WO2024027759A1 - 探测参考信号生成方法及装置 - Google Patents

探测参考信号生成方法及装置 Download PDF

Info

Publication number
WO2024027759A1
WO2024027759A1 PCT/CN2023/110749 CN2023110749W WO2024027759A1 WO 2024027759 A1 WO2024027759 A1 WO 2024027759A1 CN 2023110749 W CN2023110749 W CN 2023110749W WO 2024027759 A1 WO2024027759 A1 WO 2024027759A1
Authority
WO
WIPO (PCT)
Prior art keywords
occ
sequence
srs
occ sequence
repetition factor
Prior art date
Application number
PCT/CN2023/110749
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024027759A1 publication Critical patent/WO2024027759A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for generating a sounding reference signal.
  • the network equipment can measure the sounding reference signal (SRS) sent by the user equipment (UE) to obtain the uplink channel information, and based on the uplink channel and uplink and downlink The reciprocity of the downlink channel is used to infer the channel state information (CSI) of the downlink channel.
  • SRS sounding reference signal
  • UE user equipment
  • CSI channel state information
  • 3rd -generation partnership project (3GPP) standard version 18 Release, R18
  • CJT coherent joint transmission
  • the UE performs downlink transmission.
  • TRPs transmission reception points
  • Interference between SRS will directly affect the channel estimation of network equipment. Therefore, how to reduce the interference between SRS is an urgent technical issue that needs to be solved.
  • Embodiments of the present application provide a sounding reference signal generation method and device, which can reduce interference between SRSs, thereby facilitating channel estimation by network equipment.
  • this application provides a method for generating a sounding reference signal.
  • the method may include: receiving first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain.
  • the value of the repetition factor is greater than or A positive integer equal to 1; determine the time division orthogonal cover code (TD-OCC) sequence that matches the repetition factor.
  • the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; based on the TD -OCC sequence, generate SRS.
  • TD-OCC time division orthogonal cover code
  • generating TD-OCC sequences based on repetition factors and generating SRSs based on TD-OCC sequences can reduce interference between SRSs, thereby facilitating channel estimation by network equipment. Generating SRS based on TD-OCC sequences can also improve system capacity.
  • determining the TD-OCC sequence that matches the repetition factor may include: generating a TD-OCC sequence that matches the repetition factor based on the first TD-OCC sequence and/or the second TD-OCC sequence. .
  • the sequence length of the first TD-OCC sequence is a first threshold
  • the sequence length of the second TD-OCC sequence is a second threshold
  • the first threshold is smaller than the second threshold.
  • the first TD-OCC sequence and the second TD-OCC sequence can be existing TD-OCC sequences. Generating a TD-OCC sequence for generating SRS based on the existing TD-OCC sequence can improve the existing TD-OCC sequence. utilization and save signaling overhead.
  • the sequence length of the TD-OCC sequence used to generate the SRS can be divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence used to generate the SRS is equal to the repetition factor. Take value.
  • existing TD-OCC sequences can be fully utilized.
  • the sequence length of the TD-OCC sequence used to generate the SRS is not divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence used to generate the SRS is less than the repetition factor. Take value. This will help improve system capacity.
  • the above method further includes: receiving a first modification command, where the first modification command is used to instruct modification of the first TD-OCC sequence and/or the second TD-OCC sequence. This helps to improve the flexibility of the generated SRS.
  • the above method further includes: receiving second configuration information, the second configuration information is used to configure one or more reference TD-OCC sequences for the SRS; determining a TD-OCC that matches the repetition factor
  • the sequence may include: generating a TD-OCC sequence that matches the repetition factor based on one or more reference TD-OCC sequences. It can be seen that the network device can instruct the terminal device which TD-OCC sequence or sequences to use to generate the TD-OCC sequence for generating SRS, so that the network device can quickly process the received SRS.
  • the above method further includes: receiving a second modification command, where the second modification command is used to instruct modification of one or more reference TD-OCC sequences. This helps to improve the flexibility of the generated SRS.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include the first time domain resource.
  • the above method further includes: discarding the time domain resource of the SRS and replacing the time domain resource of the physical uplink channel with the first time domain resource. Send on the physical uplink channel. It can be seen that when the time domain resources of the SRS conflict with the time domain resources of the physical uplink channel, the physical uplink channel is sent first to avoid the time domain conflict.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include a first time domain resource
  • the above method further includes: determining a conflicting TD-OCC sequence corresponding to the first time domain resource, Discard the SRS symbols corresponding to the conflicting TD-OCC sequences. It can be seen that when the time domain resources of the SRS conflict with the time domain resources of the physical uplink channel, discarding the SRS symbols corresponding to the conflicting TD-OCC sequences can avoid time domain conflicts while still sending some SRS symbols.
  • the value of the above-mentioned repetition factor is one of a preset value set.
  • the preset value set can be predefined by the protocol or indicated by high-level parameters.
  • this application provides a sounding reference signal generation method.
  • the method may include: sending first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain.
  • the value of the repetition factor is greater than or A positive integer equal to 1; the repetition factor is used to determine the TD-OCC sequence that matches the repetition factor.
  • the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor.
  • the TD-OCC sequence is used to generate SRS.
  • the terminal device by sending the first configuration information, it is beneficial for the terminal device to generate SRS based on the TD-OCC sequence, which can reduce interference between SRSs and improve system capacity.
  • the above method further includes: sending second configuration information.
  • the second configuration information is used to configure one or more reference TD-OCC sequences for the SRS, so that the terminal equipment can configure the SRS according to the one or more reference TD-OCC sequences.
  • OCC sequence generate TD-OCC sequence matching the repeat factor. It can be seen that the network device can instruct the terminal device which TD-OCC sequence or sequences to use to generate the TD-OCC sequence for generating SRS, so that the network device can quickly process the received SRS.
  • the above method further includes: sending a second modification command, where the second modification command is used to instruct modification of one or more reference TD-OCC sequences. It can be seen that flexibility can be improved through the second modification command.
  • the value of the above-mentioned repetition factor is one of a preset value set.
  • Default value Collections can be predefined by the protocol or indicated by high-level parameters.
  • the present application provides a communication device.
  • the device includes a processing unit and a communication unit.
  • the communication unit is used to receive first configuration information.
  • the first configuration information is used to configure a repetition factor of the SRS in the time domain.
  • the value of the repetition factor is greater than Or a positive integer equal to 1;
  • the processing unit is used to determine the TD-OCC sequence that matches the repetition factor, and the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; based on the TD-OCC sequence, generate an SRS.
  • the device includes a communication unit configured to send first configuration information.
  • the first configuration information is used to configure a repetition factor of the SRS in the time domain.
  • the value of the repetition factor is a positive value greater than or equal to 1. Integer; the repetition factor is used to determine the TD-OCC sequence that matches the repetition factor. The sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor. The TD-OCC sequence is used to generate SRS.
  • the present application provides a communication device, which includes a processor, a memory, and a computer program or instructions stored in the memory. It is characterized in that the processor executes the computer program or instructions to implement the first aspect and any of the above.
  • a communication device which includes a processor, a memory, and a computer program or instructions stored in the memory. It is characterized in that the processor executes the computer program or instructions to implement the first aspect and any of the above.
  • this application provides a chip.
  • the chip is used to receive first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain.
  • the value of the repetition factor is a positive integer greater than or equal to 1;
  • the processing unit Used to determine the TD-OCC sequence that matches the repetition factor, and the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; based on the TD-OCC sequence, an SRS is generated.
  • the chip is used to send first configuration information. The first configuration information is used to configure the repetition factor of the SRS in the time domain.
  • the value of the repetition factor is a positive integer greater than or equal to 1; the repetition factor It is used to determine the TD-OCC sequence that matches the repetition factor.
  • the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor.
  • the TD-OCC sequence is used to generate SRS.
  • the present application provides a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer storage medium.
  • the communication device causes the communication device to execute the above-mentioned first aspect and the above.
  • the method in any possible implementation manner, or the method in any possible implementation manner of the above second aspect.
  • the present application provides a computer program or computer program product, including code or instructions.
  • code or instructions When the code or instructions are run on a computer, the computer performs the steps of the first aspect and any possible implementation thereof. method, or the method in the second aspect and any possible implementation thereof.
  • the present application provides a chip module.
  • the chip module includes a communication module, a power module, a storage module and a chip, wherein: the power module is used to provide power for the chip module;
  • the storage module is used to store data and instructions;
  • the communication module is used for internal communication of the chip module, or for communication between the chip module and external devices; the chip is used to perform the first aspect The method in any possible implementation manner thereof, or the method in the second aspect and any possible implementation manner thereof.
  • Figure 1 is a schematic diagram of the system architecture of a communication system applying this application
  • Figure 2 is an example diagram of an OCC sequence used to generate CSI-RS
  • FIG. 3 is a schematic flow chart of an SRS generation method provided by this application.
  • Figure 4 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 5 is a schematic structural diagram of another communication device provided by this application.
  • FIG. 6 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • This application can be applied to the fifth generation (5th generation, 5G) system, which can also be called the new radio (new radio, NR) system; or can be applied to the sixth generation (6th generation, 6G) system, or the seventh generation ( 7th generation (7G) system, or other communication systems in the future; or it can also be used for device to device (D2D) system, machine to machine (M2M) system, vehicle to everything (V2X) )etc.
  • 5G fifth generation
  • NR new radio
  • the communication system 10 shown in FIG. 1 may include, but is not limited to: a network device 110 and a terminal device 120.
  • the number and form of the devices in Figure 1 are for example and do not constitute a limitation on the embodiments of the present application. For example, actual applications may include multiple terminal devices.
  • Terminal equipment also known as UE, mobile station (MS), mobile terminal (MT), etc.
  • UE mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality devices Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), etc.
  • MID mobile internet devices
  • VR virtual reality
  • AR Augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical surgery smart grid Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), etc.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip or a chip module, etc., and the device may be installed in the terminal device or Used in conjunction with terminal equipment.
  • the technical solution provided by this application is described by taking the device for realizing the functions of the terminal device being a terminal device as an example.
  • Network equipment which can also be called access network equipment, refers to a radio access network (RAN) node (or device) that connects terminal equipment to a wireless network, and can also be called a base station.
  • RAN nodes are: evolved Node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB) , base band unit (BBU), or wireless fidelity (Wifi) access point (access point, AP) etc.
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B (evolved Node B, eNB)
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e
  • the network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • the device used to realize the function of the network device may be a network device; it may also be a device that can support the network device to realize the function, such as a chip or a chip module, etc., and the device may be installed in the network device or Used in conjunction with network equipment.
  • the technical solution provided by this application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • the repetition factor (repetition factor, R) is used to describe the transmission unit of the SRS time domain symbol, that is, several SRS symbols are used as the transmission unit for transmission in the time domain.
  • the repetition factor is 4, which means that 4 SRS symbols are used as the transmission unit for transmission.
  • the repetition factor is 2, which means that 2 SRS symbols are used as the transmission unit for transmission.
  • Repetition factors can be understood as symbolic-level repetition parameters. It should be noted that the name repeating factor is used as an example, and other names used to describe the nature of repeating factors can be replaced with repeating factors.
  • the repetition factor is usually configured together with the number of time domain symbols of the SRS resource.
  • the number of time domain symbols of the SRS resource represents the number of symbols occupied by an SRS resource in the time domain.
  • the repetition factor and the number of time domain symbols of the SRS resource can be configured by the high-level parameter resourceMapping.
  • the configuration of the high-level parameter resourceMapping can include:
  • the number of time domain symbols of the SRS resource can be expressed as N_symbol, and the repetition factor can be expressed as R.
  • N_symbol, R (8,2), where 8 means that one SRS resource occupies 8 symbols in the time domain; 2 means that every 2 symbols are transmitted as a whole, for example, every 2 symbols are transmitted as a Perform frequency hopping as a whole; then These 8 symbols can be divided into 2 symbols * 4, that is, 4 transmissions, each transmission is used to transmit 2 symbols. Each of these 8 symbols carries the same SRS information.
  • (N_symbol, R) (12,1), where 12 means that one SRS resource occupies 12 symbols in the time domain; 1 means that each symbol is transmitted as a whole, for example, each symbol is transmitted as a whole. Perform frequency hopping; then these 12 symbols can be divided into 1 symbol * 12, that is, 12 transmissions, each transmission is used to transmit 1 symbol. Each of these 12 symbols carries the same SRS information.
  • the value range of the time domain symbol number of SRS resources can be ⁇ 1,2,4,8,10,12,14 ⁇
  • the value range of R can be ⁇ 1,2,4,5,6,7 ,8,10,12,14 ⁇ .
  • the symbols involved in this application may be orthogonal frequency division multiplexing (OFDM) symbols, Discrete Fourier Transform-spread OFDM (Discrete Fourier Transform-spread OFDM) symbols, or other symbols. This application is not limited.
  • the TD-OCC sequence refers to the OCC sequence in the time domain.
  • the TD-OCC sequence can also be described as a time domain OCC sequence.
  • the TD-OCC sequence can be used to generate a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the TD-OCC sequence used to generate PUCCH may be as shown in Table 1 or Table 2 below.
  • n represents the orthogonal sequence index
  • w n (i) represents the TD-OCC sequence corresponding to the orthogonal sequence index
  • i represents the i-th element in the orthogonal sequence index.
  • the TD-OCC sequence used to generate PUCCH can be as shown in Table 3 or Table 4 below.
  • PUCCH format3 indicating PUCCH format4 or interleaved mapping occupies 2 symbols in one SF, and its corresponding TD-OCC sequence can be [+1+1] or [+1-1].
  • PUCCH format3 indicating PUCCH format4 or interleaved mapping occupies 4 symbols in a subframe SF, and its corresponding TD-OCC sequence can be [+1+1+1+1] or [+1-j+1+j] Or [+1-1+1-1] or [+1+j-1-j].
  • the TD-OCC sequence can be used to generate a physical uplink shared channel (physical uplink shared channel, PUSCH) modulation reference signal (demodulation reference signal, DM-RS).
  • PUSCH physical uplink shared channel
  • DM-RS demodulation reference signal
  • Table 5 Parameters for PUSCH DM-RS Type 1
  • w f (k') represents the frequency domain OCC sequence
  • w t (l') represents the TD-OCC sequence
  • CDM stands for code division multiplexing
  • the index of the CDM group is represented by ⁇ .
  • the TD-OCC sequence can be used to generate physical downlink shared channel (PDSCH) DM-RS.
  • PDSCH physical downlink shared channel
  • the TD-OCC sequence used to generate PDSCH DM-RS can be shown in Table 6 below.
  • Table 6 Parameters for PDSCH DM-RS Type 1
  • w f (k') represents the frequency domain OCC sequence
  • w t (l') represents the TD-OCC sequence
  • the TD-OCC sequence can be used for channel state information-reference signal (CSI-RS).
  • CSI-RS channel state information-reference signal
  • the TD-OCC sequence used to generate CSI-RS can be shown in Table 7 below; for the CDM type CDM8 (FD2, TD4), the TD-OCC sequence used to generate CSI
  • the TD-OCC sequence of -RS can be shown in Table 8 below.
  • Table 7 Frequency domain sequence w f (k') and time domain sequence w t (l') of CDM4 (FD2, TD2)
  • Table 8 Frequency domain sequence w f (k') and time domain sequence w t (l') of CDM4 (FD2, TD4)
  • Figure 2 takes CDM4 (FD2, TD2) as an example, which indicates that it occupies 2 resource elements (RE) in the frequency domain and occupies 2 symbols in the time domain.
  • the four antenna ports from antenna port 3000 to antenna port 3003 occupy the same time-frequency resources.
  • the CSI-RS transmitted on these four antenna ports are multiplied by different OCC sequences to achieve orthogonality between CSI-RS and realize the transmission of 4 CSI-RS in the same time-frequency resource.
  • the four CSI-RS The base sequences may be the same or different. Using different OCC sequences to generate different CSI-RS on the same time-frequency resource can improve system capacity.
  • Figure 2 The OCC sequence in is composed of a frequency domain OCC sequence and a time-frequency OCC sequence.
  • this application provides an SRS generation method and device, which can reduce interference between SRSs, thereby facilitating channel estimation by network equipment.
  • FIG. 3 is a schematic flow chart of the SRS generation method provided by this application. The process specifically includes the following steps:
  • the network device sends the first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain, and the value of the repetition factor is a positive integer greater than or equal to 1.
  • This application can be adapted to the situation where the value of the repetition factor is greater than 1.
  • the value of the repeating factor is one of the preset value sets.
  • the preset value range can be predefined by the protocol. For example, the default value set ⁇ 1,2,4,5,6,7,8,10,12,14 ⁇ , as the standard evolves, the default value set may change (such as adding some values value or reduce some value).
  • the repetition factor will be referred to as R for short below.
  • the first configuration information may also include TD-OCC information used by the SRS resources.
  • the TD-OCC information may include one or more TD-OCC sequence index numbers, or the TD-OCC information is used to configure the length information of the TD-OCC sequence, or the TD-OCC information is used to configure the TD -Generation information for OCC sequences.
  • the first configuration information may also include activation and/or deactivation indication information of the TD-OCC function of the SRS.
  • R when the TD-OCC function of the SRS is activated, R can be associated with TD-OCC information at the same time. That is, when R is configured in the first configuration information, the TD-OCC information associated with R can also be found implicitly.
  • the TD-OCC information may include one or more OCC sequence index numbers, or the TD-OCC information is used to configure the length information of the TD-OCC sequence, or the TD-OCC information is used to configure the TD-OCC sequence index number. OCC sequence generation information.
  • the terminal device can also report to the network device whether it supports the TD-OCC capability of SRS. If the terminal device supports the TD-OCC capability of SRS, indicating that the terminal device can generate and/or use the TD-OCC sequence of SRS, then the first configuration information may include or implicitly indicate the TD-OCC information. If the terminal device does not support the TD-OCC capability of SRS, indicating that the terminal device cannot generate and/or use the TD-OCC sequence of SRS, then the first configuration information does not contain or does not implicitly indicate the TD-OCC information.
  • the first configuration information may also include indication information for instructing the terminal device to activate or deactivate the first capability.
  • the first capability refers to that TD-OCCs of different sequence lengths can be used simultaneously within one SRS resource.
  • the first capability refers to the ability to simultaneously use TD-OCC sequences of different sequence lengths within one SRS resource.
  • the terminal device may also report to the network device whether it supports the first capability.
  • the first configuration information may be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device determines a TD-OCC sequence that matches the repetition factor, and the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor.
  • the terminal device may use the following method 1, method 2, or method 3 to determine the TD-OCC sequence that matches R, and the sequence length of the TD-OCC sequence is less than or equal to the value of R.
  • the SRS symbols mentioned in this application refer to symbols used to transmit SRS, where the symbols may be OFDM symbols, DFT-s-OFDM symbols, or other symbols, which are not limited by this application.
  • Method 1 The terminal device generates a sequence matching R based on the first TD-OCC sequence and/or the second TD-OCC sequence. TD-OCC sequence.
  • the sequence length of the first TD-OCC sequence is a first threshold
  • the sequence length of the second TD-OCC sequence is a second threshold
  • the first threshold is smaller than the second threshold.
  • the first threshold is 2 and the second threshold is 4.
  • the sequence length of the TD-OCC sequence is usually 2 or 4. This application takes the sequence length of the first TD-OCC sequence as 2 and the sequence length of the second TD-OCC sequence as 4 as an example, that is, the first threshold is 2 and the second threshold is 4 as an example.
  • the sequence length of the TD-OCC sequence matching R is equal to the value of R.
  • the sequence length of the TD-OCC sequence matching R is smaller than the value of R.
  • the sequence length of the TD-OCC sequence matching R can be divisible by 2 and/or 4, and the sequence length of the TD-OCC sequence matching R is equal to the value of R.
  • R 6, which is divisible by 2
  • the TD-OCC sequence matching R consists of a first TD-OCC sequence and a second TD-OCC sequence.
  • the sequence length of the TD-OCC sequence matching R cannot be divisible by 2 and/or 4, and the sequence length of the TD-OCC sequence matching R is smaller than the value of R.
  • R 7, which is not divisible by 2 and/or 4, and the TD-OCC sequence matching R consists of a first TD-OCC sequence and a second TD-OCC sequence.
  • the TD-OCC sequences matching R are 3 TD-OCC sequences with a sequence length of 2.
  • the three TD-OCC sequences with sequence length 2 may be the same TD-OCC sequence.
  • 1 SRS symbol is not multiplied by the TD-OCC sequence, but there are 3 groups of 2 SRS symbols multiplied by the TD-OCC sequence with the sequence length of 2.
  • the one SRS symbol may be the last SRS symbol in time among the seven SRS symbols or the first SRS symbol in time among the seven SRS symbols.
  • the remainder after dividing 7 by 4 is 3.
  • the TD-OCC sequence matching R is a sequence length of 4.
  • the three SRS symbols may be the last three SRS symbols in time of the seven SRS symbols or the three first SRS symbols in time of the seven SRS symbols.
  • the remainder of 7 divided by 4 is 3, and the remainder of 3 divided by 2 is 1.
  • the one SRS symbol may be the last SRS symbol in time among the seven SRS symbols or the first SRS symbol in time among the seven SRS symbols.
  • the sequence length of the TD-OCC sequence matching R is M
  • the quotient of R divided by M is denoted as X
  • the remainder is denoted as Y.
  • the TD-OCC sequences used by X groups of M SRS symbols can be the same.
  • the Y SRS symbols may be the last Y SRS symbols of the R SRS symbols in time or the last Y SRS symbols in time of the R SRS symbols. The first Y SRS symbols.
  • the TD-OCC sequences used by the M SRS symbols in the X1 group may be the same, and/or the TD-OCC sequences used by the N SRS symbols in the X3 group may also be the same.
  • the Y2 SRS symbols may be the Y2 SRS symbols that are the last in time of the R SRS symbols or the Y2 SRS symbols that are the first in time of the R SRS symbols.
  • the M SRS symbols of the X1 group may be before or after the N SRS symbols of the X3 group.
  • the TD-OCC sequence matching R may be a first TD-OCC sequence.
  • the first TD-OCC sequence in this application may be but is not limited to: a TD-OCC sequence with a sequence length of 2 used to generate PUCCH, a sequence used to generate DM-RS (PUSCH DM-RS or PDSCH DM-RS)
  • the TD-OCC sequence with a length of 2 is used to generate a TD-OCC sequence with a sequence length of 2 for CSI-RS, or other TD-OCC sequences with a sequence length of 2.
  • the terminal device may choose to The orthogonal sequence w n (i) used to generate PUCCH is used as the first TD-OCC sequence; or choose to Orthogonal sequence w n (i) used to generate PUCCH as the first TD-OCC sequence; or select w t (l') used to generate PUSCH DM-RS as the first TD-OCC sequence; or select w t (l') used to generate PUSCH DM-RS as the first TD-OCC sequence; or select [w t (0) w t (1)] used to generate CSI-RS is used as the first TD-OCC sequence.
  • the terminal device's selection of [+1+1] or [+1-1] may be predefined by the protocol or configured by the base station through high-level signaling.
  • the TD-OCC sequence matching R can be a second TD-OCC sequence.
  • the second TD-OCC sequence in this application may be but is not limited to: a TD-OCC sequence with a sequence length of 4 used to generate PUCCH, a sequence used to generate DM-RS (PUSCH DM-RS or PDSCH DM-RS)
  • the TD-OCC sequence with a length of 4 is used to generate a TD-OCC sequence with a sequence length of 4 for CSI-RS, or other TD-OCC sequences with a sequence length of 4.
  • the terminal device can select any one w n (i) in Table 2, or any one w n (i) in Table 4, or any one [w t (0) w t (1)w t (2)w t (3)] as the second TD-OCC sequence.
  • the TD-OCC sequence matching R can also be a combination of two first TD-OCC sequences.
  • the two first TD-OCC sequences can be the same (for example, the gain can be improved) or different. For example, one is [+1+1], the other one is [+1-1]; or both are [+1-1]; or both are [+1+1].
  • the TD-OCC sequence matching R can be a second TD-OCC sequence.
  • the second TD-OCC sequence can be, for example, any w n (i) in Table 2, or any of the w n (i) in Table 4 Any one w n (i), or any one [w t (0)w t (1)w t (2)w t (3)] in Table 8.
  • the SRS symbol corresponding to the remainder may be the last SRS symbol or the first SRS symbol in time corresponding to R, and the SRS corresponding to the remainder Symbols may not operate using TD-OCC.
  • the TD-OCC sequence matching R can also be a combination of two first TD-OCC sequences.
  • the two first TD-OCC sequences can be the same (for example, the gain can be improved) or different.
  • one is [+1+1]
  • the other one is [+1-1]; or both are [+1-1]; or both are [+1+1].
  • the SRS symbol corresponding to the remainder may be the last SRS symbol or the first SRS symbol in time corresponding to R, and the SRS corresponding to the remainder Symbols may not operate using TD-OCC.
  • the TD-OCC sequence matching R can be a combination of 1 first TD-OCC sequence + 1 second TD-OCC sequence, that is, 1 first TD-OCC sequence first, 1 second TD -OCC sequence follows the first TD-OCC sequence.
  • the first TD-OCC sequence can be, for example, [+1+1] or [+1-1]
  • the second TD-OCC sequence can be, for example, any w n (i) in Table 2, or any of the w n (i) in Table 4 Any one w n (i), or any one [w t (0)w t (1)w t (2)w t (3)] in Table 8.
  • the TD-OCC sequence matching R is [+1+1+ 1+1-1-1].
  • the SRS symbol corresponding to the second TD-OCC sequence may be in front, and the SRS symbol corresponding to the first TD-OCC sequence may be in the back; or it may be that the SRS symbol corresponding to the first TD-OCC sequence is in front,
  • the SRS symbol corresponding to the second TD-OCC sequence follows.
  • the TD-OCC sequence matching R can also be a combination of three first TD-OCC sequences. These three first TD-OCC sequences can be all the same (for example, the gain can be improved) or partially different (for example, the previous The two first TD-OCC sequences are the same) or the two adjacent ones are different, for example, the first one is [+1+1], the second one is [+1-1], and the third one is [+1+ 1]; or all 3 are [+1-1]; or all 3 are [+1+1]; or the first is [+1+1], the second is [+1+1], The third one is [+1-1]; and so on.
  • the TD-OCC sequence matching R can be a combination of 1 first TD-OCC sequence + 1 second TD-OCC sequence.
  • the first TD-OCC sequence can be, for example, [+1+1] or [+1-1]
  • the second TD-OCC sequence can be, for example, any w n (i) in Table 2, or any of the w n (i) in Table 4 Any one w n (i), or any one [w t (0)w t (1)w t (2)w t (3)] in Table 8.
  • the first TD-OCC sequence is [+1+1] and the second TD-OCC sequence is [+1+1-1-1]
  • the TD-OCC sequence matching R is [+1+1+ 1+1-1-1].
  • the SRS symbol corresponding to the second TD-OCC sequence may be in front, and the SRS symbol corresponding to the first TD-OCC sequence may be in the back; or it may be that the SRS symbol corresponding to the first TD-OCC sequence is in front,
  • the SRS symbol corresponding to the second TD-OCC sequence follows.
  • the TD-OCC sequence matching R can also be a combination of three first TD-OCC sequences. These three first TD-OCC sequences can be all the same (for example, the gain can be improved) or partially different (for example, the previous The two first TD-OCC sequences are the same) or the two adjacent ones are different, for example, the first one is [+1+1], the second one is [+1-1], and the third one is [+1+ 1]; or all 3 are [+1-1]; or all 3 are [+1+1]; or the first is [+1+1], the second is [+1+1], The third one is [+1-1]; and so on.
  • the TD-OCC sequence matching R can also be a combination of four first TD-OCC sequences. These four first TD-OCC sequences can be all the same (for example, the gain can be improved) or partially different (for example, the previous 2 first TD-OCC sequences are the same) or 2 adjacent ones are different, for example, 4 are all [+1+1]; or 4 are all [+1-1]; etc.
  • the TD-OCC sequence matching R can also be a combination of two second TD-OCC sequences.
  • the two second TD-OCC sequences can be the same (for example, the gain can be improved) or different.
  • the second TD-OCC sequence may be, for example, the table Any kind of w n (i) in 2, or any kind of w n (i) in Table 4, or any kind of w n (i) in Table 8 [w t (0)w t (1)w t ( 2) w t (3)].
  • the TD-OCC sequence matching R can be a combination of 2 first TD-OCC sequences + 1 second TD-OCC sequence.
  • the two first TD-OCC sequences may be the same or different.
  • the first TD-OCC sequence can be, for example, [+1+1] or [+1-1]
  • the second TD-OCC sequence can be, for example, any w n (i) in Table 2, or any of the w n (i) in Table 4 Any one w n (i), or any one [w t (0)w t (1)w t (2)w t (3)] in Table 8.
  • the SRS symbols corresponding to the second TD-OCC sequence may be in front, and the SRS symbols corresponding to the two first TD-OCC sequences may be in the back; or it may be the SRS symbols corresponding to the two first TD-OCC sequences.
  • the symbol is in front, and the SRS symbol corresponding to the second TD-OCC sequence is in the back; or it can be that the SRS symbol corresponding to the first TD-OCC sequence is in the front, the SRS symbol corresponding to the second TD-OCC sequence is in the middle, and the other
  • the SRS symbol corresponding to the first TD-OCC sequence follows.
  • the TD-OCC sequence matching R can also be a combination of five first TD-OCC sequences. These five first TD-OCC sequences can be all the same or partially different (for example, the first two first TD-OCC sequences The OCC sequence is the same) or two adjacent ones are different.
  • the TD-OCC sequence matching R can also be a combination of 3 first TD-OCC sequences + 1 second TD-OCC sequence. These three first TD-OCC sequences can be all the same or partially different. (For example, the first two first TD-OCC sequences are the same) or the two adjacent ones are different. Among them, in terms of time, the SRS symbols corresponding to the second TD-OCC sequence may be in front, and the SRS symbols corresponding to the three first TD-OCC sequences may be in the back; or it may be the SRS symbols corresponding to the three first TD-OCC sequences.
  • the symbol is in front, and the SRS symbol corresponding to the second TD-OCC sequence is in the back; or it can be that the SRS symbols corresponding to the two first TD-OCC sequences are in the front, the SRS symbol corresponding to the second TD-OCC sequence is in the middle, and the other The SRS symbol corresponding to the first TD-OCC sequence is in the back; or it can be that the SRS symbol corresponding to the first TD-OCC sequence is in the front, the SRS symbol corresponding to the second TD-OCC sequence is in the middle, and the other two first TD -The SRS symbol corresponding to the OCC sequence comes last.
  • the TD-OCC sequence matching R can also be a combination of one first TD-OCC sequence + two second TD-OCC sequences.
  • the two second TD-OCC sequences can be the same or different. Among them, in terms of time, the SRS symbols corresponding to the two second TD-OCC sequences may be at the front and the SRS symbols corresponding to the first TD-OCC sequence may be at the back; or the SRS symbols corresponding to the first TD-OCC sequence may be at the back.
  • the SRS symbols corresponding to the 2 second TD-OCC sequences are in the back; or it can be that the SRS symbols corresponding to the 1 second TD-OCC sequence are in the front, the SRS symbols corresponding to the first TD-OCC sequence are in the middle, and the other The SRS symbol corresponding to the second TD-OCC sequence follows.
  • the TD-OCC sequence matching R can also be a combination of 6 first TD-OCC sequences. These 6 first TD-OCC sequences can be all the same or partially different (for example, the first 2 first TD-OCC sequences The OCC sequence is the same) or two adjacent ones are different.
  • the TD-OCC sequence matching R can also be a combination of three second TD-OCC sequences. These three second TD-OCC sequences can be all the same or partially different (for example, the first two second TD-OCC sequences The OCC sequence is the same) or two adjacent ones are different.
  • the TD-OCC sequence matching R can also be a combination of 2 second TD-OCC sequences + 2 first TD-OCC sequences.
  • the two second TD-OCC sequences can be the same or different.
  • the 2 first TD-OCC sequences can be Same or different.
  • the SRS symbols corresponding to the two second TD-OCC sequences may be in front, and the SRS symbols corresponding to the two first TD-OCC sequences may be in the back; or it may be the SRS symbols corresponding to the two first TD-OCC sequences.
  • the SRS symbol corresponding to the first TD-OCC sequence comes first, and the SRS symbols corresponding to the two second TD-OCC sequences follow; or it can be the SRS symbol corresponding to the first TD-OCC sequence comes first, and the SRS symbols corresponding to the two second TD-OCC sequences follow.
  • the symbol is in the middle, and the SRS symbol corresponding to the other first TD-OCC sequence is behind; or the SRS symbol corresponding to the second TD-OCC sequence is in the front, and the SRS symbols corresponding to the two first TD-OCC sequences are in the middle.
  • the other SRS symbol corresponding to the second TD-OCC sequence follows.
  • the TD-OCC sequence matching R can also be a combination of 7 first TD-OCC sequences. These 7 first TD-OCC sequences can be all the same or partially different (for example, the first 2 first TD-OCC sequences The OCC sequence is the same) or two adjacent ones are different.
  • the TD-OCC sequence matching R can also be a combination of 2 second TD-OCC sequences + 3 first TD-OCC sequences.
  • the two second TD-OCC sequences can be the same or different.
  • the three first TD-OCC sequences may be completely or partially identical (for example, the first two second TD-OCC sequences are the same) or the two adjacent ones may be different.
  • the SRS symbols corresponding to the two second TD-OCC sequences may be in front, and the SRS symbols corresponding to the three first TD-OCC sequences may be in the back; or it may be the SRS symbols corresponding to the three first TD-OCC sequences.
  • the SRS symbol corresponding to the second TD-OCC sequence comes first, and the SRS symbols corresponding to the two second TD-OCC sequences follow; or it can be the SRS symbol corresponding to the second TD-OCC sequence comes first, and the SRS symbols corresponding to the three second TD-OCC sequences
  • the symbol is in the middle, and the SRS symbol corresponding to the second TD-OCC sequence is behind; or the SRS symbol corresponding to the first TD-OCC sequence is in the front, and the SRS symbols corresponding to the two second TD-OCC sequences are in the middle.
  • the SRS symbols corresponding to the other 2 first TD-OCC sequences are in the back; or the SRS symbols corresponding to the 2 first TD-OCC sequences are in the front, the SRS symbols corresponding to the 2 second TD-OCC sequences are in the middle, and the other 1
  • the SRS symbol corresponding to the first TD-OCC sequence follows; and so on.
  • the TD-OCC sequence matching R can also be a combination of 1 second TD-OCC sequence and 5 first TD-OCC sequences (for example, the 1 second TD-OCC sequence can be arranged first or in sequence or arranged somewhere in the middle), the five first TD-OCC sequences may be completely or partially identical (for example, the first two second TD-OCC sequences are the same) or the two adjacent ones may be different.
  • the SRS symbol corresponding to one second TD-OCC sequence may be in the front, and the SRS symbols corresponding to the five first TD-OCC sequences may be in the back; or it may be the SRS symbol corresponding to the five first TD-OCC sequences.
  • the SRS symbol is in the front, and the SRS symbol corresponding to the second TD-OCC sequence is in the back; and so on.
  • the TD-OCC sequence matching R can also be a combination of 3 second TD-OCC sequences and 1 first TD-OCC sequence (for example, the 1 first TD-OCC sequence can be arranged first or in sequence (at the end or somewhere in the middle), the three second TD-OCC sequences may be completely or partially identical (for example, the first two second TD-OCC sequences are the same) or the two adjacent ones may be different.
  • the SRS symbol corresponding to one first TD-OCC sequence may be in front, and the SRS symbols corresponding to three second TD-OCC sequences may be in the back; or it may be the SRS symbol corresponding to three second TD-OCC sequences.
  • the SRS symbol is in the front, and the SRS symbol corresponding to the first TD-OCC sequence is in the back; and so on.
  • the network device may also send a first modification command to the terminal device, and accordingly, the terminal device receives the first modification command from the network device.
  • the first modification command is used to instruct modification of the first TD-OCC sequence and/or the second TD-OCC sequence among the TD-OCC sequences matching R.
  • the first modification command may instruct the first TD-OCC sequence to be modified to [+1-1], so that the newly composed TD-OCC sequence matching R is [+1-1+ 1+1-1-1].
  • the first modification command may be, for example, a medium access control-control element (MAC-CE) or downlink control information (DCI). Modifying the first TD-OCC sequence and/or the second TD-OCC sequence through the first modification command helps to improve the flexibility of the generated SRS.
  • MAC-CE medium access control-control element
  • DCI downlink control information
  • Method 2 The terminal device generates a TD-OCC sequence matching R based on the second configuration information.
  • the second configuration information may be sent by the network device to the terminal device, and accordingly, the terminal device receives the second configuration information from the network device.
  • the second configuration information may be RRC signaling.
  • the second configuration information is used to configure one or more reference TD-OCC sequences, and the terminal device generates a TD-OCC sequence matching R according to the configured one or more reference TD-OCC sequences.
  • the specific number of reference TD-OCC sequences may be related to the value of R.
  • the second configuration information may act on each R consecutive SRS symbols of the SRS resource, or act on the entire SRS symbol, or act on all SRS resources in the SRS resource set, or act on all SRS resources in the SRS resource set. Every R consecutive SRS symbols of the resource.
  • the second configuration information is used to configure a reference TD-OCC sequence with a sequence length of 4.
  • the reference TD-OCC sequence can be any w n (i) in Table 2, or Table 4 Any one of w n (i), or any one of [w t (0)w t (1)w t (2)w t (3)] in Table 8, or other sequence lengths is the TD-OCC sequence of 4.
  • the second configuration information is used to configure a reference TD-OCC sequence [+1+1] with a sequence length of 2 and a reference TD-OCC sequence [+1+1] with a sequence length of 4 -1-1], the second configuration information can also be used to configure the order of the two reference TD-OCC sequences (for example, the reference TD-OCC sequence with sequence length 2 comes first).
  • the network device may also send a second modification command to the terminal device, and accordingly, the terminal device receives the second modification command from the network device.
  • the second modification command is used to instruct modification of the above one or more reference TD-OCC sequences.
  • the second modification command may indicate that [+1+1 ] is modified to [+1-1], so that the TD-OCC sequence matching R can be expressed as [+1-1+1+1-1-1].
  • the second modification command may be MAC-CE, for example. Modifying the reference TD-OCC sequence indicated by the second configuration information through the second modification command helps to improve flexibility.
  • Method 3 The terminal device generates a TD-OCC sequence matching R according to the TD-OCC sequence predefined by the protocol.
  • the protocol can predefine the TD-OCC sequence corresponding to each R value.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 2 predefined by the protocol, for example, it can be [+1+1] or [+1-1], or it can be other TD-OCC sequence with sequence length 2.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 4 predefined by the protocol, for example, it can be any w n (i) in Table 2, or any of the w n (i) in Table 4 Any kind of w n (i), or any kind of [w t (0)w t (1)w t (2)w t (3)] in Table 8, or other sequence length 4 TD-OCC sequence. It can also be a combination of two TD-OCC sequences with a sequence length of 2 predefined by the protocol. These two TD-OCC sequences with a sequence length of 2 can be the same or different.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 5 predefined by the protocol; It can also be a TD-OCC sequence with a sequence length of 4 predefined by the protocol (conducive to capacity expansion).
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 6 predefined by the protocol;
  • It can also be a TD-OCC sequence with a sequence length of 5 predefined by the protocol (conducive to expansion); it can also be a TD-OCC sequence with a sequence length of 4 and a TD-OCC sequence with a sequence length of 2 predefined by the protocol.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 7 predefined by the protocol;
  • It can also be a TD-OCC sequence with a sequence length of 6 predefined by the protocol (conducive to capacity expansion).
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 8 predefined by the protocol; it can also be a TD-OCC sequence with a sequence length of 7 predefined by the protocol (conducive to capacity expansion) ; It can also be a combination of 4 TD-OCC sequences with a sequence length of 2 predefined by the protocol; it can also be a combination of 2 TD-OCC sequences with a sequence length of 4; or it can be 1 TD with a sequence length of 4 - Combination of OCC sequence and 2 TD-OCC sequences with sequence length 2.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 10 predefined by the protocol; it can also be a combination of 5 TD-OCC sequences with a sequence length of 2 predefined by the protocol; It can also be a combination of 4 TD-OCC sequences with sequence length 2 and 1 TD-OCC sequence with sequence length 2; it can also be a combination of 3 TD-OCC sequences with sequence length 2 and 1 sequence length 4 A combination of TD-OCC sequences.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 12 predefined by the protocol; it can also be a combination of 6 TD-OCC sequences with a sequence length of 2 predefined by the protocol; It can also be a combination of two TD-OCC sequences with a sequence length of 4 and two TD-OCC sequences with a sequence length of 2; it can also be a combination of three TD-OCC sequences with a sequence length of 4.
  • the TD-OCC sequence matching R can be a TD-OCC sequence with a sequence length of 14 predefined by the protocol; it can also be a combination of 7 TD-OCC sequences with a sequence length of 2 predefined by the protocol; It can also be a combination of 2 TD-OCC sequences with a sequence length of 4 and 3 TD-OCC sequences with a sequence length of 2; it can also be a combination of 5 TD-OCC sequences with a sequence length of 2 and 1 TD-OCC sequence with a sequence length of 4 A combination of TD-OCC sequences; it can also be a combination of one TD-OCC sequence with a sequence length of 2 and three TD-OCC sequences with a sequence length of 4.
  • the above-mentioned modes 1 to 3 can be executed selectively or in combination, for example, mode 2 and mode 3 are combined, and the second configuration information is used to indicate at least one TD-OCC sequence among multiple predefined TD-OCC sequences. It should be noted that the above-mentioned modes 1 to 3 are used as examples and do not constitute a limitation of the present application.
  • the terminal device generates an SRS based on the TD-OCC sequence.
  • the terminal device generates SRS based on the TD-OCC sequence and the SRS base sequence.
  • the TD-OCC sequence and the SRS base sequence are multiplied to obtain the SRS sequence, and the SRS can be obtained based on the SRS sequence.
  • the SRS base sequence may or may not use R as the transmission unit. If R is used as the transmission unit, then the sequence length of the TD-OCC sequence and the SRS base sequence are the same. If R is not used as the transmission unit, then the base sequence corresponding to the TD-OCC sequence is selected from the SRS base sequence, and the SRS sequence can be obtained by multiplying the base sequence and the TD-OCC sequence.
  • the generated SRS refers to the SRS of one transmission unit R.
  • SRS1 is generated based on TD-OCC sequence 1
  • SRS2 is generated based on TD-OCC sequence 2
  • SRS3 is generated based on TD-OCC sequence 3
  • SRS4 is generated based on TD-OCC sequence 4.
  • the sequence length is 6, and these 4 SRS occupy the same 6 symbols in the time domain. Since these four TD-OCC sequences are orthogonal, the interference between these four SRSs is small, so these six symbols can carry SRSs of four terminal devices or four SRSs of one terminal device. This will help improve system capacity.
  • the TD-OCC sequence is generated based on the repetition factor, and the SRS is generated based on the TD-OCC sequence, which can reduce interference between SRSs, thereby facilitating channel estimation by network equipment. Generating SRS based on TD-OCC sequences can also improve system capacity.
  • TD-OCC sequence then the method provided by this application cannot be applied, or the frequency hopping method can be used to reduce interference between SRSs.
  • the frequency hopping method has an exclusive relationship with the method provided by this application.
  • the generated SRS is an SRS with R as the transmission unit, and the SRS symbol corresponding to the TD-OCC sequence will not span two adjacent R SRS symbols. That is, the starting symbol of each R SRS symbols is the start of a new TD-OCC sequence. For example (12,6), the starting symbol of every 6 SRS symbols is the start of a new TD-OCC sequence.
  • the generated time domain resources of the SRS and the time domain resources of the physical uplink channel both include the first time domain resource, then the time domain resources of the SRS are discarded and sent on the time domain resources of the physical uplink channel.
  • Physical uplink channel can be a physical uplink control channel (physical uplink control channel, PUCCH) or a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the time domain resources of the SRS and the time domain resources of the physical uplink channel both include the first time domain resource. It can be understood that the time domain resources of the SRS and the time domain resources of the physical uplink channel occupy the same time domain resources, or that the SRS and the physical uplink channel occupy the same time domain resources. Collisions occur in the time domain. Discarding the time domain resources of the SRS can be understood as discarding the entire SRS resource, that is, not sending the SRS.
  • the conflicting SRS TD-OCC sequence corresponding to the first time domain resource is determined, and the conflict is discarded
  • the sequence is a TD-OCC sequence with a sequence length of 2, then the SRS symbols corresponding to the TD-OCC sequence with a sequence length of 2 are discarded, and the SRS symbols corresponding to the TD-OCC sequence with a sequence length of 4 are retained, so that SRS can still be transmitted; if the conflicting TD-OCC sequences corresponding to the first time domain resource are these two TD-OCC sequences, then these two TD-OCC sequences can be discarded and SRS will not be transmitted or the transmitted SRS will not use TD-OCC. sequence.
  • the TD-OCC sequence matching R is a predefined TD-OCC sequence with a sequence length of 6. If the conflicting TD-OCC sequence corresponding to the first time domain resource is a TD-OCC sequence with a sequence length of 6 , then discard the TD-OCC sequence with a sequence length of 6, and do not transmit the SRS or the transmitted SRS does not use the TD-OCC sequence. This way time domain conflicts can be avoided.
  • the time domain resources of the SRS and the time domain resources of the physical uplink channel both include the first time domain resource.
  • the time domain resources of the SRS and the time domain resources of the physical uplink channel occupy the same time domain resources, or that the SRS and the physical uplink channel occupy the same time domain resources. Collisions occur in the time domain. Discarding the time domain resources of the SRS can be understood as discarding the entire SRS resource, that is, not sending the SRS.
  • the physical uplink channel may be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • Figure 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 40 may be a terminal device, or a device matching the terminal device.
  • the communication device 40 includes a processing unit 401 and a communication unit 402 .
  • the communication unit 402 is configured to receive first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain; the value of the repetition factor is a positive integer greater than or equal to 1;
  • the processing unit 401 is used to determine the TD-OCC sequence that matches the repetition factor.
  • the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; and generates an SRS based on the TD-OCC sequence.
  • the processing unit 401 is specifically configured to generate a TD-OCC sequence that matches the repetition factor based on the first TD-OCC sequence and/or the second TD-OCC sequence; the sequence length of the first TD-OCC sequence is A threshold, the sequence length of the second TD-OCC sequence is the second threshold, and the first threshold is smaller than the second threshold.
  • sequence length of the TD-OCC sequence can be divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence is equal to the value of the repetition factor;
  • the sequence length of the TD-OCC sequence cannot be divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence is smaller than the value of the repetition factor.
  • the communication unit 402 is also configured to receive first modification signaling, which is used to indicate modification of the first TD-OCC sequence and/or the second TD-OCC sequence.
  • the communication unit 402 is also configured to receive second configuration information, and the second configuration information is used to configure one or more reference TD-OCC sequences for the SRS;
  • the processing unit 401 is specifically configured to generate a TD-OCC sequence that matches the repetition factor based on one or more reference TD-OCC sequences.
  • the communication unit 402 is also configured to receive second modification signaling, where the second modification signaling is used to indicate modification of one or more reference TD-OCC sequences.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include the first time domain resource
  • the processing unit 401 is also configured to discard the time-frequency resources of the SRS; the communication unit 402 is also configured to transmit the physical uplink channel on the time domain resources of the physical uplink channel.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include the first time domain resource
  • the processing unit 401 is specifically configured to determine the conflicting SRS TD-OCC sequence corresponding to the first time domain resource, and discard the SRS symbol corresponding to the conflicting SRS TD-OCC.
  • the value of the repeating factor is one of the preset value sets.
  • the communication device 40 may be a network device or a device matching the network device. As shown in FIG. 4 , the communication device 40 includes a communication unit 402 .
  • the communication unit 402 is used to send first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain; the value of the repetition factor is a positive integer greater than or equal to 1; repetition
  • the factor is used to determine the TD-OCC sequence that matches the repeating factor.
  • the sequence length of the TD-OCC sequence is less than or equal to the value of the repeating factor; the TD-OCC sequence is used to generate SRS.
  • FIG. 5 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 50 may be a terminal device, or a device matching the terminal device.
  • the communication device 50 may be a network device or a device matching the network device.
  • the communication device may also include a memory 503.
  • the transceiver 501, the processor 502, and the memory 503 can be connected through the bus 504 or other means.
  • the bus is represented by a thick line in Figure 5, and the connection methods between other components are only schematically illustrated and are not limiting.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the specific connection medium between the above-mentioned transceiver 501, processor 502, and memory 503 is not limited in the embodiment of the present application.
  • Memory 503 may include read-only memory and random access memory and provides instructions and data to processor 502 . A portion of memory 503 may also include non-volatile random access memory.
  • the processor 502 can be a central processing unit (Central Processing Unit, CPU).
  • the processor 502 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC). ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, and optionally, the processor 502 may also be any conventional processor.
  • the memory 503 is used to store program instructions; the processor 502 is used to call the program instructions stored in the memory 503 to execute the steps performed by the terminal device in the corresponding embodiment of Figure 3 .
  • the memory 503 is used to store program instructions; the processor 502 is used to call the program instructions stored in the memory 503 to execute what the network device in the corresponding embodiment of FIG. 3 executes. step.
  • a general-purpose computing device such as a computer including a CPU, a random access storage medium (Random Access Memory, RAM), a read-only storage medium (Read-Only Memory, ROM) and other processing elements and storage elements can be used.
  • a computer program (including program code) capable of executing each step involved in the above method is run on the device, and the method provided by the embodiment of the present application is implemented.
  • the computer program can be recorded on, for example, a computer-readable recording medium, loaded into the above-mentioned computing device through the computer-readable recording medium, and run therein.
  • the aforementioned communication device may be, for example, a chip or a chip module.
  • An embodiment of the present application also provides a chip.
  • the chip includes a processor, and the processor can execute relevant steps of the terminal device in the foregoing method embodiment.
  • the chip is configured to: receive first configuration information, the first configuration information is used to configure a repetition factor of the SRS in the time domain; the value of the repetition factor is a positive integer greater than or equal to 1; Determine the TD-OCC sequence that matches the repetition factor. The sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; generate an SRS based on the TD-OCC sequence.
  • the chip is specifically used to generate a TD-OCC sequence that matches the repetition factor based on the first TD-OCC sequence and/or the second TD-OCC sequence; the sequence length of the first TD-OCC sequence is the first threshold.
  • the second TD-OCC sequence The sequence length of the column is the second threshold, and the first threshold is smaller than the second threshold.
  • sequence length of the TD-OCC sequence can be divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence is equal to the value of the repetition factor;
  • the sequence length of the TD-OCC sequence cannot be divisible by the first threshold and/or the second threshold, and the sequence length of the TD-OCC sequence is smaller than the value of the repetition factor.
  • the chip is also configured to receive first modification signaling, and the first modification signaling is used to indicate modification of the first TD-OCC sequence and/or the second TD-OCC sequence.
  • the chip is also used to receive second configuration information, and the second configuration information is used to configure one or more reference TD-OCC sequences for the SRS;
  • the chip is specifically used to generate a TD-OCC sequence that matches the repeat factor based on one or more reference TD-OCC sequences.
  • the chip is also configured to receive second modification signaling, and the second modification signaling is used to indicate modification of one or more reference TD-OCC sequences.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include the first time domain resource
  • This chip is also used to discard the time-frequency resources of the SRS and transmit the physical uplink channel on the time domain resources of the physical uplink channel.
  • both the time domain resources of the SRS and the time domain resources of the physical uplink channel include the first time domain resource
  • the chip is specifically used to determine the conflicting TD-OCC sequence corresponding to the first time domain resource, and discard the SRS symbol corresponding to the conflicting TD-OCC sequence.
  • the value of the repeating factor is one of the preset value sets.
  • the chip is used to: send first configuration information, the first configuration information is used to configure the repetition factor of the SRS in the time domain; the value of the repetition factor is a positive integer greater than or equal to 1; repeat The factor is used to determine the TD-OCC sequence that matches the repeating factor. The sequence length of the TD-OCC sequence is less than or equal to the value of the repeating factor; the TD-OCC sequence is used to generate SRS.
  • FIG. 6 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • the chip module 60 can perform the relevant steps of the terminal device in the foregoing method embodiment.
  • the chip module 60 includes: a communication interface 601 and a chip 602.
  • the communication interface is used for internal communication of the chip module, or for communication between the chip module and external devices.
  • the communication interface can also be described as a communication module.
  • the chip 602 is used to implement the functions of the terminal device in the embodiment of the present application.
  • the chip 602 is used to receive first configuration information.
  • the first configuration information is used to configure the repetition factor of the SRS in the time domain; the value of the repetition factor is a positive integer greater than or equal to 1; and determines the TD that matches the repetition factor.
  • -OCC sequence the sequence length of the TD-OCC sequence is less than or equal to the value of the repetition factor; based on the TD-OCC sequence, an SRS is generated.
  • the chip module 60 may also include a storage module 603 and a power module 604.
  • the storage module 603 is used to store data and instructions.
  • the power module 604 is used to provide power to the chip module.
  • each module included in it can be implemented in the form of hardware such as circuits.
  • Different modules can be located in the same component of the chip module (such as chips, circuit modules, etc.) or Different components, or at least some of the modules, can be implemented in the form of software programs that run on The processor is integrated inside the chip module, and the remaining (if any) modules can be implemented using circuits and other hardware methods.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • One or more instructions are stored in the computer-readable storage medium.
  • the one or more instructions are suitable for the processor to load and execute the method provided by the above method embodiment.
  • Embodiments of the present application also provide a computer program product containing a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the method provided by the above method embodiments.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM, flash memory, ROM, erasable programmable ROM (EPROM), electrically erasable programmable read-only memory (EPROM, EEPROM), register, hard disk, removable hard disk, CD-ROM or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the terminal device or management device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or management device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) wait.
  • each device and product described in the above embodiments may be software modules/units or hardware modules/units, or they may be partly software modules/units and partly hardware modules/units.
  • each module/unit contained therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program runs on the processor integrated inside the chip, and the remaining (if any) modules/units can be implemented by circuits and other hardware methods; for each device and product applied to or integrated in the chip module, each module/unit it contains They can all be implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components.
  • at least some modules/units can be implemented in the form of software programs.
  • this software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device and product that is applied to or integrated into the terminal, each of its included Modules/units can all be implemented in hardware such as circuits.
  • Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units can be implemented in software programs.
  • the software program runs on the processor integrated inside the terminal, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种探测参考信号生成方法及装置,基于TD-OCC序列生成SRS,可以降低SRS之间的干扰,从而有利于网络设备进行信道估计。其中,该方法可包括:接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值;基于该TD-OCC序列,生成SRS。

Description

探测参考信号生成方法及装置
本申请要求于2022年8月2日提交中国专利局、申请号为202210923447.0、申请名称为“探测参考信号生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种探测参考信号生成方法及装置。
背景技术
在时分双工(time division duplex,TDD)场景中,网络设备可以测量用户设备(user equipment,UE)发送的探测参考信号(sounding reference signal,SRS),得到上行信道信息,并基于上行信道和上下行信道的互易性,来推断出下行信道的信道状态信息(channel state information,CSI)。在第三代合作伙伴计划(3rd-generation partnership project,3GPP)标准版本18(Release,R18)中,引入了相干联合传输(coherent joint transmission,CJT),其最多可以支持4个网络设备同时为UE进行下行传输。随着CJT的引入,更多的传输接收点(transmission reception point,TRP)需要通过SRS来进行信道估计,因此SRS的需求会大大增加。这会引入更多的SRS之间的干扰。SRS之间的干扰会直接影响网络设备的信道估计。因此,如何降低SRS之间的干扰是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种探测参考信号生成方法及装置,可以降低SRS之间的干扰,从而有利于网络设备进行信道估计。
第一方面,本申请提供一种探测参考信号生成方法,该方法可包括:接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;确定与重复因子匹配的时分正交覆盖码(time division orthogonal cover code,TD-OCC)序列,该TD-OCC序列的序列长度小于或等于重复因子的取值;基于该TD-OCC序列,生成SRS。
可见,基于重复因子生成TD-OCC序列,基于TD-OCC序列生成SRS,可以降低SRS之间的干扰,从而有利于网络设备进行信道估计。基于TD-OCC序列生成SRS,还可以提升***容量。
在一种可能的实现方式中,确定与重复因子匹配的TD-OCC序列,可包括:基于第一TD-OCC序列和/或第二TD-OCC序列,生成与重复因子匹配的TD-OCC序列。其中,第一TD-OCC序列的序列长度为第一阈值,第二TD-OCC序列的序列长度为第二阈值,第一阈值小于第二阈值。第一TD-OCC序列和第二TD-OCC序列可以是已有的TD-OCC序列,基于已有的TD-OCC序列生成用于生成SRS的TD-OCC序列,可以提高已有TD-OCC序列的利用率,节省信令开销。
在一种可能的实现方式中,用于生成SRS的TD-OCC序列的序列长度能被第一阈值和/或第二阈值整除,用于生成SRS的TD-OCC序列的序列长度等于重复因子的取值。从而可以充分利用已有的TD-OCC序列。
在一种可能的实现方式中,用于生成SRS的TD-OCC序列的序列长度不能被第一阈值和/或第二阈值整除,用于生成SRS的TD-OCC序列的序列长度小于重复因子的取值。从而有利于提升***容量。
在一种可能的实现方式中,上述方法还包括:接收第一修改命令,第一修改命令用于指示修改第一TD-OCC序列和/或第二TD-OCC序列。从而有助于提高生成的SRS的灵活性。
在一种可能的实现方式中,上述方法还包括:接收第二配置信息,第二配置信息用于为所述SRS配置一个或多个参考TD-OCC序列;确定与重复因子匹配的TD-OCC序列,可包括:根据一个或多个参考TD-OCC序列,生成与重复因子匹配的TD-OCC序列。可见,网络设备可以指示终端设备采用哪个或哪些TD-OCC序列生成用于生成SRS的TD-OCC序列,以便网络设备可以快速对接收的SRS进行处理。
在一种可能的实现方式中,上述方法还包括:接收第二修改命令,第二修改命令用于指示修改一个或多个参考TD-OCC序列。从而有助于提高生成的SRS的灵活性。
在一种可能的实现方式中,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源,上述方法还包括:丢弃SRS的时域资源并在物理上行信道的时域资源上发送物理上行信道。可见,在SRS的时域资源与物理上行信道的时域资源冲突的情况下,优先发送物理上行信道,以避免时域冲突。
在一种可能的实现方式中,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源,上述方法还包括:确定第一时域资源对应的冲突的TD-OCC序列,丢弃冲突的TD-OCC序列对应的SRS符号。可见,在SRS的时域资源与物理上行信道的时域资源冲突的情况下,丢弃冲突的TD-OCC序列对应的SRS符号,在避免时域冲突的同时还能发送部分SRS符号。
在一种可能的实现方式中,上述重复因子的取值为预设取值集合中的一个。预设取值集合可以由协议预定义或由高层参数指示。
第二方面,本申请提供一种探测参考信号生成方法,该方法可包括:发送第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;重复因子用于确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值,该TD-OCC序列用于生成SRS。
可见,通过发送第一配置信息,有利于终端设备基于TD-OCC序列生成SRS,可以降低SRS之间的干扰,还可以提升***容量。
在一种可能的实现方式中,上述方法还包括:发送第二配置信息,第二配置信息用于为SRS配置一个或多个参考TD-OCC序列,以便终端设备根据一个或多个参考TD-OCC序列,生成与重复因子匹配的TD-OCC序列。可见,网络设备可以指示终端设备采用哪个或哪些TD-OCC序列生成用于生成SRS的TD-OCC序列,以便网络设备可以快速对接收的SRS进行处理。
在一种可能的实现方式中,上述方法还包括:发送第二修改命令,第二修改命令用于指示修改一个或多个参考TD-OCC序列。可见,通过第二修改命令可以提高灵活性。
在一种可能的实现方式中,上述重复因子的取值为预设取值集合中的一个。预设取值 集合可以由协议预定义或由高层参数指示。
第三方面,本申请提供一种通信装置。在一种实现方式中,该装置包括处理单元和通信单元,通信单元,用于接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;处理单元,用于确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值;基于该TD-OCC序列,生成SRS。在另一种实现方式中,该装置包括通信单元,用于发送第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;重复因子用于确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值,该TD-OCC序列用于生成SRS。
第四方面,本申请提供一种通信装置,该装置包括处理器、存储器及存储在存储器上的计算机程序或指令,其特征在于,处理器执行计算机程序或指令以实现如第一方面及其任一种可能的实现方式中的方法,或如第二方面及其任一种可能的实现方式中的方法。
第五方面,本申请提供一种芯片。在一种实现方式中,该芯片用于接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;处理单元,用于确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值;基于该TD-OCC序列,生成SRS。在另一种实现方式中,该芯片用于发送第一配置信息,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数;重复因子用于确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值,该TD-OCC序列用于生成SRS。
第六方面,本申请提供一种计算机可读存储介质,该计算机存储介质中存储有计算机可读指令,当该计算机可读指令在计算机上运行时,使得该通信装置执行上述第一方面及其任一种可能的实现方式中的方法,或上述第二方面的及其任一种可能的实现方式中的方法。
第七方面,本申请提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面的及其任一种可能的实现方式中的方法,或如第二方面的及其任一种可能的实现方式中的方法。
第八方面,本申请提供一种芯片模组,芯片模组包括通信模组、电源模组、存储模组以及芯片,其中:所述电源模组用于为所述芯片模组提供电能;所述存储模组用于存储数据和指令;所述通信模组用于进行芯片模组内部通信,或者用于所述芯片模组与外部设备进行通信;所述芯片用于执行如第一方面的及其任一种可能的实现方式中的方法,或如第二方面的及其任一种可能的实现方式中的方法。
附图说明
图1是应用本申请的一种通信***的***架构示意图;
图2是用于生成CSI-RS的OCC序列的示例图;
图3是本申请提供的一种SRS生成方法的流程示意图;
图4是本申请提供的一种通信装置的结构示意图;
图5是本申请提供的另一种通信装置的结构示意图;
图6是本申请实施例提供的一种芯片模组的结构示意图。
具体实施方式
在本申请中,“第一”、“第二”等字样用于对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应当理解,本申请中,“至少一个”指的是一个或多个;“多个”是指两个或两个以上。此外,本申请的“等于”可以与“大于”连用,也可以与“小于”连用。在“等于”与“大于”连用的情况下,采用“大于”的技术方案;在“等于”与“小于”连用的情况下,采用“小于”的技术方案。
首先,对本申请涉及的***架构进行阐述。
本申请可应用于第五代(5th generation,5G)***,也可以称为新空口(new radio,NR)***;或者可应用于第六代(6th generation,6G)***,或者第七代(7th generation,7G)***,或未来的其他通信***;或者还可用于设备到设备(device to device,D2D)***,机器到机器(machine to machine,M2M)***、车联网(vehicle to everything,V2X)等等。
本申请可应用于图1所示的***架构中。图1所示的通信***10可包括但不限于:网络设备110和终端设备120。图1中设备的数量和形态用于举例,并不构成对本申请实施例的限定,例如实际应用中可以包括多个终端设备。
终端设备,又称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片或芯片模组等,该装置可以被安装在终端设备中或者和终端设备匹配使用。在本申请提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请提供的技术方案。
网络设备,也可以称为接入网设备,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point, AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。需要说明的是,集中单元节点、分布单元节点还可能采用其他名称,本申请并不限定。
在本申请中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片或芯片模组等,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请提供的技术方案。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
其次,对本申请涉及的相关名称或术语进行阐述,以便于本领域技术人员理解。
1、重复因子
在本申请中,重复因子(repetition factor,R)用于描述SRS时域符号的传输单位,即在时域上以几个SRS符号作为传输单位进行传输。例如重复因子为4,表示以4个SRS符号作为传输单位进行传输。再例如,重复因子为2,表示以2个SRS符号作为传输单位进行传输。重复因子可以理解为符号级别的重复参数。需要说明的是,重复因子这个名称用于举例,其他用于描述重复因子本质的名称可以与重复因子替换。
重复因子通常与SRS资源的时域符号数一起配置,SRS资源的时域符号数表示一个SRS资源在时域上占用的符号数。重复因子与SRS资源的时域符号数可由高层参数resourceMapping配置,例如高层参数resourceMapping的配置可包括:
SRS资源的时域符号数可表示为N_symbol,重复因子可表示为R。例如,R17支持(N_symbol,R)={(8,1),(8,2),(8,4),(8,8),(12,1),(12,2),(12,4),(12,6),(12,12),(10,1),(10,2),(10,5),(10,10),(14,1),(14,2),(14,7),(14,14)}。
示例性的,(N_symbol,R)=(8,2),其中,8表示一个SRS资源在时域上占用8个符号;2表示每2个符号作为一个整体传输,例如每2个符号作为一个整体进行跳频;那么 这8个符号可分为2个符号*4,即4个传输,每个传输用于传输2个符号。这8个符号中每个符号承载的SRS信息相同。
示例性的,(N_symbol,R)=(12,1),其中,12表示一个SRS资源在时域上占用12个符号;1表示每个符号作为一个整体传输,例如每1个符号作为一个整体进行跳频;那么这12个符号可分为1个符号*12,即12个传输,每个传输用于传输1个符号。这12个符号中每个符号承载的SRS信息相同。
目前,SRS资源的时域符号数的取值范围可以是{1,2,4,8,10,12,14},R的取值范围可以是{1,2,4,5,6,7,8,10,12,14}。需要说明的是,本申请涉及的符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread OFDM)符号,或者其他符号,本申请不作限定。
2、TD-OCC序列
TD-OCC序列指的是时域上的OCC序列。TD-OCC序列也可以描述为时域OCC序列。
在一种实现方式中,TD-OCC序列可以用于生成物理上行控制信道(physical uplink control channel,PUCCH)。
例如对于PUCCH格式(format)2而言,用于生成PUCCH的TD-OCC序列可如下表1或表2所示。
表1:时,针对PUCCH format2的正交序列wn(i)
表2:时,针对PUCCH format2的正交序列wn(i)
其中,n表示正交序列索引,wn(i)表示正交序列索引对应的TD-OCC序列,i表示正交序列索引中第i个元素。表示PUCCH format2在一个子帧(subframe,SF)中占用2个符号,其对应的TD-OCC序列可以是[+1+1]或[+1-1]。表示PUCCH format2在一个子帧SF中占用4个符号,其对应的TD-OCC序列可以是[+1+1+1+1]或[+1-1+1-1]或[+1+1-1-1]或[+1-1-1+1]。
再例如,对于PUCCH format4和交织映射的PUCCH format3而言,用于生成PUCCH的TD-OCC序列可如下表3或表4所示。
表3:时,针对PUCCH format4和交织映射的PUCCH format3的正交序列wn(i)
表4:时,针对PUCCH format4和交织映射的PUCCH format3的正交序列wn(i)
其中,表示PUCCH format4或交织映射的PUCCH format3在一个SF中占用2个符号,其对应的TD-OCC序列可以是[+1+1]或[+1-1]。表示PUCCH format4或交织映射的PUCCH format3在一个子帧SF中占用4个符号,其对应的TD-OCC序列可以是[+1+1+1+1]或[+1-j+1+j]或[+1-1+1-1]或[+1+j-1-j]。
在另一种实现方式中,TD-OCC序列可以用于生成物理上行共享信道(physical uplink shared channel,PUSCH)调制解调参考信号(demodulation reference signal,DM-RS)。例如,用于生成PUSCH DM-RS的TD-OCC序列可如下表5所示。
表5:针对PUSCH DM-RS类型1的参数
其中,wf(k')表示频域OCC序列,wt(l')表示TD-OCC序列。CDM表示码分复用(code division multiplexing),CDM组的索引用λ表示。
在又一种实现方式中,TD-OCC序列可以用于生成物理下行共享信道(physical downlink shared channel,PDSCH)DM-RS。例如,用于生成PDSCH DM-RS的TD-OCC序列可如下表6所示。
表6:针对PDSCH DM-RS类型1的参数

其中,wf(k')表示频域OCC序列,wt(l')表示TD-OCC序列。
在又一种实现方式中,TD-OCC序列可以用于信道状态信息参考信号(channel state information-reference signal,CSI-RS)。例如,对于CDM类型为CDM4(FD2,TD2)而言,用于生成CSI-RS的TD-OCC序列可如下表7所示;对于CDM类型为CDM8(FD2,TD4)而言,用于生成CSI-RS的TD-OCC序列可如下表8所示。
表7:CDM4(FD2,TD2)的频域序列wf(k')和时域序列wt(l')
表8:CDM4(FD2,TD4)的频域序列wf(k')和时域序列wt(l')
示例性的,可参见图2所示的用于生成CSI-RS的OCC序列的示例图。图2以CDM4(FD2,TD2)为例,表示在频域占用2个资源单元(resource element,RE),在时域占用2个符号。天线端口3000至天线端口3003这四个天线端口占用相同的时频资源。这四个天线端口上传输的CSI-RS通过乘以不同的OCC序列,以实现CSI-RS之间的正交性,实现同一时频资源传输4个CSI-RS,这4个CSI-RS的基序列可以相同或不同。采用不同的OCC序列在同一时频资源上生成不同的CSI-RS,可提升***容量。需要说明的是,图2 中的OCC序列由频域OCC序列和时频OCC序列组成。
为了降低SRS之间的干扰,可通过提升SRS之间的正交性实现。提升SRS之间的正交性,可通过TD-OCC序列生成SRS实现。因此,本申请提供一种SRS生成方法及装置,可以降低SRS之间的干扰,从而有利于网络设备进行信道估计。
下面对本申请提供的SRS生成方法进行阐述。
请参见图3,是本申请提供的SRS生成方法的流程示意图,该流程具体包括以下步骤:
S301,网络设备向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。
其中,第一配置信息用于配置SRS在时域上的重复因子,重复因子的取值为大于或者等于1的正整数。本申请可以适应于重复因子的取值大于1的情况。其中,重复因子的取值为预设取值集合中的一个。预设取值范围可以由协议预定义。例如,预设取值集合{1,2,4,5,6,7,8,10,12,14},随着标准的演进,预设取值集合可能会发生变化(如增加某些取值或减少某些取值)。为了描述方便,下文将重复因子简称为R。
可选的,第一配置信息还可以包含SRS资源所采用的TD-OCC信息。其中,所述TD-OCC信息可以包含一个或者多个TD-OCC序列索引号,或者所述TD-OCC信息用于配置TD-OCC序列的长度信息,或者所述TD-OCC信息用于配置TD-OCC序列的生成信息。
可选的,第一配置信息还可以包含SRS的TD-OCC功能的激活和/或去激活指示信息。其中,当SRS的TD-OCC功能激活时,R可以同时关联有TD-OCC信息。即,第一配置信息配置了R的同时,也可以隐式的找到R关联的TD-OCC信息。其中,所述TD-OCC信息可以包含有一个或者多个OCC序列索引号,或者所述TD-OCC信息用于配置TD-OCC序列的长度信息,或者所述TD-OCC信息用于配置TD-OCC序列的生成信息。其中,终端设备也可以向网络设备汇报自己是否支持SRS的TD-OCC能力。终端设备支持SRS的TD-OCC能力,表明终端设备可以生成和/或使用SRS的TD-OCC序列,那么第一配置信息可以包含或隐式指示所述TD-OCC信息。终端设备不支持SRS的TD-OCC能力,表明终端设备不能生成和/或使用SRS的TD-OCC序列,那么第一配置信息不包含或不隐式指示所述TD-OCC信息。
可选的,第一配置信息还可以包含指示信息,用于指示终端设备激活或去激活第一能力,第一能力指的是不同序列长度的TD-OCC在1个SRS资源内部能够同时使用。换言之,第一能力指的是在1个SRS资源内部能同时使用不同序列长度的TD-OCC序列。其中,终端设备也可以向网络设备汇报自己是否支持所述第一能力。
第一配置信息可以是无线资源控制(radio resource control,RRC)信令。
S302,终端设备确定与重复因子匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于重复因子的取值。
终端设备可采用如下方式1或方式2或方式3,确定与R匹配的TD-OCC序列,该TD-OCC序列的序列长度小于或等于R的取值。
本申请中提到的SRS符号指的是用于传输SRS的符号,其中符号可以是OFDM符号,DFT-s-OFDM符号,或者其他符号,本申请不做限制。
方式1,终端设备基于第一TD-OCC序列和/或第二TD-OCC序列,生成与R匹配的 TD-OCC序列。
其中,第一TD-OCC序列的序列长度为第一阈值,第二TD-OCC序列的序列长度为第二阈值,第一阈值小于第二阈值。例如,第一阈值为2,第二阈值为4。由上述表1至表8可得,TD-OCC序列的序列长度通常为2或4。本申请以第一TD-OCC序列的序列长度为2,第二TD-OCC序列的序列长度为4为例,即以第一阈值为2,第二阈值为4为例。
可选的,对于R的取值为偶数的情况,与R匹配的TD-OCC序列的序列长度等于R的取值,例如R=6,与R匹配的TD-OCC序列由一个第一TD-OCC序列和一个第二TD-OCC序列组成。对于R的取值为奇数的情况,与R匹配的TD-OCC序列的序列长度小于R的取值,例如R=5,与R匹配的TD-OCC序列由一个第二TD-OCC序列组成。
可选的,与R匹配的TD-OCC序列的序列长度能被2和/或4整除,与R匹配的TD-OCC序列的序列长度等于R的取值。例如,R=6,能被2整除,与R匹配的TD-OCC序列由一个第一TD-OCC序列和一个第二TD-OCC序列组成。与R匹配的TD-OCC序列的序列长度不能被2和/或4整除,与R匹配的TD-OCC序列的序列长度小于R的取值。例如,R=7,不能被2和/或4整除,与R匹配的TD-OCC序列由一个第一TD-OCC序列和一个第二TD-OCC序列组成。
可选的,以与R=7匹配的TD-OCC序列的序列长度为2为例,7除以2余数是1,此时,与R匹配的TD-OCC序列为3个序列长度为2的TD-OCC序列。其中,所述3个序列长度为2的TD-OCC序列可以是相同的TD-OCC序列。R=7的7个SRS符号中有1个SRS符号不乘以TD-OCC序列,而有3组2个SRS符号乘以所述序列长度为2的TD-OCC序列。可选的,所述1个SRS符号可以是7个SRS符号从时间上最后面的1个SRS符号或者是7个SRS符号从时间上最前面的1个SRS符号。
可选的,以与R=7匹配的TD-OCC序列的序列长度为4为例,7除以4余数是3,此时,与R匹配的TD-OCC序列为1个序列长度为4的TD-OCC序列。其表示,对应R=7的7个SRS符号中有3个SRS符号不乘以TD-OCC序列,而有4个SRS符号乘以所述序列长度为4的TD-OCC序列。可选的,所述3个SRS符号可以是7个SRS符号从时间上最后面的三个SRS符号或者是7个SRS符号从时间上最前面的三个SRS符号。
可选的,以与R=7匹配的TD-OCC序列的序列长度为4和2为例,7除以4余数是3,3除以2余数是1,此时,与R匹配的TD-OCC序列为1个序列长度为4的TD-OCC序列和1个序列长度为2的TD-OCC序列。其表示,对应R=7的7个SRS符号中有1个SRS符号不乘以TD-OCC序列,而有4个SRS符号乘以所述序列长度为4的TD-OCC序列以及有2个SRS符号乘以所述序列长度为2的TD-OCC序列。可选的,所述1个SRS符号可以是7个SRS符号从时间上最后面的1个SRS符号或者是7个SRS符号从时间上最前面的1个SRS符号。
可选的,以公式的方式来描述,以与R匹配的TD-OCC序列的序列长度为M时,R除以M的商记为X,余数记为Y。那么,表示,R个SRS符号中有个X组M个SRS符号各自乘以或者关联序列长度为M的TD-OCC序列,还有Y个SRS符号可以不进行TD-OCC的操作。中,X组M个SRS符号所采用的TD-OCC序列可以一样。可选的,所述Y个SRS符号可以是R个SRS符号从时间上最后面的Y个SRS符号或者是R个SRS符号从时间上 最前面的Y个SRS符号。
可选的,以公式的方式来描述,以与R匹配的TD-OCC序列的序列长度为M和N时(M>N),R除以M的商记为X1,余数记为Y1,Y1除以N的商记为X3,余数记为Y2,那么,表示,R个SRS符号中有个X1组M个SRS符号各自乘以或者关联序列长度为M的TD-OCC序列,还有X3组N个SRS符号各自乘以或者关联序列长度为N的TD-OCC序列,可选的,还可以有Y2个SRS符号不乘以TD-OCC序列。其中,X1组M个SRS符号所采用的TD-OCC序列可以一样,和/或X3组N个SRS符号所采用的TD-OCC序列也可以一样。可选的,所述Y2个SRS符号可以是R个SRS符号从时间上最后面的Y2个SRS符号或者是R个SRS符号从时间上最前面的Y2个SRS符号。其中,从时间上来看,X1组M个SRS符号可以在X3组N个SRS符号之前或者之后。
示例性的,基于方式1,以R的预设取值集合{1,2,4,5,6,7,8,10,12,14}为例,对与R匹配的TD-OCC序列进行介绍。
对于R=2:
与R匹配的TD-OCC序列可以是1个第一TD-OCC序列。本申请中的第一TD-OCC序列可以是但不限于:用于生成PUCCH的序列长度为2的TD-OCC序列,用于生成DM-RS(PUSCH DM-RS或PDSCH DM-RS)的序列长度为2的TD-OCC序列,用于生成CSI-RS的序列长度为2的TD-OCC序列,或者其他的序列长度为2的TD-OCC序列。例如,终端设备可选择将时用于生成PUCCH的正交序列wn(i)作为第一TD-OCC序列;或选择将时用于生成PUCCH的正交序列wn(i)作为第一TD-OCC序列;或选择将用于生成PUSCH DM-RS的wt(l')作为第一TD-OCC序列;或选择将用于生成CSI-RS的[wt(0)wt(1)]作为第一TD-OCC序列。再例如,终端设备选择[+1+1]或[+1-1]可由协议预定义或者基站通过高层信令配置。
对于R=4:
(1)与R匹配的TD-OCC序列可以是1个第二TD-OCC序列。本申请中的第二TD-OCC序列可以是但不限于:用于生成PUCCH的序列长度为4的TD-OCC序列,用于生成DM-RS(PUSCH DM-RS或PDSCH DM-RS)的序列长度为4的TD-OCC序列,用于生成CSI-RS的序列长度为4的TD-OCC序列,或者其他的序列长度为4的TD-OCC序列。例如终端设备可选择表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]作为第二TD-OCC序列。
(2)与R匹配的TD-OCC序列也可以是2个第一TD-OCC序列的组合,这2个第一TD-OCC序列可以相同(例如可以提高增益)或不相同,例如1个为[+1+1],另1个为[+1-1];或者2个均为[+1-1];或者2个均为[+1+1]。
对于R=5:
(1)与R匹配的TD-OCC序列可以是1个第二TD-OCC序列,第二TD-OCC序列例如可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]。可选的,对于R不能被第二TD-OCC序列整除的情况,余数所对应的SRS符号可以是R所对应的时间上最后面的SRS符号或者最前面的SRS符号,同时余数所对应的SRS符号可以不采用TD-OCC操作。
(2)与R匹配的TD-OCC序列也可以是2个第一TD-OCC序列的组合,这2个第一TD-OCC序列可以相同(例如可以提高增益)或不相同,例如1个为[+1+1],另1个为[+1-1];或者2个均为[+1-1];或者2个均为[+1+1]。可选的,对于R不能被第二TD-OCC序列整除的情况,余数所对应的SRS符号可以是R所对应的时间上最后面的SRS符号或者最前面的SRS符号,同时余数所对应的SRS符号可以不采用TD-OCC操作。
对于R=6:
(1)与R匹配的TD-OCC序列可以是1个第一TD-OCC序列+1个第二TD-OCC序列的组合,即1个第一TD-OCC序列在前,1个第二TD-OCC序列在该第一TD-OCC序列之后。第一TD-OCC序列例如可以是[+1+1]或[+1-1],第二TD-OCC序列例如可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]。例如,第一TD-OCC序列是[+1+1],第二TD-OCC序列是[+1+1-1-1],那么与R匹配的TD-OCC序列是[+1+1+1+1-1-1]。其中,从时间上,可以是第二TD-OCC序列对应的SRS符号在前,第一TD-OCC序列对应的SRS符号在后;或者可以是第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在后。
(2)与R匹配的TD-OCC序列也可以是3个第一TD-OCC序列的组合,这3个第一TD-OCC序列可以全部相同(例如可以提高增益)或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同,例如第1个为[+1+1],第二个为[+1-1],第三个为[+1+1];或者3个均为[+1-1];或者3个均为[+1+1];或者第1个为[+1+1],第二个为[+1+1],第三个为[+1-1];等等。
对于R=7:
(1)与R匹配的TD-OCC序列可以是1个第一TD-OCC序列+1个第二TD-OCC序列的组合。第一TD-OCC序列例如可以是[+1+1]或[+1-1],第二TD-OCC序列例如可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]。例如,第一TD-OCC序列是[+1+1],第二TD-OCC序列是[+1+1-1-1],那么与R匹配的TD-OCC序列是[+1+1+1+1-1-1]。其中,从时间上,可以是第二TD-OCC序列对应的SRS符号在前,第一TD-OCC序列对应的SRS符号在后;或者可以是第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在后。
(2)与R匹配的TD-OCC序列也可以是3个第一TD-OCC序列的组合,这3个第一TD-OCC序列可以全部相同(例如可以提高增益)或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同,例如第1个为[+1+1],第二个为[+1-1],第三个为[+1+1];或者3个均为[+1-1];或者3个均为[+1+1];或者第1个为[+1+1],第二个为[+1+1],第三个为[+1-1];等等。
对于R=8:
(1)与R匹配的TD-OCC序列也可以是4个第一TD-OCC序列的组合,这4个第一TD-OCC序列可以全部相同(例如可以提高增益)或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同,例如4个均为[+1+1];或者4个均为[+1-1];等等。
(2)与R匹配的TD-OCC序列也可以是2个第二TD-OCC序列的组合,这2个第二TD-OCC序列可以相同(例如可以提高增益)或不相同。第二TD-OCC序列例如可以是表 2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]。
(3)与R匹配的TD-OCC序列可以是2个第一TD-OCC序列+1个第二TD-OCC序列的组合。这2个第一TD-OCC序列可以相同或不相同。第一TD-OCC序列例如可以是[+1+1]或[+1-1],第二TD-OCC序列例如可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)]。其中,从时间上,可以是第二TD-OCC序列对应的SRS符号在前,2个第一TD-OCC序列对应的SRS符号在后;或者可以是2个第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在后;或者可以是1个第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在中间,另一个第一TD-OCC序列对应的SRS符号在后。
对于R=10:
(1)与R匹配的TD-OCC序列也可以是5个第一TD-OCC序列的组合,这5个第一TD-OCC序列可以全部相同或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同。
(2)与R匹配的TD-OCC序列也可以是3个第一TD-OCC序列+1个第二TD-OCC序列的组合,这3个第一TD-OCC序列可以全部相同或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同。其中,从时间上,可以是第二TD-OCC序列对应的SRS符号在前,3个第一TD-OCC序列对应的SRS符号在后;或者可以是3个第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在后;或者可以是2个第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在中间,另一个第一TD-OCC序列对应的SRS符号在后;或者可以是1个第一TD-OCC序列对应的SRS符号在前,第二TD-OCC序列对应的SRS符号在中间,另2个第一TD-OCC序列对应的SRS符号在后。
(3)与R匹配的TD-OCC序列也可以是1个第一TD-OCC序列+2个第二TD-OCC序列的组合,这2个第二TD-OCC序列可以相同或不相同。其中,从时间上,可以是2个第二TD-OCC序列对应的SRS符号在前,第一TD-OCC序列对应的SRS符号在后;或者可以是第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在后;或者可以是1个第二TD-OCC序列对应的SRS符号在前,第一TD-OCC序列对应的SRS符号在中间,另一个第二TD-OCC序列对应的SRS符号在后。
对于R=12:
(1)与R匹配的TD-OCC序列也可以是6个第一TD-OCC序列的组合,这6个第一TD-OCC序列可以全部相同或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同。
(2)与R匹配的TD-OCC序列也可以是3个第二TD-OCC序列的组合,这3个第二TD-OCC序列可以全部相同或部分不相同(例如前2个第二TD-OCC序列相同)或相邻2个均不相同。
(3)与R匹配的TD-OCC序列也可以是2个第二TD-OCC序列+2个第一TD-OCC序列的组合,这2个第二TD-OCC序列可以相同或不相同,这2个第一TD-OCC序列可以相 同或不相同。其中,从时间上,可以是2个第二TD-OCC序列对应的SRS符号在前,2个第一TD-OCC序列对应的SRS符号在后;或者可以是2个第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在后;或者可以是1个第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在中间,另1个第一TD-OCC序列对应的SRS符号在后;或者1个第二TD-OCC序列对应的SRS符号在前,2个第一TD-OCC序列对应的SRS符号在中间,另1个第二TD-OCC序列对应的SRS符号在后。
对于R=14:
(1)与R匹配的TD-OCC序列也可以是7个第一TD-OCC序列的组合,这7个第一TD-OCC序列可以全部相同或部分不相同(例如前2个第一TD-OCC序列相同)或相邻2个均不相同。
(2)与R匹配的TD-OCC序列也可以是2个第二TD-OCC序列+3个第一TD-OCC序列的组合,这2个第二TD-OCC序列可以相同或不相同,这3个第一TD-OCC序列可以完全相同或部分相同(例如前2个第二TD-OCC序列相同)或相邻2个均不相同。其中,从时间上,可以是2个第二TD-OCC序列对应的SRS符号在前,3个第一TD-OCC序列对应的SRS符号在后;或者可以是3个第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在后;或者可以是1个第二TD-OCC序列对应的SRS符号在前,3个第二TD-OCC序列对应的SRS符号在中间,另1个第二TD-OCC序列对应的SRS符号在后;或者1个第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在中间,另2个第一TD-OCC序列对应的SRS符号在后;或者2个第一TD-OCC序列对应的SRS符号在前,2个第二TD-OCC序列对应的SRS符号在中间,另1个第一TD-OCC序列对应的SRS符号在后;等等。
(3)与R匹配的TD-OCC序列也可以是1个第二TD-OCC序列与5个第一TD-OCC序列的组合(例如这1个第二TD-OCC序列可以排列在前或排列在后或排列在中间某个位置),这5个第一TD-OCC序列可以完全相同或部分相同(例如前2个第二TD-OCC序列相同)或相邻2个均不相同。其中,从时间上,可以是1个第二TD-OCC序列对应的SRS符号在前,5个第一TD-OCC序列对应的SRS符号在后;或者可以是5个第一TD-OCC序列对应的SRS符号在前,1个第二TD-OCC序列对应的SRS符号在后;等等。
(4)与R匹配的TD-OCC序列也可以是3个第二TD-OCC序列与1个第一TD-OCC序列的组合(例如这1个第一TD-OCC序列可以排列在前或排列在后或在中间某个位置),这3个第二TD-OCC序列可以完全相同或部分相同(例如前2个第二TD-OCC序列相同)或相邻2个均不相同。其中,从时间上,可以是1个第一TD-OCC序列对应的SRS符号在前,3个第二TD-OCC序列对应的SRS符号在后;或者可以是3个第二TD-OCC序列对应的SRS符号在前,1个第一TD-OCC序列对应的SRS符号在后;等等。
进一步的,对于上述方式1,网络设备还可向终端设备发送第一修改命令,相应的,终端设备接收来自网络设备的第一修改命令。其中,第一修改命令用于指示修改与R匹配的TD-OCC序列的中第一TD-OCC序列和/或第二TD-OCC序列。例如,R=6,与R匹配的TD-OCC序列是[+1+1+1+1-1-1],由第一TD-OCC序列[+1+1]+第二TD-OCC序列[+1 +1-1-1]组成,第一修改命令可指示将第一TD-OCC序列修改为[+1-1],从而新组成的与R匹配的TD-OCC序列是[+1-1+1+1-1-1]。第一修改命令例如可以是介质访问控制-控制元素(medium access control-control element,MAC-CE)或者下行控制信息(downlink control information,DCI)。通过第一修改命令修改第一TD-OCC序列和/或第二TD-OCC序列,有助于提高生成的SRS的灵活性。
方式2,终端设备基于第二配置信息,生成与R匹配的TD-OCC序列。
其中,第二配置信息可由网络设备向终端设备发送,相应的,终端设备接收来自网络设备的第二配置信息。第二配置信息可以是RRC信令。第二配置信息用于配置一个或多个参考TD-OCC序列,终端设备根据配置的一个或多个参考TD-OCC序列生成与R匹配的TD-OCC序列。参考TD-OCC序列的具体数量可以与R的取值有关。其中,所述第二配置信息可以作用于SRS资源的每R个连续SRS符号,或者作用于整个SRS符号,或者作用于SRS resource set中的所有SRS资源,或者作用于SRS resource set中的所有SRS资源的每R个连续SRS符号。
例如,R=4,第二配置信息用于配置一个序列长度为4的参考TD-OCC序列,该参考TD-OCC序列可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)],还可以是其他的序列长度为4的TD-OCC序列。再例如,R=6,第二配置信息用于配置1个序列长度为2的参考TD-OCC序列[+1+1]和1个序列长度为4的参考TD-OCC序列[+1+1-1-1],第二配置信息还可以用于配置这两个参考TD-OCC序列的顺序(例如序列长度2的参考TD-OCC序列在前)。
进一步的,对于上述方式2,网络设备还可向终端设备发送第二修改命令,相应的,终端设备接收来自网络设备的第二修改命令。其中,第二修改命令用于指示修改上述一个或多个参考TD-OCC序列。例如,R=6,第二配置信息指示两个TD-OCC序列,分别为[+1+1]和[+1+1-1-1],第二修改命令可指示将[+1+1]修改为[+1-1],从而与R匹配的TD-OCC序列可表示为[+1-1+1+1-1-1]。第二修改命令例如可以是MAC-CE。通过第二修改命令修改第二配置信息指示的参考TD-OCC序列,有助于提高灵活性。
方式3,终端设备根据协议预定义的TD-OCC序列,生成与R匹配的TD-OCC序列。也就是说,协议可预定义各个R的取值对应的TD-OCC序列。
示例性的,基于方式3,以R的预设取值集合{1,2,4,5,6,7,8,10,12,14}为例,对与R匹配的TD-OCC序列进行介绍。
对于R=2:与R匹配的TD-OCC序列可以是协议预定义的序列长度为2的TD-OCC序列,例如可以是[+1+1]或[+1-1],还可以是其他序列长度为2的TD-OCC序列。
对于R=4:与R匹配的TD-OCC序列可以是协议预定义的序列长度为4的TD-OCC序列,例如可以是表2中的任意一种wn(i),或是表4中的任意一种wn(i),或是表8中的任意一种[wt(0)wt(1)wt(2)wt(3)],还可以是其他序列长度为4的TD-OCC序列。也可以是协议预定义的2个序列长度为2的TD-OCC序列的组合,这2个序列长度为2的TD-OCC序列可以相同或不相同。
对于R=5:与R匹配的TD-OCC序列可以是协议预定义的序列长度为5的TD-OCC序列; 也可以是协议预定义的序列长度为4的TD-OCC序列(有利于扩容)。
对于R=6:与R匹配的TD-OCC序列可以是协议预定义的序列长度为6的TD-OCC序列;
也可以是协议预定义的序列长度为5的TD-OCC序列(有利于扩容);也可以是协议预定义的1个序列长度为4的TD-OCC序列与1个序列长度为2的TD-OCC序列的组合;还可以是协议预定义的3个序列长度为2的TD-OCC序列的组合。
对于R=7:与R匹配的TD-OCC序列可以是协议预定义的序列长度为7的TD-OCC序列;
也可以是协议预定义的序列长度为6的TD-OCC序列(有利于扩容)。
对于R=8:与R匹配的TD-OCC序列可以是协议预定义的序列长度为8的TD-OCC序列;也可以是协议预定义的序列长度为7的TD-OCC序列(有利于扩容);也可以是协议预定义的4个序列长度为2的TD-OCC序列的组合;也可以是2个序列长度为4的TD-OCC序列的组合;也可以是1个序列长度为4的TD-OCC序列与2个序列长度为2的TD-OCC序列的组合。
对于R=10:与R匹配的TD-OCC序列可以是协议预定义的序列长度为10的TD-OCC序列;也可以是协议预定义的5个序列长度为2的TD-OCC序列的组合;也可以是4个序列长度为2的TD-OCC序列和1个序列长度为2的TD-OCC序列的组合;也可以是3个序列长度为2的TD-OCC序列与1个序列长度为4的TD-OCC序列的组合。
对于R=12:与R匹配的TD-OCC序列可以是协议预定义的序列长度为12的TD-OCC序列;也可以是协议预定义的6个序列长度为2的TD-OCC序列的组合;也可以是2个序列长度为4的TD-OCC序列和2个序列长度为2的TD-OCC序列的组合;也可以是3个序列长度为4的TD-OCC序列的组合。
对于R=14:与R匹配的TD-OCC序列可以是协议预定义的序列长度为14的TD-OCC序列;也可以是协议预定义的7个序列长度为2的TD-OCC序列的组合;也可以是2个序列长度为4的TD-OCC序列和3个序列长度为2的TD-OCC序列的组合;也可以是5个序列长度为2的TD-OCC序列和1个序列长度为4的TD-OCC序列的组合;还可以是1个序列长度为2的TD-OCC序列和3个序列长度为4的TD-OCC序列的组合。
上述方式1至方式3可以择一执行,也可以结合执行,例如结合方式2和方式3,第二配置信息用于指示预定义的多个TD-OCC序列中的至少一个TD-OCC序列。需要说明的是,上述方式1至方式3用于举例,并不构成对本申请的限定。
S303,终端设备基于该TD-OCC序列,生成SRS。
可选的,终端设备基于该TD-OCC序列和SRS基序列生成SRS。例如,该TD-OCC序列与SRS基序列相乘,可得到SRS序列,基于该SRS序列可得SRS。SRS基序列可能以R为传输单位,也可能不以R为传输单位。若以R为传输单位,那么该TD-OCC序列与SRS基序列的序列长度相同。若不以R为传输单位,那么从SRS基序列中选择与该TD-OCC序列对应的基序列,将该基序列与该TD-OCC序列相乘可得SRS序列。也就是说,生成的SRS指的是一个传输单位R的SRS。例如,R=4,生成的SRS指的是在时域上,一个以4个符号为传输单位的SRS。再例如,R=6,生成的SRS指的是在时域上,一个以6 个符号为传输单位的SRS。
示例性的,R=6,基于TD-OCC序列1生成SRS1,基于TD-OCC序列2生成SRS2,TD-OCC序列3生成SRS3,TD-OCC序列4生成SRS4,这4个TD-OCC序列的序列长度为6,这4个SRS在时域上占用相同的6个符号。由于这4个TD-OCC序列具有正交性,使得这4个SRS之间的干扰较小,从而这6个符号上可承载4个终端设备的SRS或承载1个终端设备的4个SRS,从而有利于提升***容量。
在图3所示的实施例中,基于重复因子生成TD-OCC序列,基于TD-OCC序列生成SRS,可以降低SRS之间的干扰,从而有利于网络设备进行信道估计。基于TD-OCC序列生成SRS,还可以提升***容量。
作为一种可选的实施例,网络设备针对某些R可能不会配置TD-OCC序列,或协议针对某些不会预定义TD-OCC序列,例如针对R=5或R=7不会配置TD-OCC序列,那么便不能应用本申请提供的方法,或者采用跳频方法以减少SRS之间的干扰。或者,跳频方法与本申请提供的方法是排他关系。
作为一种可选的实施例,生成的SRS是一个以R为传输单位的SRS,TD-OCC序列所对应的SRS符号不会横跨两个相邻的R个SRS符号。即每R个SRS符号的起始符号都是一个新的TD-OCC序列的起始。例如(12,6),每6个SRS符号的起始符号都是一个新的TD-OCC序列的起始。
作为一种可选的实施例,生成的SRS的时域资源与物理上行信道的时域资源均包括第一时域资源,那么丢弃SRS的时域资源并在物理上行信道的时域资源上发送物理上行信道。其中,物理上行信道可以是物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。SRS的时域资源与物理上行信道的时域资源均包括第一时域资源,可以理解为SRS的时域资源与物理上行信道的时域资源占用相同的时域资源,或SRS与物理上行信道在时域上发生碰撞。丢弃SRS的时域资源可以理解为丢弃整个SRS资源,也就是说不发送SRS。
在另一种实现方式中,生成SRS的时域资源与物理上行信道的时域资源均包括第一时域资源时,确定第一时域资源对应的冲突的SRS TD-OCC序列,丢弃掉冲突的SRS TD-OCC序列所对应的SRS符号。例如,R=6,与R匹配的TD-OCC序列由一个序列长度为2的TD-OCC序列和一个序列长度为4的TD-OCC序列组成,若第一时域资源对应的冲突TD-OCC序列为序列长度为2的TD-OCC序列,那么将该序列长度为2的TD-OCC序列所对应的SRS符号丢弃,保留该序列长度为4的TD-OCC序列所对应的SRS符号,从而使得SRS仍然可以传输;若第一时域资源对应的冲突TD-OCC序列为这2个TD-OCC序列,那么可丢弃这2个TD-OCC序列,不传输SRS或传输的SRS不采用TD-OCC序列。再例如,与R匹配的TD-OCC序列是一个预定义的序列长度为6的TD-OCC序列,若第一时域资源对应的冲突TD-OCC序列为该序列长度为6的TD-OCC序列,那么丢弃这个序列长度为6的TD-OCC序列,不传输SRS或传输的SRS不采用TD-OCC序列。从而可以避免时域冲突。SRS的时域资源与物理上行信道的时域资源均包括第一时域资源,可以理解为SRS的时域资源与物理上行信道的时域资源占用相同的时域资源,或SRS与物理上行信道在时域上发生碰撞。丢弃SRS的时域资源可以理解为丢弃整个SRS资源,也就是说不发送SRS。 其中,物理上行信道可以是物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
请参见图4,图4是本申请实施例提供的一种通信装置的结构示意图。该通信装置40可以是终端设备,也可以是与终端设备匹配的装置。如图4所示,该通信装置40包括处理单元401和通信单元402。
在一种实现方式中,通信单元402,用于接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子;重复因子的取值为大于或者等于1的正整数;
处理单元401,用于确定与重复因子匹配的TD-OCC序列,TD-OCC序列的序列长度小于或等于重复因子的取值;基于TD-OCC序列,生成SRS。
可选的,处理单元401,具体用于基于第一TD-OCC序列和/或第二TD-OCC序列,生成与重复因子匹配的TD-OCC序列;第一TD-OCC序列的序列长度为第一阈值,第二TD-OCC序列的序列长度为第二阈值,第一阈值小于第二阈值。
可选的,TD-OCC序列的序列长度能被第一阈值和/或第二阈值整除,TD-OCC序列的序列长度等于重复因子的取值;
或者,
TD-OCC序列的序列长度不能被第一阈值和/或第二阈值整除,TD-OCC序列的序列长度小于重复因子的取值。
可选的,通信单元402,还用于接收第一修改信令,第一修改信令用于指示修改第一TD-OCC序列和/或第二TD-OCC序列。
可选的,通信单元402,还用于接收第二配置信息,第二配置信息用于为SRS配置一个或多个参考TD-OCC序列;
处理单元401,具体用于根据一个或多个参考TD-OCC序列,生成与重复因子匹配的TD-OCC序列。
可选的,通信单元402,还用于接收第二修改信令,第二修改信令用于指示修改一个或多个参考TD-OCC序列。
可选的,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
处理单元401,还用于丢弃SRS的时频资源;通信单元402,还用于在物理上行信道的时域资源上发送物理上行信道。
可选的,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
处理单元401,具体用于确定第一时域资源对应的冲突的SRS TD-OCC序列,丢弃冲突的SRS TD-OCC对应的SRS符号。
可选的,重复因子的取值为预设取值集合中的一个。
该通信装置40可以是网络设备,也可以是与网络设备匹配的装置。如图4所示,该通信装置40包括通信单元402。
在一种实现方式中,通信单元402,用于发送第一配置信息,第一配置信息用于配置SRS在时域上的重复因子;重复因子的取值为大于或者等于1的正整数;重复因子用于确定与重复因子匹配的TD-OCC序列,TD-OCC序列的序列长度小于或等于重复因子的取值;TD-OCC序列用于生成SRS。
请参见图5,图5是本申请实施例提供的另一种通信装置的结构示意图。该通信装置50可以是终端设备,也可以是与终端设备匹配的装置。该通信装置50可以是网络设备,也可以是与网络设备匹配的装置。可选的,该通信装置还可以包括存储器503。其中,收发器501、处理器502、存储器503可以通过总线504或其他方式连接。总线在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。本申请实施例中不限定上述收发器501、处理器502、存储器503之间的具体连接介质。
存储器503可以包括只读存储器和随机存取存储器,并向处理器502提供指令和数据。存储器503的一部分还可以包括非易失性随机存取存储器。
处理器502可以是中央处理单元(Central Processing Unit,CPU),该处理器502还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器502也可以是任何常规的处理器等。
在一种可选的实施方式中,存储器503,用于存储程序指令;处理器502,用于调用存储器503中存储的程序指令,以用于执行图3对应实施例中终端设备所执行的步骤。在另一种可选的实施方式中,存储器503,用于存储程序指令;处理器502,用于调用存储器503中存储的程序指令,以用于执行图3对应实施例中网络设备所执行的步骤。
在本申请实施例中,可以通过在包括CPU、随机存取存储介质(Random Access Memory,RAM)、只读存储介质(Read-Only Memory,ROM)等处理元件和存储元件的例如计算机的通用计算装置上运行能够执行上述方法所涉及的各步骤的计算机程序(包括程序代码),以及来实现本申请实施例所提供的方法。计算机程序可以记载于例如计算机可读记录介质上,并通过计算机可读记录介质装载于上述计算装置中,并在其中运行。
基于同一发明构思,本申请实施例中提供的通信装置50解决问题的原理与有益效果与本申请图3所示实施例中解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,为简洁描述,在这里不再赘述。
前述通信装置,例如可以是:芯片、或者芯片模组。
本申请实施例还提供一种芯片,该芯片包括处理器,处理器可以执行前述方法实施例中终端设备的相关步骤。
在一种实现方式中,该芯片用于:用于接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子;重复因子的取值为大于或者等于1的正整数;确定与重复因子匹配的TD-OCC序列,TD-OCC序列的序列长度小于或等于重复因子的取值;基于TD-OCC序列,生成SRS。
可选的,该芯片具体用于基于第一TD-OCC序列和/或第二TD-OCC序列,生成与重复因子匹配的TD-OCC序列;第一TD-OCC序列的序列长度为第一阈值,第二TD-OCC序 列的序列长度为第二阈值,第一阈值小于第二阈值。
可选的,TD-OCC序列的序列长度能被第一阈值和/或第二阈值整除,TD-OCC序列的序列长度等于重复因子的取值;
或者,
TD-OCC序列的序列长度不能被第一阈值和/或第二阈值整除,TD-OCC序列的序列长度小于重复因子的取值。
可选的,该芯片,还用于接收第一修改信令,第一修改信令用于指示修改第一TD-OCC序列和/或第二TD-OCC序列。
可选的,该芯片,还用于接收第二配置信息,第二配置信息用于为SRS配置一个或多个参考TD-OCC序列;
该芯片,具体用于根据一个或多个参考TD-OCC序列,生成与重复因子匹配的TD-OCC序列。
可选的,该芯片,还用于接收第二修改信令,第二修改信令用于指示修改一个或多个参考TD-OCC序列。
可选的,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
该芯片,还用于丢弃SRS的时频资源;在物理上行信道的时域资源上发送物理上行信道。
可选的,SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
该芯片,具体用于确定第一时域资源对应的冲突的TD-OCC序列,丢弃冲突的TD-OCC序列对应的SRS符号。
可选的,重复因子的取值为预设取值集合中的一个。
在另一种实现方式中,该芯片用于:发送第一配置信息,第一配置信息用于配置SRS在时域上的重复因子;重复因子的取值为大于或者等于1的正整数;重复因子用于确定与重复因子匹配的TD-OCC序列,TD-OCC序列的序列长度小于或等于重复因子的取值;TD-OCC序列用于生成SRS。
请参阅图6,图6是本申请实施例提供的一种芯片模组的结构示意图。该芯片模组60可以执行前述方法实施例中终端设备的相关步骤,该芯片模组60包括:通信接口601和芯片602。
其中,通信接口用于进行芯片模组内部通信,或者用于该芯片模组与外部设备进行通信。通信接口也可以描述为通信模组。芯片602用于实现本申请实施例中终端设备的功能。
例如,芯片602,用于接收第一配置信息,第一配置信息用于配置SRS在时域上的重复因子;重复因子的取值为大于或者等于1的正整数;确定与重复因子匹配的TD-OCC序列,TD-OCC序列的序列长度小于或等于重复因子的取值;基于TD-OCC序列,生成SRS。
可选的,芯片模组60还可以包括存储模组603、电源模组604。存储模组603用于存储数据和指令。电源模组604用于为芯片模组提供电能。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于 芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一条或多条指令,一条或多条指令适于由处理器加载并执行上述方法实施例所提供的方法。
本申请实施例还提供一种包含计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述方法实施例所提供的方法。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程 序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (20)

  1. 一种探测参考信号生成方法,其特征在于,所述方法包括:
    接收第一配置信息,所述第一配置信息用于配置探测参考信号SRS在时域上的重复因子;所述重复因子的取值为大于或者等于1的正整数;
    确定与所述重复因子匹配的时分正交覆盖码TD-OCC序列,所述TD-OCC序列的序列长度小于或等于所述重复因子的取值;
    基于所述TD-OCC序列,生成所述SRS。
  2. 根据权利要求1所述的方法,其特征在于,所述确定与所述重复因子匹配的TD-OCC序列,包括:
    基于第一TD-OCC序列和/或第二TD-OCC序列,生成与所述重复因子匹配的TD-OCC序列;所述第一TD-OCC序列的序列长度为第一阈值,所述第二TD-OCC序列的序列长度为第二阈值,所述第一阈值小于所述第二阈值。
  3. 根据权利要求2所述的方法,其特征在于,
    所述TD-OCC序列的序列长度能被所述第一阈值和/或所述第二阈值整除,所述TD-OCC序列的序列长度等于所述重复因子的取值;
    或者,
    所述TD-OCC序列的序列长度不能被所述第一阈值和/或所述第二阈值整除,所述TD-OCC序列的序列长度小于所述重复因子的取值。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收第一修改信令,所述第一修改信令用于指示修改所述第一TD-OCC序列和/或所述第二TD-OCC序列。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息,所述第二配置信息用于为所述SRS配置一个或多个参考TD-OCC序列;
    所述确定与所述重复因子匹配的TD-OCC序列,包括:
    根据所述一个或多个参考TD-OCC序列,生成与所述重复因子匹配的TD-OCC序列。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    接收第二修改信令,所述第二修改信令用于指示修改所述一个或多个参考TD-OCC序列。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
    所述方法还包括:
    丢弃所述SRS的时频资源并在所述物理上行信道的时域资源上发送所述物理上行信道。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,所述SRS的时域资源与物理上行信道的时域资源均包括第一时域资源;
    所述方法还包括:
    确定所述第一时域资源对应的冲突的TD-OCC序列,丢弃所述冲突的TD-OCC序列对应的SRS符号。
  9. 根据权利要求1至6任一项所述的方法,其特征在于,所述重复因子的取值为预设取值集合中的一个。
  10. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一配置信息包括SRS资源所采用的TD-OCC信息;
    其中,所述TD-OCC信息包括一个或多个TD-OCC序列索引号;或者,所述TD-OCC信息用于配置所述TD-OCC序列的长度信息;或者,所述TD-OCC信息用于配置TD-OCC序列的生成信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一配置信息还包括所述SRS的TD-OCC功能的激活和/或去激活指示信息。
  12. 一种探测参考信号生成方法,其特征在于,所述方法包括:
    发送第一配置信息,所述第一配置信息用于配置SRS在时域上的重复因子;所述重复因子的取值为大于或者等于1的正整数;所述重复因子用于确定与所述重复因子匹配的TD-OCC序列,所述TD-OCC序列的序列长度小于或等于所述重复因子的取值;所述TD-OCC序列用于生成所述SRS。
  13. 根据权利要求10所述的方法,其特征在于,所述TD-OCC序列的序列长度能被所述第一阈值和/或所述第二阈值整除,所述TD-OCC序列的序列长度等于所述重复因子的取值;
    或者,
    所述TD-OCC序列的序列长度不能被所述第一阈值和/或所述第二阈值整除,所述TD-OCC序列的序列长度小于所述重复因子的取值。
  14. 根据权利要求12或13所述的方法,其特征在于,所述重复因子的取值为预设取值集合中的一个。
  15. 根据权利要求12或13所述的方法,其特征在于,所述第一配置信息包括SRS资源 所采用的TD-OCC信息;
    其中,所述TD-OCC信息包括一个或多个TD-OCC序列索引号;或者,所述TD-OCC信息用于配置所述TD-OCC序列的长度信息;或者,所述TD-OCC信息用于配置TD-OCC序列的生成信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一配置信息还包括所述SRS的TD-OCC功能的激活和/或去激活指示信息。
  17. 一种通信装置,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-11中任一项所述方法的步骤;或实现权利要求12-16中任一项所述的方法的步骤。
  18. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-11中任一项所述方法的步骤,或执行权利要求12-16中任一项所述的方法的步骤。
  19. 一种芯片模组,其特征在于,所述芯片模组包括通信模组、电源模组、存储模组以及芯片,其中:所述电源模组用于为所述芯片模组提供电能;所述存储模组用于存储数据和指令;所述通信模组用于进行所述芯片模组内部通信,或者用于所述芯片模组与外部设备进行通信;所述芯片用于执行权利要求1-11中任一项所述的方法的步骤;或执行权利要求12-16中任一项所述的方法的步骤。
  20. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-11中任一项所述方法的步骤,或执行权利要求12-16中任一项所述的方法的步骤。
PCT/CN2023/110749 2022-08-02 2023-08-02 探测参考信号生成方法及装置 WO2024027759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210923447.0A CN117560776A (zh) 2022-08-02 2022-08-02 探测参考信号生成方法及装置
CN202210923447.0 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027759A1 true WO2024027759A1 (zh) 2024-02-08

Family

ID=89819049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110749 WO2024027759A1 (zh) 2022-08-02 2023-08-02 探测参考信号生成方法及装置

Country Status (2)

Country Link
CN (1) CN117560776A (zh)
WO (1) WO2024027759A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029527A1 (en) * 2016-08-12 2018-02-15 Alcatel Lucent Method and apparatus for demodulation reference signal enhancement
US20210067391A1 (en) * 2019-11-15 2021-03-04 Intel Corporation Low peak-to-average power ratio (papr) reference signal (rs) design for high frequency bands
WO2021196219A1 (en) * 2020-04-03 2021-10-07 Nec Corporation Methods for communication, terminal device, network device, and computer readable media
CN114830778A (zh) * 2020-01-03 2022-07-29 中兴通讯股份有限公司 增加无线通信***中探测参考信号的传输

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029527A1 (en) * 2016-08-12 2018-02-15 Alcatel Lucent Method and apparatus for demodulation reference signal enhancement
US20210067391A1 (en) * 2019-11-15 2021-03-04 Intel Corporation Low peak-to-average power ratio (papr) reference signal (rs) design for high frequency bands
CN114830778A (zh) * 2020-01-03 2022-07-29 中兴通讯股份有限公司 增加无线通信***中探测参考信号的传输
WO2021196219A1 (en) * 2020-04-03 2021-10-07 Nec Corporation Methods for communication, terminal device, network device, and computer readable media

Also Published As

Publication number Publication date
CN117560776A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US20200374097A1 (en) Pilot signal generation method and apparatus
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
JP2020516146A (ja) 信号送信方法、装置、およびシステム
JP6958958B2 (ja) 通信プロセスにおけるリソース要素の数量を取得するための方法、および関連する装置
KR102352674B1 (ko) 시퀀스 기반의 신호 처리 방법 및 장치
WO2022022579A1 (zh) 一种通信方法及装置
EP3896884A1 (en) Data transmission method and device
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
JP2023139035A (ja) 信号処理方法および装置
JP2022160611A (ja) リソースの構成方法および装置、コンピュータ記憶媒体
WO2018137700A1 (zh) 一种通信方法,装置及***
KR102434932B1 (ko) 자원 위치 결정 방법 및 장치, 그리고 자원 결정 방법 및 장치
WO2021031906A1 (zh) 配置时域资源的方法和装置
WO2018137688A1 (zh) 一种rs生成、接收方法及终端、基站
KR20210058897A (ko) 참조 신호 구성 방법 및 장치와, 시퀀스 구성 방법 및 장치
WO2024027759A1 (zh) 探测参考信号生成方法及装置
JP7128261B2 (ja) Pucch送信方法、ユーザー機器および装置
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
WO2022141601A1 (zh) 发送和接收解调参考信号的方法以及通信装置
CN110890953A (zh) 使用免授权频段的通信方法和通信装置
WO2020143780A1 (zh) 信号处理的方法和装置
WO2021134600A1 (zh) 信号传输的方法及装置
WO2023202667A1 (zh) 一种参考信号传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849464

Country of ref document: EP

Kind code of ref document: A1