit 701 used to receive configuration information
  • the processing unit 702 is configured to determine to use the first hopping mode if the configuration information includes the first configuration parameter, and generate a reference signal according to the first hopping mode; the communication unit 701 is also configured to send the reference signal; the first hop
  • the change mode is one or more of the following: cyclic shift hopping, frequency domain position hopping, time domain position hopping;
  • the processing unit 702 is also configured to determine to use the second hopping mode if the configuration information does not include the first configuration parameter, and generate a reference signal according to the second hopping mode; the communication unit 701 is also configured to send the reference signal;
  • the second hopping mode is group hopping and/or sequence hopping.
  • the processing unit 702 is also configured to determine the first hopping parameter based on the third formula if the configuration information includes the first configuration parameter, and the first hopping parameter is used in the first hopping mode; if the configuration information does not include The first configuration parameter determines the second hopping parameter based on the fourth formula, and the second hopping parameter is used in the second hopping mode.
  • the communication device 700 may be a network device, a device in a network device, or a device having network device functions.
  • the communication device 700 may also be a chip or a chip system of a network device.
  • the communication device 700 can perform related operations of the network device in the embodiment shown in FIG. 3 .
  • the Communication unit 701 used to send configuration information.
  • the configuration includes a first configuration parameter.
  • the first configuration parameter is used to determine the first hopping mode.
  • the first hopping mode is one or more of the following: group hopping, sequence Jump, cyclic shift jump, frequency domain position jump, time domain position jump.
  • the communication device 700 can perform related operations of the network device in the embodiment shown in FIG. 4 .
  • the communication unit 701 is used to send configuration information, the configuration includes or does not include the first configuration parameter; the configuration information includes the first configuration parameter, and is used to determine to adopt the first hopping mode;
  • the configuration information does not include the first configuration parameter, which is used to determine not to adopt the first hopping method
  • the first hopping mode is one or more of the following: group hopping, sequence hopping, cyclic shift hopping, frequency domain position hopping, and time domain position hopping.
  • the communication device 700 can perform related operations of the network device in the embodiment shown in FIG. 5 .
  • Communication unit 701 used to send configuration information, the configuration includes or does not include the first configuration parameter; the configuration information includes the first configuration parameter, used to determine to use the first hopping method, the first hopping method is one or more of the following : Cyclic shift hopping, frequency domain position hopping, time domain position hopping; the configuration information does not include the first configuration parameter, which is used to determine the second hopping method, and the second hopping method is group hopping and/or Sequence jump.
  • the communication device 800 shown in FIG. 8 may include a processor 801 and an interface circuit 802.
  • the processor 801 and the interface circuit 802 are coupled to each other.
  • the interface circuit 802 may be an interface circuit or an input-output interface.
  • the communication device 800 may also include a memory 803 for storing instructions executed by the processor 801 or input data required for the processor 801 to run the instructions or data generated after the processor 801 executes the instructions.
  • the communication device 800 may be a terminal device: the interface circuit 802 is used to execute step S301 and step S304 in FIG. 3 .
  • the communication device 800 may be a network device: the interface circuit 802 is used to execute step S301 and step S304 in FIG. 3 .
  • the chip of the terminal device implements the functions of the terminal device in the above method embodiment.
  • the chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), which is sent by the network device to the terminal device; or, the chip sends information to other modules in the terminal device (such as a radio frequency module or antenna) , this information is sent by the terminal device to the network device.
  • the chip of the network device implements the functions of the network device in the above method embodiment.
  • the chip receives information from other modules in the network device (such as radio frequency modules or antennas), which is sent by the terminal device to the network device ; or, the chip sends information to other modules in the network equipment (such as radio frequency modules or antennas), and the information is sent by the network equipment to the terminal equipment.
  • the processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in network equipment or terminal equipment. Of course, the processor and the storage medium can also exist as discrete components in network equipment or terminal equipment.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号传输方法及通信装置,应用在无线通信技术领域中,可以减少参考信号之间的干扰,并提高调度的灵活性。其中,该方法可包括:接收配置信息,该配置信息包括第一配置参数;根据第一配置参数,确定采用第一跳变方式,并根据第一跳变方式,发送参考信号;其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。采用第一跳变方式可以减少参考信号之间的干扰,通过第一配置参数确定采用第一跳变方式,可以提高调度的灵活性。

Description

参考信号传输方法及通信装置
本申请要求于2022年8月12日提交中国专利局、申请号为202210968766.3、申请名称为“参考信号传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号传输方法及通信装置。
背景技术
参考信号是由发射端提供给接收端用于估计或探测无线信道信息的一种已知信号。参考信号可分上行参考信号和下行参考信号。对于下行信道信息,可以通过UE对下行参考信号的测量获取,然后将测量得到的信道信息上报给网络,进而网络依据这些信道信息为后续的下行传输设置合适的发送参数。对于时分双工(time division duplex,TDD)***的下行信道信息,还可以依据信道互异性获得,即认为上行和下行信道在某些信道特性上是相同的。网络可以通过对上行参考信号进行测量获得上行信道信息,进而估计得到相关的下行信道信息。
新空口(new radio,NR)引入了多传输接收节点(transmission and reception point,TRP)传输技术,具体来说,可以同时由多个TRP为同一个用户设备(user equipment,UE)提供数据传输服务。多TRP传输技术可分为相干联合传输(coherent joint transmission,CJT)技术和非相干联合传输(Non-coherent joint transmission,NCJT)技术。
在CJT等联合传输场景下,由于UE部署更加密集,不同TRP覆盖下的参考信号之间的干扰较强。因此,如何减少参考信号之间的干扰是亟待解决的技术问题。
发明内容
本申请实施例提供一种参考信号传输方法及通信装置,可以减少参考信号之间的干扰,并提高调度的灵活性。
第一方面,本申请提供一种参考信号传输方法,该方法可以包括:接收配置信息,该配置信息包括第一配置参数;根据第一配置参数,确定采用第一跳变方式;根据第一跳变方式,发送参考信号;其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
由于组跳变、序列跳变、循环移位跳变、频域位置跳变或时域位置跳变可以减少参考信号之间的干扰,因此通过第一配置参数确定采用第一跳变方式,可以减少参考信号之间的干扰,并提高调度的灵活性。
在一种可能的实现方式中,在根据第一配置参数,确定采用第一跳变方式时,可根据第一配置参数的取值,确定采用第一跳变方式。可以理解的是,第一配置参数的不同取值指示采用不同的第一跳变方式,从而根据第一配置参数的取值可采用对应的第一跳变方式来减少参考信号之间的干扰。
在另一种可能的实现方式中,在根据第一配置参数,确定采用第一跳变方式时,若第一配置参数的取值为第一值,确定采用第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;若第一配置参数的取值为第二值,确定采用第一跳变方式,第一跳变方式为组跳变和/或序列跳变。可见,通过第一配置参数的两个不同取值,来分别指示不同类型集合的跳变方式,可节省信令开销。
在一种可能的实现方式中,第一跳变方式具体为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;上述配置信息还包括第二配置参数,那么还可以根据第二配置参数的取值,确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。可见,通过配置信息包括两个配置参数来分别指示采用不同类型集合的跳变方式,第一配置参数指示采用循环移位跳变,频域位置跳变或时域位置跳变中的一种或多种,第二配置参数指示采用组跳变和/或序列跳变,以便区分不同类型集合的跳变方式,有利于提高调度的灵活性。
进一步的,在上述配置信息还包括第二配置参数的情况下,在发送参考信号时,可根据第一跳变方式和第二跳变方式,发送参考信号。也就是说,可同时采用第一跳变方式和第二跳变方式来发送参考信号,以进一步减少参考信号之间的干扰。
在一种可能的实现方式中,上述配置信息还包括第一初始值参数和第二初始值参数,第一初始值参数 用于第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;第二初始值参数用于第二跳变方式,第二跳变方式为组跳变和/或序列跳变,第一初始值参数与第二初始值参数不同。也就是说,上述配置信息还包括用于第一跳变方式的初始值参数和用于第二跳变方式的初始值参数,不同类型集合的跳变方式对应不同的初始值参数,以提高调度的灵活性。
进一步的,第一初始值参数关联协作集标识,协作集标识关联一个或多个下行参考信号资源,协作集标识用于标识协作集。例如协作集标识关联一个或多个信道状态信息参考信号(channel state information-reference signal,CSI-RS)资源,或协作集关联一个或多个CSI-RS。又如,协作集标识关联一个或多个路损参考信号资源。将第一初始值与协议集标识关联,以进一步提高调度的灵活性。
其中,协作集标识可以是配置的,或者是预定义的,或者是动态信令指示的,或者是终端设备上报的。
进一步的,在获知第一初始值参数的情况下,根据第一初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在另一种可能的实现方式中,对于第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变,上述配置信息不包括第一初始值参数,还包括第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和/或第一跳变方式,第二跳变方式为组跳变和/或序列跳变。也就是说,针对第一跳变方式未配置初始值参数,那么第一跳变方式对应的初始值参数可以是第二初始值参数,从而节省信令。
进一步的,在获知第二初始值参数的情况下,根据第二初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在一种可能的实现方式中,上述方法还包括:生成第一跳变方式的初始值参数;在根据第一跳变方式,发送参考信号时,根据第一跳变方式的初始值参数,确定第一跳变方式的跳变参数,根据第一跳变方式的跳变参数,发送参考信号。针对第一跳变方式未配置初始值参数的情况,可自主生成第一跳变方式的初始值参数,从而降低实现复杂度。
在一种可能的实现方式中,上述方法还包括:根据第一配置参数,确定第一跳变参数,第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;进而,在根据第一跳变方式,发送参考信号时,根据第一跳变方式和第一跳变参数,发送参考信号。也就是说,第一配置参数还与第一跳变参数存在对应关系,以便根据第一跳变参数发送参考信号,从而节省信令开销。
进一步的,在根据第一配置参数,确定第一跳变参数时,根据第一配置参数的取值,确定跳变参数为第一跳变参数。
进一步的,第一跳变参数为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;上述配置信息还包括第二配置参数;进而,根据第二配置参数,确定第二跳变参数,第二跳变参数为组跳变参数和/或序列跳变参数;根据第一跳变参数和第二跳变参数,发送参考信号。可见,通过配置信息包括两个配置参数来分别指示不同类型集合的跳变参数,第一配置参数指示循环移位跳变参数,频域位置跳变参数,时域位置跳变参数中的一种或多种,第二配置参数指示组跳变参数和/或序列跳变参数,以便区分不同类型的跳变参数,有利于提高调度的灵活性。
在一种可能的实现方式中,上述方法还包括:根据第一配置参数和第一公式,确定第一跳变参数,第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;根据第一跳变方式,发送参考信号时,根据第一跳变方式和第一跳变参数,发送参考信号。
第二方面,本申请提供另一种参考信号传输方法,该方法可以包括:接收配置信息;若配置信息包括第一配置参数,则确定采用第一跳变方式,并根据第一跳变方式,发送参考信号;和/或,若配置信息不包括第一配置参数,则确定不采用第一跳变方式;其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
可见,通过配置信息是否包括第一配置参数来确定是否采用第一跳变方式,可节省信令开销;在采用第一跳变方式的情况下,可以减少参考信号之间的干扰,并提高调度的灵活性;在不采用第一跳变方式的情况下,可降低实现复杂度。
在一种可能的实现方式中,若配置信息包括第一配置参数,则根据第一配置参数,确定采用第一跳变 方式。
可选的,可根据第一配置参数的取值,确定跳变方式为第一跳变方式,并确定采用第一跳变方式。可以理解的是,第一配置参数的不同取值指示不同的跳变方式,从而根据第一配置参数的取值可确定第一跳变方式,以采用第一跳变方式来减少参考信号之间的干扰。
可选的,若第一配置参数的取值为第一值,确定采用第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;若第一配置参数的取值为第二值,确定采用第一跳变方式,第一跳变方式为组跳变和/或序列跳变。可见,通过第一配置参数的两个不同取值,来分别指示不同类型集合的跳变方式,可节省信令开销。
在另一种可能的实现方式中,第一跳变方式具体为以下一种或多种:循环移位跳变,频域位置跳变或时域位置跳变,若配置信息包括第一配置参数和第二配置参数,那么还可以根据第二配置参数的取值,确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。可见,通过配置信息包括两个配置参数来分别指示不同类型集合的跳变方式,第一配置参数指示循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种,第二配置参数指示组跳变和/或序列跳变,以便区分不同类型集合的跳变方式,有利于提高调度的灵活性。
进一步的,在上述配置信息还包括第二配置参数的情况下,在发送参考信号时,可根据第一跳变方式和第二跳变方式,发送参考信号。也就是说,可同时采用第一跳变方式和第二跳变方式来发送参考信号,以进一步减少参考信号之间的干扰。
在一种可能的实现方式中,对于配置信息包括第一配置参数,上述配置信息还包括第一初始值参数和第二初始值参数,第一初始值参数用于第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;第二初始值参数用于第二跳变方式,第二跳变方式为组跳变和/或序列跳变,第一初始值参数与第二初始值参数不同。也就是说,上述配置信息还包括用于第一跳变方式的初始值参数和用于第二跳变方式的初始值参数,不同类型集合的跳变方式对应不同的初始值参数,以提高调度的灵活性。
进一步的,第一初始值参数关联协作集标识,协作集标识用于标识协作集,协作集标识关联一个或多个下行参考信号资源。将第一初始值与协议集标识关联,以进一步提高调度的灵活性。其中,协作集标识可以是配置的,或者是预定义的,或者是动态信令指示的,或者是终端设备上报的。
进一步的,在获知第一初始值参数的情况下,根据第一初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在另一种可能的实现方式中,对于配置信息包括第一配置参数,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变,上述配置信息不包括第一初始值参数,还包括第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和/或第一跳变方式,第二跳变方式为组跳变和/或序列跳变。也就是说,针对第一跳变方式未配置初始值参数,那么第一跳变方式对应的初始值参数可以是第二初始值参数,从而节省信令。
进一步的,在获知第二初始值参数的情况下,根据第二初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在一种可能的实现方式中,上述方法还包括:生成第一跳变方式的初始值参数;在根据第一跳变方式,发送参考信号时,根据第一跳变方式的初始值参数,确定第一跳变方式的跳变参数,根据第一跳变方式的跳变参数,发送参考信号。针对第一跳变方式未配置初始值参数的情况,可自主生成第一跳变方式的初始值参数,从而降低实现复杂度。
在一种可能的实现方式中,若配置信息包括第一配置参数,上述方法还包括:根据第一配置参数,确定第一跳变参数,第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;进而,在根据第一跳变方式,发送参考信号时,根据第一跳变方式和第一跳变参数,发送参考信号。也就是说,第一配置参数还与第一跳变参数存在对应关系,以便根据第一跳变参数发送参考信号,从而节省信令开销。
进一步的,在根据第一配置参数,确定第一跳变参数时,根据第一配置参数的取值,确定跳变参数为第一跳变参数。
进一步的,第一跳变参数为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变 参数;上述配置信息还包括第二配置参数;进而,根据第二配置参数,确定第二跳变参数,第二跳变参数为组跳变参数和/或序列跳变参数;根据第一跳变参数和第二跳变参数,发送参考信号。可见,通过配置信息包括两个配置参数来分别指示不同类型集合的跳变参数,第一配置参数指示循环移位跳变参数,频域位置跳变参数,时域位置跳变参数中的一种或多种,第二配置参数指示组跳变参数和/或序列跳变参数,以便区分不同类型集合的跳变参数,有利于提高调度的灵活性。
在另一种可能的实现方式中,若配置信息包括第一配置参数,则基于第一公式确定第一跳变参数,进而根据第一跳变方式和第一跳变参数,发送参考信号。
若配置信息不包括第二配置参数,则基于第二公式确定跳变参数,根据跳变参数,发送参考信号。
第三方面,本申请提供又一种参考信号传输方法,该方法可以包括:接收配置信息;若配置信息包括第一配置参数,则确定采用第一跳变方式,并根据第一跳变方式,发送参考信号,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;和/或,若配置信息不包括第一配置参数,则确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。
可见,通过配置信息是否包括第一配置参数来确定采用第一跳变方式还是第二跳变方式,可节省信令开销;在采用第一跳变方式或第二跳变方式的情况下,可以减少参考信号之间的干扰,并提高调度的灵活性。
在一种可能的实现方式中,若配置信息包括第一配置参数,则根据第一配置参数,确定采用第一跳变方式。
可选的,可根据第一配置参数的取值,确定采用第一跳变方式。可以理解的是,第一配置参数的不同取值指示采用不同的第一跳变方式,从而根据第一配置参数的取值可采用第一跳变方式来减少参考信号之间的干扰。
在一种可能的实现方式中,对于配置信息包括第一配置参数,上述配置信息还包括第一初始值参数和第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式,第一初始值参数与第二初始值参数不同。也就是说,上述配置信息还包括用于第一跳变方式的初始值参数和用于第二跳变方式的初始值参数,不同类型集合的跳变方式对应不同的初始值参数,以提高调度的灵活性。
进一步的,第一初始值参数关联协作集标识,协作集标识用于标识协作集,协作集标识关联一个或多个下行参考信号资源。将第一初始值与协议集标识关联,以进一步提高调度的灵活性。其中,协作集标识可以是配置的,或者是预定义的,或者是动态信令指示的,或者是终端设备上报的。
进一步的,在获知第一初始值参数的情况下,根据第一初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在另一种可能的实现方式中,对于配置信息包括第一配置参数,上述配置信息不包括第一初始值参数,还包括第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和第一跳变方式。也就是说,针对第一跳变方式未配置初始值参数,那么第一跳变方式对应的初始值参数可以是第二初始值参数,从而节省信令。
进一步的,在获知第二初始值参数的情况下,根据第二初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,发送参考信号,以减少与其他终端设备发送的参考信号之间的干扰。
在一种可能的实现方式中,上述方法还包括:生成第一跳变方式的初始值参数;在根据第一跳变方式,发送参考信号时,根据第一跳变方式的初始值参数,确定第一跳变方式的跳变参数,根据第一跳变方式的跳变参数,发送参考信号。针对第一跳变方式未配置初始值参数的情况,可自主生成第一跳变方式的初始值参数,从而降低实现复杂度。
在一种可能的实现方式中,若配置信息包括第一配置参数,上述方法还包括:根据第一配置参数,确定第一跳变参数,第一跳变参数为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;进而,在根据第一跳变方式,发送参考信号时,根据第一跳变方式和第一跳变参数,发送参考信号。也就是说,第一配置参数还与第一跳变参数存在对应关系,以便根据第一跳变参数发送参考信号,从而节省信令开销。
进一步的,在根据第一配置参数,确定第一跳变参数时,根据第一配置参数的取值,确定跳变参数为第一跳变参数。
在一种可能的实现方式中,若配置信息不包括第一配置参数,包括第二配置参数;那么根据第二配置 参数,确定第二跳变参数,第二跳变参数为组跳变参数和/或序列跳变参数;进而,在根据第二跳变方式,发送参考信号时,根据第二跳变方式和第二跳变参数,发送参考信号。
在一种可能的实现方式中,若配置信息包括第一配置参数,则基于第三公式确定第一跳变参数,第一跳变参数用于第一跳变方式;若配置信息不包括第一配置参数,则基于第四公式确定第二跳变参数,第二跳变参数用于第二跳变方式。
可选的,第一方面至第三方面中任一方面提供的方法可以由终端设备执行,也可以由终端设备中的模块执行,例如由终端设备中的芯片执行等。或者,第一方面至第三方面中任一方面提供的方法可以由配置信息的接收端执行,也可以由接收端中的模块执行,例如由接收端中的芯片执行等。
第四方面,本申请提供一种参考信号传输方法,该方法可以包括:发送配置信息,该配置包括第一配置参数,第一配置参数用于确定采用第一跳变方式,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
可见,通过发送包括第一配置参数的配置信息,指示采用第一跳变方式,可以减少参考信号之间的干扰,并提高调度的灵活性。
在一种可能的实现方式中,第一配置参数的取值用于确定采用第一跳变方式。第一配置参数的不同取值指示采用不同的第一跳变方式。
在另一种可能的实现方式中,若第一配置参数的取值为第一值,用于确定采用第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;若第一配置参数的取值为第二值,用于确定采用第一跳变方式,第一跳变方式为组跳变和/或序列跳变。通过第一配置参数的两个不同取值,来分别指示不同类型集合的跳变方式,可节省信令开销。
在一种可能的实现方式中,第一跳变方式具体为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;上述配置信息还包括第二配置参数,第二配置参数的取值用于确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。通过配置信息包括两个配置参数来分别指示采用不同类型集合的跳变方式,有利于提高调度的灵活性。
在一种可能的实现方式中,上述配置信息还包括第一初始值参数和第二初始值参数,第一初始值参数用于第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;第二初始值参数用于第二跳变方式,第二跳变方式为组跳变和/或序列跳变,第一初始值参数与第二初始值参数不同。
进一步的,第一初始值参数关联协作集标识,协作集标识关联一个或多个下行参考信号资源
在另一种可能的实现方式中,对于第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变,上述配置信息不包括第一初始值参数,还包括第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和/或第一跳变方式,第二跳变方式为组跳变和/或序列跳变。
在一种可能的实现方式中,第一配置参数还用于确定第一跳变参数,第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数。第一跳变参数用于第一跳变方式。
第五方面,本申请提供一种参考信号传输方法,该方法可以包括:发送配置信息,配置包括或不包括第一配置参数;配置信息包括第一配置参数,用于确定采用第一跳变方式;和/或,配置信息不包括第一配置参数,用于确定不采用第一跳变方式;
其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
可见,通过配置信息是否包括第一配置参数来确定是否采用第一跳变方式,可节省信令开销;在采用第一跳变方式的情况下,可以减少参考信号之间的干扰,并提高调度的灵活性;在不采用第一跳变方式的情况下,可降低实现复杂度。
第五方面的各种可能的实现方式可参考第二方面的各种可能的实现方式。
第六方面,本申请提供一种参考信号传输方法,该方法可以包括:发送配置信息,配置包括或不包括第一配置参数;配置信息包括第一配置参数,用于确定采用第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;和/或,配置信息不包括第一配置参数,用于确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。
可见,通过配置信息是否包括第一配置参数来确定采用第一跳变方式还是第二跳变方式,可节省信令开销;在采用第一跳变方式或第二跳变方式的情况下,可以减少参考信号之间的干扰,并提高调度的灵活 性。
第六方面的各种可能的实现方式可参考第三方面的各种可能的实现方式。
可选的,第四方面至第六方面中任一方面提供的方法可以由网络设备执行,也可以由网络设备中的模块执行,例如由网络设备中的芯片执行等。或者,第四方面至第六方面中任一方面提供的方法可以由配置信息的发送端执行,也可以由发送端中的模块执行,例如由发送端中的芯片执行等。
第七方面,本申请提供了一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。该通信装置可执行第一方面或第三方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第三方面所述的方法以及有益效果。
第八方面,本申请提供了一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片***。该通信装置可执行第四方面或第六方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第四方面或第六方面所述的方法以及有益效果。
第九方面,本申请提供了一种通信装置,通信装置包括处理器,所述处理器用于执行如第一方面至第三方面中任一方面所述的方法,或如第四方面至第六方面中任一方面所述的方法。
第十方面,本申请提供了一种通信装置,通信装置包括处理器和存储器,所述存储介质中存储有指令,当所述指令被所述处理器执行时,使得通信装置执行如第一方面至第三方面中任一方面所述的方法,或如第四方面至第六方面中任一方面所述的方法。
第十一方面,本申请提供了一种通信装置,通信装置包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第一方面至第三方面中任一方面所述的方法,或如第四方面至第六方面中任一方面所述的方法。
第十二方面,本申请提供了一种计算机可读存储介质,所述存储介质中存储有指令,当所述计算机程序或指令被通信装置执行时,实现如第一方面至第三方面中任一方面所述的方法,或如第四方面至第六方面中任一方面所述的方法。
第十三方面,本申请提供一种包括指令的计算机程序产品,当通信装置读取并执行该指令时,使得通信装置执行如第一方面至第三方面中任一方面中任意一项的方法,或如第四方面至第六方面中任一方面中任意一项的方法。
附图说明
图1A是上行参考信号之间干扰的示例图;
图1B是一种SRS发送的示例图;
图1C是另一种SRS发送的示例图;
图2是应用本申请的通信***的示意图;
图3是本申请提供的一种参考信号传输方法的流程示意图;
图4是本申请提供的另一种参考信号传输方法的流程示意图;
图5是本申请提供的又一种参考信号传输方法的流程示意图;
图6是一个终端设备和一个网络设备之间进行通信的一种形式的示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
在本申请中,“第一”、“第二”等字样用于对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应当理解,本申请中,“至少一个”指的是一个或多个;“多个”是指两个或两个以上。此外,本申请的“等 于”可以与“大于”连用,也可以与“小于”连用。在“等于”与“大于”连用的情况下,采用“大于”的技术方案;在“等于”与“小于”连用的情况下,采用“小于”的技术方案。
首先,对本申请涉及的相关名称或术语进行阐述,以便于本领域技术人员理解。
1.参考信号
参考信号是由发射端提供给接收端用于估计或探测无线信道信息的一种已知信号。也就是说,无线通信***中的无线信道信息通过参考信号获得。其中,无线信道信息可以是比较粗略的,例如无线信道的路损,发射端在获知路损相关信息的情况下,可以进行发射功率控制。无线信道信息也可以是比较详细的,例如无线信道在时域、频域以及空域上准确的信道幅度和相位信息等。在无线通信***中,参考信号可分为上行参考信号和下行参考信号。
上行参考信号指的是UE向网络设备(例如基站(base station,BS)或TRP)发送的参考信号,即发射端为UE,接收端为网络设备。例如,上行参考信号可以是探测参考信号(sounding reference signal,SRS),或者上行信息的解调参考信号(demodulation reference signal,DMRS),或者相位跟踪参考信号(phase-tracking reference signal,PTRS),或者定位参考信号等。其中,上行信息可以是物理上行共享信道(physical uplink shared channel,PUSCH),或者PUSCH上承载的数据,或者物理上行控制信道(physical uplink control channel,PUCCH),或者PUCCH上承载的数据等。例如,上行参考信号是PUSCH的DMRS,或者PUCCH的DMRS。
下行参考信号指的是网络设备向UE发送的参考信号,即发射端是网络设备,接收端为UE。例如,下行参考信号可以是信道状态信息参考信号(channel-state information reference signal,CSI-RS),或者下行信息的DMRS。其中,下行信息可以是物理下行共享信道(physical downlink shared channel,PDSCH),或者PDSCH上承载的数据,或者物理下行控制信道(physical downlink control channel,PDCCH),或者PDCCH上承载的数据,或者物理广播信道(physical broadcast channel,PBCH)等。
对于下行信道信息,可以通过UE对下行参考信号的测量获取,然后将测量得到的信道信息上报给网络设备,进而网络设备依据这些信道信息为后续的下行传输设置合适的发送参数。对于TDD***的下行信道信息,还可以依据信道互异性获得,即认为上行和下行信道在某些信道特性上是相同的。网络设备可以通过对上行参考信号进行测量获得上行信道信息,进而估计得到相关的下行信道信息。
2.SRS
SRS是一种上行参考信号,由UE发送给网络设备,用于无线信道信息获取等功能。SRS可支持如下功能:基于码本的上行传输,基于非码本的上行传输、波束管理(beam management,BM)以及天线切换等。在不同的应用场景下,网络设备可通过高层参数为UE配置一个或多个SRS资源集(resource set),每个SRS资源集适用性通过高层参数(usage)配置,每个SRS资源集包括一个或多个SRS资源。
2.1 SRS序列
一个SRS资源的SRS序列根据以下公式产生:


其中,
-指的是SRS的序列长度;
-指的是根据αi和δ计算出的序列,δ=log2(KTC),KTC∈{2,4,8},KTC指的是传输梳齿数,包含在高层参数transmissionComb中;
-pi指的是天线端口,αi指的是天线端口pi对应的循环移位;
-指的是一个SRS资源的时域符号的数量,n对应于SRS序列映射在频域资源单元(resource element,RE)的索引,l'对应于SRS序列映射在时域符号上的索引;
-u指的是序列的组号,v指的是组内的序列号;
-指的是SRS序列在RE索引为n,时域符号索引为l',天线端口为pi的资源上的值。
可以理解的是,SRS序列是在SRS基序列的基础上,进行循环移位得到的。
其中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread OFDM)符号,或者其他符号,本申请不作限定。
2.2 SRS基序列
对于序列长度大于或等于36的SRS,基于Zadoff-Chu序列(ZC序列)生成SRS基序列;对于序列长度小于36的SRS,基于计算机穷举法生成SRS基序列。与本申请相关的SRS基序列为ZC序列,一个序列长度为M的ZC序列的定义如下:
其中,q表示ZC序列的根索引(root index)。具体而言,时(即序列长度大于或等于36时),SRS的基序列为:该基序列的生成方式如下:
其中,xq(m)是基本的ZC序列,xq(m)与参数u和v有关。
在SRS基序列(式1-5)的基础上进行循环移位,可得SRS序列,可通过如下表示:
其中,α表示循环移位参数。
对于两个SRS序列,若这两个SRS序列的SRS基序列相同,循环移位参数的取值不同,那么可以实现这两个SRS序列之间的正交。进而,在实际生成SRS序列的过程中,相同UE的不同SRS端口(或天线端口)之间,或者同一小区内不同UE的不同SRS端口之间,可以通过相同的SRS基序列,不同的循环移位参数的取值,实现在相同时频资源上的复用。可选的,循环移位参数可通过高层参数以SRS资源为单位进行配置,每个SRS资源对应的各个SRS端口根据高层参数和一定规则确定循环移位参数的取值。
若两个SRS序列的SRS基序列相同、循环移位参数的取值也相同,那么这两个SRS序列之间会形成强干扰,影响信道测量的准确度。由于候选的循环移位参数的取值有限,很难保证所有UE的SRS端口正交,因此,在不同小区的不同UE之间,SRS端口通常配置SRS基序列不同,从而在一定程度上降低干扰。
但是,由于***容量的限制,有可能出现不同小区的不同UE之间,SRS基序列相同的情况(候选的SRS基序列个数小于待调度SRS端口个数)。因此,可利用对SRS基序列采用组跳变或序列跳变的方式,以降低SRS之间的干扰。
2.3组跳变和序列跳变
为了在不同的时隙内,使用不同的序列(或序列组),以随机化不同SRS的干扰,可以对SRS配置组跳变(group hopping)或者序列跳变(sequence hopping)。组跳变指的是SRS序列从一个组变至另一个组,序列跳变指的是SRS序列从一个序列变至另一个序列。组跳变也可以描述为组跳或组跳频等,序列跳变也可以描述为序列跳或序列跳频等。本申请以组跳变和序列跳变这两个名词为例,其他用于描述group hopping的名称可与组跳变替换,其他用于描述sequence hopping的名称可与序列跳变替换。
在NR中,将SRS基序列分为30个组,每个组包含一个或两个序列,在式1-5中,u用于定义组号,v用于定义组内的序列号。其中,u的计算方式为:
其中,
- 指的是一个SRS资源的时域符号的数量;
-表示伪随机序列或者其取值为0,表示一个子帧中包含的时隙的个数;
-当序列长度小于5资源块(resource block,RB)时,每个组包含一个序列,5RB即序列长度为60;
-当序列长度大于或等于6RB时,每个组包含两个序列,6RB即序列长度为72;
-一个组内由v定义组内序列号;
-指的是SRS的序列标识(identifier,ID),通过高层参数sequenceId进行配置,每个SRS资源的配置信息中均包含sequenceId。
对不同用途的SRS而言,各自对应的的候选值范围可能不同。例如用于多输入多输出(multiple input multiple output,MIMO)的SRS对应的的候选值范围,与用于定位的SRS对应的的候选值范围不同。对不同信息单元(information element,IE)中的高层参数sequenceId而言,各自配置的的取值范围可能不同。例如当由SRS-Resource IE中的高层参数sequenceId配置时,的取值范围为 {0,1,…,1023};当由SRS-PosResource-r16IE中的高层参数sequenceId配置时,的取值范围为{0,1,…,65535}。
上述为组跳变的计算方式,在一个组内(即u的取值相同),可以通过组内序列号v进行序列跳变。需要说明的是,序列跳变存在于SRS的序列长度大于或等于6RB的场景。对于序列长度大于或等于6RB而言,每个组包含两个序列,因此可实现组内序列跳变。
其中,v的计算方式为:
其中,表示一个子帧中包含的时隙的个数;表示一个时隙内的OFDM符号数;l0表示SRS的起始符号位置;c(i)表示伪随机序列。伪随机序列基于序列长度为31的Gold序列:
c(n)=(x1(n+NC)+x2(n+NC))mod 2
x1(n+31)=(x1(n+3)+x1(n))mod 2(式1-9)
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2
其中,NC=1600;第一个m-序列x1(n)被初始化为x1(0)=1,x1(n)=0,n=1,2,...,30;第二个m-序列x2(n)根据式1-10进行初始化。
cinit的值根据伪随机序列的应用确定,例如对于SRS序列,
2.4组跳变或序列跳变的配置
高层参数groupOrSequenceHopping用于配置组跳变或序列跳变或两者均不跳变。例如高层参数groupOrSequenceHopping可包含于SRS-Resource IE或SRS-PosResource-r16IE。高层参数groupOrSequenceHopping的取值范围可以是{neither,groupHopping,sequenceHopping}。
当高层参数groupOrSequenceHopping的取值为“neither”时,则指示不采用组跳变和序列跳变,也就是说UE在接收到该高层参数的情况下,在生成SRS序列时,既不采用组跳变也不采用序列跳变。
对于高层参数groupOrSequenceHopping的取值为“neither”,和v的取值如式1-11所示。
当高层参数groupOrSequenceHopping的取值为“groupHopping”时,则指示采用组跳变,也就是说UE在接收到该高层参数的情况下,在生成SRS序列时,采用组跳变不采用序列跳变。
对于高层参数groupOrSequenceHopping的取值为“groupHopping”,和v的取值如式1-12所示。
式1-12中,c(i)表示伪随机序列,并且在每个无线帧的开始c(i)被初始化为
当高层参数groupOrSequenceHopping的取值为“sequenceHopping”时,则指示采用序列跳变,也就是说UE在接收到该高层参数的情况下,在生成SRS序列时,采用序列跳变不采用组跳变。
对于高层参数groupOrSequenceHopping的取值为“sequenceHopping”,和v的取值如式1-13所示。
式1-13中,c(i)表示伪随机序列,并且在每个无线帧的开始c(i)被初始化为
3.跳变方式
在CJT等联合传输场景下,由于UE部署更加密集,不同TRP覆盖下的参考信号之间的干扰较强。示例性的,可参见图1A所示的上行参考信号之间干扰的示例图,TRP 1是UE 1的服务TRP(即TRP 1为UE 1提供服务),TRP 2是UE 2的服务TRP,UE 2向TRP 2发送的上行参考信号对于UE 1向TRP 2发送的上行参考信号而言,是强干扰。其中,上行参考信号例如可以是SRS,那么UE 2向TRP 2发送的SRS对于UE 1向TRP 2发送的SRS而言,是强干扰。图1A中,UE 2向TRP 2发送上行参考信号用灰色箭头表示,UE 1发送上行参考信号用黑色箭头表示。
为了解决TRP覆盖下SRS之间的干扰问题,可引入除组跳变和序列跳变之外的其他跳变方式,例如循环移位跳变、频域位置跳变,时域位置跳变等。
3.1循环移位跳变
循环移位跳变可以理解为,不同符号上的SRS的循环移位参数的取值是根据伪随机序列计算得到的。例如,对于两个SRS序列的SRS基序列相同,占用相同的时域资源而言,由于不同符号上的SRS的循环移位参数的取值是根据伪随机序列计算得到的,因此可以减小循环移位参数的取值相同的概率,从而提高这两个SRS序列具有正交性的概率,以减少这两个SRS之间的干扰。循环移位跳变也可以描述为循环移位随机化,或循环移位跳,或循环移位跳频等。
示例性的,可参见图1B所示的一种SRS发送的示例图,UE 1向TRP 1发送SRS 1,UE 2向TRP 2发送SRS 2。图1B示出序列跳变,以正交频分复用符号(orthogonal frequency division multiplex symbol,OS)n1至OS n4为例,对于OS n1和OS n4而言,v的取值相同,那么可能导致SRS 1与SRS 2的SRS基序列相同,若两者的循环移位参数的取值相同,那么SRS 1与SRS 2之间会存在干扰。为了克服SRS 1与SRS 2之间的干扰,采用循环移位跳变,可提高OS n1和OS n4上的SRS具有不同循环移位参数的取值的概率,以减少SRS 1与SRS 2之间的干扰。
3.2频域位置跳变
频域位置跳变可以理解为,不同符号上的SRS的频域位置是根据伪随机序列计算得到的。例如,通过随机化两个SRS的频域起始位置,来实现两个SRS的频域位置尽可能不同。频域位置跳变也可以描述为频域位置随机化,或频域发送位置随机化,或频域位置跳,或频域发送位置跳,或频域位置跳频,或频域发送位置跳频等。
示例性的,可参见图1C所示的另一种SRS发送的示例图,UE 1向TRP 1发送SRS 1,UE 2向TRP 2发送SRS 2。图1C中,采用频域位置跳变,对于时隙n而言,同一符号上的SRS 1的频域位置尽可能与SRS 2的频域位置不同;对于时隙n+T而言,同一符号上的SRS 1的频域位置与SRS 2的频域位置均不同,从而可减少SRS 1与SRS 2之间的干扰。
3.3时域位置跳变
时域位置跳变可以理解为,不同的SRS的时域位置是根据伪随机序列计算得到的。时域位置跳变是符号级别的跳变,或者是时隙级别的跳变,或者是子帧级别的跳变。时域位置跳变也可以描述为时域位置随机化,或时域发送位置随机化,或时域位置跳,或时域发送位置跳,或时域位置跳频,或时域发送位置跳频等。
上述三种跳变方式以及跳变方式的名称用于举例,并不构成对本申请的限定,实际应用中还可能其他跳变方式。
其次,对本申请涉及的***架构进行阐述。
本申请可应用于无线通信***,例如第五代(5th generation,5G)***,也可以称为NR***;再例如第六代(6th generation,6G)***,或者第七代(7th generation,7G)***,或未来的其他通信***;又例如设备到设备(device to device,D2D)***,机器到机器(machine to machine,M2M)***、车联网(vehicle to everything,V2X)等等。
在一些示例中,无线通信***可包括多个基站(BS),每个基站能够同时支持多个通信设备(例如UE)的通信。在NR***中,包括一个或多个基站的集合可定义为下一代B节点(next-generationNodeB,gNB)。
在一些示例中,无线通信***可包括与数个中央单元(centralized unit,CU)处于通信的数个分布式单元(distributed unit,DU)。其中,包含与CU处于通信的一个或多个DU的集合可定义为接入节点(例如,其可被称为BS、下一代B节点(gNB)、多传输接收节点(TRP)等)。TRP或DU可在下行链路信道(例如,用于从TRP至UE的传输)上与UE集合通信,以及上行链路信道(例如,用于从UE至TRP的传输)上与UE集合通信。需要说明的是,中央单元、分布式单元还可能采用其他名称,本申请并不限定。
本申请可应用于图2所示的通信***中。图2所示的通信***20可包括但不限于:网络设备210和终端设备220。图2中设备的数量和形态用于举例,并不构成对本申请实施例的限定,例如实际应用中可以包括多个终端设备。
终端设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备又称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片或芯片模组等,该装置可以被安装在终端设备中或者和终端设备匹配使用。在本申请提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请提供的技术方案。
网络设备,也可以称为接入网设备或接入节点,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站(BS)。目前,一些RAN节点的举例为:gNB、TRP、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。另外,在一种网络结构中,网络设备可以包括CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
在本申请中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片或芯片模组等,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请提供的技术方案。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请提供的参考信号传输方法进行阐述。
请参见图3,是本申请提供的一种参考信号传输方法的流程示意图,该方法可包括但不限于如下步骤:
S301,网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备的配置信息。其中,配置信息包括第一配置参数。
在本申请中,配置信息可以是通过高层信令配置的,或者是通过控制信息指示的。例如,参考信号的资源指示信息是网络设备通过无线资源控制(radio resource control,RRC)信令配置的,或者是通过质访问控制单元(medium access control-control element,MAC CE)指示的。又如,参考信号的资源指示信息是下行控制信息(downlink control information,DCI)指示的,或是侧行控制信息(sidelink control information,SCI)指示的。
可选的,配置信息可用于信息的参数配置。“信息”指的是上行信号,或者是上行数据,或者是下行信号,或者是下行数据。例如,信息指的是PDSCH,或者,信息指的是PDSCH所携带的信息。又如,信息指的是PUSCH,或者,信息指的是PUSCH所携带的信息。再如,信息指的是PDCCH,或者指的是PUCCH,或者信息指的是PDCCH所携带的信息,或信息指的是PUCCH所携带的信息。再如,信息指的是PBCH,或PBCH所携带的信息。再如,“信息”指的是SRS,或者指的是CSI-RS,或者指的是DMRS,或者指的是定位参考信号(positioning reference signal,PRS),或者指的是相位追踪参考信号(phase-trackingreference signal,PTRS)。本申请实施例以信息是SRS为例,但同样适用于其他信息。
示例性的,配置信息用于配置参考信号的资源,那么配置信息可以是参考信号资源配置信息。参考信号以SRS为例,配置信息是SRS资源配置信息,SRS资源配置信息由高层参数SRS-Resource配置,或SRS资源配置信息是高层参数SRS-Resource。或者,配置信息是SRS资源集合配置信息,SRS资源集合配置信息由高层参数SRS-ResourceSet配置,或SRS资源配置信息是高层参数SRS-ResourceSet。对终端设备而言, 网络设备可通过高层参数SRS-ResourceSet为终端设备配置一个或多个SRS资源集合,一个SRS资源集合包括一个或多个SRS资源,或者一个高层参数SRS-ResourceSet包括一个或多个高层参数SRS-Resource,或者一个高层参数SRS-ResourceSet用于配置一个或多个SRS资源。
在一种可能的实现方式中,配置信息以SRS资源配置信息为例,一个SRS资源配置信息包括一个配置参数,或者一个高层参数SRS-Resource包括一个配置参数。也就是说,每个高层参数SRS-Resource包括一个配置参数。这一个配置参数以第一配置参数为例。
第一配置参数用于指示终端设备采用何种第一跳变方式。或者,第一配置参数用于指示终端设备是否采用第一跳变方式。第一配置参数也可以描述为第一跳变使能参数,或第一随机化使能参数,或第一跳变指示参数,或第一随机化指示参数等。在本申请中,第一跳变方式可以是以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。这五种跳变方式用于举例,并不构成对本申请的限定,若实际应用中还存在其他跳变方式,可基于本申请进行拓展。
第一配置参数用于指示采用何种第一跳变方式时,可通过如下方式1和方式2实现。
方式1,第一配置参数的不同取值用于指示采用不同的第一跳变方式。例如,第一配置参数的取值范围为{groupHopping,sequenceHopping,cyclicshiftHopping,frequencyHopping,timeHopping},分别对应组跳变、序列跳变、循环移位跳变、频域位置跳变和时域位置跳变。举例来说,当第一配置参数的取值为“cyclicshiftHopping”时,指示采用循环移位跳变。再例如,第一配置参数的取值范围为{groupHopping,sequenceHopping,cyclicshiftHopping,frequencyHopping,timeHopping,null},当第一配置参数的取值为“null”时,指示不采用第一跳变方式。又例如,第一配置参数的取值范围为{1,2,3,4,5},分别对应组跳变、序列跳变、循环移位跳变、频域位置跳变和时域位置跳变。当第一配置参数的取值为“3”时,指示采用循环移位跳变。又例如,第一配置参数的取值范围为{0,1,2,3,4,5},当第一配置参数的取值为“0”时,指示不采用第一跳变方式。方式1,通过第一配置参数的不同取值指示不同的跳变方式,使得调度更加多样化。
方式1中,第一配置参数的不同取值与不同第一跳变方式之间的对应关系可以是协议预定义的,或者是网络设备配置的,或者是网络设备动态指示的,等等。
可选的,第一跳变方式是终端设备上报的。终端设备发送第一上报信息,该第一上报信息用于指示终端设备支持的跳变方式为以下一种或多种:组跳变、序列跳变、循环移位跳变、频域位置跳变和时域位置跳变。
方式2,当第一配置参数的取值为第一值时,指示采用第一跳变方式,第一跳变方式具体为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;当第一配置参数的取值为第二值时,指示采用第一跳变方式,第一跳变方式为组跳变和/或序列跳变。将循环移位跳变、频域位置跳变和时域位置跳变作为一种跳变类型集合,将组跳变和/或序列跳变作为一种跳变类型集合,第一配置参数的不同取值指示采用不同类型集合的跳变方式。例如,第一值为“1”,指示采用循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种;第一值为“0”,指示采用组跳变和/或序列跳变。方式2,通过一个比特长度为1的字段即可指示采用何种类型的跳变方式,从而可节省信令开销。再例如,第一配置参数为“groupOrSequenceHopping”,第一配置参数的取值范围为{groupHopping,sequenceHopping,neither},当第一配置参数的取值为“neither”时,指示采用循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种;当第一配置参数的取值为“groupHopping”或“sequenceHopping”时,分别指示采用组跳变或序列跳变。无需增加新的字段来指示,可进一步节省信令开销。
方式2中将循环移位跳变、频域位置跳变和时域位置跳变作为一种跳变类型集合,将组跳变和/或序列跳变作为一种跳变类型集合,用于举例,实际可采用其他分类方法。第一配置参数的不同取值与不同类型集合的跳变方式之间的对应关系可以是协议预定义的,或者是网络设备配置的,或者是网络设备动态指示的,等等。
在本申请实施例中,配置参数的取值可以是数值或者是状态值。例如第一值和第二值是数值,或者第一值和第二值是状态值。第二值可以是一个值或者是多个值组成的集合。
方式1和方式2用于举例,实际应用中还可能采用其他方式来通过第一配置参数指示采用何种跳变方式。
在另一种可能的实现方式中,配置信息以SRS资源配置信息为例,一个SRS资源配置信息包括多个配置参数,或者一个高层参数SRS-Resource包括多个配置参数。也就是说,每个高层参数SRS-Resource包括多个配置参数。这多个配置参数以两个配置参数为例,这两个配置参数例如为第一配置参数和第二配 置参数。
第一配置参数用于指示采用第一跳变方式,第一跳变方式具体为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变。第二配置参数用于指示采用第二跳变方式,第一跳变方式为组跳变和/或序列跳变。第一配置参数与第二配置参数独立,第二配置参数可以是高层参数“groupOrSequenceHopping”,第一配置参数可以是类似于“groupOrSequenceHopping”的高层参数,具体参数名称在本申请不作限定,例如“cyclicshiftOrfrequencyOrtimeHopping”或“cyclicshiftOrfrequencyHopping”或“cyclicshiftOrtimeHopping”或“frequencyOrtimeHopping”等。
进一步的,配置信息可包括多个配置参数,一个配置参数指示采用一种跳变方式,例如包括5个配置参数,每个配置参数指示采用各自配置参数对应的跳变方式。例如第1个配置参数指示采用组跳变,第2个配置参数指示采用序列跳变,第3个配置参数指示采用循环移位跳变,第4个配置参数指示采用频域位置跳变,第5个配置参数指示采用时域位置跳变。不同配置参数与跳变方式之间的对应关系可以是协议预定义的,或者是网络设备配置的,或者是网络设备动态指示的,等等。
S302,终端设备根据第一配置参数,确定采用第一跳变方式。
对于上述方式1,终端设备根据第一配置参数的取值,确定采用该取值对应的第一跳变方式。
对于上述方式2,终端设备根据第一配置参数的取值为第一值还是第二值,确定采用对应的第一跳变方式。例如,第一配置参数的取值为第一值,确定采用循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种;第一配置参数的取值为第一值,确定采用组跳变和/或序列跳变。
对于配置信息包括第一配置参数和第二配置参数的情况,终端设备根据第一配置参数的取值,确定第一跳变方式,根据第二配置参数的取值,确定第二跳变方式。该种情况下,第一跳变方式和第二跳变方式可同时被采用,或描述为第一跳变方式和第二跳变方式可同时被使能。
可选的,对于确定采用循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种的情况,终端设备可根据自身能力和/或网络设备支持的跳变方式,来具体选择采用哪种或哪几种跳变方式。例如,终端设备支持循环移位跳变,不支持频域位置跳变和时域位置跳变,那么最终选择采用循环移位跳变。
S303,终端设备根据第一跳变方式,生成参考信号。
可选的,终端设备根据第一跳变方式,生成参考信号,可包括:终端设备采用第一跳变方式,并根据第一跳变方式的跳变参数,生成参考信号。
其中,第一跳变方式的跳变参数可通过如下几种方式确定。
方式A,第一配置参数的不同取值还用于指示不同的第一跳变参数,第一跳变参数可以是如下一种或多种:组跳变参数、序列跳变参数、循环移位跳变参数、频域位置跳变参数和时域位置跳变参数。终端设备根据第一配置参数的取值,确定该取值对应的第一跳变参数,第一跳变参数即为第一跳变方式的跳变参数。
其中,组跳变参数例如可表示为u,其计算方式可参考(式1-7)和/或(式1-12);序列跳变参数例如可表示为v,其计算方式可参考(式1-8)和/或(式1-13);循环移位跳变参数例如可表示为α,其计算方式可关联一个伪随机序列;频域位置跳变参数例如可表示为F,其计算方式可关联一个伪随机序列;时域位置跳变参数例如可表示为T,其计算方式可关联一个伪随机序列。当根据第一配置参数确定采用第一跳变方式时,第一跳变参数根据伪随机序列获取,当根据第一配置参数确定不采用第一跳变方式时,跳变参数为0。
第一配置参数的不同取值与不同第一跳变参数之间的对应关系可以是协议预定义的,或者是网络设备配置的,或者是网络设备动态指示的,等等。
可选的,当根据第一配置参数确定采用上述跳变方式时,可根据第一公式确定第一跳变参数。例如,第一跳变方式为组跳,第一公式可以是(式1-12),根据(式1-12)确定u。再例如,第一跳变方式为序列跳,第一公式可以是(式1-13),根据(式1-13)确定v。对于其他跳变方式,第一公式可能有所不同。当根据第一配置参数确定不采用上述跳变方式时,可根据第二公式确定跳变参数,例如第二公式使得跳变参数为0,例如(式1-11)使得u=0和v=0。
方式B,当第一配置参数的取值为第一值时,还指示第一跳变参数,第一跳变参数具体为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;当第一配置参数的取值为第二值时,还指示第一跳变参数,第一跳变参数为组跳变参数和/或序列跳变参数。终端设备根据第一配置参数的取值为第一值还是第二值,确定第一跳变参数。
可以理解的是,当第一配置参数的取值为第一值时,指示的第一跳变参数用于循环移位跳变参数,频 域位置跳变参数,时域位置跳变参数中的一种或多种。
方式C,对于配置信息包括第一配置参数和第二配置参数的情况,第一配置参数还用于指示第一跳变参数,第一跳变参数具体为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变参数,第一跳变参数用于第一跳变方式;第二配置参数还用于指示第二跳变参数,第二跳变参数为组跳变参数和/或序列跳变参数,第二跳变参数用于第二跳变方式。
方式D,对于第一跳变方式为循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种的情况,配置信息还包括第一初始值参数和第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式,第二跳变方式为所述组跳变和/或序列跳变;第一初始值参数与第二初始值参数不同。终端设备根据第一初始值参数,确定第一跳变方式的跳变参数。例如,根据第一初始值参数,确定第一跳变方式的初始值,根据第一跳变方式的初始值,确定第一跳变方式的跳变参数。
其中,第一初始值参数与第二初始值参数不同指的是第一初始值参数与第二初始值参数是两个高层参数。第一初始值参数的取值与第二初始值参数的取值可以相同,也可以不相同。第一初始值参数可表示为cinit,1,用于针对第一跳变方式生成伪随机序列,进而基于伪随机序列计算得到跳变参数。第二初始值参数可表示为cinit,2,用于针对第二跳变方式生成伪随机序列,进而基于伪随机序列计算得到跳变参数。可选的,也就是说,对于组跳变和/或序列跳变而言,第二初始值参数即为由高层参数sequenceId配置。
举例来说,第一跳变方式为循环移位跳变,终端设备根据第一初始值参数cinit,1,生成循环移位跳变的伪随机序列,基于该伪随机序列生成循环移位跳变参数α。
可选的,第一初始值参数可关联协作集标识,协作集标识用于标识协作集,协作集标识关联一个或多个下行参考信号资源。下行参考信号资源例如CSI-RS资源或路损参考信号资源等。协作集可以理解为包括一个或多个TRP的集合,一个TRP关联一个CSI-RS资源。将第一初始值与协议集标识关联,以进一步提高调度的灵活性。其中,协作集标识可以是配置的,或者是预定义的,或者是动态信令指示的,或者是终端设备上报的。
方式E,对于第一跳变方式为循环移位跳变,频域位置跳变,时域位置跳变中的一种或多种的情况,配置信息不包括第一初始值参数,但配置信息还包括第二初始值参数,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和第一跳变方式,第二跳变方式为所述组跳变和/或序列跳变。换言之,用于第一跳变方式的第一初始值参数与第二初始值参数相同,不过未在配置信息中配置第一初始值参数。终端设备根据第二初始值参数,确定第一跳变方式的跳变参数。例如,根据第二初始值参数,确定第一跳变方式的初始值,根据第一跳变方式的初始值,确定第一跳变方式的跳变参数。也就是说,在配置信息中针对第一跳变方式未配置初始值参数,那么第一跳变方式对应的初始值参数可以是第二初始值参数,从而节省信令。
举例来说,第一跳变方式为循环移位跳变,终端设备根据第二初始值参数生成循环移位跳变的伪随机序列,基于该伪随机序列生成循环移位跳变参数α。
方式F,对于配置信息不包括第一初始值参数的情况,终端设备可生成第一跳变方式的初始值参数,根据第一跳变方式的初始值参数,确定第一跳变方式的跳变参数。例如终端设备可生成第一跳变方式的初始值参数即默认第一跳变方式的初始值参数为针对第一跳变方式未配置初始值参数的情况,可自主生成第一跳变方式的初始值参数,从而降低实现复杂度。
上述方式A至方式F用于举例,并不构成对本申请的限定。
S304,终端设备向网络设备发送参考信号。相应的,网络设备接收来自终端设备的参考信号。
由于参考信号是根据第一跳变方式生成的,因此网络设备根据第一跳变方式对参考信号进行接收,信道估计或解调等处理。
在图3所示的实施例中,通过第一配置参数确定采用第一跳变方式,可以减少参考信号之间的干扰,并提高调度的灵活性。
作为一种可选的实施例,终端设备根据第一配置参数,确定第一跳变参数,根据第一跳变参数,生成参考信号,并向网络设备发送该参考信号。终端设备根据第一配置参数确定第一跳变参数可参考上述方式A,区别在于,该实施例中确定跳变参数便能确定出跳变方式,第一配置参数不用于指示采用何种跳变方式,可减少终端设备的计算量。
请参见图4,是本申请提供的另一种参考信号传输方法的流程示意图,该方法可包括但不限于如下步骤:
S401,网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备的配置信息。
S402,若配置信息包括第一配置参数,则终端设备确定采用第一跳变方式,并根据第一跳变方式,发送参考信号。
S403,若配置信息不包括第一配置参数,则终端设备确定不采用第一跳变方式。
对于步骤S402可参考图3所示实施例中对步骤S302至步骤S304的具体描述,在此不再赘述。
在一种实现方式中,第一跳变方式可以是以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。那么在配置信息不包括第一配置参数的情况下,终端设备不采用跳变方式。
在另一种实现方式,第一跳变方式可以是以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变。那么在配置信息不包括第一配置参数的情况下,终端设备不采用跳变方式,或者终端设备采用第二跳变方式,第二跳变方式为组跳变或序列跳变。
可选的,若配置信息包括第一配置参数,则终端设备基于第一公式确定第一跳变参数,第一跳变参数用于第一跳变方式,即终端设备根据第一跳变方式和第一跳变参数,发送参考信号。例如,第一跳变方式为组跳,第一公式可以是(式1-12),根据(式1-12)确定u。再例如,第一跳变方式为序列跳,第一公式可以是(式1-13),根据(式1-13)确定v。对于其他跳变方式,第一公式可能有所不同。
若配置信息不包括第一配置参数,则终端设备基于第二公式确定跳变参数。例如,第二公式为(式1-11),根据(式1-11)确定u=0和v=0,进而生成并发送参考信号。
请参见图5,是本申请提供的又一种参考信号传输方法的流程示意图,该方法可包括但不限于如下步骤:
S501,网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备的配置信息。
S502,若配置信息包括第一配置参数,则终端设备确定采用第一跳变方式,并根据第一跳变方式,发送参考信号。其中,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变。
S503,若配置信息不包括第一配置参数,则终端设备确定采用第二跳变方式,并根据第二跳变方式,发送参考信号。其中,第二跳变方式为组跳变和/或序列跳变。
对于步骤S502可参考图3所示实施例中对步骤S302至步骤S304中的具体描述,在此不再赘述。
可选的,若配置信息包括第一配置参数,则基于第三公式确定第一跳变参数,第一跳变参数用于第一跳变方式;若配置信息不包括第一配置参数,则基于第四公式确定第二跳变参数,第二跳变参数用于第二跳变方式。例如,若配置信息包括第一配置参数“cyclicshiftOrfrequencyOrtimeHopping”,其的取值为“cyclicshiftHopping”,那么基于用于计算的α的公式(与伪随机序列有关)确定α;若配置信息不包括第一配置参数“cyclicshiftOrfrequencyOrtimeHopping”,那么基于根据(式1-12)确定u,或者根据(式1-13)确定v。
应理解,在上文实施例中,终端设备和/或网络设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为了实现本申请实施例提供的数据传输方法,终端设备和网络设备可以分别包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
图6所示一个终端设备和一个网络设备之间进行通信的一种形式的示意图,如图6所示,终端设备610包括处理器6101、存储器6102和收发器6103,收发器6103包括发射机6131、接收机6132和天线6133。网络设备620包括处理器6201、存储器6202和收发器6203,收发器6203包括发射机6231、接收机6232和天线6233。接收机6132可以用于通过天线6133接收网络设备620发送的信息,发射机6131可以用于通过天线6133向网络设备620发送信息。发射机6231可以用于通过天线6233向终端设备610发送消息,接收机6232可以用于通过天线6233接收终端设备610发送的信息。
图7是本申请的实施例提供的一种的通信装置的结构示意图,图8是本申请的实施例提供的另一种的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。
图7所示的通信装置700可包括通信单元701和处理单元702。通信单元701可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元701可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
在一种实现方式中,通信装置700可以是终端设备,也可以终端设备中的装置,还可以具有终端设备功能的装置。通信装置700还可以是终端设备的芯片或芯片***。
一种实施方式中,通信装置700可执行上述图3所示实施例中终端设备的相关操作。
通信单元701,用于接收配置信息,该配置信息包括第一配置参数;
处理单元702,用于根据第一配置参数,确定采用第一跳变方式;根据第一跳变方式,生成参考信号;其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变;
通信单元701,还用于发送参考信号。
可选的,处理单元702,具体用于根据第一配置参数的取值,确定采用第一跳变方式。
可选的,处理单元702,具体用于第一配置参数的取值为第一值,确定采用第一跳变方式;第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;第一配置参数的取值为第二值,确定采用第一跳变方式;第一跳变方式为组跳变和/或序列跳变。
可选的,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;上述配置信息还包括第二配置参数;
处理单元702,还用于根据第二配置参数的取值,确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。
可选的,处理单元702,具体用于根据第一跳变方式和第二跳变方式,生成参考信号。
可选的,配置信息还包括第一初始值参数和第二初始值参数;第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式;第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;第二跳变方式为组跳变和/或序列跳变;第一初始值参数与第二初始值参数不同。
可选的,第一初始值参数关联协作集标识,协作集标识关联一个或多个下行参考信号资源。
可选的,处理单元702,具体用于根据第一初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,生成参考信号。
可选的,对于第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变,配置信息还包括第二初始值参数;
处理单元702,具体用于若配置信息还包括第一初始值参数,则根据第一初始值参数,确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,生成参考信号;若配置信息不包括第一初始值参数,则根据第二初始值参数确定第一跳变方式的初始值;根据第一跳变方式的初始值,确定第一跳变方式的跳变参数;根据第一跳变方式的跳变参数,生成参考信号;
其中,第一初始值参数用于第一跳变方式,第二初始值参数用于第二跳变方式和/或第一跳变方式,第二跳变方式为组跳变和/或序列跳变。
可选的,处理单元702,还用于根据第一配置参数,确定第一跳变参数,第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;
处理单元702,具体用于根据第一跳变方式和第一跳变参数,生成参考信号。
可选的,第一跳变参数为以下一种或多种:循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;配置信息还包括第二配置参数;
处理单元702,还用于根据第二配置参数,确定第二跳变参数,第二跳变参数为组跳变参数和/或序列跳变参数;第二跳变参数用于第二跳变方式,第二跳变方式为组跳变和/或序列跳变。
可选的,处理单元702,还用于根据第一配置参数和第一公式,确定第一跳变参数;第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;
处理单元702,具体用于根据第一跳变方式和第一跳变参数,生成参考信号。
另一种实施方式中,通信装置700可执行上述图4所示实施例中终端设备的相关操作。
通信单元701,用于接收配置信息;
处理单元702,用于若配置信息包括第一配置参数,则确定采用第一跳变方式,并根据第一跳变方式,生成参考信号;通信单元701,还用于发送参考信号;
处理单元702,还用于若配置信息不包括第一配置参数,则确定不采用第一跳变方式;
其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
可选的,处理单元702,还用于若配置信息包括第一配置参数,则基于第一公式确定第一跳变参数;
处理单元702,具体用于根据第一跳变方式和第一跳变参数,生成参考信号。
可选的,处理单元702,还用于若配置信息不包括第一配置参数,则基于第二公式确定跳变参数;根据跳变参数,生成参考信号。
又一种实施方式中,通信装置700可执行上述图5所示实施例中终端设备的相关操作。
通信单元701,用于接收配置信息;
处理单元702,用于若配置信息包括第一配置参数,则确定采用第一跳变方式,并根据第一跳变方式,生成参考信号;通信单元701,还用于发送参考信号;第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;
处理单元702,还用于若配置信息不包括第一配置参数,则确定采用第二跳变方式,并根据第二跳变方式,生成参考信号;通信单元701,还用于发送参考信号;第二跳变方式为组跳变和/或序列跳变。
可选的,处理单元702,还用于若配置信息包括第一配置参数,则基于第三公式确定第一跳变参数,第一跳变参数用于第一跳变方式;若配置信息不包括第一配置参数,则基于第四公式确定第二跳变参数,第二跳变参数用于第二跳变方式。
在另一种实现方式中,通信装置700可以是网络设备,也可以网络设备中的装置,还可以具有网络设备功能的装置。通信装置700还可以是网络设备的芯片或芯片***。
一种实施方式中,通信装置700可执行上述图3所示实施例中网络设备的相关操作。
通信单元701,用于发送配置信息,该配置包括第一配置参数,第一配置参数用于确定采用第一跳变方式,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
另一种实施方式中,通信装置700可执行上述图4所示实施例中网络设备的相关操作。
通信单元701,用于发送配置信息,配置包括或不包括第一配置参数;配置信息包括第一配置参数,用于确定采用第一跳变方式;
配置信息不包括第一配置参数,用于确定不采用第一跳变方式;
其中,第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
又一种实施方式中,通信装置700可执行上述图5所示实施例中网络设备的相关操作。
通信单元701,用于发送配置信息,配置包括或不包括第一配置参数;配置信息包括第一配置参数,用于确定采用第一跳变方式,第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;配置信息不包括第一配置参数,用于确定采用第二跳变方式,第二跳变方式为组跳变和/或序列跳变。
图8所示的通信装置800可包括处理器801和接口电路802。处理器801和接口电路802之间相互耦合。可以理解的是,接口电路802可以为接口电路或输入输出接口。可选的,通信装置800还可以包括存储器803,用于存储处理器801执行的指令或存储处理器801运行指令所需要的输入数据或存储处理器801运行指令后产生的数据。
比如,所述通信装置800可以为终端设备:接口电路802用于执行图3中的步骤S301和步骤S304。比如,所述通信装置800可以为网络设备:接口电路802用于执行图3中的步骤S301和步骤S304。
当上述通信装置为应用于终端设备的芯片时,该终端设备的芯片实现上述方法实施例中终端设备的功能。该芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备的芯片实现上述方法实施例中网络设备的功能。该芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备 的;或者,该芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。设备(终端设备或网络设备)发送信息时,通过芯片的接口电路输出信息;设备接收信息时,向芯片的接口电路输入信息。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (24)

  1. 一种参考信号传输方法,其特征在于,所述方法包括:
    接收配置信息,所述配置信息包括第一配置参数;
    根据所述第一配置参数,确定采用第一跳变方式,所述第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变;
    根据所述第一跳变方式,发送参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一配置参数,确定采用第一跳变方式,包括:
    根据所述第一配置参数的取值,确定采用第一跳变方式。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一配置参数,确定采用第一跳变方式,包括:
    所述第一配置参数的取值为第一值,确定采用第一跳变方式;所述第一跳变方式为以下一种或多种:所述循环移位跳变,所述频域位置跳变,所述时域位置跳变;
    所述第一配置参数的取值为第二值,确定采用第一跳变方式;所述第一跳变方式为所述组跳变和/或所述序列跳变。
  4. 根据权利要求1所述的方法,其特征在于,所述第一跳变方式为以下一种或多种:所述循环移位跳变,所述频域位置跳变,所述时域位置跳变;所述配置信息还包括第二配置参数;
    所述方法还包括:
    根据所述第二配置参数的取值,确定采用第二跳变方式,所述第二跳变方式为所述组跳变和/或所述序列跳变。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一跳变方式,发送参考信号,包括:
    根据所述第一跳变方式和所述第二跳变方式,发送参考信号。
  6. 根据权利要求1所述的方法,其特征在于,所述配置信息还包括第一初始值参数和第二初始值参数;所述第一初始值参数用于所述第一跳变方式,所述第二初始值参数用于第二跳变方式;所述第一跳变方式为以下一种或多种:所述循环移位跳变,所述频域位置跳变,所述时域位置跳变;所述第二跳变方式为所述组跳变和/或所述序列跳变;所述第一初始值参数与所述第二初始值参数不同。
  7. 根据权利要求6所述的方法,其特征在于,所述第一初始值参数关联协作集标识,所述协作集标识关联一个或多个下行参考信号资源。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述第一跳变方式,发送参考信号,包括:
    根据所述第一初始值参数,确定所述第一跳变方式的初始值;
    根据所述第一跳变方式的初始值,确定所述第一跳变方式的跳变参数;
    根据所述第一跳变方式的跳变参数,发送参考信号。
  9. 根据权利要求1所述的方法,其特征在于,对于所述第一跳变方式为以下一种或多种:所述循环移位跳变,所述频域位置跳变,所述时域位置跳变,所述配置信息还包括第二初始值参数;
    所述根据所述第一跳变方式,发送参考信号,包括:
    若所述配置信息还包括第一初始值参数,则根据所述第一初始值参数,确定所述第一跳变方式的初始值;和/或,
    若所述配置信息不包括第一初始值参数,则根据所述第二初始值参数确定所述第一跳变方式的初始值;
    其中,所述第一初始值参数用于所述第一跳变方式,所述第二初始值参数用于第二跳变方式和/或所述第一跳变方式,所述第二跳变方式为所述组跳变和/或所述序列跳变。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一配置参数,确定第一跳变参数,所述第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;
    所述根据所述第一跳变方式,发送参考信号,包括:
    根据所述第一跳变方式和所述第一跳变参数,发送参考信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一跳变参数为以下一种或多种:所述循环移位跳变参数,所述频域位置跳变参数,所述时域位置跳变参数;所述配置信息还包括第二配置参数;
    所述方法还包括:
    根据所述第二配置参数,确定第二跳变参数,所述第二跳变参数为所述组跳变参数和/或所述序列跳变参数;所述第二跳变参数用于第二跳变方式,所述第二跳变方式为组跳变和/或所述序列跳变。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一配置参数和第一公式,确定第一跳变参数;所述第一跳变参数为以下一种或多种:组跳变参数,序列跳变参数,循环移位跳变参数,频域位置跳变参数,时域位置跳变参数;
    所述根据所述第一跳变方式,发送参考信号,包括:
    根据所述第一跳变方式和所述第一跳变参数,发送参考信号。
  13. 一种参考信号传输方法,其特征在于,所述方法包括:
    接收配置信息;
    若所述配置信息包括第一配置参数,则确定采用第一跳变方式,并根据所述第一跳变方式,发送参考信号;和/或,
    若所述配置信息不包括第一配置参数,则确定不采用第一跳变方式;
    其中,所述第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    若所述配置信息包括所述第一配置参数,则基于第一公式确定第一跳变参数;
    所述根据所述第一跳变方式,发送参考信号,包括:
    根据所述第一跳变方式和所述第一跳变参数,发送参考信号。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    若所述配置信息不包括所述第一配置参数,则基于第二公式确定跳变参数;
    根据所述跳变参数,发送参考信号。
  16. 一种参考信号传输方法,其特征在于,所述方法包括:
    接收配置信息;
    若所述配置信息包括第一配置参数,则确定采用第一跳变方式,并根据所述第一跳变方式,发送参考信号;所述第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;和/或,
    若所述配置信息不包括第一配置参数,则确定采用第二跳变方式,并根据所述第二跳变方式,发送参考信号;所述第二跳变方式为组跳变和/或序列跳变。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    若所述配置信息包括所述第一配置参数,则基于第三公式确定第一跳变参数,所述第一跳变参数用于所述第一跳变方式;
    若所述配置信息不包括所述第一配置参数,则基于第四公式确定第二跳变参数,所述第二跳变参数用于所述第二跳变方式。
  18. 一种参考信号传输方法,其特征在于,所述方法包括:
    发送配置信息,所述配置包括第一配置参数,所述第一配置参数用于确定采用第一跳变方式,所述第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
  19. 一种参考信号传输方法,其特征在于,所述方法包括:
    发送配置信息,所述配置包括或不包括第一配置参数;
    所述配置信息包括所述第一配置参数,用于确定采用第一跳变方式;和/或,
    所述配置信息不包括所述第一配置参数,用于确定不采用第一跳变方式;
    其中,所述第一跳变方式为以下一种或多种:组跳变,序列跳变,循环移位跳变,频域位置跳变,时域位置跳变。
  20. 一种参考信号传输方法,其特征在于,所述方法包括:
    发送配置信息,所述配置包括或不包括第一配置参数;
    所述配置信息包括所述第一配置参数,用于确定采用第一跳变方式,所述第一跳变方式为以下一种或多种:循环移位跳变,频域位置跳变,时域位置跳变;和/或,
    所述配置信息不包括所述第一配置参数,用于确定采用第二跳变方式,所述第二跳变方式为组跳变和/或序列跳变。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求1至17中的任一项所述方法的模块;或如权利要求18至20中的任一项所述方法的模块。
  22. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行如权利要求1至17中的任一项所述的方法;或如权利要求18至20中的任一项所述的方法。
  23. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至17中任一项所述的方法;或如权利要求18至20中的任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至17中任一项所述的方法;或如权利要求18至20中的任一项所述的方法。
PCT/CN2023/110375 2022-08-12 2023-07-31 参考信号传输方法及通信装置 WO2024032417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968766.3A CN117641387A (zh) 2022-08-12 2022-08-12 参考信号传输方法及通信装置
CN202210968766.3 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032417A1 true WO2024032417A1 (zh) 2024-02-15

Family

ID=89850814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110375 WO2024032417A1 (zh) 2022-08-12 2023-07-31 参考信号传输方法及通信装置

Country Status (2)

Country Link
CN (1) CN117641387A (zh)
WO (1) WO2024032417A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215057A (zh) * 2010-04-02 2011-10-12 华为技术有限公司 生成参考信号的方法及设备
CN108112076A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 配置上行信号的方法及装置
CN108631976A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种通信方法及装置
US20210036825A1 (en) * 2018-01-24 2021-02-04 Lg Electronics Inc. Method for transmitting or receiving sounding reference signal in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215057A (zh) * 2010-04-02 2011-10-12 华为技术有限公司 生成参考信号的方法及设备
CN108631976A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种通信方法及装置
CN108112076A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 配置上行信号的方法及装置
US20210036825A1 (en) * 2018-01-24 2021-02-04 Lg Electronics Inc. Method for transmitting or receiving sounding reference signal in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
CN117641387A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
JP7061619B2 (ja) 信号送信方法、装置、およびシステム
JP7179156B2 (ja) 信号伝送方法及び通信機器
CN111385042B (zh) 干扰测量的方法和通信装置
US20160294514A1 (en) Hybrid reference signals for wireless communication
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
CN110139306B (zh) 发送测量报告的方法、通信装置和***
CN112134664B (zh) 资源确定方法及装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2020192481A1 (zh) 通信方法和装置
CN112821929B (zh) Csi测量方法及装置
CN111757500B (zh) 通信方法和装置
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
JP7481437B2 (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
WO2024032417A1 (zh) 参考信号传输方法及通信装置
JP7414960B2 (ja) 通信方法及び機器
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2022147735A1 (zh) 确定发送功率的方法及装置
CN114071720A (zh) 资源确定的方法以及通信装置
CA3208342A1 (en) Communication method and apparatus
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2024027759A1 (zh) 探测参考信号生成方法及装置
WO2022067571A1 (zh) 一种通信方法及装置
CN114503487B (zh) 一种通信方法及装置
WO2022082378A1 (zh) 一种信号传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851638

Country of ref document: EP

Kind code of ref document: A1