WO2022068177A1 - 用于资源调度的通信方法及装置 - Google Patents

用于资源调度的通信方法及装置 Download PDF

Info

Publication number
WO2022068177A1
WO2022068177A1 PCT/CN2021/087913 CN2021087913W WO2022068177A1 WO 2022068177 A1 WO2022068177 A1 WO 2022068177A1 CN 2021087913 W CN2021087913 W CN 2021087913W WO 2022068177 A1 WO2022068177 A1 WO 2022068177A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
time slot
slot group
subcarrier
dci
Prior art date
Application number
PCT/CN2021/087913
Other languages
English (en)
French (fr)
Inventor
马千里
刘凤威
高宽栋
袁世通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022068177A1 publication Critical patent/WO2022068177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus for resource scheduling.
  • the subcarrier spacing may be 960 kHz.
  • SCS subcarrier spacing
  • the resource indication method of “spectrum below 40GHz” is still used, and the "preparation time for switching between sending and receiving is longer than a certain time (such as 14 microseconds)"
  • a time-division repeat With a (time-division duplex, TDD) transmission period of 5 time slots (slots), about 14 symbols (symbols) in the 5 time slots are guard interval symbols, and the switching overhead is large.
  • TDD time-division duplex
  • SCS downlink control information
  • other SCSs such as 120kHz
  • one TDD transmission period of the reference SCS is 5 time slots
  • every 5 time slots of the reference SCS corresponds to 40 time slots of 960 kHz.
  • K0 and K2 in the downlink control information (DCI) are both less than or equal to 32, starting with the time slot for transmitting DCI, if the physical downlink is transmitted in the time slot after 32 time slots Shared channel (physical downlink shared channel, PDSCH), the DCI cannot indicate the time slot position of the PDSCH.
  • DCI downlink control information
  • the DCI indicates the time slot position for transmitting the physical uplink shared channel (PUSCH) based on K2. Starting from the time slot for transmitting DCI, if the PUSCH is transmitted in the time slot after 32 time slots, the DCI cannot indicate the time slot position of the PUSCH, thus reducing the flexibility of resource scheduling.
  • PUSCH physical uplink shared channel
  • Embodiments of the present application provide a communication method and apparatus for resource scheduling, which can improve resource scheduling flexibility.
  • an embodiment of the present application provides a communication method for resource scheduling, where the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: a terminal device receives configuration information from a network device, wherein the configuration information configures a time slot group for the terminal device, the time slot group includes at least two time slots, and the number of time slots in a time slot group is determined according to the target subgroup.
  • the carrier spacing is determined, and the target subcarrier spacing is the spacing of the subcarriers configured by the terminal device.
  • the terminal device receives downlink control information DCI from the network device, wherein the DCI indicates the time domain resources used for data transmission in the time slot group. Then, the terminal device performs data transmission with the network device based on the time domain resources indicated by the DCI.
  • the DCI sent by the network device to the terminal device can indicate the time domain resources used for data transmission in the time slot group, so as to realize resource scheduling based on the time slot group.
  • resource scheduling can be implemented in units of time slot groups, which also enables DCI to indicate more time slot resources , which improves the efficiency and flexibility of resource scheduling compared to resource scheduling based on time slots.
  • the DCI includes first information, and the first information indicates a first time slot group in the time slot group, and the first time slot group includes time domain resources for transmitting the physical downlink shared channel PDSCH. That is, the network device can schedule time domain resources in a certain time slot group to transmit PDSCH based on DCI.
  • the first information includes a first parameter
  • the first parameter indicates the number of time slot groups that are spaced between the time slot group where the DCI is located and the first time slot group.
  • the first parameter indicates the value of K0.
  • the DCI further includes second information
  • the second information indicates a second time slot group in the time slot group
  • the second time slot group includes time domain resources for transmitting HARQ information of HARQ
  • the HARQ information indicates the reception status of the PDSCH. That is, the network device can schedule time domain resources in a certain time slot group to transmit HARQ information based on DCI.
  • the second information includes a second parameter indicating the number of time slot groups by which the first time slot group is spaced from the second time slot group.
  • the second parameter indicates the value of K1.
  • the DCI further includes third information, wherein the third information is used to determine the first value, and the first value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication method for resource scheduling in the embodiment of the present application further includes: the terminal device receives a third parameter from the network device, where the third parameter is used to adjust the first value. The terminal device determines at least one of the following according to the first value and the third parameter: the position of the start symbol of at least one symbol used for transmitting the PDSCH in the first slot group in the first slot group; in the first slot group The number of symbols used to transmit at least one symbol of PDSCH.
  • the network device can also schedule at least one symbol in a certain time slot group based on the DCI to transmit the PDSCH.
  • the DCI includes fourth information, where the fourth information indicates a third time slot group in the time slot group, and the third time slot group includes time domain resources for transmitting the physical uplink shared channel PUSCH. That is, the network device can schedule time domain resources in a certain time slot group to transmit PUSCH based on DCI.
  • the fourth information includes a fourth parameter
  • the fourth parameter indicates the number of time slot groups that are spaced between the time slot group where the DCI is located and the third time slot group.
  • the fourth parameter indicates the value of K2.
  • the DCI further includes fifth information, wherein the fifth information is used to determine a second value, and the second value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication method for resource scheduling in the embodiment of the present application further includes: the terminal device receives a fifth parameter from the network device, where the fifth parameter is used to adjust the second value. The terminal device determines at least one of the following according to the second value and the fifth parameter: the position of the start symbol of at least one symbol used to transmit the PUSCH in the third slot group in the third slot group; The number of symbols used to transmit at least one symbol of the PUSCH.
  • the network device can also schedule at least one symbol in a certain time slot group to transmit the PUSCH based on the DCI.
  • the number of time slots in a time slot group is determined according to the target subcarrier spacing and the preset subcarrier spacing.
  • the number of time slots in a time slot group is the ratio between the target subcarrier spacing and the preset subcarrier spacing.
  • the target subcarrier spacing includes one of the following: 240K, 480K, 960K, or 1920K.
  • an embodiment of the present application provides a communication method for resource scheduling, where the execution subject of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: a network device sends configuration information to a terminal device, wherein the configuration information configures a time slot group for the terminal device, the time slot group includes at least two time slots, and the number of time slots in a time slot group is based on the target subcarrier The interval is determined, and the target subcarrier interval is the interval of the subcarriers configured by the terminal device.
  • the network device sends downlink control information DCI to the terminal device, wherein the DCI indicates the time domain resources used for data transmission in the time slot group. Then, the network device performs data transmission with the terminal device based on the time domain resources indicated by the DCI.
  • the DCI includes first information, and the first information indicates a first time slot group in the time slot group, and the first time slot group includes time domain resources for transmitting the physical downlink shared channel PDSCH.
  • the first information includes a first parameter
  • the first parameter indicates the number of time slot groups that are spaced between the time slot group where the DCI is located and the first time slot group.
  • the DCI further includes second information
  • the second information indicates a second time slot group in the time slot group
  • the second time slot group includes time domain resources for transmitting HARQ information of HARQ
  • the HARQ information indicates the reception status of the PDSCH.
  • the second information includes a second parameter indicating the number of time slot groups by which the first time slot group is spaced from the second time slot group.
  • the DCI further includes third information, wherein the third information is used to determine the first value, and the first value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication method for resource scheduling in the embodiment of the present application further includes: the network device sends a third parameter to the terminal device, where the third parameter is used to adjust the first value; the first value and the third parameter are used to determine at least one of the following : the position of the start symbol of the at least one symbol used for transmitting the PDSCH in the first time slot group in the first time slot group; the symbol number of the at least one symbol used for transmitting the PDSCH in the first time slot group.
  • the DCI includes fourth information, where the fourth information indicates a third time slot group in the time slot group, and the third time slot group includes time domain resources for transmitting the physical uplink shared channel PUSCH.
  • the fourth information includes a fourth parameter, and the fourth parameter indicates the number of time slot groups that are spaced between the time slot group where the DCI is located and the third time slot group.
  • the DCI further includes fifth information, wherein the fifth information is used to determine a second value, and the second value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication method for resource scheduling in the embodiment of the present application further includes: the network device sends a fifth parameter to the terminal device, where the fifth parameter is used to adjust the second value, and the second value and the fifth parameter are used to determine at least one of the following : the position of the start symbol of the at least one symbol used for transmitting the PUSCH in the third time slot group in the third time slot group; the symbol number of the at least one symbol used for transmitting the PUSCH in the third time slot group.
  • the number of time slots in a time slot group is determined according to the target subcarrier spacing and the preset subcarrier spacing.
  • an embodiment of the present application provides a communication method for resource scheduling, where the execution subject of the method may be a terminal device, or may be a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: a terminal device receives downlink control information DCI from a network device, wherein the DCI indicates a time domain resource for data transmission.
  • the terminal device receives the first reference signal from the network device, and/or the terminal device sends the first reference signal to the network device.
  • the first reference signal includes at least two demodulation reference signal DMRSs, the at least two DMRSs correspond to the same antenna port, the at least two DMRSs are consecutive in the time domain, and are located in different subcarriers in the frequency domain.
  • the first reference signal is used to demodulate the time domain resource indicated by the DCI.
  • the resource indicated by the DCI is demodulated by using the DMRS in the first reference signal.
  • at least two DMRSs in the first reference signal correspond to the same antenna port.
  • the above "at least two DMRSs" are located in different subcarriers. For example, there are DMRSs corresponding to the same port on the next subcarrier of adjacent symbols, thereby effectively increasing the density of DMRSs in the frequency domain, which is beneficial to Improve the accuracy of linear interpolation operations and the accuracy of channel estimation results, thereby improving the spectral efficiency of transmission.
  • the communication method for resource scheduling in the embodiment of the present application improves the DMRS per unit time signal energy, which is beneficial to improve the decoding speed and the accuracy of channel estimation, and improve the spectral efficiency of transmission.
  • the DCI indicates the time domain resources used for data transmission in the slot group.
  • the timeslot group includes at least two timeslots, and the number of timeslots in one timeslot group is determined according to the target subcarrier spacing, which is the spacing of the subcarriers configured by the terminal device. That is, in the case where the terminal device is configured with the time slot group, the network device can schedule the time domain resources in the time slot group based on the DCI to transmit data.
  • the at least two DMRSs include a first DMRS and a second DMRS.
  • the first DMRS is located at the ith subcarrier
  • the second DMRS is located at the (i+1)th subcarrier.
  • the first DMRS is located at the ith subcarrier and the (i+1)th subcarrier
  • the second DMRS is located at the (i+2)th subcarrier and the (i+3)th subcarrier
  • i is a positive integer. That is, the first DMRS and the second DMRS satisfy the distribution condition of type 2.
  • the at least two DMRSs include a first DMRS and a second DMRS.
  • the first reference signal also includes a third DMRS.
  • the first DMRS and the third DMRS are the same in the time domain, and the second DMRS and the third DMRS correspond to different antenna ports and are located on the same subcarrier in the frequency domain. That is to say, the DMRS in the first reference signal may correspond to different antenna ports, and satisfy the distribution condition of type 1 or the distribution condition of type 2.
  • the antenna port corresponding to the second DMRS and the antenna port corresponding to the third DMRS are determined according to the value of N and the number of symbols carrying the target DMRS.
  • the value of N is the number of antenna ports corresponding to the DMRS on the symbol where the second DMRS is located.
  • the target DMRS is a group of consecutive DMRSs in the time domain in the first reference signal, and the target DMRS includes at least two DMRSs.
  • the DMRS corresponding to different antenna ports have cyclic shifts in the time domain, and the antenna port status corresponding to the adjacent DMRS is determined according to the number of antenna ports and the number of symbols corresponding to the first reference signal, so as to improve the corresponding Density of DMRS for the same antenna port.
  • the number of symbols carrying the target DMRS is the same as the number of slots in the slot group.
  • the number of symbols carrying the target DMRS is different from the number of slots in the slot group.
  • the target DMRS is a group of consecutive DMRSs in the time domain in the first reference signal, and the target DMRS includes at least two DMRSs.
  • the timeslot group includes at least two timeslots, and the number of timeslots in one timeslot group is determined according to the target subcarrier spacing, which is the spacing of the subcarriers configured by the terminal device.
  • the network device does not need to transmit additional instructions to indicate the number of DMRS in the first reference signal for the terminal device, saving signaling overhead.
  • the network device transmits an instruction to the terminal device to indicate the number of DMRSs in the first reference signal for the terminal device. In this way, when the channel condition is good, the number of DMRSs in the first reference signal is reduced, so that more resources are used for data transmission. On the contrary, in the case of poor channel conditions, the number of DMRSs in the first reference signal is increased, so as to improve the channel estimation accuracy.
  • the number of time slots in a time slot group is determined according to the target subcarrier spacing and the preset subcarrier spacing. For example, the number of time slots in a time slot group is the ratio of the target subcarrier spacing to the preset subcarrier spacing.
  • the at least two DMRSs include a first DMRS and a second DMRS, and the time-domain resource units carrying the first DMRS and the second DMRS are different.
  • the subcarrier where the first DMRS is located is the (i+4k)th subcarrier
  • the subcarrier where the second DMRS is located is the (i+4k+2)th subcarrier.
  • i and k are positive integers. That is, at least two DMRSs satisfy a DMRS pattern based on interleaved frequency domain multiplexing (IFDM).
  • IFDM interleaved frequency domain multiplexing
  • the at least two DMRSs include a first DMRS and a second DMRS, and the time-domain resource units carrying the first DMRS and the second DMRS are different.
  • the subcarriers where the first DMRS is located are the (i+12k)th subcarrier and the (i+12k+1)th subcarrier
  • the subcarriers where the second DMRS is located are the (i+12k+6)th subcarrier and the (i+12k+1)th subcarrier. (i+12k+7) subcarriers.
  • i and k are positive integers. That is, at least two DMRSs satisfy a DMRS pattern based on a frequency domain orthogonal covering code (FD-OCC).
  • FD-OCC frequency domain orthogonal covering code
  • the first reference signal further includes a third DMRS and a fourth DMRS.
  • the subcarriers carrying the third DMRS and the first DMRS are the same, but the time domain resource units carrying the third DMRS and the first DMRS are different.
  • the subcarriers that carry the fourth DMRS and the second DMRS are the same, but the time-domain resource units that carry the fourth DMRS and the second DMRS are different.
  • the third DMRS and the fourth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the first DMRS and the third DMRS on the same subcarrier occupy different time-domain resource units, and can be used to transmit DMRSs of different antenna ports, increasing the available antennas number of ports.
  • the second DMRS and the fourth DMRS on the same subcarrier occupy different time domain resource units, and can be used to transmit DMRSs with different antenna ports, increasing the number of available antenna ports.
  • the first reference signal further includes a fifth DMRS and a sixth DMRS.
  • the time domain resource units that carry the fifth DMRS and the first DMRS are the same, but the subcarriers that carry the fifth DMRS and the first DIMRS are different.
  • the time domain resource units that carry the sixth DMRS and the second DMRS are the same, but the subcarriers that carry the sixth DMRS and the second DMRS are different.
  • the fifth DMRS and the sixth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the first DMRS and the fifth DMRS occupy different subcarriers and can be used to transmit DMRSs of different antenna ports.
  • the second DMRS and the sixth DMRS occupy different subcarriers and can be used to transmit DMRSs of different antenna ports.
  • the first reference signal further includes a seventh DMRS and an eighth DMRS.
  • the time-frequency resources of the seventh DMRS and the first DMRS are the same, and the time-frequency resources of the eighth DMRS and the second DMRS are the same.
  • the OCC adopted by the seventh DMRS and the eighth DMRS is different from the OCC adopted by the first DMRS and the second DMRS.
  • the seventh DMRS and the eighth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the REs carrying the first DMRS and the seventh DMRS are the same, and the REs carrying the second DMRS and the eighth DMRS are the same, but the OCC used by the first DMRS and the second DMRS is the same as the OCC used by the seventh DMRS and the eighth DMRS Different, can be used to transmit DMRS for different antenna ports.
  • the first reference signal is transmitted before the resource indicated by the DCI. In this way, the terminal device can quickly obtain the channel estimation result based on the first reference signal to demodulate the resource indicated by the DCI.
  • the communication method for resource scheduling in this embodiment of the present application further includes: the terminal device receives a second reference signal from the network device, and/or the terminal device sends the second reference signal to the network device.
  • the terminal device receives a second reference signal from the network device, and/or the terminal device sends the second reference signal to the network device.
  • at least two DMRSs in the second reference signal correspond to the same antenna port, and at least two DMRSs in the second reference signal are consecutive in the time domain and located in different subcarriers in the frequency domain.
  • the second reference signal is transmitted after the first part of the resources indicated by the DCI and before the second part of the resources indicated by the DCI.
  • the second reference signal is used to demodulate the time domain resource indicated by the DCI.
  • the network device also sends a second reference signal to the terminal device, and the terminal device can also perform channel estimation based on the second reference signal, so as to improve the accuracy of channel estimation .
  • the terminal device receives the first reference signal from the network device. If the DCI indicates a time domain resource for transmitting the physical uplink shared channel PUSCH, the terminal device sends the first reference signal to the network device. That is to say, the first reference signal is suitable for uplink transmission and also suitable for downlink transmission.
  • an embodiment of the present application provides a communication method for resource scheduling, where the execution subject of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends downlink control information DCI to the terminal device, wherein the DCI indicates time domain resources used for data transmission.
  • the network device receives the first reference signal from the terminal device, and/or the network device sends the first reference signal to the terminal device; wherein the first reference signal includes at least two demodulation reference signals DMRS; the at least two DMRS correspond to the same antenna port , at least two DMRSs are consecutive in the time domain and located in different subcarriers in the frequency domain; the first reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the first reference signal includes at least two demodulation reference signals DMRS; the at least two DMRS correspond to the same antenna port , at least two DMRSs are consecutive in the time domain and located in different subcarriers in the frequency domain; the first reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the DCI indicates the time domain resources used for data transmission in the time slot group; wherein, the time slot group includes at least two time slots, and the number of time slots in one time slot group is based on the target subcarrier The interval is determined, and the target subcarrier interval is the interval of the subcarriers configured by the terminal device.
  • the at least two DMRSs include a first DMRS and a second DMRS; wherein the first DMRS is located at the ith subcarrier, and the second DMRS is located at the (i+1)th subcarrier; or, the first DMRS The second DMRS is located at the ith subcarrier and the (i+1)th subcarrier, and the second DMRS is located at the (i+2)th subcarrier and the (i+3)th subcarrier; i is a positive integer.
  • the at least two DMRSs include a first DMRS and a second DMRS; the first reference signal further includes a third DMRS; wherein the first DMRS and the third DMRS are the same in the time domain; the second DMRS and The third DMRS corresponds to different antenna ports and is located on the same subcarrier in the frequency domain.
  • the antenna port corresponding to the second DMRS and the antenna port corresponding to the third DMRS are determined according to the value of N and the number of symbols carrying the target DMRS; wherein, the value of N is where the second DMRS is located The number of antenna ports corresponding to the DMRS on the symbol; the target DMRS is a group of consecutive DMRSs in the time domain in the first reference signal, and the target DMRS includes at least two DMRSs.
  • the number of symbols carrying the target DMRS is the same as the number of time slots in the time slot group; or, the number of symbols carrying the target DMRS is different from the number of time slots in the time slot group; wherein, the target DMRS is the first A continuous group of DMRSs in the time domain in the reference signal, the target DMRS includes at least two DMRSs; the time slot group includes at least two time slots, and the number of time slots in a time slot group is determined according to the target subcarrier spacing, The target subcarrier spacing is the spacing of the subcarriers on which the terminal device is configured.
  • the number of time slots in a time slot group is determined according to the target subcarrier spacing and the preset subcarrier spacing.
  • the at least two DMRSs include a first DMRS and a second DMRS, and the time-domain resource units carrying the first DMRS and the second DMRS are different.
  • the subcarrier where the first DMRS is located is the (i+4k)th subcarrier
  • the subcarrier where the second DMRS is located is the (i+4k+2)th subcarrier. i and k are positive integers.
  • the at least two DMRSs include a first DMRS and a second DMRS, and the time-domain resource units carrying the first DMRS and the second DMRS are different.
  • the subcarriers where the first DMRS is located are the (i+12k)th subcarrier and the (i+12k+1)th subcarrier
  • the subcarriers where the second DMRS is located are the (i+12k+6)th subcarrier and the (i+12k+1)th subcarrier. (i+12k+7) subcarriers.
  • i and k are positive integers.
  • the first reference signal further includes a third DMRS and a fourth DMRS.
  • the subcarriers carrying the third DMRS and the first DMRS are the same, but the time domain resource units carrying the third DMRS and the first DMRS are different.
  • the subcarriers that carry the fourth DMRS and the second DMRS are the same, but the time-domain resource units that carry the fourth DMRS and the second DMRS are different.
  • the third DMRS and the fourth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the first reference signal further includes a fifth DMRS and a sixth DMRS.
  • the time domain resource units that carry the fifth DMRS and the first DMRS are the same, but the subcarriers that carry the fifth DMRS and the first DIMRS are different.
  • the time domain resource units that carry the sixth DMRS and the second DMRS are the same, but the subcarriers that carry the sixth DMRS and the second DMRS are different.
  • the fifth DMRS and the sixth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the first reference signal further includes a seventh DMRS and an eighth DMRS.
  • the time-frequency resources of the seventh DMRS and the first DMRS are the same, and the time-frequency resources of the eighth DMRS and the second DMRS are the same.
  • the OCC adopted by the seventh DMRS and the eighth DMRS is different from the OCC adopted by the first DMRS and the second DMRS.
  • the seventh DMRS and the eighth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the at least two DMRSs.
  • the first reference signal is transmitted before the resource indicated by the DCI.
  • the communication method for resource scheduling in this embodiment of the present application further includes: the network device receives a second reference signal from the terminal device, and/or the network device sends the second reference signal to the terminal device; wherein, At least two DMRSs in the second reference signal correspond to the same antenna port, and at least two DMRSs in the second reference signal are continuous in the time domain and located in different subcarriers in the frequency domain; It is transmitted after a part of the resources and before the second part of the resources indicated by the DCI; the second reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the network device sends the first reference signal to the terminal device; if the DCI indicates a time domain resource for transmitting the physical uplink shared channel PUSCH resource, the network device receives the first reference signal from the terminal device.
  • an embodiment of the present application provides a communication apparatus for resource scheduling.
  • the communication apparatus for resource scheduling may be a terminal device in the first aspect or any possible design of the first aspect, or a A device arranged in the above-mentioned terminal equipment, or a chip that realizes the functions of the above-mentioned terminal equipment;
  • the communication device for resource scheduling includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, the module, unit, or means (means) It can be realized by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus for resource scheduling includes a communication unit and a processing unit.
  • the communication unit is configured to receive configuration information from the network equipment, wherein the configuration information configures a time slot group for a communication device used for resource scheduling; the time slot group includes at least two time slots, and the number of time slots in the time slot group is determined according to the target subcarrier spacing, which is the spacing of the subcarriers on which the communication apparatus for resource scheduling is configured.
  • the communication unit is further configured to receive downlink control information DCI from the network device, wherein the DCI indicates the time domain resources used for data transmission in the time slot group.
  • the processing unit is configured to determine the time domain resource indicated by the DCI.
  • the communication unit is further configured to perform data transmission with the network device based on the time domain resources indicated by the DCI.
  • the DCI further includes third information, wherein the third information is used to determine the first value, and the first value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication unit is further configured to receive a third parameter from the network device, wherein the third parameter is used to adjust the first value.
  • the processing unit is further configured to determine at least one of the following according to the first value and the third parameter: the position of the start symbol of the at least one symbol used for transmitting the PDSCH in the first time slot group in the first time slot group; the first time slot The number of symbols in the slot group used to transmit at least one symbol of the PDSCH.
  • the DCI further includes fifth information, wherein the fifth information is used to determine a second value, and the second value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication unit is further configured to receive a fifth parameter from the network device, wherein the fifth parameter is used to adjust the second value.
  • the processing unit is further configured to determine at least one of the following according to the second value and the fifth parameter: the position of the start symbol of the at least one symbol used for transmitting the PUSCH in the third time slot group in the first time slot group; the third time slot group The number of symbols in the slot group used to transmit at least one symbol of the PUSCH.
  • an embodiment of the present application provides a communication apparatus for resource scheduling.
  • the communication apparatus for resource scheduling may be a network device in the second aspect or any possible design of the second aspect, or set A device in the above-mentioned network equipment, or a chip that implements the functions of the above-mentioned network equipment;
  • the communication device for resource scheduling includes a corresponding module, unit, or means for implementing the above-mentioned method, and the module, unit, or means can be Implemented by hardware, implemented by software, or implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus for resource scheduling includes a communication unit and a processing unit.
  • the communication unit is used to send configuration information to the terminal equipment, wherein the configuration information is that the terminal equipment configures a timeslot group; the timeslot group includes at least two timeslots, and the number of timeslots in the timeslot group is based on the target subcarrier interval It is determined that the target subcarrier spacing is the spacing of the subcarriers configured by the terminal device.
  • the processing unit is used to determine the time domain resources for data transmission.
  • the communication unit is further configured to send downlink control information DCI to the terminal equipment, wherein the DCI indicates the time domain resources used for data transmission in the time slot group.
  • the communication unit is further configured to perform data transmission with the terminal device based on the time domain resources indicated by the DCI.
  • the DCI further includes third information, wherein the third information is used to determine the first value, and the first value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication unit is further configured to send a third parameter to the terminal device, wherein the third parameter is used to adjust the first value; the first value and the third parameter are used to determine at least one of the following: the first time slot group is used to transmit PDSCH The position of the starting symbol of at least one symbol of , in the first time slot group; the number of symbols used for transmitting at least one symbol of PDSCH in the first time slot group.
  • the DCI further includes fifth information, wherein the fifth information is used to determine a second value, and the second value is used to determine the position of the start symbol of the at least one symbol in the time slot and/or at least The number of symbols for a symbol.
  • the communication unit is further configured to send a fifth parameter to the terminal device, where the fifth parameter is used to adjust the second value; the second value and the fifth parameter are used to determine at least one of the following: the third time slot group is used to transmit PUSCH The position of the starting symbol of at least one symbol of , in the first slot group; the number of symbols used to transmit at least one symbol of the PUSCH in the third slot group.
  • an embodiment of the present application provides a communication apparatus for resource scheduling.
  • the communication apparatus for resource scheduling may be the terminal device in the third aspect or any possible design of the third aspect, or the A device arranged in the above-mentioned terminal equipment, or a chip that realizes the functions of the above-mentioned terminal equipment;
  • the communication device for resource scheduling includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, the module, unit, or means (means) It can be realized by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus for resource scheduling includes a communication unit and a processing unit.
  • the communication unit is configured to receive downlink control information DCI from the network device, where the DCI indicates time domain resources used for data transmission.
  • the processing unit is configured to determine the time domain resource indicated by the DCI.
  • the communication unit is further configured to receive the first reference signal from the network device, and/or the communication unit is further configured to send the first reference signal to the network device; wherein the first reference signal includes at least two demodulation reference signals DMRS; at least two The two DMRSs correspond to the same antenna port, and at least two DMRSs are consecutive in the time domain and located in different subcarriers in the frequency domain; the first reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the communication unit is further configured to receive the second reference signal from the network device, and/or the communication unit is further configured to send the second reference signal to the network device.
  • at least two DMRSs in the second reference signal correspond to the same antenna port, at least two DMRSs in the second reference signal are continuous in the time domain, and are located in different subcarriers in the frequency domain; the second reference signal indicates in the DCI It is transmitted after the first part of the resources and before the second part of the resources indicated by the DCI; the second reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the communication unit is further configured to receive the first reference signal from the network device. If the DCI indicates a time domain resource for transmitting the physical uplink shared channel PUSCH, the communication unit is further configured to send the first reference signal to the network device.
  • an embodiment of the present application provides a communication apparatus for resource scheduling.
  • the communication apparatus for resource scheduling may be a network device in the fourth aspect or any possible design of the fourth aspect, or set A device in the above-mentioned network equipment, or a chip that implements the functions of the above-mentioned network equipment;
  • the communication device for resource scheduling includes a module, unit, or means for implementing the above-mentioned method, and the module, unit, or means can be Implemented by hardware, implemented by software, or implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus for resource scheduling includes a communication unit and a processing unit.
  • the processing unit is used to determine the time domain resources for data transmission.
  • the communication unit is configured to send downlink control information DCI to the terminal equipment, wherein the DCI indicates a time domain resource used for data transmission.
  • the communication unit is further configured to receive the first reference signal from the terminal device, and/or the communication unit is further configured to send the first reference signal to the terminal device; wherein the first reference signal includes at least two demodulation reference signals DMRS; at least The two DMRSs correspond to the same antenna port, and at least two DMRSs are consecutive in the time domain and located in different subcarriers in the frequency domain; the first reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the communication unit is further configured to receive the second reference signal from the terminal device, and/or the communication unit is further configured to send the second reference signal to the terminal device.
  • at least two DMRSs in the second reference signal correspond to the same antenna port, at least two DMRSs in the second reference signal are continuous in the time domain, and are located in different subcarriers in the frequency domain; the second reference signal indicates in the DCI It is transmitted after the first part of the resources and before the second part of the resources indicated by the DCI; the second reference signal is used to demodulate the time domain resources indicated by the DCI.
  • the communication unit is further configured to send the first reference signal to the terminal device. If the DCI indicates a time domain resource for transmitting the physical uplink shared channel PUSCH, the communication unit is further configured to receive the first reference signal from the terminal device.
  • an embodiment of the present application provides a communication device for resource scheduling, including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the memory is used for resource scheduling.
  • the communication apparatus executes the method executed by the terminal device in any of the above-mentioned aspects or any possible design of any aspect.
  • the communication apparatus for resource scheduling may be a terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device; or, the communication apparatus for resource scheduling may be The terminal device in any possible design of the third aspect or the third aspect, or a chip that implements the functions of the terminal device.
  • an embodiment of the present application provides a communication device for resource scheduling, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the processor is used for resource scheduling.
  • the scheduled communication apparatus performs the method as performed by the terminal device in any of the above aspects or any possible design of the aspect.
  • the communication apparatus for resource scheduling may be a terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device; or, the communication apparatus for resource scheduling may be The terminal device in any possible design of the third aspect or the third aspect, or a chip that implements the functions of the terminal device.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communication with modules other than the chip.
  • the chip may be a chip that implements the function of the terminal device in the first aspect or any possible design of the first aspect.
  • the I/O interface inputs configuration information, downlink control information, or data, or the I/O interface outputs data.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • the chip may be a chip that implements the terminal device function in the third aspect or any possible design of the third aspect.
  • the I/O interface inputs downlink control information or the first reference signal, or the I/O interface outputs the first reference signal.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above third aspect or any possible design of the third aspect.
  • an embodiment of the present application provides a communication device for resource scheduling, including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the The scheduled communication apparatus performs the method performed by the network device in any of the above aspects or any possible design of any aspect.
  • the communication device for resource scheduling may be a network device in the second aspect or any possible design of the second aspect, or a chip that implements the functions of the network device; or, the communication device for resource scheduling may be A network device in any possible design of the fourth aspect or the fourth aspect, or a chip that implements the function of the network device.
  • an embodiment of the present application provides a communication device for resource scheduling, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the processor is used for
  • the communication apparatus for resource scheduling performs the method as performed by the network device in any of the above-described aspects or any possible designs of any of the aspects.
  • the communication device for resource scheduling may be a network device in the second aspect or any possible design of the second aspect, or a chip that implements the functions of the network device; or, the communication device for resource scheduling may be A network device in any possible design of the fourth aspect or the fourth aspect, or a chip that implements the function of the network device.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communication with modules other than the chip.
  • the chip may be a chip that implements the network device function in the second aspect or any possible design of the second aspect.
  • the I/O interface outputs configuration information, downlink control information, or data, or the I/O interface inputs data.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above second aspect or any possible design of the second aspect.
  • the chip may be a chip that implements the function of the network device in the fourth aspect or any possible design of the fourth aspect.
  • the I/O interface outputs downlink control information or the first reference signal, or the I/O interface inputs the first reference signal.
  • the logic circuit is used to run the computer program or instructions to implement the method in the above fourth aspect or any possible design of the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer can execute any one of the preceding aspects.
  • the embodiments of the present application provide a computer program product including instructions, which, when run on a computer, enables the computer to execute the communication method for resource scheduling according to any one of the above aspects.
  • an embodiment of the present application provides a circuit system, where the circuit system includes a processing circuit configured to execute the communication method for resource scheduling according to any one of the foregoing aspects.
  • an embodiment of the present application provides a communication system, where the communication system includes the terminal device and the network device in any one of the foregoing aspects.
  • FIG. 1 is a schematic diagram of the location of a PDSCH provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the location of feedback hybrid automatic retransmission request information provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the location of a resource allocation provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the location of still another resource allocation provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a handover preparation time provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another handover preparation time provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another handover preparation time provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method for resource scheduling provided by an embodiment of the present application.
  • FIG. 10(a) is a schematic diagram of the location of a resource allocation according to an embodiment of the present application.
  • FIG. 10(b) is a schematic diagram of the location of still another resource allocation provided by an embodiment of the present application.
  • FIG. 10(c) is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 10(d) is a schematic diagram of the location of a PDSCH provided by an embodiment of the present application.
  • FIG. 10(e) is a schematic diagram of the location of still another PDSCH provided by an embodiment of the present application.
  • Figure 11(a) is a schematic diagram of the location of a DMRS provided by an embodiment of the present application.
  • FIG. 11(b) is a schematic diagram of the location of still another DMRS provided by an embodiment of the present application.
  • FIG. 11(c) is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 12(a) is a schematic flowchart of still another communication method for resource scheduling provided by an embodiment of the present application.
  • FIG. 12(b) is a schematic flowchart of another communication method for resource scheduling provided by an embodiment of the present application.
  • FIG. 12(c) is a schematic diagram of the location of a first reference signal provided by an embodiment of the present application.
  • Fig. 13(a) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(b) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(c) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(d) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(e) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(f) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(g) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(h) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 13(i) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 14(a) is a schematic diagram of the location of a second reference signal provided by an embodiment of the present application.
  • FIG. 14(b) is a schematic diagram of the location of still another second reference signal provided by an embodiment of the present application.
  • FIG. 14(c) is a schematic diagram of the location of still another second reference signal provided by an embodiment of the present application.
  • FIG. 14(d) is a schematic diagram of the location of still another second reference signal provided by an embodiment of the present application.
  • FIG. 14(e) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 15(a) is a schematic diagram of the location of another DMRS provided by an embodiment of the present application.
  • FIG. 15(b) is a schematic diagram of the location of another DMRS provided by an embodiment of the present application.
  • FIG. 15(c) is a schematic diagram of the location of another DMRS provided by an embodiment of the present application.
  • FIG. 15(d) is a schematic diagram of the location of another DMRS provided by an embodiment of the present application.
  • FIG. 16(a) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • FIG. 16(b) is a schematic diagram of the location of still another first reference signal provided by an embodiment of the present application.
  • 17 is a schematic structural diagram of a communication apparatus for resource scheduling provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of still another communication apparatus for resource scheduling provided by an embodiment of the present application.
  • PUSCH Physical uplink shared channel
  • the PUSCH is used for scheduling and transmission of uplink data.
  • PDSCH Physical downlink shared channel
  • PDSCH is used for scheduling and transmission of downlink data.
  • the scheduling process of PDSCH and PUSCH mainly includes the following steps:
  • Step 1 The access network device sends DCI to the terminal device.
  • the terminal device receives the DCI from the access network device.
  • the DCI is transmitted through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • Step 2 The terminal device determines time-frequency resource information corresponding to at least one of the PDSCH and the PUSCH according to the DCI.
  • the terminal device On the time-frequency resource indicated by the DCI, the terminal device receives the PDSCH. In this case, the terminal device will also feed back hybrid automatic repeat request (HARQ) information on a fixed physical uplink control channel (PUCCH) to inform the access network device that the Whether the PDSCH is received correctly. Based on the HARQ information, when the access network device learns that the PDSCH of the terminal device is not correctly received, the access network device retransmits the PDSCH to the terminal device. When the access network device learns that the PDSCH of the terminal device is correctly received, the access network device no longer sends the PDSCH to the terminal device.
  • HARQ hybrid automatic repeat request
  • the scheduling information in the DCI indicates the value of K0 and the start and length indicator value (SLIV), so that the terminal device determines the time domain resources of the PDSCH based on the value of K0 and SLIV.
  • K0 indicates that the PDSCH is received from the K0th time slot after the terminal device receives the DCI.
  • the first time slot after the time slot in which the terminal device receives the DCI is the first time slot.
  • the value of K0 is less than or equal to 32. That is to say, the access network device sends the PDSCH to the terminal device within 32 time slots starting from the time slot for sending the DCI.
  • SLIV indicates the symbol (symbol) position and symbol length of the PDSCH in the time slot.
  • SLIV can be indicated by DCI.
  • the terminal device determines the S value and the L value based on the SLIV indicated by the DCI and formula (1).
  • the value of S indicates the starting symbol index S of the PDSCH in one slot.
  • the L value indicates the symbol length of PDSCH in one slot.
  • FIG. 1 shows a schematic diagram of a PDSCH resource location in the time domain.
  • slot 0 transmits DCI.
  • DCI indicates that the value of K0 is 3, the value of S is 2, and the value of L is 12.
  • K0, S and L it can be known that some symbols (symbol index 2 to symbol index 13) in time slot 3 transmit PDSCH.
  • the scheduling information in the DCI indicates the value of K1, so that the terminal device determines the time domain resource for feeding back HARQ information based on the value of K1.
  • K1 indicates that the HARQ information is fed back from the K1th time slot after the terminal device receives the PDSCH.
  • the unit of K1 is time slot.
  • K1 occupies 3 bits (bit), and can indicate a maximum of 15 time slots.
  • the first time slot after the terminal device receives the PDSCH is the first time slot.
  • FIG. 2 shows a schematic diagram of a time-domain resource location for feeding back hybrid automatic repeat request (HARQ) information.
  • HARQ hybrid automatic repeat request
  • the scheduling information in the DCI indicates the value of K2 and the SLIV, so that the terminal device determines the time domain resources of the PUSCH based on the value of K2 and the SLIV.
  • K2 indicates that the PUSCH is sent from the K2th time slot after the terminal device receives the DCI.
  • the first time slot after the time slot in which the terminal device receives the DCI is the first time slot.
  • the value of K2 is less than or equal to 32. That is to say, the terminal device starts from the time slot in which the DCI is received, and sends the PUSCH to the access network device within 32 time slots.
  • SLIV indicates the symbol position and symbol length of the PUSCH in the time slot. SLIV still satisfies the above formula (1).
  • the terminal device can determine the start symbol index S and symbol length L corresponding to the PUSCH according to the SLIV indicated by the DCI and the above formula (1).
  • the access network equipment also configures a time-division duplex (time-division duplex, TDD) transmission period and a resource allocation situation in a TDD transmission period for the terminal equipment.
  • TDD time-division duplex
  • the data volume of the downlink service is greater than that of the uplink service.
  • the duration of one TDD transmission cycle is 10ms.
  • the ratio of the number of downlink time slots to the number of uplink time slots in a TDD transmission period includes the following two:
  • the ratio of the number of downlink time slots to the number of uplink time slots is 4:1. That is to say, after 4 downlink time slots, an uplink time slot is followed, as shown in FIG. 3 .
  • a solid line box represents a time slot
  • the solid line box marked with "D” is a downlink (DL) time slot
  • the solid line box marked with "U” is an uplink (uplink, UL) time slot.
  • the ratio of the number of downlink time slots to the number of uplink time slots is 8:1. That is to say, after 8 downlink time slots, an uplink time slot is followed, as shown in FIG. 3 .
  • the relevant protocol also defines another time slot resource allocation situation other than the uplink time slot and the downlink time slot.
  • the other kind of time slot may be called a flexible (flexible or unknown) time slot, and the flexible time slot may include at least one of downlink transmission, guard interval (gap) and uplink transmission.
  • a solid line box represents a time slot
  • the solid line box marked "D” is a downlink time slot
  • the solid line box marked "U” is an uplink time slot time slot
  • the solid line box marked "F” is a flexible time slot.
  • a dotted box represents one symbol
  • the symbols corresponding to symbol index 0 to symbol index 11 are used for downlink transmission.
  • the symbol corresponding to symbol index 12 belongs to the guard interval symbol.
  • the symbol corresponding to symbol index 13 (box marked with the letter "U”) is used for upstream transmission.
  • Table 1 shows some possible time slot formats. Taking “one slot includes 14 symbols” as an example, Table 1 shows 29 slot formats (ie slot format 0 to slot format 28). Different time slot formats include different numbers of uplink symbols, downlink symbols and flexible symbols. Flexible symbols can be used for guard intervals.
  • the symbol marked “D” is the downlink symbol
  • the symbol marked "U” is the uplink symbol
  • the symbol marked “F” is the guard interval symbol, which may also be called flexible (flexible or unknown) symbols.
  • the terminal device can obtain how to switch between uplink transmission and downlink transmission according to the time slot format in Table 1 above.
  • time slot format 0 the symbol of one time slot is a downlink symbol, and the terminal device does not need to switch.
  • time slot format 28 the terminal device transmits downlink signals on the symbols corresponding to symbol indices 0-11, and transmits uplink signals on the symbols corresponding to symbol index 13, and the symbol corresponding to symbol index 12 is used for downlink and uplink. Ready to switch between.
  • the handover preparation time includes the handover time after receiving the signal and timing advance (TA), where TA refers to the transmission delay (mainly air interface delay) in the process of the terminal device transmitting information to the network device.
  • TA refers to the transmission delay (mainly air interface delay) in the process of the terminal device transmitting information to the network device.
  • FIG. 5 shows a schematic diagram of a possible handover preparation time.
  • a box in Figure 5 represents a symbol. Among them, the solid line box represents the symbol of the transmission signal.
  • the terminal device receives the DL signal from the network device, and after the interval "time period 1", the terminal device sends the UL signal to the network device.
  • the handover preparation time satisfies the following formula:
  • T represents the handover preparation time. Indicates the number of symbols in the interval between uplink symbols and downlink symbols.
  • T C represents the sampling interval.
  • T TA means timing advance.
  • the TAs corresponding to different terminal devices are different, so that the network device can receive the information of the multiple terminal devices at the same time point, so as to demodulate the information without interference.
  • the handover preparation time predefined in the relevant protocols is greater than 14us to ensure lossless transmission of uplink and downlink handovers. In this way, the number of guard interval symbols between uplink symbols and downlink symbols satisfies the following formula (3):
  • X represents the number of guard interval symbols between uplink symbols and downlink symbols
  • SCS represents subcarrier spacing (subcarrier spacing, SCS).
  • 1/SCS stands for symbol duration. Among them, the cyclic prefix (CP) in a symbol is ignored, and the propagation time of the signal is ignored, that is, the value of the timing advance is zero.
  • the subcarrier spacing can be 120 kHz, 240 kHz, 480 kHz, 960 kHz, or 1920 kHz.
  • the value of SCS is different, and the corresponding number of guard interval symbols is also different. For example, see Table 2, which shows the number of guard interval symbols corresponding to different SCSs.
  • the terminal device uses one time slot resource for switching between receiving and sending, as shown in Figure 6, a TDD transmission A period consists of 5 time slots.
  • a horizontally placed box represents a time slot
  • a vertically placed box represents a symbol.
  • a number in a box indicates the index of the slot corresponding to that box.
  • the letter “D” in a box indicates that the time slot corresponding to that box is used for downlink transmission.
  • the letter “U” in a box indicates that the time slot corresponding to that box is used for uplink transmission.
  • the letter “F” indicates that some of the symbols in the slot are used as handover preparation time.
  • one slot includes 14 symbols. Time slot 0, time slot 1 and time slot 2 are used for downlink data transmission, as shown by the solid line box in FIG. 6 .
  • Time slot 4 is used for upstream data transmission, as shown by the dotted box in FIG. 6 .
  • the 13 symbols in slot 3 are guard interval symbols, as indicated by the diagonally filled boxes in FIG. 6 . That is to say, about 14 symbols in every 5 time slots (that is, the number of symbols included in one time slot) are guard interval symbols. In this way, the resource ratio of the switching overhead is about 14/70, that is, 20% of the switching overhead, Switching is expensive.
  • the number of time slots used for downlink data transmission is 3, namely slot 0, time slot 1 and time slot 2, as shown in the solid line shown in the box.
  • the number of time slots used for uplink data transmission is 1, that is, slot 4, as indicated by the dotted box.
  • the number of time slots for the terminal equipment to prepare for switching between sending and receiving is 1, that is, time slot 3, as shown in the square filled with diagonal lines.
  • the number of time slots used for downlink data transmission is 29, as shown by the solid line box.
  • the number of time slots used for upstream data transmission is 10, as indicated by the dotted box.
  • the number of time slots for the terminal equipment to prepare for switching between transmission and reception is 1, as shown in the box filled with slashes. That is, about 14 symbols in every 40 slots (ie, the number of symbols included in one slot) are guard interval symbols. In this way, when the TDD transmission period is configured for the terminal device based on the reference SCS, the frequency of the terminal device switching between reception and transmission is also reduced, thereby reducing the switching overhead.
  • one TDD transmission cycle includes 40 time slots, and there may be the following situations: starting from the time slot for transmitting DCI, the PDSCH is transmitted in the time slot after 32 time slots , the DCI cannot indicate the slot position of the PDSCH. Similarly, if the PUSCH is transmitted in the time slot after 32 time slots from the time slot in which the DCI is transmitted, the DCI also cannot indicate the time slot position of the PUSCH.
  • the embodiment of the present application provides a communication method for resource scheduling, and the communication method for resource scheduling in the embodiment of the present application is applicable to various communication systems.
  • the communication method for resource scheduling provided in the embodiments of the present application may be applied to a long term evolution (long term evolution, LTE) system, or a fifth-generation (fifth-generation, 5G) communication network, or other similar networks, or in the future in other networks.
  • FIG. 8 is a schematic diagram of the architecture of a communication system applicable to the communication method for resource scheduling according to the embodiment of the present application.
  • the communication system may include a terminal device 80 and a network device 81 .
  • the terminal device 80 and the network device 81 are connected wirelessly.
  • the number of terminal devices 80 may be one or more, and the number of network devices 81 may also be one or more. Only one network device and two terminal devices are shown in FIG. 8 .
  • FIG. 8 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the communication method for resource scheduling according to the embodiment of the present application.
  • the terminal device 80 also known as user equipment (UE), mobile station (MS), mobile terminal (MT) or terminal (terminal), etc., is a device that provides voice/data connectivity to users.
  • devices such as handheld or in-vehicle devices with wireless connectivity.
  • the terminal device can be specifically: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality) reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid Terminal, wireless terminal in transportation safety, wireless terminal in smart city, or wireless terminal in smart home, terminal equipment in future 5G communication network or communication network after 5G etc., which are not limited in the embodiments of the present application.
  • the network device 81 is a device in a wireless communication network, for example, a radio access network (RAN) node that connects the terminal device 80 to the wireless communication network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit) , BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), or 5G communication network or network-side equipment in the communication network after 5G, etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for
  • An embodiment of the present application provides a communication method for resource scheduling, which is used in a DCI resource scheduling process.
  • the communication method for resource scheduling includes the following steps:
  • the network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information from the network device.
  • the configuration information is that the terminal equipment configures a time slot group, the time slot group includes at least two time slots, and the number of time slots in a time slot group is determined according to the target subcarrier interval, and the target subcarrier interval is configured by the terminal device. the subcarrier spacing.
  • the network device sends the DCI to the terminal device.
  • the terminal device receives the DCI from the network device.
  • DCI indicates the time domain resources used for data transmission in the time slot group.
  • the terminal device performs data transmission with the network device based on the time domain resources indicated by the DCI.
  • the DCI sent by the network device to the terminal device can indicate the time domain resources used for data transmission in the time slot group, so as to realize resource scheduling based on the time slot group.
  • resource scheduling can be implemented in units of time slot groups, which also enables DCI to indicate more time slot resources , which improves the efficiency and flexibility of resource scheduling compared to resource scheduling based on time slots.
  • the time slots in a time slot group can be regarded as a whole, and the transmission directions of a time slot group are consistent, thereby reducing the frequency of the terminal equipment performing uplink and downlink switching, saving Uplink and downlink switching overhead.
  • the network device sends configuration information to the terminal device.
  • the terminal device receives configuration information from the network device.
  • the configuration information is used to configure the time slot group for the terminal device.
  • a slot group can also be replaced by a set of slots, a slot unit, etc.
  • the configuration information includes time slot bundling indication information.
  • the specific functions of the configuration information are as follows:
  • the configuration information (such as time slot binding indication information) instructs the terminal device to configure the transmission direction of the TDD transmission period based on the time slot group.
  • the high-layer parameter for configuring the transmission direction of the TDD transmission period includes at least one of the following information:
  • the first item is time division multiplexing-uplink-downlink-common configuration (time-division duplex-uplink-downlink-configcommon, TDD-UL-DL-ConfigCommon) information.
  • the second item is time division multiplexing-uplink-downlink-dedicated configuration (time-division duplex-uplink-downlink-configdedicated, TDD-UL-DL-ConfigDedicated) information.
  • TDD-UL-DL-ConfigCommon and/or TDD-UL-DL-ConfigDedicated are extended from slot to slot group.
  • one block represents one time slot.
  • a solid line box indicates that the time slot is used for downlink transmission
  • a dashed line box indicates that the time slot is used for upstream transmission
  • a diagonally filled box indicates that the time slot is used for handover preparation time.
  • the configuration information configures the transmission directions of 5 time slot groups (ie, 40 time slots) at a time.
  • the configuration information (eg, time slot binding indication information) also indicates resource scheduling based on time slot groups.
  • one block represents one time slot.
  • a solid line box indicates that the time slot is used for downlink transmission
  • a dashed line box indicates that the time slot is used for upstream transmission
  • a diagonally filled box indicates that the time slot is used for handover preparation time.
  • the DCI may indicate one time slot group among the 5 time slot groups.
  • one slot group includes 4 slots, as shown by the thin dotted line in Fig. 10(b).
  • the DCI may indicate one time slot group among the 10 time slot groups.
  • a time slot group includes at least two time slots.
  • the number of slots in a slot group may be 2, 4, 8, or 16.
  • the number of slots in a slot group is determined according to the target subcarrier spacing.
  • the target subcarrier spacing is the spacing of the subcarriers of the bandwidth part (BWP) that the terminal device is configured to use for data transmission.
  • the target subcarrier spacing can be 240K, 480K, 960K, or 1920K.
  • the number of time slots in a time slot group is determined according to the target subcarrier spacing and the reference subcarrier spacing. For example, the number of time slots in a time slot group satisfies the following formula:
  • A represents the number of time slots in a time slot group
  • ⁇ 1 represents the index number corresponding to the interval of the subcarriers of the BWP configured by the terminal device for data transmission in the protocol
  • ⁇ 2 represents the subcarrier interval of the reference in the protocol.
  • the corresponding index number in the protocol may also be referred to as a preset subcarrier spacing.
  • the "number of time slots in a time slot group" can be determined in the following two ways:
  • the terminal device is configured with a "reference SCS", and then the terminal device determines the actual subcarrier spacing index ⁇ 1 and the reference subcarrier spacing index ⁇ 2 configured by itself in combination with Table 3, and then determines A.
  • the benchmark SCS may be configured by a network device.
  • the RRC layer signaling carries an index number corresponding to the SCS of the benchmark in the protocol.
  • the network device configures the SCS of the benchmark for the terminal device through the RRC layer signaling.
  • the RRC layer signaling may be an RRC message, a system message, or the like.
  • the base SCS can also be predefined by the protocol.
  • the SCS based on the uplink subcarrier spacing of the initial BWP configured by the terminal device, or the SCS based on the downlink subcarrier spacing of the initial BWP configured by the terminal device.
  • the SCS based on the subcarrier interval used by the synchronization signal of the terminal device currently accessing the cell.
  • Table 3 shows the index numbers corresponding to the subcarrier spacing in the protocol.
  • the introduction about Table 3 is as follows: Compared with the parameter set of LTE, new radio (NR) supports many different types of subcarrier spacing.
  • the NR parameter set is one or more parameters in the subcarrier spacing, symbol length, time slot length and cyclic prefix (cyclic prefix, CP) length and other parameters.
  • Table 3 shows an NR parameter set.
  • represents the index number corresponding to the subcarrier spacing in the protocol
  • ⁇ f represents the value of the subcarrier spacing.
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • Other subcarrier spacing has only one CP type, namely NCP.
  • the network device sends the indication information 1 to the terminal device.
  • the terminal device receives the indication information 1 from the network device.
  • the indication information 1 indicates "the number of time slots in a time slot group".
  • the indication information 1 may include a numerical value, which is "the number of timeslots in a timeslot group". The value can be one of the set ⁇ 1, 2, 4, 8 ⁇ .
  • the indication information 1 may also include an index number, and the value corresponding to the index number is "the number of time slots in a time slot group". Among them, there is a mapping relationship between the index number and the value in the indication information 1, as shown in Table 4:
  • the index number number of slots in a slot group 0 1 1 2 2 4 3 8
  • the configuration information can configure multiple time slot groups for the terminal device, and the number of time slots in different time slot groups may be the same or different.
  • the network device sends the DCI to the terminal device.
  • the terminal device receives the DCI from the network device.
  • DCI indicates the resources used for data transmission in the time slot group.
  • the time slot group indicated by the DCI is the time slot group configured by the terminal equipment in the configuration information in S901.
  • the DCI indicates the resources used for downlink data transmission in the time slot group, that is, the resources of the PDSCH.
  • the DCI indicates the resources used for uplink data transmission in the time slot group, that is, the resources of the PUSCH.
  • the DCI indicates the time domain resources used for downlink data transmission in the time slot group, that is, the time domain resources of the PDSCH.
  • Case 1 The network device schedules the entire time slot group based on the DCI for PDSCH transmission.
  • the DCI includes information 1, which indicates the first time slot group in the time slot group, and the first time slot group includes time domain resources for transmitting PDSCH. That is, the network device can schedule time domain resources in a certain time slot group to transmit PDSCH through DCI.
  • the information 1 includes parameter 1
  • the parameter 1 indicates the time slot group or the number of time slots spaced apart from the first time slot group by the time slot group in which the DCI is located.
  • the DCI includes parameter 1 to indicate the first time slot group to the terminal device through parameter 1 .
  • parameter 1 indicates the number of time slot groups between the time slot group where the DCI is located and the first time slot group
  • parameter 1 indicates that K0 is "2”
  • the "first time slot group” is The third time slot group after the time slot group where the DCI is located, namely the time slot group 3 (not shown in FIG. 10( c )), is separated by two time slot groups between time slot 0 and time slot 3 .
  • the first time slot group of is the first time slot group.
  • a box represents a time slot.
  • a solid line box indicates that the time slot is used for downlink transmission
  • a dotted line box indicates that the time slot is used for uplink transmission
  • a box filled with diagonal lines indicates that the time slot is used for handover preparation time.
  • the number represents the index of the time slot group. DCI is transmitted through the second time slot in the time slot group 0.
  • parameter 1 indicates that the value of K0 is "2”
  • the "first time slot group” is where the DCI is located
  • the second time slot group after the time slot group of the That is, the entire time slot group can be scheduled for PDSCH transmission.
  • Case 2 The network device schedules some time domain resources in a time slot group based on the DCI for PDSCH transmission.
  • the terminal device on the basis of Case 1, the terminal device also determines some time domain resources in a time slot group in combination with Information 2 to transmit PDSCH.
  • the information 2 is used to determine at least one symbol used for transmitting PDSCH in the first time slot group.
  • the information 2 and the information 1 may be carried in the same signaling, or may be carried in different signaling, which is not limited in this embodiment of the present application.
  • Case 1 For the introduction of information 1, please refer to Case 1, which will not be repeated here. Below, two possible examples are presented:
  • Example 1 Taking the symbol corresponding to the first time slot group as the object, the terminal device determines at least one of the following according to information 2 and parameter 2: the position of the start symbol of at least one symbol of the PDSCH in the first The number of symbols in the first slot group for at least one symbol. Specifically, information 2 indicates the value of SLIV. The terminal device determines the value of S and the value of L according to SLIV and formula (1). Wherein, the value of S indicates the position of the start symbol used for data transmission in the time slot, and the value of L indicates the number of symbols used for data transmission.
  • the terminal device uses parameter 2 to adjust the value of S, and then determines the position of the start symbol for PDSCH transmission in the first time slot group in the first time slot group according to the adjusted value of S.
  • parameter 2 is a factor for adjusting the value of S.
  • the terminal device uses parameter 2 to adjust the value of L, and then determines the number of symbols used for PDSCH transmission in the first time slot group according to the adjusted value of L.
  • parameter 2 is a factor for adjusting the value of L.
  • the process of "parameter 2 adjusts the value of S and the value of L" satisfies the following formula:
  • S' is the adjusted value of S
  • L' is the adjusted value of L
  • Y represents parameter 2.
  • FIG. 10(d) shows a schematic diagram of symbol positions for PDSCH transmission.
  • a solid-line box represents a time slot
  • a dotted-line box represents a symbol.
  • the terminal device determines the first time slot group, it takes the symbols in the first time slot group (that is, the 112 symbols corresponding to 8 time slots) as the object. Taking the value of 2 and the value of L as 12" as an example, the terminal device performs calculation in combination with formula (5) to obtain "the value of S' is 8, and the value of L' is 48". That is to say, the 9th symbol in the first slot group is used as the start symbol of PDSCH, and the 48 consecutive symbols in the first time slot group are used as the symbol length of PDSCH, as shown in FIG. 10(d).
  • the network device may indicate the value of parameter 2 to the terminal device through a signaling. That is, the network device sends parameter 2 to the terminal device. Correspondingly, the terminal device receives the parameter 2 from the network device.
  • the parameter 2 may be carried in the configuration information of step S902, may also be carried in DCI, or may be carried in other signaling, which is not limited in this embodiment of the present application.
  • the values of parameter 2 and "the number of time slots in a time slot group A" may be the same or different. In the case that the value of parameter 2 is the same as "the number of time slots in a time slot group A", the network device does not need to send signaling to indicate the value of parameter 2 to the terminal device, so as to save signaling overhead. When the value of parameter 2 is different from the value of "the number of time slots in a time slot group A", the network device sends signaling to indicate the value of parameter 2 to the terminal device, so as to improve the flexibility of resource scheduling.
  • Example 2 Taking the time slots and symbols in the first time slot group as objects, in the case that the information 2 indicates SLIV, the terminal device determines at least one of the following according to the SLIV and the indication information 2: the starting point in at least one symbol of the PDSCH The position of the symbol in the first slot group, and the number of symbols in the first slot group of at least one symbol of the PDSCH. Wherein, the indication information 2 indicates the start symbol index and the end symbol index. The terminal device determines the value of S and the value of L according to SLIV and formula (1). Wherein, the value of S indicates the initial time slot used for data transmission in the first time slot group. The value of L indicates the number of time slots used for data transmission in the first time slot group.
  • the terminal device determines the starting time slot of the PDSCH in the first time slot group according to the value of S.
  • the terminal device determines the number of time slots of the PDSCH in the first time slot group according to the value of L.
  • the indication information 2 includes a start symbol index indication and an end symbol index indication.
  • the starting symbol index indicates the starting symbol position of the PDSCH in the first scheduled time slot.
  • the end symbol index indicates the symbol position of the end of the PDSCH in the last slot of the schedule.
  • the terminal device determines the start symbol of the PDSCH in the start time slot according to the start symbol index indication in the indication information 2.
  • the terminal device determines the end symbol of the PDSCH in the last time slot in the first time slot group according to the end symbol index indication in the indication information 2.
  • the terminal device determines at least one of the following according to SLIV and indication information 2: the start symbol in at least one symbol of PDSCH is in the first time slot group The number of symbols in the first slot group of at least one symbol of the PDSCH.
  • the terminal device determines the value of S and the value of L according to SLIV and formula (1).
  • the value of S is used to indicate which time slot in the multiple time slot groups configured by the terminal device is the initial time slot.
  • the value of L is used to indicate the number of time slots used for PDSCH in multiple time slot groups configured by the terminal device.
  • the multiple timeslot groups configured by the terminal device in S901 are regarded as a whole, so as to indicate which timeslots in the multiple timeslot groups are used for PDSCH transmission.
  • the indication information 2 refer to the description of Example 2, which will not be repeated here.
  • FIG. 10(e) shows a schematic diagram of symbol positions for PDSCH transmission.
  • the 8 time slot groups configured by the configuration information are taken as an example, and each time slot group includes 4 time slots. Taking the above “32 time slots" as the object, the terminal device performs calculation according to SLIV and formula (1) to obtain "the value of S is 8, and the value of L is 20".
  • the terminal device determines the 8th time slot in the above "32 time slots" as the initial time slot of the PDSCH, and the number of time slots is 20 time slots starting from the 8th time slot.
  • the terminal equipment determines the start symbol in the 8th time slot and the end symbol in the last time slot in combination with the indication information 2. Specifically, as shown in Figure 10(e), the start symbol of the PDSCH is the first symbol in the 8th time slot. 8 symbols, the ending symbol is the 3rd symbol in the 27th slot.
  • the terminal device can determine the resource for feeding back the HARQ information in combination with the information 3 .
  • the information 3 indicates the second time slot group in the time slot group
  • the second time slot group includes time domain resources used for transmitting HARQ information
  • the HARQ information indicates the receiving status of the PDSCH. That is, the network device can schedule time domain resources in a certain time slot group through DCI to transmit HARQ information.
  • the information 2 and the information 3 may be carried in the same signaling, or may be carried in different signaling, which is not limited in this embodiment of the present application.
  • parameter 3 indicates the number of time slot groups by which the first time slot group is spaced from the second time slot group.
  • parameter 3 indicates the number of time slot groups between the first time slot group and the second time slot group
  • parameter 3 indicates that the value of K1 is "2”
  • “the second time slot group is “Group” is the third time slot group after the time slot group where the DCI is located, that is, the time slot group 5 (not shown in FIG. 10(c) )
  • the time slot 5 and the time slot 3 are separated by two time slot groups.
  • the HARQ information starts to transmit HARQ information.
  • the terminal device receives the PDSCH
  • the first time slot group after the time slot group is the first time slot group.
  • the "second time slot group” is after the time slot group where the PDSCH is located.
  • the second time slot group of namely slot group 4, is shown in Figure 10 (c).
  • the terminal device transmits HARQ information through the first time slot in the time slot group 4 .
  • the first slot in the second slot group may be the first PUCCH resource in the slot group.
  • the terminal device after determining the second time slot group, the terminal device sends HARQ information to the network device on the PUCCH resource in the second time slot group.
  • the PUCCH resource is a preconfigured transmission resource, and the specific process can refer to the prior art.
  • the time domain resources in the second slot group include at least one PUCCH resource.
  • the terminal equipment transmits HARQ information on the first (or second, third) PUCCH resource. Wherein, on which PUCCH resource in the second time slot group the terminal equipment feeds back the HARQ information may be predefined by the protocol.
  • the terminal device feeds back HARQ information to the network device based on the time domain resources of the second time slot group.
  • the DCI indicates the resources used for uplink data transmission in the time slot group, that is, the resources of the PUSCH.
  • Case 1 The network device schedules the entire time slot group based on the DCI to transmit the PUSCH.
  • the DCI includes information 4, which indicates the third slot group in the slot group, and the third slot group includes time domain resources for transmitting PUSCH. That is, the network device can schedule time domain resources in a certain time slot group through DCI to transmit PUSCH.
  • information 4 includes parameter 4"
  • parameter 4 indicates the number of timeslot groups that are spaced from the third timeslot group between the timeslot group where the DCI is located.
  • the DCI includes parameter 4 to indicate the third time slot group to the terminal device through parameter 4.
  • parameter 4 indicates the number of time slot groups between the time slot group where the DCI is located and the third time slot group
  • parameter 4 indicates that the value of K2 is "4"
  • the "third time slot group” is The fifth time slot group after the time slot group where the DCI is located is the time slot group 5 (not shown in FIG. 10( c )), and the time slot 0 and the time slot 5 are separated by 4 time slot groups.
  • the PUSCH starts to be sent.
  • the first time slot group of is the first time slot group.
  • the value of K2 is indicated as " In the case of "4", the "third time slot group” is the fourth time slot group after the time slot group where the DCI is located, that is, the time slot group 4, as shown in Fig. 10(c).
  • the network device can schedule the entire time slot group for PUSCH transmission based on the DCI.
  • Case 2 The network device schedules some time domain resources in a time slot group based on DCI for transmitting PUSCH.
  • the terminal device determines some time domain resources in a time slot group in combination with Information 2 to transmit the PUSCH.
  • the information 2 is used to determine at least one symbol used for transmitting the PUSCH in the first time slot group.
  • the information 2 and the information 1 may be carried in the same signaling, or may be carried in different signaling, which is not limited in this embodiment of the present application.
  • Case 1 For the introduction of information 1, please refer to Case 1, which will not be repeated here. Below, two possible examples are presented:
  • Example 1 Taking the symbol corresponding to the third time slot group as the object, the terminal device determines at least one of the following according to information 2 and parameter 2: the position of the start symbol of at least one symbol of the PUSCH in the third time slot group, the The number of symbols in the third slot group for at least one symbol.
  • information 2 indicates the value of SLIV.
  • the terminal device determines the value of S and the value of L according to SLIV and formula (1). Wherein, the value of S indicates the position of the start symbol used for data transmission in the time slot, and the value of L indicates the number of symbols used for data transmission.
  • the terminal device uses parameter 2 to adjust the value of S, and then determines the position of the start symbol for transmitting PUSCH in the third time slot group in the third time slot group according to the adjusted value of S.
  • parameter 2 is a factor for adjusting the value of S.
  • the terminal device uses parameter 2 to adjust the value of L, and then determines the number of symbols used for PUSCH transmission in the third time slot group according to the adjusted value of L.
  • parameter 2 is a factor for adjusting the value of L.
  • FIG. 10(d) shows a schematic diagram of symbol positions for transmitting PUSCH.
  • a solid-line box represents a time slot
  • a dotted-line box represents a symbol.
  • the terminal device determines the third time slot group, it takes the symbols in the third time slot group (that is, 112 symbols corresponding to 8 time slots) as the object, and in the case that the value of Y is 4, it still uses the symbol "S" as the object.
  • the terminal device performs calculation in combination with formula (5) to obtain "the value of S' is 8, and the value of L' is 48". That is to say, the 9th symbol in the third slot group is used as the start symbol of PUSCH, and the 48 consecutive symbols in the third time slot group are used as the symbol length of PUSCH, as shown in FIG. 10(d).
  • Example 2 Taking the time slots and symbols in the third time slot group as the object, in the case that the information 2 indicates SLIV, the terminal device determines at least one of the following according to the SLIV and the indication information 2: the start of at least one symbol of the PUSCH The position of the symbol in the third slot group, and the number of symbols in the third slot group of at least one symbol of the PUSCH. Wherein, the indication information 2 indicates the start symbol index and the end symbol index. The terminal device determines the value of S and the value of L according to SLIV and formula (1). Wherein, the value of S indicates the initial time slot used for data transmission in the third time slot group. The value of L indicates the number of time slots used for data transmission in the third time slot group.
  • the terminal device determines the starting time slot of the PUSCH in the third time slot group according to the value of S.
  • the terminal device determines the number of time slots of the PUSCH in the third time slot group according to the value of L.
  • the indication information 2 includes a start symbol index indication and an end symbol index indication.
  • the start symbol index indicates the start symbol position of the PUSCH in the first scheduled time slot.
  • the end symbol index indicates the symbol position of the end of the PUSCH in the last slot of the schedule.
  • the terminal device determines the start symbol of the PUSCH in the start time slot according to the start symbol index indication in the indication information 2.
  • the terminal device determines the end symbol of the PUSCH in the last time slot in the third time slot group according to the end symbol index indication in the indication information 2.
  • the terminal device determines at least one of the following according to the SLIV and the indication information 2: the start symbol in at least one symbol of the PUSCH is in the third time slot group , the number of symbols in the third slot group for at least one symbol of the PUSCH.
  • the terminal device determines the value of S and the value of L according to SLIV and formula (1).
  • the value of S is used to indicate which time slot in the multiple time slot groups configured by the terminal device is the initial time slot.
  • the value of L is used to indicate the number of time slots for the PUSCH in the multiple time slot groups configured by the terminal device.
  • the multiple timeslot groups configured by the terminal device in S901 are regarded as a whole, so as to indicate which timeslots in the multiple timeslot groups are used for transmitting the PUSCH.
  • the indication information 2 please refer to the description of the second example, which will not be repeated here.
  • FIG. 10(e) shows a schematic diagram of symbol positions for transmitting PUSCH.
  • the 8 time slot groups configured by the configuration information are taken as an example, and each time slot group includes 4 time slots. Taking the above “32 time slots" as the object, the terminal device performs calculation according to SLIV and formula (1) to obtain "the value of S is 8, and the value of L is 20".
  • the terminal device determines the 8th time slot in the above "32 time slots" as the initial time slot of the PUSCH, and the number of time slots is 20 time slots starting from the 8th time slot.
  • the terminal equipment determines the start symbol in the 8th time slot and the end symbol in the last time slot in combination with the indication information 2. Specifically, as shown in Figure 10(e), the start symbol of the PUSCH is the first symbol in the 8th time slot. 8 symbols, the ending symbol is the 3rd symbol in the 27th slot.
  • the terminal device performs data transmission with the network device through the resource indicated by the DCI.
  • the starting symbol of the PDSCH in the first slot group is the ninth symbol in the first slot group, and the symbol length of the PDSCH in the first slot group Taking 48 symbols as an example, the network device sends data to the terminal device through some symbols in the first time slot group (ie, 48 symbols starting with the 9th symbol in the first time slot group).
  • the terminal device receives data from the network device through some symbols in the first time slot group (ie, 48 symbols starting with the 9th symbol in the first time slot group).
  • the HARQ information is in the first time slot in the second time slot group.
  • the terminal device feeds back HARQ information to the network device through the first time slot in the second time slot group.
  • the network device receives the HARQ information from the terminal device through the first time slot in the second time slot group.
  • the HARQ information indicates the reception status of the PDSCH.
  • the start symbol of the PUSCH in the third slot group is the ninth symbol in the third slot group, and the PUSCH symbol in the third slot group Taking the length of 48 symbols as an example, the terminal device sends data to the network device through some symbols in the third time slot group (ie, 48 symbols starting with the 9th symbol in the third time slot group).
  • the network device receives data from the terminal device through some symbols in the third time slot group (ie, 48 symbols starting with the 9th symbol in the third time slot group).
  • the terminal device receives the PDCCH, and after a preset duration, the terminal device applies the updated uplink beam and/or downlink beam.
  • the terminal device applies the updated uplink beam and/or downlink beam after the time duration corresponding to the preset number of time slot groups.
  • the preset duration is 112 symbols.
  • the embodiment of the present application also provides a communication method for resource scheduling, which is used for a transmission process of a demodulation reference signal (de-modulation reference signal, DMRS) in resource scheduling.
  • a demodulation reference signal demodulation reference signal, DMRS
  • DMRS demodulation reference signal
  • the demodulation reference signal is usually adjacent to the data channel to facilitate accurate channel estimation and demodulation.
  • the DMRS corresponding to the same port is described as “one DMRS”.
  • DMRSs on two consecutive resource elements (resource elements, REs) are described as “one DMRS”.
  • the DMRS on one RE is described as “one DMRS”.
  • Take "The DMRS on one RE is described as 'one DMRS'" as an example to introduce.
  • the smallest resource granularity is one symbol.
  • the smallest granularity is one subcarrier.
  • a time-frequency resource unit composed of a symbol and a subcarrier is an RE.
  • the symbol mapping method of DMRS is as follows: in the case where one symbol is used to carry DMRS in one time slot, for example, the one symbol may be the third symbol (symbol index is 2) in the time slot, as shown in Figure 11 ( a) shown.
  • one block represents one symbol.
  • a solid line box indicates that the symbol is used to transmit PDCCH
  • a dotted line box indicates that the symbol is used to transmit data
  • a diagonally filled box indicates that the symbol is used to carry DMRS.
  • one time slot may use multiple symbols to carry the DMRS.
  • the plurality of symbols may be the 3rd symbol (symbol index is 2) and the 12th symbol (symbol index is 11) in the time slot, or the plurality of symbols may be the 3rd symbol in the time slot symbol (symbol index 2), the 8th symbol (symbol index 7), and the 12th symbol (symbol index 11), or the plurality of symbols may be the 3rd symbol (symbol index 11) in the slot index 2), the 6th symbol (symbol index 5), the 9th symbol (symbol index 8), and the 12th symbol (symbol index 11).
  • the DMRS on one symbol may include DMRSs corresponding to antenna ports, and the DMRSs are mapped in the frequency domain as follows: DMRSs corresponding to the same antenna port (port) are placed at equal intervals in the frequency domain.
  • the pattern design of DMRS is divided into type (Type) 1 and type 2. Wherein, in the type 1 mapping manner, the DMRS corresponding to the same antenna port are separated by one subcarrier in the frequency domain. In the type 2 mapping manner, the DMRS corresponding to the same antenna port occupy two consecutive subcarriers in the frequency domain.
  • FIG. 11(b) shows a schematic diagram of frequency domain mapping of a DMRS. A vertically placed rectangular box represents a symbol.
  • a dotted rectangle indicates that the symbol is used to transmit data
  • a rectangle filled with diagonal lines indicates that the symbol is used to carry DMRS.
  • a horizontally placed rectangular box represents an RE.
  • a solid rectangle represents the DMRS corresponding to antenna port 0 and antenna port 1
  • a dotted rectangle represents the DMRS corresponding to antenna port 2 and antenna port 3
  • a diagonally filled rectangle represents the antenna DMRS corresponding to port 4 and antenna port 5.
  • the DMRS corresponding to antenna port 0 and antenna port 1 are distributed in the (i+1)th subcarrier, the (i+3)th subcarrier, The (i+5)th subcarrier and the (i+7)th subcarrier.
  • the DMRS corresponding to antenna port 2 and antenna port 3 are distributed on the (i+2)th subcarrier, the (i+4th)th subcarrier, the (i+6th)th subcarrier and the (i+7th)th subcarrier.
  • i is a positive integer.
  • the DMRSs corresponding to the same antenna port are separated by 1 subcarrier in the frequency domain.
  • the DMRS corresponding to antenna port 0 and antenna port 1 are distributed in the (i+1)th subcarrier, the (i+2)th subcarrier, and the (i+7)th subcarrier and the (i+8)th subcarrier.
  • the DMRS corresponding to antenna port 2 and antenna port 3 are distributed on the (i+3)th subcarrier, the (i+4th)th subcarrier, the (i+9th)th subcarrier and the (i+10th)th subcarrier.
  • the DMRS corresponding to antenna port 4 and antenna port 5 are distributed on the (i+5)th subcarrier, the (i+6th)th subcarrier, the (i+11th)th subcarrier, and the (i+12th)th subcarrier.
  • i is a positive integer.
  • the DMRS corresponding to the same antenna port eg, antenna port 0 and antenna port 1, or corresponding to antenna port 2 and antenna port 3, or corresponding to antenna port 4 and antenna port 5
  • the channels separated by 2 or several subcarriers are approximately considered to be the same.
  • OCC orthogonal cover codes
  • Fig. 11(c) shows a schematic diagram of a channel estimation situation.
  • a rectangular box represents an RE.
  • a solid-line rectangular box represents the DMRS corresponding to antenna port 0 and antenna port 1
  • a dotted rectangular box represents the DMRS corresponding to antenna port 2 and antenna port 3.
  • SCS is 960kHz.
  • the solid curve represents the real frequency response.
  • the terminal device performs an interpolation operation according to the frequency responses corresponding to frequency A and frequency B respectively to obtain a linear interpolation operation result, as shown by the dotted line between node A and node B in Figure 11(c).
  • the frequency responses corresponding to the frequencies of the DMRSs corresponding to no antenna port 0 and antenna port 1 depend on the result of the linear interpolation operation.
  • node C and node D correspond to the same frequency.
  • Node C represents the frequency response determined based on the results of the linear interpolation operation, while node D represents the actual frequency response. In this way, there is a deviation between the estimated frequency response and the real frequency response, that is, the accuracy of the channel estimation result is poor.
  • the channels separated by 2 or several subcarriers are quite different and cannot be approximately considered to be the same.
  • an interpolation operation is performed mathematically to obtain the channel estimation result.
  • the accuracy of the channel estimation result is poor, which affects the network transmission performance.
  • the embodiments of the present application provide another communication method for resource scheduling, which is applied to a DMRS transmission process in resource scheduling.
  • the communication method for resource scheduling includes the following steps:
  • the network device sends the DCI to the terminal device.
  • the terminal device receives the DCI from the network device.
  • DCI indicates the time domain resource used for data transmission.
  • the communication method for resource scheduling in this embodiment of the present application executes S1202 and S1204.
  • the communication method for resource scheduling in this embodiment of the present application executes S1205 and S1206.
  • the network device sends a first reference signal to the terminal device.
  • the terminal device receives the first reference signal from the network device.
  • the first reference signal includes at least two DMRSs. At least two DMRSs correspond to the same antenna port, and the at least two DMRSs are consecutive in the time domain and located on different subcarriers in the frequency domain.
  • the terminal device uses the first reference signal to demodulate the time domain resource indicated by the DCI.
  • the terminal device sends a third reference signal to the network device.
  • the network device receives the third reference signal from the terminal device.
  • the third reference signal includes at least two DMRSs. At least two DMRSs correspond to the same antenna port, and the at least two DMRSs are consecutive in the time domain and located on different subcarriers in the frequency domain.
  • the network device uses the third reference signal to demodulate the time domain resource indicated by the DCI.
  • the resource indicated by the DCI is demodulated by using the DMRS in the first reference signal.
  • at least two DMRSs in the first reference signal correspond to the same antenna port.
  • the above "at least two DMRSs" are located in different subcarriers. For example, there are DMRSs corresponding to the same port on the next subcarrier of adjacent symbols, thereby effectively increasing the density of DMRSs in the frequency domain, which is beneficial to Improve the accuracy of linear interpolation operations and the accuracy of channel estimation results, thereby improving the spectral efficiency of transmission.
  • the communication method for resource scheduling in the embodiment of the present application improves the DMRS per unit time signal energy, which is beneficial to improve the decoding speed and the accuracy of channel estimation, and improve the spectral efficiency of transmission.
  • the network device sends the DCI to the terminal device.
  • the terminal device receives the DCI from the network device.
  • DCI indicates the time domain resource used for data transmission.
  • the DCI indicates the time domain resources in the time slot group used for downlink data transmission, that is, the time domain resources of the PDSCH.
  • the DCI indicates a time domain resource used for uplink data transmission in the time slot group, that is, a PUSCH time domain resource.
  • the DCI indicates a time domain resource used for data transmission in the time slot group.
  • the DCI indicates a time domain resource used for data transmission in the time slot group.
  • the network device sends a first reference signal to the terminal device.
  • the terminal device receives the first reference signal from the network device.
  • the first reference signal includes at least two DMRSs.
  • the first reference signal may also be replaced by the first DMRS set or the first DMRS group.
  • the DMRS located on the same symbol may correspond to the same antenna port, or may correspond to different multiple antenna ports.
  • the above-mentioned at least two DMRSs include a first DMRS and a second DMRS.
  • the mapping conditions of the above-mentioned "at least two DMRSs" in the time domain and the frequency domain are described:
  • the first DMRS and the second DMRS are consecutive in the time domain.
  • FIG. 13( a ) shows a schematic diagram of the position of the first reference signal in the time domain.
  • one block represents one symbol. Every 14 symbols constitute a slot, as shown by the dotted line in Fig. 13(a).
  • a solid line box indicates that the symbol is used to transmit PDCCH
  • a dotted line box indicates that the symbol is used to transmit data
  • a diagonally filled box indicates that the symbol is used to carry DMRS.
  • the symbol carrying the DMRS is the third symbol in each time slot, and the DMRS in one time slot is used to demodulate the DMRS.
  • the resources used for data transmission on the time slot, and each time slot is continuous in the time domain.
  • the first reference signal includes 4 DMRSs, and the 4 DMRSs are consecutive in the time domain, as shown in FIG. 13( a ).
  • the distribution of the first reference signal in the time domain shown in FIG. 12( c ) is the same as the distribution of the first reference signal in the time domain shown in FIG. 13( a ).
  • the first DMRS and the second DMRS are located on different subcarriers in the frequency domain.
  • FIG. 13(b) shows a schematic diagram of the location of a first reference signal.
  • a vertically placed rectangular box represents a symbol.
  • the DMRS is carried on symbol a, symbol b, symbol c and symbol d.
  • a horizontally placed rectangular box represents an RE.
  • a rectangular box placed horizontally without slanted lines indicates that the RE does not carry DMRS, and a rectangular box filled with slashes placed horizontally indicates that the DMRS borne by the RE corresponds to antenna port 0.
  • the DMRS corresponding to antenna port 0 are distributed in the (i+1)th subcarrier, the (i+3)th subcarrier, the (i+5)th subcarrier and the (i+7) subcarriers.
  • the DMRS corresponding to antenna port 0 are distributed on the ith subcarrier, the (i+2)th subcarrier, the (i+4)th subcarrier, and the (i+6)th subcarrier.
  • the DMRS corresponding to antenna port 0 are distributed in the (i+1)th subcarrier, the (i+3th)th subcarrier, the (i+5th)th subcarrier and the (i+7th)th subcarrier.
  • the DMRS corresponding to antenna port 0 are distributed on the i-th sub-carrier, the (i+2)-th sub-carrier, the (i+4)-th sub-carrier, and the (i+6)-th sub-carrier.
  • i is a positive integer.
  • FIG. 13( c ) shows a schematic diagram of the location of a first reference signal.
  • the DMRS corresponding to antenna port 0 are distributed in the (i+2)th subcarrier, the (i+3)th subcarrier, the (i+6)th subcarrier and the (i+6th)th subcarrier i+7) subcarriers.
  • the DMRS corresponding to antenna port 0 are distributed on the i-th sub-carrier, the (i+1)-th sub-carrier, the (i+4)-th sub-carrier, and the (i+5)-th sub-carrier.
  • the DMRS corresponding to antenna port 0 are distributed on the (i+2)th subcarrier, the (i+3th)th subcarrier, the (i+6th)th subcarrier and the (i+7th)th subcarrier.
  • the DMRS corresponding to antenna port 0 are distributed on the ith subcarrier, the (i+1)th subcarrier, the (i+4)th subcarrier, and the (i+5)th subcarrier.
  • i is a positive integer.
  • the first DMRS is the DMRS indicated by the character 'A'
  • the second DMRS is the DMRS indicated by the character 'B'" as an example
  • the first DMRS and the second DMRS are located on different subcarriers.
  • the first DMRS and the second DMRS corresponding to the same antenna port are continuous in the time domain, and are located in different subcarriers in the frequency domain, as shown in Figure 13(a) , Figure 13(b) and Figure 13(c).
  • the first reference signal further includes a third DMRS.
  • the antenna ports corresponding to the third DMRS and the first DMRS are different.
  • the above-mentioned “DMRS corresponding to multiple antenna ports” is described in the time domain and the frequency domain.
  • the first DMRS and the third DMRS are the same in the time domain.
  • FIG. 13(d) shows a schematic diagram of the location of a first reference signal.
  • the meaning of the vertically placed rectangular frame is the same as that in FIG. 13( b ), which will not be repeated here.
  • the DMRS is carried on symbol a, symbol b, symbol c, and symbol d.
  • a horizontally placed rectangular box represents an RE.
  • a rectangular box filled with a horizontal pattern indicates that the RE is used to carry DMRS, and if the patterns filled in the two rectangular boxes are different, it indicates that the antenna ports corresponding to the DMRS carried by the two REs are different.
  • FIG. 13(d) shows a schematic diagram of the location of a first reference signal.
  • the meaning of the vertically placed rectangular frame is the same as that in FIG. 13( b ), which will not be repeated here.
  • the DMRS is carried on symbol a, symbol b, symbol c, and symbol d.
  • a horizontally placed rectangular box represents an RE.
  • a rectangular box filled with a horizontal pattern
  • the DMRS corresponding to antenna port 0 are distributed in the (i+1)th subcarrier, the (i+3)th subcarrier, and the (i+5th)th subcarrier.
  • subcarriers and the (i+7)th subcarrier, the DMRS corresponding to antenna port 1 are distributed in the ith subcarrier, the (i+2)th subcarrier, the (i+4th)th subcarrier and the (i+6th)th subcarrier carrier.
  • the DMRS corresponding to antenna port 0 are distributed on the ith subcarrier, the (i+2)th subcarrier, the (i+4)th subcarrier, and the (i+6)th subcarrier, corresponding to the
  • the DMRS is distributed on the (i+1)th subcarrier, the (i+3)th subcarrier, the (i+5th)th subcarrier, and the (i+7)th subcarrier.
  • the DMRS mapping status on the symbol c is the same as the DMRS mapping status on the symbol a
  • the DMRS mapping status on the symbol d is the same as the DMRS mapping status on the symbol b, which is not repeated here.
  • i is a positive integer.
  • the first DMRS is the DMRS indicated by the character 'A'
  • the second DMRS is the DMRS indicated by the character 'B'
  • the third DMRS is the DMRS indicated by the character 'C'" as an example
  • the first DMRS and the third DMRS are consecutive in the time domain.
  • FIG. 13(e) shows a schematic diagram of the location of a first reference signal.
  • the meaning of the vertically placed rectangular frame is the same as that of FIG. 13(b)
  • the meaning of the horizontally placed rectangular frame is the same as that of FIG. 13(b), which will not be repeated here.
  • Fig. 13(e) shows a schematic diagram of the location of a first reference signal.
  • the DMRS corresponding to antenna port 0 are distributed in the (i+2)th subcarrier, the (i+3th)th subcarrier, the (i+6th)th subcarrier and the (i+7) subcarriers, the DMRS corresponding to antenna port 1 are distributed in the ith subcarrier, the (i+1)th subcarrier, the (i+4)th subcarrier, and the (i+5)th subcarrier.
  • the DMRS corresponding to antenna port 0 are distributed in the ith subcarrier, the (i+1)th subcarrier, the (i+4)th subcarrier and the (i+5)th subcarrier, corresponding to the
  • the DMRS is distributed on the (i+2)th subcarrier, the (i+3)th subcarrier, the (i+6th)th subcarrier, and the (i+7)th subcarrier.
  • the DMRS mapping status on the symbol c is the same as the DMRS mapping status on the symbol a
  • the DMRS mapping status on the symbol d is the same as the DMRS mapping status on the symbol b, which is not repeated here.
  • i is a positive integer.
  • the first DMRS is the DMRS indicated by the character 'A'
  • the second DMRS is the DMRS indicated by the character 'B'
  • the third DMRS is the DMRS indicated by the character 'C'" as an example
  • the first DMRS and the third DMRS are consecutive in the time domain.
  • the second DMRS and the third DMRS are located on the same subcarrier in the frequency domain.
  • the second DMRS is the DMRS indicated by the character 'B'
  • the third DMRS is the DMRS indicated by the character 'C'
  • the second DMRS and the third DMRS are located on the same subcarrier in the frequency domain.
  • the second DMRS is the DMRS indicated by the character 'B'
  • the third DMRS is the DMRS indicated by the character 'C'
  • the second DMRS and the third DMRS are located on the same subcarrier in the frequency domain.
  • At least two DMRSs in the first reference signal are bundled and aggregated, which improves the DMRS signal energy per unit time, thereby improving the accuracy of channel estimation and improving the spectral efficiency of transmission.
  • In the frequency domain at least two DMRSs in the first reference signal are cyclically shifted in units of subcarriers. For example, there are DMRSs corresponding to the same port on the next subcarrier of an adjacent symbol, thereby effectively improving the frequency.
  • the density of the domain DMRS is beneficial to improve the accuracy of the linear interpolation operation and the accuracy of the channel estimation result, thereby improving the spectral efficiency of transmission.
  • the antenna port corresponding to the second DMRS and the antenna port corresponding to the third DMRS are determined based on the value of N and the number of symbols carrying the target DMRS. of.
  • the value of N is the number of antenna ports corresponding to the DMRS on the symbol where the second DMRS is located
  • the target DMRS is a continuous group of DMRSs in the time domain in the first reference signal
  • the target DMRS includes the first DMRS and the second DMRS.
  • FIG. 13( f ) shows a schematic diagram of the location of a first reference signal.
  • the meaning represented by the vertically placed rectangular frame is the same as that in FIG. 13( b ), which will not be repeated here.
  • the DMRS is carried on symbol a and symbol b.
  • a horizontally placed rectangular box represents an RE.
  • a horizontally placed pattern-filled rectangle indicates that the RE carries DMRS.
  • the patterns filled in the two rectangular boxes are different, it means that the antenna ports corresponding to the DMRS carried by the two REs are different.
  • FIG. 13( f ) Exemplarily, taking four antenna ports as an example, rectangular boxes filled with different patterns represent DMRSs corresponding to different antenna ports, as shown in FIG. 13( f ).
  • the DMRS corresponding to antenna port 0 is distributed on the (i+3)th subcarrier and the (i+7)th subcarrier, and the DMRS corresponding to antenna port 1 is distributed.
  • the DMRS corresponding to the antenna port 2 are distributed in the (i+1)th subcarrier and the (i+5)th subcarrier, corresponding to the (i+5)th subcarrier of the antenna port 3.
  • the DMRS is distributed on the ith subcarrier and the (i+4)th subcarrier.
  • the DMRS corresponding to antenna port 0 is distributed in the (i+1)th subcarrier and the (i+5)th subcarrier
  • the DMRS corresponding to antenna port 1 is distributed in the ith subcarrier and (i+4)th subcarrier subcarriers
  • the DMRS corresponding to antenna port 2 are distributed in the (i+3)th subcarrier and the (i+7)th subcarrier
  • the DMRS corresponding to antenna port 3 are distributed in the (i+2)th subcarrier and (i+)th subcarrier 6) subcarriers.
  • the DMRS located on the same symbol corresponds to N antenna ports
  • every N subcarriers is a group, and on one symbol, the corresponding antenna port X (such as antenna port 0 to antenna port (N-1 ), the DMRS of any antenna port) is carried on the subcarrier whose index is (N*k), and on the adjacent symbol of this symbol, the DMRS corresponding to the antenna port X is carried on the subcarrier whose index is (N*k+m). subcarrier.
  • m satisfies the following formula:
  • m represents the number of cyclically shifted subcarriers
  • N represents the number of antenna ports corresponding to the DMRS on the same symbol
  • P represents the number of symbols carrying the target DMRS.
  • the target DMRS refers to a group of DMRSs in the first reference signal that are continuous in the time domain.
  • the value of N is 4, and the value of P is 2.
  • the value of m is 2.
  • the DMRS corresponding to antenna port 2 on symbol a is distributed on the (i+1)th subcarrier and the (i+5)th subcarrier, and on symbol b
  • the DMRS corresponding to antenna port 2 are distributed on the (i+3)th subcarrier and the (i+7)th subcarrier.
  • the corresponding antenna port is determined based on the value of N and the number of symbols carrying the target DMRS, which is beneficial to improve the “DMRS corresponding to the same antenna port” in the frequency domain. In order to improve the accuracy of the linear interpolation operation and the accuracy of the channel estimation results.
  • the number of symbols carrying the target DMRS may be the same as or different from the number of time slots in a time slot group.
  • the network device does not need to transmit additional instructions to indicate the number of DMRS in the first reference signal to the terminal device, saving signaling overhead .
  • Specific examples corresponding to this situation can be seen in Fig. 13(b), Fig. 13(c), Fig. 13(d) and Fig. 13(e). If one slot group includes N slots, the first reference signal includes N DMRSs.
  • the first 2*N symbols are used to transmit the PDCCH, and the first reference signal is N consecutive symbols starting from the (2*N+1)th symbol.
  • the network device transmits an instruction to the terminal device to indicate the number of DMRSs in the first reference signal for the terminal device. In this way, when the channel condition is good, the number of DMRSs in the first reference signal can be reduced to use more resources for data transmission.
  • the first reference signal includes two DMRSs.
  • the number of DMRSs in the first reference signal can be increased to improve the channel estimation accuracy.
  • the first reference signal includes six DMRSs.
  • the first 2*N symbols are used to transmit the PDCCH, and the first reference signal is Z consecutive symbols starting from the (2*N+1)th symbol.
  • the number of DMRSs in the first reference signal is indicated by the above instruction.
  • N is less than P.
  • the mapping conditions of the first reference signal in the time domain and the frequency domain still satisfy the above description.
  • the value of N is 2 and the value of P is 4, that is, the schematic diagram of the position of the first reference signal shown in FIG. 13( d ).
  • the value of N is 3 and the value of P is 4, that is, the schematic diagram of the position of the first reference signal shown in FIG. 13(h).
  • the meaning represented by the vertically placed rectangular frame is the same as that in Fig. 13(b), and will not be repeated here.
  • the DMRS is carried on symbol a, symbol b, symbol c, and symbol d.
  • a horizontally placed rectangular box represents an RE.
  • a horizontally placed pattern-filled rectangle indicates that the RE carries DMRS.
  • the patterns filled in the two rectangular boxes are different, it means that the antenna ports corresponding to the DMRS carried by the two REs are different.
  • rectangular boxes filled with different patterns represent DMRSs corresponding to different antenna ports, as shown in FIG. 13(h).
  • FIG. 13(h) Exemplarily, in FIG.
  • the DMRS corresponding to antenna port 0 is distributed on the (i+2)th subcarrier and the (i+5)th subcarrier, and the DMRS corresponding to antenna port 1 is distributed.
  • the DMRS corresponding to antenna port 2 are distributed on the ith subcarrier and the (i+3)th subcarrier.
  • the DMRS corresponding to antenna port 0 is distributed on the ith subcarrier and the (i+3)th subcarrier
  • the DMRS corresponding to antenna port 1 is distributed on the (i+2)th subcarrier and the (i+5)th subcarrier subcarriers
  • the DMRS corresponding to antenna port 2 are distributed in the (i+1)th subcarrier and the (i+4)th subcarrier.
  • the DMRS corresponding to antenna port 0 is distributed on the (i+1)th subcarrier and the (i+4)th subcarrier
  • the DMRS corresponding to antenna port 1 is distributed on the ith subcarrier and the (i+3)th subcarrier subcarriers
  • the DMRS corresponding to antenna port 2 are distributed in the (i+2)th subcarrier and the (i+5)th subcarrier.
  • the DMRS mapping status on the symbol d is the same as the DMRS mapping status on the symbol a, which is not repeated here.
  • N is greater than P.
  • the mapping conditions of the first reference signal in the time domain and the frequency domain still satisfy the above description.
  • the value of N is 4 and the value of P is 3, that is, the schematic diagram of the position of the first reference signal shown in FIG. 13( i ).
  • the meaning represented by the vertically placed rectangular frame is the same as that in Fig. 13(b), and will not be repeated here.
  • the DMRS is carried on symbol a, symbol b and symbol c.
  • a horizontally placed rectangular box represents an RE.
  • a horizontally placed pattern-filled rectangle indicates that the RE carries DMRS. Moreover, if the patterns filled in the two rectangular boxes are different, it means that the antenna ports corresponding to the DMRS carried by the two REs are different. Exemplarily, taking four antenna ports as an example, rectangles filled with different patterns represent DMRSs corresponding to different antenna ports, as shown in FIG. 13(i). Exemplarily, in FIG. 13(i), on symbol a, the DMRS corresponding to antenna port 0 is distributed on the (i+1)th subcarrier and the (i+5)th subcarrier, and the DMRS corresponding to antenna port 1 is distributed.
  • the DMRS corresponding to antenna port 2 is distributed on the (i+3)th subcarrier, and the DMRS corresponding to antenna port 3 is distributed on the (i+2)th subcarrier.
  • the DMRS corresponding to antenna port 0 is distributed on the ith subcarrier and the (i+4)th subcarrier, the DMRS corresponding to antenna port 1 is distributed on the (i+3)th subcarrier, and the DMRS corresponding to antenna port 2 is distributed on the (i+3)th subcarrier.
  • the DMRS corresponding to antenna port 3 are distributed on the (i+1)th subcarrier and the (i+5)th subcarrier.
  • the DMRS corresponding to antenna port 0 is distributed on the (i+3)th subcarrier
  • the DMRS corresponding to antenna port 1 is distributed on the (i+2)th subcarrier
  • the DMRS corresponding to antenna port 2 is distributed on the (i+2)th subcarrier +1) subcarriers and (i+5)th subcarriers
  • the DMRS corresponding to antenna port 3 are distributed on the ith subcarrier and the (i+4)th subcarrier.
  • the first reference signal is transmitted before the resource indicated by the DCI.
  • the terminal device first executes S1202, and then executes S1204, as shown in FIG. 13(a) to FIG. 13(i). In this way, the terminal device can quickly obtain the channel estimation result to demodulate the resource indicated by the DCI.
  • the communication method for resource scheduling in this embodiment of the present application further includes S1203:
  • the network device sends a second reference signal to the terminal device.
  • the terminal device receives the second reference signal from the network device.
  • the second reference signal includes at least two DMRSs, the at least two DMRSs correspond to the same antenna port, and the at least two DMRSs are consecutive in the time domain and located in different subcarriers in the frequency domain. That is to say, for the mapping status of each DMRS in the second reference signal in the time domain and the frequency domain, reference may be made to the relevant description of the first reference signal, and details are not repeated here.
  • the second reference signal is transmitted after the first part of the resources indicated by the DCI and before the second part of the resources indicated by the DCI.
  • Fig. 14(a) shows a schematic diagram of the location of a second reference signal.
  • the meaning represented by a block is detailed in the relevant description in Fig. 13(a), which is not repeated here.
  • the symbols carrying the DMRS are the 3rd symbol and the 12th symbol in the time slot, as shown in Fig. 14(a).
  • DMRS set 2 includes 4 DMRSs, and the 4 DMRSs are consecutive in the time domain.
  • DMRS set 1 precedes the resource indicated by the DCI.
  • the DMRS set 2 is after the first part of the resources indicated by the DCI and before the second part of the resources indicated by the DCI, as shown in FIG. 14( a ).
  • the first reference signal is DMRS set 1
  • the second reference signal is DMRS set 2.
  • the number of symbols corresponding to the first part of the resource indicated by the DCI is determined according to the number of time slots in a time slot group.
  • the number of symbols corresponding to the first part of the resource indicated by the DCI is (P*8).
  • P represents the number of DMRSs in the first reference signal.
  • Fig. 14(b) shows a schematic diagram of the location of a second reference signal.
  • the meaning represented by a block can be found in the relevant description in Fig. 13(a), which will not be repeated here.
  • the symbols carrying the DMRS are the 3rd symbol, the 8th symbol and the 12th symbol in the time slot, as shown in FIG. 14(b).
  • the second reference signal includes 4 DMRSs, and the 4 DMRSs are consecutive in the time domain.
  • DMRS set 1 precedes the resource indicated by the DCI.
  • DMRS set 2 is after the 1st part of resources indicated by the DCI, and before the 2nd and 3rd resources indicated by the DCI.
  • the DMRS set 3 is after the first part of the resources and the second part of the resources indicated by the DCI, and before the third part of the resources indicated by the DCI, as shown in Fig. 14(b).
  • the first reference signal is DMRS set 1
  • the second reference signal is DMRS set 2 or DMRS set 3.
  • the number of symbols corresponding to the first part of resources indicated by DCI is (P*4)
  • P*3 the number of symbols corresponding to the second part of resources indicated by DCI
  • FIG. 14( c ) shows a schematic diagram of the location of a second reference signal.
  • the symbols carrying the DMRS are the 3rd symbol, the 6th symbol, the 9th symbol and the 12th symbol in the time slot, as shown in FIG. 14(c).
  • the second reference signal includes 4 DMRSs, and the 4 DMRSs are consecutive in the time domain.
  • DMRS set 1 precedes the resource indicated by the DCI.
  • the DMRS set 2 follows the part 1 resources indicated by the DCI, and precedes the part 2 resources, the part 3 resources and the part 4 resources indicated by the DCI.
  • the DMRS set 3 follows the part 1 resources and the part 2 resources indicated by the DCI, and precedes the part 3 resources and the part 4 resources indicated by the DCI.
  • the DMRS set 4 follows the part 1 resources, the part 2 resources and the part 3 resources indicated by the DCI, and precedes the part 4 resources indicated by the DCI.
  • the first reference signal is DMRS set 1
  • the second reference signal is DMRS set 2, or DMRS set 3, or DMRS set 4.
  • the number of symbols corresponding to the first part resource, the second part resource and the third part resource indicated by the DCI is (P*2) respectively.
  • P represents the number of DMRSs in the first reference signal.
  • the terminal device uses the first reference signal to demodulate the time domain resource indicated by the DCI.
  • the terminal device uses the first reference signal to demodulate the resource indicated by the DCI.
  • the terminal device demodulates "Part 1" resources, "Part 2" resources, “Part 3” resources and "Part 4" resources based on the first reference signal.
  • the DMRS on one symbol demodulates a part of the resources indicated by the DCI
  • the DMRS on different symbols demodulates different parts of the resources indicated by the DCI.
  • the resource distribution of PDSCH after bundling is as follows: the PDSCH resources in the first time slot before bundling are the first part of resources after bundling, and the first part of resources before bundling
  • the PDSCH resources in 2 time slots are the second part of resources after bundling
  • the PDSCH resources in the third time slot before bundling are the third part of resources after bundling
  • the fourth part before bundling The resources of the PDSCH in the time slot are the bundled fourth part of resources, as shown by the dashed diagonal line in Fig. 13(a).
  • the DMRS on the first symbol in the first reference signal demodulates the first part of resources indicated by DCI
  • the DMRS on the second symbol in the first reference signal demodulates the second part of resources indicated by DCI
  • the first reference signal The DMRS on the 3rd symbol in the DMRS demodulates the 3rd part of the resources indicated by the DCI
  • the DMRS on the 4th symbol in the first reference signal demodulates the 4th part of the resources indicated by the DCI, as shown in Figure 13(a) Curved arrows are shown.
  • one time slot uses multiple symbols to carry the DMRS.
  • the terminal device also executes S1204.
  • S1204 is specifically as follows: the terminal device uses the first reference signal and the second reference signal to demodulate the resource indicated by the DCI.
  • the terminal device uses the first reference signal and the second reference signal to demodulate the resource indicated by the DCI.
  • the DMRS on one symbol demodulates a part of the resources indicated by the DCI
  • the DMRS on different symbols demodulates different parts of the resources indicated by the DCI.
  • the first DMRS in DMRS set 1 demodulates the first and second symbols in the first part of resources indicated by DCI
  • the second DMRS in DMRS set 1 demodulates The 3rd and 4th symbols in the 1st part of resources indicated by DCI
  • the 3rd DMRS in DMRS set 1 demodulates the 5th and 6th symbols in the 1st part of resources indicated by DCI
  • DMRS The 4th DMRS in set 1 demodulates the 7th symbol and the 8th symbol in the 1st part of resources indicated by DCI, as shown by the curved arrows in Fig. 14(c).
  • the demodulated resources of each DMRS in the DMRS set 2 are shown in FIG. 14(c), which will not be repeated here.
  • DMRS set 1 demodulates the first part of resources indicated by DCI
  • DMRS set 2 demodulates the second part of resources indicated by DCI
  • DMRS set 3 demodulates the third part of resources indicated by DCI
  • DMRS set 3 demodulates the third part of resources indicated by DCI.
  • Set 4 demodulates the fourth part of the resource indicated by the DCI, as shown by the curved arrow in Fig. 14(d).
  • the terminal device sends a third reference signal to the network device.
  • the network device receives the third reference signal from the terminal device.
  • the network device uses the third reference signal to demodulate the time domain resource indicated by the DCI.
  • the third reference signal is transmitted before the resource indicated by the DCI.
  • the terminal device first executes S1205, and then executes S1206.
  • the communication method for resource scheduling in the embodiment of the present application improves the DMRS per unit time signal energy.
  • the specific analysis process of "DMRS signal energy" is as follows:
  • a rectangular box represents a symbol
  • a solid-line rectangular box represents a symbol used for transmitting PDCCH
  • a rectangle filled with diagonal lines represents a symbol used for transmitting DMRS
  • a dotted-line rectangular box represents a symbol used for transmitting DMRS.
  • the signal energy of the DMRS is small, which is not conducive to fast decoding.
  • SCS is 960kHz
  • DMRS bundling at least two DMRSs in the first reference signal are consecutive in the time domain, as in Fig. 14(e), in the time domain, four " The duration of a symbol with an SCS of 960 kHz” is the same as the duration of a symbol with an SCS of 240 kHz, which accordingly increases the signal energy of the DMRS per unit time.
  • the communication method for resource scheduling in the embodiment of the present application is also applicable to double-symbol DMRS (double-symbol DMRS).
  • double-symbol DMRS double-symbol DMRS
  • the dual-symbol DMRS refers to that the DMRS corresponding to the same antenna port spans two symbols in the time domain, and occupies one or two consecutive subcarriers in the frequency domain.
  • time domain OCC ⁇ 1, 1 ⁇ and ⁇ 1, -1 ⁇ are introduced to increase the number of orthogonal antenna ports.
  • the number of available antenna ports can be 8 or 12.
  • the first type of DMRS is a DMRS pattern based on interleaved frequency domain multiplexing (IFDM).
  • the DMRS pattern can support a maximum of 8 antenna ports on two adjacent symbols, as shown in Figure 15(a).
  • Figure 15(a) shows two code-division multiplexing groups (CDM groups).
  • CDM group #0 includes p1000, p1001, p1004, and p1005, and p1000, p1001, p1004, and p1005 occupy the same time-frequency resources, and p1000 and p1001 use different codes in the frequency domain.
  • CDM group #1 includes p1002, p1003, p1006 and p1007.
  • the CSs used in the frequency domain for p1002 and p1003 are different, and the OCCs used in the time domain are the same;
  • the OCC used in the time domain is the same and different from the codes used in the time domain for P1002 and P1003.
  • All ports in the two groups of CDM are mapped on the same time-frequency resource, and are distinguished from each other by different time-domain or frequency-domain codes.
  • the DMRS corresponding to each antenna port is shown in Figure 15(b). Among them, "+” means "+1", and "-” means "-1".
  • the second type of DMRS is a DMRS pattern based on a frequency domain orthogonal covering code (FD-OCC).
  • the DMRS pattern can support up to 12 antenna ports on 2 adjacent symbols, as shown in Figure 15(c).
  • Figure 15(c) shows 3 groups of CDMs.
  • CDM group #0 includes p1000, p1001, p1006, and p1007
  • CDM group #1 includes p1002, p1003, p1008, and p1009
  • CDM group #2 includes p1004, p1005, p1010, and p1011.
  • p1000, p1001, p1006, and p1007 occupy the same time-frequency resources, but use different time-domain or frequency-domain OCCs.
  • p1000 and p1001 are distinguished by the OCC in the frequency domain, while the time domain OCC is the same, that is, the frequency domain OCC used by p1000 is ⁇ 1, 1 ⁇ , the frequency domain OCC used by p1001 is ⁇ 1, -1 ⁇ , and the frequency domain OCC used by p1000 is ⁇ 1, -1 ⁇ . and p1001 both use an OCC of ⁇ 1, 1 ⁇ in the time domain.
  • the p1006 and p1007 are distinguished by the OCC in the frequency domain, while the time domain OCC is the same, that is, the frequency domain OCC used by p1006 is ⁇ 1, 1 ⁇ , the frequency domain OCC used by p1007 is ⁇ 1, -1 ⁇ , and the frequency domain OCC used by p1006 and p1006 is ⁇ 1, 1 ⁇ .
  • the OCC used by p1007 in the time domain is ⁇ 1, -1 ⁇ .
  • the 4 antenna ports in other CDMs are the same.
  • p1002 and p1003 use different frequency domain OCC, but use the same time domain OCC
  • p1008 and p1009 use different frequency domain OCC
  • the same time domain OCC is also used.
  • the time domain OCC for p1002 and p1003 is different from the time domain OCC for p1008 and p1009.
  • p1004 and p1005 use different frequency domain OCCs while using the same time domain OCC
  • p1010 and p1011 use different frequency domain OCCs and also use the same time domain OCC.
  • the time domain OCC for p1004 and p1005 is different from the time domain OCC for p1010 and p1011. All ports in the three groups of CDM are mapped on the same time-frequency resource, and are distinguished from each other by different time-domain or frequency-domain codes.
  • the DMRS corresponding to each antenna port is shown in Figure 15(d).
  • FIG. 16(a) shows a schematic diagram of a first reference signal.
  • Figure 16(a) shows the DMRS corresponding to the eight antenna ports.
  • the eight antenna ports are respectively recorded as p1000, p1001, p1002, p1003, p1004, p1005, p1006, and p1007.
  • the symbols where the DMRS corresponding to each antenna port is located are denoted as symbol 1 and symbol 2, respectively.
  • the DMRS corresponding to the eight antenna ports are introduced:
  • the symbol where the first DMRS corresponding to p1000 is located is marked as symbol 1, and the subcarrier where the first DMRS corresponding to p1000 is located is marked as the (i+4k)th subcarrier.
  • the symbol where the second DMRS corresponding to p1000 is located is marked as symbol 2, and the subcarrier where the second DMRS corresponding to p1000 is located is marked as the (i+4k+2)th subcarrier.
  • the symbol where the seventh DMRS corresponding to p1001 is located is marked as symbol 1, and the subcarrier where the seventh DMRS corresponding to p1001 is located is marked as the (i+4k)th subcarrier.
  • the symbol where the eighth DMRS corresponding to p1001 is located is marked as symbol 2, and the subcarrier where the eighth DMRS corresponding to p1001 is located is marked as the (i+4k+2)th subcarrier. That is to say, the DMRS corresponding to p1000 and the DMRS corresponding to p1001 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1000 is different from the OCC used by the DMRS corresponding to p1001, as shown in Figure 16(a), “+” and The distribution law of "-" on the RE corresponding to p1000 is different from that on the RE corresponding to p1001.
  • the symbol where the fifth DMRS corresponding to p1002 is located is marked as symbol 1, and the subcarrier where the fifth DMRS corresponding to p1002 is located is marked as the (i+4k+1)th subcarrier.
  • the symbol where the sixth DMRS corresponding to p1002 is located is marked as symbol 2
  • the subcarrier where the sixth DMRS corresponding to p1002 is located is marked as the (i+4k+3)th subcarrier.
  • the DMRS corresponding to p1002 and the DMRS corresponding to p1003 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1002 is different from the OCC used by the DMRS corresponding to p1003, as shown in Figure 16(a), "+” and "-" are in The distribution law on the RE corresponding to p1002 is different from that on the RE corresponding to p1003.
  • the symbol where the fourth DMRS corresponding to p1004 is located is marked as symbol 1, and the subcarrier where the fourth DMRS corresponding to p1004 is located is marked as the (i+4k+2)th subcarrier.
  • the symbol where the third DMRS corresponding to p1004 is located is marked as symbol 2, and the subcarrier where the third DMRS corresponding to p1004 is located is marked as the (i+4k)th subcarrier.
  • the DMRS corresponding to p1004 and the DMRS corresponding to p1005 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1004 is different from the OCC used by the DMRS corresponding to p1005, as shown in Figure 16(a), "+” and "-" are in the The distribution law on the RE corresponding to p1004 is different from that on the RE corresponding to p1005.
  • the symbol where the tenth DMRS corresponding to p1006 is located is marked as symbol 1, and the subcarrier where the tenth DMRS corresponding to p1006 is located is marked as the (i+4k+3)th subcarrier.
  • the symbol where the ninth DMRS corresponding to p1006 is located is marked as symbol 2
  • the subcarrier where the ninth DMRS corresponding to p1006 is located is marked as the (i+4k+1)th subcarrier.
  • the DMRS corresponding to p1006 and the DMRS corresponding to p1007 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1006 is different from the OCC used by the DMRS corresponding to p1007, as shown in Figure 16(a), "+” and "-” in The distribution law on the RE corresponding to p1006 is different from that on the RE corresponding to p1007.
  • FIG. 16(b) shows a schematic diagram of another first reference signal.
  • the DMRS corresponding to the twelve antenna ports are shown in FIG. 16(b).
  • the twelve antenna ports are respectively recorded as p1000, p1001, p1002, p1003, p1004, p1005, p1006, p1007, p1008, p1009, p1010, and p1011.
  • the symbols where the DMRS corresponding to each antenna port is located are denoted as symbol 1 and symbol 2, respectively.
  • the DMRS corresponding to the twelve antenna ports are introduced:
  • the symbol where the first DMRS corresponding to p1000 is located is marked as symbol 1, and the subcarrier where the first DMRS corresponding to p1000 is located is marked as the (i+12k)th subcarrier and the (i+12k+1)th subcarrier.
  • the symbol where the second DMRS corresponding to p1000 is located is denoted as symbol 2, and the subcarriers where the second DMRS corresponding to p1000 is located are denoted as the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the symbol where the seventh DMRS corresponding to p1001 is located is marked as symbol 1, and the subcarrier where the seventh DMRS corresponding to p1001 is located is marked as the (i+12k)th subcarrier and the (i+12k+1)th subcarrier.
  • the symbol where the eighth DMRS corresponding to p1001 is located is marked as symbol 2
  • the subcarrier where the eighth DMRS corresponding to p1001 is located is marked as the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the DMRS corresponding to p1000 and the DMRS corresponding to p1001 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1000 is different from that used by the DMRS corresponding to p1001, as shown in Figure 16(b), "+” and The distribution law of "-" on the RE corresponding to p1000 is different from that on the RE corresponding to p1001.
  • the symbol where the fifth DMRS corresponding to p1002 is located is marked as symbol 1, and the subcarrier where the fifth DMRS corresponding to p1002 is located is marked as the (i+12k+2)th subcarrier and the (i+12k+3)th subcarrier.
  • the symbol where the sixth DMRS corresponding to p1002 is located is denoted as symbol 2, and the subcarriers where the sixth DMRS corresponding to p1002 is located are denoted as the (i+12k+8)th subcarrier and the (i+12k+9)th subcarrier.
  • the DMRS corresponding to p1002 and the DMRS corresponding to p1003 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1002 is different from the OCC used by the DMRS corresponding to p1003, as shown in Figure 16(b), "+" and "-" are in the The distribution law on the RE corresponding to p1002 is different from that on the RE corresponding to p1003.
  • the symbol where the eleventh DMRS corresponding to p1004 is located is marked as symbol 1, and the subcarrier where the eleventh DMRS corresponding to p1004 is located is marked as the (i+12k+4)th subcarrier and the (i+12k+5)th subcarrier.
  • the symbol where the twelfth DMRS corresponding to p1004 is located is marked as symbol 2
  • the subcarrier where the twelfth DMRS corresponding to p1004 is located is marked as the (i+12k+10)th subcarrier and the (i+12k+11)th subcarrier.
  • the DMRS corresponding to p1004 and the DMRS corresponding to p1005 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1004 is different from the OCC used by the DMRS corresponding to p1005, as shown in Figure 16(b), "+” and "-" are in the The distribution law on the RE corresponding to p1004 is different from that on the RE corresponding to p1005.
  • the symbol where the fourth DMRS corresponding to p1006 is located is marked as symbol 1, and the subcarrier where the fourth DMRS corresponding to p1006 is located is marked as the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the symbol where the third DMRS corresponding to p1006 is located is denoted as symbol 2, and the subcarriers where the third DMRS corresponding to p1006 is located are denoted as the (i+12k)th subcarrier and the (i+12k+1)th subcarrier.
  • the DMRS corresponding to p1006 and the DMRS corresponding to p1007 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1006 is different from the OCC used by the DMRS corresponding to p1007, as shown in Figure 16(b), "+" and "-" are in The distribution law on the RE corresponding to p1006 is different from that on the RE corresponding to p1007.
  • the symbol where the tenth DMRS corresponding to p1008 is located is marked as symbol 1, and the subcarrier where the tenth DMRS corresponding to p1008 is located is marked as the (i+12k+8)th subcarrier and the (i+12k+9)th subcarrier.
  • the symbol where the ninth DMRS corresponding to p1008 is located is denoted as symbol 2, and the subcarriers where the ninth DMRS corresponding to p1008 is located are denoted as the (i+12k+2)th subcarrier and the (i+12k+3)th subcarrier.
  • the DMRS corresponding to p1008 and the DMRS corresponding to p1009 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1008 is different from the OCC used by the DMRS corresponding to p1009, as shown in Figure 16(b), "+” and "-" in The distribution law on the RE corresponding to p1008 is different from that on the RE corresponding to p1009.
  • the symbol where the thirteenth DMRS corresponding to p1010 is located is marked as symbol 1, and the subcarrier where the tenth DMRS corresponding to p1010 is located is marked as the (i+12k+10)th subcarrier and the (i+12k+11)th subcarrier.
  • the symbol where the fourteenth DMRS corresponding to p1010 is located is marked as symbol 2, and the subcarrier where the fourteenth DMRS corresponding to p1010 is located is marked as the (i+12k+4)th subcarrier and the (i+12k+5)th subcarrier.
  • the DMRS corresponding to p1010 and the DMRS corresponding to p1011 occupy the same time-frequency resources, but the OCC used by the DMRS corresponding to p1010 is different from the OCC used by the DMRS corresponding to p1011, as shown in Figure 16(b), "+" and "-" are in the The distribution law on the RE corresponding to p1010 is different from that on the RE corresponding to p1011.
  • the characteristics of the DMRS corresponding to the same antenna port Taking the first DMRS and the second DMRS as an example, the mapping status of the DMRS corresponding to the same antenna port in the time domain and the frequency domain is described:
  • the time domain resource units carrying the first DMRS and the second DMRS are different.
  • the first DMRS corresponding to p1000 is carried in symbol 1
  • the second DMRS corresponding to p1000 is carried in symbol 2 .
  • the DMRS corresponding to other antenna ports also meet the above-mentioned time-domain mapping characteristics.
  • the seventh DMRS corresponding to p1001 is carried in symbol 1
  • the seventh DMRS corresponding to p1001 is carried in symbol 1.
  • Eight DMRS are carried in symbol 2.
  • the DMRSs corresponding to p1002, p1003, p1004, p1005, p1006, and p1007 respectively meet the above-mentioned time-domain mapping characteristics.
  • the seventh DMRS corresponding to p1001 is carried in symbol 1
  • the eighth DMRS corresponding to p1001 is carried in symbol 2 .
  • the DMRSs corresponding to p1002, p1003, p1004, p1005, p1006, p1007, p1008, p1009, p1010, and p1011 respectively meet the above time-domain mapping characteristics. For details, see the introduction of "DMRS corresponding to twelve antenna ports".
  • the subcarriers carrying the first DMRS and the second DIMRS are different.
  • the subcarrier where the first DMRS corresponding to p1000 is located is the (i+4k)th subcarrier
  • the subcarrier where the second DMRS corresponding to p1000 is located is the (i+4k)th subcarrier.
  • i and k are positive integers. That is, on the same symbol, there is one first DMRS on every four subcarriers, and the number of subcarriers spaced between two first DMRSs is three. On the same symbol, there is one second DMRS on every four subcarriers, and the number of subcarriers spaced between two second DMRSs is three.
  • the channel estimation result when the second DMRS is used for channel estimation can be equivalent to the channel estimation result of the same subcarrier on the time-domain resource unit where the first DMRS is located, thus ensuring Accuracy of channel estimation.
  • the subcarrier where the first DMRS corresponding to p1000 is located is the (i+12k)th subcarrier and the (i+12k+1)th subcarrier, and p1000 corresponds to
  • the subcarriers on which the second DMRS of , are located are the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • i and k are positive integers. That is, on the same symbol, there is a set of first DMRSs on every 12 subcarriers.
  • the group of first DMRSs includes two first DMRSs, and the two first DMRSs are consecutive in the frequency domain.
  • the group of second DMRSs includes two second DMRSs, and the two second DMRSs are consecutive in the frequency domain. And, there are 6 subcarriers between the first DMRS and the second DMRS. Since the subcarriers where the first DMRS and the second DMRS are located are different, and the channel estimation result when the second DMRS is used for channel estimation can be equivalent to the channel estimation result of the same subcarrier on the time-domain resource unit where the first DMRS is located, thus ensuring Accuracy of channel estimation.
  • the DMRS corresponding to other antenna ports also meet the above frequency domain mapping characteristics.
  • the subcarrier where the seventh DMRS corresponding to p1001 is located is the (i+ 4k) subcarriers
  • the subcarrier where the eighth DMRS corresponding to p1001 is located is the (i+4k+2)th subcarrier.
  • the DMRS corresponding to p1002, p1003, p1004, p1005, p1006, and p1007 respectively meet the above-mentioned characteristics of frequency domain mapping.
  • the subcarriers where the seventh DMRS corresponding to p1001 is located are the (i+12k)th subcarrier and the (i+12k+1)th subcarrier, and the subcarriers corresponding to p1001 are The subcarriers where the eighth DMRS is located are the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the DMRS corresponding to p1002, p1003, p1004, p1005, p1006, p1007, p1008, p1009, p1010, and p1011 respectively meet the above-mentioned characteristics of frequency domain mapping. For details, see the introduction of "DMRS corresponding to twelve antenna ports".
  • the first reference signal includes the third DMRS and the fourth DMRS.
  • the third DMRS and the fourth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the first DMRS and the second DMRS.
  • the subcarriers that carry the third DMRS and the first DMRS are the same, but the time domain resource units that carry the third DMRS and the first DMRS are different.
  • the subcarriers that carry the fourth DMRS and the second DMRS are the same, but the time-domain resource units that carry the fourth DMRS and the second DMRS are different.
  • the DMRS corresponding to p1000 are respectively denoted as the first DMRS and the second DMRS.
  • the DMRS corresponding to p1004 are denoted as the third DMRS and the fourth DMRS, respectively.
  • the subcarrier where the first DMRS and the third DMRS are located is the (i+4k)th subcarrier.
  • the symbols where the first DMRS and the third DMRS are located are different. As shown in FIG.
  • the symbol where the first DMRS is located is symbol 1
  • the symbol where the third DMRS is located is symbol 2 .
  • Symbol 1 and Symbol 2 are continuous in the time domain. That is to say, for the first DMRS and the third DMRS on the same subcarrier, the first DMRS and the third DMRS occupy different time-domain resource units, and can be used to transmit DMRSs of different antenna ports, increasing the available antennas number of ports.
  • the subcarrier where the second DMRS and the fourth DMRS are located is the (i+4k+2)th subcarrier.
  • the symbols where the second DMRS and the fourth DMRS are located are different.
  • the symbol where the second DMRS is located is symbol 2
  • the symbol where the fourth DMRS is located is symbol 1 .
  • Symbol 1 and Symbol 2 are continuous in the time domain.
  • the second DMRS and the fourth DMRS occupy different time-domain resource units and can be used to transmit DMRSs of different antenna ports, increasing the available antennas number of ports.
  • the DMRS corresponding to p1000 are respectively denoted as the first DMRS and the second DMRS.
  • the DMRS corresponding to p1006 are denoted as the third DMRS and the fourth DMRS, respectively.
  • the subcarriers where the first DMRS and the third DMRS are located are the (i+12k)th subcarrier and the (i+12k+1)th subcarrier.
  • the symbols where the first DMRS and the third DMRS are located are different. As shown in FIG. 16( b ), the symbol where the first DMRS is located is symbol 1, and the symbol where the third DMRS is located is symbol 2.
  • Symbol 1 and Symbol 2 are continuous in the time domain.
  • the subcarriers where the second DMRS and the fourth DMRS are located are the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the symbols where the second DMRS and the fourth DMRS are located are different. As shown in FIG. 16( b ), the symbol where the second DMRS is located is symbol 2, and the symbol where the fourth DMRS is located is symbol 1. Symbol 1 and Symbol 2 are continuous in the time domain.
  • the DMRS corresponding to other antenna ports also meet the above time-frequency mapping characteristics.
  • the DMRS corresponding to p1002 and p1006 also meet the above time division characteristics.
  • the DMRS corresponding to p1002 and p1008 also meet the above time division characteristics
  • the DMRS corresponding to p1004 and p1010 also meet the above time division characteristics.
  • the DMRS corresponding to twelve antenna ports Introduction, which will not be repeated here.
  • the first reference signal includes the fifth DMRS and the sixth DMRS.
  • the fifth DMRS and the sixth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the first DMRS and the second DMRS.
  • the time domain resource units that carry the fifth DMRS and the first DMRS are the same, but the subcarriers that carry the fifth DMRS and the first DIMRS are different.
  • the time domain resource units that carry the sixth DMRS and the second DMRS are the same, but the subcarriers that carry the sixth DMRS and the second DIMRS are different.
  • the DMRS corresponding to p1000 are respectively recorded as the first DMRS and the second DMRS
  • the DMRS corresponding to p1002 are respectively recorded as the fifth DMRS and the sixth DMRS.
  • the symbols carrying the first DMRS and the fifth DMRS are the same, but the subcarrier where the first DMRS is located is the (i+4k)th subcarrier, and the subcarrier where the fifth DMRS is located is the (i+4k+1)th subcarrier.
  • the first DMRS and the fifth DMRS occupy different subcarriers and can be used to transmit DMRSs of different antenna ports.
  • the symbols carrying the second DMRS and the sixth DMRS are the same, but the subcarrier where the second DMRS is located is the (i+4k+2)th subcarrier, and the subcarrier where the sixth DMRS is located is the (i+4k+3)th subcarrier . That is to say, for the second DMRS and the sixth DMRS on the same symbol, the second DMRS and the sixth DMRS occupy different subcarriers and can be used to transmit DMRSs of different antenna ports.
  • the DMRS corresponding to p1000 are respectively recorded as the first DMRS and the second DMRS
  • the DMRS corresponding to p1002 are respectively recorded as the fifth DMRS and the sixth DMRS.
  • the symbols carrying the first DMRS and the fifth DMRS are the same, but the subcarrier where the first DMRS is located is the (i+12k)th subcarrier and the (i+12k+1)th subcarrier, and the subcarrier where the fifth DMRS is located is the (i+12k+2) subcarriers and (i+12k+3)th subcarriers.
  • the symbols carrying the second DMRS and the sixth DMRS are the same, but the subcarriers where the second DMRS is located are the (i+12k+6)th subcarrier and the (i+12k+7)th subcarrier.
  • the subcarriers where the sixth DMRS is located are the (i+12k+8)th subcarrier and the (i+12k+9)th subcarrier.
  • the DMRS corresponding to other antenna ports also meet the above time-frequency mapping characteristics.
  • the DMRS corresponding to p1002 and p1004 also meet the above frequency division characteristics
  • the DMRS corresponding to p1002 and p1006 It also satisfies the above-mentioned characteristics of frequency division, and the DMRS corresponding to p1004 and p1006 also satisfy the above-mentioned characteristics of frequency division.
  • the introduction of "DMRS corresponding to eight antenna ports” which will not be repeated here.
  • the DMRSs that satisfy the above-mentioned characteristics of frequency division include: DMRSs corresponding to p1002 and p1004, DMRSs corresponding to p1002 and p1006, DMRSs corresponding to p1002 and p1008, DMRSs corresponding to p1002 and p1010, and p1004 DMRS corresponding to p1006, DMRS corresponding to p1004 and p1008, DMRS corresponding to p1004 and p1010, DMRS corresponding to p1006 and p1008, DMRS corresponding to p1006 and p1010, DMRS corresponding to p1008 and p1010.
  • the introduction of DMRS will not be repeated here.
  • the first reference signal includes the seventh DMRS and the eighth DMRS.
  • the seventh DMRS and the eighth DMRS correspond to the same antenna port, and are different from the antenna ports corresponding to the first DMRS and the second DMRS.
  • the time-frequency resources of the seventh DMRS and the first DMRS are the same, and the time-frequency resources of the eighth DMRS and the second DMRS are the same.
  • the OCC adopted by the seventh DMRS and the eighth DMRS is different from the OCC adopted by the first DMRS and the second DMRS.
  • the DMRS corresponding to p1000 are respectively recorded as the first DMRS and the second DMRS
  • the DMRS corresponding to p1001 are respectively recorded as the seventh DMRS. and the eighth DMRS.
  • the REs carrying the first DMRS and the seventh DMRS are the same
  • the REs carrying the second DMRS and the eighth DMRS are the same, but the OCC adopted by the first DMRS and the second DMRS is different from the OCC adopted by the seventh DMRS and the eighth DMRS.
  • the distribution rules of "+" and "-" on REs corresponding to p1000 are different from those on REs corresponding to p1001.
  • the DMRS corresponding to other antenna ports also meet the above code division characteristics.
  • the DMRS that meet the code division characteristics include: the DMRS corresponding to p1002, the DMRS corresponding to p1003, and the DMRS corresponding to p1004.
  • the DMRSs that satisfy the code division characteristics include: the DMRS corresponding to p1002 and the DMRS corresponding to p1003, the DMRS corresponding to p1004 and the DMRS corresponding to p1005, the DMRS corresponding to p1006 and the DMRS corresponding to p1007, and the DMRS corresponding to p1007.
  • the corresponding DMRSs are the DMRSs corresponding to p1009, the DMRSs corresponding to p1010 and the DMRSs corresponding to p1011.
  • the embodiments of the present application only describe the features of the first reference signal from three aspects: time domain, frequency domain, and code domain. This application does not exclude the possibility of defining other formulas or other expressions in future agreements to represent the same or similar meanings. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the embodiments of the present application that satisfy the characteristics of the dual-symbol DMRS described in the embodiments of the present application should be included in the descriptions of the embodiments of the present application. within the scope of protection.
  • an embodiment of the present application further provides a communication device for resource scheduling, and the communication device for resource scheduling may be a network element in the above method embodiments, or a device including the above network element, or a device that can be used for network element components.
  • the communication apparatus for resource scheduling includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • an embodiment of the present application provides a chip, where the chip includes a logic circuit and an input and output interface.
  • the input and output interface is used for communicating with modules other than the chip, and the logic circuit is used for performing other operations on the terminal device in the above method embodiments except for the transceiving operation.
  • the input and output interface executes S901, S902, and S903 on the terminal device side, and/or the input and output interface is also used to execute the steps in the embodiments of the present application. Other transceiving steps on the terminal device side.
  • the logic circuit is used to execute other processing steps on the terminal device side in the embodiments of the present application.
  • the input and output interface executes S1201, S1202, and S1205 on the terminal device side, and/or the input and output interface is also used to execute this function.
  • the logic circuit is used to perform S1204 on the terminal device side, and/or the logic circuit is also used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the input and output interfaces perform S901, S902, and S903 on the network device side, and/or the input and output interfaces are also used to perform the steps in the embodiments of the present application. Other transceiving steps on the network device side.
  • the logic circuit is used to execute other processing steps on the network device side in the embodiments of the present application.
  • the input and output interfaces execute S1201, S1202, and S1205 on the network device side, and/or the input and output interfaces are also used to execute this function.
  • the logic circuit is used to perform S1206 on the network device side, and/or the logic circuit is used to perform other processing steps on the network device side.
  • FIG. 17 shows a schematic structural diagram of a communication apparatus 1700 for resource scheduling.
  • the communication apparatus 1700 for resource scheduling includes a communication unit 1703 and a processing unit 1702 .
  • the communication unit 1703 executes S901, S902, and S903 on the terminal device side, and/or the communication unit 1703 is further configured to execute this Other transceiving steps on the terminal device side in the application embodiment.
  • the processing unit 1702 is configured to perform other processing steps on the terminal device side in this embodiment of the present application.
  • the communication unit 1703 executes S1201, S1202, and S1205 on the terminal device side, and/or the communication unit 1703 is also configured to execute this function.
  • the processing unit 1702 is configured to execute S1204 on the terminal device side, and/or the processing unit 1702 is further configured to execute other processing steps on the terminal device side in this embodiment of the present application.
  • the communication unit 1703 executes S901, S902, and S903 on the network device side, and/or the communication unit 1703 is also configured to execute the steps in the embodiments of the present application. Other transceiving steps on the network device side.
  • the processing unit 1702 is configured to perform other processing steps on the network device side in this embodiment of the present application.
  • the communication unit 1703 executes S1201, S1202, and S1205 on the network device side, and/or the communication unit 1703 is also configured to execute this function.
  • the processing unit 1702 is configured to execute S1206 on the network device side, and/or the processing unit 1702 is configured to execute other processing steps on the network device side.
  • processing unit 1702 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • the communication unit 1703 may be implemented by a transceiver or a transceiver-related circuit component.
  • the communication apparatus 1700 for resource scheduling may further include a storage unit 1701 for storing program codes and data of the communication apparatus 1700 for resource scheduling, and the data may include but not limited to original data or intermediate data.
  • the processing unit 1702 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (application specific integrated circuit) circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1703 may be a communication interface, a transceiver or a transceiver circuit, etc., where the communication interface is a general term, and in a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 1701 may be a memory.
  • the processing unit 1702 is a processor
  • the communication unit 1703 is a communication interface
  • the storage unit 1701 is a memory
  • the communication apparatus 1800 for resource scheduling involved in this embodiment of the present application may be as shown in FIG. 18 .
  • the communication apparatus 1800 for resource scheduling includes: a processor 1802 , a transceiver 1803 , and a memory 1801 .
  • the transceiver 1803 can be an independently set transmitter, which can be used to send information to other devices, and the transceiver 1803 can also be an independently set receiver, which can be used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information, and the specific implementation of the transceiver is not limited in this embodiment of the present application.
  • the communication apparatus 1800 for resource scheduling may further include a bus 1804 .
  • the transceiver 1803, the processor 1802 and the memory 1801 can be connected to each other through a bus 1804; the bus 1804 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • the bus 1804 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD), or semiconductor media (eg, solid state disk, SSD)) Wait.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general-purpose hardware, and of course hardware can also be used, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art.
  • the computer software products are stored in a readable storage medium, such as a floppy disk of a computer. , a hard disk or an optical disk, etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了用于资源调度的通信方法及装置,涉及通信技术领域,能够提高资源调度的灵活性。该方法包括:终端设备接收来自网络设备的配置信息,其中,配置信息为终端设备配置时隙组,时隙组包括至少两个时隙,且时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。终端设备接收来自网络设备的下行控制信息DCI。其中,DCI指示时隙组中用于数据传输的时域资源。然后,终端设备基于DCI指示的时域资源与网络设备进行数据传输。

Description

用于资源调度的通信方法及装置
本申请要求于2020年09月30日提交国家知识产权局、申请号为PCT/CN2020/119551、发明名称为“用于资源调度的通信方法及装置”的国际专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于资源调度的通信方法及装置。
背景技术
在高频频段(如52.6GHz以上)的通信场景中,子载波间隔(subcarrier spacing,SCS)可以是960kHz。以“SCS为960kHz”为例,若仍采用“40GHz以下的频谱”的资源指示方式,在“收发之间切换的准备时间大于一定时长(如14微秒)”的情况下,若一个时分复用(time-division duplex,TDD)传输周期为5个时隙(slot),则5个时隙中约14个符号(symbol)是保护间隔符号,切换开销大。仍以“SCS为960kHz”为例,若以其他SCS(如120kHz)为基准,为终端设备配置TDD传输周期。此种情况下,若基准SCS的一个TDD传输周期为5个时隙,则基准SCS的每5个时隙对应960kHz的40个时隙。由于下行控制信息(downlink control information,DCI)中K0和K2的取值均小于或等于32,如此,以传输DCI的时隙为起始,若在32个时隙之后的时隙中传输物理下行共享信道(physical downlink shared channel,PDSCH),则DCI无法指示该PDSCH的时隙位置。类似的,DCI基于K2指示传输物理上行共享信道(physical uplink shared channel,PUSCH)的时隙位置。以传输DCI的时隙为起始,若在32个时隙之后的时隙中传输PUSCH,则DCI也无法指示该PUSCH的时隙位置,从而降低了资源调度灵活性。
发明内容
本申请实施例提供一种用于资源调度的通信方法及装置,能够提高资源调度灵活性。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种用于资源调度的通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备接收来自网络设备的配置信息,其中,配置信息为终端设备配置时隙组,时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。终端设备接收来自网络设备的下行控制信息DCI,其中,DCI指示时隙组中用于数据传输的时域资源。然后,终端设备基于DCI指示的时域资源与网络设备进行数据传输。
如此,在终端设备被配置时隙组的情况下,网络设备向终端设备发送的DCI能够指示时隙组中用于数据传输的时域资源,以实现基于时隙组的资源调度。采用本申请实施例提供的用于资源调度的通信方法,由于一个时隙组包括至少两个时隙,能够实现以时隙组为单位的资源调度,也就使得DCI能够指示更多时隙资源,相对于以时隙为单位的资源调度,提高了资源调度的效率及灵活性。
在一种可能的设计中,DCI包括第一信息,第一信息指示时隙组中的第一时隙组,第一时隙组包括用于传输物理下行共享信道PDSCH的时域资源。也就是说,网络设备基于 DCI能够调度某一时隙组中的时域资源以传输PDSCH。
在一种可能的设计中,第一信息包括第一参数,第一参数指示DCI所在的时隙组与第一时隙组间隔的时隙组数量。示例性的,第一参数指示K0的取值。
在一种可能的设计中,DCI还包括第二信息,第二信息指示时隙组中的第二时隙组,第二时隙组包括用于传输混合自动重传请求HARQ信息的时域资源,HARQ信息指示PDSCH的接收状况。也就是说,网络设备基于DCI能够调度某一时隙组中的时域资源以传输HARQ信息。
在一种可能的设计中,第二信息包括第二参数,第二参数指示第一时隙组与第二时隙组间隔的时隙组数量。示例性的,第二参数指示K1的取值。
在一种可能的设计中,DCI还包括第三信息,其中,第三信息用于确定第一数值,第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。本申请实施例用于资源调度的通信方法还包括:终端设备接收来自网络设备的第三参数,其中,第三参数用于调整第一数值。终端设备根据第一数值和第三参数确定以下至少一项:第一时隙组中用于传输PDSCH的至少一个符号的起始符号在第一时隙组中的位置;第一时隙组中用于传输PDSCH的至少一个符号的符号数量。
也就是说,在网络设备向终端设备发送第三参数的情况下,网络设备还能够基于DCI能够调度某一时隙组中的至少一个符号以传输PDSCH。
在一种可能的设计中,DCI包括第四信息,第四信息指示时隙组中的第三时隙组,第三时隙组包括用于传输物理上行共享信道PUSCH的时域资源。也就是说,网络设备基于DCI能够调度某一时隙组中的时域资源以传输PUSCH。
在一种可能的设计中,第四信息包括第四参数,第四参数指示DCI所在的时隙组与第三时隙组间隔的时隙组数量。示例性的,第四参数指示K2的取值。
在一种可能的设计中,DCI还包括第五信息,其中,第五信息用于确定第二数值,第二数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。本申请实施例用于资源调度的通信方法还包括:终端设备接收来自网络设备的第五参数,其中,第五参数用于调整第二数值。终端设备根据第二数值和第五参数确定以下至少一项:第三时隙组中用于传输PUSCH的至少一个符号的起始符号在第三时隙组中的位置;第三时隙组中用于传输PUSCH的至少一个符号的符号数量。
也就是说,在网络设备向终端设备发送第五参数的情况下,网络设备还能够基于DCI能够调度某一时隙组中的至少一个符号以传输PUSCH。
在一种可能的设计中,一个时隙组中的时隙数量是根据目标子载波间隔和预设子载波间隔确定的。例如,一个时隙组中的时隙数量为目标子载波间隔和预设子载波间隔之间的比值。目标子载波间隔包括以下项中的一项:240K,480K,960K,或1920K。
第二方面,本申请实施例提供一种用于资源调度的通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备向终端设备发送配置信息,其中,配置信息为终端设备配置时隙组,时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。网络设备向终端设备发送下行控制信息DCI,其中,DCI指示时隙组中用于数据传输的时域资源。然后,网络设备基于DCI 指示的时域资源与终端设备进行数据传输。
在一种可能的设计中,DCI包括第一信息,第一信息指示时隙组中的第一时隙组,第一时隙组包括用于传输物理下行共享信道PDSCH的时域资源。
在一种可能的设计中,第一信息包括第一参数,第一参数指示DCI所在的时隙组与第一时隙组间隔的时隙组数量。
在一种可能的设计中,DCI还包括第二信息,第二信息指示时隙组中的第二时隙组,第二时隙组包括用于传输混合自动重传请求HARQ信息的时域资源,HARQ信息指示PDSCH的接收状况。
在一种可能的设计中,第二信息包括第二参数,第二参数指示第一时隙组与第二时隙组间隔的时隙组数量。
在一种可能的设计中,DCI还包括第三信息,其中,第三信息用于确定第一数值,第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。本申请实施例用于资源调度的通信方法还包括:网络设备向终端设备发送第三参数,其中,第三参数用于调整第一数值;第一数值和第三参数用于确定以下至少一项:第一时隙组中用于传输PDSCH的至少一个符号的起始符号在第一时隙组中的位置;第一时隙组中用于传输PDSCH的至少一个符号的符号数量。
在一种可能的设计中,DCI包括第四信息,第四信息指示时隙组中的第三时隙组,第三时隙组包括用于传输物理上行共享信道PUSCH的时域资源。
在一种可能的设计中,第四信息包括第四参数,第四参数指示DCI所在的时隙组与第三时隙组间隔的时隙组数量。
在一种可能的设计中,DCI还包括第五信息,其中,第五信息用于确定第二数值,第二数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。本申请实施例用于资源调度的通信方法还包括:网络设备向终端设备发送第五参数,其中,第五参数用于调整第二数值,第二数值和第五参数用于确定以下至少一项:第三时隙组中用于传输PUSCH的至少一个符号的起始符号在第三时隙组中的位置;第三时隙组中用于传输PUSCH的至少一个符号的符号数量。
在一种可能的设计中,一个时隙组中的时隙数量是根据目标子载波间隔和预设子载波间隔确定的。
第三方面,本申请实施例提供一种用于资源调度的通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备接收来自网络设备的下行控制信息DCI,其中,DCI指示用于数据传输的时域资源。终端设备接收来自网络设备的第一参考信号,和/或终端设备向网络设备发送第一参考信号。其中,第一参考信号包括至少两个解调参考信号DMRS,至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波。第一参考信号用于解调DCI指示的时域资源。
如此,采用第一参考信号中的DMRS解调DCI指示的资源。其中,第一参考信号中至少两个DMRS对应同一天线端口。在频域上,上述“至少两个DMRS”位于不同的子载波,如在相邻符号的下一个子载波上存在对应相同端口的DMRS,从而等效地提升了频域DMRS的密度,有利于提升线性插值运算的精准度和信道估计结果的准确性,从而改善传 输的频谱效率。并且,在时域上,上述“至少两个DMRS”是连续的,相对于“DMRS是分散设置的”的情况相比,本申请实施例用于资源调度的通信方法提升了单位时间内的DMRS信号能量,从而有利于提升译码速度和信道估计的精度,改善传输的频谱效率。
在一种可能的设计中,DCI指示时隙组中用于数据传输的时域资源。其中,时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。也就是说,在终端设备被配置时隙组的情况下,网络设备基于DCI能够调度时隙组中的时域资源以传输数据。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS。其中,第一DMRS位于第i个子载波,第二DMRS位于第(i+1)个子载波。或者,第一DMRS位于第i个子载波和第(i+1)个子载波,第二DMRS位于第(i+2)个子载波和第(i+3)个子载波;i为正整数。也就是说,第一DMRS和第二DMRS满足类型2的分布状况。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS。第一参考信号还包括第三DMRS。其中,第一DMRS和第三DMRS在时域上相同,第二DMRS和第三DMRS对应不同天线端口,且在频域上位于同一子载波。也就是说,第一参考信号中的DMRS可以对应不同的天线端口,且满足类型1的分布状况或类型2的分布状况。
在一种可能的设计中,第二DMRS对应的天线端口与第三DMRS对应的天线端口是根据N的取值和承载目标DMRS的符号数量确定的。其中,N的取值为第二DMRS所在符号上的DMRS对应的天线端口数量。目标DMRS为第一参考信号中时域上连续的一组DMRS,目标DMRS包括至少两个DMRS。
如此,对应不同天线端口的DMRS在时域上有循环移位,且相邻DMRS对应的天线端口状况是依据第一参考信号对应的天线端口数量和符号数量确定的,以提高不同子载波上对应相同天线端口的DMRS的密度。
在一种可能的设计中,承载目标DMRS的符号数量与时隙组中时隙的数量相同。或者,承载目标DMRS的符号数量与时隙组中时隙的数量不同。其中,目标DMRS为第一参考信号中时域上连续的一组DMRS,目标DMRS包括至少两个DMRS。时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。
也就是说,在“承载目标DMRS的符号数量与一个时隙组中的时隙数量相同”的情况下,网络设备无需额外传输指令,来为终端设备指示第一参考信号中的DMRS数量,节省了信令开销。在“承载目标DMRS的符号数量与一个时隙组中的时隙数量不同”的情况下,网络设备向终端设备传输一条指令,来为终端设备指示第一参考信号中的DMRS数量。如此,在信道状况良好的情况下,第一参考信号中DMRS的数量变少,以将更多的资源用于传输数据。反之,在信道状况较差的情况下,第一参考信号中DMRS的数量增多,以提高信道估计精准度。
在一种可能的设计中,一个时隙组中的时隙数量是根据目标子载波间隔和预设子载波间隔确定的。例如,一个时隙组中的时隙数量为目标子载波间隔和预设子载波间隔的比值。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS,承载第一DMRS和第二DMRS的时域资源单元不同。其中,第一DMRS所在的子载波为第(i+4k)个子载波,第二DMRS所在的子载波为第(i+4k+2)个子载波。i和k为正整数。也就是 说,至少两个DMRS满足基于交错频分复用(interleaved frequency domain multiplexing,IFDM)的DMRS图样。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS,承载第一DMRS和第二DMRS的时域资源单元不同。其中,第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,第二DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。i和k为正整数。也就是说,至少两个DMRS满足基于频域正交覆盖码(frequency domain orthogonal covering code,FD-OCC)的DMRS图样。
在一种可能的设计中,第一参考信号还包括第三DMRS和第四DMRS。其中,承载第三DMRS和第一DMRS的子载波相同,但承载第三DMRS和第一DMRS的时域资源单元不同。承载第四DMRS和第二DMRS的子载波相同,但承载第四DMRS和第二DMRS的时域资源单元不同。第三DMRS与第四DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
也就是说,对于同一子载波上的第一DMRS和第三DMRS而言,第一DMRS和第三DMRS占用不同的时域资源单元,能够用于传输不同天线端口的DMRS,增加了可用的天线端口数量。对于同一子载波上的第二DMRS和第四DMRS而言,第二DMRS和第四DMRS占用不同的时域资源单元,能够用于传输不同天线端口的DMRS,增加了可用的天线端口数量。
在一种可能的设计中,第一参考信号还包括第五DMRS和第六DMRS。其中,承载第五DMRS和第一DMRS的时域资源单元相同,但承载第五DMRS和第一DIMRS的子载波不同。承载第六DMRS和第二DMRS的时域资源单元相同,但承载第六DMRS和第二DMRS的子载波不同。第五DMRS与第六DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
也就是说,对于同一符号上的第一DMRS和第五DMRS而言,第一DMRS和第五DMRS占用不同的子载波,能够用于传输不同天线端口的DMRS。对于同一符号上的第二DMRS和第六DMRS而言,第二DMRS和第六DMRS占用不同的子载波,能够用于传输不同天线端口的DMRS。
在一种可能的设计中,第一参考信号还包括第七DMRS和第八DMRS。其中,第七DMRS和第一DMRS的时频资源相同,第八DMRS和第二DMRS的时频资源相同。第七DMRS和第八DMRS采用的OCC与第一DMRS和第二DMRS采用的OCC不同。第七DMRS与第八DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
也就是说,承载第一DMRS和第七DMRS的RE相同,承载第二DMRS和第八DMRS的RE相同,但第一DMRS和第二DMRS采用的OCC与第七DMRS和第八DMRS采用的OCC不同,能够用于传输不同天线端口的DMRS。
在一种可能的设计中,第一参考信号在DCI指示的资源之前传输。如此,终端设备即可基于第一参考信号快速地获取信道估计结果,以解调DCI指示的资源。
在一种可能的设计中,本申请实施例用于资源调度的通信方法还包括:终端设备接收来自网络设备的第二参考信号,和/或终端设备向网络设备发送第二参考信号。其中,第二参考信号中的至少两个DMRS对应同一天线端口,第二参考信号中的至少两个DMRS在时域上连续,且在频域上位于不同子载波。第二参考信号在DCI指示的第一部分资源之后, 且在DCI指示的第二部分资源之前传输。第二参考信号用于解调DCI指示的时域资源。
也就是说,在一个时隙采用多个符号承载DMRS的情况下,网络设备还向终端设备发送第二参考信号,终端设备还能够基于第二参考信号进行信道估计,以提升信道估计的精准度。
在一种可能的设计中,若DCI指示用于传输物理下行共享信道PDSCH的时域资源,则终端设备接收来自网络设备的第一参考信号。若DCI指示用于传输物理上行共享信道PUSCH的时域资源,则终端设备向网络设备发送第一参考信号。也就是说,第一参考信号适用于上行传输,也适用于下行传输。
第四方面,本申请实施例提供一种用于资源调度的通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备向终端设备发送下行控制信息DCI,其中,DCI指示用于数据传输的时域资源。网络设备接收来自终端设备的第一参考信号,和/或网络设备向终端设备发送第一参考信号;其中,第一参考信号包括至少两个解调参考信号DMRS;至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波;第一参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,DCI指示时隙组中用于数据传输的时域资源;其中,时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS;其中,第一DMRS位于第i个子载波,第二DMRS位于第(i+1)个子载波;或者,第一DMRS位于第i个子载波和第(i+1)个子载波,第二DMRS位于第(i+2)个子载波和第(i+3)个子载波;i为正整数。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS;第一参考信号还包括第三DMRS;其中,第一DMRS和第三DMRS在时域上相同;第二DMRS和第三DMRS对应不同天线端口,且在频域上位于同一子载波。
在一种可能的设计中,第二DMRS对应的天线端口与第三DMRS对应的天线端口是根据N的取值和承载目标DMRS的符号数量确定的;其中,N的取值为第二DMRS所在符号上的DMRS对应的天线端口数量;目标DMRS为第一参考信号中时域上连续的一组DMRS,目标DMRS包括至少两个DMRS。
在一种可能的设计中,承载目标DMRS的符号数量与时隙组中时隙的数量相同;或者,承载目标DMRS的符号数量与时隙组中时隙的数量不同;其中,目标DMRS为第一参考信号中时域上连续的一组DMRS,目标DMRS包括至少两个DMRS;时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。
在一种可能的设计中,一个时隙组中的时隙数量是根据目标子载波间隔和预设子载波间隔确定的。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS,承载第一DMRS和第二DMRS的时域资源单元不同。其中,第一DMRS所在的子载波为第(i+4k)个子载波,第二DMRS所在的子载波为第(i+4k+2)个子载波。i和k为正整数。
在一种可能的设计中,至少两个DMRS包括第一DMRS和第二DMRS,承载第一DMRS和第二DMRS的时域资源单元不同。其中,第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,第二DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。i和k为正整数。
在一种可能的设计中,第一参考信号还包括第三DMRS和第四DMRS。其中,承载第三DMRS和第一DMRS的子载波相同,但承载第三DMRS和第一DMRS的时域资源单元不同。承载第四DMRS和第二DMRS的子载波相同,但承载第四DMRS和第二DMRS的时域资源单元不同。第三DMRS与第四DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
在一种可能的设计中,第一参考信号还包括第五DMRS和第六DMRS。其中,承载第五DMRS和第一DMRS的时域资源单元相同,但承载第五DMRS和第一DIMRS的子载波不同。承载第六DMRS和第二DMRS的时域资源单元相同,但承载第六DMRS和第二DMRS的子载波不同。第五DMRS与第六DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
在一种可能的设计中,第一参考信号还包括第七DMRS和第八DMRS。其中,第七DMRS和第一DMRS的时频资源相同,第八DMRS和第二DMRS的时频资源相同。第七DMRS和第八DMRS采用的OCC与第一DMRS和第二DMRS采用的OCC不同。第七DMRS与第八DMRS对应同一天线端口,且与至少两个DMRS对应的天线端口不同。
在一种可能的设计中,第一参考信号在DCI指示的资源之前传输。
在一种可能的设计中,本申请实施例用于资源调度的通信方法还包括:网络设备接收来自终端设备的第二参考信号,和/或网络设备向终端设备发送第二参考信号;其中,第二参考信号中的至少两个DMRS对应同一天线端口,第二参考信号中的至少两个DMRS在时域上连续,且在频域上位于不同子载波;第二参考信号在DCI指示的第一部分资源之后,且在DCI指示的第二部分资源之前传输;第二参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,若DCI指示用于传输物理下行共享信道PDSCH的时域资源,则网络设备向终端设备发送第一参考信号;若DCI指示用于传输物理上行共享信道PUSCH的时域资源,则网络设备接收来自终端设备的第一参考信号。
第五方面,本申请实施例提供一种用于资源调度的通信装置,该用于资源调度的通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述用于资源调度的通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该用于资源调度的通信装置包括通信单元和处理单元。其中,通信单元用于接收来自网络设备的配置信息,其中,配置信息为用于资源调度的通信装置配置时隙组;时隙组包括至少两个时隙,且时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是用于资源调度的通信装置被配置的子载波的间隔。通信单元还用于接收来自网络设备的下行控制信息DCI,其中,DCI指示时隙组中用于数据传输的时域资源。处理单元用于确定DCI指示的时域资源。通信单元还用于基于DCI指示的时域资源与网络设备进行数据传 输。
在一种可能的设计中,DCI还包括第三信息,其中,第三信息用于确定第一数值,第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。通信单元还用于接收来自网络设备的第三参数,其中,第三参数用于调整第一数值。处理单元还用于根据第一数值和第三参数确定以下至少一项:第一时隙组中用于传输PDSCH的至少一个符号的起始符号在第一时隙组中的位置;第一时隙组中用于传输PDSCH的至少一个符号的符号数量。
在一种可能的设计中,DCI还包括第五信息,其中,第五信息用于确定第二数值,第二数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。通信单元还用于接收来自网络设备的第五参数,其中,第五参数用于调整第二数值。处理单元还用于根据第二数值和第五参数确定以下至少一项:第三时隙组中用于传输PUSCH的至少一个符号的起始符号在第一时隙组中的位置;第三时隙组中用于传输PUSCH的至少一个符号的符号数量。
其中,上述第一方面或第一方面任一种可能的设计中涉及的所有相关内容均可以援引到对应单元的功能描述,在此不再赘述。
第六方面,本申请实施例提供一种用于资源调度的通信装置,该用于资源调度的通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述用于资源调度的通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该用于资源调度的通信装置包括通信单元和处理单元。其中,通信单元用于向终端设备发送配置信息,其中,配置信息为终端设备配置时隙组;时隙组包括至少两个时隙,且时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。处理单元用于确定数据传输的时域资源。通信单元还用于向终端设备发送下行控制信息DCI,其中,DCI指示时隙组中用于数据传输的时域资源。通信单元还用于基于DCI指示的时域资源与终端设备进行数据传输。
在一种可能的设计中,DCI还包括第三信息,其中,第三信息用于确定第一数值,第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。通信单元还用于向终端设备发送第三参数,其中,第三参数用于调整第一数值;第一数值和第三参数用于确定以下至少一项:第一时隙组中用于传输PDSCH的至少一个符号的起始符号在第一时隙组中的位置;第一时隙组中用于传输PDSCH的至少一个符号的符号数量。
在一种可能的设计中,DCI还包括第五信息,其中,第五信息用于确定第二数值,第二数值用于确定至少一个符号的起始符号在时隙中的位置和/或至少一个符号的符号数量。通信单元还用于向终端设备发送第五参数,其中,第五参数用于调整第二数值;第二数值和第五参数用于确定以下至少一项:第三时隙组中用于传输PUSCH的至少一个符号的起始符号在第一时隙组中的位置;第三时隙组中用于传输PUSCH的至少一个符号的符号数量。
其中,上述第二方面或第二方面任一种可能的设计中涉及的所有相关内容均可以援引到对应单元的功能描述,在此不再赘述。
第七方面,本申请实施例提供一种用于资源调度的通信装置,该用于资源调度的通信装置可以为上述第三方面或第三方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述用于资源调度的通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该用于资源调度的通信装置包括通信单元和处理单元。其中,通信单元用于接收来自网络设备的下行控制信息DCI,其中,DCI指示用于数据传输的时域资源。处理单元用于确定DCI指示的时域资源。通信单元还用于接收来自网络设备的第一参考信号,和/或通信单元还用于向网络设备发送第一参考信号;其中,第一参考信号包括至少两个解调参考信号DMRS;至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波;第一参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,通信单元还用于接收来自网络设备的第二参考信号,和/或通信单元还用于向网络设备发送第二参考信号。其中,第二参考信号中的至少两个DMRS对应同一天线端口,第二参考信号中的至少两个DMRS在时域上连续,且在频域上位于不同子载波;第二参考信号在DCI指示的第一部分资源之后,且在DCI指示的第二部分资源之前传输;第二参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,若DCI指示用于传输物理下行共享信道PDSCH的时域资源,则通信单元还用于接收来自网络设备的第一参考信号。若DCI指示用于传输物理上行共享信道PUSCH的时域资源,则通信单元还用于向网络设备发送第一参考信号。
其中,上述第三方面或第三方面任一种可能的设计中涉及的所有相关内容均可以援引到对应单元的功能描述,在此不再赘述。
第八方面,本申请实施例提供一种用于资源调度的通信装置,该用于资源调度的通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述用于资源调度的通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该用于资源调度的通信装置包括通信单元和处理单元。其中,处理单元用于确定数据传输的时域资源。通信单元用于向终端设备发送下行控制信息DCI,其中,DCI指示用于数据传输的时域资源。通信单元还用于接收来自终端设备的第一参考信号,和/或通信单元,还用于向终端设备发送第一参考信号;其中,第一参考信号包括至少两个解调参考信号DMRS;至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波;第一参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,通信单元还用于接收来自终端设备的第二参考信号,和/或通信单元还用于向终端设备发送第二参考信号。其中,第二参考信号中的至少两个DMRS对应同一天线端口,第二参考信号中的至少两个DMRS在时域上连续,且在频域上位于不同子 载波;第二参考信号在DCI指示的第一部分资源之后,且在DCI指示的第二部分资源之前传输;第二参考信号用于解调DCI指示的时域资源。
在一种可能的设计中,若DCI指示用于传输物理下行共享信道PDSCH的时域资源,则通信单元还用于向终端设备发送第一参考信号。若DCI指示用于传输物理上行共享信道PUSCH的时域资源,则通信单元还用于接收来自终端设备的第一参考信号。
其中,上述第四方面或第四方面任一种可能的设计中涉及的所有相关内容均可以援引到对应单元的功能描述,在此不再赘述。
第九方面,本申请实施例提供了一种用于资源调度的通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该用于资源调度的通信装置执行上述任一方面或任一方面任一种可能的设计中终端设备所执行的方法。该用于资源调度的通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该用于资源调度的通信装置可以为上述第三方面或第三方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第十方面,本申请实施例提供了一种用于资源调度的通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该用于资源调度的通信装置执行如上述任一方面或任一方面任一种可能的设计中的终端设备所执行的方法。该用于资源调度的通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;或者,该用于资源调度的通信装置可以为上述第三方面或第三方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第十一方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输入配置信息、下行控制信息、或数据,或输入输出接口输出数据。逻辑电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第三方面或第三方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输入下行控制信息、或第一参考信号,或输入输出接口输出第一参考信号。逻辑电路用于运行计算机程序或指令,以实现以上第三方面或第三方面任一种可能的设计中的方法。
第十二方面,本申请实施例提供了一种用于资源调度的通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该用于资源调度的通信装置执行上述任一方面或任一方面任一种可能的设计中网络设备所执行的方法。该用于资源调度的通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该用于资源调度的通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十三方面,本申请实施例提供了一种用于资源调度的通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该用于资源调度的通信装置执行如上述任一方面或任一方面任一种可能的设计中的网络设备所执行的方法。该用于资源调度的通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;或者,该用于资源调度的通信装置可以为上述第四方面或第四方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十四方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出配置信息、下行控制信息、或数据,或输入输出接口输入数据。逻辑电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。或者,该芯片可以为实现上述第四方面或第四方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出下行控制信息、或第一参考信号,或输入输出接口输入第一参考信号。逻辑电路用于运行计算机程序或指令,以实现以上第四方面或第四方面任一种可能的设计中的方法。
第十五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的用于资源调度的通信方法。
第十六方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的用于资源调度的通信方法。
第十七方面,本申请实施例提供一种电路***,电路***包括处理电路,处理电路被配置为执行如上述任一方面中任一项的用于资源调度的通信方法。
第十八方面,本申请实施例提供一种通信***,该通信***包括上述各个方面中任一项中的终端设备和网络设备。
其中,第五方面至第十八方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种PDSCH的位置示意图;
图2为本申请实施例提供的一种反馈混合自动重传请求信息的位置示意图;
图3为本申请实施例提供的一种资源分配的位置示意图;
图4为本申请实施例提供的再一种资源分配的位置示意图;
图5为本申请实施例提供的一种切换准备时间的示意图;
图6为本申请实施例提供的再一种切换准备时间的示意图;
图7为本申请实施例提供的又一种切换准备时间的示意图;
图8为本申请实施例提供的一种通信***的架构示意图;
图9为本申请实施例提供的一种用于资源调度的通信方法的流程示意图;
图10(a)为本申请实施例提供的一种资源分配的位置示意图;
图10(b)为本申请实施例提供的再一种资源分配的位置示意图;
图10(c)为本申请实施例提供的一种场景示意图;
图10(d)本申请实施例提供的一种PDSCH的位置示意图;
图10(e)本申请实施例提供的再一种PDSCH的位置示意图;
图11(a)为本申请实施例提供的一种DMRS的位置示意图;
图11(b)为本申请实施例提供的再一种DMRS的位置示意图;
图11(c)为本申请实施例提供的一种场景示意图;
图12(a)为本申请实施例提供的再一种用于资源调度的通信方法的流程示意图;
图12(b)为本申请实施例提供的又一种用于资源调度的通信方法的流程示意图;
图12(c)为本申请实施例提供的一种第一参考信号的位置示意图;
图13(a)为本申请实施例提供的再一种第一参考信号的位置示意图;
图13(b)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(c)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(d)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(e)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(f)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(g)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(h)为本申请实施例提供的又一种第一参考信号的位置示意图;
图13(i)为本申请实施例提供的又一种第一参考信号的位置示意图;
图14(a)为本申请实施例提供的一种第二参考信号的位置示意图;
图14(b)为本申请实施例提供的再一种第二参考信号的位置示意图;
图14(c)为本申请实施例提供的又一种第二参考信号的位置示意图;
图14(d)为本申请实施例提供的又一种第二参考信号的位置示意图;
图14(e)为本申请实施例提供的又一种第一参考信号的位置示意图;
图15(a)为本申请实施例提供的又一种DMRS的位置示意图;
图15(b)为本申请实施例提供的又一种DMRS的位置示意图;
图15(c)为本申请实施例提供的又一种DMRS的位置示意图;
图15(d)为本申请实施例提供的又一种DMRS的位置示意图;
图16(a)为本申请实施例提供的又一种第一参考信号的位置示意图;
图16(b)为本申请实施例提供的又一种第一参考信号的位置示意图;
图17为本申请实施例提供的一种用于资源调度的通信装置的结构示意图;
图18为本申请实施例提供的再一种用于资源调度的通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
首先,介绍本申请实施例所涉及的技术术语:
1、物理上行共享信道(physical uplink shared channel,PUSCH)
PUSCH作为物理层主要的上行数据承载信道,用于上行数据的调度传输。
2、物理下行共享信道(physical downlink shared channel,PDSCH)
PDSCH作为物理层主要的下行数据承载信道,用于下行数据的调度传输。
在第五代移动通信(5-generation,5G)***40GHz以下的频谱中,PDSCH和PUSCH 的调度流程主要包括以下步骤:
步骤1、接入网设备向终端设备发送DCI。相应的,终端设备接收来自接入网设备的DCI。
其中,DCI通过物理下行控制信道(physical downlink control channel,PDCCH)传输。
步骤2、终端设备根据DCI确定PDSCH和PUSCH中至少一项所对应的时频资源信息。
在DCI所指示的时频资源上,终端设备接收PDSCH。此种情况下,终端设备还将在某个固定的物理上行控制信道(physical uplink control channel,PUCCH)上反馈混合自动重传请求(hybrid automatic repeat request,HARQ)信息,以告知接入网设备该PDSCH是否正确接收。基于HARQ信息,在接入网设备获知终端设备的PDSCH未正确接收的情况下,接入网设备向终端设备重新传输该PDSCH。在接入网设备获知终端设备的PDSCH正确接收的情况下,接入网设备不再向终端设备发送该PDSCH。
下面,再对资源调度过程相关的信息进行详细介绍:
第一、DCI中的调度信息指示K0的取值和起始和长度指示值(start and length indicator value,SLIV),以使终端设备基于K0的取值和SLIV确定PDSCH的时域资源。
其中,K0指示的是从终端设备接收到DCI之后的第K0个时隙开始接收PDSCH。此种情况下,终端设备接收到DCI的时隙之后的首个时隙是第1个时隙。K0的取值小于或等于32。也就是说,接入网设备从发送DCI的时隙开始,32个时隙之内向终端设备发送PDSCH。
其中,SLIV指示的是PDSCH在时隙中的符号(symbol)位置和符号长度。
SLIV的定义满足如下公式(1):
SLIV=14*(L-1)S或者SLIV=14*(14-L+1)+(14-1-S)       公式(1)
SLIV可以通过DCI进行指示。终端设备基于DCI指示的SLIV和公式(1)确定S值和L值。其中,S值指示一个时隙中PDSCH的起始符号索引S。L值指示一个时隙中PDSCH的符号长度。
示例性的,参见图1,图1示出了一种PDSCH的时域资源位置示意图。在图1中,时隙0传输DCI。DCI指示K0的取值为3,S的取值为2,L的取值为12。如此,基于上述K0、S和L的定义可知,时隙3中的部分符号(符号索引2至符号索引13)传输PDSCH。
第二、DCI中的调度信息指示K1的取值,以使终端设备基于K1的取值确定反馈HARQ信息的时域资源。
K1指示的是从终端设备接收PDSCH之后的第K1个时隙开始反馈HARQ信息。K1的单位是时隙。K1占用3个比特(bit),最大可以指示15个时隙。此种情况下,终端设备接收到PDSCH之后的首个时隙是第1个时隙。
示例性的,参见图2,图2示出了一种反馈混合自动重传请求(hybrid automatic repeat request,HARQ)信息的时域资源位置示意图。在图2中,DCI和PDSCH的传输参见图1的相关说明,此处不再赘述。DCI指示K1的取值为3。如此,基于上述K1的定义可知,终端设备在接收PDSCH之后的第3个时隙开始反馈HARQ信息。终端设备接收PDSCH的时隙为时隙3,终端设备反馈HARQ信息的时隙为时隙6。
第三、DCI中的调度信息指示K2的取值和SLIV,以使终端设备基于K2的取值和SLIV确定PUSCH的时域资源。
其中,K2指示的是从终端设备接收到DCI之后的第K2个时隙开始发送PUSCH。此种情况下,终端设备接收到DCI的时隙之后的首个时隙是第1个时隙。K2的取值小于或等于32。也就是说,终端设备从接收DCI的时隙开始,32个时隙之内向接入网设备发送PUSCH。
其中,SLIV指示的是PUSCH在时隙中的符号位置和符号长度。SLIV仍满足上述公式(1)。终端设备根据DCI指示的SLIV和上述公式(1),即可确定PUSCH对应的起始符号索引S和符号长度L。
以上,主要是对“PDSCH和PUSCH的调度流程”的相关说明。在相关协议中,接入网设备还为终端设备配置时分复用(time-division duplex,TDD)的传输周期和一个TDD传输周期中的资源配比情况。
示例性的,以增强型移动互联网业务(enhanced mobile broadband,eMBB)的通信场景为例,下行业务数据量大于上行业务数据量。一个TDD传输周期的时长为10ms。一个TDD传输周期中下行时隙数量与上行时隙数量的配比包括如下两种:
第一种,下行时隙数量与上行时隙数量的配比为4:1。也就是说,在4个下行时隙之后,接一个上行时隙,如图3所示。在图3中,一个实线方框表示一个时隙,标有“D”的实线方框为下行(downlink,DL)时隙,标有“U”的实线方框为上行(uplink,UL)时隙。
第二种,下行时隙数量与上行时隙数量的配比为8:1。也就是说,在8个下行时隙之后,接一个上行时隙,如图3所示。
另外,除了以上“时隙”粒度的配比之外,相关协议中还定义了除了上行时隙和下行时隙以外的另一种时隙的资源配比情况。该另一种时隙可被称为灵活(flexible或unknown)时隙,灵活时隙中可以包括下行传输、保护间隔(gap)和上行传输中的至少一种。
例如,以图4为例,在图4中,一个实线方框表示一个时隙,标有“D”的实线方框为下行时隙,标有“U”的实线方框为上行时隙,标有“F”的实线方框为灵活时隙。在该灵活时隙的14个符号中,一个虚线方框表示一个符号,符号索引0至符号索引11(标有字母“D”的方框)对应的符号用于下行传输。符号索引12(标有字母“F”的方框)对应的符号属于保护间隔符号。符号索引13(标有字母“U”的方框)对应的符号用于上行传输。
再如,以表1为例,表1示出了一些可能的时隙格式(format)。表1中以“一个时隙包括14个符号”为例,示出了29种时隙格式(即时隙格式0至时隙格式28)。不同的时隙格式包括的上行符号个数、下行符号个数和灵活符号个数不一样。灵活符号可以用于保护间隔。标示为“D”的符号为下行符号,标示为“U”的符号为上行符号,标示为“F”的符号为保护间隔符号,也可以称为灵活(flexible或unknown)符号。
表1
Figure PCTCN2021087913-appb-000001
Figure PCTCN2021087913-appb-000002
如此,在一个时隙中既有下行符号,又有上行符号的情况下,终端设备根据上述表1中的时隙格式,即可获取如何在上行传输与下行传输之间进行切换。示例性的,以“时隙格式0”为例,一个时隙的符号为下行符号,终端设备无需切换。再以“时隙格式28”为例,终端设备在符号索引0-11对应的符号上传输下行信号,在符号索引13对应的符号上传输上行信号,符号索引12对应的符号用于下行和上行之间的切换准备。
考虑到终端设备的设备能力,协议中预定义的终端设备用于上行/下行之间的切换准备时间足够长。该切换准备时间包括接收信号后的切换时间和定时提前(timing advance,TA)其中,TA指的是终端设备将信息传输到网络设备过程中的传输时延(主要是空口时延)。示例性的,图5示出了一种可能的切换准备时间示意图。图5中的一个方框表示一个符号。其中,实线方框表示传输信号的符号。在图5所示的场景中,终端设备接收来自网络设备的DL信号,间隔“时间段1”之后,终端设备向网络设备发送UL信号。在考虑传输时延 (即时间段2)的情况下,UL信号的最后一个符号达到网络设备的时刻如图5中最右侧的直线所示。接收DL信号后的切换时间如图5中的时间段1,TA如图5中的时间段2。也就是说,该切换准备时间满足如下公式:
Figure PCTCN2021087913-appb-000003
其中,T表示切换准备时间。
Figure PCTCN2021087913-appb-000004
表示上行符号与下行符号之间间隔的符号数量。T C表示采样间隔。T TA表示定时提前。
对于多个终端设备而言,不同终端设备对应的TA不同,以使网络设备能够在相同的时间点接收到多个终端设备的信息,从而无干扰地对信息进行解调。考虑最低定时提前量,即忽略传播时延,相关协议中预定义的切换准备时间大于14us,以保证上下行切换的无损失传输。如此,上行符号与下行符号之间的保护间隔符号的数量满足如下公式(3):
X≥14us/(1/SCS)       公式(3)
其中,X表示上行符号与下行符号之间的保护间隔符号的数量,SCS表示子载波间隔(subcarrier spacing,SCS)。1/SCS表示符号持续时间(symbol duration)。其中,一个符号中的循环前缀(cyclic prefix,CP)忽略不计,忽略信号的传播时间,也就是说,定时提前量的取值为零。
在52.6GHz以上的频谱中,子载波间隔的取值可以为120kHz、240kHz、480kHz、960kHz、或1920kHz。在“切换准备时间大于14us”的情况下,SCS的取值不同,对应的保护间隔符号的数量也不一样。示例性的,参见表2,表2示出了不同SCS对应的保护间隔符号的数量。
表2
SCS 1个符号持续时间 需要保护间隔符号的数量
120kHz 8.92us 2
240kHz 4.46us 4
480kHz 2.23us 7
960kHz 1.11us 13
1920kHz 0.56us 25
如表2所示,在“SCS的取值为120kHz”的情况下,一个符号的持续时间为8.92us,保护间隔符号的数量为2个,以使切换准备时间大于14us。在“SCS的取值为960kHz”的情况下,一个符号的持续时间为1.11us,保护间隔符号的数量为13个,即大约一个时隙的符号数量,才能使得切换准备时间大于14us。在“下行时隙数量与上行时隙数量的配比为4:1”的情况下,终端设备采用一个时隙的资源用于接收到发送之间的切换,如图6所示,一个TDD传输周期包括5个时隙。其中,一个水平放置的方框表示一个时隙,一个竖直放置的方框表示一个符号。一个方框中的数字表示该方框对应的时隙的索引。一个方框中的字母“D”表示该方框对应的时隙用于下行传输。一个方框中的字母“U”表示该方框对应的时隙用于上行传输。字母“F”表示该时隙中部分符号用作切换准备时间。在图6中,一个时隙包括14个符号。时隙0、时隙1和时隙2用于下行数据传输,如图6中的实线方框所示。时隙4用于上行数据传输,如图6中的虚线方框所示。时隙3中的13个符号是保护间隔符号,如图6中的斜线填充的方框所示。也就是说,每5个时隙中约14个符号(即 一个时隙包括的符号数量)是保护间隔符号,如此,切换开销的资源占比大约为14/70,即20%的切换开销,切换开销大。
以“SCS的取值为960kHz”为例,在基准的SCS为120kHz的情况下,一个120kHz对应的时隙等效于8个960kHz的时隙。以“SCS为120kHz”为基准,为配置了“960kHz的子载波”的终端设备配置TDD传输周期。在一个TDD传输周期包括“SCS为120kHz”的5个时隙的情况下,该TDD传输周期包括“SCS为960kHz”的40个时隙。将“8个960kHz的时隙”视为一体,定义上行时隙或下行时隙。如图7所示,对于SCS为120kHz的时隙而言,一个TDD的传输周期中,用于下行数据传输的时隙数量是3个,即时隙0,时隙1和时隙2,如实线方框所示。用于上行数据传输的时隙数量是1个,即时隙4,如虚线方框所示。用于终端设备在收发之间切换准备的时隙数量是1个,即时隙3,如斜线填充的方框所示。对于SCS为960kHz的时隙而言,一个TDD的传输周期中,用于下行数据传输的时隙数量是29个,如实线方框所示。用于上行数据传输的时隙数量是10个,如虚线方框所示。用于终端设备在收发之间切换准备的时隙数量是1个,如斜线填充的方框所示。也就是说,每40个时隙中约14个符号(即一个时隙包括的符号数量)是保护间隔符号。如此,在以基准的SCS为终端设备配置TDD传输周期的情况下,也就降低了终端设备在接收与发送之间切换的频次,从而降低了切换开销。
由上述K0,K1和K2的介绍可知,三者可指示的范围均小于或等于32。但是,在“SCS的取值为960kHz”的情况下,一个TDD传输周期包括40个时隙,可能存在如下情况:从传输DCI的时隙开始,在32个时隙之后的时隙中传输PDSCH,则DCI无法指示该PDSCH的时隙位置。类似的,从传输DCI的时隙开始,在32个时隙之后的时隙中传输PUSCH,则DCI也无法指示该PUSCH的时隙位置。
综上,在52.6GHz以上的频谱中,存在部分时隙无法被指示,导致“资源调度灵活性低”的问题。
有鉴于此,本申请实施例提供一种用于资源调度的通信方法,本申请实施例用于资源调度的通信方法适用于各种通信***。本申请实施例提供的用于资源调度的通信方法可以应用于长期演进(long term evolution,LTE)***,或者第五代(fifth-generation,5G)通信网络,或者其他类似的网络中,或者未来的其它网络中。图8为可适用于本申请实施例用于资源调度的通信方法的通信***的架构示意图,该通信***可以包括终端设备80和网络设备81。其中,终端设备80与网络设备81之间无线连接。其中,终端设备80的数量可以为一个或多个,网络设备81也可以为一个或多个。图8中仅示出了一个网络设备和两个终端设备。图8仅为示意图,并不构成对本申请实施例用于资源调度的通信方法的适用场景的限定。
终端设备80,又称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)或者终端(terminal)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备或车载设备等。终端设备具体可以为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery) 中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端,未来5G通信网络或5G之后的通信网络中的终端设备等,本申请实施例对此不作限定。
网络设备81是无线通信网络中的设备,例如将终端设备80接入到无线通信网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信网络或5G之后的通信网络中的网络侧设备等。
本申请实施例描述的通信***以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请实施例提供的用于资源调度的通信方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,在此统一说明,以下不再赘述。
本申请实施例提供一种用于资源调度的通信方法,用于DCI资源调度过程中。参见图9,该用于资源调度的通信方法包括如下步骤:
S901、网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备的配置信息。
其中,配置信息为终端设备配置时隙组,时隙组包括至少两个时隙,且一个时隙组中的时隙数量是根据目标子载波间隔确定的,目标子载波间隔是终端设备被配置的子载波的间隔。
S902、网络设备向终端设备发送DCI。相应的,终端设备接收来自网络设备的DCI。
其中,DCI指示时隙组中用于数据传输的时域资源。
S903、终端设备基于DCI指示的时域资源与网络设备进行数据传输。
如此,在终端设备被配置时隙组的情况下,网络设备向终端设备发送的DCI能够指示时隙组中用于数据传输的时域资源,以实现基于时隙组的资源调度。采用本申请实施例提供的用于资源调度的通信方法,由于一个时隙组包括至少两个时隙,能够实现以时隙组为单位的资源调度,也就使得DCI能够指示更多时隙资源,相对于以时隙为单位的资源调度,提高了资源调度的效率及灵活性。另外,基于时隙组进行资源调度,可以将一个时隙组中的时隙视为一个整体,一个时隙组的传输方向是一致的,从而降低了终端设备执行上下行切换的频率,节省了上下行的切换开销。
下面,对S901至S903进行详细介绍:
S901、网络设备向终端设备发送配置信息。相应的,终端设备接收来自网络设备 的配置信息。
其中,配置信息用于为终端设备配置时隙组。时隙组也可以替换为时隙集合、时隙单元等
示例性的,配置信息包括时隙绑定(bundling)指示信息。配置信息的具体作用如下:
第一,配置信息(如时隙绑定指示信息)指示终端设备基于时隙组配置TDD传输周期的传输方向。其中,配置TDD传输周期的传输方向的高层参数包括如下信息中的至少一项:
第一项、时分复用-上行链路-下行链路-公共配置(time-division duplex-uplink-downlink-configcommon,TDD-UL-DL-ConfigCommon)信息。
第二项、时分复用-上行链路-下行链路-专用配置(time-division duplex-uplink-downlink-configdedicated,TDD-UL-DL-ConfigDedicated)信息。
其中,TDD-UL-DL-ConfigCommon和/或TDD-UL-DL-ConfigDedicated从时隙扩展至时隙组。示例性的,参见图10(a),一个方框表示一个时隙。一个实线方框表示该时隙用于下行传输,一个虚线方框表示该时隙用于上行传输,一个斜线填充的方框表示该时隙用于切换准备时间。以960kHz的时隙为例,一个时隙组包括8个时隙。此种情况下,配置信息一次配置5个时隙组(即40个时隙)的传输方向。
第二,配置信息(如时隙绑定指示信息)还指示基于时隙组进行资源调度。示例性的,参见图10(b),一个方框表示一个时隙。一个实线方框表示该时隙用于下行传输,一个虚线方框表示该时隙用于上行传输,一个斜线填充的方框表示该时隙用于切换准备时间。以960kHz的时隙为例,在基准的SCS为120kHz的情况下,一个时隙组包括8个时隙,如图10(b)中的粗虚线所示。此时,DCI调度960kHz的40个时隙中的某一个时隙时,DCI指示5个时隙组中的一个时隙组即可。另外,在基准的SCS为240kHz的情况下,一个时隙组包括4个时隙,如图10(b)中的细虚线所示。此时,DCI调度960kHz的40个时隙中的某一个时隙时,DCI指示10个时隙组中的一个时隙组即可。
其中,关于“时隙组”的具体说明如下:一个时隙组包括至少两个时隙。示例性的,一个时隙组中时隙的数量可以为2,4,8,或16。一个时隙组中的时隙数量是根据目标子载波间隔确定的。目标子载波间隔是终端设备被配置的用于数据传输的部分带宽(bandwidth part,BWP)的子载波的间隔。目标子载波间隔可以是240K,480K,960K,或1920K。一个时隙组中的时隙数量是根据目标子载波间隔和基准的子载波间隔确定的,如一个时隙组中的时隙数量满足如下公式:
Figure PCTCN2021087913-appb-000005
其中,A表示一个时隙组中的时隙数量,μ 1表示终端设备被配置的用于数据传输的BWP的子载波的间隔在协议中对应的索引号,μ 2表示基准的子载波间隔在协议中对应的索引号。基准的子载波间隔也可以称为预设子载波间隔。
对于终端设备而言,可以通过如下两种方式来确定“一个时隙组中的时隙数量”:
方式一、终端设备被配置“基准的SCS”,之后,终端设备结合表3确定自身被配置 的实际子载波间隔索引μ 1和基准的子载波间隔索引μ 2,进而确定A。其中,基准的SCS可以是网络设备配置的。例如,RRC层信令中承载基准的SCS在协议中对应的索引号网络设备通过RRC层信令为终端设备配置基准的SCS。其中,RRC层信令可以是RRC消息、***消息等。或者,基准的SCS也可以是协议预定义的。例如,在协议中规定,终端设备被配置的初始BWP的上行子载波间隔为基准的SCS,或终端设备被配置的初始BWP的下行子载波间隔为基准的SCS。或者,终端设备当前接入小区的同步信号采用的子载波间隔为基准的SCS。
其中,表3示出了子载波间隔在协议中对应的索引号。关于表3的介绍如下:与LTE的参数集相比,新无线(new radio,NR)支持多种不同类型的子载波间隔。NR参数集子载波间隔,符号长度,时隙长度和循环前缀(cyclic prefix,CP)长度等参数中的一个或多个参数。示例性的,表3示出了一种NR参数集。
表3
Figure PCTCN2021087913-appb-000006
在表3中,μ表示子载波间隔在协议中对应的索引号,Δf表示子载波间隔的取值。由表3可知,60KHz子载波间隔有两种CP类型,即常规循环前缀(normal cyclic prefix,NCP)和拓展循环前缀(extended cyclic prefix,ECP)。其他子载波间隔只有一种CP类型,即NCP。
方式二、网络设备向终端设备发送指示信息1。相应的,终端设备接收来自网络设备的指示信息1。其中,指示信息1指示“一个时隙组中的时隙数量”。指示信息1可以包括一个数值,该数值即为“一个时隙组中的时隙数量”。该数值可以是集合{1,2,4,8}中的一个数值。指示信息1也可以包括一个索引号,该索引号对应的数值即为“一个时隙组中的时隙数量”。其中,指示信息1中的索引号和数值之间存在映射关系,具体如表4所示:
表4
索引号 一个时隙组中的时隙数量
0 1
1 2
2 4
3 8
在表4中,在指示信息1中的索引号为“0”的情况下,“一个时隙组中的时隙数量”为1。在指示信息1中的索引号为“1”的情况下,“一个时隙组中的时隙数量”为2。在指示信息1中的索引号为“2”的情况下,“一个时隙组中的时隙数量”为4。在指示信息1中的索引号为“3”的情况下,“一个时隙组中的时隙数量”为8。
需要说明的是,配置信息能够为终端设备配置多个时隙组,不同时隙组中的时隙数量可以相同,也可以不同。
S902、网络设备向终端设备发送DCI。相应的,终端设备接收来自网络设备的DCI。
其中,DCI指示时隙组中用于数据传输的资源。其中,DCI指示的时隙组为S901中配置信息为终端设备配置的时隙组。例如,DCI指示时隙组中用于下行数据传输的资源,即PDSCH的资源。和/或,DCI指示时隙组中用于上行数据传输的资源,即PUSCH的资源。下面,通过两种可能的实施例进行说明:
作为第一种可能的实施例中,DCI指示时隙组中用于下行数据传输的时域资源,即PDSCH的时域资源。下面,分两种情况进行介绍:
情况一、网络设备基于DCI调度整个时隙组用于传输PDSCH。
此种情况下,DCI包括信息1,信息1指示时隙组中的第一时隙组,第一时隙组包括用于传输PDSCH的时域资源。也就是说,网络设备能够通过DCI调度某一时隙组中的时域资源以传输PDSCH。在信息1包括参数1的情况下,参数1指示DCI所在的时隙组与第一时隙组间隔的时隙组或时隙的数量。或者,DCI包括参数1,以通过参数1为终端设备指示第一时隙组。
若“参数1指示DCI所在的时隙组与第一时隙组间隔的时隙组数量”,则在参数1指示K0的取值为“2”的情况下,“第一时隙组”为DCI所在的时隙组之后的第3个时隙组,即时隙组3(图10(c)未示出),时隙0与时隙3之间间隔2个时隙组。
若“参数1指示K0,且K0指示的是从终端设备接收到DCI所在的时隙组之后的第K0个时隙组开始接收PDSCH。此种情况下,终端设备接收到DCI的时隙组之后的首个时隙组是第1个时隙组。示例性的,参见图10(c),仍以“8个960kHz的时隙”视为一个时隙组,一个方框表示一个时隙。一个实线方框表示该时隙用于下行传输,一个虚线方框表示该时隙用于上行传输,一个斜线填充的方框表示该时隙用于切换准备时间。图10(c)中的数字表示时隙组的索引。DCI通过时隙组0中的第二个时隙传输。在参数1指示K0的取值为“2”的情况下,“第一时隙组”为DCI所在的时隙组之后的第2个时隙组,即时隙组2,如图10(c)所示。如此,在DCI指示一个时隙组为第一时隙组的情况下,网络设备基于DCI即可调度整个时隙组用于传输PDSCH。
情况二、网络设备基于DCI调度一个时隙组中的部分时域资源用于传输PDSCH。
此种情况下,在情况一的基础上,终端设备还结合信息2确定一个时隙组中的部分时域资源,以传输PDSCH。其中,信息2用于确定第一时隙组中用于传输PDSCH的至少一个符号。信息2和信息1可以承载于同一信令,也可以承载于不同信令,本申请实施例对此不作限定。其中,信息1的介绍可以参见情况一,此处不再赘述。下面,通过两种可能的示例进行介绍:
示例一、以第一时隙组对应的符号作为对象,终端设备根据信息2和参数2确定以下至少一项:PDSCH的至少一个符号的起始符号在第一时隙组中的位置,PDSCH的至少一个符号在第一时隙组中的符号数量。具体地,信息2指示SLIV的取值。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值指示用于数据传输的起始符号在时隙中的位置,L的取值指示用于数据传输的符号数量。终端设备采用参数2对S的取值进行调整,再根据调整后的S的取值确定第一时隙组中用于传输PDSCH的起始符号在第一时隙组中的位置。其中,参数2为调整S的取值的因子。终端设备采用参数2对L的取值进行调整,再根据调整后的L的取值确定第一时隙组中用于传输PDSCH的符号数量。其 中,参数2为调整L的取值的因子。其中,“参数2对S的取值和L的取值进行调整”过程满足如下公式:
Figure PCTCN2021087913-appb-000007
其中,S′为S经调整后的取值,L′为L经调整后的取值,Y表示参数2。
示例性的,图10(d)示出了一种传输PDSCH的符号位置示意图。在图10(d)中,一个实线方框表示一个时隙,一个虚线方框表示一个符号。终端设备确定第一时隙组之后,以第一时隙组中的符号(即8个时隙对应的112个符号)作为对象,在Y的取值为4的情况下,仍以“S的取值为2,L的取值为12”为例,终端设备结合公式(5)进行计算,以得到“S′的取值为8,L′的取值为48”。也就是说,第一时隙组中的第9个符号作为PDSCH的起始符号,且第一时隙组中的连续48个符号作为PDSCH的符号长度,如图10(d)所示。
其中,网络设备可以通过一条信令来为终端设备指示参数2的取值。即,网络设备向终端设备发送参数2。相应的,终端设接收来自网络设备的参数2。其中,参数2可以承载于步骤S902的配置信息,也可以承载于DCI,还可以承载于其他信令,本申请实施例对此不作限定。其中,参数2与“一个时隙组中的时隙数量A”的取值可以相同,也可以不同。在参数2与“一个时隙组中的时隙数量A”的取值相同的情况下,网络设备无需再发送信令为终端设备指示参数2的取值,以节省信令开销。在参数2与“一个时隙组中的时隙数量A”的取值不同的情况下,网络设备再发送信令为终端设备指示参数2的取值,以提高资源调度的灵活性。
示例二、以第一时隙组中的时隙和符号为对象,在信息2指示SLIV的情况下,终端设备根据SLIV和指示信息2确定以下至少一项:PDSCH的至少一个符号中的起始符号在第一时隙组中的位置,PDSCH的至少一个符号在第一时隙组中的符号数量。其中,指示信息2指示起始符号索引和结束符号索引。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值指示在第一时隙组中用于数据传输的起始时隙。L的取值指示在第一时隙组中用于数据传输的时隙数量。如此,终端设备根据S的取值确定PDSCH在第一时隙组中的起始时隙。终端设备根据L的取值确定PDSCH在第一时隙组中的时隙数量。之后,由于指示信息2包括起始符号索引指示和结束符号索引指示。其中,起始符号索引指示在调度的第一个时隙中,PDSCH的起始的符号位置。结束符号索引指示在调度的最后一个时隙中,PDSCH的结束的符号位置。终端设备根据指示信息2中的起始符号索引指示确定PDSCH在起始时隙中的起始符号。终端设备根据指示信息2中的结束符号索引指示确定PDSCH在第一时隙组中最后一个时隙中的结束符号。
另外,作为一种可能的示例,在信息2指示SLIV的取值情况下,终端设备根据SLIV和指示信息2确定以下至少一项:PDSCH的至少一个符号中的起始符号在第一时隙组中的位置,PDSCH的至少一个符号在第一时隙组中的符号数量。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值用于指示终端设备被配置的多个时隙组中的哪一时隙为起始时隙。L的取值用于指示终端设备被配置的多个时隙组中的用于PDSCH的时隙数量。也就是说,将S901中终端设备被配置的多个时隙组视为一个整体,以指示多个时隙组中的哪些时隙用于传输PDSCH。指示信息2的介绍参见示例二的说明,此处不再 赘述。示例性的,参见图10(e),图10(e)示出了一种传输PDSCH的符号位置示意图。在图10(e)中,以配置信息配置的8个时隙组为例,每个时隙组包括4个时隙。以上述“32个时隙”作为对象,终端设备根据SLIV和公式(1)进行计算,以得到“S的取值为8,L的取值为20”。即终端设备确定上述“32个时隙”中的第8个时隙作为PDSCH的起始时隙,且时隙数量是以第8个时隙为起始的20个时隙。终端设备再结合指示信息2确定第8个时隙中起始符号和最后一个时隙中结束符号,具体如图10(e)所示,PDSCH的起始符号为第8个时隙中的第8个符号,结束符号为第27个时隙中的第3个符号。
进一步地,在第一种可能的实施例中,终端设备能够结合信息3确定反馈HARQ信息的资源。其中,信息3指示时隙组中的第二时隙组,第二时隙组包括用于传输HARQ信息的时域资源,HARQ信息指示PDSCH的接收状况。也就是说,网络设备能够通过DCI调度某一时隙组中的时域资源以传输HARQ信息。信息2和信息3可以承载于同一信令,也可以承载于不同信令,本申请实施例对此不作限定。在信息3包括参数3的情况下,参数3指示第一时隙组与第二时隙组间隔的时隙组数量。示例性的,若“参数3指示第一时隙组与第二时隙组间隔的时隙组数量”,则在参数3指示K1的取值为“2”的情况下,“第二时隙组”为DCI所在的时隙组之后的第3个时隙组,即时隙组5(图10(c)未示出),时隙5与时隙3之间间隔2个时隙组。示例性地,若“参数3指示K1,且K1指示的是从终端设备接收到PDSCH所在的时隙组之后的第K1个时隙组开始传输HARQ信息。此种情况下,终端设备接收到PDSCH的时隙组之后的首个时隙组是第1个时隙组。在参数3指示K1的取值为“2”的情况下,“第二时隙组”为PDSCH所在的时隙组之后的第2个时隙组,即时隙组4,如图10(c)所示。示例性地,在图10(c)中,终端设备通过时隙组4中第一个时隙传输HARQ信息。这里,第二时隙组中的第一个时隙可以是该时隙组中第一个PUCCH资源。
需要说明的是,在确定第二时隙组之后,终端设备在第二时隙组中的PUCCH资源上向网络设备发送HARQ信息。其中,PUCCH资源是预先配置的传输资源,具体过程可以参见现有技术。例如,第二时隙组中的时域资源包括至少一个PUCCH资源。终端设备在首个(或第二个、第三个)PUCCH资源上传输HARQ信息。其中,终端设备在第二时隙组中的哪一PUCCH资源上反馈HARQ信息,可由协议预先定义。
如此,在DCI指示一个时隙组为第二时隙组的情况下,终端设备基于第二时隙组的时域资源向网络设备反馈HARQ信息。
作为第二种可能的实施例中,DCI指示时隙组中用于上行数据传输的资源,即PUSCH的资源。下面,分两种情况进行介绍:
情况一、网络设备基于DCI调度整个时隙组用于传输PUSCH。
此种情况下,DCI包括信息4,信息4指示时隙组中的第三时隙组,第三时隙组包括用于传输PUSCH的时域资源。也就是说,网络设备能够通过DCI调度某一时隙组中的时域资源以传输PUSCH。在“信息4包括参数4”的情况下,参数4指示DCI所在的时隙组与第三时隙组间隔的时隙组数量。或者,DCI包括参数4,以通过参数4为终端设备指示第三时隙组。
若“参数4指示DCI所在的时隙组与第三时隙组间隔的时隙组数量”,则在参数4指示K2的取值为“4”的情况下,“第三时隙组”为DCI所在的时隙组之后的第5个时隙组, 即时隙组5(图10(c)未示出),时隙0与时隙5之间间隔4个时隙组。
若“参数4指示K2,且K2指示的是从终端设备接收到DCI所在的时隙组之后的第K2个时隙组开始发送PUSCH。此种情况下,终端设备接收到DCI的时隙组之后的首个时隙组是第1个时隙组。示例性的,参见图10(c),DCI通过时隙组0中的第二个时隙传输。在参数4指示K2的取值为“4”的情况下,“第三时隙组”为DCI所在的时隙组之后的第4个时隙组,即时隙组4,如图10(c)所示。
如此,在DCI指示一个时隙组为第三时隙组的情况下,网络设备基于DCI即可调度整个时隙组用于传输PUSCH。
情况二、网络设备基于DCI调度一个时隙组中的部分时域资源用于传输PUSCH。
此种情况下,在情况一的基础上,终端设备还结合信息2确定一个时隙组中的部分时域资源,以传输PUSCH。其中,信息2用于确定第一时隙组中用于传输PUSCH的至少一个符号。信息2和信息1可以承载于同一信令,也可以承载于不同信令,本申请实施例对此不作限定。其中,信息1的介绍可以参见情况一,此处不再赘述。下面,通过两种可能的示例进行介绍:
示例一、以第三时隙组对应的符号作为对象,终端设备根据信息2和参数2确定以下至少一项:PUSCH的至少一个符号的起始符号在第三时隙组中的位置,PUSCH的至少一个符号在第三时隙组中的符号数量。具体地,信息2指示SLIV的取值。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值指示用于数据传输的起始符号在时隙中的位置,L的取值指示用于数据传输的符号数量。终端设备采用参数2对S的取值进行调整,再根据调整后的S的取值确定第三时隙组中用于传输PUSCH的起始符号在第三时隙组中的位置。其中,参数2为调整S的取值的因子。终端设备采用参数2对L的取值进行调整,再根据调整后的L的取值确定第三时隙组中用于传输PUSCH的符号数量。其中,参数2为调整L的取值的因子。其中,“参数2对S的取值和L的取值进行调整”过程满足公式(5)。
示例性的,图10(d)示出了一种传输PUSCH的符号位置示意图。在图10(d)中,一个实线方框表示一个时隙,一个虚线方框表示一个符号。终端设备确定第三时隙组之后,以第三时隙组中的符号(即8个时隙对应的112个符号)作为对象,在Y的取值为4的情况下,仍以“S的取值为2,L的取值为12”为例,终端设备结合公式(5)进行计算,以得到“S′的取值为8,L′的取值为48”。也就是说,第三时隙组中的第9个符号作为PUSCH的起始符号,且第三时隙组中的连续48个符号作为PUSCH的符号长度,如图10(d)所示。
示例二、以第三时隙组中的时隙和符号为对象,在信息2指示SLIV的情况下,终端设备根据SLIV和指示信息2确定以下至少一项:PUSCH的至少一个符号中的起始符号在第三时隙组中的位置,PUSCH的至少一个符号在第三时隙组中的符号数量。其中,指示信息2指示起始符号索引和结束符号索引。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值指示在第三时隙组中用于数据传输的起始时隙。L的取值指示在第三时隙组中用于数据传输的时隙数量。如此,终端设备根据S的取值确定PUSCH在第三时隙组中的起始时隙。终端设备根据L的取值确定PUSCH在第三时隙组中的时隙数量。之后,由于指示信息2包括起始符号索引指示和结束符号索引指示。其中,起始符号 索引指示在调度的第一个时隙中,PUSCH的起始的符号位置。结束符号索引指示在调度的最后一个时隙中,PUSCH的结束的符号位置。终端设备根据指示信息2中的起始符号索引指示确定PUSCH在起始时隙中的起始符号。终端设备根据指示信息2中的结束符号索引指示确定PUSCH在第三时隙组中最后一个时隙中的结束符号。
另外,作为一种可能的示例,在信息2指示SLIV的取值情况下,终端设备根据SLIV和指示信息2确定以下至少一项:PUSCH的至少一个符号中的起始符号在第三时隙组中的位置,PUSCH的至少一个符号在第三时隙组中的符号数量。终端设备根据SLIV和公式(1)确定S的取值和L的取值。其中,S的取值用于指示终端设备被配置的多个时隙组中的哪一时隙为起始时隙。L的取值用于指示终端设备被配置的多个时隙组中的用于PUSCH的时隙数量。也就是说,将S901中终端设备被配置的多个时隙组视为一个整体,以指示多个时隙组中的哪些时隙用于传输PUSCH。指示信息2的介绍参见示例二的说明,此处不再赘述。示例性的,参见图10(e),图10(e)示出了一种传输PUSCH的符号位置示意图。在图10(e)中,以配置信息配置的8个时隙组为例,每个时隙组包括4个时隙。以上述“32个时隙”作为对象,终端设备根据SLIV和公式(1)进行计算,以得到“S的取值为8,L的取值为20”。即终端设备确定上述“32个时隙”中的第8个时隙作为PUSCH的起始时隙,且时隙数量是以第8个时隙为起始的20个时隙。终端设备再结合指示信息2确定第8个时隙中起始符号和最后一个时隙中结束符号,具体如图10(e)所示,PUSCH的起始符号为第8个时隙中的第8个符号,结束符号为第27个时隙中的第3个符号。
S903、终端设备通过DCI指示的资源与网络设备进行数据传输。
例如,在DCI包括信息1和信息2的情况下,PDSCH在第一时隙组中的起始符号为第一时隙组中的第9个符号,PDSCH在第一时隙组中的符号长度为48个符号为例,网络设备通过第一时隙组中的部分符号(即第一时隙组中以第9个符号为起始的48个符号)向终端设备发送数据。相应的,终端设备通过第一时隙组中的部分符号(即第一时隙组中以第9个符号为起始的48个符号)接收来自网络设备的数据。
再如,在DCI包括信息1、信息2和信息3的情况下,信息3指示时隙组中的第二时隙组的情况下,HARQ信息在第二时隙组中的第一个时隙传输为例,终端设备通过第二时隙组中的第一个时隙向网络设备反馈HARQ信息。相应的,网络设备通过第二时隙组中的第一个时隙接收来自终端设备的HARQ信息。其中,HARQ信息指示PDSCH的接收状况。
又如,在DCI包括信息4和信息2的情况下,PUSCH在第三时隙组中的起始符号为第三时隙组中的第9个符号,PUSCH在第三时隙组中的符号长度为48个符号为例,终端设备通过第三时隙组中的部分符号(即第三时隙组中以第9个符号为起始的48个符号)向网络设备发送数据。相应的,网络设备通过第三时隙组中的部分符号(即第三时隙组中以第9个符号为起始的48个符号)接收来自终端设备的数据。
另外,考虑到终端设备的硬件能力,即解析信令需要一定的处理时间,且处理时间需要适配时隙组的帧结构。以波束失败恢复的处理流程为例,终端设备接收PDCCH,在预设时长后,终端设备应用更新后的上行波束和/或下行波束。在终端设备被配置时隙组的情况下,终端设备在预设数量的时隙组对应的时长之后,应用更新后的上行波束和/或下行波束。示例性的,若一个时隙组中的时隙数量为4,且预设时长为1个时隙组的时长,则预设时长为112个符号。
本申请实施例还提供一种用于资源调度的通信方法,用于资源调度中的解调参考信号(de-modulation reference signal,DMRS)的传输过程。以下,对解调参考信号进行说明。
解调参考信号通常与数据信道相邻,以便于精确地进行信道估计和解调。定义“一个DMRS”的方式有多种,例如,将对应同一端口的DMRS描述为“一个DMRS”。再如,将连续两个资源元素(resource element,RE)上的DMRS描述为“一个DMRS”。又如,将一个RE上的DMRS描述为“一个DMRS”。以“一个RE上的DMRS描述为‘一个DMRS’”为例,进行介绍。其中,在时域上,最小的资源粒度是一个符号。在频域上,最小的粒度是一个子载波。一个符号与一个子载波组成的一个时频资源单元,即为RE。
其中,DMRS的符号映射方式如下:在一个时隙中采用一个符号承载DMRS的情况下,例如,该一个符号可以为该时隙中的第3个符号(符号索引为2),如图11(a)所示。在图11(a)中,一个方框表示一个符号。一个实线方框表示该符号用于传输PDCCH,一个虚线方框表示该符号用于传输数据,一个斜线填充的方框表示该符号用于承载DMRS。此外,终端设备在高速移动的情况下,为了提升信道估计的精准度,一个时隙可以采用多个符号承载DMRS。例如,该多个符号可以为该时隙中的第3个符号(符号索引为2)和第12个符号(符号索引为11),或者,该多个符号可以为该时隙中的第3个符号(符号索引为2)、第8个符号(符号索引为7)和第12个符号(符号索引为11),或者,该多个符号可以为该时隙中的第3个符号(符号索引为2)、第6个符号(符号索引为5)、第9个符号(符号索引为8)和第12个符号(符号索引为11)。
其中,一个符号上的DMRS可以包括与天线端口对应的DMRS,DMRS的频域映射方式如下:对应相同天线端口(port)的DMRS在频域上等间隔放置。DMRS的图案设计分为类型(Type)1和类型2。其中,在类型1的映射方式中,对应相同天线端口的DMRS在频域上间隔1个子载波。在类型2的映射方式中,对应相同天线端口的DMRS在频域上占用连续2个子载波。示例性的,图11(b)示出了一种DMRS的频域映射示意图。一个垂直放置的矩形框表示一个符号。在垂直放置的矩形框中,一个虚线矩形框表示该符号用于传输数据,一个斜线填充的矩形框表示该符号用于承载DMRS。一个水平放置的矩形框表示一个RE。在水平放置的矩形框中,一个实线矩形框表示天线端口0和天线端口1对应的DMRS,一个虚线矩形框表示天线端口2和天线端口3对应的DMRS,一个斜线填充的矩形框表示天线端口4和天线端口5对应的DMRS。在图11(b)中,在DMRS为类型1的映射方式的情况下,对应天线端口0和天线端口1的DMRS分布于第(i+1)个子载波、第(i+3)个子载波、第(i+5)个子载波和第(i+7)个子载波。对应天线端口2和天线端口3的DMRS分布于第(i+2)个子载波、第(i+4)个子载波、第(i+6)个子载波和第(i+7)个子载波。其中,i为正整数。对应相同天线端口的DMRS在频域上间隔1个子载波。在DMRS为类型2的映射方式的情况下,对应天线端口0和天线端口1的DMRS分布于第(i+1)个子载波、第(i+2)个子载波、第(i+7)个子载波和第(i+8)个子载波。对应天线端口2和天线端口3的DMRS分布于第(i+3)个子载波、第(i+4)个子载波、第(i+9)个子载波和第(i+10)个子载波。对应天线端口4和天线端口5的DMRS分布于第(i+5)个子载波、第(i+6)个子载波、第(i+11)个子载波和第(i+12)个子载波。其中,i为正整数。对应相同天线端口(如天线端口0和天线端口1、或对应天线端口2和天线端口3,或对应天线端口4和天线端口5)的DMRS在频域上占用连续2个子载波。在SCS较小的 情况下,间隔2个或者几个子载波的信道被近似地认为相同。在使用不同频率的DMRS做正交覆盖码(orthogonal cover code,OCC)时,由于信道被认为近似相等,因此不影响解OCC的信道估计性能。
示例性的,图11(c)示出了一种信道估计状况示意图。一个矩形框表示一个RE。一个实线矩形框表示天线端口0和天线端口1对应的DMRS,一个虚线矩形框表示天线端口2和天线端口3对应的DMRS。SCS为960kHz。以基于天线端口0和天线端口1对应的DMRS进行信道估计为例实曲线表示真实的频率响应。终端设备根据频率A和频率B分别对应的频率响应进行插值运算,以得到线性插值运算结果,如图11(c)中节点A和节点B之间的虚直线所示。而无天线端口0和天线端口1对应的DMRS的频率(如频率x至频率(x+960)kHz)对应的频率响应依赖于线性插值运算结果。在图11(c)中,节点C和节点D对应同一频率。节点C表示基于线性插值运算结果确定的频率响应,而节点D表示真实的频率响应。如此,估计的频率响应与真实的频率响应之间存在偏差,即信道估计结果的准确性差。
也就是说,在子载波间隔较大(如960kHz)的情况下,间隔2个或者几个子载波的信道差别较大,无法被近似地认为相同。对于频率间隔太远的DMRS而言,经过数学方法进行插值运算,以得到信道估计结果。该信道估计结果的准确性差,影响网络传输性能。
有鉴于此,本申请实施例提供另一种用于资源调度的通信方法,该应用在资源调度中的DMRS传输过程。参见图12(a),该用于资源调度的通信方法包括如下步骤:
S1201、网络设备向终端设备发送DCI。相应的,终端设备接收来自网络设备的DCI。
其中,DCI指示用于数据传输的时域资源。在DCI指示PDSCH的资源的情况下,本申请实施例用于资源调度的通信方法执行S1202和S1204。在DCI指示PUSCH的资源的情况下,本申请实施例用于资源调度的通信方法执行S1205和S1206。
S1202、网络设备向终端设备发送第一参考信号。相应的,终端设备接收来自网络设备的第一参考信号。
其中,第一参考信号包括至少两个DMRS。至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波。
S1204、终端设备采用第一参考信号解调DCI指示的时域资源。
S1205、终端设备向网络设备发送第三参考信号。相应的,网络设备接收来自终端设备的第三参考信号。
其中,第三参考信号包括至少两个DMRS。至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波。
S1206、网络设备采用第三参考信号解调DCI指示的时域资源。
如此,采用第一参考信号中的DMRS解调DCI指示的资源。其中,第一参考信号中至少两个DMRS对应同一天线端口。在频域上,上述“至少两个DMRS”位于不同的子载波,如在相邻符号的下一个子载波上存在对应相同端口的DMRS,从而等效地提升了频域DMRS的密度,有利于提升线性插值运算的精准度和信道估计结果的准确性,从而改善传输的频谱效率。并且,在时域上,上述“至少两个DMRS”是连续的,相对于“DMRS是分散设置的”的情况相比,本申请实施例用于资源调度的通信方法提升了单位时间内的DMRS信号能量,从而有利于提升译码速度和信道估计的精度,改善传输的频谱效率。
下面,对S1201至S1205进行详细介绍:
S1201、网络设备向终端设备发送DCI。相应的,终端设备接收来自网络设备的DCI。
其中,DCI指示用于数据传输的时域资源。例如,DCI指示时隙组中用于下行数据传输的时域资源,即PDSCH的时域资源。和/或,DCI指示时隙组中用于上行数据传输的时域资源,即PUSCH时域的资源。
示例性的,在终端设备被配置时隙组的情况下,DCI指示时隙组中用于数据传输的时域资源。关于“时隙组”以及“时隙组的配置过程”详见S901的相关说明,此处不再赘述。
S1202、网络设备向终端设备发送第一参考信号。相应的,终端设备接收来自网络设备的第一参考信号。
其中,第一参考信号包括至少两个DMRS。第一参考信号也可以替换为第一DMRS集合、第一DMRS组。在第一参考信号中,位于同一符号上的DMRS可以对应同一个天线端口,也可以对应不同多个天线端口。
首先,以“位于同一符号上的DMRS对应同一天线端口”为例,上述至少两个DMRS包括第一DMRS和第二DMRS。下面,以第一DMRS和第二DMRS为例,对上述“至少两个DMRS”在时域和频域上的映射状况进行说明:
在时域上的映射状况:第一DMRS和第二DMRS在时域上连续。
示例性的,图13(a)示出了一种第一参考信号在时域上的位置示意图。在图13(a)中,一个方框表示一个符号。每14个符号构成一个时隙,如图13(a)中的虚直线所示。一个实线方框表示该符号用于传输PDCCH,一个虚线方框表示该符号用于传输数据,一个斜线填充的方框表示该符号用于承载DMRS。仍以“一个时隙中采用一个符号承载DMRS”的情况为例,在绑定前,承载该DMRS的符号为各时隙中的第3个符号,一个时隙中的DMRS用于解调该时隙上用于数据传输的资源,各时隙在时域上连续。如图13(a)所示。在绑定后,第一参考信号包括4个DMRS,且4个DMRS在时域上连续,具体如图13(a)所示。图12(c)所示的第一参考信号在时域上的分布状况与图13(a)所示的第一参考信号在时域上的分布状况相同。
在频域上的映射状况:第一DMRS和第二DMRS在频域上位于不同子载波。
例如,以类型1为例,图13(b)示出了一种第一参考信号的位置示意图。在图13(b)中,一个垂直放置的矩形框表示一个符号。如图13(b)所示,在符号a、符号b、符号c和符号d上承载DMRS。一个水平放置的矩形框表示一个RE。一个水平放置的未填充斜线的矩形框表示该RE未承载DMRS,一个水平放置的斜线填充的矩形框表示该RE承载的DMRS对应天线端口0。如图13(b)所示,在符号a上,对应天线端口0的DMRS分布于第(i+1)个子载波、第(i+3)个子载波、第(i+5)个子载波和第(i+7)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波、第(i+2)个子载波、第(i+4)个子载波和第(i+6)个子载波。在符号c上,对应天线端口0的DMRS分布于第(i+1)个子载波、第(i+3)个子载波、第(i+5)个子载波和第(i+7)个子载波。在符号d上,对应天线端口0的DMRS分布于第i个子载波、第(i+2)个子载波、第(i+4)个子载波和第(i+6)个子载波。其中,i为正整数。如此,以“第一DMRS为字符‘A’示的DMRS,第二DMRS为字符‘B’指示的DMRS”为例,第一DMRS和第二DMRS位于不同的子载波上。
再如,以类型2为例,图13(c)示出了一种第一参考信号的位置示意图。在图13(c)中,在符号a上,对应天线端口0的DMRS分布于第(i+2)个子载波、第(i+3)个子载波、第(i+6)个子载波和第(i+7)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波、第(i+1)个子载波、第(i+4)个子载波和第(i+5)个子载波。在符号c上,对应天线端口0的DMRS分布于第(i+2)个子载波、第(i+3)个子载波、第(i+6)个子载波和第(i+7)个子载波。在符号d上,对应天线端口0的DMRS分布于第i个子载波、第(i+1)个子载波、第(i+4)个子载波和第(i+5)个子载波。其中,i为正整数。如此,以“第一DMRS为字符‘A’示的DMRS,第二DMRS为字符‘B’指示的DMRS”为例,第一DMRS和第二DMRS位于不同的子载波上。
然后,再以“位于同一符号上的DMRS对应多个天线端口”为例,对“对应多个天线端口的DMRS”在时域和频域上的映射状况进行说明:
第一、在“对应多个天线端口的DMRS”中,对应同一天线端口的第一DMRS和第二DMRS在时域上连续,且在频域上位于不同子载波,具体如图13(a)、图13(b)和图13(c)所示。
第二、在“对应多个天线端口的DMRS”中,以第一参考信号还包括第三DMRS。其中,第三DMRS与第一DMRS对应的天线端口不同。下面,以第一DMRS、第二DMRS和第三DMRS为例,对上述“对应多个天线端口的DMRS”在时域和频域上的映射状况进行说明:
在时域上的映射状况:第一DMRS和第三DMRS在时域上相同。
例如,以类型1为例,图13(d)示出了一种第一参考信号的位置示意图。在图13(d)中,垂直放置的矩形框表征的含义与图13(b)相同,此处不再赘述。如图13(d)所示,在符号a、符号b、符号c和符号d上承载DMRS。一个水平放置的矩形框表示一个RE。一个水平放置的图案填充的矩形框表示该RE用于承载DMRS,并且,若两个矩形框中填充的图案不同,则表示这两个RE承载的DMRS对应的天线端口不同。示例性的,如图13(d)所示,在符号a上,对应天线端口0的DMRS分布于第(i+1)个子载波、第(i+3)个子载波、第(i+5)个子载波和第(i+7)个子载波,对应天线端口1的DMRS分布于第i个子载波、第(i+2)个子载波、第(i+4)个子载波和第(i+6)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波、第(i+2)个子载波、第(i+4)个子载波和第(i+6)个子载波,对应天线端口1的DMRS分布于第(i+1)个子载波、第(i+3)个子载波、第(i+5)个子载波和第(i+7)个子载波。符号c上的DMRS映射状况与符号a上的DMRS映射状况相同,符号d上的DMRS映射状况与符号b上的DMRS映射状况相同,此处不再赘述。其中,i为正整数。如此,以“第一DMRS为字符‘A’示的DMRS,第二DMRS为字符‘B’指示的DMRS,第三DMRS为字符‘C’指示的DMRS”为例,第一DMRS和第三DMRS在时域上相同,第二DMRS和第三DMRS在时域上连续。
再如,以类型2为例,图13(e)示出了一种第一参考信号的位置示意图。在图13(e)中,垂直放置的矩形框表征的含义与图13(b)相同,水平放置的矩形框表征的含义与图13(b)相同,此处不再赘述。如图13(e)所示,在符号a上,对应天线端口0的DMRS分布于第(i+2)个子载波、第(i+3)个子载波、第(i+6)个子载波和第(i+7)个子载波,对应天线端口1的DMRS分布于第i个子载波、第(i+1)个子载波、第(i+4)个子载波 和第(i+5)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波、第(i+1)个子载波、第(i+4)个子载波和第(i+5)个子载波,对应天线端口1的DMRS分布于第(i+2)个子载波、第(i+3)个子载波、第(i+6)个子载波和第(i+7)个子载波。符号c上的DMRS映射状况与符号a上的DMRS映射状况相同,符号d上的DMRS映射状况与符号b上的DMRS映射状况相同,此处不再赘述。其中,i为正整数。如此,以“第一DMRS为字符‘A’示的DMRS,第二DMRS为字符‘B’指示的DMRS,第三DMRS为字符‘C’指示的DMRS”为例,第一DMRS和第三DMRS在时域上相同,第二DMRS和第三DMRS在时域上连续。
在频域上的映射状况:第二DMRS和第三DMRS在频域上位于同一子载波。
例如,以类型1为例,仍以图13(d)示出的位置示意图为例,在“第二DMRS为字符‘B’指示的DMRS,第三DMRS为字符‘C’指示的DMRS”的情况下,第二DMRS和第三DMRS在频域上位于同一子载波。
再如,以类型2为例,仍以图13(e)示出的位置示意图为例,在“第二DMRS为字符‘B’指示的DMRS,第三DMRS为字符‘C’指示的DMRS”的情况下,第二DMRS和第三DMRS在频域上位于同一子载波。
综上可知,在时域上,第一参考信号中至少两个DMRS是绑定聚合的,提升了单位时间内的DMRS信号能量,从而有利于提升信道估计的精度,改善传输的频谱效率。在频域上,第一参考信号中至少两个DMRS是以子载波为单位循环移位的,如在相邻符号的下一个子载波上存在对应相同端口的DMRS,从而等效地提升了频域DMRS的密度,有利于提升线性插值运算的精准度和信道估计结果的准确性,从而改善传输的频谱效率。
进一步地,在“位于同一符号上的DMRS对应多个天线端口”的情况下,第二DMRS对应的天线端口与第三DMRS对应的天线端口是基于N的取值和承载目标DMRS的符号数量确定的。其中,N的取值为第二DMRS所在符号上的DMRS对应的天线端口数量,目标DMRS为第一参考信号中时域上连续的一组DMRS,目标DMRS包括上述第一DMRS和第二DMRS。
示例性的,以类型1为例,图13(f)示出了一种第一参考信号的位置示意图。在图13(f)中,垂直放置的矩形框所表征的含义与图13(b)相同,此处不再赘述。如图13(f)所示,在符号a和符号b上承载DMRS。一个水平放置的矩形框表示一个RE。一个水平放置的图案填充的矩形框表示该RE承载DMRS。并且,若两个矩形框中填充的图案不同,则表示这两个RE承载的DMRS对应的天线端口不同。示例性的,以四个天线端口为例,不同图案填充的矩形框表示对应不同天线端口的DMRS,具体如图13(f)所示。示例性的,在图13(f)中,在符号a上,对应天线端口0的DMRS分布于第(i+3)个子载波和第(i+7)个子载波,对应天线端口1的DMRS分布于第(i+2)个子载波和第(i+6)个子载波,对应天线端口2的DMRS分布于第(i+1)个子载波和第(i+5)个子载波,对应天线端口3的DMRS分布于第i个子载波和第(i+4)个子载波。在符号b上,对应天线端口0的DMRS分布于第(i+1)个子载波和第(i+5)个子载波,对应天线端口1的DMRS分布于第i个子载波和第(i+4)个子载波,对应天线端口2的DMRS分布于第(i+3)个子载波和第(i+7)个子载波,对应天线端口3的DMRS分布于第(i+2)个子载波和第(i+6)个子载波。也就是说,以“位于同一符号上的DMRS对应N个天线端口”为例,每N个 子载波为一组,在一个符号上,对应天线端口X(如天线端口0至天线端口(N-1)中的任一天线端口)的DMRS承载于索引为(N*k)的子载波,在该符号的相邻符号上,对应天线端口X的DMRS承载于索引为(N*k+m)的子载波。其中,N,k和m均为正整数,且k=0,1,2,…,(N-1)。其中,m满足如下公式:
m=N/P        公式(6)
其中,m表示循环移位的子载波数量,N表示同一符号上的DMRS对应的天线端口数量,P表示承载目标DMRS的符号数量。目标DMRS是指第一参考信号中时域上连续的一组DMRS。示例性的,以图13(f)为例,N的取值为4,P的取值为2。此时,m的取值为2。在图13(f)中,以对应天线端口2的DMRS为例,符号a上对应天线端口2的DMRS分布于第(i+1)个子载波和第(i+5)个子载波,符号b上对应天线端口2的DMRS分布于第(i+3)个子载波和第(i+7)个子载波。
对于同一子载波上相邻RE上的DMRS而言,其对应的天线端口是基于N的取值和承载目标DMRS的符号数量确定的,从而有利于提高“对应同一天线端口的DMRS”在频域上的密度,以提升线性插值运算的精准度和信道估计结果的准确性。
需要说明的是,承载目标DMRS的符号数量与一个时隙组中的时隙数量可以相同,也可以不同。在“承载目标DMRS的符号数量与一个时隙组中的时隙数量相同”的情况下,网络设备无需额外传输指令,来为终端设备指示第一参考信号中的DMRS数量,节省了信令开销。此种情况对应的具体示例可以参见图13(b)、图13(c)、图13(d)和图13(e)所示。若一个时隙组包括N个时隙,则第一参考信号包括N个DMRS。对于一个时隙组而言,前2*N个符号用于传输PDCCH,第一参考信号是从第(2*N+1)个符号开始的连续N个符号。在“承载目标DMRS的符号数量与一个时隙组中的时隙数量不同”的情况下,网络设备向终端设备传输一条指令,来为终端设备指示第一参考信号中的DMRS数量。如此,在信道状况良好的情况下,可以减少第一参考信号中DMRS的数量,以将更多的资源用于传输数据。如图13(g)中箭头“a”所示的情况,仍以“一个时隙组包括4个时隙”为例,在信道状况良好的情况下,第一参考信号包括两个DMRS。反之,在信道状况较差的情况下,可以增加第一参考信号中DMRS的数量,以提高信道估计精准度。如图13(g)中箭头“b”所示的情况,仍以“一个时隙组包括4个时隙”为例,在信道状况较差的情况下,第一参考信号包括六个DMRS。
对于一个时隙组而言,前2*N个符号用于传输PDCCH,第一参考信号是从第(2*N+1)个符号开始的连续Z个符号。其中,第一参考信号中DMRS的数量是通过上述指令来指示的。
示例性的,在“同一符号上的DMRS对应的天线端口数量”小于“承载目标DMRS的符号数量”的情况下,即N小于P。此种情况下,第一参考信号在时域和频域上的映射状况仍满足上述说明。例如,以N的取值为2,P的取值为4,即图13(d)示出的第一参考信号的位置示意图。再如,以N的取值为3,P的取值为4,即图13(h)示出的第一参考信号的位置示意图。在图13(h)中,垂直放置的矩形框所表征的含义与图13(b)相同,此处不再赘述。如图13(h)所示,在符号a、符号b、符号c和符号d上承载DMRS。一个水平放置的矩形框表示一个RE。一个水平放置的图案填充的矩形框表示该RE承载DMRS。并且,若两个矩形框中填充的图案不同,则表示这两个RE承载的DMRS对应的 天线端口不同。示例性的,以三个天线端口为例,不同图案填充的矩形框表示对应不同天线端口的DMRS,具体如图13(h)所示。示例性的,在图13(h)中,在符号a上,对应天线端口0的DMRS分布于第(i+2)个子载波和第(i+5)个子载波,对应天线端口1的DMRS分布于第(i+1)个子载波和第(i+4)个子载波,对应天线端口2的DMRS分布于第i个子载波和第(i+3)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波和第(i+3)个子载波,对应天线端口1的DMRS分布于第(i+2)个子载波和第(i+5)个子载波,对应天线端口2的DMRS分布于第(i+1)个子载波和第(i+4)个子载波。在符号c上,对应天线端口0的DMRS分布于第(i+1)个子载波和第(i+4)个子载波,对应天线端口1的DMRS分布于第i个子载波和第(i+3)个子载波,对应天线端口2的DMRS分布于第(i+2)个子载波和第(i+5)个子载波。符号d上的DMRS映射状况与符号a上的DMRS映射状况相同,此处不再赘述。
示例性的,在“同一符号上的DMRS对应的天线端口数量”大于“承载目标DMRS的符号数量”的情况下,即N大于P。此种情况下,第一参考信号在时域和频域上的映射状况仍满足上述说明。例如,以N的取值为4,P的取值为3,即图13(i)示出的第一参考信号的位置示意图。在图13(i)中,垂直放置的矩形框所表征的含义与图13(b)相同,此处不再赘述。如图13(i)所示,在符号a、符号b和符号c上承载DMRS。一个水平放置的矩形框表示一个RE。一个水平放置的图案填充的矩形框表示该RE承载DMRS。并且,若两个矩形框中填充的图案不同,则表示这两个RE承载的DMRS对应的天线端口不同。示例性的,以四个天线端口为例,不同图案填充的矩形框表示对应不同天线端口的DMRS,具体如图13(i)所示。示例性的,在图13(i)中,在符号a上,对应天线端口0的DMRS分布于第(i+1)个子载波和第(i+5)个子载波,对应天线端口1的DMRS分布于第i个子载波和第(i+4)个子载波,对应天线端口2的DMRS分布于第(i+3)个子载波,对应天线端口3的DMRS分布于第(i+2)个子载波。在符号b上,对应天线端口0的DMRS分布于第i个子载波和第(i+4)个子载波,对应天线端口1的DMRS分布于第(i+3)个子载波,对应天线端口2的DMRS分布于第(i+2)个子载波,对应天线端口3的DMRS分布于第(i+1)个子载波和第(i+5)个子载波。在符号c上,对应天线端口0的DMRS分布于第(i+3)个子载波,对应天线端口1的DMRS分布于第(i+2)个子载波,对应天线端口2的DMRS分布于第(i+1)个子载波和第(i+5)个子载波,对应天线端口3的DMRS分布于第i个子载波和第(i+4)个子载波。
需要说明的是,第一参考信号在DCI指示的资源之前传输。示例性的,以下行传输为例,终端设备先执行S1202,再执行S1204,具体如图13(a)至图13(i)所示。如此,终端设备即可快速地获取信道估计结果,以解调DCI指示的资源。
在一些实施例中,例如,终端设备在高速移动的情况下,为了提升信道估计的精准度,一个时隙采用多个符号承载DMRS。此种情况下,参见图12(b),本申请实施例用于资源调度的通信方法还包括S1203:
S1203、网络设备向终端设备发送第二参考信号。相应的,终端设备接收来自网络设备的第二参考信号。
其中,第二参考信号包括至少两个DMRS,至少两个DMRS对应同一天线端口,至少两个DMRS在时域上连续,且在频域上位于不同子载波。也就是说,第二参考信号中的各 个DMRS在时域和频域上的映射状况可以参见第一参考信号的相关说明,此处不再赘述。第二参考信号在DCI指示的第一部分资源之后,且在DCI指示的第二部分资源之前传输。
例如,以“一个时隙中采用两个符号承载DMRS”的情况为例,参见图14(a),图14(a)示出了一种第二参考信号的位置示意图。在图14(a)中,一个方框所表征的含义详见图13(a)中的相关说明,此处不再赘述。通常,在绑定前,承载该DMRS的符号为该时隙中的第3个符号和第12个符号,如图14(a)所示。在绑定后,DMRS集合2包括4个DMRS,且4个DMRS在时域上连续。DMRS集合1在DCI指示的资源之前。DMRS集合2在DCI指示的第1部分资源之后,且在DCI指示的第2部分资源之前,具体如图14(a)所示。示例性的,第一参考信号即为DMRS集合1,第二参考信号即为DMRS集合2。DCI指示的第1部分资源对应符号数量是根据一个时隙组中的时隙数量确定的。在图14(a)中,DCI指示的第1部分资源对应符号数量为(P*8)个。其中,P表示第一参考信号中DMRS的数量。
再如,以“一个时隙中采用三个符号承载DMRS”的情况为例,参见图14(b),图14(b)示出了一种第二参考信号的位置示意图。在图14(b)中,一个方框所表征的含义详见图13(a)中的相关说明,此处不再赘述。通常,在绑定前,承载该DMRS的符号为该时隙中的第3个符号、第8个符号和第12个符号,如图14(b)所示。在绑定后,第二参考信号包括4个DMRS,且4个DMRS在时域上连续。DMRS集合1在DCI指示的资源之前。DMRS集合2在DCI指示的第1部分资源之后,且在DCI指示的第2部分资源和第3部分资源之前。DMRS集合3在DCI指示的第1部分资源和第2部分资源之后,且在DCI指示的第3部分资源之前,具体如图14(b)所示。示例性的,第一参考信号即为DMRS集合1,第二参考信号即为DMRS集合2或DMRS集合3。在图14(b)中,DCI指示的第1部分资源对应符号数量为(P*4)个,DCI指示的第2部分资源对应符号数量为(P*3)个。其中,P表示第一参考信号中DMRS的数量。
又如,以“一个时隙中采用四个符号承载DMRS”的情况为例,参见图14(c),图14(c)示出了一种第二参考信号的位置示意图。在图14(c)中,一个方框所表征的含义详见图13(a)中的相关说明,此处不再赘述。通常,在绑定前,承载该DMRS的符号为该时隙中的第3个符号、第6个符号、第9个符号和第12个符号,如图14(c)所示。在绑定后,第二参考信号包括4个DMRS,且4个DMRS在时域上连续。DMRS集合1在DCI指示的资源之前。DMRS集合2在DCI指示的第1部分资源之后,且在DCI指示的第2部分资源、第3部分资源和第4部分资源之前。DMRS集合3在DCI指示的第1部分资源和第2部分资源之后,且在DCI指示的第3部分资源和第4部分资源之前。DMRS集合4在DCI指示的第1部分资源、第2部分资源和第3部分资源之后,且在DCI指示的第4部分资源之前。具体如图14(c)所示。示例性的,第一参考信号即为DMRS集合1,第二参考信号即为DMRS集合2,或DMRS集合3,或DMRS集合4。在图14(c)中,DCI指示的第1部分资源、第2部分资源和第3部分资源分别对应符号数量为(P*2)个。其中,P表示第一参考信号中DMRS的数量。
S1204、终端设备采用第一参考信号解调DCI指示的时域资源。
例如,在“位于同一符号上的DMRS对应一个天线端口”的情况下,终端设备采用第一参考信号解调DCI指示的资源。以图12(a)所示的场景为例,终端设备基于第一参考 信号解调“第1部分”资源、“第2部分”资源、“第3部分”资源和“第4部分”资源。
再如,在“位于同一符号上的DMRS对应多个天线端口”的情况下,一个符号上的DMRS解调DCI指示的一部分资源,不同符号上的DMRS解调DCI指示的不同部分的资源。以图13(a)为例,经过绑定后的PDSCH的资源分布状况如下:绑定前的第1个时隙中的PDSCH的资源为绑定后的第1部分资源,绑定前的第2个时隙中的PDSCH的资源为绑定后的第2部分资源,绑定前的第3个时隙中的PDSCH的资源为绑定后的第3部分资源,绑定前的第4个时隙中的PDSCH的资源为绑定后的第4部分资源,如图13(a)中的虚斜线所示。第一参考信号中的第1个符号上的DMRS解调DCI指示的第1部分资源,第一参考信号中的第2个符号上的DMRS解调DCI指示的第2部分资源,第一参考信号中的第3个符号上的DMRS解调DCI指示的第3部分资源,第一参考信号中的第4个符号上的DMRS解调DCI指示的第4部分资源,如图13(a)中的曲线箭头所示。
在一些实施例中,例如,终端设备在高速移动的情况下,为了提升信道估计的精准度,一个时隙采用多个符号承载DMRS。此种情况下,终端设备还执行S1204。相应的,S1204具体为:终端设备采用第一参考信号和第二参考信号解调DCI指示的资源。
例如,在“位于同一符号上的DMRS对应一个天线端口”的情况下,终端设备采用第一参考信号和第二参考信号解调DCI指示的资源。
再如,在“位于同一符号上的DMRS对应多个天线端口”的情况下,一个符号上的DMRS解调DCI指示的一部分资源,不同符号上的DMRS解调DCI指示的不同部分的资源。
以图14(c)为例,DMRS集合1中的第1个DMRS解调DCI指示的第1部分资源中的第1个符号和第2个符号,DMRS集合1中的第2个DMRS解调DCI指示的第1部分资源中的第3个符号和第4个符号,DMRS集合1中的第3个DMRS解调DCI指示的第1部分资源中的第5个符号和第6个符号,DMRS集合1中的第4个DMRS解调DCI指示的第1部分资源中的第7个符号和第8个符号,如图14(c)中的曲线箭头所示。DMRS集合2中各个DMRS所解调的资源如图14(c)所示,此处不再赘述。
再以图14(d)为例,DMRS集合1解调DCI指示的第1部分资源,DMRS集合2解调DCI指示的第2部分资源,DMRS集合3解调DCI指示的第3部分资源,DMRS集合4解调DCI指示的第4部分资源,如图14(d)中的曲线箭头所示。
S1205、终端设备向网络设备发送第三参考信号。相应的,网络设备接收来自终端设备的第三参考信号。
其中,关于第三参考信号的说明可以参见第一参考信号的相关介绍,此处不再赘述。
S1206、网络设备采用第三参考信号解调DCI指示的时域资源。
其中,S1206的具体过程可以参见S1204的相关说明,此处不再赘述。
需要说明的是,第三参考信号在DCI指示的资源之前传输。示例性的,以上行传输为例,终端设备先执行S1205,再执行S1206。
如此,在时域上,上述“至少两个DMRS”是连续的,相对于“DMRS是分散设置的”的情况相比,本申请实施例用于资源调度的通信方法提升了单位时间内的DMRS信号能量。关于“DMRS信号能量”的具体分析过程如下:
以图14(e)所示的场景为例,一个矩形框表示一个符号,实线矩形框表示用于传输 PDCCH的符号,斜线填充的矩形框表示用于传输DMRS的符号,虚线矩形框表示用于传输数据的符号。在“SCS为240kHz”且“DMRS未绑定”的情况下,一个时隙中符号索引为2的符号传输DMRS。在“SCS为960kHz”且“DMRS未绑定”的情况下,一个时隙中符号索引为2的符号传输DMRS。示例性的,由于DMRS分布较为分散,也就导致DMRS的信号能量小,不利于快速译码。在“SCS为960kHz”且“DMRS绑定”的情况下,第一参考信号中的至少两个DMRS在时域上是连续的,如图14(e)中,在时域上,四个“SCS为960kHz”的符号的持续时长与一个“SCS为240kHz”的符号的持续时长相同,也就相应提高了单位时间内的DMRS的信号能量。
另外,本申请实施例用于资源调度的通信方法也适用于双符号的DMRS(double-symbol DMRS)。下面,先介绍“双符号的DMRS”:
其中,双符号的DMRS是指,对应同一天线端口的DMRS在时域上跨2个符号,在频域上占用连续的一个或两个子载波。为了实现双符号的DMRS,引入时域OCC{1,1}和{1,-1},以提升正交的天线端口数量。例如,通过时域OCC,可用的天线端口数可以是8个,也可以是12个。下面,结合图15(a)、图15(b)、图15(c)和图15(d)进行详细说明:
第一种DMRS类型是基于交错频分复用(interleaved frequency domain multiplexing,IFDM)的DMRS图样。该DMRS图样可以在两个相邻的符号上支持最大8个天线端口,如图15(a)所示。图15(a)示出了2个码分复用组(CDM group,code-division multiplexing)。CDM组#0包括p1000、p1001、p1004和p1005,且p1000、p1001、p1004和p1005占用相同的时频资源,p1000和p1001在频域上用的码不同。例如,p1000用循环移位(cyclic shift,CS)序列0,p1001用CS序列1;p1004和p1005在频域上用的码也不同。同理,CDM组#1包括p1002、p1003、p1006和p1007,p1002和p1003在频域上用的CS不同,在时域上用的OCC相同;p1006和p1007在频域上用的CS不同,在时域上用的OCC相同,且与P1002和P1003在时域上用的码不同。2组CDM中的所有端口映射在相同的时频资源上,依靠不同的时域或者频域码来相互区分,各天线端口对应的DMRS如图15(b)所示。其中,“+”表示“+1”,“-”表示“-1”。
第二种DMRS类型是基于频域正交覆盖码(frequency domain orthogonal covering code,FD-OCC)的DMRS图样。该DMRS图样可以在2个相邻的符号上支持最大12个天线端口,如图15(c)所示。图15(c)示出了3组CDM。CDM组#0包括p1000、p1001、p1006和p1007,CDM组#1包括p1002、p1003、p1008和p1009,CDM组#2包括p1004、p1005、p1010和p1011。在CDM组#0中,p1000、p1001、p1006和p1007占用相同的时频资源,只是用的时域或者频域OCC不同。例如,p1000和p1001依靠频域上的OCC来区分,而时域OCC相同,即p1000用的频域OCC为{1,1},p1001用的频域OCC为{1,-1},而p1000和p1001在时域上都使用的OCC为{1,1}。而p1006和p1007依靠频域上的OCC来区分,而时域OCC相同,即p1006用的频域OCC为{1,1},p1007用的频域OCC为{1,-1},而p1006和p1007在时域上都使用的OCC为{1,-1}。同理,其他的CDM中的4个天线端口也一样,在CDM组#1中,p1002和p1003用不同的频域OCC,而使用相同的时域OCC,p1008和p1009用不同的频域OCC,也使用相同的时域OCC。但是,p1002、p1003用的时域OCC与p1008、p1009用的时域OCC不同。在CDM组#2中,p1004和p1005 用不同的频域OCC,而使用相同的时域OCC,p1010和p1011用不同的频域OCC,也使用相同的时域OCC。但是,p1004、p1005用的时域OCC与p1010、p1011用的时域OCC不同。3组CDM中的所有端口映射在相同的时频资源上,依靠不同的时域或者频域码来相互区分,各天线端口对应的DMRS如图15(d)所示。
需要说明的是,在上述图15(b)和图15(d)中,高频下存在相位追踪参考信号(phase tracking reference signal,PT-RS),导致时域OCC的天线端口性能恶化,可用的天线端口数下降,如图15(b)和图15(d)中,虚线框中的天线端口不可用,从而降低了***传输效率。为了尽可能多地扩展正交的天线端口数量,在第一参考信号实现为双符号的DMRS的情况下,
结合图16(a)和图16(b),对第一参考信号进行介绍:
示例性的,图16(a)示出了一种第一参考信号的示意图。图16(a)中示出了八个天线端口对应的DMRS。其中,八个天线端口分别记为p1000、p1001、p1002、p1003、p1004、p1005、p1006、p1007。当然,天线端口也可以采用其他的记法,本申请实施例对此不作限定。每个天线端口对应的DMRS所在的符号分别记为符号1和符号2。下面,对八个天线端口对应的DMRS进行介绍:
p1000对应的第一DMRS所在的符号记为符号1,p1000对应的第一DMRS所在的子载波记为第(i+4k)个子载波。p1000对应的第二DMRS所在的符号记为符号2,p1000对应的第二DMRS所在的子载波记为第(i+4k+2)个子载波。p1001对应的第七DMRS所在的符号记为符号1,p1001对应的第七DMRS所在的子载波记为第(i+4k)个子载波。p1001对应的第八DMRS所在的符号记为符号2,p1001对应的第八DMRS所在的子载波记为第(i+4k+2)个子载波。也就是说,p1000对应的DMRS与p1001对应的DMRS占用相同的时频资源,但p1000对应的DMRS采用的OCC与p1001对应的DMRS采用的OCC不同,如图16(a)中,“+”和“-”在p1000对应的RE上的分布规律与在p1001对应的RE上的分布规律不同。
p1002对应的第五DMRS所在的符号记为符号1,p1002对应的第五DMRS所在的子载波记为第(i+4k+1)个子载波。p1002对应的第六DMRS所在的符号记为符号2,p1002对应的第六DMRS所在的子载波记为第(i+4k+3)个子载波。p1002对应的DMRS与p1003对应的DMRS占用相同的时频资源,但p1002对应的DMRS采用的OCC与p1003对应的DMRS采用的OCC不同,如图16(a)中,“+”和“-”在p1002对应的RE上的分布规律与在p1003对应的RE上的分布规律不同。
p1004对应的第四DMRS所在的符号记为符号1,p1004对应的第四DMRS所在的子载波记为第(i+4k+2)个子载波。p1004对应的第三DMRS所在的符号记为符号2,p1004对应的第三DMRS所在的子载波记为第(i+4k)个子载波。p1004对应的DMRS与p1005对应的DMRS占用相同的时频资源,但p1004对应的DMRS采用的OCC与p1005对应的DMRS采用的OCC不同,如图16(a)中,“+”和“-”在p1004对应的RE上的分布规律与在p1005对应的RE上的分布规律不同。
p1006对应的第十DMRS所在的符号记为符号1,p1006对应的第十DMRS所在的子载波记为第(i+4k+3)个子载波。p1006对应的第九DMRS所在的符号记为符号2,p1006对应的第九DMRS所在的子载波记为第(i+4k+1)个子载波。p1006对应的DMRS与p1007 对应的DMRS占用相同的时频资源,但p1006对应的DMRS采用的OCC与p1007对应的DMRS采用的OCC不同,如图16(a)中,“+”和“-”在p1006对应的RE上的分布规律与在p1007对应的RE上的分布规律不同。
示例性的,图16(b)示出了另一种第一参考信号的示意图。图16(b)中示出了十二个天线端口对应的DMRS。其中,十二个天线端口分别记为p1000、p1001、p1002、p1003、p1004、p1005、p1006、p1007、p1008、p1009、p1010、p1011。每个天线端口对应的DMRS所在的符号分别记为符号1和符号2。下面,对十二个天线端口对应的DMRS进行介绍:
p1000对应的第一DMRS所在的符号记为符号1,p1000对应的第一DMRS所在的子载波记为第(i+12k)个子载波和第(i+12k+1)个子载波。p1000对应的第二DMRS所在的符号记为符号2,p1000对应的第二DMRS所在的子载波记为第(i+12k+6)个子载波和第(i+12k+7)个子载波。p1001对应的第七DMRS所在的符号记为符号1,p1001对应的第七DMRS所在的子载波记为第(i+12k)个子载波和第(i+12k+1)个子载波。p1001对应的第八DMRS所在的符号记为符号2,p1001对应的第八DMRS所在的子载波记为第(i+12k+6)个子载波和第(i+12k+7)个子载波。也就是说,p1000对应的DMRS与p1001对应的DMRS占用相同的时频资源,但p1000对应的DMRS采用的OCC与p1001对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1000对应的RE上的分布规律与在p1001对应的RE上的分布规律不同。
p1002对应的第五DMRS所在的符号记为符号1,p1002对应的第五DMRS所在的子载波记为第(i+12k+2)个子载波和第(i+12k+3)个子载波。p1002对应的第六DMRS所在的符号记为符号2,p1002对应的第六DMRS所在的子载波记为第(i+12k+8)个子载波和第(i+12k+9)个子载波。p1002对应的DMRS与p1003对应的DMRS占用相同的时频资源,但p1002对应的DMRS采用的OCC与p1003对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1002对应的RE上的分布规律与在p1003对应的RE上的分布规律不同。
p1004对应的第十一DMRS所在的符号记为符号1,p1004对应的第十一DMRS所在的子载波记为第(i+12k+4)个子载波和第(i+12k+5)个子载波。p1004对应的第十二DMRS所在的符号记为符号2,p1004对应的第十二DMRS所在的子载波记为第(i+12k+10)个子载波和第(i+12k+11)个子载波。p1004对应的DMRS与p1005对应的DMRS占用相同的时频资源,但p1004对应的DMRS采用的OCC与p1005对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1004对应的RE上的分布规律与在p1005对应的RE上的分布规律不同。
p1006对应的第四DMRS所在的符号记为符号1,p1006对应的第四DMRS所在的子载波记为第(i+12k+6)个子载波和第(i+12k+7)个子载波。p1006对应的第三DMRS所在的符号记为符号2,p1006对应的第三DMRS所在的子载波记为第(i+12k)个子载波和第(i+12k+1)个子载波。p1006对应的DMRS与p1007对应的DMRS占用相同的时频资源,但p1006对应的DMRS采用的OCC与p1007对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1006对应的RE上的分布规律与在p1007对应的RE上的分布规律不同。
p1008对应的第十DMRS所在的符号记为符号1,p1008对应的第十DMRS所在的子 载波记为第(i+12k+8)个子载波和第(i+12k+9)个子载波。p1008对应的第九DMRS所在的符号记为符号2,p1008对应的第九DMRS所在的子载波记为第(i+12k+2)个子载波和第(i+12k+3)个子载波。p1008对应的DMRS与p1009对应的DMRS占用相同的时频资源,但p1008对应的DMRS采用的OCC与p1009对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1008对应的RE上的分布规律与在p1009对应的RE上的分布规律不同。
p1010对应的第十三DMRS所在的符号记为符号1,p1010对应的第十DMRS所在的子载波记为第(i+12k+10)个子载波和第(i+12k+11)个子载波。p1010对应的第十四DMRS所在的符号记为符号2,p1010对应的第十四DMRS所在的子载波记为第(i+12k+4)个子载波和第(i+12k+5)个子载波。p1010对应的DMRS与p1011对应的DMRS占用相同的时频资源,但p1010对应的DMRS采用的OCC与p1011对应的DMRS采用的OCC不同,如图16(b)中,“+”和“-”在p1010对应的RE上的分布规律与在p1011对应的RE上的分布规律不同。
下面,结合图16(a)和图16(b),对第一参考信号实现为双符号的DMRS的特点进行介绍:
第一、同一天线端口对应的DMRS的特点。以第一DMRS和第二DMRS为例,对同一天线端口对应的DMRS在时域和频域上的映射状况进行说明:
在时域上的映射状况:承载第一DMRS和第二DMRS的时域资源单元不同。
示例性的,在图16(a)和图16(b)中,以p1000为例,p1000对应的第一DMRS承载于符号1,p1000对应的第二DMRS承载于符号2。
需要说明的是,对于其他天线端口对应的DMRS也满足上述时域映射特点,例如,在图16(a)中,以p1001为例,p1001对应的第七DMRS承载于符号1,p1001对应的第八DMRS承载于符号2。p1002、p1003、p1004、p1005、p1006和p1007分别对应的DMRS均满足上述时域映射特点,详见“八个天线端口对应的DMRS”的介绍。再如,在图16(b)中,以p1001为例,p1001对应的第七DMRS承载于符号1,p1001对应的第八DMRS承载于符号2。p1002、p1003、p1004、p1005、p1006、p1007、p1008、p1009、p1010和p1011分别对应的DMRS均满足上述时域映射特点,详见“十二个天线端口对应的DMRS”的介绍。
在频域上的映射状况:承载第一DMRS和第二DIMRS的子载波不同。
示例性的,在图16(a)中,以p1000为例,p1000对应的第一DMRS所在的子载波为第(i+4k)个子载波,p1000对应的第二DMRS所在的子载波为第(i+4k+2)个子载波。其中,i和k为正整数。也就是说,在同一符号上,每4个子载波上存在一个第一DMRS,两个第一DMRS之间间隔的子载波数量为3个。在同一符号上,每4个子载波上存在一个第二DMRS,两个第二DMRS之间间隔的子载波数量为3个。并且,第一DMRS与第二DMRS之间间隔1个子载波。由于第一DMRS和第二DMRS所在的子载波不同,且第二DMRS用于信道估计时的信道估计结果,可以等效第一DMRS所在时域资源单元上相同子载波的信道估计结果,从而保障信道估计的准确性。
示例性的,在图16(b)中,以p1000为例,p1000对应的第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,p1000对应的第二DMRS所在的子载 波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。其中,i和k为正整数。也就是说,在同一符号上,每12个子载波上存在一组第一DMRS。其中,该组第一DMRS包括两个第一DMRS,且两个第一DMRS在频域上连续。在同一符号上,每12个子载波上存在一组第二DMRS。其中,该组第二DMRS包括两个第二DMRS,且两个第二DMRS在频域上连续。并且,第一DMRS与第二DMRS之间间隔6个子载波。由于第一DMRS和第二DMRS所在的子载波不同,且第二DMRS用于信道估计时的信道估计结果,可以等效第一DMRS所在时域资源单元上相同子载波的信道估计结果,从而保障信道估计的准确性。
需要说明的是,对于其他天线端口对应的DMRS也满足上述频域映射特点,例如,在图16(a)中,以p1001为例,p1001对应的第七DMRS所在的子载波为第(i+4k)个子载波,p1001对应的第八DMRS所在的子载波为第(i+4k+2)个子载波。p1002、p1003、p1004、p1005、p1006和p1007分别对应的DMRS均满足上述频域映射特点,详见“八个天线端口对应的DMRS”的介绍。再如,在图16(b)中,以p1001为例,p1001对应的第七DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,p1001对应的第八DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。p1002、p1003、p1004、p1005、p1006、p1007、p1008、p1009、p1010和p1011分别对应的DMRS均满足上述频域映射特点,详见“十二个天线端口对应的DMRS”的介绍。
第二、时分,即从同一子载波上看,不同天线端口对应的DMRS承载于不同的时域资源单元不同。也就是说,第一参考信号包括第三DMRS和第四DMRS。其中,第三DMRS与第四DMRS对应同一天线端口,且与第一DMRS和第二DMRS对应的天线端口不同。承载第三DMRS和第一DMRS的子载波相同,但承载第三DMRS和第一DMRS的时域资源单元不同。承载第四DMRS和第二DMRS的子载波相同,但承载第四DMRS和第二DMRS的时域资源单元不同。下面,结合图16(a)和图16(b)进行详细说明:
示例性的,在图16(a)中,以p1000和p1004为例,p1000对应的DMRS分别记为第一DMRS和第二DMRS。p1004对应的DMRS分别记为第三DMRS和第四DMRS。其中,第一DMRS和第三DMRS所在的子载波为第(i+4k)个子载波。对于同一子载波上的第一DMRS和第三DMRS而言,第一DMRS和第三DMRS所在的符号不同。如图16(a)中,第一DMRS所在的符号为符号1,第三DMRS所在的符号为符号2。符号1和符号2在时域上连续。也就是说,对于同一子载波上的第一DMRS和第三DMRS而言,第一DMRS和第三DMRS占用不同的时域资源单元,能够用于传输不同天线端口的DMRS,增加了可用的天线端口数量。
在图16(a)中,第二DMRS和第四DMRS所在的子载波为第(i+4k+2)个子载波。对于同一子载波上的第二DMRS和第四DMRS而言,第二DMRS和第四DMRS所在的符号不同。如图16(a)中,第二DMRS所在的符号为符号2,第四DMRS所在的符号为符号1。符号1和符号2在时域上连续。也就是说,对于同一子载波上的第二DMRS和第四DMRS而言,第二DMRS和第四DMRS占用不同的时域资源单元,能够用于传输不同天线端口的DMRS,增加了可用的天线端口数量。
示例性的,在图16(b)中,以p1000和p1006为例,p1000对应的DMRS分别记为第一DMRS和第二DMRS。p1006对应的DMRS分别记为第三DMRS和第四DMRS。其中,第一DMRS和第三DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子 载波。对于同一子载波上的第一DMRS和第三DMRS而言,第一DMRS和第三DMRS所在的符号不同。如图16(b)中,第一DMRS所在的符号为符号1,第三DMRS所在的符号为符号2。符号1和符号2在时域上连续。
在图16(b)中,第二DMRS和第四DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。对于同一子载波上的第二DMRS和第四DMRS而言,第二DMRS和第四DMRS所在的符号不同。如图16(b)中,第二DMRS所在的符号为符号2,第四DMRS所在的符号为符号1。符号1和符号2在时域上连续。
需要说明的是,对于其他天线端口对应的DMRS也满足上述时频映射特点,例如,在图16(a)中,p1002和p1006对应的DMRS也满足上述时分的特点,详见“八个天线端口对应的DMRS”的介绍,此处不再赘述。再如,在图16(b)中,p1002和p1008对应的DMRS也满足上述时分的特点,p1004和p1010对应的DMRS也满足上述时分的特点,详见“十二个天线端口对应的DMRS”的介绍,此处不再赘述。
第三、频分,即从同一符号上看,不同天线端口对应的DMRS承载于不同的子载波。也就是说,第一参考信号包括第五DMRS和第六DMRS。其中,第五DMRS与第六DMRS对应同一天线端口,且与第一DMRS和第二DMRS对应的天线端口不同。承载第五DMRS和第一DMRS的时域资源单元相同,但承载第五DMRS和第一DIMRS的子载波不同。承载第六DMRS和第二DMRS的时域资源单元相同,但承载第六DMRS和第二DIMRS的子载波不同。下面,结合图16(a)和图16(b)进行详细说明:
示例性的,在图16(a)中,以p1000和p1002为例,p1000对应的DMRS分别记为第一DMRS和第二DMRS,p1002对应的DMRS分别记为第五DMRS和第六DMRS。承载第一DMRS和第五DMRS的符号相同,但第一DMRS所在的子载波为第(i+4k)个子载波,第五DMRS所在的子载波为第(i+4k+1)个子载波。也就是说,对于同一符号上的第一DMRS和第五DMRS而言,第一DMRS和第五DMRS占用不同的子载波,能够用于传输不同天线端口的DMRS。承载第二DMRS和第六DMRS的符号相同,但第二DMRS所在的子载波为第(i+4k+2)个子载波,第六DMRS所在的子载波为第(i+4k+3)个子载波。也就是说,对于同一符号上的第二DMRS和第六DMRS而言,第二DMRS和第六DMRS占用不同的子载波,能够用于传输不同天线端口的DMRS。
示例性的,在图16(b)中,以p1000和p1002为例,p1000对应的DMRS分别记为第一DMRS和第二DMRS,p1002对应的DMRS分别记为第五DMRS和第六DMRS。承载第一DMRS和第五DMRS的符号相同,但第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,第五DMRS所在的子载波为第(i+12k+2)个子载波和第(i+12k+3)个子载波。承载第二DMRS和第六DMRS的符号相同,但第二DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波。第六DMRS所在的子载波为第(i+12k+8)个子载波和第(i+12k+9)个子载波。
需要说明的是,对于其他天线端口对应的DMRS也满足上述时频映射特点,例如,在图16(a)中,p1002和p1004对应的DMRS也满足上述频分的特点,p1002和p1006对应的DMRS也满足上述频分的特点,p1004和p1006对应的DMRS也满足上述频分的特点,详见“八个天线端口对应的DMRS”的介绍,此处不再赘述。再如,在图16(b)中,满足上述频分的特点的DMRS包括:p1002和p1004对应的DMRS、p1002和p1006对应的 DMRS、p1002和p1008对应的DMRS、p1002和p1010对应的DMRS、p1004和p1006对应的DMRS、p1004和p1008对应的DMRS、p1004和p1010对应的DMRS、p1006和p1008对应的DMRS、p1006和p1010对应的DMRS、p1008和p1010对应的DMRS,详见“十二个天线端口对应的DMRS”的介绍,此处不再赘述。
第四、码分,即在相同的时频资源上,不同天线端口对应的DMRS采用的OCC不同。也就是说,第一参考信号包括第七DMRS和第八DMRS。其中,第七DMRS与第八DMRS对应同一天线端口,且与第一DMRS和第二DMRS对应的天线端口不同。第七DMRS和第一DMRS的时频资源相同,第八DMRS和第二DMRS的时频资源相同。第七DMRS和第八DMRS采用的OCC与第一DMRS和第二DMRS采用的OCC不同。下面,结合图16(a)和图16(b)进行详细说明:
示例性的,在图16(a)和图16(b)中,以p1000和p1001为例,p1000对应的DMRS分别记为第一DMRS和第二DMRS,p1001对应的DMRS分别记为第七DMRS和第八DMRS。承载第一DMRS和第七DMRS的RE相同,承载第二DMRS和第八DMRS的RE相同,但第一DMRS和第二DMRS采用的OCC与第七DMRS和第八DMRS采用的OCC不同。如图16(a)和图16(b)中,“+”和“-”在p1000对应的RE上的分布规律与在p1001对应的RE上的分布规律不同。
需要说明的是,对于其他天线端口对应的DMRS也满足上述码分特点,例如,在图16(a)中,满足码分特点的DMRS包括:p1002对应的DMRS与p1003对应的DMRS、p1004对应的DMRS与p1005对应的DMRS、p1006对应的DMRS与p1007对应的DMRS,具体参见图16(a)所示的“+”和“-”分布规律,此处不再赘述。再如,在图16(b)中,满足码分特点的DMRS包括:p1002对应的DMRS与p1003对应的DMRS、p1004对应的DMRS与p1005对应的DMRS、p1006对应的DMRS与p1007对应的DMRS、p1008对应的DMRS与p1009对应的DMRS、p1010对应的DMRS与p1011对应的DMRS,具体参见图16(b)所示的“+”和“-”分布规律,此处不再赘述。
应理解,在第一参考信号实现为双符号DMRS的情况下,本申请实施例仅从时域、频域和码域三个方面描述了第一参考信号具备的特点。本申请并不排除在未来的协议中定义其他公式或其他表述方式来表示相同或相似含义的可能。凡满足本申请实施例中描述的双符号DMRS的特点,即在本申请实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请实施例明的保护范围之内。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了用于资源调度的通信装置,该用于资源调度的通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该用于资源调度的通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
作为一种可能的实施例,本申请实施例提供一种芯片,该芯片包括逻辑电路和输入输 出接口。其中,输入输出接口用于与芯片之外的模块通信,逻辑电路用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
比如,以芯片实现为上述方法实施例中图9的终端设备的功能为例,输入输出接口执行终端设备侧的S901、S902、S903,和/或输入输出接口还用于执行本申请实施例中终端设备侧的其他收发步骤。逻辑电路用于执行本申请实施例中终端设备侧的其他处理步骤。
再如,以芯片实现为上述方法实施例中图12(a)的终端设备的功能为例,输入输出接口执行终端设备侧的S1201、S1202、S1205,和/或输入输出接口还用于执行本申请实施例中终端设备侧的其他收发步骤。逻辑电路用于执行终端设备侧中的S1204,和/或逻辑电路还用于执行本申请实施例中终端设备侧的其他处理步骤。
比如,以芯片实现为上述方法实施例中图9的网络设备的功能为例,输入输出接口执行网络设备侧的S901、S902、S903,和/或输入输出接口还用于执行本申请实施例中网络设备侧的其他收发步骤。逻辑电路用于执行本申请实施例中网络设备侧的其他处理步骤。
再如,以芯片实现为上述方法实施例中图12(a)的网络设备的功能为例,输入输出接口执行网络设备侧的S1201、S1202、S1205,和/或输入输出接口还用于执行本申请实施例中网络设备侧的其他收发步骤。逻辑电路用于执行网络设备侧中的S1206,和/或逻辑电路用于执行网络设备侧的其他处理步骤。
作为另一种可能的实施例,图17示出了一种用于资源调度的通信装置1700的结构示意图。该用于资源调度的通信装置1700包括通信单元1703和处理单元1702。
比如,以用于资源调度的通信装置1700为上述方法实施例中图9的终端设备为例,通信单元1703执行终端设备侧的S901、S902、S903,和/或通信单元1703还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1702用于执行本申请实施例中终端设备侧的其他处理步骤。
再如,以芯片实现为上述方法实施例中图12(a)的终端设备的功能为例,通信单元1703执行终端设备侧的S1201、S1202、S1205,和/或通信单元1703还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1702用于执行终端设备侧中的S1204,和/或处理单元1702还用于执行本申请实施例中终端设备侧的其他处理步骤。
比如,以芯片实现为上述方法实施例中图9的网络设备的功能为例,通信单元1703执行网络设备侧的S901、S902、S903,和/或通信单元1703还用于执行本申请实施例中网络设备侧的其他收发步骤。处理单元1702用于执行本申请实施例中网络设备侧的其他处理步骤。
再如,以芯片实现为上述方法实施例中图12(a)的网络设备的功能为例,通信单元1703执行网络设备侧的S1201、S1202、S1205,和/或通信单元1703还用于执行本申请实施例中网络设备侧的其他收发步骤。处理单元1702用于执行网络设备侧中的S1206,和/或处理单元1702用于执行网络设备侧的其他处理步骤。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
应理解,本申请实施例中的处理单元1702可以由处理器或处理器相关电路组件实现,通信单元1703可以由收发器或收发器相关电路组件实现。
可选的,用于资源调度的通信装置1700还可以包括存储单元1701,用于存储用于资 源调度的通信装置1700的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理单元1702可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
通信单元1703可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。
存储单元1701可以是存储器。
当处理单元1702为处理器,通信单元1703为通信接口,存储单元1701为存储器时,本申请实施例所涉及的用于资源调度的通信装置1800可以为图18所示。
参阅图18所示,该用于资源调度的通信装置1800包括:处理器1802、收发器1803、存储器1801。
其中,收发器1803可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,用于资源调度的通信装置1800还可以包括总线1804。其中,收发器1803、处理器1802以及存储器1801可以通过总线1804相互连接;总线1804可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1804可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (57)

  1. 一种用于资源调度的通信方法,其特征在于,包括:
    终端设备接收来自网络设备的配置信息,其中,所述配置信息为所述终端设备配置时隙组;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔;
    所述终端设备接收来自所述网络设备的下行控制信息DCI,其中,所述DCI指示所述时隙组中用于数据传输的时域资源;
    所述终端设备基于所述DCI指示的时域资源与所述网络设备进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI包括第一信息,所述第一信息指示所述时隙组中的第一时隙组,所述第一时隙组包括用于传输物理下行共享信道PDSCH的时域资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括第一参数,所述第一参数指示所述DCI所在的时隙组与所述第一时隙组间隔的时隙组数量。
  4. 根据权利要求2或3所述的方法,其特征在于,所述DCI还包括第二信息,所述第二信息指示所述时隙组中的第二时隙组,所述第二时隙组包括用于传输混合自动重传请求HARQ信息的时域资源,所述HARQ信息指示所述PDSCH的接收状况。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息包括第二参数,所述第二参数指示所述第一时隙组与所述第二时隙组间隔的时隙组数量。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述DCI还包括第三信息,其中,所述第三信息用于确定第一数值,所述第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或所述至少一个符号的符号数量;
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第三参数,其中,所述第三参数用于调整所述第一数值;
    所述终端设备根据所述第一数值和所述第三参数确定以下至少一项:
    所述第一时隙组中用于传输所述PDSCH的至少一个符号的起始符号在所述第一时隙组中的位置;
    所述第一时隙组中用于传输所述PDSCH的至少一个符号的符号数量。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述DCI包括第四信息,所述第四信息指示所述时隙组中的第三时隙组,所述第三时隙组包括用于传输物理上行共享信道PUSCH的时域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第四信息包括第四参数,所述第四参数指示所述DCI所在的时隙组与所述第三时隙组间隔的时隙组数量。
  9. 根据权利要求7或8所述的方法,其特征在于,所述DCI还包括第五信息,其中,所述第五信息用于确定第二数值,所述第二数值用于确定至少一个符号的起始符号在时隙中的位置和/或所述至少一个符号的符号数量;
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第五参数,其中,所述第五参数用于调整所述第二数值;
    所述终端设备根据所述第二数值和所述第五参数确定以下至少一项:
    所述第三时隙组中用于传输所述PUSCH的至少一个符号的起始符号在所述第三时隙组中的位置;
    所述第三时隙组中用于传输所述PUSCH的至少一个符号的符号数量。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述时隙组中的时隙数量是根据所述目标子载波间隔和预设子载波间隔确定的。
  11. 一种用于资源调度的通信方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,其中,所述配置信息为所述终端设备配置时隙组;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔;
    所述网络设备向所述终端设备发送下行控制信息DCI,其中,所述DCI指示所述时隙组中用于数据传输的时域资源;
    所述网络设备基于所述DCI指示的时域资源与所述终端设备进行数据传输。
  12. 根据权利要求11所述的方法,其特征在于,所述DCI包括第一信息,所述第一信息指示所述时隙组中的第一时隙组,所述第一时隙组包括用于传输物理下行共享信道PDSCH的时域资源。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息包括第一参数,所述第一参数指示所述DCI所在的时隙组与所述第一时隙组间隔的时隙组数量。
  14. 根据权利要求12或13所述的方法,其特征在于,所述DCI还包括第二信息,所述第二信息指示所述时隙组中的第二时隙组,所述第二时隙组包括用于传输混合自动重传请求HARQ信息的时域资源,所述HARQ信息指示所述PDSCH的接收状况。
  15. 根据权利要求14所述的方法,其特征在于,所述第二信息包括第二参数,所述第二参数指示所述第一时隙组与所述第二时隙组间隔的时隙组数量。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述DCI还包括第三信息,其中,所述第三信息用于确定第一数值,所述第一数值用于确定至少一个符号的起始符号在时隙中的位置和/或所述至少一个符号的符号数量;
    所述方法还包括:
    所述网络设备向所述终端设备发送第三参数,其中,所述第三参数用于调整所述第一数值;所述第一数值和所述第三参数用于确定以下至少一项:
    所述第一时隙组中用于传输所述PDSCH的至少一个符号的起始符号在所述第一时隙组中的位置;
    所述第一时隙组中用于传输所述PDSCH的至少一个符号的符号数量。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述DCI包括第四信息,所述第四信息指示所述时隙组中的第三时隙组,所述第三时隙组包括用于传输物理上行共享信道PUSCH的时域资源。
  18. 根据权利要求17所述的方法,其特征在于,所述第四信息包括第四参数,所述第四参数指示所述DCI所在的时隙组与所述第三时隙组间隔的时隙组数量。
  19. 根据权利要求17或18所述的方法,其特征在于,所述DCI还包括第五信息,其中,所述第五信息用于确定第二数值,所述第二数值用于确定至少一个符号的起始符号在时隙 中的位置和/或所述至少一个符号的符号数量;
    所述方法还包括:
    所述网络设备向所述终端设备发送第五参数,其中,所述第五参数用于调整所述第二数值;所述第二数值和所述第五参数用于确定以下至少一项:
    所述第三时隙组中用于传输所述PUSCH的至少一个符号的起始符号在所述第三时隙组中的位置;
    所述第三时隙组中用于传输所述PUSCH的至少一个符号的符号数量。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述时隙组中的时隙数量是根据所述目标子载波间隔和预设子载波间隔确定的。
  21. 一种用于资源调度的通信方法,其特征在于,包括:
    终端设备接收来自网络设备的下行控制信息DCI,其中,所述DCI指示用于数据传输的时域资源;
    所述终端设备接收来自所述网络设备的第一参考信号,和/或所述终端设备向所述网络设备发送第一参考信号;其中,所述第一参考信号包括至少两个解调参考信号DMRS;所述至少两个DMRS对应同一天线端口,所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第一参考信号用于解调所述DCI指示的时域资源。
  22. 根据权利要求21所述的方法,其特征在于,
    所述DCI指示时隙组中用于数据传输的时域资源;
    其中,所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述至少两个DMRS包括第一DMRS和第二DMRS;
    其中,所述第一DMRS位于第i个子载波,所述第二DMRS位于第(i+1)个子载波;或者,所述第一DMRS位于第i个子载波和第(i+1)个子载波,所述第二DMRS位于第(i+2)个子载波和第(i+3)个子载波;所述i为正整数。
  24. 根据权利要求21至23任一项所述的方法,其特征在于,
    所述至少两个DMRS包括第一DMRS和第二DMRS;所述第一参考信号还包括第三DMRS;
    其中,所述第一DMRS和所述第三DMRS在时域上相同;所述第二DMRS和所述第三DMRS对应不同天线端口,且在频域上位于同一子载波。
  25. 根据权利要求24所述的方法,其特征在于,所述第二DMRS对应的天线端口与所述第三DMRS对应的天线端口是根据N的取值和承载目标DMRS的符号数量确定的;
    其中,所述N的取值为所述第二DMRS所在符号上的DMRS对应的天线端口数量;所述目标DMRS为所述第一参考信号中时域上连续的一组DMRS,所述目标DMRS包括所述至少两个DMRS。
  26. 根据权利要求21至25任一项所述的方法,其特征在于,
    承载目标DMRS的符号数量与时隙组中时隙的数量相同;
    或者,承载所述目标DMRS的符号数量与所述时隙组中时隙的数量不同;
    其中,所述目标DMRS为所述第一参考信号中时域上连续的一组DMRS,所述目标 DMRS包括所述至少两个DMRS;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔。
  27. 根据权利要求26所述的方法,其特征在于,所述时隙组中的时隙数量是根据所述目标子载波间隔和预设子载波间隔确定的。
  28. 根据权利要求21或22所述的方法,其特征在于,所述至少两个DMRS包括第一DMRS和第二DMRS,承载所述第一DMRS和所述第二DMRS的时域资源单元不同;
    其中,所述第一DMRS所在的子载波为第(i+4k)个子载波,所述第二DMRS所在的子载波为第(i+4k+2)个子载波;或者,
    所述第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,所述第二DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波;所述i和所述k为正整数。
  29. 根据权利要求28所述的方法,其特征在于,所述第一参考信号还包括第三DMRS和第四DMRS;
    其中,承载所述第三DMRS和所述第一DMRS的子载波相同,但承载所述第三DMRS和所述第一DMRS的时域资源单元不同;
    承载所述第四DMRS和所述第二DMRS的子载波相同,但承载所述第四DMRS和所述第二DMRS的时域资源单元不同;
    所述第三DMRS与所述第四DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第一参考信号还包括第五DMRS和第六DMRS;
    其中,承载所述第五DMRS和所述第一DMRS的时域资源单元相同,但承载所述第五DMRS和所述第一DIMRS的子载波不同;
    承载所述第六DMRS和所述第二DMRS的时域资源单元相同,但承载所述第六DMRS和所述第二DMRS的子载波不同;
    所述第五DMRS与所述第六DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  31. 根据权利要求28至30任一项所述的方法,其特征在于,所述第一参考信号还包括第七DMRS和第八DMRS;
    其中,所述第七DMRS和所述第一DMRS的时频资源相同,所述第八DMRS和所述第二DMRS的时频资源相同;
    所述第七DMRS和所述第八DMRS采用的OCC与所述第一DMRS和所述第二DMRS采用的OCC不同;
    所述第七DMRS与所述第八DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  32. 根据权利要求21至31任一项所述的方法,其特征在于,所述第一参考信号在所述DCI指示的资源之前传输。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二参考信号,和/或所述终端设备向所述网络设备发送第二参考信号;
    其中,所述第二参考信号中的至少两个DMRS对应同一天线端口,所述第二参考信号中的所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第二参考信号在所述DCI指示的第一部分资源之后,且在所述DCI指示的第二部分资源之前传输;所述第二参考信号用于解调所述DCI指示的时域资源。
  34. 根据权利要求21至33任一项所述的方法,其特征在于,
    若所述DCI指示用于传输物理下行共享信道PDSCH的时域资源,则所述终端设备接收来自所述网络设备的所述第一参考信号;
    若所述DCI指示用于传输物理上行共享信道PUSCH的时域资源,则所述终端设备向所述网络设备发送所述第一参考信号。
  35. 一种用于资源调度的通信方法,其特征在于,包括:
    网络设备向终端设备发送下行控制信息DCI,其中,所述DCI指示用于数据传输的时域资源;
    所述网络设备接收来自所述终端设备的第一参考信号,和/或所述网络设备向所述终端设备发送第一参考信号;其中,所述第一参考信号包括至少两个解调参考信号DMRS;所述至少两个DMRS对应同一天线端口,所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第一参考信号用于解调所述DCI指示的时域资源。
  36. 根据权利要求35所述的方法,其特征在于,
    所述DCI指示时隙组中用于数据传输的时域资源;
    其中,所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔。
  37. 根据权利要求35或36所述的方法,其特征在于,
    所述至少两个DMRS包括第一DMRS和第二DMRS;
    其中,所述第一DMRS位于第i个子载波,所述第二DMRS位于第(i+1)个子载波;或者,所述第一DMRS位于第i个子载波和第(i+1)个子载波,所述第二DMRS位于第(i+2)个子载波和第(i+3)个子载波;所述i为正整数。
  38. 根据权利要求35至37任一项所述的方法,其特征在于,
    所述至少两个DMRS包括第一DMRS和第二DMRS;所述第一参考信号还包括第三DMRS;
    其中,所述第一DMRS和所述第三DMRS在时域上相同;所述第二DMRS和所述第三DMRS对应不同天线端口,且在频域上位于同一子载波。
  39. 根据权利要求38所述的方法,其特征在于,所述第二DMRS对应的天线端口与所述第三DMRS对应的天线端口是根据N的取值和承载目标DMRS的符号数量确定的;
    其中,所述N的取值为所述第二DMRS所在符号上的DMRS对应的天线端口数量;所述目标DMRS为所述第一参考信号中时域上连续的一组DMRS,所述目标DMRS包括所述至少两个DMRS。
  40. 根据权利要求35至39任一项所述的方法,其特征在于,
    承载目标DMRS的符号数量与时隙组中时隙的数量相同;
    或者,承载所述目标DMRS的符号数量与所述时隙组中时隙的数量不同;
    其中,所述目标DMRS为所述第一参考信号中时域上连续的一组DMRS,所述目标DMRS包括所述至少两个DMRS;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔。
  41. 根据权利要求40所述的方法,其特征在于,所述时隙组中的时隙数量是根据所述目标子载波间隔和预设子载波间隔确定的。
  42. 根据权利要求35或36所述的方法,其特征在于,所述至少两个DMRS包括第一DMRS和第二DMRS,承载所述第一DMRS和所述第二DIMRS的时域资源单元不同;
    其中,所述第一DMRS所在的子载波为第(i+4k)个子载波,所述第二DMRS所在的子载波为第(i+4k+2)个子载波;或者,
    所述第一DMRS所在的子载波为第(i+12k)个子载波和第(i+12k+1)个子载波,所述第二DMRS所在的子载波为第(i+12k+6)个子载波和第(i+12k+7)个子载波;所述i和所述k为正整数。
  43. 根据权利要求42所述的方法,其特征在于,所述第一参考信号还包括第三DMRS和第四DMRS;
    其中,承载所述第三DMRS和所述第一DMRS的子载波相同,但承载所述第三DMRS和所述第一DMRS的时域资源单元不同;
    承载所述第四DMRS和所述第二DMRS的子载波相同,但承载所述第四DMRS和所述第二DMRS的时域资源单元不同;
    所述第三DMRS与所述第四DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第一参考信号还包括第五DMRS和第六DMRS;
    其中,承载所述第五DMRS和所述第一DMRS的时域资源单元相同,但承载所述第五DMRS和所述第一DIMRS的子载波不同;
    承载所述第六DMRS和所述第二DMRS的时域资源单元相同,但承载所述第六DMRS和所述第二DIMRS的子载波不同;
    所述第五DMRS与所述第六DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  45. 根据权利要求42至44任一项所述的方法,其特征在于,所述第一参考信号还包括第七DMRS和第八DMRS;
    其中,所述第七DMRS和所述第一DMRS的时频资源相同,所述第八DMRS和所述第二DMRS的时频资源相同;
    所述第七DMRS和所述第八DMRS采用的OCC与所述第一DMRS和所述第二DMRS采用的OCC不同;
    所述第七DMRS与所述第八DMRS对应同一天线端口,且与所述至少两个DMRS对应的天线端口不同。
  46. 根据权利要求35至45任一项所述的方法,其特征在于,所述第一参考信号在所述 DCI指示的资源之前传输。
  47. 根据权利要求46所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二参考信号,和/或所述网络设备向所述终端设备发送第二参考信号;
    其中,所述第二参考信号中的至少两个DMRS对应同一天线端口,所述第二参考信号中的所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第二参考信号在所述DCI指示的第一部分资源之后,且在所述DCI指示的第二部分资源之前传输;所述第二参考信号用于解调所述DCI指示的时域资源。
  48. 根据权利要求35至47任一项所述的方法,其特征在于,
    若所述DCI指示用于传输物理下行共享信道PDSCH的时域资源,则所述网络设备向所述终端设备发送所述第一参考信号;
    若所述DCI指示用于传输物理上行共享信道PUSCH的时域资源,则所述网络设备接收来自所述终端设备的所述第一参考信号。
  49. 一种用于资源调度的通信装置,其特征在于,包括通信单元和处理单元;其中,
    所述通信单元,用于接收来自网络设备的配置信息,其中,所述配置信息为所述用于资源调度的通信装置配置时隙组;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述用于资源调度的通信装置被配置的子载波的间隔;
    所述通信单元,还用于接收来自所述网络设备的下行控制信息DCI,其中,所述DCI指示所述时隙组中用于数据传输的时域资源;
    所述处理单元,用于确定所述DCI指示的时域资源;
    所述通信单元,还用于基于所述DCI指示的时域资源与所述网络设备进行数据传输。
  50. 一种用于资源调度的通信装置,其特征在于,包括通信单元和处理单元;其中,
    所述通信单元,用于向终端设备发送配置信息,其中,所述配置信息为所述终端设备配置时隙组;所述时隙组包括至少两个时隙,且所述时隙组中的时隙数量是根据目标子载波间隔确定的,所述目标子载波间隔是所述终端设备被配置的子载波的间隔;
    所述处理单元,用于确定数据传输的时域资源;
    所述通信单元,还用于向所述终端设备发送下行控制信息DCI,其中,所述DCI指示所述时隙组中用于数据传输的时域资源;
    所述通信单元,还用于基于所述DCI指示的时域资源与所述终端设备进行数据传输。
  51. 一种用于资源调度的通信装置,其特征在于,包括通信单元和处理单元;其中,
    所述通信单元,用于接收来自网络设备的下行控制信息DCI,其中,所述DCI指示用于数据传输的时域资源;
    所述处理单元,用于确定所述DCI指示的时域资源;
    所述通信单元,还用于接收来自所述网络设备的第一参考信号,和/或所述通信单元还用于向所述网络设备发送第一参考信号;其中,所述第一参考信号包括至少两个解调参考信号DMRS;所述至少两个DMRS对应同一天线端口,所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第一参考信号用于解调所述DCI指示的时域资源。
  52. 一种用于资源调度的通信装置,其特征在于,包括通信单元和处理单元;其中,
    所述处理单元,用于确定数据传输的时域资源;
    所述通信单元,用于向终端设备发送下行控制信息DCI,其中,所述DCI指示用于数据传输的时域资源;
    所述通信单元,还用于接收来自所述终端设备的第一参考信号,和/或所述所述通信单元,还用于向所述终端设备发送第一参考信号;其中,所述第一参考信号包括至少两个解调参考信号DMRS;所述至少两个DMRS对应同一天线端口,所述至少两个DMRS在时域上连续,且在频域上位于不同子载波;所述第一参考信号用于解调所述DCI指示的时域资源。
  53. 一种用于资源调度的通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求1至10中任一项所述的用于资源调度的通信方法被执行,或如权利要求21至34中任一项所述的用于资源调度的通信方法被执行。
  54. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以控制终端设备执行如权利要求1至10中任一项所述的用于资源调度的通信方法,或执行如权利要求21至34中任一项所述的用于资源调度的通信方法。
  55. 一种用于资源调度的通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求11至20中任一项所述的用于资源调度的通信方法被执行,或如权利要求35至48中任一项所述的用于资源调度的通信方法被执行。
  56. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以控制网络设备执行如权利要求11至20中任一项所述的用于资源调度的通信方法,或执行如权利要求35至48中任一项所述的用于资源调度的通信方法。
  57. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至10任一项所述的用于资源调度的通信方法被执行,或者权利要求11至20任一项所述的用于资源调度的通信方法被执行,或者权利要求21至34任一项所述的用于资源调度的通信方法被执行,或者权利要求35至48任一项所述的用于资源调度的通信方法被执行。
PCT/CN2021/087913 2020-09-30 2021-04-16 用于资源调度的通信方法及装置 WO2022068177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/119551 2020-09-30
PCT/CN2020/119551 WO2022067726A1 (zh) 2020-09-30 2020-09-30 用于资源调度的通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022068177A1 true WO2022068177A1 (zh) 2022-04-07

Family

ID=80949530

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/119551 WO2022067726A1 (zh) 2020-09-30 2020-09-30 用于资源调度的通信方法及装置
PCT/CN2021/087913 WO2022068177A1 (zh) 2020-09-30 2021-04-16 用于资源调度的通信方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119551 WO2022067726A1 (zh) 2020-09-30 2020-09-30 用于资源调度的通信方法及装置

Country Status (1)

Country Link
WO (2) WO2022067726A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515210A (zh) * 2021-06-22 2022-12-23 华为技术有限公司 一种通信方法及装置
CN117222030A (zh) * 2022-06-01 2023-12-12 展讯半导体(南京)有限公司 一种测量方法及通信装置
CN117998598A (zh) * 2022-11-01 2024-05-07 华为技术有限公司 数据传输方法及装置
CN117997489A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 用于传输物理下行共享信道的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123778A (zh) * 2017-03-24 2018-06-05 中兴通讯股份有限公司 传输及传输配置方法、装置及基站、终端
WO2020042016A1 (en) * 2018-08-29 2020-03-05 Qualcomm Incorporated Single and multi-stage downlink control information design for multiple transceiver nodes
CN110972324A (zh) * 2018-09-28 2020-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的基站中的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095316A1 (en) * 2017-11-17 2019-05-23 Zte Corporation Control transmission method and apparatus
CN110536430B (zh) * 2018-09-05 2023-04-07 中兴通讯股份有限公司 通信及资源配置方法、装置、基站、终端及存储介质
US10652062B2 (en) * 2018-09-20 2020-05-12 Nokia Technologies Oy Configurable waveform for beyond 52.6GHz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123778A (zh) * 2017-03-24 2018-06-05 中兴通讯股份有限公司 传输及传输配置方法、装置及基站、终端
WO2020042016A1 (en) * 2018-08-29 2020-03-05 Qualcomm Incorporated Single and multi-stage downlink control information design for multiple transceiver nodes
CN110972324A (zh) * 2018-09-28 2020-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的基站中的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "Consideration on supporting above 52.6GHz in NR R1-2006452", 3GPP TSG RAN WG1 #102-E, 28 August 2020 (2020-08-28), XP051915372 *
LENOVO ET AL.: "Discussion on potential physical layer impacts for NR beyond 52.6 GHz R1-2005239", 3GPP TSG RAN WG1 #102-E, 28 August 2020 (2020-08-28), XP051914933 *

Also Published As

Publication number Publication date
WO2022067726A1 (zh) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
CN108811097B (zh) 资源指示方法及通信设备
WO2019096248A1 (zh) 发送和接收信号的方法、装置和***
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
US20210377979A1 (en) User equipment and system performing transmission and reception operations
WO2018210243A1 (zh) 一种通信方法和装置
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
EP3343969B1 (en) Data transmission method and apparatus
JP7399190B2 (ja) 通信方法及び通信装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2019029348A1 (zh) 数据传输方法、终端和基站
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2020238992A1 (zh) 一种通信方法及装置
CN108173627B (zh) 时间信息的确定方法、网络节点和终端设备
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2021098355A1 (zh) Csi测量方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
EP4152811A1 (en) Cache determining method and apparatus
WO2022151419A1 (zh) 上行控制信息传输方法及通信装置
WO2022001638A1 (zh) 通信方法及装置
EP4221110A1 (en) Symbol application method and communication apparatus
WO2022213900A1 (zh) 上行控制信息传输方法及相关装置
RU2801592C2 (ru) Способ связи и устройство связи
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873843

Country of ref document: EP

Kind code of ref document: A1