WO2024027453A1 - 直流功率转换器以及直流功率转换*** - Google Patents

直流功率转换器以及直流功率转换*** Download PDF

Info

Publication number
WO2024027453A1
WO2024027453A1 PCT/CN2023/106069 CN2023106069W WO2024027453A1 WO 2024027453 A1 WO2024027453 A1 WO 2024027453A1 CN 2023106069 W CN2023106069 W CN 2023106069W WO 2024027453 A1 WO2024027453 A1 WO 2024027453A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
threshold
conversion unit
full
Prior art date
Application number
PCT/CN2023/106069
Other languages
English (en)
French (fr)
Inventor
陈东
石磊
陈富文
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024027453A1 publication Critical patent/WO2024027453A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer

Definitions

  • the present application relates to the field of electronic power, and in particular, to a DC power converter and a DC power conversion system.
  • a DC power converter is a power converter used to achieve DC voltage conversion and is widely used in uninterruptible power supplies, battery management and other systems.
  • the input and output voltage adaption range of a DC power converter represents the ratio range of input voltage to output voltage that the DC power converter can achieve.
  • a DC power converter with a wider input and output voltage adaptability range can be applied to more power supply scenarios, and its applicability Stronger.
  • Embodiments of the present application provide a DC power converter and a DC power conversion system, which can expand the adaptive range of input and output voltages, have high DC power conversion efficiency, simple circuit structure, and strong applicability.
  • the present application provides a DC power converter, which includes a controller, a first power conversion module and a second power conversion module.
  • the first DC terminal and the second DC terminal of the first power conversion module are respectively coupled with the first DC terminal and the second DC terminal of the second power conversion module.
  • the first DC terminal and the second DC terminal of the first power conversion module The second DC terminals are respectively the first DC terminal and the second DC terminal of the DC power converter.
  • the third DC terminal of the first power conversion module and the fourth DC terminal of the second power conversion module are respectively the first DC terminal and the second DC terminal of the DC power converter.
  • the third DC terminal and the fourth DC terminal are coupled to the fourth DC terminal of the first power conversion module and the third DC terminal of the second power conversion module.
  • the first power conversion module includes at least one first full-bridge circuit
  • the controller may be configured to operate based on the first total voltage and/or the DC power between the first DC terminal and the second DC terminal of the DC power converter.
  • the second total voltage between the third DC terminal and the fourth DC terminal of the converter controls the first full-bridge circuit to operate in a full-bridge mode or a half-bridge mode.
  • the DC power converter can be based on the first total voltage between the first DC terminal and the second DC terminal of the DC power converter and/or the third DC terminal and the fourth DC terminal.
  • the second total voltage between the first full-bridge circuits in the DC power converter operates in different operating modes (full-bridge mode or half-bridge mode), and the first full-bridge circuits operating in different operating modes have different AC terminals.
  • the relationship between the voltage and the DC terminal voltage so that the voltage conversion relationship of the DC power converter can be adjusted by changing the working mode of the first full-bridge circuit, which improves the flexibility of controlling the voltage at both ends of the first full-bridge circuit, so that the above-mentioned DC
  • the power converter has a wider input and output voltage adaptation range, a simple circuit structure, and high DC power conversion efficiency.
  • the above-mentioned first power conversion module includes a first DC-AC conversion unit, a first AC-DC conversion unit and a first transformer unit, wherein the above-mentioned first DC -The first DC terminal and the second DC terminal of the AC conversion unit are respectively the first DC terminal and the second DC terminal of the above-mentioned first power conversion module, and the first AC terminal and the second DC terminal of the above-mentioned first DC-AC conversion unit are respectively The two AC terminals are respectively coupled to the first AC terminal and the second AC terminal of the above-mentioned first AC-DC conversion unit through the above-mentioned first transformer unit.
  • the first DC terminal and the second DC terminal of the above-mentioned first AC-DC conversion unit are respectively the third DC terminal and the fourth DC terminal of the above-mentioned first power conversion module.
  • the first DC-AC conversion unit and/or the first AC-DC conversion unit may include the first full bridge circuit, and the controller is configured to control based on the first total voltage and/or the second total voltage.
  • the above-mentioned first full-bridge circuit operates in the full-bridge mode or the half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit in the above-mentioned first power conversion module, so that the first power conversion module in the above-mentioned first power conversion module
  • the difference between the second partial voltage between the first DC terminal and the second DC terminal of the AC-DC conversion unit and the above-mentioned second total voltage is not higher than the set threshold (for example, it may be to keep the second partial voltage not higher than the set threshold). Less than 80% of the second total voltage), the second partial voltage is prevented from excessively deviating from the second total voltage, and the DC voltage conversion efficiency of the DC power converter is improved.
  • the DC power converter circuit is simple and has good applicability.
  • the above-mentioned second power conversion module includes a second DC-AC conversion unit, a second AC-DC conversion unit, and a second transformer unit. and a DC adjustment unit, wherein the first DC end and the second DC end of the above-mentioned second DC-AC conversion unit are respectively the first DC end and the second DC end of the above-mentioned second power conversion module, and the above-mentioned second DC -The first AC terminal and the second AC terminal of the AC conversion unit are respectively coupled to the first AC terminal and the second AC terminal of the above-mentioned second AC-DC conversion unit through the above-mentioned second transformer unit, and the above-mentioned second AC-DC conversion The first DC terminal and the second DC terminal of the unit are respectively coupled to the first DC terminal and the second DC terminal of the above-mentioned DC adjustment unit.
  • the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit are respectively the above-mentioned second DC terminal.
  • the above-mentioned second power conversion module includes the above-mentioned first DC-AC conversion unit, a second AC-DC conversion unit, a second transformer unit and a DC regulating unit, wherein the first DC terminal and the second DC terminal of the first DC-AC conversion unit are respectively the first DC terminal and the second DC terminal of the above-mentioned second power conversion module, and the above-mentioned first The first AC terminal and the second AC terminal of the DC-AC conversion unit are respectively coupled to the first AC terminal and the second AC terminal of the above-mentioned second AC-DC conversion unit through the above-mentioned second transformer unit.
  • the above-mentioned second AC-DC The first DC terminal and the second DC terminal of the conversion unit are respectively coupled to the first DC terminal and the second DC terminal of the above-mentioned DC adjustment unit, and the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit are respectively the above-mentioned third DC terminal.
  • the third DC terminal and the fourth DC terminal of the second power conversion module are respectively coupled to the first DC terminal and the second DC terminal of the above-mentioned DC adjustment unit, and the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit are respectively the above-mentioned third DC terminal.
  • the controller can control the DC adjustment unit to change the DC voltage between the third DC terminal and the fourth DC terminal of the DC adjustment unit, thereby adjusting the DC voltage output of the DC power converter (which may be The DC voltage between the DC terminal and the second DC terminal, or the DC voltage between the third DC terminal and the fourth DC terminal) improves the DC voltage conversion accuracy of the DC power converter and has strong applicability.
  • the above-mentioned first power conversion module includes a first DC-AC conversion unit, a transformer unit and a first AC-DC conversion unit
  • the above-mentioned second power conversion module includes the above-mentioned The first DC-AC conversion unit, the above-mentioned transformer unit, the second AC-DC conversion unit and the DC adjustment unit, wherein the first DC terminal and the second DC terminal of the above-mentioned first DC-AC conversion unit are respectively the above-mentioned third
  • the first DC terminal and the second DC terminal of a power conversion module are respectively the first DC terminal and the second DC terminal of the above-mentioned second power conversion module; the primary winding of the above-mentioned transformer unit and the above-mentioned first DC -The first AC terminal and the second AC terminal of the AC conversion unit are coupled, the first secondary winding of the above-mentioned transformer unit is coupled with the first AC terminal and the second AC terminal of the above-mentioned first AC
  • the above-mentioned DC-AC conversion unit and/or the above-mentioned first AC-DC conversion unit includes the above-mentioned first full bridge circuit, and the above-mentioned controller is used to control the above-mentioned first full-bridge circuit based on the above-mentioned first total voltage and/or the above-mentioned second total voltage.
  • the full-bridge circuit operates in full-bridge mode or half-bridge mode.
  • the controller changes the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit in the first power conversion module, so that the first DC terminal of the first AC-DC conversion unit in the first power conversion module and the second
  • the difference between the second partial voltage between the DC terminals and the above-mentioned second total voltage is kept not higher than the set threshold, which prevents the second partial voltage from excessively deviating from the second total voltage and improves the DC voltage conversion efficiency of the DC power converter.
  • the DC power converter circuit is simple and has good applicability.
  • the above-mentioned first DC-AC conversion unit and /or the above-mentioned first AC-DC conversion unit includes the above-mentioned first full-bridge circuit, and the above-mentioned controller is used to control the above-mentioned first full-bridge circuit to operate in the full-bridge mode based on the above-mentioned first total voltage and/or the above-mentioned second total voltage.
  • Half-bridge mode is used to control the above-mentioned first full-bridge circuit to operate in the full-bridge mode based on the above-mentioned first total voltage and/or the above-mentioned second total voltage.
  • the first DC terminal and the second DC terminal of the first AC-DC conversion unit in the first power conversion module are The difference between the second partial voltage and the above-mentioned second total voltage is not higher than the set threshold (for example, the second partial voltage can be kept not lower than 80% of the second total voltage) to avoid the second partial voltage. Excessive deviation from the second total voltage improves the DC voltage conversion efficiency of the DC power converter.
  • the DC power converter circuit is simple and has good applicability.
  • the above-mentioned first DC-AC conversion unit includes the above-mentioned first full-bridge circuit, where the above-mentioned controller is also used to perform the above-mentioned third A full-bridge circuit operates in full-bridge mode, and the ratio of the above-mentioned second total voltage to the above-mentioned first total voltage is less than the first threshold, or the above-mentioned second total voltage is less than the second threshold, or the above-mentioned first total voltage is greater than the third threshold. , controlling the above-mentioned first full-bridge circuit to work in half-bridge mode.
  • the above-mentioned controller is also used to operate when the above-mentioned first full-bridge circuit operates in the half-bridge mode and the ratio of the above-mentioned second total voltage to the above-mentioned first total voltage is greater than a fourth threshold, or the above-mentioned second total voltage is greater than a fifth threshold.
  • the threshold, or the first total voltage is less than the sixth threshold controls the first full-bridge circuit to operate in the full-bridge mode.
  • the above fourth threshold is greater than or equal to Regarding the first threshold
  • the fifth threshold is greater than or equal to the second threshold
  • the sixth threshold is less than or equal to the third threshold.
  • the controller changes the AC of the first DC-AC conversion unit by controlling the operating mode of the first full-bridge circuit in the first DC-AC conversion unit (from the full-bridge mode to the half-bridge mode, or from the half-bridge mode to the full-bridge mode).
  • the relationship between the terminal voltage and the DC terminal voltage thereby boosting or reducing the second voltage, preventing the second voltage from excessively deviating from the second total voltage, and improving the DC voltage conversion efficiency and applicability of the DC power converter.
  • a wide input and output voltage adaptable range is achieved under circuit complexity, with low implementation cost and strong applicability.
  • the above-mentioned first threshold value and the above-mentioned fourth threshold value are determined by the maximum value of the voltage ratio of the above-mentioned first DC-AC conversion unit, the above-mentioned first The voltage ratio of the AC-DC conversion unit and the first turns ratio of the above-mentioned first transformer unit are obtained.
  • the second threshold and the fifth threshold are determined by the maximum value of the voltage ratio of the first DC-AC conversion unit, the voltage ratio of the first AC-DC conversion unit, the first turns ratio and the voltage of the first total voltage. range is obtained.
  • the third threshold and the sixth threshold are determined by the maximum value of the voltage ratio of the first DC-AC conversion unit, the voltage ratio of the first AC-DC conversion unit, the first turns ratio and the voltage of the second total voltage. range is obtained.
  • the voltage ratio of the first DC-AC conversion unit is the ratio of the peak-to-peak voltage of the AC terminal to the DC terminal voltage
  • the voltage ratio of the first AC-DC conversion unit is the ratio of the peak-to-peak voltage of the DC terminal to the peak-to-peak voltage of the AC terminal.
  • the controller controls the working mode of the first full-bridge circuit in the first DC-AC conversion unit to change the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the first DC-AC conversion unit, and controls the working mode of the first full-bridge circuit. Flexible and diverse, simple to operate and highly applicable.
  • the above-mentioned first AC-DC conversion unit includes the above-mentioned first full-bridge circuit, where the above-mentioned controller is also used to perform the above-mentioned third A full-bridge circuit operates in half-bridge mode, and the ratio of the above-mentioned second total voltage to the above-mentioned first total voltage is less than the first threshold, or the above-mentioned second total voltage is less than the second threshold, or the above-mentioned first total voltage is greater than the third threshold , controlling the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the above-mentioned controller is also used to operate in the full-bridge mode when the above-mentioned first full-bridge circuit and the ratio of the above-mentioned second total voltage to the above-mentioned first total voltage is greater than a fourth threshold, or the above-mentioned second total voltage is greater than a fifth threshold, or When the first total voltage is less than the sixth threshold, the first full-bridge circuit is controlled to operate in the half-bridge mode.
  • the fourth threshold is greater than or equal to the first threshold
  • the fifth threshold is greater than or equal to the second threshold
  • the sixth threshold is less than or equal to the third threshold.
  • the controller changes the AC of the first AC-DC conversion unit by controlling the working mode of the first full-bridge circuit in the first AC-DC conversion unit (from the full-bridge mode to the half-bridge mode, or from the half-bridge mode to the full-bridge mode).
  • the relationship between the terminal voltage and the DC terminal voltage thereby boosting or reducing the second voltage, preventing the second voltage from excessively deviating from the second total voltage, and improving the DC voltage conversion efficiency and applicability of the DC power converter.
  • a wide input and output voltage adaptable range is achieved under circuit complexity, with low implementation cost and strong applicability.
  • the above-mentioned first threshold value and the above-mentioned fourth threshold value are determined by the voltage ratio of the above-mentioned first DC-AC conversion unit, the above-mentioned first AC-DC
  • the maximum value of the voltage ratio of the conversion unit and the first turns ratio of the above-mentioned first transformation unit are obtained.
  • the second threshold and the fifth threshold are determined by the voltage ratio of the first DC-AC conversion unit, the maximum value of the voltage ratio of the first AC-DC conversion unit, the first turns ratio, and the range of the first total voltage. get.
  • the third threshold and the sixth threshold are determined by the voltage ratio of the first DC-AC conversion unit, the maximum value of the voltage ratio of the first AC-DC conversion unit, the first turns ratio, and the range of the second total voltage. get.
  • the voltage ratio of the first DC-AC conversion unit is the ratio of the peak-to-peak voltage of the AC terminal to the DC terminal voltage
  • the voltage ratio of the first AC-DC conversion unit is the ratio of the peak-to-peak voltage of the DC terminal to the peak-to-peak voltage of the AC terminal.
  • the controller controls the working mode of the first full-bridge circuit in the first AC-DC conversion unit to change the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the first AC-DC conversion unit, and controls the working mode of the first full-bridge circuit. Flexible and diverse, simple to operate and highly applicable.
  • the above-mentioned second DC-AC conversion unit and/or the above-mentioned second AC-DC conversion unit includes a second full-bridge circuit, the above-mentioned The controller is configured to control the second full-bridge circuit to operate in a full-bridge mode or a half-bridge mode based on the first divided voltage between the third DC terminal and the fourth DC terminal of the DC regulating unit and/or the first total voltage.
  • the controller changes the second DC-AC conversion unit or the second AC- The relationship between the AC terminal voltage and the DC terminal voltage of the DC conversion unit, thereby boosting or reducing the third voltage between the first DC terminal and the second DC terminal of the second AC-DC conversion unit, to avoid the above third
  • the partial voltage deviates excessively from the first partial voltage, thereby improving the DC voltage conversion efficiency and applicability of the DC power converter, achieving a wide input and output voltage adaptation range with low circuit complexity, achieving low cost and strong applicability.
  • the above-mentioned second DC-AC conversion unit includes a second full-bridge circuit.
  • the above-mentioned controller is also used to perform the above-mentioned third
  • the second full-bridge circuit operates in the full-bridge mode, and the ratio of the first partial voltage between the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit to the above-mentioned first total voltage is less than the first threshold, or the above-mentioned first partial voltage If the voltage is less than the second threshold, or the first total voltage is greater than the third threshold, the second full-bridge circuit is controlled to operate in the half-bridge mode.
  • the above controller is also used to operate in the half-bridge mode when the second full-bridge circuit operates in the half-bridge mode and the ratio of the first partial voltage to the first total voltage is greater than a fourth threshold, or the first partial voltage is greater than a fifth threshold, or When the first total voltage is less than the sixth threshold, the second full-bridge circuit is controlled to operate in the full-bridge mode.
  • the above-mentioned fourth threshold is greater than or equal to the above-mentioned first threshold
  • the above-mentioned fifth threshold is greater than or equal to the above-mentioned second threshold
  • the above-mentioned sixth threshold is The value is less than or equal to the third threshold above.
  • the controller changes the AC of the second DC-AC conversion unit by controlling the working mode of the second full-bridge circuit in the second DC-AC conversion unit (from the full-bridge mode to the half-bridge mode, or from the half-bridge mode to the full-bridge mode).
  • the first sub-voltage improves the DC voltage conversion efficiency and applicability of the DC power converter, and achieves a wide input and output voltage adaptation range with low circuit complexity, achieving low cost and strong applicability.
  • the above-mentioned first threshold value and the above-mentioned fourth threshold value are determined by the minimum value of the voltage ratio of the above-mentioned second DC-AC conversion unit, the above-mentioned The voltage ratio of the second AC-DC conversion unit and the second turns ratio of the second transformation unit are obtained.
  • the second threshold value and the fifth threshold value are obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit and the above-mentioned
  • the voltage ratio of the second AC-DC conversion unit, the second turns ratio and the range of the first total voltage are obtained.
  • the third threshold and the sixth threshold are obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit.
  • the voltage ratio of the second DC-AC conversion unit is the ratio of the peak-to-peak voltage of the AC terminal to the DC terminal voltage
  • the voltage ratio of the second AC-DC conversion unit is the ratio of the peak-to-peak voltage of the DC terminal to the peak-to-peak voltage of the AC terminal.
  • the controller controls the working mode of the second full-bridge circuit in the second DC-AC conversion unit to change the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the second DC-AC conversion unit, and controls the working mode of the second full-bridge circuit.
  • the above-mentioned second AC-DC conversion unit includes a second full-bridge circuit.
  • the above-mentioned controller is also used to perform the above-mentioned third
  • the second full-bridge circuit operates in the half-bridge mode, and the ratio of the first partial voltage between the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit to the above-mentioned first total voltage is less than the first threshold, or the above-mentioned first partial voltage If the voltage is less than the second threshold, or the first total voltage is greater than the third threshold, the second full-bridge circuit is controlled to operate in the full-bridge mode.
  • the above-mentioned controller is also used to operate in the full-bridge mode when the above-mentioned second full-bridge circuit and the ratio of the above-mentioned first partial voltage to the above-mentioned first total voltage is greater than a fourth threshold, or the above-mentioned first partial voltage is greater than a fifth threshold, or When the first total voltage is less than the sixth threshold, the second full-bridge circuit is controlled to operate in the half-bridge mode.
  • the fourth threshold is greater than or equal to the first threshold
  • the fifth threshold is greater than or equal to the second threshold
  • the sixth threshold is less than or equal to the third threshold.
  • the controller changes the AC of the second AC-DC conversion unit by controlling the working mode of the second full-bridge circuit in the second AC-DC conversion unit (from the full-bridge mode to the half-bridge mode, or from the half-bridge mode to the full-bridge mode).
  • the first sub-voltage improves the DC voltage conversion efficiency and applicability of the DC power converter, and achieves a wide input and output voltage adaptation range with low circuit complexity, achieving low cost and strong applicability.
  • the above-mentioned first threshold value and the above-mentioned fourth threshold value are determined by the voltage ratio of the above-mentioned second DC-AC conversion unit, the above-mentioned second AC -The minimum value of the voltage ratio of the DC conversion unit and the second turns ratio of the above-mentioned second transformation unit are obtained.
  • the above-mentioned second threshold and the above-mentioned fifth threshold are obtained from the voltage ratio of the above-mentioned second DC-AC conversion unit and the above-mentioned second AC -The minimum value of the voltage ratio of the DC conversion unit, the above-mentioned second turns ratio and the above-mentioned first total voltage range are obtained
  • the above-mentioned third threshold and the above-mentioned sixth threshold are obtained from the voltage ratio of the above-mentioned second DC-AC, the above-mentioned second AC -The range of the minimum value of the voltage ratio of the DC conversion unit, the above-mentioned second turns ratio and the above-mentioned first partial voltage is obtained.
  • the voltage ratio of the second DC-AC conversion unit is the ratio of the peak-to-peak voltage of the AC terminal to the DC terminal voltage
  • the voltage ratio of the second AC-DC conversion unit is the ratio of the peak-to-peak voltage of the DC terminal to the peak-to-peak voltage of the AC terminal.
  • the controller controls the working mode of the second full-bridge circuit in the second AC-DC conversion unit to change the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the second AC-DC conversion unit, and controls the working mode of the second full-bridge circuit.
  • the above-mentioned second AC-DC conversion unit includes a second full-bridge circuit
  • the above-mentioned controller is also used to calculate the first divided voltage between the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit and the above-mentioned first total voltage when the above-mentioned second full-bridge circuit operates in the half-bridge mode. If the ratio is less than the first threshold, or the first partial voltage is less than the second threshold, or the first total voltage is greater than the third threshold, the second full-bridge circuit is controlled to operate in the full-bridge mode.
  • the above-mentioned controller is also used to operate in the full-bridge mode when the above-mentioned second full-bridge circuit and the ratio of the above-mentioned first partial voltage to the above-mentioned first total voltage is greater than a fourth threshold, or the above-mentioned first partial voltage is greater than a fifth threshold, or When the first total voltage is less than the sixth threshold, the second full-bridge circuit is controlled to operate in the half-bridge mode.
  • the fourth threshold is greater than or equal to the first threshold
  • the fifth threshold is greater than or equal to the second threshold
  • the sixth threshold is less than or equal to the third threshold.
  • the controller changes the AC of the second AC-DC conversion unit by controlling the working mode of the second full-bridge circuit in the second AC-DC conversion unit (from the full-bridge mode to the half-bridge mode, or from the half-bridge mode to the full-bridge mode).
  • the first sub-voltage improves the DC voltage conversion efficiency and applicability of the DC power converter, and achieves a wide input and output voltage adaptation range with low circuit complexity, achieving low cost and strong applicability.
  • the above-mentioned first threshold value and the above-mentioned fourth threshold value are determined by the voltage ratio of the above-mentioned first DC-AC conversion unit, the above-mentioned second AC -The minimum value of the voltage ratio of the DC conversion unit and the above-mentioned second change
  • the above-mentioned second threshold value and the above-mentioned fifth threshold value are obtained from the voltage ratio of the above-mentioned first DC-AC conversion unit or the voltage ratio of the above-mentioned second AC-DC conversion unit.
  • the minimum value of , the turns ratio of the second transformer unit or the second turns ratio and the range of the first total voltage are obtained.
  • the third threshold value and the sixth threshold value are obtained from the voltage ratio of the first DC-AC conversion unit , the minimum value of the voltage ratio of the second AC-DC conversion unit, the turns ratio of the second transformer unit, or the second turns ratio and the range of the first partial voltage.
  • the voltage ratio of the first DC-AC conversion unit is the ratio of the peak-to-peak voltage of the AC terminal to the DC terminal voltage
  • the voltage ratio of the second AC-DC conversion unit is the ratio of the peak-to-peak voltage of the DC terminal to the peak-to-peak voltage of the AC terminal.
  • the controller controls the working mode of the second full-bridge circuit in the second AC-DC conversion unit to change the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the second AC-DC conversion unit, and controls the working mode of the second full-bridge circuit.
  • the above controller also uses Based on the first reference voltage, the second divided voltage between the third DC terminal and the fourth DC terminal of the first power conversion module, and the first DC terminal and the second DC terminal of the second AC-DC conversion unit
  • the third partial voltage between the above-mentioned DC adjustment unit is controlled to adjust the first partial voltage between the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit, so that the above-mentioned first partial voltage and the above-mentioned second partial voltage and is the above-mentioned first reference voltage.
  • the second total voltage between the third DC terminal and the fourth DC terminal of the DC power converter is equal to the sum of the above-mentioned second partial voltage and the above-mentioned first partial voltage, that is, the DC power converter can use the controller based on different The first total voltage and/or the second total voltage controls the first full-bridge circuit in the first power conversion module, or the controller controls the second power conversion based on the different first partial voltages and/or the first total voltage.
  • the second full-bridge circuit in the module is used to achieve a DC voltage output with a voltage value of the first reference voltage between the third DC terminal and the fourth DC terminal of the DC power converter, such that the ratio of the input DC voltage to the output DC voltage Wider range, improved DC voltage conversion efficiency, and strong applicability.
  • the above-mentioned controller is further used to control the above-mentioned DC adjustment unit to adjust its third voltage based on the second reference voltage and the above-mentioned second sub-voltage.
  • the first divided voltage between the three DC terminals and the fourth DC terminal is such that the first total voltage is equal to the second reference voltage.
  • the DC voltage between the first DC terminal and the second DC terminal of the DC power converter is the first total voltage
  • the DC power converter can use the controller based on different first total voltages and/or second The total voltage controls the first full-bridge circuit in the first power conversion module, or the controller controls the second full-bridge circuit in the second power conversion module based on different first partial voltages and/or the first total voltage, to A DC voltage output with a voltage value of the second reference voltage is achieved between the first DC terminal and the second DC terminal of the DC power converter, making the ratio range of the input DC voltage to the output DC voltage wider and improving the DC voltage conversion efficiency. , strong applicability.
  • the above-mentioned first DC-AC conversion unit includes two switch bridge arms connected in parallel, and the switch tube connection ends of each switch bridge arm are respectively The first AC terminal and the second AC terminal of the first DC-AC conversion unit are connected to the first transformer unit.
  • the above-mentioned second DC-AC conversion unit includes two switch bridge arms connected in parallel. The switch tube connection end of each switch bridge arm serves as the first AC end and the second AC end of the above-mentioned second DC-AC conversion unit and is connected to the above-mentioned second AC end. Transformer unit.
  • the above-mentioned first AC-DC conversion unit includes two switch bridge arms connected in parallel, and the switch tube connection end of each switch bridge arm serves as the first AC end and the second AC end of the above-mentioned first AC-DC conversion unit and is connected to the above-mentioned first AC-DC conversion unit.
  • the above-mentioned second AC-DC conversion unit includes two switch bridge arms connected in parallel. The switch tube connection end of each switch bridge arm serves as the first AC end and the second AC end of the above-mentioned second AC-DC conversion unit and is connected to the above-mentioned second AC-DC conversion unit. Transformer unit.
  • the DC power converter uses a controller to control a first full-bridge circuit composed of each switching tube in the first DC-AC conversion unit or the second DC-AC conversion unit based on different first total voltages and/or second total voltages, Alternatively, the controller controls the second full-bridge circuit composed of each switching tube in the first AC-DC conversion unit or the second AC-DC conversion unit based on different first partial voltages and/or first total voltages, thereby improving the efficiency of the circuit.
  • the flexibility in controlling the voltages at both ends of the first full-bridge circuit and the second full-bridge circuit enables the above-mentioned DC power converter to have a wider input and output voltage adaptable range, a simple circuit structure, and high DC power conversion efficiency.
  • the above-mentioned first DC-AC conversion unit includes two switch bridge arms connected in parallel, and the switch tube connection ends of each switch bridge arm are respectively The first AC terminal and the second AC terminal serving as the first DC-AC conversion unit are connected to the first transformer unit and the second transformer unit.
  • the above-mentioned first AC-DC conversion unit includes two switch bridge arms connected in parallel, and the switch tube connection end of each switch bridge arm serves as the first AC end and the second AC end of the above-mentioned first AC-DC conversion unit and is connected to the above-mentioned first AC-DC conversion unit. Transformer unit.
  • the above-mentioned second AC-DC conversion unit includes a switch bridge arm and a capacitor bridge arm connected in parallel.
  • the switch tube connection end of the above-mentioned switch bridge arm and the capacitor connection end of the above-mentioned capacitor bridge arm serve as the connection ends of the above-mentioned second AC-DC conversion unit respectively.
  • the first AC terminal and the second AC terminal are connected to the above-mentioned second transformer unit.
  • the DC power converter uses a controller to control a first full-bridge circuit composed of each switching tube in the first DC-AC conversion unit or the second DC-AC conversion unit based on different first total voltages and/or second total voltages, Alternatively, the controller controls the second full-bridge circuit composed of each switching tube in the first AC-DC conversion unit or the second AC-DC conversion unit based on different first partial voltages and/or first total voltages, thereby improving the efficiency of the circuit.
  • the flexibility in controlling the voltages at both ends of the first full-bridge circuit and the second full-bridge circuit enables the above-mentioned DC power converter to have a wider input and output voltage adaptable range, a simple circuit structure, and high DC power conversion efficiency.
  • the present application provides a DC power conversion system, which includes a DC power supply and a DC power converter provided by the above-mentioned first aspect and any possible implementation of the first aspect.
  • the above-mentioned DC power supply is used to provide a DC voltage input to the above-mentioned DC power converter.
  • the above-mentioned DC power converter is used to perform DC power conversion based on the first DC voltage provided by the above-mentioned DC power supply and output a second DC voltage to the load.
  • the above-mentioned DC power supply includes At least one of solar panels or energy storage batteries.
  • the DC power converter in the DC power conversion system can have a wider input and output voltage adaptation range, a simple circuit structure, and enhance the current power conversion efficiency of the photovoltaic system. Simple operation and high applicability.
  • Figure 1 is a schematic diagram of the application scenario of the DC power conversion system provided by this application.
  • FIG. 2a is a schematic structural diagram of the DC power conversion system provided by this application.
  • FIG. 2b is another structural schematic diagram of the DC power conversion system provided by this application.
  • FIG. 3 is a schematic structural diagram of the DC power converter provided by this application.
  • FIG. 4 is another structural schematic diagram of the DC power converter provided by this application.
  • FIG. 5 is another structural schematic diagram of the DC power converter provided by this application.
  • FIG. 6 is another structural schematic diagram of the DC power converter provided by this application.
  • FIG. 7 is another structural schematic diagram of the DC power converter provided by this application.
  • FIG. 8 is another structural schematic diagram of the DC power converter provided by this application.
  • FIG. 9 is another structural schematic diagram of the DC power converter provided by this application.
  • Figure 10 is a schematic structural diagram of the full-bridge BUCK circuit
  • Figure 11a is a schematic structural diagram of a three-level full-bridge circuit with a midpoint clamp
  • Figure 11b is a schematic structural diagram of an active midpoint clamped three-level full-bridge circuit
  • Figure 11c is a schematic structural diagram of a flying capacitor three-level full-bridge circuit.
  • FIG 1 is a schematic diagram of an application scenario of the DC power conversion system provided by this application.
  • the DC power conversion system provided by this application may include a DC power supply and a DC power converter, wherein the DC power supply may be composed of a photovoltaic array, and the output end of the photovoltaic array may be connected to the first end of the DC power converter. The second end is connected to the load.
  • the DC power conversion system may include an inverter, and the load may be an AC power grid connected through the inverter.
  • a photovoltaic array can be composed of one or more photovoltaic strings connected in parallel, and a photovoltaic string can be obtained by one or more photovoltaic modules connected in series.
  • the DC power converter can change (can be step-up, step-down, etc.) the DC voltage provided by the photovoltaic array and output the changed DC voltage to the inverter.
  • the inverter performs voltage inversion conversion and then provides communication in the AC power grid. Powered by electrical equipment such as base stations or household equipment.
  • the DC power supply may also include an energy storage battery, the output end of the energy storage battery may be connected to the first end of the DC power converter, and the second end of the DC power converter passes through the inverter.
  • the converter is connected to the AC grid as a load.
  • the DC power converter can change (can be step-up, step-down, etc.) the DC voltage provided by the energy storage battery and output the changed DC voltage to the inverter. After the voltage inversion conversion is performed by the inverter, it is converted into the AC power grid. Power supply for electrical equipment such as communication base stations or household equipment.
  • the inverter in Figure 1 can perform voltage rectification and conversion on the AC voltage of the AC power grid, and then provide DC voltage to the DC power converter connected to the energy storage battery.
  • the DC power converter can be based on The DC voltage output by the inverter is changed and then output to the energy storage battery.
  • the energy storage battery is charged based on the voltage or current output by the DC power converter.
  • the DC voltage provided by the photovoltaic array in Figure 1 is boosted or stepped down through the DC power converter connected to it, and output to the DC power converter connected to the energy storage battery, and the energy storage battery is connected
  • the DC power converter then boosts or reduces the voltage and outputs it to the energy storage battery.
  • the energy storage battery is charged based on the voltage or current output by the DC power converter.
  • the DC power conversion system performs DC voltage conversion through the DC power converter (can
  • the DC power converter converts DC power based on the DC voltage provided by the energy storage battery or the DC voltage provided by the photovoltaic array to supply power to the AC grid connected to the inverter. It can also be the DC power converter based on the DC voltage provided by the photovoltaic array. , or the DC voltage provided by the AC grid and the inverter is converted into DC power to supply power to the energy storage battery), the wider the ratio range of the input voltage to the output voltage that the DC power converter can achieve, the applicability of the DC power converter The higher.
  • a DC power converter composed of multi-stage circuits can achieve a wide range of voltage transformation ratio) to achieve a wide range of input voltage and output voltage ratios.
  • the circuit design is complex and too large, the DC power conversion loss is high, and the applicability is low. .
  • the DC power converter includes a full-bridge circuit.
  • the DC power conversion system can control the DC power converter based on the DC voltage at the first end and/or the DC voltage at the second end through the DC power converter.
  • the full-bridge circuit operates in different operating modes (full-bridge mode or half-bridge mode), so that the DC power converter can have a wider input and output voltage by changing the relationship between the AC terminal voltage and the DC terminal voltage of the full-bridge circuit. It has wide adaptability, simple circuit structure and high DC power conversion efficiency. In addition, higher conversion efficiency allows DC power converters to use higher switching frequencies of semiconductor devices, further reducing the size and weight of passive components (such as filter inductors and filter capacitors) in the equipment, thereby reducing the cost of DC power converters. Overall volume and weight, strong applicability.
  • the DC power conversion system and DC power converter provided by this application will be illustrated below with reference to Figures 2a to 11c.
  • FIG. 2a is a schematic structural diagram of the DC power conversion system provided by this application.
  • the DC power conversion system shown in Figure 2a includes a DC power supply, a DC power converter and an inverter.
  • the load can be an AC power grid connected through the inverter, and the DC power supply can be a solar panel or an energy storage battery.
  • the first DC terminal and the second DC terminal of the DC power converter are connected to the DC power supply, and the third DC terminal and the fourth DC terminal of the DC power converter are connected to the AC power grid through the inverter.
  • the DC power supply is used to provide a DC voltage input to the DC power converter, and the DC power converter boosts the DC voltage between the first DC terminal and the second DC terminal or Step down the voltage, and output the changed DC voltage to the inverter through the third DC terminal and the fourth DC terminal to supply power to the AC grid.
  • the DC power conversion system shown in Figure 2b includes a DC power supply and a DC power converter, where the load may include an energy storage battery, the DC power supply may be a solar panel, etc., and the first DC terminal and the DC power converter The second DC terminal is connected to the energy storage battery, and the third DC terminal and the fourth DC terminal of the DC power converter are connected to the DC power supply.
  • the DC power supply is used to provide DC voltage input to the DC power converter, and the DC power converter boosts or steps down the DC voltage between the third DC terminal and the fourth DC terminal. voltage, and output the changed DC voltage to the energy storage battery in the load through the first DC terminal and the second DC terminal to charge the energy storage battery.
  • the DC power converter may include a controller and a full-bridge circuit (not shown in Figures 2a and 2b),
  • the DC power converter may control the DC power through the controller based on the DC voltage between the first DC terminal and the second DC terminal and/or the DC voltage between the third DC terminal and the fourth DC terminal of the DC power converter.
  • the full-bridge circuit in the converter works in different operating modes (full-bridge mode or half-bridge mode), thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the full-bridge circuit, and improving the controller's response to the voltage at both ends of the full-bridge circuit.
  • the control flexibility enables the above-mentioned DC power converter to have a wider input and output voltage adaptation range, a simple circuit structure, and high DC power conversion efficiency.
  • the DC power converter may include a first power conversion module. , the second power conversion module and controller. Wherein, the first DC terminal and the second DC terminal of the first power conversion module are respectively coupled with the first DC terminal and the second DC terminal of the second power conversion module. The first DC terminal and the second DC terminal of the first power conversion module The second DC terminals are respectively the first DC terminal and the second DC terminal of the DC power converter.
  • the fourth DC terminal of the first power conversion module is coupled with the third DC terminal of the second power conversion module.
  • the first power conversion module The third DC terminal is the third DC terminal of the DC power converter, and the fourth DC terminal of the second power conversion module is the fourth DC terminal of the DC power converter.
  • the first power conversion module includes at least one full-bridge circuit (which can be called the first full-bridge circuit, not shown in Figure 2a), and the DC power converter can be based on the above-mentioned DC power converter through the controller.
  • the DC voltage between the first DC terminal and the second DC terminal controls the first full-bridge circuit in the first power conversion module to operate in the full-bridge mode or the half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit.
  • the relationship is such that the difference between the DC voltage between the third DC terminal and the fourth DC terminal of the first power conversion module (i.e., the second partial voltage, which can be expressed as Vs2) and the above-mentioned second total voltage Vs is not higher than the set value.
  • the operation is simple and improves the DC voltage conversion of the DC power converter. efficiency.
  • FIG. 3 is a schematic structural diagram of the DC power converter provided by this application.
  • the above-mentioned first power conversion module includes a first DC-AC conversion unit, a first AC-DC conversion unit and a first transformer unit, wherein the first DC of the first DC-AC conversion unit
  • the terminal and the second DC terminal are respectively the first DC terminal and the second DC terminal of the first power conversion module.
  • the first AC terminal and the second AC terminal of the first DC-AC conversion unit are respectively connected with the first transformer unit through the first transformer unit.
  • the first AC terminal and the second AC terminal of the first AC-DC conversion unit are coupled, and the first DC terminal and the second DC terminal of the first AC-DC conversion unit are respectively the third DC terminal and the third DC terminal of the first power conversion module.
  • the above-mentioned first DC-AC conversion unit and/or the above-mentioned first AC-DC conversion unit includes a first full-bridge circuit, and the above-mentioned controller (not shown in Figure 3) is also used to based on the above-mentioned first total voltage and/or the above-mentioned
  • the second total voltage controls the first full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit in the above-mentioned first power conversion module, so that the above-mentioned first power conversion module
  • the difference between the DC voltage between the first DC terminal and the second DC terminal of the first AC-DC conversion unit in the module i.e.,
  • FIG. 4 is another structural schematic diagram of the DC power converter provided by this application.
  • the structure of the first power conversion module in Figure 4 is similar to the first power conversion module in Figure 3 above, and will not be described again here.
  • the second power conversion module includes a second DC-AC conversion unit, a second AC-DC conversion unit, a second transformer unit and a DC adjustment unit, where the first DC of the second DC-AC conversion unit
  • the terminal and the second DC terminal are respectively the first DC terminal and the second DC terminal of the second power conversion module.
  • the first AC terminal and the second AC terminal of the second DC-AC conversion unit are respectively connected with the second transformer unit through the second transformer unit.
  • the first AC terminal and the second AC terminal of the second AC-DC conversion unit are coupled, and the first DC terminal and the second DC terminal of the second AC-DC conversion unit are respectively connected with the first DC terminal and the second DC terminal of the DC adjustment unit.
  • the two DC terminals are coupled, and the third DC terminal and the fourth DC terminal of the DC adjustment unit are respectively the third DC terminal and the fourth DC terminal of the second power conversion module.
  • the above-mentioned second DC-AC conversion unit and/or the above-mentioned second AC-DC conversion unit includes a second full-bridge circuit, and the above-mentioned controller (not shown in Figure 4) is based on the above-mentioned first total voltage Vp and/or the above-mentioned DC adjustment
  • the first divided voltage Vs1 between the third DC terminal and the fourth DC terminal of the unit controls the second full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the AC of the second full-bridge circuit in the above-mentioned second power conversion module.
  • the relationship between the terminal voltage and the DC terminal voltage is such that the third partial voltage Vs3 between the first DC terminal and the second DC terminal of the second AC-DC conversion unit in the above-mentioned second power conversion module remains consistent with the above-mentioned first partial voltage.
  • the difference of Vs1 is not higher than the set threshold, which improves the DC voltage conversion efficiency of the DC power converter.
  • the DC power converter circuit is simple and has good applicability.
  • the first DC-AC conversion unit and the first AC-DC conversion unit in the first power conversion module in Figure 4 include a first full-bridge circuit
  • the second power conversion module in the second power conversion module include a second full-bridge circuit.
  • FIG. 5 is another structural schematic diagram of the DC power converter provided by this application.
  • the first full-bridge circuit included in the first DC-AC conversion unit is composed of switching tubes Q11, Q12, Q13 and Q14 (each switching tube can be a Metal-Oxide-Semiconductor Field Effect Transistor) -Effect Transistor, MOSFET)), and capacitor Cp1.
  • the second connection end of Q11 is connected to the first connection end of Q12
  • the second connection end of Q13 is connected to the first connection end of Q14
  • the first connection end of Q11 is connected to the first connection end of Cp1 and the first connection end of Q13.
  • the connection ends are connected
  • the second connection end of Q12 is connected to the second connection end of Cp1 and the second connection end of Q14.
  • the second connection terminals of the above-mentioned Q11, Q12, Q13 and Q14 can be the sources of Q11, Q12, Q13 and Q14
  • the first connection terminals of Q11, Q12, Q13 and Q14 can be the drains of Q11, Q12, Q13 and Q14.
  • the first full-bridge circuit included in the first AC-DC conversion unit is composed of switching transistors Q15, Q16, Q17, and Q18, and the capacitor Cs1.
  • the second full-bridge circuit included in the second DC-AC conversion unit is composed of switching transistors Q21, Q22. , Q23 and Q24 (each switch tube can be a metal oxide semiconductor field effect transistor), and capacitor Cp2.
  • the second full-bridge circuit included in the second AC-DC conversion unit is composed of switching tubes Q25, Q26, Q27 and Q28, and a capacitor Cs2.
  • Each switch tube in the first full-bridge circuit included in the first AC-DC conversion unit, the second full-bridge circuit included in the second DC-AC conversion unit, and the second full-bridge circuit included in the second AC-DC conversion unit may be It is a metal oxide semiconductor field effect transistor, and the connection relationship between the switch tube and the capacitor of each full-bridge circuit can be the same as the first full-bridge circuit included in the above-mentioned first DC-AC conversion unit, which will not be described again here.
  • the first connection terminal Cp1 and the second connection terminal Cp1 of the first full-bridge circuit in the first DC-AC conversion unit are respectively connected to the first connection terminal Cp2 of the second full-bridge circuit in the second DC-AC conversion unit. , the second connecting end of Cp2 is connected.
  • the connection end between the first connection end of Cp1 and the first connection end of Cp2 is the first DC end of the DC power converter
  • the connection end between the second connection end of Cp1 and the second connection end of Cp2 is the second connection end of the DC power converter.
  • the first transformer unit and the second transformer unit in FIG. 5 include transformers. Please also refer to Figure 5.
  • the first transformer unit includes a first transformer.
  • the turns ratio of the first winding to the second winding of the first transformer is Np1:Ns1 (or Np1/Ns1).
  • the first end and the second end of a winding are respectively connected to the connection ends of the switching tubes Q11 and Q12 and the connection ends of the switching tubes Q13 and Q14 in the first full-bridge circuit included in the first DC-AC conversion unit.
  • the second winding The first end and the second end are respectively connected to the connection end of the switch transistors Q15 and Q16 and the connection end of the switch transistors Q17 and Q18 in the first full bridge circuit included in the first AC-DC conversion unit.
  • the second transformer unit includes a second transformer.
  • the turns ratio of the first winding to the second winding of the second transformer is Np2:Ns2 (or Np2/Ns2).
  • the first end and the second end of the first winding of the second transformer are Np2:Ns2 (or Np2/Ns2).
  • the DC adjustment unit in Figure 5 above may include a BUCK circuit. Please refer to Figure 5 as well.
  • the DC adjustment unit in Figure 5 includes a BUCK circuit.
  • the BUCK circuit consists of switching tubes Qb1 and switching tubes Qb2 (each switching tube can be a metal It is composed of oxide semiconductor field effect transistor), inductor Lb and capacitor Cb.
  • each switching tube can be a metal It is composed of oxide semiconductor field effect transistor), inductor Lb and capacitor Cb.
  • the second connection end of Qb1 is connected to the first connection end of Qb2 and the connection end is connected to the first connection end of the capacitor Cb through the inductor Lb.
  • the second connection end of Qb2 is connected to the second connection end of the capacitor Cb.
  • the first connection end of Qb1 and the second connection end of Qb2 in the BUCK circuit are respectively connected to the first connection end of the capacitor Cs2 and the second connection end of Cs2 in the second AC-DC conversion unit, and the connection ends of Lb and Cb are connected to The second connection end of the capacitor Cs1 in the above-mentioned first AC-DC conversion unit is connected.
  • the connection end of the capacitor Cs1 and the switching tubes Q15 and Q17 in the first AC-DC conversion unit is the third DC end of the DC power converter, and the connection end of the second connection end of Qb2 is connected to the second connection end of the capacitor Cb.
  • the fourth DC terminal of the DC power converter is the third DC end of the DC power converter.
  • the first DC-AC conversion unit includes a first full-bridge circuit, and the first full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the above-mentioned first AC-DC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in the full-bridge mode as an example.)
  • the first full-bridge circuit in the above-mentioned first DC-AC conversion unit operates in the full-bridge mode, and the above-mentioned second total voltage is the same as the above-mentioned third total voltage.
  • the controller controls the first full-bridge circuit to operate in the half-bridge mode. Specifically, when the first full-bridge circuit in the first DC-AC conversion unit operates in the full-bridge mode, the switching transistors Q11 and Q12 of the first bridge arm perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle. The switching transistors Q13 and Q14 of the second bridge arm also perform switching actions according to the predetermined frequency and 50% duty cycle and are complementary, and Q11 is synchronized with Q14, and Q12 is synchronized with Q13.
  • the switching tubes Q15 and Q16 of the first bridge arm perform switching actions according to the predetermined frequency and 50% duty cycle and complement each other.
  • the switching transistors Q17 and Q18 also perform switching actions according to the predetermined frequency and 50% duty cycle and are complementary, and Q15 is synchronized with Q18, and Q16 is synchronized with Q17.
  • the above-mentioned first threshold is obtained from the maximum value of the voltage ratio of the first DC-AC conversion unit, the voltage ratio of the first AC-DC conversion unit, and the first turns ratio of the first transformer unit.
  • the maximum value of the AC terminal voltage of the first DC-AC conversion unit is the positive DC terminal voltage
  • the minimum value of the AC terminal voltage is If the DC terminal voltage is negative
  • the ratio of the peak-to-peak AC terminal voltage of the first DC-AC conversion unit to the DC terminal voltage is 2.
  • the maximum AC terminal voltage of the first DC-AC conversion unit is the positive DC terminal voltage
  • the minimum AC terminal voltage is 0 (or, the maximum AC terminal voltage is 0, the maximum value of the AC terminal voltage is the negative DC terminal voltage)
  • the voltage ratio a of the first DC-AC conversion unit is 1.
  • the maximum value max(a) of the voltage ratio a of the first DC-AC conversion unit is 2.
  • the above-mentioned first AC-DC conversion unit operates in the full-bridge mode.
  • the maximum AC terminal voltage of the first AC-DC conversion unit is a positive DC terminal voltage
  • the minimum AC terminal voltage is a negative DC terminal voltage.
  • the first AC- The ratio of the DC terminal voltage to the peak-to-peak voltage of the AC terminal of the conversion unit (that is, the first AC-DC voltage ratio, which can be expressed as b) is 0.5.
  • a value for example, any value from 0.9*max(a)*(Ns1/Np1)*b to 1.1*max(a)*(Ns1/Np1)*b can be taken as the above-mentioned first threshold).
  • the embodiment of the present application takes the value corresponding to max(a)*(Ns1/Np1)*b as the above-mentioned first threshold as an example for description, which will not be described again below.
  • the controller controls the first full-bridge circuit of the above-mentioned first DC-AC conversion unit to work at Half-bridge mode, that is, the switching tubes Q11 and Q12 of the first bridge arm of the full-bridge circuit are controlled to perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle, and the switching tube Q13 of the second bridge arm remains normally off and the switching tube Q14 remains normally on, or the switching transistors Q11 and Q12 of the first bridge arm of the full-bridge circuit of the first DC-AC conversion unit are controlled to perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle. Switch Q14 remains normally off and switch Q13 remains normally on.
  • the above-mentioned controller can control the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the second threshold is obtained from the maximum value of the voltage ratio of the first DC-AC conversion unit, the voltage ratio of the first AC-DC conversion unit, the first turns ratio, and the range of the first total voltage.
  • the embodiment of the present application takes the value corresponding to max(a)*(Ns1/Np1)*b*max(Vp) as the above-mentioned second threshold as an example for description, which will not be described again below.
  • the controller can control the first full-bridge circuit to operate in the half-bridge mode.
  • the first full-bridge circuit in the first DC-AC conversion unit operates in the full-bridge mode
  • the first total voltage Vp is greater than the third threshold.
  • the above-mentioned controller can control the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the third threshold value is determined by the maximum value of the voltage ratio of the first DC-AC conversion unit and the voltage of the first AC-DC conversion unit. ratio, the above-mentioned first turns ratio and the above-mentioned second total voltage range are obtained.
  • the value corresponding to min(Vs)/max(a)/(Ns1/Np1)/b is the above
  • the third threshold is explained as an example and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the control condition that the above-mentioned Vs/Vp is less than the first threshold Ns1/Np1 can be expressed as Vs ⁇ Vs2.
  • the controller controls the first full-bridge circuit to operate in the half-bridge mode when Vs/Vp ⁇ Ns1/Np1, which is equivalent to controlling the first full-bridge circuit to operate in the half-bridge mode when Vs ⁇ Vs2.
  • the controller controls the first full-bridge circuit to operate in the half-bridge mode, so that the above-mentioned second voltage drop is 0.5*Vp*(Ns1/Np1).
  • the controller changes the operating mode of the first full-bridge circuit in the first DC-AC conversion unit to change the first full-bridge circuit.
  • the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the conversion unit (such as the first DC-AC conversion unit) is used to reduce the voltage of the second sub-voltage Vs2 to prevent the second sub-voltage Vs2 from exceeding the second total voltage Vs (controller
  • the situation of controlling the first full-bridge circuit based on the second threshold and the third threshold is similar and will not be repeated here), improving the DC voltage conversion effect and applicability of the DC power converter, and achieving wide input and output under low circuit complexity. Voltage adaptability range.
  • the first DC-AC conversion unit includes a first full-bridge circuit, and the first full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the above-mentioned first AC-DC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in full-bridge mode as an example.)
  • the first full-bridge circuit in the first DC-AC conversion unit operates in half-bridge mode, and the above-mentioned second total voltage is the same as the above-mentioned first
  • the controller controls the first full-bridge circuit in the DC-AC conversion unit to operate in the full-bridge mode.
  • the above-mentioned fourth threshold is obtained from the maximum value of the voltage ratio of the first DC-AC conversion unit, the voltage ratio of the first AC-DC conversion unit, and the first turns ratio of the first transformer unit.
  • the value corresponding to max(a)*(Ns1/Np1)*b is the above-mentioned fourth threshold, that is, the fourth threshold is equal to the above-mentioned first threshold.
  • a threshold is used as an example for explanation and will not be described again below.
  • the first full-bridge circuit in the first DC-AC conversion unit operates in the half-bridge mode
  • the above-mentioned second total voltage Vs is greater than the fifth threshold.
  • the above-mentioned controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the above fifth threshold can be a value corresponding to max(a)*(Ns1/Np1)*b*max(Vp), or it can also be a value based on max(a)*(Ns1/Np1)*b*max( Any value in the value range determined by Vp).
  • the above-mentioned fifth threshold is greater than or equal to the above-mentioned second threshold.
  • max(a)*(Ns1/Np1)*b*max(Vp) corresponds to The value is the above-mentioned fifth threshold, that is, the fifth threshold is equal to the above-mentioned second threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the above-mentioned controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the above-mentioned sixth threshold can be a value corresponding to min(Vs)/max(a)/(Ns1/Np1)/b, or it can also be based on min(Vs)/max(a)/(Ns1/Np1) /b Any value in the value range determined by The value is the above-mentioned sixth threshold, that is, the sixth threshold is equal to the above-mentioned third threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the control condition that the above-mentioned Vs/Vp is greater than the fourth threshold Ns1/Np1 can be expressed as Vs >2*Vs2.
  • the above controller controls the first full-bridge circuit to operate in the full-bridge mode when Vs/Vp is greater than the fourth threshold Ns1/Np1, which is equivalent to controlling the above-mentioned first full-bridge circuit to operate in the full-bridge mode when Vs>2*Vs2. bridge mode.
  • Vs/Vp>Ns1/Np1 the controller controls the first full-bridge circuit to operate in the full-bridge mode, so that the above-mentioned second voltage is boosted to Vp*(Ns1/Np1).
  • the controller when the second partial voltage Vs2 is lower than the voltage threshold (for example, when Vs2 ⁇ 0.5*Vs), the controller changes the operating mode of the first full-bridge circuit in the first DC-AC conversion unit to change the The relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage of the conversion unit (such as the first DC-AC conversion unit) where the full-bridge circuit is located, thereby boosting the second voltage Vs2 and preventing the second voltage Vs2 from excessively deviating from the second total voltage.
  • the voltage Vs (the controller controls the first full-bridge circuit based on the fifth threshold and the sixth threshold is similar and will not be described again here), improves the DC voltage conversion effect and applicability of the DC power converter, and achieves lower circuit complexity A wide input and output voltage adaptable range is achieved.
  • the first AC-DC conversion unit includes a first full-bridge circuit, and the first full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the above-mentioned first DC-AC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in full-bridge mode as an example).
  • the first full-bridge circuit in the above-mentioned first AC-DC conversion unit operates in half-bridge mode, and the above-mentioned second total voltage is the same as the above-mentioned third total voltage.
  • the controller controls the first full-bridge circuit to operate in the full-bridge mode. Specifically, when the first full-bridge circuit in the first AC-DC conversion unit operates in the half-bridge mode, the switching transistors Q15 and Q16 of the first bridge arm perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle.
  • the switching transistor Q17 of the second bridge arm remains normally off and the switching transistor Q18 remains normally on, or the switching transistors Q15 and Q16 of the first bridge arm of the full-bridge circuit of the first AC-DC conversion unit are controlled according to the predetermined frequency and 50%
  • the air ratio performs switching actions and is complementary.
  • the switching tube Q18 of the second bridge arm remains normally off and the switching tube Q17 remains normally on.
  • the above-mentioned first threshold is obtained by the voltage ratio of the first DC-AC conversion unit, the maximum value of the voltage ratio of the first AC-DC conversion unit, and the first turns ratio of the first transformer unit.
  • the above-mentioned first AC-DC conversion unit When the first full-bridge circuit in the DC conversion unit operates in the full-bridge mode, the maximum AC terminal voltage of the first AC-DC conversion unit is a positive DC terminal voltage, and the minimum AC terminal voltage is a negative DC terminal voltage, then the The ratio of the DC terminal voltage of an AC-DC conversion unit to the peak-to-peak value of the AC terminal voltage (that is, the voltage ratio of the first AC-DC conversion unit, which can be expressed as b) is 0.5.
  • the maximum AC terminal voltage of the first AC-DC conversion unit is the positive DC terminal voltage
  • the minimum AC terminal voltage is 0 (or, the maximum AC terminal voltage is 0, the maximum value of the AC terminal voltage is the negative DC terminal voltage)
  • the voltage ratio b of the first DC-AC conversion unit is 1.
  • the maximum value max(b) of the voltage ratio b of the first DC-AC conversion unit is 1.
  • the above-mentioned first DC-AC conversion unit operates in the full-bridge mode.
  • the maximum AC terminal voltage of the first DC-AC conversion unit is a positive DC terminal voltage
  • the minimum AC terminal voltage is a negative DC terminal voltage.
  • the embodiment of this application takes the value corresponding to a*(Ns1/Np1)*max(b) as the above-mentioned first threshold as an example. Description, no further details will be given below.
  • the controller controls the first full-bridge circuit to operate in the full-bridge mode. That is, the switching transistors Q15 and Q16 of the first arm of the full-bridge circuit are controlled to perform switching actions according to a predetermined frequency and a 50% duty cycle and are complementary, and the switching transistors Q17 and Q18 of the second bridge arm also operate according to a predetermined frequency and a 50% duty cycle.
  • the air ratio performs switching actions and is complementary, and Q15 is synchronized with Q18, and Q16 is synchronized with Q17.
  • the above-mentioned controller can control the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the second threshold is determined by the voltage ratio of the first DC-AC conversion unit, the maximum voltage ratio of the first AC-DC conversion unit, the first turns ratio of the first transformation unit, and the first total voltage. range is obtained.
  • the embodiment of this application takes the value corresponding to a*(Ns1/Np1)*max(b)*max(Vp) as the above-mentioned second threshold as an example for explanation. The following will not Again.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the first full-bridge circuit in the first AC-DC conversion unit operates in the half-bridge mode, and the first total voltage Vp is greater than the third threshold.
  • the above-mentioned controller can control the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the third threshold value is determined by the voltage ratio of the first DC-AC conversion unit, the maximum value of the voltage ratio of the first AC-DC conversion unit, The first turns ratio of the first transformer unit and the above-mentioned range of the second total voltage are obtained.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the control condition that the above Vs/Vp is less than the first threshold 2*Ns1/Np1 can be expressed as Vs ⁇ Vs2.
  • the above controller controls the first full-bridge circuit to operate in the full-bridge mode when Vs/Vp is less than the first threshold 2*Ns1/Np1, which is equivalent to controlling the first full-bridge circuit to operate in the full-bridge mode when Vs ⁇ Vs2. bridge mode.
  • the controller controls the first full-bridge circuit to operate in the full-bridge mode, so that the above-mentioned second voltage is reduced to Vp*(Ns1/Np1).
  • the controller controls the operating mode of the first full-bridge circuit to change the conversion unit where the first full-bridge circuit is located (for example, the first AC -DC conversion unit)
  • the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage, thereby reducing the voltage of the second sub-voltage Vs2 to prevent the second sub-voltage Vs2 from exceeding the second total voltage Vs (the controller is based on the second threshold and the third threshold
  • the situation of controlling the first full-bridge circuit is similar and will not be repeated here), which improves the DC voltage conversion effect and applicability of the DC power converter and achieves a wide input-output voltage adaptation range with low
  • the first AC-DC conversion unit includes a first full-bridge circuit, and the first full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the above-mentioned first DC-AC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in full-bridge mode as an example.)
  • the first full-bridge circuit in the above-mentioned first AC-DC conversion unit operates in the full-bridge mode, and the above-mentioned second total voltage is the same as the above-mentioned third total voltage.
  • the controller controls the first full-bridge circuit to operate in the half-bridge mode.
  • the fourth threshold is obtained from the voltage ratio of the first DC-AC conversion unit, the maximum value of the voltage ratio of the first AC-DC conversion unit, and the first turns ratio of the first transformer unit.
  • the value corresponding to a*(Ns1/Np1)*max(b) is the above-mentioned fourth threshold, that is, the fourth threshold is equal to the above-mentioned
  • the first threshold is explained as an example and will not be described again below.
  • the controller controls the first full-bridge circuit to operate in the half-bridge mode.
  • the first full-bridge circuit in the first AC-DC conversion unit operates in the full-bridge mode
  • the above-mentioned second total voltage Vs is greater than the fifth threshold.
  • the above-mentioned controller controls the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the above fifth threshold can be a value corresponding to a*(Ns1/Np1)*max(b)*max(Vp), or it can also be a value based on a*(Ns1/Np1)*max(b)*max( Any value in the value range determined by Vp).
  • the above-mentioned fifth threshold is greater than or equal to the above-mentioned second threshold.
  • a*(Ns1/Np1)*max(b)*max(Vp) corresponds to The value is the above-mentioned fifth threshold, that is, the fifth threshold is equal to the above-mentioned second threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the above-mentioned controller controls the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the above-mentioned sixth threshold can be a value corresponding to min(Vs)/a/(Ns1/Np1)/max(b), or it can also be a value based on min(Vs)/a/(Ns1/Np1)/max( b) Any value in the determined value range.
  • the above-mentioned sixth threshold is less than or equal to the above-mentioned third threshold.
  • min(Vs)/a/(Ns1/Np1)/max(b) corresponds The value is the above-mentioned sixth threshold, that is, the sixth threshold is equal to the above-mentioned third threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the half-bridge mode.
  • the control condition that Vs/Vp is greater than the fourth threshold 2*Ns1/Np1 can be expressed as Vs>2*Vs2 .
  • the above controller controls the first full-bridge circuit to operate in the half-bridge mode when Vs/Vp is greater than the fourth threshold 2*Ns1/Np1, which is equivalent to controlling the above-mentioned first full-bridge circuit to operate when Vs>2*Vs2 in half-bridge mode.
  • the first full-bridge circuit operates in the half-bridge mode, so that the above-mentioned second voltage is boosted to 2*Vp*(Ns1/Np1).
  • the controller controls the operating mode of the first full-bridge circuit to change the conversion unit where the first full-bridge circuit is located (for example, The relationship between the peak-to-peak voltage of the AC terminal voltage and the DC terminal voltage of the first AC-DC conversion unit, thereby boosting the second sub-voltage Vs2 to prevent the second sub-voltage Vs2 from excessively deviating from the second total voltage Vs (the controller is based on the fifth threshold , the situation of the sixth threshold control of the first full-bridge circuit is similar and will not be repeated here), which improves the DC voltage conversion effect and applicability of the DC power converter, and achieves a wide input and output voltage adaptation range with low circuit complexity.
  • the second DC-AC conversion unit includes a second full-bridge circuit, and the second full-bridge circuit can operate in a full-bridge mode or a half-bridge model.
  • the above-mentioned second AC-DC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in the full-bridge mode as an example.)
  • the second full-bridge circuit in the above-mentioned second DC-AC conversion unit operates in the full-bridge mode, and the above-mentioned first divided voltage is the same as the above-mentioned third voltage.
  • the controller controls the second full-bridge circuit to operate in the half-bridge mode.
  • the switching transistors Q21 and Q22 of the first bridge arm perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle.
  • the switching transistors Q23 and Q24 of the second bridge arm also perform switching actions according to the predetermined frequency and 50% duty cycle and are complementary, and Q21 is synchronized with Q24, and Q22 is synchronized with Q23.
  • the switching transistors Q25 and Q26 of the first bridge arm perform switching actions according to the predetermined frequency and 50% duty cycle and complement each other.
  • the switching tubes Q27 and Q28 also perform switching actions according to the predetermined frequency and 50% duty cycle and are complementary, and Q25 is synchronized with Q28, and Q26 is synchronized with Q27.
  • the above-mentioned first threshold is obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit, the voltage ratio of the second AC-DC conversion unit, and the second turns ratio of the above-mentioned second transformer unit.
  • the maximum value of the AC terminal voltage of the second DC-AC conversion unit is the positive DC terminal voltage
  • the minimum value of the AC terminal voltage is If the DC terminal voltage is negative
  • the ratio of the peak-to-peak AC terminal voltage of the second DC-AC conversion unit to the DC terminal voltage is 2.
  • the maximum value of the AC terminal voltage of the second DC-AC conversion unit is the positive DC terminal voltage
  • the minimum value of the AC terminal voltage is 0 (or, the maximum value of the AC terminal voltage is 0, and the maximum value of the AC terminal voltage is 0,
  • the maximum value of the voltage is the negative DC terminal voltage)
  • the voltage ratio c of the second DC-AC conversion unit is 1.
  • the minimum value min(c) of the voltage ratio c of the second DC-AC conversion unit is 1.
  • the maximum AC terminal voltage of the second AC-DC conversion unit is a positive DC terminal voltage
  • the minimum AC terminal voltage is a negative DC terminal voltage
  • the second AC -The ratio of the DC terminal voltage to the peak-to-peak voltage of the AC terminal of the conversion unit is 0.5.
  • any value in (c)*(Ns2/Np2)*d is the above-mentioned first threshold).
  • the value corresponding to min(c)*(Ns2/Np2)*d is the above-mentioned first threshold as an example. Description, no further details will be given below.
  • the controller controls the second full-bridge circuit to operate in the half-bridge mode, that is, the controller controls the second full-bridge circuit to operate in the half-bridge mode.
  • the switching tubes Q21 and Q22 of the first arm of the full-bridge circuit perform switching actions according to a predetermined frequency and a 50% duty cycle and are complementary, the switching tube Q23 of the second arm remains normally off and the switching tube Q24 remains normally on, or,
  • the switching tubes Q21 and Q22 of the first bridge arm of the full-bridge circuit of the first DC-AC conversion unit are controlled to perform switching actions and complement each other according to a predetermined frequency and a 50% duty cycle, and the switching tube Q24 of the second bridge arm remains normally off and Switch Q23 remains normally open.
  • the second full-bridge circuit in the second DC-AC conversion unit operates in the full-bridge mode
  • the above-mentioned first divided voltage Vs1 is less than the second threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the second threshold is obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit, the voltage ratio of the second AC-DC conversion unit, the second turns ratio, and the range of the first partial voltage.
  • the above second threshold is taken as an example for explanation, and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the second full-bridge circuit in the second DC-AC conversion unit operates in the full-bridge mode
  • the above-mentioned first total voltage Vp is greater than the third threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the third threshold is obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit, the voltage ratio of the second AC-DC conversion unit, the second turns ratio, and the range of the second total voltage.
  • the above third threshold is taken as an example for explanation, and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the control condition that the above-mentioned Vs1/Vp is less than the first threshold 0.5*Ns2/Np2 can be Expressed as Vs3>2*Vs1.
  • the above controller controls the second full-bridge circuit to operate in half-bridge mode when Vs1/Vp is less than the first threshold 0.5*Ns2/Np2, which is equivalent to controlling the above-mentioned second full-bridge circuit to operate when Vs3>2*Vs1 in half-bridge mode.
  • the controller controls the second full-bridge circuit to operate in the half-bridge mode, so that the above-mentioned third voltage drop is 0.5*Vp*(Ns2/Np2).
  • the controller controls the operating mode of the second full-bridge circuit to change the conversion unit where the second full-bridge circuit is located (for example, the third (two DC-AC conversion units) the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage, thereby reducing the voltage of the third sub-voltage Vs3 to prevent the third sub-voltage Vs3 from excessively deviating from the first sub-voltage Vs1 (the controller is based on the second threshold,
  • the situation of the third threshold controlling the second full-bridge circuit is similar and will not be described in detail here), which improves the DC voltage conversion effect and applicability of the DC power converter, and
  • the second DC-AC conversion unit includes a second full-bridge circuit, and the second full-bridge circuit can operate in a full-bridge mode or a half-bridge model.
  • the above-mentioned second AC-DC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in the full-bridge mode as an example.)
  • the second full-bridge circuit in the above-mentioned second DC-AC conversion unit operates in the half-bridge mode, and the above-mentioned first divided voltage is the same as the above-mentioned third voltage.
  • the controller controls the second full-bridge circuit to operate in the full-bridge mode.
  • the fourth threshold is obtained from the minimum value of the voltage ratio of the second DC-AC conversion unit, the voltage ratio of the second AC-DC conversion unit, and the second turns ratio of the second transformer unit.
  • the value corresponding to min(c)*(Ns2/Np2)*d is the above-mentioned fourth threshold, that is, the fourth threshold is equal to the above-mentioned
  • the first threshold is explained as an example and will not be described again below.
  • the controller controls the second full-bridge circuit to operate in the full-bridge mode.
  • the second full-bridge circuit in the second DC-AC conversion unit operates in the half-bridge mode, and the above-mentioned first divided voltage Vs1 is greater than the fifth threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • the above fifth threshold can be a value corresponding to min(c)*(Ns2/Np2)*d*min(Vp), or it can also be based on min(c)*(Ns2/Np2)*d*min( Any value in the value range determined by Vp).
  • the above-mentioned fifth threshold is greater than or equal to the above-mentioned second threshold.
  • min(c)*(Ns2/Np2)*d*min(Vp) corresponds to The value is the above-mentioned fifth threshold, that is, the fifth threshold is equal to the above-mentioned second threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • max (Vs1) is the maximum value of the first sub-voltage).
  • the above-mentioned sixth threshold can be a value corresponding to max(Vs1)/min(c)/(Ns2/Np2)/d, or it can also be based on max(Vs1)/min(c)/(Ns2/Np2) Any value in the value range determined by /d.
  • the above-mentioned sixth threshold is less than or equal to the above-mentioned third threshold.
  • max(Vs1)/min(c)/(Ns2/Np2)/d corresponds to The value is the above-mentioned sixth threshold, that is, the sixth threshold is equal to the above-mentioned third threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned first full-bridge circuit to operate in the full-bridge mode.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode when Vs1/Vp is greater than the fourth threshold 0.5*Ns2/Np2.
  • Vs1/Vp is greater than the fourth threshold 0.5*Ns2/Np2.
  • the control condition that the above-mentioned Vs1/Vp is greater than the fourth threshold 0.5*Ns2/Np2 can be expressed as Vs3 ⁇ Vs1.
  • the above controller controls the second full-bridge circuit to operate in full-bridge mode when Vs1/Vp is greater than the fourth threshold 0.5*Ns2/Np2, which is equivalent to controlling the above-mentioned second full-bridge circuit to operate in full-bridge mode when Vs3 ⁇ Vs1. bridge mode.
  • the full-bridge circuit operates in the full-bridge mode, so that the above-mentioned third voltage is boosted to Vp*(Ns2/Np2).
  • the controller controls the operating mode of the second full-bridge circuit to change the conversion unit where the second full-bridge circuit is located (for example, the second DC-AC conversion unit) the relationship between the peak-to-peak voltage of the AC terminal and the DC terminal voltage, thereby boosting the third voltage Vs3 to prevent the third voltage Vs3 from not exceeding the first voltage Vs1 (the controller is based on the fifth threshold, the The situation of the six-threshold control second full-bridge circuit is similar and will not be repeated here), which improves the DC voltage conversion effect and applicability of the DC power converter and achieves a wide input-output voltage adaptation range with lower circuit complexity.
  • the second AC-DC conversion unit includes a second full-bridge circuit, and the second full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the second DC-AC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in the full-bridge mode as an example).
  • the second full-bridge circuit in the above-mentioned second AC-DC conversion unit operates in the half-bridge mode, and the above-mentioned first divided voltage is the same as the above-mentioned third voltage.
  • the controller controls the second full-bridge circuit to operate in the full-bridge mode. Specifically, when the second full-bridge circuit in the second AC-DC conversion unit operates in the half-bridge mode, the switching transistors Q25 and Q26 of the second bridge arm perform switching actions and complement each other according to the predetermined frequency and 50% duty cycle.
  • the switching transistor Q27 of the second bridge arm remains normally off and the switching transistor Q28 remains normally on, or the switching transistors Q25 and Q26 of the first bridge arm of the full-bridge circuit of the second DC-AC conversion unit are controlled according to the predetermined frequency and 50%
  • the air ratio performs switching actions and is complementary.
  • the switching tube Q28 of the second bridge arm remains normally off and the switching tube Q27 remains normally on.
  • the above-mentioned first threshold is obtained by the voltage ratio of the second DC-AC conversion unit, the minimum value of the voltage ratio of the second AC-DC conversion unit, and the second turns ratio of the second transformer unit.
  • the above-mentioned second AC-DC conversion unit When the second full-bridge circuit in the DC conversion unit operates in the full-bridge mode, the maximum AC terminal voltage of the second AC-DC conversion unit is a positive DC terminal voltage, and the minimum AC terminal voltage is a negative DC terminal voltage, then the second AC-DC conversion unit The ratio of the DC terminal voltage of the second AC-DC conversion unit to the peak-to-peak voltage of the AC terminal (that is, the voltage ratio of the second AC-DC conversion unit, which can be expressed as d) is 0.5.
  • the second full-bridge circuit operates as a half-bridge mode
  • the maximum value of the AC terminal voltage of the second AC-DC conversion unit is the positive DC terminal voltage
  • the minimum value of the AC terminal voltage is 0 (or, the maximum value of the AC terminal voltage is 0, and the maximum value of the AC terminal voltage is the negative DC terminal voltage)
  • the voltage ratio d of the second AC-DC conversion unit is 1.
  • the minimum value min(d) of the voltage ratio d of the second AC-DC conversion unit is 0.5.
  • the maximum AC terminal voltage of the second DC-AC conversion unit is a positive DC terminal voltage
  • the minimum AC terminal voltage is a negative DC terminal voltage
  • the second DC -The ratio of the peak-to-peak voltage of the AC terminal of the AC conversion unit to the voltage of the DC terminal is 2.
  • the above-mentioned first threshold can be a value corresponding to c*(Ns2/Np2)*min(d), or It can be any value in the value range determined based on c*(Ns2/Np2)*min(d) (for example, it can be 0.9*c*(Ns2/Np2)*min(d) to 1.1*c*( Any value in Ns2/Np2)*min(d) is the above-mentioned first threshold).
  • the embodiment of this application takes the value corresponding to c*(Ns2/Np2)*min(d) as the above-mentioned first threshold as an example. No further details will be given below.
  • the controller controls the second full-bridge circuit to operate in the full-bridge mode, that is, controls the full-bridge
  • the switching transistors Q25 and Q26 of the first bridge arm of the circuit perform switching operations according to a predetermined frequency and a 50% duty cycle and are complementary, and the switching transistors Q27 and Q28 of the second bridge arm also perform switching operations according to a predetermined frequency and a 50% duty cycle. And they are complementary, and Q25 is synchronized with Q28, and Q26 is synchronized with Q27.
  • the second full-bridge circuit in the second AC-DC conversion unit operates in the half-bridge mode
  • the above-mentioned first divided voltage Vs1 is less than the second threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the second threshold is obtained from the voltage ratio of the second DC-AC conversion unit, the minimum value of the voltage ratio of the second AC-DC conversion unit, the second turns ratio, and the range of the first partial voltage.
  • the value corresponding to c*(Ns2/Np2)*min(d)*min(Vp) is the above
  • the second threshold is explained as an example and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • the second full-bridge circuit in the second AC-DC conversion unit operates in the half-bridge mode
  • the above-mentioned first total voltage Vp is greater than the third threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • the third threshold is obtained from the voltage ratio of the second DC-AC conversion unit, the minimum value of the voltage ratio of the second AC-DC conversion unit, the second turns ratio, and the range of the second total voltage.
  • the third threshold is explained as an example and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the full-bridge mode.
  • the control condition that the above-mentioned Vs1/Vp is less than the first threshold Ns2/Np2 can be expressed as Vs3>2* Vs1.
  • the above controller controls the second full-bridge circuit to operate in full-bridge mode when Vs1/Vp is less than the first threshold Ns2/Np2, which is equivalent to controlling the above-mentioned second full-bridge circuit to operate in full-bridge mode when Vs3>2*Vs1. bridge mode.
  • the full-bridge circuit operates in the full-bridge mode, so that the above-mentioned third voltage drop is Vp*(Ns2/Np2).
  • the controller controls the operating mode of the second full-bridge circuit to change the conversion unit where the second full-bridge circuit is located (for example, the third (2 AC-DC conversion unit)
  • the second AC-DC conversion unit includes a second full-bridge circuit, and the second full-bridge circuit can operate in a full-bridge mode or a half-bridge mode. model.
  • the above-mentioned second DC-AC conversion unit keeps the operating mode unchanged (it can be a full-bridge circuit that constantly operates in the full-bridge mode, a half-bridge circuit that constantly operates in the half-bridge mode, or other circuits that constantly operate in a fixed mode, as For convenience of description, here we take a full-bridge circuit that constantly operates in the full-bridge mode as an example.)
  • the second full-bridge circuit in the above-mentioned second AC-DC conversion unit operates in the full-bridge mode, and the above-mentioned first divided voltage is the same as the above-mentioned third voltage.
  • the controller controls the second full-bridge circuit to operate in the half-bridge mode.
  • the fourth threshold is obtained from the voltage ratio of the second DC-AC conversion unit, the minimum value of the voltage ratio of the second AC-DC conversion unit, and the second turns ratio of the second transformer unit.
  • the value corresponding to c*(Ns2/Np2)*min(d) is the above-mentioned fourth threshold, that is, the fourth threshold is equal to the above-mentioned first threshold.
  • the threshold is used as an example for explanation and will not be described again below.
  • the second full-bridge circuit in the second AC-DC conversion unit operates in the full-bridge mode
  • the above-mentioned first divided voltage Vs1 is greater than the fifth threshold.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the above fifth threshold can be a value corresponding to c*(Ns2/Np2)*min(d)*min(Vp), or it can also be a value based on c*(Ns2/Np2)*min(d)*min( Any value in the value range determined by Vp).
  • the above-mentioned fifth threshold is greater than or equal to the above-mentioned second threshold.
  • c*(Ns2/Np2)*min(d)*min(Vp) corresponds to The value is the above-mentioned fifth threshold, that is, the fifth threshold is equal to the above-mentioned second threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the above-mentioned controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • max(Vs1 ) is the maximum value of the first sub-voltage).
  • the above-mentioned sixth threshold can be a value corresponding to max(Vs1)/c/(Ns2/Np2)/min(d), or it can also be a value based on max(Vs1)/c/(Ns2/Np2)/min( d) Any value in the determined value range.
  • the above-mentioned sixth threshold is less than or equal to the above-mentioned third threshold.
  • max(Vs1)/c/(Ns2/Np2)/min(d) corresponds The value is the above-mentioned sixth threshold, that is, the sixth threshold is equal to the above-mentioned third threshold, as an example, and will not be described again below.
  • the controller controls the above-mentioned second full-bridge circuit to operate in the half-bridge mode.
  • the control condition that Vs1/Vp is greater than the fourth threshold Ns2/Np2 can be expressed as Vs1>Vs3.
  • the above controller controls the second full-bridge circuit to operate in the half-bridge mode when Vs1/Vp is greater than the fourth threshold Ns2/Np2, which is equivalent to controlling the above-mentioned second full-bridge circuit to operate in the half-bridge mode when Vs1>Vs3 .
  • the circuit works in half-bridge mode, so that the third voltage is boosted to 2*Vp*(Ns2/Np2).
  • the controller controls the operating mode of the second full-bridge circuit to change the conversion unit where the second full-bridge circuit is located (for example, the second AC-DC conversion unit)
  • the above controller is based on the first reference voltage, the second divided voltage Vs2 between the first connection end and the second connection end of the capacitor Cs1 and the capacitor Cs1.
  • the third divided voltage Vs3 between the first connection end and the second connection end of Cs2 controls the switching transistor Qb1 and the switching transistor Qb2 in the above-mentioned DC adjustment unit to control the first connection end and the second connection end of the capacitance Cb of the above-mentioned DC adjustment unit.
  • the sum of the first divided voltage Vs1 and the second divided voltage Vs2 is the first reference voltage.
  • the DC voltage between the third DC terminal and the fourth DC terminal of the DC power converter (i.e., the second total voltage Vs) is equal to the sum of the above-mentioned second partial voltage Vs2 and the above-mentioned first partial voltage Vs1, that is, the DC power
  • the converter may control the first full-bridge circuit in the first power conversion module based on the different first total voltage Vp and/or the second total voltage Vs through the controller, or the controller may control the first full-bridge circuit in the first power conversion module based on the different first partial voltages Vs1 and /or the first total voltage Vp controls the second full-bridge circuit in the second power conversion module to achieve a DC voltage with a voltage value of the first reference voltage between the third DC terminal and the fourth DC terminal of the DC power converter. output, making the ratio range of the input DC voltage and the output DC voltage wider, the DC voltage conversion effect is good, and the applicability is strong.
  • the controller in the above-mentioned DC power converter controls the switching tube in the DC regulation unit based on the second reference voltage and the above-mentioned second sub-voltage Vs2.
  • Qb1 and switching tube Qb2 are used to control the first divided voltage Vs1 between the first connection end and the second connection end of the capacitor Cb of the above-mentioned DC adjustment unit, so that the first DC end and the second DC end of the DC power converter are The first total voltage Vp between bridge circuit, or, the controller controls the second full-bridge circuit in the second power conversion module based on the different first partial voltage Vs1 and/or the first total voltage Vp, so as to convert the first DC terminal of the DC power converter to A DC voltage output with a voltage value of the second reference voltage is realized between the second DC terminal and the second DC terminal, so that the ratio range of the input DC voltage and the output DC voltage is wider, the DC voltage conversion effect is good, and the applicability is strong.
  • the first power conversion module of the DC power converter in Figure 6 includes a first DC-AC conversion unit, a first AC-DC conversion unit and a first transformer unit, wherein the first DC-AC conversion unit The first DC end and the second DC end of the unit are respectively the first DC end and the second DC end of the first power conversion module, and the first AC end and the second AC end of the first DC-AC conversion unit pass through the third A transformer unit is coupled to the first AC terminal and the second AC terminal of the first AC-DC conversion unit respectively. The first DC terminal and the second DC terminal of the first AC-DC conversion unit are respectively the first power conversion module.
  • the above-mentioned first DC-AC conversion unit and/or the above-mentioned first AC-DC conversion unit includes a first full-bridge circuit, and the above-mentioned controller (not shown in Figure 6) is based on the first DC terminal of the above-mentioned DC power converter and The first total voltage between the second DC terminal and/or the second total voltage between the third DC terminal and the fourth DC terminal of the DC power converter controls the first full-bridge circuit to operate in the full-bridge mode or the half-bridge mode, Thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full bridge circuit in the first power conversion module, so that the first DC terminal and the second DC terminal of the first AC-DC conversion unit in the first power conversion module are The difference between the DC voltage (ie, the second partial voltage Vs2) and the above-mentioned second total voltage Vs is not higher than the set threshold.
  • the second power conversion module of the DC power converter in Figure 6 includes the above-mentioned first DC-AC conversion unit, second AC-DC conversion unit, second transformer unit and DC adjustment unit, wherein the first DC -The first DC terminal and the second DC terminal of the AC conversion unit are respectively the first DC terminal and the second DC terminal of the second power conversion module, and the first AC terminal and the second AC terminal of the first DC-AC conversion unit are respectively The terminals are respectively coupled to the first AC terminal and the second AC terminal of the second AC-DC conversion unit through the second transformer unit, and the first DC terminal and the second DC terminal of the second AC-DC conversion unit are respectively connected to the DC regulating terminal.
  • the first DC terminal and the second DC terminal of the unit are coupled, and the third DC terminal and the fourth DC terminal of the DC adjustment unit are respectively the third DC terminal and the fourth DC terminal of the second power conversion module.
  • the second AC-DC conversion unit may include a second full bridge circuit, and the controller is based on the first total voltage Vp and/or the voltage between the third DC terminal and the fourth DC terminal of the DC adjustment unit.
  • the first sub-voltage Vs1 controls the second full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the second voltage in the above-mentioned second power conversion module.
  • the relationship between the AC terminal voltage and the DC terminal voltage of the full-bridge circuit enables the third divided voltage Vs3 between the first DC terminal and the second DC terminal of the second AC-DC conversion unit in the second power conversion module to remain consistent with the above-mentioned
  • the difference of the first partial voltage Vs1 is not higher than the set threshold.
  • FIG. 7 is another structural schematic diagram of the DC power converter provided by this application.
  • the first power conversion module of the DC power converter in Figure 7 includes a first DC-AC conversion unit, a first AC-DC conversion unit and a transformer unit, wherein the above-mentioned first DC-AC conversion unit
  • the first DC terminal and the second DC terminal are respectively the first DC terminal and the second DC terminal of the above-mentioned first power conversion module, and are respectively the first DC terminal and the second DC terminal of the above-mentioned second power conversion module. end.
  • the primary winding of the above-mentioned transformer unit is coupled to the first AC terminal and the second AC terminal of the first DC-AC conversion unit, and the first secondary winding of the transformer unit is coupled to the first AC terminal of the first AC-DC conversion unit.
  • the second AC terminal is coupled, and the second secondary winding of the transformer unit is coupled with the first AC terminal and the second AC terminal of the second AC-DC conversion unit.
  • the first DC terminal and the second DC terminal of the first AC-DC conversion unit are respectively the third DC terminal and the fourth DC terminal of the above-mentioned first power conversion module, and the first DC terminal of the second AC-DC conversion unit is , the second DC terminal is respectively coupled to the first DC terminal and the second DC terminal of the above-mentioned DC adjustment unit, and the third DC terminal and the fourth DC terminal of the above-mentioned DC adjustment unit are respectively the third DC terminal of the above-mentioned second power conversion module. terminal, the fourth DC terminal.
  • the above-mentioned first DC-AC conversion unit and/or the above-mentioned first AC-DC conversion unit includes a first full-bridge circuit, and the above-mentioned controller (not shown in Figure 7) is based on the first DC terminal of the above-mentioned DC power converter and The first total voltage Vp between the second DC terminals and/or the second total voltage Vs between the third DC terminal and the fourth DC terminal of the DC power converter controls the first full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit in the above-mentioned first power conversion module, so that the first DC terminal of the first AC-DC conversion unit in the above-mentioned first power conversion module and the second The difference between the DC voltage between the DC terminals (ie, the second partial voltage Vs2) and the above-mentioned second total voltage Vs is not higher than the set threshold.
  • the second AC-DC conversion unit may include a second full bridge circuit
  • the controller is based on the first total voltage Vp and/or the voltage between the third DC terminal and the fourth DC terminal of the DC adjustment unit.
  • the first divided voltage Vs1 controls the second full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the second full-bridge circuit in the above-mentioned second power conversion module, so that the above-mentioned second full-bridge circuit
  • the difference between the third partial voltage Vs3 between the first DC terminal and the second DC terminal of the second AC-DC conversion unit in the power conversion module and the above-mentioned first partial voltage Vs1 is not higher than the set threshold.
  • the first DC-AC conversion unit and the first AC-DC conversion unit in the first power conversion module of the DC power converter in Figure 6 include a first full-bridge circuit
  • the second AC-DC conversion unit in the module includes a second full-bridge circuit.
  • FIG. 8 is another structural schematic diagram of the DC power converter provided by this application.
  • the first full-bridge circuit included in the first DC-AC conversion unit is composed of switching tubes Q11, Q12, Q13 and Q14 (each switching tube can be a metal oxide semiconductor field effect transistor), and a capacitor Cp1.
  • the second connection end of Q11 is connected to the first connection end of Q12
  • the second connection end of Q13 is connected to the first connection end of Q14
  • the first connection end of Q11 is connected to the first connection end of Cp1 and the first connection end of Q13.
  • the connection ends are connected
  • the second connection end of Q12 is connected to the second connection end of Cp1 and the second connection end of Q14.
  • the first connection terminals of Q11, Q12, Q13 and Q14 can be the drains of Q11, Q12, Q13 and Q14
  • the second connection terminals of the above-mentioned switching tubes Q11, Q12, Q13 and Q14 can be the drains of Q11, Q12, Q13 and Q14. source.
  • the first full-bridge circuit included in the first AC-DC conversion unit is composed of switching transistors Q15, Q16, Q17, and Q18, and the capacitor Cs1.
  • the second full-bridge circuit included in the second AC-DC conversion unit is composed of switching transistors Q25, Q26. , Q27 and Q28, and capacitor Cs2.
  • Each switch tube in the first full-bridge circuit included in the above-mentioned first AC-DC conversion unit and the second full-bridge circuit included in the second AC-DC conversion unit may be a metal oxide semiconductor field effect transistor, and each switch tube in the full-bridge circuit
  • the connection relationship between the switch tube and the capacitor can be the same as the first full-bridge circuit included in the above-mentioned first DC-AC conversion unit, and will not be described again here.
  • the connection terminals of Cp1 of the first full-bridge circuit in the above-mentioned first DC-AC conversion unit and the switching tubes Q11 and Q13 are the first DC terminals of the DC power converter.
  • the connection terminals between Cp1 of the full-bridge circuit and switching tubes Q12 and Q14 are the second DC terminals of the DC power converter.
  • the first transformer unit and the second transformer unit in FIG. 8 include a transformer and a resonant circuit. Please also refer to Figure 8.
  • the first transformer unit includes a first transformer.
  • the turns ratio of the first winding and the second winding of the first transformer is Np1:Ns1 (or Np1/Ns1).
  • the first transformer unit It also includes a first resonant circuit, which includes an exciting inductor Lm1, a resonant inductor Lr1 and a resonant capacitor Cr1.
  • the excitation inductance Lm1 is the equivalent inductance of the first winding and the second winding of the first transformer.
  • the first end and the second end of the first winding of the first transformer are respectively connected with the first full DC-AC conversion unit included in the first transformer.
  • the connection ends of switch tubes Q11 and Q12 are connected, and the connection ends of switch tubes Q13 and Q14 are connected.
  • the first end of the second winding is connected to the first AC-DC conversion unit included in the above-mentioned first AC-DC conversion unit through the above-mentioned resonant inductor Lr1 and resonant capacitor Cr1.
  • the connecting terminals of the switching tubes Q15 and Q16 in a full-bridge circuit are connected, and the second terminal is connected to the connecting terminals of the switching tubes Q17 and Q18 in the first full-bridge circuit included in the first AC-DC conversion unit.
  • the second transformer unit includes a second transformer.
  • the turns ratio of the first winding to the second winding of the second transformer is Np2:Ns2 (or Np2/Ns2).
  • the second transformer unit also includes a second resonant circuit.
  • the second resonant circuit The circuit includes excitation inductor Lm2, resonant inductor Lr2 and resonant capacitor Cr2.
  • the excitation inductance Lm2 is the equivalent inductance of the first winding and the second winding of the second transformer.
  • the first end and the second end of the first winding of the second transformer are respectively connected with the first full DC-AC conversion unit included in the first DC-AC conversion unit.
  • the connecting ends of switching tubes Q11 and Q12 are connected, and the connecting ends of switching tubes Q13 and Q14 are connected.
  • the first end of the second winding is connected to the second AC-DC conversion unit included in the above-mentioned second AC-DC conversion unit through the above-mentioned resonant inductor Lr2 and resonant capacitor Cr2.
  • the connection between switching tubes Q25 and Q26 in the second full-bridge circuit The second end is connected to the connection end of the switching tubes Q27 and Q28 in the second full-bridge circuit included in the second AC-DC conversion unit.
  • the DC adjustment unit in Figure 7 above may include a BUCK-BOOST circuit. Please refer to Figure 8 as well. In Figure 8, the DC adjustment unit includes a BUCK-BOOST circuit.
  • the BUCK-BOOST circuit consists of switching tubes Qb1, switching tubes Qb2, It is composed of switch tube Qb3, switch tube Qb4 (each switch tube can be a metal oxide semiconductor field effect transistor), inductor Lb and capacitor Cb.
  • the second connection end of Qb1 is connected to the first connection end of Qb2, and the connection end is connected to the connection end of the second connection end of Qb3 and the first connection end of Qb4 through the inductor Lb.
  • the second connection end of Qb2, Qb4 The second connection end of Qb3 is connected to the second connection end of capacitor Cb, and the first connection end of Qb3 is connected to the first connection end of capacitor Cb.
  • the first connection end of Qb1 and the second connection end of Qb2 in the BUCK-BOOST circuit are respectively connected to the first connection end of the capacitor Cs2 and the second connection end of Cs2 in the above-mentioned second AC-DC conversion unit.
  • the connection between Qb3 and Cb The terminal is connected to the second connection terminal of the capacitor Cs1 in the above-mentioned first AC-DC conversion unit.
  • the connection end of the capacitor Cs1 and the switching tubes Q15 and Q17 is the third DC end of the DC power converter
  • the connection end of the capacitor Cb and Qb2 and Qb4 is the fourth DC end of the DC power converter.
  • the first DC-AC conversion unit and/or the above-mentioned first AC-DC conversion unit includes a first full-bridge circuit
  • the controller (not shown in Figure 8) is based on the first total voltage Vp between the first DC terminal and the second DC terminal of the above-mentioned DC power converter and/or the third DC terminal and the fourth DC terminal of the DC power converter.
  • the second total voltage Vs controls the first full-bridge circuit to operate in the full-bridge mode or the half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit, so that the first power conversion module in the first power conversion module
  • the difference between the DC voltage between the first DC terminal and the second DC terminal of the AC-DC conversion unit (ie, the second partial voltage Vs2) and the above-mentioned second total voltage Vs is not higher than the set threshold.
  • the second AC-DC conversion unit may include a second full bridge circuit, and the controller is based on the first total voltage Vp and/or the voltage between the third DC terminal and the fourth DC terminal of the DC adjustment unit.
  • the first divided voltage Vs1 controls the second full-bridge circuit to operate in full-bridge mode or half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the second full-bridge circuit in the above-mentioned second power conversion module, so that the above-mentioned second full-bridge circuit
  • the difference between the third partial voltage Vs3 between the first DC terminal and the second DC terminal of the second AC-DC conversion unit in the power conversion module and the above-mentioned first partial voltage Vs1 is not higher than the set threshold.
  • the above-mentioned controller controls the first full-bridge circuit based on the above-mentioned first total voltage Vp and/or the second total voltage Vs, and the above-mentioned controller controls the second full-bridge circuit based on the above-mentioned first total voltage Vp and/or the first partial voltage Vs1.
  • the process of the bridge circuit can be referred to the above description of the DC power converter shown in Figure 5, and will not be described again here.
  • the above controller is based on the first reference voltage, the second divided voltage Vs2 between the first connection end and the second connection end of the capacitor Cs1 and the capacitor Cs1.
  • the third divided voltage Vs3 between the first connection end and the second connection end of Cs2 controls the switching tubes Qb1, Qb2, Qb3 and Qb4 in the above-mentioned DC adjustment unit to control the first connection end and the third connection end of the capacitance Cb of the above-mentioned DC adjustment unit.
  • the sum of the first divided voltage Vs1 and the second divided voltage Vs2 is the first reference voltage.
  • the DC voltage between the third DC terminal and the fourth DC terminal of the DC power converter (i.e., the second total voltage Vs) is equal to the sum of the above-mentioned second partial voltage Vs2 and the above-mentioned first partial voltage Vs1, that is, the DC power
  • the converter may control the first full-bridge circuit in the first power conversion module based on the different first total voltage Vp and/or the second total voltage Vs through the controller, or the controller may control the first full-bridge circuit in the first power conversion module based on the different first partial voltages Vs1 and /or the first total voltage Vp controls the second full-bridge circuit in the second power conversion module to achieve a DC voltage with a voltage value of the first reference voltage between the third DC terminal and the fourth DC terminal of the DC power converter. output, making the ratio range of the input DC voltage and the output DC voltage wider, the DC voltage conversion effect is good, and the applicability is strong.
  • the controller in the above-mentioned DC power converter controls the switching tube Qb1 in the DC regulation unit based on the second reference voltage and the above-mentioned second partial voltage Vs2. , Qb2, Qb3 and Qb4 to control the first divided voltage Vs1 between the first connection end and the second connection end of the capacitor Cb of the above-mentioned DC adjustment unit, so that the first DC end and the second DC end of the DC power converter
  • the first total voltage Vp between them is equal to the above-mentioned second reference voltage, that is, the DC power converter can control the first power conversion module in the first power conversion module based on the different first total voltage Vp and/or the second total voltage Vs through the controller.
  • the full-bridge circuit or the controller controls the second full-bridge circuit in the second power conversion module based on the different first partial voltage Vs1 and/or the first total voltage Vp, so as to convert the first DC power into the DC power converter.
  • a DC voltage output with a voltage value of the second reference voltage is realized between the terminal and the second DC terminal, so that the ratio range of the input DC voltage and the output DC voltage is wider, the DC voltage conversion effect is good, and the applicability is strong.
  • the first DC-AC conversion unit and the first AC-DC conversion unit in the first power conversion module of the DC power converter in Figure 6 include a first full-bridge circuit
  • the second power conversion unit The second AC-DC conversion unit in the module includes a half-bridge circuit.
  • FIG. 9 is another structural schematic diagram of the DC power converter provided by this application.
  • the second AC-DC conversion unit in the second power conversion module includes a half-bridge circuit composed of switching transistors Q25 and Q26, and capacitors C27, C28, and Cs2.
  • the second connection end of Q25 is connected to the first connection end of Q26
  • the second connection end of capacitor C27 is connected to the first connection end of C28
  • the connection ends of switching tubes Q25 and Q26 are connected to the third connection end of the second winding of the second transformer.
  • One end is connected, the connection ends of capacitors C27 and C28 are connected to the second end of the second winding of the second transformer, the first connection end of capacitor C27 is connected to the first connection end of switching tube Q25 and the first connection end of capacitor Cs2,
  • the second connection end of the capacitor C28 is connected to the second connection end of the switch Q26 and the second connection end of the capacitor Cs2.
  • the first connection of the above-mentioned switching tubes Q25 and Q26 The terminals may be the drains of Q25 and Q26, and the second connection terminals of the above-mentioned switching tubes Q25 and Q26 may be the sources of Q25 and Q26.
  • the controller (not shown in Figure 9) is based on the first total voltage Vp between the first DC terminal and the second DC terminal of the DC power converter and/or the third DC terminal and the fourth DC terminal of the DC power converter.
  • the second total voltage Vs between the DC terminals controls the first full-bridge circuit to operate in the full-bridge mode or the half-bridge mode, thereby changing the relationship between the AC terminal voltage and the DC terminal voltage of the first full-bridge circuit, so that the first power conversion module
  • the difference between the DC voltage between the first DC terminal and the second DC terminal of the first AC-DC conversion unit (ie, the second partial voltage Vs2) and the above-mentioned second total voltage Vs is not higher than the set threshold.
  • the process of the controller controlling the first full-bridge circuit based on the first total voltage Vp and/or the second total voltage Vs may refer to the above description of the DC power converter shown in FIG. 5, and will not be described again here. .
  • the DC adjustment unit in FIG. 8 or 9 may include a full-bridge BUCK circuit.
  • FIG. 10 is a schematic structural diagram of the full-bridge BUCK circuit.
  • the full-bridge BUCK circuit is composed of switch tube Qb1, switch tube Qb2, switch tube Qb3, switch tube Qb4 (each switch tube can be a metal oxide semiconductor field effect transistor), inductor Lb and capacitor Cb.
  • the second connection end of Qb1 is connected to the first connection end of Qb2 and the connection end is connected to the second connection end of capacitor Cb.
  • the second connection end of Qb3 is connected to the connection end connected to the first connection end of Qb4 and the connection end
  • the inductor Lb is connected to the first connection end of the capacitor Cb.
  • the first connection end of Qb1 is connected to the first connection end of Qb3 and the connection end is the first DC end (or the first DC end) of the full-bridge BUCK circuit.
  • the second connection end of Qb2 is connected to the second connection end of Qb4. And the connection end is the second DC end (or the second DC end) of the full-bridge BUCK circuit.
  • connection end between the first connection end of the capacitor Cb and the inductor Lb and the connection ends between the second connection end of the capacitor Cb and Qb1 and Qb2 are respectively the third DC end (or the third DC end) and the fourth end of the full-bridge BUCK circuit.
  • DC terminal or fourth DC terminal.
  • the above-mentioned first full-bridge circuit and the above-mentioned second full-bridge circuit may be two-level full-bridge circuits or three-level full-bridge circuits, where the three-level full-bridge circuits include but are not limited to Point-clamped three-level full-bridge circuit, active mid-point clamped three-level full-bridge circuit and flying capacitor three-level full-bridge circuit.
  • Figure 11a is a schematic structural diagram of a midpoint clamped three-level full-bridge circuit.
  • the midpoint clamped three-level full-bridge circuit consists of the switch tubes Sa, Sb, Sc and Sd of the first bridge arm.
  • the second bridge arm is composed of switch tubes Se, Sf, Sg and Sh, and diodes Da, Db, Dc and Dd.
  • the first connection end of Sa is connected to the second connection end of Sb and the cathode of the diode Da, and the connection end passes through the diode Da and the diode Db in sequence to the first connection end of Sc, the second connection end of Sd, and the anode of the diode Db.
  • the connected terminals are connected, the first terminal of Se is connected to the second terminal of Sf and the cathode of diode Dc, and the terminals are sequentially connected to the first terminal of Sg, the second terminal of Sh through diode Dc and diode Dd.
  • the anode of the diode Dd is connected to a connection end, the second connection end of Sa is connected to the second connection end of Se, and the first connection end of Sd is connected to the first connection end of Sh.
  • the first connection end of Sb is connected to the second connection end of Sc and the connection end is the first AC end (or the first AC end) of the midpoint clamped three-level full bridge circuit.
  • the first connection end of Sf is connected to the first connection end of Sg.
  • connection end is connected and the connection end is the second AC end (or the second AC end) of the midpoint clamped three-level full-bridge circuit, the connection end between the anode of Da and the cathode of Db and the anode of Dc and Dd
  • connection terminals between the cathodes are connected, and the connection terminals between Da, Db, Dc and Dd are connected to the second connection terminal of Sa and the second connection terminal of Se, and the first connection terminal of Sd is connected to the second connection terminal of Sh.
  • the connection terminals connected to the first connection terminal are respectively the first DC terminal, the second DC terminal and the third DC terminal of the midpoint clamped three-level full bridge circuit. Please also refer to Figure 11b.
  • Figure 11b is a schematic structural diagram of an active midpoint clamped three-level full-bridge circuit.
  • the active midpoint clamped three-level full-bridge circuit consists of the switch tubes Sa, Sb, Sc and Sd, the switch tubes Sg, Sh, Si and Sj of the second bridge arm, and the switch tubes Se, Sf, Sk and Sl.
  • the first connection end of Sa is connected to the second connection end of Sb and the second connection end of the switch tube Se, and the connection end passes through the switch tube Se and the switch tube Sf in sequence with the first connection end of Sc and the second connection of Sd.
  • the first connection end of Sg is connected to the second connection end of Sh and the second connection end of the switch tube Sk, and the connection end passes through the switch tube Sk and the switch tube in turn.
  • Sl is connected to the first connection end of Si, the second connection end of Sj, and the first connection end of the switch tube Sl.
  • the second connection end of Sa is connected to the second connection end of Sg.
  • the first connection end of Sd The terminal is connected to the first connection terminal of Sj.
  • the first connection end of Sb is connected to the second connection end of Sc and the connection end is the first AC end of the midpoint clamped three-level full bridge circuit.
  • the first connection end of Sh is connected to the second connection end of Si and is connected to The end is the second AC end of the midpoint clamped three-level full-bridge circuit, the connection end between the first connection end of Se and the second connection end of Sf, the first connection end of Sk and the second connection end of Sl
  • the connection ends between Se, Sf, Sk and Sl are connected to the second connection end of Sa and the second connection end of Sg, and the first connection end of Sd is connected to the first connection end of Sj.
  • the connecting terminals connected to each other are respectively the first DC terminal, the second DC terminal and the third DC terminal of the active midpoint clamped three-level full-bridge circuit. Please refer to Figure 11c as well.
  • FIG 11c is a schematic structural diagram of a flying capacitor three-level full-bridge circuit.
  • the flying capacitor three-level full-bridge circuit consists of the switch tubes Sa, Sb, Sc and Sd of the first bridge arm, and the switch tubes Sa, Sb, Sc and Sd of the second bridge arm.
  • the bridge arm is composed of switch tubes Sg, Sh, Si and Sj, and capacitors Ca and Cb.
  • the first connection end of Sa is connected to the second connection end of Sb, and the connection end is connected to the connection end of the first connection end of Sc and the second connection end of Sd through the capacitor Ca
  • the first connection end of Se is connected to Sf.
  • the second connection end of Sg is connected to the second connection end of Sg through the capacitor Cb.
  • the second connection end of Sa is connected to the second connection end of Se.
  • the second connection end of Sd is connected to the second connection end of Sg.
  • One connection end is connected to the first connection end of Sh.
  • the first connection end of Sb is connected to the second connection end of Sc and the connection end is the first AC end of the midpoint clamped three-level full bridge circuit.
  • the first connection end of Sf is connected to the second connection end of Sg and is connected to The terminal is the second AC terminal of the midpoint clamped three-level full-bridge circuit.
  • the second terminal of Sa is connected to the second terminal of Se, and the first terminal of Sd is connected to the first terminal of Sh. company
  • the connection terminals are respectively the first DC terminal and the second DC terminal of the midpoint clamped three-level full-bridge circuit.
  • Each switch tube in the above-mentioned midpoint clamped three-level full-bridge circuit, active midpoint clamped three-level full-bridge circuit and flying capacitor three-level full-bridge circuit can be an insulated gate bipolar transistor (insulated gate bipolar transistor). bipolar transistor, IGBT) or metal oxide semiconductor field effect transistor. It can be understood that if each switch tube is an insulated gate bipolar transistor, the first connection terminal of each switch tube can be an emitter, and the second connection terminal of each switch tube can be a collector. If each switch tube is a metal oxide If a physical semiconductor field effect transistor is used, the first connection end of each switch tube can be the source, and the second connection end of each switch tube can be the drain. That is, the first connection end and the second connection end of each switch tube can be determined according to the specific requirements. The device type is determined and there are no restrictions here.
  • the three-level full-bridge circuit shown in Figure 11a, Figure 11b and Figure 11c can operate in the full-bridge mode or the half-bridge mode, with the three-level full-bridge circuit clamped at the midpoint of Figure 11a
  • the switching tubes Sa and Sc of the first bridge arm perform switching actions according to a predetermined frequency and a 50% duty cycle and are complementary
  • Sb and Sd operate according to a predetermined frequency and a 50% duty cycle.
  • the duty cycle performs switching actions and is complementary.
  • the switching tubes Se and Sg of the second bridge arm also perform switching actions according to the predetermined frequency and 50% duty cycle and are complementary.
  • Sf and Sh also perform switching according to the predetermined frequency and 50% duty cycle. Action and complementarity.
  • the maximum value of the voltage VAC at the AC end (or AC end) of the full-bridge circuit is the positive voltage at the DC end (or DC end), which can be expressed as +VDC
  • the voltage VAC at the AC end (or AC end) of the full-bridge circuit The voltage at the DC terminal whose minimum value is negative can be expressed as -VDC.
  • the switching action is performed with a 50% duty cycle and are complementary.
  • the switching tubes Se and Sf of the second bridge arm remain normally off, and the switching tubes Sg and Sh remain normally open.
  • the maximum value of the voltage VAC at the AC end of the full-bridge circuit is positive DC.
  • the voltage at terminal +VDC, the minimum value is 0.
  • the switching tubes Sa and Sc of the first bridge arm of the full-bridge circuit in Figure 11a perform switching actions according to a predetermined frequency and a 50% duty cycle and are complementary, and Sb and Sd perform complementary switching operations according to a predetermined frequency.
  • the frequency and 50% duty cycle perform switching actions and are complementary.
  • the switching tubes Sg and Sh of the second bridge arm remain normally off, and the switching tubes Se and Sf remain normally open.
  • the maximum value of the voltage VAC at the AC end of the full bridge circuit is 0
  • the minimum value is the voltage at the negative DC terminal -VDC. It can be understood that when the above full-bridge circuit operates in the full-bridge mode, the peak-to-peak value of the AC terminal voltage VAC (ie, 2VDC) is twice the peak-to-peak value (ie, VDC) when the above-mentioned full-bridge circuit operates in the half-bridge mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种直流功率转换器以及直流功率转换***,直流功率转换器包括控制器、第一功率变换模块和第二功率变换模块,第一功率变换模块第一直流端、第二直流端分别与第二功率变换模块的第一直流端、第二直流端耦合且为直流功率转换器的第一直流端、第二直流端,第一功率变换模块第三直流端为直流功率转换器的第三直流端且第四直流端与第二功率变换模块第三直流端耦合,第二功率变换模块第四直流端为直流功率转换器第四直流端,第一功率变换模块中包括至少一个第一全桥电路。其中,控制器用于基于第一总电压和/或第二总电压控制第一全桥电路工作在全桥模式或者半桥模式。采用本申请,可扩宽输入输出电压的适应范围。

Description

直流功率转换器以及直流功率转换***
本申请要求于2022年07月30日提交中国专利局、申请号为202210911507.7、申请名称为“直流功率转换器以及直流功率转换***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电力领域,尤其涉及一种直流功率转换器以及直流功率转换***。
背景技术
直流功率转换器是一种用于实现直流电压转换的电能变换器,广泛应用于不间断供电电源、电池管理等***中。直流功率转换器的输入输出电压适应范围表示该直流功率转换器能够实现的输入电压与输出电压的比值范围,输入输出电压适应范围更宽的直流功率转换器能够适用于更多供电场景,适用性更强。
传统的直流功率转换器中,当输入电压的范围很大并且输出电压的范围很大时,即为了实现较宽范围的输入电压与输出电压的比值,在转换器的电路设计和控制策略设计上需要很高的设计冗余,从而牺牲了一定的电路性能,同时导致电路体积和电路重量过大,直流功率转换损耗高。因此,如何解决提高直流功率转换器的输入输出电压适应范围的同时降低电路复杂度和增强电路工作性能是当前亟待解决的技术问题之一。
发明内容
本申请实施例提供一种直流功率转换器以及直流功率转换***,可扩宽输入输出电压的适应范围,直流功率转换效率高,电路结构简单,适用性强。
第一方面,本申请提供了一种直流功率转换器,该直流功率转换器包括控制器、第一功率变换模块和第二功率变换模块。其中,第一功率变换模块的第一直流端、第二直流端分别与第二功率变换模块的第一直流端、第二直流端耦合,第一功率变换模块的第一直流端、第二直流端分别为直流功率转换器的第一直流端、第二直流端,第一功率变换模块的第三直流端与第二功率变换模块的第四直流端分别为直流功率转换器的第三直流端、第四直流端,第一功率变换模块的第四直流端与第二功率变换模块的第三直流端耦合。这里,第一功率变换模块中包括至少一个第一全桥电路,控制器可以用于基于直流功率转换器的第一直流端与第二直流端之间的第一总电压和/或直流功率转换器的第三直流端与第四直流端之间的第二总电压控制第一全桥电路工作在全桥模式或者半桥模式。
在本申请中,直流功率转换器可以通过控制器基于该直流功率转换器的第一直流端与第二直流端之间的第一总电压和/或第三直流端与第四直流端之间的第二总电压控制直流功率转换器中的第一全桥电路工作在不同的工作模式(全桥模式或者半桥模式),工作在不同工作模式的第一全桥电路具有不同的交流端电压与直流端电压的关系,从而可以通过改变第一全桥电路的工作模式以调整直流功率转换器的电压转换关系,提高了对第一全桥电路两端电压的控制灵活性,使得上述直流功率转换器具有更宽的输入输出电压适应范围,电路结构简单,直流功率转换效率高。
结合第一方面,在第一种可能的实施方式中,上述第一功率变换模块包括第一DC-AC变换单元、第一AC-DC变换单元和第一变压单元,其中,上述第一DC-AC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第一直流端、第二直流端,上述第一DC-AC变换单元的第一交流端、第二交流端通过上述第一变压单元分别与上述第一AC-DC变换单元的第一交流端、第二交流端耦合,上述第一AC-DC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第三直流端、第四直流端。这里,上述第一DC-AC变换单元和/或上述第一AC-DC变换单元中可以包括上述第一全桥电路,上述控制器用于基于上述第一总电压和/或上述第二总电压控制上述第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的第二分电压保持与上述第二总电压的差值不高于设定阈值(比如,可以是保持第二分电压不低于第二总电压的80%),避免第二分电压过分偏离第二总电压,提高了直流功率转换器的直流电压转换效率,直流功率转换器电路简单,适用性好。
结合第一方面第一种可能的实施方式,在第二种可能的实施方式中,上述第二功率变换模块包括第二DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,上述第二DC-AC变换单元的第一直流端、第二直流端分别为上述第二功率变换模块的第一直流端、第二直流端,上述第二DC-AC变换单元的第一交流端、第二交流端通过上述第二变压单元分别与上述第二AC-DC变换单元的第一交流端、第二交流端耦合,上述第二AC-DC变换单元的第一直流端、第二直流端分别与上述直流调节单元的第一直流端、第二直流端耦合,上述直流调节单元的第三直流端、第四直流端分别为上述第二功率变换模块的第三直流端、第四直流端。也就是说,在本申请中,控制器可以控制直流调节单元以改变直流调节单元第三直流端与第四直流端之间的直流电压,从而调整直流功率转换器的直流电压输出(可以是第一直流端与第二直流端之间的直流电压,或者第三直流端与第四直流端之间的直流电压),提高直流功率转换器的直流电压转换准确性,适用性强。
结合第一方面第一种可能的实施方式,在第三种可能的实施方式中,上述第二功率变换模块包括上述第一DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,上述第一DC-AC变换单元的第一直流端、第二直流端分别为上述第二功率变换模块的第一直流端、第二直流端,上述第一DC-AC变换单元的第一交流端、第二交流端通过上述第二变压单元分别与上述第二AC-DC变换单元的第一交流端、第二交流端耦合,上述第二AC-DC变换单元的第一直流端、第二直流端分别与上述直流调节单元的第一直流端、第二直流端耦合,上述直流调节单元的第三直流端、第四直流端分别为上述第二功率变换模块的第三直流端、第四直流端。也就是说,在本申请中,控制器可以控制直流调节单元以改变直流调节单元第三直流端与第四直流端之间的直流电压,从而调整直流功率转换器的直流电压输出(可以是第一直流端与第二直流端之间的直流电压,或者第三直流端与第四直流端之间的直流电压),提高直流功率转换器的直流电压转换准确性,适用性强。
结合第一方面,在第四种可能的实施方式中,上述第一功率变换模块包括第一DC-AC变换单元、变压单元和第一AC-DC变换单元,上述第二功率变换模块包括上述第一DC-AC变换单元、上述变压单元、第二AC-DC变换单元和直流调节单元,其中,上述第一DC-AC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第一直流端、第二直流端,并且分别为上述第二功率变换模块的第一直流端、第二直流端;上述变压单元的原边绕组与上述第一DC-AC变换单元的第一交流端、第二交流端耦合,上述变压单元的第一副边绕组与上述第一AC-DC变换单元的第一交流端、第二交流端耦合,上述变压单元的第二副边绕组与上述第二AC-DC变换单元的第一交流端、第二交流端耦合,上述第一AC-DC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第三直流端、第四直流端,上述第二AC-DC变换单元的第一直流端、第二直流端分别与上述直流调节单元的第一直流端、第二直流端耦合,上述直流调节单元的第三直流端、第四直流端分别为上述第二功率变换模块的第三直流端、第四直流端。这里,上述DC-AC变换单元和/或上述第一AC-DC变换单元中包括上述第一全桥电路,上述控制器用于基于上述第一总电压和/或上述第二总电压控制上述第一全桥电路工作在全桥模式或者半桥模式。控制器通过改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的第二分电压保持与上述第二总电压的差值不高于设定阈值,避免第二分电压过分偏离第二总电压,提高了直流功率转换器的直流电压转换效率,直流功率转换器电路简单,适用性好。
结合第一方面第一种可能的实施方式或者第一方面第四种可能的实施方式中任一种可能的实施方式,在第五种可能的实施方式中,上述第一DC-AC变换单元和/或上述第一AC-DC变换单元中包括上述第一全桥电路,上述控制器用于基于上述第一总电压和/或上述第二总电压控制上述第一全桥电路工作在全桥模式或者半桥模式。通过改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的第二分电压保持与上述第二总电压的差值不高于设定阈值(比如,可以是保持第二分电压不低于第二总电压的80%),避免第二分电压过分偏离第二总电压,提高了直流功率转换器的直流电压转换效率,直流功率转换器电路简单,适用性好。
结合第一方面第五种可能的实施方式,在第六种可能的实施方式中,上述第一DC-AC变换单元中包括上述第一全桥电路,这里,上述控制器还用于在上述第一全桥电路工作在全桥模式、且上述第二总电压与上述第一总电压的比值小于第一阈值,或者上述第二总电压小于第二阈值,或者上述第一总电压大于第三阈值,控制上述第一全桥电路工作在半桥模式。进一步地,上述控制器还用于在上述第一全桥电路工作在半桥模式、且上述第二总电压与上述第一总电压的比值大于第四阈值,或者上述第二总电压大于第五阈值,或者上述第一总电压小于第六阈值,控制上述第一全桥电路工作在全桥模式。其中,上述第四阈值大于等 于上述第一阈值,上述第五阈值大于等于上述第二阈值,上述第六阈值小于等于上述第三阈值。控制器通过控制第一DC-AC变换单元中第一全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第一DC-AC变换单元交流端电压与直流端电压的关系,从而对第二分电压升压或者降压,避免第二分电压过分偏离第二总电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第六种可能的实施方式,在第七种可能的实施方式中,上述第一阈值、上述第四阈值由上述第一DC-AC变换单元的电压比值的最大值、上述第一AC-DC变换单元的电压比值以及上述第一变压单元的第一匝比得到。上述第二阈值、上述第五阈值由上述第一DC-AC变换单元的电压比值的最大值、上述第一AC-DC变换单元的电压比值、上述第一匝比以及上述第一总电压的电压范围得到。上述第三阈值、上述第六阈值由上述第一DC-AC变换单元的电压比值的最大值、上述第一AC-DC变换单元的电压比值、上述第一匝比以及上述第二总电压的电压范围得到。其中,上述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,上述第一AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。控制器通过控制第一DC-AC变换单元中第一全桥电路的工作模式以改变第一DC-AC变换单元交流端电压峰峰值与直流端电压的关系,控制第一全桥电路工作模式方式灵活多样,操作简单,适用性强。
结合第一方面第五种可能的实施方式,在第八种可能的实施方式中,上述第一AC-DC变换单元中包括上述第一全桥电路,这里,上述控制器还用于在上述第一全桥电路工作在半桥模式、且上述第二总电压与上述第一总电压的比值小于第一阈值,或者上述第二总电压小于第二阈值,或者上述第一总电压大于第三阈值,控制上述第一全桥电路工作在全桥模式。上述控制器还用于在上述第一全桥电路工作在全桥模式、且上述第二总电压与上述第一总电压的比值大于第四阈值,或者上述第二总电压大于第五阈值,或者上述第一总电压小于第六阈值,控制上述第一全桥电路工作在半桥模式。其中,上述第四阈值大于等于上述第一阈值,上述第五阈值大于等于上述第二阈值,上述第六阈值小于等于上述第三阈值。控制器通过控制第一AC-DC变换单元中第一全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第一AC-DC变换单元交流端电压与直流端电压的关系,从而对第二分电压升压或者降压,避免第二分电压过分偏离第二总电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第八种可能的实施方式,在第九种可能的实施方式中,上述第一阈值、上述第四阈值由上述第一DC-AC变换单元的电压比值、上述第一AC-DC变换单元的电压比值的最大值以及上述第一变压单元的第一匝比得到。上述第二阈值、上述第五阈值由上述第一DC-AC变换单元的电压比值、上述第一AC-DC变换单元的电压比值的最大值、上述第一匝比以及上述第一总电压的范围得到。上述第三阈值、上述第六阈值由上述第一DC-AC变换单元的电压比值、上述第一AC-DC变换单元的电压比值的最大值、上述第一匝比以及上述第二总电压的范围得到。其中,上述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,上述第一AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。控制器通过控制第一AC-DC变换单元中第一全桥电路的工作模式以改变第一AC-DC变换单元交流端电压峰峰值与直流端电压的关系,控制第一全桥电路工作模式方式灵活多样,操作简单,适用性强。
结合第一方面第二种可能的实施方式,在第十种可能的实施方式中,上述第二DC-AC变换单元和/或上述第二AC-DC变换单元中包括第二全桥电路,上述控制器用于基于上述直流调节单元的第三直流端与第四直流端之间的第一分电压和/或上述第一总电压控制上述第二全桥电路工作在全桥模式或者半桥模式。控制器通过控制变流器中第二全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第二DC-AC变换单元或者第二AC-DC变换单元交流端电压与直流端电压的关系,从而对第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压升压或者降压,避免上述第三分电压过分偏离第一分电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第十种可能的实施方式,在第十一种可能的实施方式中,上述第二DC-AC变换单元中包括第二全桥电路,这里,上述控制器还用于在上述第二全桥电路工作在全桥模式、且上述直流调节单元的第三直流端与第四直流端之间的第一分电压与上述第一总电压的比值小于第一阈值,或者上述第一分电压小于第二阈值,或者上述第一总电压大于第三阈值,控制上述第二全桥电路工作在半桥模式。上述控制器还用于在上述第二全桥电路工作在半桥模式、且上述第一分电压与上述第一总电压的比值大于第四阈值,或者上述第一分电压大于第五阈值,或者上述第一总电压小于第六阈值,控制上述第二全桥电路工作在全桥模式。其中,上述第四阈值大于等于上述第一阈值,上述第五阈值大于等于上述第二阈值,上述第六阈 值小于等于上述第三阈值。控制器通过控制第二DC-AC变换单元中第二全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第二DC-AC变换单元交流端电压与直流端电压的关系,从而对第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压升压或者降压,避免上述第三分电压过分偏离第一分电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第十一种可能的实施方式,在第十二种可能的实施方式中,上述第一阈值、上述第四阈值由上述第二DC-AC变换单元的电压比值的最小值、上述第二AC-DC变换单元的电压比值以及上述第二变压单元的第二匝比得到,上述第二阈值、上述第五阈值由上述第二DC-AC变换单元的电压比值的最小值、上述第二AC-DC变换单元的电压比值、上述第二匝比以及上述第一总电压的范围得到,上述第三阈值、上述第六阈值由上述第二DC-AC变换单元的电压比值的最小值、上述第二AC-DC变换单元的电压比值、上述第二匝比以及上述第一分电压的范围得到。其中,上述第二DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,上述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。控制器通过控制第二DC-AC变换单元中第二全桥电路的工作模式以改变第二DC-AC变换单元交流端电压峰峰值与直流端电压的关系,控制第二全桥电路工作模式方式灵活多样,操作简单,适用性强。
结合第一方面第十种可能的实施方式,在第十三种可能的实施方式中,上述第二AC-DC变换单元中包括第二全桥电路,这里,上述控制器还用于在上述第二全桥电路工作在半桥模式、且上述直流调节单元的第三直流端与第四直流端之间的第一分电压与上述第一总电压的比值小于第一阈值、或者上述第一分电压小于第二阈值,或者上述第一总电压大于第三阈值,控制上述第二全桥电路工作在全桥模式。上述控制器还用于在上述第二全桥电路工作在全桥模式、且上述第一分电压与上述第一总电压的比值大于第四阈值、或者上述第一分电压大于第五阈值,或者上述第一总电压小于第六阈值,控制上述第二全桥电路工作在半桥模式。其中,上述第四阈值大于等于上述第一阈值,上述第五阈值大于等于上述第二阈值,上述第六阈值小于等于上述第三阈值。控制器通过控制第二AC-DC变换单元中第二全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第二AC-DC变换单元交流端电压与直流端电压的关系,从而对第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压升压或者降压,避免上述第三分电压过分偏离第一分电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第十三种可能的实施方式,在第十四种可能的实施方式中,上述第一阈值、上述第四阈值由上述第二DC-AC变换单元的电压比值、上述第二AC-DC变换单元的电压比值的最小值以及上述第二变压单元的第二匝比得到,上述第二阈值、上述第五阈值由上述第二DC-AC变换单元的电压比值、上述第二AC-DC变换单元的电压比值的最小值、上述第二匝比以及上述第一总电压的范围得到,上述第三阈值、上述第六阈值由上述第二DC-AC的电压比值、上述第二AC-DC变换单元的电压比值的最小值、上述第二匝比以及上述第一分电压的范围得到。其中,上述第二DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,上述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。控制器通过控制第二AC-DC变换单元中第二全桥电路的工作模式以改变第二AC-DC变换单元交流端电压峰峰值与直流端电压的关系,控制第二全桥电路工作模式方式灵活多样,操作简单,适用性强。
结合第一方面第三种可能的实施方式或者第一方面第四种可能的实施方式,在第十五种可能的实施方式中,上述第二AC-DC变换单元中包括第二全桥电路,这里,上述控制器还用于在上述第二全桥电路工作在半桥模式、且上述直流调节单元的第三直流端与第四直流端之间的第一分电压与上述第一总电压的比值小于第一阈值、或者上述第一分电压小于第二阈值,或者上述第一总电压大于第三阈值,控制上述第二全桥电路工作在全桥模式。上述控制器还用于在上述第二全桥电路工作在全桥模式、且上述第一分电压与上述第一总电压的比值大于第四阈值、或者上述第一分电压大于第五阈值,或者上述第一总电压小于第六阈值,控制上述第二全桥电路工作在半桥模式。其中,上述第四阈值大于等于上述第一阈值,上述第五阈值大于等于上述第二阈值,上述第六阈值小于等于上述第三阈值。控制器通过控制第二AC-DC变换单元中第二全桥电路的工作模式(从全桥模式到半桥模式,或者从半桥模式到全桥模式)以改变第二AC-DC变换单元交流端电压与直流端电压的关系,从而对第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压升压或者降压,避免上述第三分电压过分偏离第一分电压,提高直流功率转换器的直流电压转换效率和适用性,在较低电路复杂度下实现宽输入输出电压适应范围,实现成本低,适用性强。
结合第一方面第十五种可能的实施方式,在第十六种可能的实施方式中,上述第一阈值、上述第四阈值由上述第一DC-AC变换单元的电压比值、上述第二AC-DC变换单元的电压比值的最小值以及上述第二变 压单元的匝比或者上述变压单元的第二匝比得到,上述第二阈值、上述第五阈值由上述第一DC-AC变换单元的电压比值、上述第二AC-DC变换单元的电压比值的最小值、上述第二变压单元的匝比或者上述第二匝比以及上述第一总电压的范围得到,上述第三阈值、上述第六阈值由上述第一DC-AC变换单元的电压比值、上述第二AC-DC变换单元的电压比值的最小值、上述第二变压单元的匝比或者上述第二匝比以及上述第一分电压的范围得到。其中,上述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,上述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。控制器通过控制第二AC-DC变换单元中第二全桥电路的工作模式以改变第二AC-DC变换单元交流端电压峰峰值与直流端电压的关系,控制第二全桥电路工作模式方式灵活多样,操作简单,适用性强。
结合第一方面第二种可能的实施方式、第一方面第三种可能的实施方式以及第一方面第四种可能的实施方式,在第十七种可能的实施方式中,上述控制器还用于基于第一参考电压、上述第一功率变换模块的第三直流端与第四直流端之间的第二分电压以及上述第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压,控制上述直流调节单元调节上述直流调节单元的第三直流端与第四直流端之间的第一分电压,以使上述第一分电压与上述第二分电压之和为上述第一参考电压。可以理解的,直流功率转换器第三直流端与第四直流端之间的第二总电压等于上述第二分电压与上述第一分电压之和,即直流功率转换器可以通过控制器基于不同的第一总电压和/或第二总电压控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压和/或第一总电压控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第三直流端与第四直流端之间实现电压值为第一参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,提高直流电压转换效率,适用性强。
结合第一方面第十七种可能的实施方式,在第十八种可能的实施方式中,上述控制器还用于基于第二参考电压和上述第二分电压,控制上述直流调节单元调节其第三直流端与第四直流端之间的第一分电压,以使上述第一总电压等于上述第二参考电压。可以理解的,直流功率转换器第一直流端与第二直流端之间的直流电压为第一总电压,即直流功率转换器可以通过控制器基于不同的第一总电压和/或第二总电压控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压和/或第一总电压控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第一直流端与第二直流端之间实现电压值为第二参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,提高直流电压转换效率,适用性强。
结合第一方面第二种可能的实施方式,在第十九种可能的实施方式中,上述第一DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第一DC-AC变换单元的第一交流端和第二交流端连接上述第一变压单元。上述第二DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第二DC-AC变换单元的第一交流端和第二交流端连接上述第二变压单元。上述第一AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第一AC-DC变换单元的第一交流端和第二交流端连接上述第一变压单元。上述第二AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第二AC-DC变换单元的第一交流端和第二交流端连接上述第二变压单元。直流功率转换器通过控制器基于不同的第一总电压和/或第二总电压控制第一DC-AC变换单元或者第二DC-AC变换单元中的各开关管构成的第一全桥电路,或者,通过控制器基于不同的第一分电压和/或第一总电压控制第一AC-DC变换单元或者第二AC-DC变换单元中的各开关管构成的第二全桥电路,提高了对第一全桥电路和第二全桥电路两端电压的控制灵活性,使得上述直流功率转换器具有更宽的输入输出电压适应范围,电路结构简单,直流功率转换效率高。
结合第一方面第三种可能的实施方式,在第二十种可能的实施方式中,上述第一DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第一DC-AC变换单元的第一交流端和第二交流端连接上述第一变压单元和上述第二变压单元。上述第一AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为上述第一AC-DC变换单元的第一交流端和第二交流端连接上述第一变压单元。上述第二AC-DC变换单元包括并联的一个开关桥臂和一个电容桥臂,上述开关桥臂的开关管连接端和上述电容桥臂的电容连接端分别作为上述第二AC-DC变换单元的第一交流端和第二交流端连接上述第二变压单元。直流功率转换器通过控制器基于不同的第一总电压和/或第二总电压控制第一DC-AC变换单元或者第二DC-AC变换单元中的各开关管构成的第一全桥电路,或者,通过控制器基于不同的第一分电压和/或第一总电压控制第一AC-DC变换单元或者第二AC-DC变换单元中的各开关管构成的第二全桥电路,提高了对第一全桥电路和第二全桥电路两端电压的控制灵活性,使得上述直流功率转换器具有更宽的输入输出电压适应范围,电路结构简单,直流功率转换效率高。
第二方面,本申请提供了一种直流功率转换***,该直流功率转换***中包括直流电源和上述第一方面以及第一方面中任一种可能的实施方式提供的直流功率转换器。上述直流电源用于为上述直流功率转换器提供直流电压输入,上述直流功率转换器用于基于上述直流电源提供的第一直流电压进行直流功率转换,并向负载输出第二直流电压,上述直流电源包括太阳能电池板或者储能电池中的至少一种。
在本申请中,基于上述第一方面提供的直流功率转换器可实现直流功率转换***中直流功率转换器具有更宽的输入输出电压适应范围,电路结构简单,增强光伏***的流功率转换效率,操作简单,适用性高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的直流功率转换***的应用场景示意图;
图2a是本申请提供的直流功率转换***的一结构示意图;
图2b是本申请提供的直流功率转换***的另一结构示意图;
图3是本申请提供的直流功率转换器的一结构示意图;
图4是本申请提供的直流功率转换器的另一结构示意图;
图5是本申请提供的直流功率转换器的另一结构示意图;
图6是本申请提供的直流功率转换器的另一结构示意图;
图7是本申请提供的直流功率转换器的另一结构示意图;
图8是本申请提供的直流功率转换器的另一结构示意图;
图9是本申请提供的直流功率转换器的另一结构示意图;
图10为全桥BUCK电路的结构示意图;
图11a为中点嵌位三电平全桥电路的结构示意图;
图11b为有源中点嵌位三电平全桥电路的结构示意图;
图11c为飞跨电容三电平全桥电路的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1是本申请提供的直流功率转换***的一应用场景示意图。在本申请提供的直流功率转换***中可包括直流电源和直流功率转换器,其中,直流电源可由光伏阵列组成,光伏阵列的输出端可以连接直流功率转换器的第一端,直流功率转换器的第二端连接负载。如图1所示,直流功率转换***中可包括逆变器,负载可为通过逆变器连接的交流电网。在图1所示的直流功率转换***中,光伏阵列可以由一个或者多个光伏组串并联组成,一个光伏组串可以由一个或者多个光伏组件串联得到。直流功率转换器可以改变(可以是升压、降压等)光伏阵列提供的直流电压并输出改变后的直流电压至逆变器,通过逆变器进行电压逆变转换之后为交流电网中的通信基站或者家用设备等用电设备供电。
在一些可行的实施方式中,请再次参见图1,直流电源还可以包括储能电池,储能电池的输出端可以连接直流功率转换器的第一端,直流功率转换器的第二端通过逆变器连接交流电网为负载。直流功率转换器可以改变(可以是升压、降压等)储能电池提供的直流电压并输出改变后的直流电压至逆变器,通过逆变器进行电压逆变转换之后为交流电网中的通信基站或者家用设备等用电设备供电。
在一些可行的实施方式中,图1中的逆变器可以对交流电网的交流电压进行电压整流转换之后,向上述储能电池连接的直流功率转换器提供直流电压,该直流功率转换器可以基于逆变器输出的直流电压进行改变后输出至储能电池,储能电池基于直流功率转换器输出的电压或电流进行充电。
在一些可行的实施方式中,图1中的光伏阵列提供的直流电压经过其连接的直流功率转换器进行升压或者降压,并输出到储能电池连接的直流功率转换器,储能电池连接的直流功率转换器再进行一次升压或者降压后输出至储能电池,储能电池基于直流功率转换器输出的电压或电流进行充电。
在图1所示的应用场景中,直流功率转换***通过直流功率转换器进行直流电压转换的过程中(可以 是直流功率转换器基于储能电池提供的直流电压,或者光伏阵列提供的直流电压进行直流功率转换以向逆变器连接的交流电网供电,也可以是直流功率转换器基于光伏阵列提供的直流电压,或者交流电网与逆变器共同提供的直流电压进行直流功率转换以向储能电池供电),直流功率转换器能够实现的输入电压与输出电压的比值范围越宽,直流功率转换器的适用性越高。传统的直流功率转换器设计中,如果输入电压的范围很大并且输出电压的范围很大时,在转换器的电路设计和控制策略设计上需要很高的设计冗余(比如通过增加额外的电路,由多级电路构成的直流功率转换器实现宽范围的电压变比)才能实现较宽范围的输入电压与输出电压的比值,电路设计复杂且体积过大,直流功率转换损耗高,适用性低。
本申请提供的直流功率转换***中,直流功率转换器包括全桥电路,直流功率转换***可以通过直流功率转换器基于第一端的直流电压和/或第二端的直流电压控制直流功率转换器中的全桥电路工作在不同的工作模式(全桥模式或者半桥模式),从而直流功率转换器可以通过改变全桥电路的交流端电压与直流端电压的关系,以具有更宽的输入输出电压适应范围,电路结构简单,直流功率转换效率高。此外,更高的转换效率允许直流功率转换器采用更高的半导体器件开关频率,进一步减小设备中无源器件(例如滤波电感、滤波电容)的体积和重量,从而减小了直流功率转换器整体体积和重量,适用性强。下面将结合图2a至图11c对本申请提供的直流功率转换***和直流功率转换器进行示例说明。
参见图2a,图2a是本申请提供的直流功率转换***的一结构示意图。在图2a所示的直流功率转换***中包括直流电源、直流功率转换器和逆变器,其中,负载可以为通过逆变器连接的交流电网,直流电源可以是太阳能电池板或者储能电池等,直流功率转换器的第一直流端和第二直流端连接直流电源,直流功率转换器的第三直流端和第四直流端通过逆变器连接交流电网。在图2a所示的直流功率转换***中,直流电源用于为直流功率转换器提供直流电压输入,直流功率转换器将第一直流端和第二直流端之间的直流电压进行升压或者降压,并将改变后的直流电压通过第三直流端和第四直流端输出至逆变器以向交流电网供电。
参见图2b,图2b是本申请提供的直流功率转换***的另一结构示意图。在图2b所示的直流功率转换***中包括直流电源和直流功率转换器,其中,负载可以包括储能电池,直流电源可以是太阳能电池板等,直流功率转换器的第一直流端和第二直流端连接储能电池,直流功率转换器的第三直流端和第四直流端连接直流电源。在图2b所示的直流功率转换***中,直流电源用于为直流功率转换器提供直流电压输入,直流功率转换器将第三直流端和第四直流端之间的直流电压进行升压或者降压,并将改变后的直流电压通过第一直流端和第二直流端输出至负载中的储能电池以为储能电池充电。
在一些可行的实施方式中,在图2a和/或图2b所示的直流功率转换***中,直流功率转换器中可以包括控制器和全桥电路(图2a、图2b中未示出),直流功率转换器可以通过控制器基于上述直流功率转换器的第一直流端与第二直流端之间的直流电压和/或第三直流端与第四直流端之间的直流电压控制直流功率转换器中的全桥电路工作在不同的工作模式(全桥模式或者半桥模式),从而改变上述全桥电路交流端电压与直流端电压的关系,提高了控制器对全桥电路两端电压的控制灵活性,使得上述直流功率转换器具有更宽的输入输出电压适应范围,电路结构简单,直流功率转换效率高。
下面将结合图2a、图2b至图11c对本申请实施例提供的直流功率转换器进行示例说明。如图2a和/或图2b(为方便描述,下面将以图2a为例进行说明,以下不再赘述)所示,在本申请实施例中,直流功率转换器中可包括第一功率变换模块、第二功率变换模块和控制器。其中,第一功率变换模块的第一直流端、第二直流端分别与第二功率变换模块的第一直流端、第二直流端耦合,第一功率变换模块的第一直流端、第二直流端分别为直流功率转换器的第一直流端、第二直流端,第一功率变换模块的第四直流端与第二功率变换模块的第三直流端耦合,第一功率变换模块的第三直流端为直流功率转换器的第三直流端,第二功率变换模块的第四直流端为直流功率转换器的第四直流端。在本申请中,第一功率变换模块中包括至少一个全桥电路(可以称作第一全桥电路,图2a中未示出),直流功率转换器可以通过控制器基于上述直流功率转换器的第一直流端与第二直流端之间的直流电压(即第一总电压,可以表示为Vp)和/或直流功率转换器的第三直流端与第四直流端之间的直流电压(即第二总电压,可以表示为Vs)控制第一功率变换模块中的第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块第三直流端与第四直流端之间的直流电压(即第二分电压,可以表示为Vs2)与上述第二总电压Vs的差值不高于设定阈值(比如,可以是保持第二分电压不低于第二总电压的80%),避免第二分电压Vs2过分偏离第二总电压Vs,操作简单,提高了直流功率转换器的直流电压转换效率。
在一些可行的实施方式中,请一并参见图3,图3是本申请提供的直流功率转换器的一结构示意图。 如图3所示,上述第一功率变换模块中包括第一DC-AC变换单元、第一AC-DC变换单元和第一变压单元,其中,第一DC-AC变换单元的第一直流端和第二直流端分别为第一功率变换模块的第一直流端和第二直流端,第一DC-AC变换单元的第一交流端和第二交流端通过第一变压单元分别与第一AC-DC变换单元的第一交流端和第二交流端耦合,第一AC-DC变换单元的第一直流端和第二直流端分别为第一功率变换模块的第三直流端和第四直流端。上述第一DC-AC变换单元和/或上述第一AC-DC变换单元中包括第一全桥电路,上述控制器(图3未示出)还用于基于上述第一总电压和/或上述第二总电压控制第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的直流电压(即第二分电压Vs2)保持与上述第二总电压Vs的差值不高于设定阈值,避免第二分电压Vs2过分偏离第二总电压Vs,提高了直流功率转换器的直流电压转换效率,直流功率转换器电路简单,适用性好。
在一些可行的实施方式中,请一并参见图4,图4是本申请提供的直流功率转换器的另一结构示意图。如图4所示,图4中第一功率变换模块结构参见上述图3中的第一功率变换模块,此处不再赘述。图4中第二功率变换模块中包括第二DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,第二DC-AC变换单元的第一直流端、第二直流端分别为第二功率变换模块的第一直流端、第二直流端,第二DC-AC变换单元的第一交流端、第二交流端通过第二变压单元分别与第二AC-DC变换单元的第一交流端、第二交流端耦合,第二AC-DC变换单元的第一直流端、第二直流端分别与直流调节单元的第一直流端、第二直流端耦合,直流调节单元的第三直流端、第四直流端分别为第二功率变换模块的第三直流端、第四直流端。上述第二DC-AC变换单元和/或上述第二AC-DC变换单元中包括第二全桥电路,上述控制器(图4未示出)基于上述第一总电压Vp和/或上述直流调节单元的第三直流端与第四直流端之间的第一分电压Vs1控制第二全桥电路工作在全桥模式或者半桥模式,从而改变上述第二功率变换模块中第二全桥电路交流端电压与直流端电压的关系,使得上述第二功率变换模块中第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压Vs3保持与上述第一分电压Vs1的差值不高于设定阈值,提高了直流功率转换器的直流电压转换效率,直流功率转换器电路简单,适用性好。
在一些可行的实施方式中,上述图4中第一功率变换模块中的第一DC-AC变换单元、第一AC-DC变换单元包括第一全桥电路,第二功率变换模块中的第二DC-AC变换单元、第二AC-DC变换单元包括第二全桥电路。请一并参见图5,图5是本申请提供的直流功率转换器的另一结构示意图。如图5所示,第一DC-AC变换单元包括的第一全桥电路由开关管Q11、Q12、Q13和Q14(各开关管可以是金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)),以及电容Cp1组成。其中,Q11的第二连接端与Q12的第一连接端相连,Q13的第二连接端与Q14的第一连接端相连,Q11的第一连接端与Cp1的第一连接端、Q13的第一连接端相连,Q12的第二连接端与Cp1的第二连接端、Q14的第二连接端相连。上述Q11、Q12、Q13和Q14的第二连接端可为Q11、Q12、Q13和Q14的源极,Q11、Q12、Q13和Q14的第一连接端可为Q11、Q12、Q13和Q14的漏极。第一AC-DC变换单元包括的第一全桥电路由开关管Q15、Q16、Q17和Q18,以及电容Cs1组成,第二DC-AC变换单元包括的第二全桥电路由开关管Q21、Q22、Q23和Q24(各开关管可以是金属氧化物半导体场效应晶体管),以及电容Cp2组成。第二AC-DC变换单元包括的第二全桥电路由开关管Q25、Q26、Q27和Q28,以及电容Cs2组成。上述第一AC-DC变换单元包括的第一全桥电路、第二DC-AC变换单元包括的第二全桥电路和第二AC-DC变换单元包括的第二全桥电路中各开关管可以是金属氧化物半导体场效应晶体管,且各全桥电路的开关管与电容的连接关系可与上述第一DC-AC变换单元包括的第一全桥电路相同,此处不再赘述。上述第一DC-AC变换单元中的第一全桥电路的Cp1第一连接端、Cp1第二连接端分别与上述第二DC-AC变换单元中的第二全桥电路的Cp2第一连接端、Cp2第二连接端相连。Cp1第一连接端与Cp2第一连接端相连的连接端为直流功率转换器的第一直流端,Cp1第二连接端与Cp2第二连接端相连的连接端为直流功率转换器的第二直流端。进一步地,上述图5中的第一变压单元、第二变压单元包括变压器。请一并参见图5,图5中第一变压单元包括第一变压器,第一变压器的第一绕组与第二绕组的匝比为Np1:Ns1(或者Np1/Ns1),第一变压器的第一绕组的第一端、第二端分别与上述第一DC-AC变换单元包括的第一全桥电路中开关管Q11和Q12的连接端、开关管Q13和Q14的连接端相连,第二绕组的第一端、第二端分别与上述第一AC-DC变换单元包括的第一全桥电路中开关管Q15和Q16的连接端、开关管Q17和Q18的连接端相连。第二变压单元包括第二变压器,第二变压器的第一绕组与第二绕组的匝比为Np2:Ns2(或者Np2/Ns2),第二变压器的第一绕组的第一端、第二端分别与上述第二DC-AC变换单元包括的第二全桥电路中开关管Q21和Q22的连接端、开关管Q23和Q24的连接端相连,第二绕组的第一端、第二端分别与上述第二AC-DC变换单元包括的第二全桥电路中开关管Q27和Q28 的连接端、开关管Q25和Q26的连接端相连。进一步地,上述图5中的直流调节单元可以包括BUCK电路,请一并参见图5,图5中直流调节单元包括BUCK电路,BUCK电路由开关管Qb1、开关管Qb2(各开关管可以是金属氧化物半导体场效应晶体管)、电感Lb以及电容Cb组成。其中,Qb1的第二连接端与Qb2的第一连接端相连并且连接端通过电感Lb与电容Cb的第一连接端相连,Qb2的第二连接端与电容Cb的第二连接端相连。BUCK电路中Qb1的第一连接端、Qb2的第二连接端分别与上述第二AC-DC变换单元中电容Cs2的第一连接端、Cs2的第二连接端相连,Lb与Cb的连接端与上述第一AC-DC变换单元中电容Cs1的第二连接端相连。上述第一AC-DC变换单元中电容Cs1与开关管Q15、Q17的连接端为直流功率转换器的第三直流端,Qb2的第二连接端与电容Cb的第二连接端相连的连接端为直流功率转换器的第四直流端。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第一DC-AC变换单元中包括第一全桥电路,该第一全桥电路可以工作在全桥模式或者半桥模式。在上述第一AC-DC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第一DC-AC变换单元中的第一全桥电路工作在全桥模式且上述第二总电压与上述第一总电压的比值小于第一阈值,上述控制器(图5未示出)控制上述第一全桥电路工作在半桥模式。具体的,第一DC-AC变换单元中的第一全桥电路工作在全桥模式时,第一桥臂的开关管Q11、Q12按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q13、Q14也按照预定频率以及50%占空比进行开关动作且互补,并且Q11与Q14同步,Q12与Q13同步。第一AC-DC变换单元中的第一全桥电路工作在全桥模式时,第一桥臂的开关管Q15、Q16按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q17、Q18也按照预定频率以及50%占空比进行开关动作且互补,并且Q15与Q18同步,Q16与Q17同步。上述第一阈值由第一DC-AC变换单元的电压比值的最大值、第一AC-DC变换单元的电压比值以及第一变压单元的第一匝比得到。具体的,上述第一DC-AC变换单元中的第一全桥电路工作在全桥模式时,第一DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第一DC-AC变换单元交流端电压峰峰值与直流端电压的比值(即第一DC-AC变换单元的电压比值,可以表示为a)为2。同理,第一全桥电路工作在半桥模式时,第一DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为0(或者,交流端电压最大值为0,交流端电压最大值为负的直流端电压),则第一DC-AC变换单元的电压比值a为1。综上,第一DC-AC变换单元的电压比值a的最大值max(a)为2。上述第一AC-DC变换单元工作在全桥模式,第一AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第一AC-DC直流端电压与变换单元交流端电压峰峰值的比值(即第一AC-DC的电压比值,可以表示为b)为0.5。上述第一阈值可为max(a)*(Ns1/Np1)*b=Ns1/Np1。可以理解的,上述第一阈值可以为max(a)*(Ns1/Np1)*b对应的值,也可以为基于max(a)*(Ns1/Np1)*b确定的取值范围中的任一值(比如,可以取0.9*max(a)*(Ns1/Np1)*b至1.1*max(a)*(Ns1/Np1)*b中任一值为上述第一阈值)。本申请实施例以max(a)*(Ns1/Np1)*b对应的值为上述第一阈值为例进行说明,下文不再赘述。当上述第二总电压与所述第一总电压的比值小于第一阈值,即有Vs/Vp<Ns1/Np1,控制器控制上述第一DC-AC变换单元的中第一全桥电路工作在半桥模式,即控制该全桥电路的第一桥臂的开关管Q11、Q12按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q13保持常断且开关管Q14保持常通,或者,控制第一DC-AC变换单元的全桥电路的第一桥臂的开关管Q11、Q12按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q14保持常断且开关管Q13保持常通。
可选的,在上述第一AC-DC变换单元工作在全桥模式、第一DC-AC变换单元中的第一全桥电路工作在全桥模式且上述第二总电压Vs小于第二阈值时,上述控制器可控制上述第一全桥电路工作在半桥模式。具体的,上述第二阈值由上述第一DC-AC变换单元的电压比值的最大值、上述第一AC-DC变换单元的电压比值、上述第一匝比以及上述第一总电压的范围得到。上述第二阈值可为max(a)*(Ns1/Np1)*b*max(Vp)=(Ns1/Np1)*max(Vp)(max(a)=2,b=0.5,max(Vp)为第一总电压的最大值)。可以理解的,上述第二阈值可以为max(a)*(Ns1/Np1)*b*max(Vp)对应的值,也可以为基于max(a)*(Ns1/Np1)*b*max(Vp)确定的取值范围中的任一值。本申请实施例以max(a)*(Ns1/Np1)*b*max(Vp)对应的值为上述第二阈值为例进行说明,下文不再赘述。当上述第二总电压小于第二阈值,即有Vs<(Ns1/Np1)*max(Vp),控制器可控制上述第一全桥电路工作在半桥模式。
可选的,在上述第一AC-DC变换单元工作在全桥模式、第一DC-AC变换单元中的第一全桥电路工作在全桥模式且上述第一总电压Vp大于第三阈值时,上述控制器可控制上述第一全桥电路工作在半桥模式。具体的,上述第三阈值由上述第一DC-AC变换单元的电压比值的最大值、上述第一AC-DC变换单元的电压 比值、上述第一匝比以及上述第二总电压的范围得到。上述第三阈值可为min(Vs)/max(a)/(Ns1/Np1)/b=min(Vs)/(Ns1/Np1)(max(a)=2,b=0.5,min(Vs)为第二总电压的最小值),可以理解的,上述第三阈值可以为min(Vs)/max(a)/(Ns1/Np1)/b对应的值,也可以为基于min(Vs)/max(a)/(Ns1/Np1)/b确定的取值范围中的任一值,本申请实施例以min(Vs)/max(a)/(Ns1/Np1)/b对应的值为上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压大于第三阈值,即有Vp>min(Vs)/(Ns1/Np1),控制器控制上述第一全桥电路工作在半桥模式。
可以理解的,以控制器在Vs/Vp小于第一阈值Ns1/Np1控制上述第一DC-AC变换单元中的第一全桥电路工作在半桥模式为例,在上述第一功率变换模块中,在第一AC-DC变换单元工作在全桥模式且上述第一全桥电路工作在全桥模式时(a=2,b=0.5),根据第二分电压Vs2=a*(Ns1/Np1)*b*Vp,则上述第二分电压Vs2=Vp*(Ns1/Np1)。上述第二分电压Vs2与上述第一总电压Vp的比值等于上述第一匝比,即Ns1/Np1=Vs2/Vp,上述Vs/Vp小于第一阈值Ns1/Np1的控制条件可以表示为Vs<Vs2。换句话说,上述控制器在Vs/Vp<Ns1/Np1时控制第一全桥电路工作在半桥模式,等同于在Vs<Vs2时控制上述第一全桥电路工作在半桥模式。可以理解的,控制器在Vs<Vs2时控制第一全桥电路工作在半桥模式,使得上述第二分电压降压为0.5*Vp*(Ns1/Np1)。换句话说,当上述第二分电压Vs2超过电压阈值(比如当Vs2>Vs)时,控制器通过控制第一DC-AC变换单元中第一全桥电路的工作模式以改变第一全桥电路所在变换单元(比如第一DC-AC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第二分电压Vs2降压,避免第二分电压Vs2超过第二总电压Vs(控制器基于第二阈值、第三阈值控制第一全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第一DC-AC变换单元中包括第一全桥电路,该第一全桥电路可以工作在全桥模式或者半桥模式。在上述第一AC-DC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、第一DC-AC变换单元中的第一全桥电路工作在半桥模式且上述第二总电压与上述第一总电压的比值大于第四阈值,上述控制器控制上述DC-AC变换单元中的第一全桥电路工作在全桥模式。上述第四阈值由第一DC-AC变换单元的电压比值的最大值、第一AC-DC变换单元的电压比值以及第一变压单元的第一匝比得到。这里,上述第一AC-DC变换单元工作在全桥模式对应b=0.5,从而上述第四阈值为max(a)*(Ns1/Np1)*b=Ns1/Np1(max(a)=2),可以理解的,上述第四阈值可以为max(a)*(Ns1/Np1)*b对应的值,也可以为基于max(a)*(Ns1/Np1)*b确定的取值范围中的任一值,此外,上述第四阈值大于等于上述第一阈值,本申请实施例以max(a)*(Ns1/Np1)*b对应的值为上述第四阈值,即第四阈值等于上述第一阈值为例进行说明,下文不再赘述。当上述第二总电压与所述第一总电压的比值大于第一阈值,即有Vs/Vp>Ns1/Np1,控制器控制上述第一全桥电路工作在全桥模式。
可选的,在上述第一AC-DC变换单元工作在全桥模式、第一DC-AC变换单元中的第一全桥电路工作在半桥模式且上述第二总电压Vs大于第五阈值时,上述控制器控制上述第一全桥电路工作在全桥模式。这里,上述第五阈值可以为max(a)*(Ns1/Np1)*b*max(Vp)=(Ns1/Np1)*max(Vp)(max(a)=2,b=0.5,max(Vp)为第一总电压的最大值)。可以理解的,上述第五阈值可以为max(a)*(Ns1/Np1)*b*max(Vp)对应的值,也可以为基于max(a)*(Ns1/Np1)*b*max(Vp)确定的取值范围中的任一值,此外,上述第五阈值大于等于上述第二阈值,本申请实施例以max(a)*(Ns1/Np1)*b*max(Vp)对应的值为上述第五阈值,即第五阈值等于上述第二阈值为例进行说明,下文不再赘述。当上述第二总电压大于第五阈值,即有Vs>(Ns1/Np1)*max(Vp),控制器控制上述第一全桥电路工作在全桥模式。
可选的,在上述第一AC-DC变换单元工作在全桥模式、第一DC-AC变换单元中的第一全桥电路工作在半桥模式且上述第一总电压Vp小于第六阈值时,上述控制器控制上述第一全桥电路工作在全桥模式。这里,上述第六阈值为min(Vs)/max(a)/(Ns1/Np1)/b=min(Vs)/(Ns1/Np1)(max(a)=2,b=0.5,min(Vs)为第二总电压的最小值)。可以理解的,上述第六阈值可以为min(Vs)/max(a)/(Ns1/Np1)/b对应的值,也可以为基于min(Vs)/max(a)/(Ns1/Np1)/b确定的取值范围中的任一值,此外,上述第六阈值小于等于上述第三阈值,本申请实施例以min(Vs)/max(a)/(Ns1/Np1)/b对应的值为上述第六阈值,即第六阈值等于上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压小于第六阈值,即有Vp<min(Vs)/(Ns1/Np1),控制器控制上述第一全桥电路工作在全桥模式。
可以理解的,以控制器在Vs/Vp大于第四阈值Ns1/Np1控制上述第一DC-AC变换单元中的第一全桥电路工作在全桥模式为例,在第一AC-DC变换单元工作在全桥模式且上述第一全桥电路工作在半桥模式时 (a=1,b=0.5),根据第二分电压Vs2=a*(Ns1/Np1)*b*Vp,则上述第二分电压Vs2=0.5*Vp*(Ns1/Np1),则上述第二分电压Vs2与上述第一总电压Vp的比值与上述第一匝比的关系为Ns1/Np1=2*Vs2/Vp,上述Vs/Vp大于第四阈值Ns1/Np1的控制条件可以表示为Vs>2*Vs2。换句话说,上述控制器在Vs/Vp大于第四阈值Ns1/Np1时控制第一全桥电路工作在全桥模式,等同于在Vs>2*Vs2时控制上述第一全桥电路工作在全桥模式。可以理解的,控制器在Vs/Vp>Ns1/Np1时控制第一全桥电路工作在全桥模式,使得上述第二分电压升压为Vp*(Ns1/Np1)。换句话说,当上述第二分电压Vs2低于电压阈值(比如当Vs2<0.5*Vs)时,控制器通过控制第一DC-AC变换单元中的第一全桥电路的工作模式以改变第一全桥电路所在变换单元(比如第一DC-AC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第二分电压Vs2升压,避免第二分电压Vs2过分偏离第二总电压Vs(控制器基于第五阈值、第六阈值控制第一全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第一AC-DC变换单元中包括第一全桥电路,该第一全桥电路可以工作在全桥模式或者半桥模式。在上述第一DC-AC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第一AC-DC变换单元中的第一全桥电路工作在半桥模式且上述第二总电压与上述第一总电压的比值小于第一阈值,上述控制器控制上述第一全桥电路工作在全桥模式。具体的,第一AC-DC变换单元中的第一全桥电路工作在半桥模式时,第一桥臂的开关管Q15、Q16按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q17保持常断且开关管Q18保持常通,或者,控制第一AC-DC变换单元的全桥电路的第一桥臂的开关管Q15、Q16按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q18保持常断且开关管Q17保持常通。上述第一阈值由第一DC-AC变换单元的电压比值、第一AC-DC变换单元的电压比值的最大值以及第一变压单元的第一匝比得到,具体的,上述第一AC-DC变换单元中的第一全桥电路工作在全桥模式时,第一AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第一AC-DC变换单元直流端电压与交流端电压峰峰值的比值(即第一AC-DC变换单元的电压比值,可以表示为b)为0.5。同理,第一全桥电路工作在半桥模式时,第一AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为0(或者,交流端电压最大值为0,交流端电压最大值为负的直流端电压),则第一DC-AC变换单元的电压比值b为1。综上,第一DC-AC变换单元的电压比值b的最大值max(b)为1。上述第一DC-AC变换单元工作在全桥模式,第一DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第一DC-AC变换单元交流端电压峰峰与直流端电压值的比值a为2。上述第一阈值可为a*(Ns1/Np1)*max(b)=2*Ns1/Np1,可以理解的,上述第一阈值可以为a*(Ns1/Np1)*max(b)对应的值,也可以为基于a*(Ns1/Np1)*max(b)确定的取值范围中的任一值(比如,可以取0.9*a*(Ns1/Np1)*max(b)至1.1*a*(Ns1/Np1)*max(b)中任一值为上述第一阈值),本申请实施例以a*(Ns1/Np1)*max(b)对应的值为上述第一阈值为例进行说明,下文不再赘述。当上述第二总电压与所述第一总电压的比值小于第一阈值,即有Vs/Vp<2*Ns1/Np1,控制器控制上述第一全桥电路工作在全桥模式。即控制该全桥电路的第一桥臂的开关管Q15、Q16按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q17、Q18也按照预定频率以及50%占空比进行开关动作且互补,并且Q15与Q18同步,Q16与Q17同步。
可选的,在上述第一DC-AC变换单元工作在全桥模式、第一AC-DC变换单元中的第一全桥电路工作在半桥模式且上述第二总电压Vs小于第二阈值时,上述控制器可控制上述第一全桥电路工作在全桥模式。具体的,上述第二阈值由上述第一DC-AC变换单元的电压比值、第一AC-DC变换单元的电压比值的最大值、第一变压单元的第一匝比以及上述第一总电压的范围得到。上述第二阈值可为a*(Ns1/Np1)*max(b)*max(Vp)=2*(Ns1/Np1)*max(Vp)(max(b)=1,a=2,max(Vp)为第一总电压的最大值)。可以理解的,上述第二阈值可以为a*(Ns1/Np1)*max(b)*max(Vp)对应的值,也可以为基于a*(Ns1/Np1)*max(b)*max(Vp)确定的取值范围中的任一值,本申请实施例以a*(Ns1/Np1)*max(b)*max(Vp)对应的值为上述第二阈值为例进行说明,下文不再赘述。当上述第二总电压小于第二阈值,即有Vs<2*(Ns1/Np1)*max(Vp),控制器控制上述第一全桥电路工作在全桥模式。
可选的,在上述第一DC-AC变换单元工作在全桥模式、第一AC-DC变换单元中的第一全桥电路工作在半桥模式且上述第一总电压Vp大于第三阈值时,上述控制器可控制上述第一全桥电路工作在全桥模式。具体的,上述第三阈值由上述第一DC-AC变换单元的电压比值、第一AC-DC变换单元的电压比值的最大值、 第一变压单元的第一匝比以及上述第二总电压的范围得到。上述第三阈值可为min(Vs)/a/(Ns1/Np1)/max(b)=0.5*min(Vs)/(Ns1/Np1)(max(b)=1,a=2,min(Vs)为第二总电压的最小值)。可以理解的,上述第三阈值可以为min(Vs)/a/(Ns1/Np1)/max(b)对应的值,也可以为基于min(Vs)/a/(Ns1/Np1)/max(b)确定的取值范围中的任一值,本申请实施例以min(Vs)/a/(Ns1/Np1)/max(b)对应的值为上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压大于第三阈值,即有Vp>0.5*min(Vs)/(Ns1/Np1),控制器控制上述第一全桥电路工作在全桥模式。
可以理解的,以控制器在Vs/Vp小于第一阈值2*Ns1/Np1控制上述第一AC-DC变换单元中的第一全桥电路工作在全桥模式为例,在上述第一功率变换模块中,在第一DC-AC变换单元工作在全桥模式且上述第一全桥电路工作在半桥模式时(a=2,b=1),根据第二分电压Vs2=a*(Ns1/Np1)*b*Vp,则上述第二分电压Vs2=2*Vp*(Ns1/Np1)。上述第二分电压Vs2与上述第一总电压Vp的比值关系为2*Ns1/Np1=Vs2/Vp,上述Vs/Vp小于第一阈值2*Ns1/Np1的控制条件可以表示为Vs<Vs2。换句话说,上述控制器在Vs/Vp小于第一阈值2*Ns1/Np1时控制第一全桥电路工作在全桥模式,等同于在Vs<Vs2时控制上述第一全桥电路工作在全桥模式。可以理解的,控制器在Vs/Vp<Ns1/Np1时控制第一全桥电路工作在全桥模式,使得上述第二分电压降压为Vp*(Ns1/Np1)。换句话说,当上述第二分电压Vs2超过电压阈值(比如当Vs2>Vs)时,控制器通过控制第一全桥电路的工作模式以改变第一全桥电路所在变换单元(比如第一AC-DC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第二分电压Vs2降压,避免第二分电压Vs2超过第二总电压Vs(控制器基于第二阈值、第三阈值控制第一全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第一AC-DC变换单元中包括第一全桥电路,该第一全桥电路可以工作在全桥模式或者半桥模式。在上述第一DC-AC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第一AC-DC变换单元中的第一全桥电路工作在全桥模式且上述第二总电压与上述第一总电压的比值大于第四阈值,上述控制器控制上述第一全桥电路工作在半桥模式。上述第四阈值由上述第一DC-AC变换单元的电压比值、第一AC-DC变换单元的电压比值的最大值以及第一变压单元的第一匝比得到。这里,上述第一DC-AC变换单元工作在全桥模式对应a=2,上述第四阈值为a*(Ns1/Np1)*max(b)=2*Ns1/Np1(max(b)=1),可以理解的,上述第四阈值可以为a*(Ns1/Np1)*max(b)对应的值,也可以为基于a*(Ns1/Np1)*max(b)确定的取值范围中的任一值,此外,上述第四阈值大于等于上述第一阈值,本申请实施例以为a*(Ns1/Np1)*max(b)对应的值为上述第四阈值,即第四阈值等于上述第一阈值为例进行说明,下文不再赘述。当上述第二总电压与所述第一总电压的比值大于第四阈值,即有Vs/Vp>2*Ns1/Np1,控制器控制上述第一全桥电路工作在半桥模式。
可选的,在上述第一DC-AC变换单元工作在全桥模式、第一AC-DC变换单元中的第一全桥电路工作在全桥模式且上述第二总电压Vs大于第五阈值时,上述控制器控制上述第一全桥电路工作在半桥模式。这里,上述第五阈值为a*(Ns1/Np1)*max(b)*max(Vp)=2*(Ns1/Np1)*max(Vp)(max(b)=1,a=2,max(Vp)为第一总电压的最大值)。可以理解的,上述第五阈值可以为a*(Ns1/Np1)*max(b)*max(Vp)对应的值,也可以为基于a*(Ns1/Np1)*max(b)*max(Vp)确定的取值范围中的任一值,此外,上述第五阈值大于等于上述第二阈值,本申请实施例以a*(Ns1/Np1)*max(b)*max(Vp)对应的值为上述第五阈值,即第五阈值等于上述第二阈值为例进行说明,下文不再赘述。当上述第二总电压大于第五阈值,即有Vs>2*(Ns1/Np1)*max(Vp),控制器控制上述第一全桥电路工作在半桥模式。
可选的,在上述第一DC-AC变换单元工作在全桥模式、第一AC-DC变换单元中的第一全桥电路工作在全桥模式且上述第一总电压Vp小于第六阈值时,上述控制器控制上述第一全桥电路工作在半桥模式。这里,上述第六阈值为min(Vs)/a/(Ns1/Np1)/max(b)=0.5*min(Vs)/(Ns1/Np1)(max(b)=1,a=2,min(Vs)为第二总电压的最小值)。可以理解的,上述第六阈值可以为min(Vs)/a/(Ns1/Np1)/max(b)对应的值,也可以为基于min(Vs)/a/(Ns1/Np1)/max(b)确定的取值范围中的任一值,此外,上述第六阈值小于等于上述第三阈值,本申请实施例以min(Vs)/a/(Ns1/Np1)/max(b)对应的值为上述第六阈值,即第六阈值等于上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压小于第六阈值,即有Vp<0.5*min(Vs)/(Ns1/Np1),控制器控制上述第一全桥电路工作在半桥模式。
可以理解的,以控制器在Vs/Vp大于第四阈值2*Ns1/Np1控制上述第一AC-DC变换单元中的第一全桥电路工作在半桥模式为例,在上述第一功率变换模块中,在第一DC-AC变换单元工作在全桥模式且上述第一全桥电路工作在全桥模式时(a=2,b=0.5),根据Vs2=a*(Ns1/Np1)*b*Vp,则上述第二分电压 Vs2=Vp*(Ns1/Np1)。则上述第二分电压Vs2与上述第一总电压Vp的比值关系为Ns1/Np1=Vs2/Vp,则Vs/Vp大于第四阈值2*Ns1/Np1的控制条件可以表示为Vs>2*Vs2。换句话说,上述控制器在Vs/Vp大于第四阈值2*Ns1/Np1时控制第一全桥电路工作在半桥模式,等同于在Vs>2*Vs2时控制上述第一全桥电路工作在半桥模式。可以理解的,控制器在Vs/Vp大于第四阈值2*Ns1/Np1时控制第一全桥电路工作在半桥模式(a=2,b=1),即在Vs>2*Vs2时控制第一全桥电路工作在半桥模式,使得上述第二分电压升压为2*Vp*(Ns1/Np1)。换句话说,当上述第二分电压Vs2低于电压阈值(比如当Vs2<0.5*Vs)时,控制器通过控制第一全桥电路的工作模式以改变第一全桥电路所在变换单元(比如第一AC-DC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第二分电压Vs2升压,避免第二分电压Vs2过分偏离第二总电压Vs(控制器基于第五阈值、第六阈值控制第一全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第二DC-AC变换单元中包括第二全桥电路,该第二全桥电路可以工作在全桥模式或者半桥模式。在上述第二AC-DC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第二DC-AC变换单元中的第二全桥电路工作在全桥模式且上述第一分电压与上述第一总电压的比值小于第一阈值,上述控制器控制上述第二全桥电路工作在半桥模式。具体的,第二DC-AC变换单元中的第二全桥电路工作在全桥模式时,第一桥臂的开关管Q21、Q22按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q23、Q24也按照预定频率以及50%占空比进行开关动作且互补,并且Q21与Q24同步,Q22与Q23同步。第二AC-DC变换单元中的第二全桥电路工作在全桥模式时,第一桥臂的开关管Q25、Q26按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q27、Q28也按照预定频率以及50%占空比进行开关动作且互补,并且Q25与Q28同步,Q26与Q27同步。上述第一阈值由第二DC-AC变换单元的电压比值的最小值、第二AC-DC变换单元的电压比值以及上述第二变压单元的第二匝比得到。具体的,上述第二DC-AC变换单元中的第二全桥电路工作在全桥模式时,第二DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第二DC-AC变换单元交流端电压峰峰值与直流端电压的比值(即第二DC-AC变换单元的电压比值,可以表示为c)为2,同理,第二全桥电路工作在半桥模式时,第二DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为0(或者,交流端电压最大值为0,交流端电压最大值为负的直流端电压),则第二DC-AC变换单元的电压比值c为1。综上,第二DC-AC变换单元的电压比值c的最小值min(c)为1。上述第二AC-DC变换单元工作在全桥模式时,第二AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第二AC-DC直流端电压与变换单元交流端电压峰峰值的比值(即第二AC-DC的电压比值,可以表示为d)为0.5。上述第一阈值可为min(c)*(Ns2/Np2)*d=0.5*Ns2/Np2,可以理解的,上述第一阈值可以为min(c)*(Ns2/Np2)*d对应的值,也可以为基于min(c)*(Ns2/Np2)*d确定的取值范围中的任一值(比如,可以取0.9*min(c)*(Ns2/Np2)*d至1.1*min(c)*(Ns2/Np2)*d中任一值为上述第一阈值),本申请实施例以min(c)*(Ns2/Np2)*d对应的值为上述第一阈值为例进行说明,下文不再赘述。当上述第一分电压与所述第一总电压的比值小于第一阈值,即有Vs1/Vp<0.5*Ns2/Np2,控制器控制上述第二全桥电路工作在半桥模式,即控制该全桥电路的第一桥臂的开关管Q21、Q22按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q23保持常断且开关管Q24保持常通,或者,控制第一DC-AC变换单元的全桥电路的第一桥臂的开关管Q21、Q22按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q24保持常断且开关管Q23保持常通。
可选的,在上述第二AC-DC变换单元工作在全桥模式、第二DC-AC变换单元中的第二全桥电路工作在全桥模式且上述第一分电压Vs1小于第二阈值时,上述控制器控制上述第二全桥电路工作在半桥模式。具体的,上述第二阈值由上述第二DC-AC变换单元的电压比值的最小值、第二AC-DC变换单元的电压比值、第二匝比以及上述第一分电压的范围得到。上述第二阈值可为min(c)*(Ns2/Np2)*d*min(Vp)=0.5*(Ns2/Np2)*min(Vp)(min(c)=1,d=0.5,min(Vp)为第一总电压的最小值),可以理解的,上述第二阈值可以为min(c)*(Ns2/Np2)*d*min(Vp)对应的值,也可以为基于min(c)*(Ns2/Np2)*d*min(Vp)确定的取值范围中的任一值,本申请实施例以min(c)*(Ns2/Np2)*d*min(Vp)对应的值为上述第二阈值为例进行说明,下文不再赘述。当上述第一分电压小于第二阈值,即有Vs1<0.5*(Ns2/Np2)*min(Vp),控制器控制上述第二全桥电路工作在半桥模式。
可选的,在上述第二AC-DC变换单元工作在全桥模式、第二DC-AC变换单元中的第二全桥电路工作在全桥模式且上述第一总电压Vp大于第三阈值时,上述控制器控制上述第二全桥电路工作在半桥模式。具 体的,上述第三阈值由上述第二DC-AC变换单元的电压比值的最小值、第二AC-DC变换单元的电压比值、第二匝比以及上述第二总电压的范围得到。上述第三阈值可为max(Vs1)/min(c)/(Ns2/Np2)/d=2*max(Vs1)/(Ns2/Np2)(min(c)=1,d=0.5,max(Vs1)为第一分电压的最大值),可以理解的,上述第三阈值可以为max(Vs1)/min(c)/(Ns2/Np2)/d对应的值,也可以为基于max(Vs1)/min(c)/(Ns2/Np2)/d确定的取值范围中的任一值,本申请实施例以max(Vs1)/min(c)/(Ns2/Np2)/d对应的值为上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压大于第三阈值,即有Vp>2*max(Vs1)/(Ns2/Np2),控制器控制上述第二全桥电路工作在半桥模式。
可以理解的,以控制器在Vs1/Vp小于第一阈值0.5*Ns2/Np2控制上述第二全桥电路工作在半桥模式为例,在上述第二功率变换模块中,在第二AC-DC变换单元工作在全桥模式且上述第二全桥电路工作在全桥模式时(c=2,d=0.5),根据Vs3=c*(Ns2/Np2)*d*Vp,则上述第三分电压Vs3=Vp*(Ns2/Np2)。则上述第三分电压Vs3与上述第一总电压Vp的比值等于上述第一匝比,即Vs3/Vp=Ns2/Np2,则上述Vs1/Vp小于第一阈值0.5*Ns2/Np2的控制条件可以表示为Vs3>2*Vs1。换句话说,上述控制器在Vs1/Vp小于第一阈值0.5*Ns2/Np2时控制第二全桥电路工作在半桥模式,等同于在Vs3>2*Vs1时控制上述第二全桥电路工作在半桥模式。可以理解的,控制器在Vs3>2*Vs1时控制第二全桥电路工作在半桥模式,使得上述第三分电压降压为0.5*Vp*(Ns2/Np2)。换句话说,当上述第三分电压Vs3超过电压阈值(比如当Vs3>2*Vs1)时,控制器通过控制第二全桥电路的工作模式以改变第二全桥电路所在变换单元(比如第二DC-AC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第三分电压Vs3降压,避免第三分电压Vs3过分偏离第一分电压Vs1(控制器基于第二阈值、第三阈值控制第二全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第二DC-AC变换单元中包括第二全桥电路,该第二全桥电路可以工作在全桥模式或者半桥模式。在上述第二AC-DC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第二DC-AC变换单元中的第二全桥电路工作在半桥模式且上述第一分电压与上述第一总电压的比值大于第四阈值,上述控制器控制上述第二全桥电路工作在全桥模式。上述第四阈值由第二DC-AC变换单元的电压比值的最小值、第二AC-DC变换单元的电压比值以及上述第二变压单元的第二匝比得到。这里,上述第二AC-DC变换单元工作在全桥模式对应d=0.5,第四阈值可为min(c)*(Ns2/Np2)*d=0.5*Ns2/Np2(min(c)=1),可以理解的,上述第四阈值可以为min(c)*(Ns2/Np2)*d对应的值,也可以为基于min(c)*(Ns2/Np2)*d确定的取值范围中的任一值,此外,上述第四阈值大于等于上述第一阈值,本申请实施例以min(c)*(Ns2/Np2)*d对应的值为上述第四阈值,即第四阈值等于上述第一阈值为例进行说明,下文不再赘述。当上述第一分电压与所述第一总电压的比值大于第一阈值,即有Vs1/Vp>0.5*Ns2/Np2,控制器控制上述第二全桥电路工作在全桥模式。
可选的,在上述第二AC-DC变换单元工作在全桥模式、第二DC-AC变换单元中的第二全桥电路工作在半桥模式且上述第一分电压Vs1大于第五阈值时,上述控制器控制上述第二全桥电路工作在全桥模式。这里,上述第五阈值可以为min(c)*(Ns2/Np2)*d*min(Vp)=0.5*(Ns2/Np2)*min(Vp)(min(c)=1,d=0.5,min(Vp)为第一总电压的最小值)。可以理解的,上述第五阈值可以为min(c)*(Ns2/Np2)*d*min(Vp)对应的值,也可以为基于min(c)*(Ns2/Np2)*d*min(Vp)确定的取值范围中的任一值,此外,上述第五阈值大于等于上述第二阈值,本申请实施例以min(c)*(Ns2/Np2)*d*min(Vp)对应的值为上述第五阈值,即第五阈值等于上述第二阈值为例进行说明,下文不再赘述。当上述第一分电压大于第五阈值,即有Vs1>0.5*Ns2/Np2*min(Vp),控制器控制上述第二全桥电路工作在全桥模式。
可选的,在上述第二AC-DC变换单元工作在全桥模式、第二DC-AC变换单元中的第二全桥电路工作在半桥模式且上述第一总电压Vp小于第六阈值时,上述控制器控制上述第二全桥电路工作在全桥模式。这里,上述第六阈值为max(Vs1)/min(c)/(Ns2/Np2)/d=2*max(Vs1)/(Ns2/Np2)(min(c)=1,d=0.5,max(Vs1)为第一分电压的最大值)。可以理解的,上述第六阈值可以为max(Vs1)/min(c)/(Ns2/Np2)/d对应的值,也可以为基于max(Vs1)/min(c)/(Ns2/Np2)/d确定的取值范围中的任一值,此外,上述第六阈值小于等于上述第三阈值,本申请实施例以max(Vs1)/min(c)/(Ns2/Np2)/d对应的值为上述第六阈值,即第六阈值等于上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压小于第六阈值,即有Vp<2*max(Vs1)/(Ns2/Np2),控制器控制上述第一全桥电路工作在全桥模式。
可以理解的,以控制器在Vs1/Vp大于第四阈值0.5*Ns2/Np2控制上述第二全桥电路工作在全桥模式 为例,在上述第二功率变换模块中,在第二AC-DC变换单元工作在全桥模式且上述第二全桥电路工作在半桥模式时(c=1,d=0.5),根据Vs3=c*(Ns2/Np2)*d*Vp,则上述第三分电压Vs3=0.5*Vp*(Ns2/Np2)。则上述第三分电压Vs3与上述第一总电压Vp的比值关系为Vs3/Vp=0.5*Ns2/Np2,则上述Vs1/Vp大于第四阈值0.5*Ns2/Np2的控制条件可以表示为Vs3<Vs1。换句话说,上述控制器在Vs1/Vp大于第四阈值0.5*Ns2/Np2时控制第二全桥电路工作在全桥模式,等同于在Vs3<Vs1时控制上述第二全桥电路工作在全桥模式。可以理解的,控制器在Vs1/Vp大于第四阈值0.5*Ns2/Np2时控制第二全桥电路工作在全桥模式(c=2,d=0.5),即在Vs3<Vs1时控制第二全桥电路工作在全桥模式,使得上述第三分电压升压为Vp*(Ns2/Np2)。换句话说,当上述第三分电压Vs3低于电压阈值(比如当Vs3<Vs1)时,控制器通过控制第二全桥电路的工作模式以改变第二全桥电路所在变换单元(比如第二DC-AC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第三分电压Vs3升压,避免第三分电压Vs3未超过第一分电压Vs1(控制器基于第五阈值、第六阈值控制第二全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第二AC-DC变换单元中包括第二全桥电路,该第二全桥电路可以工作在全桥模式或者半桥模式。在上述第二DC-AC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第二AC-DC变换单元中的第二全桥电路工作在半桥模式且上述第一分电压与上述第一总电压的比值小于第一阈值,上述控制器控制上述第二全桥电路工作在全桥模式。具体的,第二AC-DC变换单元中的第二全桥电路工作在半桥模式时,第二桥臂的开关管Q25、Q26按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q27保持常断且开关管Q28保持常通,或者,控制第二DC-AC变换单元的全桥电路的第一桥臂的开关管Q25、Q26按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q28保持常断且开关管Q27保持常通。上述第一阈值由第二DC-AC变换单元的电压比值、第二AC-DC变换单元的电压比值的最小值以及第二变压单元的第二匝比得到,具体的,上述第二AC-DC变换单元中的第二全桥电路工作在全桥模式时,第二AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第二AC-DC变换单元直流端电压与交流端电压峰峰值的比值(即第二AC-DC变换单元的电压比值,可以表示为d)为0.5,同理,第二全桥电路工作在半桥模式时,第二AC-DC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为0(或者,交流端电压最大值为0,交流端电压最大值为负的直流端电压),则第二AC-DC变换单元的电压比值d为1。综上,第二AC-DC变换单元的电压比值d的最小值min(d)为0.5。上述第二DC-AC变换单元工作在全桥模式时,第二DC-AC变换单元交流端电压最大值为正的直流端电压,交流端电压最小值为负的直流端电压,则第二DC-AC变换单元交流端电压峰峰值与直流端电压的比值(即第二DC-AC的电压比值,可以表示为c)为2。上述第一阈值可为c*(Ns2/Np2)*min(d)=Ns2/Np2,可以理解的,上述第一阈值可以为c*(Ns2/Np2)*min(d)对应的值,也可以为基于c*(Ns2/Np2)*min(d)确定的取值范围中的任一值(比如,可以取0.9*c*(Ns2/Np2)*min(d)至1.1*c*(Ns2/Np2)*min(d)中任一值为上述第一阈值),本申请实施例以c*(Ns2/Np2)*min(d)对应的值为上述第一阈值为例进行说明,下文不再赘述。当上述第一分电压与所述第一总电压的比值小于第一阈值,即有Vs1/Vp<Ns2/Np2,控制器控制上述第二全桥电路工作在全桥模式,即控制该全桥电路的第一桥臂的开关管Q25、Q26按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Q27、Q28也按照预定频率以及50%占空比进行开关动作且互补,并且Q25与Q28同步,Q26与Q27同步。
可选的,在上述第二DC-AC变换单元工作在全桥模式、第二AC-DC变换单元中的第二全桥电路工作在半桥模式且上述第一分电压Vs1小于第二阈值时,上述控制器控制上述第二全桥电路工作在半桥模式。具体的,上述第二阈值由上述第二DC-AC变换单元的电压比值、第二AC-DC变换单元的电压比值的最小值、第二匝比以及上述第一分电压的范围得到。上述第二阈值可为c*(Ns2/Np2)*min(d)*min(Vp)=(Ns2/Np2)*min(Vp)(c=2,min(d)=0.5,min(Vp)为第一总电压的最小值),可以理解的,上述第二阈值可以为c*(Ns2/Np2)*min(d)*min(Vp)对应的值,也可以为基于c*(Ns2/Np2)*min(d)*min(Vp)确定的取值范围中的任一值,本申请实施例以c*(Ns2/Np2)*min(d)*min(Vp)对应的值为上述第二阈值为例进行说明,下文不再赘述。当上述第一分电压小于第二阈值,即有Vs1<(Ns2/Np2)*min(Vp),控制器控制上述第二全桥电路工作在全桥模式。
可选的,在上述第二DC-AC变换单元工作在全桥模式、第二AC-DC变换单元中的第二全桥电路工作在半桥模式且上述第一总电压Vp大于第三阈值时,上述控制器控制上述第二全桥电路工作在全桥模式。具 体的,上述第三阈值由上述第二DC-AC变换单元的电压比值、第二AC-DC变换单元的电压比值的最小值、第二匝比以及上述第二总电压的范围得到。上述第三阈值可为max(Vs1)/c/(Ns2/Np2)/min(d)=max(Vs1)/(Ns2/Np2)(c=2,min(d)=0.5,max(Vs1)为第一分电压的最大值),可以理解的,上述第三阈值可以为max(Vs1)/c/(Ns2/Np2)/min(d)对应的值,也可以为基于max(Vs1)/c/(Ns2/Np2)/min(d)确定的取值范围中的任一值,本申请实施例以max(Vs1)/c/(Ns2/Np2)/min(d)对应的值为上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压大于第三阈值,即有Vp>max(Vs1)/(Ns2/Np2),控制器控制上述第二全桥电路工作在全桥模式。
可以理解的,以控制器在Vs1/Vp小于第一阈值Ns2/Np2控制上述第二全桥电路工作在全桥模式为例,在上述第二功率变换模块中,在第二DC-AC变换单元工作在全桥模式且上述第二全桥电路工作在半桥模式时(c=2,d=1),根据Vs3=c*(Ns2/Np2)*d*Vp,则上述第三分电压Vs3=2*Vp*(Ns2/Np2)。则上述第三分电压Vs3与上述第一总电压Vp的比值关系为Vs3/Vp=2*Ns2/Np2,则上述Vs1/Vp小于第一阈值Ns2/Np2的控制条件可以表示为Vs3>2*Vs1。换句话说,上述控制器在Vs1/Vp小于第一阈值Ns2/Np2时控制第二全桥电路工作在全桥模式,等同于在Vs3>2*Vs1时控制上述第二全桥电路工作在全桥模式。可以理解的,控制器在Vs1/Vp小于第一阈值Ns2/Np2时控制第二全桥电路工作在全桥模式(c=2,d=0.5),即在Vs3>2*Vs1时控制第二全桥电路工作在全桥模式,使得上述第三分电压降压为Vp*(Ns2/Np2)。换句话说,当上述第三分电压Vs3超过电压阈值(比如当Vs3>2*Vs1)时,控制器通过控制第二全桥电路的工作模式以改变第二全桥电路所在变换单元(比如第二AC-DC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第三分电压Vs3降压,避免第三分电压Vs3过分偏离第一分电压Vs1(控制器基于第二阈值、第三阈值控制第二全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,第二AC-DC变换单元中包括第二全桥电路,该第二全桥电路可以工作在全桥模式或者半桥模式。在上述第二DC-AC变换单元保持工作模式不变(可以是恒定工作在全桥模式的全桥电路或者恒定工作在半桥模式的半桥电路,或者恒定工作在固定模式的其他电路,为方便描述,这里以恒定工作在全桥模式的全桥电路为例进行说明)、上述第二AC-DC变换单元中的第二全桥电路工作在全桥模式且上述第一分电压与上述第一总电压的比值大于第四阈值,上述控制器控制上述第二全桥电路工作在半桥模式。上述第四阈值由上述第二DC-AC变换单元的电压比值、第二AC-DC变换单元的电压比值的最小值以及第二变压单元的第二匝比得到。这里,上述第二DC-AC变换单元工作在全桥模式对应c=2,上述第四阈值为c*(Ns2/Np2)*min(d)=Ns2/Np2(min(d)=0.5),可以理解的,上述第四阈值可以为c*(Ns2/Np2)*min(d)对应的值,也可以为基于c*(Ns2/Np2)*min(d)确定的取值范围中的任一值,此外,上述第四阈值大于等于上述第一阈值,本申请实施例以为c*(Ns2/Np2)*min(d)对应的值为上述第四阈值,即第四阈值等于上述第一阈值为例进行说明,下文不再赘述。当上述第一分电压与所述第一总电压的比值大于第四阈值,即有Vs1/Vp>Ns2/Np2,控制器控制上述第二全桥电路工作在半桥模式。
可选的,在上述第二DC-AC变换单元工作在全桥模式、第二AC-DC变换单元中的第二全桥电路工作在全桥模式且上述第一分电压Vs1大于第五阈值时,上述控制器控制上述第二全桥电路工作在半桥模式。这里,上述第五阈值为c*(Ns2/Np2)*min(d)*min(Vp)=(Ns2/Np2)*min(Vp)(c=2,min(d)=0.5,min(Vp)为第一总电压的最小值)。可以理解的,上述第五阈值可以为c*(Ns2/Np2)*min(d)*min(Vp)对应的值,也可以为基于c*(Ns2/Np2)*min(d)*min(Vp)确定的取值范围中的任一值,此外,上述第五阈值大于等于上述第二阈值,本申请实施例以c*(Ns2/Np2)*min(d)*min(Vp)对应的值为上述第五阈值,即第五阈值等于上述第二阈值为例进行说明,下文不再赘述。当上述第一分电压大于第五阈值,即有Vs1>(Ns2/Np2)*min(Vp),控制器控制上述第二全桥电路工作在半桥模式。
可选的,在上述第二DC-AC变换单元工作在全桥模式、第二AC-DC变换单元中的第二全桥电路工作在全桥模式且上述第二总电压Vp小于第六阈值时,上述控制器控制上述第二全桥电路工作在半桥模式。这里,上述第六阈值为max(Vs1)/c/(Ns2/Np2)/min(d)=max(Vs1)/(Ns2/Np2)(c=2,min(d)=0.5,max(Vs1)为第一分电压的最大值)。可以理解的,上述第六阈值可以为max(Vs1)/c/(Ns2/Np2)/min(d)对应的值,也可以为基于max(Vs1)/c/(Ns2/Np2)/min(d)确定的取值范围中的任一值,此外,上述第六阈值小于等于上述第三阈值,本申请实施例以max(Vs1)/c/(Ns2/Np2)/min(d)对应的值为上述第六阈值,即第六阈值等于上述第三阈值为例进行说明,下文不再赘述。当上述第一总电压小于第六阈值,即有Vp<max(Vs1)/(Ns2/Np2),控制器控制上述第二全桥电路工作在半桥模式。
可以理解的,以控制器在Vs1/Vp大于第四阈值Ns2/Np2控制上述第二全桥电路工作在半桥模式为例, 在上述第二功率变换模块中,在第二DC-AC变换单元工作在全桥模式且上述第二全桥电路工作在全桥模式时(c=2,d=0.5),根据Vs3=c*(Ns2/Np2)*d*Vp,则上述第三分电压Vs3=Vp*(Ns2/Np2)。则上述第三分电压Vs3与上述第一总电压Vp的比值关系为Ns2/Np2=Vs3/Vp,则Vs1/Vp大于第四阈值Ns2/Np2的控制条件可以表示为Vs1>Vs3。换句话说,上述控制器在Vs1/Vp大于第四阈值Ns2/Np2时控制第二全桥电路工作在半桥模式,等同于在Vs1>Vs3时控制上述第二全桥电路工作在半桥模式。可以理解的,控制器在Vs1/Vp大于第四阈值Ns2/Np2时控制第二全桥电路工作在半桥模式(c=2,d=1),即在Vs1>Vs3时控制第二全桥电路工作在半桥模式,使得上述第三分电压升压为2*Vp*(Ns2/Np2)。换句话说,当上述第三分电压Vs3低于电压阈值(比如当Vs3<Vs1)时,控制器通过控制第二全桥电路的工作模式以改变第二全桥电路所在变换单元(比如第二AC-DC变换单元)交流端电压峰峰值与直流端电压的关系,从而对第三分电压Vs3升压,避免第三分电压Vs3未超过第一分电压Vs1(控制器基于第五阈值、第六阈值控制第二全桥电路的情况类似,在此不再赘述),提高直流功率转换器的直流电压转换效果和适用性,在较低电路复杂度下实现宽输入输出电压适应范围。
在一些可行的实施方式中,在图5所示的直流功率转换器中,上述控制器基于第一参考电压、电容Cs1第一连接端和第二连接端之间的第二分电压Vs2以及电容Cs2第一连接端和第二连接端之间的第三分电压Vs3,控制上述直流调节单元中的开关管Qb1和开关管Qb2,以控制上述直流调节单元的电容Cb第一连接端和第二连接端之间的第一分电压Vs1,使第一分电压Vs1与上述第二分电压Vs2之和为上述第一参考电压。可以理解的,直流功率转换器第三直流端与第四直流端之间的直流电压(即第二总电压Vs)等于上述第二分电压Vs2与上述第一分电压Vs1之和,即直流功率转换器可以通过控制器基于不同的第一总电压Vp和/或第二总电压Vs控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压Vs1和/或第一总电压Vp控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第三直流端与第四直流端之间实现电压值为第一参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,直流电压转换效果好,适用性强。
在一些可行的实施方式中,在图5所示的直流功率转换器中,上述直流功率转换器中的控制器基于第二参考电压和上述第二分电压Vs2,控制直流调节单元中的开关管Qb1和开关管Qb2,以控制上述直流调节单元的电容Cb第一连接端和第二连接端之间的第一分电压Vs1,使直流功率转换器的第一直流端和第二直流端之间的第一总电压Vp等于上述第二参考电压,即直流功率转换器可以通过控制器基于不同的第一总电压Vp和/或第二总电压Vs控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压Vs1和/或第一总电压Vp控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第一直流端与第二直流端之间实现电压值为第二参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,直流电压转换效果好,适用性强。
在一些可行的实施方式中,请一并参见图6,图6是本申请提供的直流功率转换器的另一结构示意图。如图6所示,图6中直流功率转换器的第一功率变换模块包括第一DC-AC变换单元、第一AC-DC变换单元和第一变压单元,其中,第一DC-AC变换单元的第一直流端和第二直流端分别为第一功率变换模块的第一直流端和第二直流端,第一DC-AC变换单元的第一交流端和第二交流端通过第一变压单元分别与第一AC-DC变换单元的第一交流端和第二交流端耦合,第一AC-DC变换单元的第一直流端和第二直流端分别为第一功率变换模块的第三直流端和第四直流端。上述第一DC-AC变换单元和/或上述第一AC-DC变换单元中包括第一全桥电路,上述控制器(图6未示出)基于上述直流功率转换器的第一直流端与第二直流端之间的第一总电压和/或直流功率转换器的第三直流端与第四直流端之间第二总电压控制第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的直流电压(即第二分电压Vs2)保持与上述第二总电压Vs的差值不高于设定阈值。
可选的,图6中直流功率转换器的第二功率变换模块包括上述第一DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,第一DC-AC变换单元的第一直流端、第二直流端分别为第二功率变换模块的第一直流端、第二直流端,第一DC-AC变换单元的第一交流端、第二交流端通过第二变压单元分别与第二AC-DC变换单元的第一交流端、第二交流端耦合,第二AC-DC变换单元的第一直流端、第二直流端分别与直流调节单元的第一直流端、第二直流端耦合,直流调节单元的第三直流端、第四直流端分别为第二功率变换模块的第三直流端、第四直流端。可选的,上述第二AC-DC变换单元中可以包括第二全桥电路,上述控制器基于上述第一总电压Vp和/或上述直流调节单元的第三直流端与第四直流端之间的第一分电压Vs1控制第二全桥电路工作在全桥模式或者半桥模式,从而改变上述第二功率变换模块中第二 全桥电路交流端电压与直流端电压的关系,使得上述第二功率变换模块中第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压Vs3保持与上述第一分电压Vs1的差值不高于设定阈值。
在一些可行的实施方式中,请一并参见图7,图7是本申请提供的直流功率转换器的另一结构示意图。如图7所示,图7中直流功率转换器的第一功率变换模块包括第一DC-AC变换单元、第一AC-DC变换单元和变压单元,其中,上述第一DC-AC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第一直流端、第二直流端,并且分别为上述第二功率变换模块的第一直流端、第二直流端。上述变压单元的原边绕组与第一DC-AC变换单元的第一交流端、第二交流端耦合,变压单元的第一副边绕组与第一AC-DC变换单元的第一交流端、第二交流端耦合,变压单元的第二副边绕组与第二AC-DC变换单元的第一交流端、第二交流端耦合。第一AC-DC变换单元的第一直流端、第二直流端分别为上述第一功率变换模块的第三直流端、第四直流端,第二AC-DC变换单元的第一直流端、第二直流端分别与上述直流调节单元的第一直流端、第二直流端耦合,上述直流调节单元的第三直流端、第四直流端分别为上述第二功率变换模块的第三直流端、第四直流端。上述第一DC-AC变换单元和/或上述第一AC-DC变换单元中包括第一全桥电路,上述控制器(图7未示出)基于上述直流功率转换器的第一直流端与第二直流端之间的第一总电压Vp和/或直流功率转换器的第三直流端与第四直流端之间第二总电压Vs控制第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一功率变换模块中第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的直流电压(即第二分电压Vs2)保持与上述第二总电压Vs的差值不高于设定阈值。
可选的,上述第二AC-DC变换单元中可以包括第二全桥电路,上述控制器基于上述第一总电压Vp和/或上述直流调节单元的第三直流端与第四直流端之间的第一分电压Vs1控制第二全桥电路工作在全桥模式或者半桥模式,从而改变上述第二功率变换模块中第二全桥电路交流端电压与直流端电压的关系,使得上述第二功率变换模块中第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压Vs3保持与上述第一分电压Vs1的差值不高于设定阈值。
在一些可行的实施方式中,上述图6中直流功率转换器的第一功率变换模块中的第一DC-AC变换单元、第一AC-DC变换单元包括第一全桥电路,第二功率变换模块中的第二AC-DC变换单元包括第二全桥电路。请一并参见图8,图8是本申请提供的直流功率转换器的另一结构示意图。如图8所示,第一DC-AC变换单元包括的第一全桥电路由开关管Q11、Q12、Q13和Q14(各开关管可以是金属氧化物半导体场效应晶体管),以及电容Cp1组成。其中,Q11的第二连接端与Q12的第一连接端相连,Q13的第二连接端与Q14的第一连接端相连,Q11的第一连接端与Cp1的第一连接端、Q13的第一连接端相连,Q12的第二连接端与Cp1的第二连接端、Q14的第二连接端相连。Q11、Q12、Q13和Q14的第一连接端可为Q11、Q12、Q13和Q14的漏极,上述开关管Q11、Q12、Q13和Q14的第二连接端可为Q11、Q12、Q13和Q14的源极。第一AC-DC变换单元包括的第一全桥电路由开关管Q15、Q16、Q17和Q18,以及电容Cs1组成,第二AC-DC变换单元包括的第二全桥电路由开关管Q25、Q26、Q27和Q28,以及电容Cs2组成。上述第一AC-DC变换单元包括的第一全桥电路和第二AC-DC变换单元包括的第二全桥电路中各开关管可以是金属氧化物半导体场效应晶体管,且各全桥电路的开关管与电容的连接关系可与上述第一DC-AC变换单元包括的第一全桥电路相同,此处不再赘述。上述第一DC-AC变换单元中的第一全桥电路的Cp1与开关管Q11、Q13的连接端为直流功率转换器的第一直流端,上述第一DC-AC变换单元中的第一全桥电路的Cp1与开关管Q12、Q14的连接端为直流功率转换器的第二直流端。进一步地,上述图8中的第一变压单元、第二变压单元包括变压器和谐振电路。请一并参见图8,图8中第一变压单元包括第一变压器,第一变压器的第一绕组与第二绕组的匝比为Np1:Ns1(或者Np1/Ns1),第一变压单元还包括第一谐振电路,第一谐振电路中包括励磁电感Lm1,谐振电感Lr1和谐振电容Cr1。励磁电感Lm1为第一变压器的第一绕组与第二绕组的等效电感,第一变压器的第一绕组的第一端、第二端分别与上述第一DC-AC变换单元包括的第一全桥电路中开关管Q11和Q12的连接端、开关管Q13和Q14的连接端相连,第二绕组的第一端通过上述谐振电感Lr1和谐振电容Cr1与上述第一AC-DC变换单元包括的第一全桥电路中开关管Q15和Q16的连接端相连,第二端与上述第一AC-DC变换单元包括的第一全桥电路中开关管Q17和Q18的连接端相连。第二变压单元包括第二变压器,第二变压器的第一绕组与第二绕组的匝比为Np2:Ns2(或者Np2/Ns2),第二变压单元还包括第二谐振电路,第二谐振电路中包括励磁电感Lm2,谐振电感Lr2和谐振电容Cr2。励磁电感Lm2为第二变压器的第一绕组与第二绕组的等效电感,第二变压器的第一绕组的第一端、第二端分别与上述第一DC-AC变换单元包括的第一全桥电路中开关管Q11和Q12的连接端、开关管Q13和Q14的连接端相连,第二绕组的第一端通过上述谐振电感Lr2和谐振电容Cr2与上述第二AC-DC变换单元包括的第二全桥电路中开关管Q25和Q26的连接 端相连,第二端与上述第二AC-DC变换单元包括的第二全桥电路中开关管Q27和Q28的连接端相连。进一步地,上述图7中的直流调节单元可以包括BUCK-BOOST电路,请一并参见图8,图8中直流调节单元包括BUCK-BOOST电路,BUCK-BOOST电路由开关管Qb1、开关管Qb2、开关管Qb3、开关管Qb4(各开关管可以是金属氧化物半导体场效应晶体管)、电感Lb以及电容Cb组成。其中,Qb1的第二连接端与Qb2的第一连接端相连并且连接端通过电感Lb与Qb3的第二连接端与Qb4的第一连接端相连的连接端相连,Qb2的第二连接端、Qb4的第二连接端与电容Cb的第二连接端相连,Qb3的第一连接端与电容Cb的第一连接端相连。BUCK-BOOST电路中Qb1的第一连接端、Qb2的第二连接端分别与上述第二AC-DC变换单元中电容Cs2的第一连接端、Cs2的第二连接端相连,Qb3与Cb的连接端与上述第一AC-DC变换单元中电容Cs1的第二连接端相连。上述第一AC-DC变换单元中电容Cs1与开关管Q15、Q17的连接端为直流功率转换器的第三直流端,电容Cb与Qb2、Qb4的连接端为直流功率转换器的第四直流端。
在一些可行的实施方式中,在上述图8所示的直流功率转换器中,第一DC-AC变换单元和/或上述第一AC-DC变换单元中包括第一全桥电路,控制器(图8中未示出)基于上述直流功率转换器的第一直流端与第二直流端之间的第一总电压Vp和/或直流功率转换器的第三直流端与第四直流端之间第二总电压Vs控制第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的直流电压(即第二分电压Vs2)保持与上述第二总电压Vs的差值不高于设定阈值。可选的,上述第二AC-DC变换单元中可以包括第二全桥电路,上述控制器基于上述第一总电压Vp和/或上述直流调节单元的第三直流端与第四直流端之间的第一分电压Vs1控制第二全桥电路工作在全桥模式或者半桥模式,从而改变上述第二功率变换模块中第二全桥电路交流端电压与直流端电压的关系,使得上述第二功率变换模块中第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压Vs3保持与上述第一分电压Vs1的差值不高于设定阈值。这里,上述控制器基于上述第一总电压Vp和/或第二总电压Vs控制第一全桥电路,以及上述控制器基于上述第一总电压Vp和/或第一分电压Vs1控制第二全桥电路的过程可参照上述对图5中所示的直流功率转换器的描述,此处不再赘述。
在一些可行的实施方式中,在图8所示的直流功率转换器中,上述控制器基于第一参考电压、电容Cs1第一连接端和第二连接端之间的第二分电压Vs2以及电容Cs2第一连接端和第二连接端之间的第三分电压Vs3控制上述直流调节单元中的开关管Qb1、Qb2、Qb3以及Qb4,以控制上述直流调节单元的电容Cb第一连接端和第二连接端之间的第一分电压Vs1,使第一分电压Vs1与上述第二分电压Vs2之和为上述第一参考电压。可以理解的,直流功率转换器第三直流端与第四直流端之间的直流电压(即第二总电压Vs)等于上述第二分电压Vs2与上述第一分电压Vs1之和,即直流功率转换器可以通过控制器基于不同的第一总电压Vp和/或第二总电压Vs控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压Vs1和/或第一总电压Vp控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第三直流端与第四直流端之间实现电压值为第一参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,直流电压转换效果好,适用性强。
在一些可行的实施方式中,在图8所示的直流功率转换器中,上述直流功率转换器中的控制器基于第二参考电压和上述第二分电压Vs2控制直流调节单元中的开关管Qb1、Qb2、Qb3以及Qb4,以控制上述直流调节单元的电容Cb第一连接端和第二连接端之间的第一分电压Vs1,使直流功率转换器的第一直流端和第二直流端之间的第一总电压Vp等于上述第二参考电压,即直流功率转换器可以通过控制器基于不同的第一总电压Vp和/或第二总电压Vs控制第一功率变换模块中的第一全桥电路,或者,通过控制器基于不同的第一分电压Vs1和/或第一总电压Vp控制第二功率变换模块中的第二全桥电路,以在直流功率转换器的第一直流端与第二直流端之间实现电压值为第二参考电压的直流电压输出,使得输入直流电压与输出直流电压的比值范围更宽,直流电压转换效果好,适用性强。
在一些可行的实施方式中,上述图6中直流功率转换器的第一功率变换模块中的第一DC-AC变换单元、第一AC-DC变换单元包括第一全桥电路,第二功率变换模块中的第二AC-DC变换单元包括半桥电路。请一并参见图9,图9是本申请提供的直流功率转换器的另一结构示意图。如图9所示,第二功率变换模块中的第二AC-DC变换单元包括的半桥电路由开关管Q25、Q26,以及电容C27、C28和Cs2组成。其中,Q25的第二连接端与Q26的第一连接端相连,电容C27的第二连接端与C28的第一连接端相连,开关管Q25和Q26的连接端与第二变压器第二绕组的第一端相连,电容C27和C28的连接端与第二变压器第二绕组的第二端相连,电容C27的第一连接端与开关管Q25的第一连接端、电容Cs2的第一连接端相连,电容C28的第二连接端与开关管Q26的第二连接端、电容Cs2的第二连接端相连。上述开关管Q25、Q26的第一连接 端可为Q25、Q26的漏极,上述开关管Q25、Q26的第二连接端可为Q25、Q26的源极。控制器(图9中未示出)基于上述直流功率转换器的第一直流端与第二直流端之间的第一总电压Vp和/或直流功率转换器的第三直流端与第四直流端之间第二总电压Vs控制第一全桥电路工作在全桥模式或者半桥模式,从而改变上述第一全桥电路交流端电压与直流端电压的关系,使得上述第一功率变换模块中第一AC-DC变换单元的第一直流端与第二直流端之间的直流电压(即第二分电压Vs2)保持与上述第二总电压Vs的差值不高于设定阈值。这里,上述控制器基于上述第一总电压Vp和/或第二总电压Vs控制第一全桥电路的过程可参照上述对图5中所示的直流功率转换器的描述,此处不再赘述。
在一些可行的实施方式中,上述图8或者图9中直流调节单元可以包括全桥BUCK电路,请一并参见图10,图10为全桥BUCK电路的结构示意图。如图10所示,全桥BUCK电路由开关管Qb1、开关管Qb2、开关管Qb3、开关管Qb4(各开关管可以是金属氧化物半导体场效应晶体管)、电感Lb以及电容Cb组成。其中,Qb1的第二连接端与Qb2的第一连接端相连并且连接端与电容Cb的第二连接端相连,Qb3的第二连接端与Qb4的第一连接端相连的连接端相连并且连接端通过电感Lb与电容Cb的第一连接端相连。Qb1的第一连接端与Qb3的第一连接端相连并且连接端为全桥BUCK电路的第一直流端(或者第一DC端),Qb2的第二连接端与Qb4的第二连接端相连并且连接端为全桥BUCK电路的第二直流端(或者第二DC端)。电容Cb的第一连接端与电感Lb相连的连接端、电容Cb的第二连接端与Qb1和Qb2的连接端分别为全桥BUCK电路的第三直流端(或者第三DC端)、第四直流端(或者第四DC端)。
在一些可行的实施方式中,上述第一全桥电路和上述第二全桥电路可以是两电平全桥电路或者三电平全桥电路,其中,三电平全桥电路包括但不限于中点嵌位三电平全桥电路、有源中点嵌位三电平全桥电路以及飞跨电容三电平全桥电路。请一并参见图11a,图11a为中点嵌位三电平全桥电路的结构示意图,中点嵌位三电平全桥电路由第一桥臂的开关管Sa、Sb、Sc与Sd,第二桥臂的开关管Se、Sf、Sg与Sh,以及二极管Da、Db、Dc和Dd组成。其中,Sa的第一连接端与Sb的第二连接端、二极管Da的阴极相连且连接端依次通过二极管Da和二极管Db与Sc的第一连接端、Sd的第二连接端、二极管Db的阳极相连的连接端相连,Se的第一连接端与Sf的第二连接端、二极管Dc的阴极相连且连接端依次通过二极管Dc和二极管Dd与Sg的第一连接端、Sh的第二连接端、二极管Dd的阳极相连的连接端相连,Sa的第二连接端与Se的第二连接端相连,Sd的第一连接端与Sh的第一连接端相连。Sb的第一连接端与Sc的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第一交流端(或者第一AC端),Sf的第一连接端与Sg的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第二交流端(或者第二AC端),Da的阳极与Db的阴极之间的连接端与Dc的阳极与Dd的阴极之间的连接端相连,并且Da、Db、Dc和Dd之间的连接端与Sa的第二连接端与Se的第二连接端相连的连接端、Sd的第一连接端与Sh的第一连接端相连的连接端分别为中点嵌位三电平全桥电路的第一直流端、第二直流端和第三直流端。请一并参见图11b,图11b为有源中点嵌位三电平全桥电路的结构示意图,有源中点嵌位三电平全桥电路由第一桥臂的开关管Sa、Sb、Sc与Sd,第二桥臂的开关管Sg、Sh、Si与Sj,以及开关管Se、Sf、Sk与Sl组成。其中,Sa的第一连接端与Sb的第二连接端、开关管Se的第二连接端相连且连接端依次通过开关管Se和开关管Sf与Sc的第一连接端、Sd的第二连接端、开关管Sf的第一连接端相连的连接端相连,Sg的第一连接端与Sh的第二连接端、开关管Sk的第二连接端相连且连接端依次通过开关管Sk和开关管Sl与Si的第一连接端、Sj的第二连接端、开关管Sl的第一连接端相连的连接端相连,Sa的第二连接端与Sg的第二连接端相连,Sd的第一连接端与Sj的第一连接端相连。Sb的第一连接端与Sc的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第一交流端,Sh的第一连接端与Si的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第二交流端,Se的第一连接端与Sf的第二连接端之间的连接端与Sk的第一连接端与Sl的第二连接端之间的连接端相连,Se、Sf、Sk和Sl之间的连接端与Sa的第二连接端与Sg的第二连接端相连的连接端、Sd的第一连接端与Sj的第一连接端相连的连接端分别为有源中点嵌位三电平全桥电路的第一直流端、第二直流端和第三直流端。请一并参见图11c,图11c为飞跨电容三电平全桥电路的结构示意图,飞跨电容三电平全桥电路由第一桥臂的开关管Sa、Sb、Sc与Sd,第二桥臂的开关管Sg、Sh、Si与Sj,以及电容Ca、Cb组成。其中,Sa的第一连接端与Sb的第二连接端相连且连接端通过电容Ca与Sc的第一连接端与Sd的第二连接端相连的连接端相连,Se的第一连接端与Sf的第二连接端相连且连接端通过电容Cb与Sg的第一连接端与Sh的第二连接端相连的连接端相连,Sa的第二连接端与Se的第二连接端相连,Sd的第一连接端与Sh的第一连接端相连。Sb的第一连接端与Sc的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第一交流端,Sf的第一连接端与Sg的第二连接端相连并且连接端为中点嵌位三电平全桥电路的第二交流端,Sa的第二连接端与Se的第二连接端相连的连接端、Sd的第一连接端与Sh的第一连接端相连的连 接端分别为中点嵌位三电平全桥电路的第一直流端、第二直流端。上述中点嵌位三电平全桥电路、有源中点嵌位三电平全桥电路以及飞跨电容三电平全桥电路中的各开关管可以是绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)或者金属氧化物半导体场效应晶体管。可以理解的,如果各开关管为绝缘栅双极型晶体管,则各开关管的第一连接端可为发射极,各开关管的第二连接端可为集电极,如果各开关管为金属氧化物半导体场效应晶体管,则各开关管的第一连接端可为源极,各开关管的第二连接端可为漏极,即各开关管的第一连接端和第二连接端可根据具体器件类型确定,在此不做限制。
在一些可行的实施方式中,上述图11a、图11b以及图11c所示的三电平全桥电路可以工作在全桥模式或者半桥模式,以图11a的中点嵌位三电平全桥电路为例,当该全桥电路工作在全桥模式时,第一桥臂的开关管Sa与Sc按照预定频率以及50%占空比进行开关动作且互补,Sb与Sd按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Se与Sg也按照预定频率以及50%占空比进行开关动作且互补,Sf与Sh也按照预定频率以及50%占空比进行开关动作且互补。此时,全桥电路交流端(或者AC端)的电压VAC最大值为正的直流端(或者DC端)的电压,可以表示为+VDC,全桥电路交流端(或者AC端)的电压VAC最小值为负的直流端的电压,可以表示为-VDC。当全桥电路工作在半桥模式时,图11a中全桥电路的第一桥臂的开关管Sa与Sc按照预定频率以及50%占空比进行开关动作且互补,Sb与Sd按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Se与Sf保持常断,开关管Sg与Sh保持常通,此时,全桥电路交流端的电压VAC最大值为正的直流端的电压+VDC,最小值为0。或者,当全桥电路工作在半桥模式时,图11a中全桥电路的第一桥臂的开关管Sa与Sc按照预定频率以及50%占空比进行开关动作且互补,Sb与Sd按照预定频率以及50%占空比进行开关动作且互补,第二桥臂的开关管Sg与Sh保持常断,开关管Se与Sf保持常通,此时,全桥电路交流端的电压VAC最大值为0,最小值为负的直流端的电压-VDC。可以理解的,上述全桥电路工作在全桥模式时,交流端电压VAC的峰峰值(即2VDC)是工作在半桥模式时峰峰值(即VDC)的两倍。可以理解的,上述图11b中有源中点嵌位三电平全桥电路和图11c中飞跨电容三电平全桥电路工作在全桥模式、半桥模式的状态和上述中点嵌位三电平全桥电路相同,此处不再赘述。

Claims (22)

  1. 一种直流功率转换器,其特征在于,所述直流功率转换器包括控制器、第一功率变换模块和第二功率变换模块,所述第一功率变换模块的第一直流端、第二直流端分别与所述第二功率变换模块的第一直流端、第二直流端耦合,所述第一功率变换模块的第一直流端、第二直流端分别为所述直流功率转换器的第一直流端、第二直流端,所述第一功率变换模块的第三直流端为所述直流功率转换器的第三直流端,所述第一功率变换模块的第四直流端与所述第二功率变换模块的第三直流端耦合,所述第二功率变换模块的第四直流端为所述直流功率转换器的第四直流端,所述第一功率变换模块中包括至少一个第一全桥电路,所述耦合是指直接或间接电连接;
    所述控制器用于基于所述直流功率转换器的第一直流端与第二直流端之间的第一总电压和/或所述直流功率转换器的第三直流端与第四直流端之间的第二总电压控制所述第一全桥电路工作在全桥模式或者半桥模式。
  2. 根据权利要求1所述的直流功率转换器,其特征在于,所述第一功率变换模块包括第一DC-AC变换单元、第一AC-DC变换单元和第一变压单元,其中,所述第一DC-AC变换单元的第一直流端、第二直流端分别为所述第一功率变换模块的第一直流端、第二直流端,所述第一DC-AC变换单元的第一交流端、第二交流端通过所述第一变压单元分别与所述第一AC-DC变换单元的第一交流端、第二交流端耦合,所述第一AC-DC变换单元的第一直流端、第二直流端分别为所述第一功率变换模块的第三直流端、第四直流端。
  3. 根据权利要求2所述的直流功率转换器,其特征在于,所述第二功率变换模块包括第二DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,所述第二DC-AC变换单元的第一直流端、第二直流端分别为所述第二功率变换模块的第一直流端、第二直流端,所述第二DC-AC变换单元的第一交流端、第二交流端通过所述第二变压单元分别与所述第二AC-DC变换单元的第一交流端、第二交流端耦合,所述第二AC-DC变换单元的第一直流端、第二直流端分别与所述直流调节单元的第一直流端、第二直流端耦合,所述直流调节单元的第三直流端、第四直流端分别为所述第二功率变换模块的第三直流端、第四直流端。
  4. 根据权利要求2所述的直流功率转换器,其特征在于,所述第二功率变换模块包括所述第一DC-AC变换单元、第二AC-DC变换单元、第二变压单元和直流调节单元,其中,所述第一DC-AC变换单元的第一直流端、第二直流端分别为所述第二功率变换模块的第一直流端、第二直流端,所述第一DC-AC变换单元的第一交流端、第二交流端通过所述第二变压单元分别与所述第二AC-DC变换单元的第一交流端、第二交流端耦合,所述第二AC-DC变换单元的第一直流端、第二直流端分别与所述直流调节单元的第一直流端、第二直流端耦合,所述直流调节单元的第三直流端、第四直流端分别为所述第二功率变换模块的第三直流端、第四直流端。
  5. 根据权利要求1所述的直流功率转换器,其特征在于,所述第一功率变换模块包括第一DC-AC变换单元、变压单元和第一AC-DC变换单元,所述第二功率变换模块包括所述第一DC-AC变换单元、所述变压单元、第二AC-DC变换单元和直流调节单元,其中,所述第一DC-AC变换单元的第一直流端、第二直流端分别为所述第一功率变换模块的第一直流端、第二直流端,并且分别为所述第二功率变换模块的第一直流端、第二直流端;所述变压单元的原边绕组与所述第一DC-AC变换单元的第一交流端、第二交流端耦合,所述变压单元的第一副边绕组与所述第一AC-DC变换单元的第一交流端、第二交流端耦合,所述变压单元的第二副边绕组与所述第二AC-DC变换单元的第一交流端、第二交流端耦合,所述第一AC-DC变换单元的第一直流端、第二直流端分别为所述第一功率变换模块的第三直流端、第四直流端,所述第二AC-DC变换单元的第一直流端、第二直流端分别与所述直流调节单元的第一直流端、第二直流端耦合,所述直流调节单元的第三直流端、第四直流端分别为所述第二功率变换模块的第三直流端、第四直流端。
  6. 根据权利要求2或者权利要求5所述的直流功率转换器,其特征在于,所述第一DC-AC变换单元和/或所述第一AC-DC变换单元中包括所述第一全桥电路,所述控制器用于基于所述第一总电压和/或所述第二总电压控制所述第一全桥电路工作在全桥模式或者半桥模式。
  7. 根据权利要求6所述的直流功率转换器,其特征在于,所述第一DC-AC变换单元中包括所述第一全桥电路;
    所述控制器还用于在所述第一全桥电路工作在全桥模式、且所述第二总电压与所述第一总电压的比值小于第一阈值,或者所述第二总电压小于第二阈值,或者所述第一总电压大于第三阈值,控制所述第一全桥电路工作在半桥模式;
    所述控制器还用于在所述第一全桥电路工作在半桥模式、且所述第二总电压与所述第一总电压的比值大于第四阈值,或者所述第二总电压大于第五阈值,或者所述第一总电压小于第六阈值,控制所述第一全桥电路工作在全桥模式;
    其中,所述第四阈值大于等于所述第一阈值,所述第五阈值大于等于所述第二阈值,所述第六阈值小于等于所述第三阈值。
  8. 根据权利要求7所述的直流功率转换器,其特征在于,所述第一阈值、所述第四阈值由所述第一DC-AC变换单元的电压比值的最大值、所述第一AC-DC变换单元的电压比值以及所述第一变压单元的第一匝比得到;
    所述第二阈值、所述第五阈值由所述第一DC-AC变换单元的电压比值的最大值、所述第一AC-DC变换单元的电压比值、所述第一匝比以及所述第一总电压的电压范围得到;
    所述第三阈值、所述第六阈值由所述第一DC-AC变换单元的电压比值的最大值、所述第一AC-DC变换单元的电压比值、所述第一匝比以及所述第二总电压的电压范围得到;
    其中,所述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,所述第一AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。
  9. 根据权利要求6所述的直流功率转换器,其特征在于,所述第一AC-DC变换单元中包括所述第一全桥电路;
    所述控制器还用于在所述第一全桥电路工作在半桥模式、且所述第二总电压与所述第一总电压的比值小于第一阈值,或者所述第二总电压小于第二阈值,或者所述第一总电压大于第三阈值,控制所述第一全桥电路工作在全桥模式;
    所述控制器还用于在所述第一全桥电路工作在全桥模式、且所述第二总电压与所述第一总电压的比值大于第四阈值,或者所述第二总电压大于第五阈值,或者所述第一总电压小于第六阈值,控制所述第一全桥电路工作在半桥模式;
    其中,所述第四阈值大于等于所述第一阈值,所述第五阈值大于等于所述第二阈值,所述第六阈值小于等于所述第三阈值。
  10. 根据权利要求9所述的直流功率转换器,其特征在于,所述第一阈值、所述第四阈值由所述第一DC-AC变换单元的电压比值、所述第一AC-DC变换单元的电压比值的最大值以及所述第一变压单元的第一匝比得到;
    所述第二阈值、所述第五阈值由所述第一DC-AC变换单元的电压比值、所述第一AC-DC变换单元的电压比值的最大值、所述第一匝比以及所述第一总电压的范围得到;
    所述第三阈值、所述第六阈值由所述第一DC-AC变换单元的电压比值、所述第一AC-DC变换单元的电压比值的最大值、所述第一匝比以及所述第二总电压的范围得到;
    其中,所述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,所述第一AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。
  11. 根据权利要求3所述的直流功率转换器,其特征在于,所述第二DC-AC变换单元和/或所述第二AC-DC变换单元中包括第二全桥电路,所述控制器用于基于所述直流调节单元的第三直流端与第四直流端之间的第一分电压和/或所述第一总电压控制所述第二全桥电路工作在全桥模式或者半桥模式。
  12. 根据权利要求11所述的直流功率转换器,其特征在于,所述第二DC-AC变换单元中包括第二全桥电路;
    所述控制器还用于在所述第二全桥电路工作在全桥模式、且所述直流调节单元的第三直流端与第四直 流端之间的第一分电压与所述第一总电压的比值小于第一阈值,或者所述第一分电压小于第二阈值,或者所述第一总电压大于第三阈值,控制所述第二全桥电路工作在半桥模式;
    所述控制器还用于在所述第二全桥电路工作在半桥模式、且所述第一分电压与所述第一总电压的比值大于第四阈值,或者所述第一分电压大于第五阈值,或者所述第一总电压小于第六阈值,控制所述第二全桥电路工作在全桥模式;
    其中,所述第四阈值大于等于所述第一阈值,所述第五阈值大于等于所述第二阈值,所述第六阈值小于等于所述第三阈值。
  13. 根据权利要求12所述的直流功率转换器,其特征在于,所述第一阈值、所述第四阈值由所述第二DC-AC变换单元的电压比值的最小值、所述第二AC-DC变换单元的电压比值以及所述第二变压单元的第二匝比得到;
    所述第二阈值、所述第五阈值由所述第二DC-AC变换单元的电压比值的最小值、所述第二AC-DC变换单元的电压比值、所述第二匝比以及所述第一总电压的范围得到;
    所述第三阈值、所述第六阈值由所述第二DC-AC变换单元的电压比值的最小值、所述第二AC-DC变换单元的电压比值、所述第二匝比以及所述第一分电压的范围得到;
    其中,所述第二DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,所述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。
  14. 根据权利要求11所述的直流功率转换器,其特征在于,所述第二AC-DC变换单元中包括第二全桥电路;
    所述控制器还用于在所述第二全桥电路工作在半桥模式、且所述直流调节单元的第三直流端与第四直流端之间的第一分电压与所述第一总电压的比值小于第一阈值、或者所述第一分电压小于第二阈值,或者所述第一总电压大于第三阈值,控制所述第二全桥电路工作在全桥模式;
    所述控制器还用于在所述第二全桥电路工作在全桥模式、且所述第一分电压与所述第一总电压的比值大于第四阈值、或者所述第一分电压大于第五阈值,或者所述第一总电压小于第六阈值,控制所述第二全桥电路工作在半桥模式;
    其中,所述第四阈值大于等于所述第一阈值,所述第五阈值大于等于所述第二阈值,所述第六阈值小于等于所述第三阈值。
  15. 根据权利要求14所述的直流功率转换器,其特征在于,所述第一阈值、所述第四阈值由所述第二DC-AC变换单元的电压比值、所述第二AC-DC变换单元的电压比值的最小值以及所述第二变压单元的第二匝比得到;
    所述第二阈值、所述第五阈值由所述第二DC-AC变换单元的电压比值、所述第二AC-DC变换单元的电压比值的最小值、所述第二匝比以及所述第一总电压的范围得到;
    所述第三阈值、所述第六阈值由所述第二DC-AC的电压比值、所述第二AC-DC变换单元的电压比值的最小值、所述第二匝比以及所述第一分电压的范围得到;
    其中,所述第二DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,所述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。
  16. 根据权利要求4或者权利要求5所述的直流功率转换器,其特征在于,所述第二AC-DC变换单元中包括第二全桥电路;
    所述控制器还用于在所述第二全桥电路工作在半桥模式、且所述直流调节单元的第三直流端与第四直流端之间的第一分电压与所述第一总电压的比值小于第一阈值、或者所述第一分电压小于第二阈值,或者所述第一总电压大于第三阈值,控制所述第二全桥电路工作在全桥模式;
    所述控制器还用于在所述第二全桥电路工作在全桥模式、且所述第一分电压与所述第一总电压的比值大于第四阈值、或者所述第一分电压大于第五阈值,或者所述第一总电压小于第六阈值,控制所述第二全桥电路工作在半桥模式;
    其中,所述第四阈值大于等于所述第一阈值,所述第五阈值大于等于所述第二阈值,所述第六阈值小于等于所述第三阈值。
  17. 根据权利要求16所述的直流功率转换器,其特征在于,所述第一阈值、所述第四阈值由所述第一DC-AC变换单元的电压比值、所述第二AC-DC变换单元的电压比值的最小值以及所述第二变压单元的匝比或者所述变压单元的第二匝比得到;
    所述第二阈值、所述第五阈值由所述第一DC-AC变换单元的电压比值、所述第二AC-DC变换单元的电压比值的最小值、所述第二变压单元的匝比或者所述第二匝比以及所述第一总电压的范围得到;
    所述第三阈值、所述第六阈值由所述第一DC-AC变换单元的电压比值、所述第二AC-DC变换单元的电压比值的最小值、所述第二变压单元的匝比或者所述第二匝比以及所述第一分电压的范围得到;
    其中,所述第一DC-AC变换单元的电压比值为交流端电压峰峰值与直流端电压的比值,所述第二AC-DC变换单元的电压比值为直流端电压与交流端电压峰峰值的比值。
  18. 根据权利要求3、权利要求4以及权利要求5任一项所述的直流功率转换器,其特征在于,所述控制器还用于基于第一参考电压、所述第一功率变换模块的第三直流端与第四直流端之间的第二分电压以及所述第二AC-DC变换单元的第一直流端与第二直流端之间的第三分电压,控制所述直流调节单元调节所述直流调节单元的第三直流端与第四直流端之间的第一分电压,以使所述第一分电压与所述第二分电压之和为所述第一参考电压。
  19. 根据权利要求18所述的直流功率转换器,其特征在于,所述控制器还用于基于第二参考电压和所述第二分电压,控制所述直流调节单元调节其第三直流端与第四直流端之间的第一分电压,以使所述第一总电压等于所述第二参考电压。
  20. 根据权利要求3所述的直流功率转换器,其特征在于,所述第一DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第一DC-AC变换单元的第一交流端和第二交流端连接所述第一变压单元;
    所述第二DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第二DC-AC变换单元的第一交流端和第二交流端连接所述第二变压单元;
    所述第一AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第一AC-DC变换单元的第一交流端和第二交流端连接所述第一变压单元;
    所述第二AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第二AC-DC变换单元的第一交流端和第二交流端连接所述第二变压单元。
  21. 根据权利要求4所述的直流功率转换器,其特征在于,所述第一DC-AC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第一DC-AC变换单元的第一交流端和第二交流端连接所述第一变压单元和所述第二变压单元;
    所述第一AC-DC变换单元包括并联的两个开关桥臂,各开关桥臂的开关管连接端分别作为所述第一AC-DC变换单元的第一交流端和第二交流端连接所述第一变压单元;
    所述第二AC-DC变换单元包括并联的一个开关桥臂和一个电容桥臂,所述开关桥臂的开关管连接端和所述电容桥臂的电容连接端分别作为所述第二AC-DC变换单元的第一交流端和第二交流端连接所述第二变压单元。
  22. 一种直流功率转换***,其特征在于,所述直流功率转换***中包括直流电源和如权利要求1-21任一项所述的直流功率转换器;
    所述直流电源用于为所述直流功率转换器提供直流电压输入;
    所述直流功率转换器用于基于所述直流电源提供的第一直流电压进行直流功率转换,并向负载输出第二直流电压;
    所述直流电源包括太阳能电池板或者储能电池中的至少一种。
PCT/CN2023/106069 2022-07-30 2023-07-06 直流功率转换器以及直流功率转换*** WO2024027453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210911507.7A CN115360903A (zh) 2022-07-30 2022-07-30 直流功率转换器以及直流功率转换***
CN202210911507.7 2022-07-30

Publications (1)

Publication Number Publication Date
WO2024027453A1 true WO2024027453A1 (zh) 2024-02-08

Family

ID=84031290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106069 WO2024027453A1 (zh) 2022-07-30 2023-07-06 直流功率转换器以及直流功率转换***

Country Status (2)

Country Link
CN (1) CN115360903A (zh)
WO (1) WO2024027453A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360903A (zh) * 2022-07-30 2022-11-18 华为数字能源技术有限公司 直流功率转换器以及直流功率转换***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618461A (zh) * 2013-12-10 2014-03-05 广东易事特电源股份有限公司 一种桥式变换电路的控制方法及控制装置
CN106712523A (zh) * 2017-02-19 2017-05-24 盐城工学院 一种升压三电平全桥变换器及其控制方法
CN108054922A (zh) * 2017-12-29 2018-05-18 深圳青铜剑科技股份有限公司 一种燃料电池直流-直流变换器及其控制方法
US20180294732A1 (en) * 2017-04-05 2018-10-11 Futurewei Technologies, Inc. Isolated partial power processing power converters
CN114301300A (zh) * 2021-11-30 2022-04-08 刘三英 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN115360903A (zh) * 2022-07-30 2022-11-18 华为数字能源技术有限公司 直流功率转换器以及直流功率转换***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618461A (zh) * 2013-12-10 2014-03-05 广东易事特电源股份有限公司 一种桥式变换电路的控制方法及控制装置
CN106712523A (zh) * 2017-02-19 2017-05-24 盐城工学院 一种升压三电平全桥变换器及其控制方法
US20180294732A1 (en) * 2017-04-05 2018-10-11 Futurewei Technologies, Inc. Isolated partial power processing power converters
CN108054922A (zh) * 2017-12-29 2018-05-18 深圳青铜剑科技股份有限公司 一种燃料电池直流-直流变换器及其控制方法
CN114301300A (zh) * 2021-11-30 2022-04-08 刘三英 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN115360903A (zh) * 2022-07-30 2022-11-18 华为数字能源技术有限公司 直流功率转换器以及直流功率转换***

Also Published As

Publication number Publication date
CN115360903A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US10523112B2 (en) Power converter and method of controlling the same
US11418125B2 (en) Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
US20160181925A1 (en) Bidirectional dc-dc converter
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d&#39;isolation
CN107294392A (zh) 一种双向dcdc变换器
US11424640B2 (en) Integrated high-voltage-low-voltage DC-DC converter and charger with active filter
US9692315B2 (en) High efficiency AC-AC converter with bidirectional switch
CN110336320B (zh) 一种基于电能路由器的新能源并网或就地消纳***
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
WO2024027453A1 (zh) 直流功率转换器以及直流功率转换***
EP3255771A1 (en) Bidirectional dc-dc convertor
WO2022184132A1 (zh) 电压转换电路及供电***
US11689112B2 (en) DC-DC converter and vehicle
CN109842182B (zh) 供电***
CN116613976A (zh) 一种功率变换电路及其控制方法、电池包及储能***
CN107147303B (zh) 一种单相x型互错式三电平交流调压电路
TWI794329B (zh) Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器
WO2023131101A1 (zh) 双向直流变换器及***
CN107171563A (zh) 紧调整输出的组合变流器
EP4113813A1 (en) Power electronic apparatus for converting input ac into dc
EP4354720A1 (en) Micro inverter having multiple independent inputs, and photovoltaic system
US11894765B2 (en) Power conversion device
CN116614003B (zh) 一种隔离式双向dc/dc变换电路
CN212323996U (zh) 一种双向直流电源拓扑电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849162

Country of ref document: EP

Kind code of ref document: A1