WO2024025265A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2024025265A1
WO2024025265A1 PCT/KR2023/010576 KR2023010576W WO2024025265A1 WO 2024025265 A1 WO2024025265 A1 WO 2024025265A1 KR 2023010576 W KR2023010576 W KR 2023010576W WO 2024025265 A1 WO2024025265 A1 WO 2024025265A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
layer
group
unsubstituted
Prior art date
Application number
PCT/KR2023/010576
Other languages
English (en)
French (fr)
Inventor
차용범
금수정
김선우
조우진
최지영
하재승
황성현
이우철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024025265A1 publication Critical patent/WO2024025265A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • This application relates to organic light emitting devices.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices that utilize the organic light-emitting phenomenon usually have a structure including an anode, a cathode, and an organic material layer between them.
  • the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • this organic light-emitting device when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton is When it falls back to the ground state, it glows.
  • Patent Document 1 Korean Patent Publication No. 10-2017-0036641
  • This application seeks to provide an organic light emitting device.
  • An exemplary embodiment of the present specification includes an anode; cathode; Comprising a first organic material layer and a second organic material layer provided between the anode and the cathode, wherein the first organic material layer includes a compound represented by the following formula (1), and the second organic layer includes a compound represented by the following formula (2) Provides an organic light emitting device that does this.
  • Ar1 and Ar2 are the same or different from each other and are each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or a substituted or unsubstituted arylene group,
  • X1 to X3 are the same as or different from each other, and are each independently N; or CR,
  • At least one of X1 to X3 is N,
  • Ra, Rb and R are the same or different from each other and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • a is an integer from 0 to 6, and when a is each 2 or more, 2 or more Ras are the same or different from each other,
  • b is an integer from 0 to 8, and when b is 2 or more, 2 or more Rb are the same or different from each other,
  • R1 is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • n is an integer from 0 to 9, and when m is 2 or more, 2 or more R1 are the same as or different from each other,
  • n is an integer from 0 to 8
  • R2 to R6 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; or the following formula A,
  • At least one of R2 and R6 is of formula A below,
  • R7 to R11 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; or a substituted or unsubstituted aryl group, or adjacent substituents combine with each other to form a substituted or unsubstituted ring,
  • the dotted line (---) is the part connected to Chemical Formula 2.
  • the organic light emitting device described in this specification includes a compound represented by Formula 1 in the first organic material layer and a compound represented by Formula 2 in the second organic material layer, thereby providing the effects of low driving voltage, high efficiency, and/or long lifespan.
  • Figure 1 shows an example of an organic light-emitting device in which a substrate 1, an anode 2, a second organic layer 22, a first organic layer 21, and a cathode 10 are sequentially stacked.
  • FIG. 2 shows a substrate (1), anode (2), hole injection layer (3), hole transport layer (4), electron blocking layer (5), light emitting layer (6), hole blocking layer (7), and electron transport layer (8).
  • FIG. 2 shows an example of an organic light emitting device in which the electron injection layer 9 and the cathode 10 are sequentially stacked.
  • Figure 3 shows a substrate (1), anode (2), hole injection layer (3), hole transport layer (4), electron blocking layer (5), light emitting layer (6), hole blocking layer (7), electron injection and transport layer ( 11) and the cathode 10 are sequentially stacked.
  • dotted line (---) refers to a chemical formula or a position bonded to a compound.
  • the deuterium substitution rate of the compound is determined by using TLC-MS (Thin-Layer Chromatography/Mass Spectrometry) to determine the max. molecular weight distribution at the end of the reaction.
  • TLC-MS Thin-Layer Chromatography/Mass Spectrometry
  • a method of calculating the substitution rate based on the value or a quantitative analysis method using NMR can be determined by adding DMF as an internal standard and calculating the D-substitution rate from the integral amount of the total peak using the integration rate on 1H NMR. You can.
  • energy level means energy level. Therefore, the energy level is interpreted to mean the absolute value of the corresponding energy value. For example, a low or deep energy level means that the absolute value increases in the minus direction from the vacuum level.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • the HOMO energy level refers to the distance from the vacuum level to HOMO.
  • the LUMO energy level refers to the distance from the vacuum level to the LUMO.
  • bandgap refers to the energy level difference between HOMO and LUMO, that is, the HOMO-LUMO gap (Gap).
  • the HOMO energy level can be measured using an atmospheric photoelectron spectroscopy device (manufactured by RIKEN KEIKI Co., Ltd.: AC3), and the LUMO energy level can be calculated from the wavelength value measured through photoluminescence (PL). You can.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is changed to another substituent.
  • the position to be substituted is not limited as long as it is the position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, and if two or more substituents are substituted. , two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; Cyano group; Alkyl group; Cycloalkyl group; Aryl group; and a heterocyclic group, or is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituent.
  • substituted or unsubstituted refers to deuterium; Alkyl group; Aryl group; and a heterocyclic group, or is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituent.
  • halogen groups include fluorine (-F), chlorine (-Cl), bromine (-Br), or iodine (-I).
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to one embodiment, the carbon number of the alkyl group is 1 to 30. According to another embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10.
  • alkyl groups include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, n-pentyl group, hexyl group, n -Hexyl group, heptyl group, n-heptyl group, octyl group, n-octyl group, etc., but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specifically, it includes cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., but is not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, terphenyl group, or quarterphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, triphenylenyl group, etc., but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • Spirofluorenyl groups such as (9,9-dimethylfluorenyl group), and It may be a substituted fluorenyl group such as (9,9-diphenylfluorenyl group). However, it is not limited to this.
  • the heterocyclic group is a cyclic group containing one or more of N, O, P, S, Si, and Se as heteroatoms, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms. According to one embodiment, the carbon number of the heterocyclic group is 2 to 30. According to one embodiment, the carbon number of the heterocyclic group is 2 to 20.
  • heterocyclic groups include pyridine group, pyrrole group, pyrimidine group, quinoline group, pyridazinyl group, furan group, thiophene group, imidazole group, pyrazole group, dibenzofuran group, dibenzothiophene group, and carboxymethyl group. Examples include sol group, benzocarbazole group, naphthobenzofuran group, benzonaphthothiophene group, indenocarbazole group, and triazinyl group, but are not limited to these.
  • heterocyclic group described above may be applied, except that the heteroaryl group is aromatic.
  • the description of the aryl group may be applied except that the arylene group is divalent, for example, phenylene group, naphthylene group, biphenylene group, fluorenylene group, phenanthrylene group, terphenyl Examples include lene group, anthracenylene group, and pyrenylene group.
  • n+1 valent aryl group is n+1 valent.
  • the description of the above heterocyclic group can be applied, except that the n+1 valent heterocyclic group is n+1 valent.
  • ring refers to a hydrocarbon ring; Or it means a heterocycle.
  • the hydrocarbon ring may be aromatic, aliphatic, or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group.
  • forming a ring by combining with adjacent groups means a substituted or unsubstituted aliphatic hydrocarbon ring by combining with adjacent groups; Substituted or unsubstituted aromatic hydrocarbon ring; Substituted or unsubstituted aliphatic heterocycle; Substituted or unsubstituted aromatic heterocycle; Or it means forming a condensation ring thereof.
  • the hydrocarbon ring refers to a ring consisting only of carbon and hydrogen atoms.
  • the heterocycle refers to a ring containing one or more elements selected from N, O, P, S, Si, and Se.
  • the aliphatic hydrocarbon ring, aromatic hydrocarbon ring, aliphatic heterocycle, and aromatic heterocycle may be monocyclic or polycyclic.
  • an aliphatic hydrocarbon ring refers to a non-aromatic ring consisting only of carbon and hydrogen atoms.
  • Examples of aliphatic hydrocarbon rings include cyclopropane, cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, cycloheptane, cycloheptene, cyclooctane, and cyclooctene. It is not limited to this.
  • an aromatic hydrocarbon ring refers to an aromatic ring consisting only of carbon and hydrogen atoms.
  • aromatic hydrocarbon rings include benzene, naphthalene, anthracene, phenanthrene, perylene, fluoranthene, triphenylene, phenalene, pyrene, tetracene, chrysene, pentacene, fluorene, indene, acenaphthylene, Benzofluorene, spirofluorene, etc., but are not limited thereto.
  • an aromatic hydrocarbon ring can be interpreted to have the same meaning as an aryl group.
  • an aliphatic heterocycle refers to an aliphatic ring containing one or more heteroatoms.
  • aliphatic heterocycles include oxirane, tetrahydrofuran, 1,4-dioxane, pyrrolidine, piperidine, morpholine, oxepane, and azocaine. , thiocane, etc., but is not limited thereto.
  • an aromatic heterocycle refers to an aromatic ring containing one or more heteroatoms.
  • aromatic heterocycles include pyridine, pyrrole, pyrimidine, pyridazine, furan, thiophene, imidazole, parazole, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole, and thiazole.
  • the organic light emitting device of the present invention is characterized by containing both the compound represented by Formula 1 and the compound represented by Formula 2.
  • the organic light emitting device of the present invention exhibits low voltage, high efficiency, and/or long life effects.
  • Ar1 and Ar2 are the same or different from each other and are each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or a substituted or unsubstituted arylene group,
  • X1 to X3 are the same as or different from each other, and are each independently N; or CR,
  • At least one of X1 to X3 is N,
  • Ra, Rb and R are the same or different from each other and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • a is an integer from 0 to 6, and when a is each 2 or more, 2 or more Ras are the same or different from each other,
  • b is an integer from 0 to 8, and when b is 2 or more, 2 or more Rb are the same or different from each other.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is an aryl group substituted or unsubstituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or, it is an aryl group having 6 to 60 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or, it is an aryl group having 6 to 30 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Or, it is an aryl group having 6 to 20 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other and are each independently a substituted or unsubstituted aryl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted phenanthrenyl group; Or a substituted or unsubstituted fluorenyl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Or a substituted or unsubstituted naphthyl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Or a substituted or unsubstituted naphthyl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a phenyl group substituted or unsubstituted with deuterium; Biphenyl group substituted or unsubstituted with deuterium; Or it is a naphthyl group substituted or unsubstituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted phenanthrenyl group; or a substituted or unsubstituted fluorenyl group, and at least one of Ar1 and Ar2 is a substituted or unsubstituted phenyl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; or a substituted or unsubstituted naphthyl group, and at least one of Ar1 and Ar2 is a substituted or unsubstituted phenyl group.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a phenyl group substituted or unsubstituted with deuterium; Biphenyl group substituted or unsubstituted with deuterium; Terphenyl group substituted or unsubstituted with deuterium; Naphthyl group substituted or unsubstituted with deuterium; A phenanthrenyl group substituted or unsubstituted with deuterium; Or, it is a fluorenyl group substituted or unsubstituted with deuterium, and at least one of Ar1 and Ar2 is a phenyl group substituted or unsubstituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a phenyl group substituted or unsubstituted with deuterium; Biphenyl group substituted or unsubstituted with deuterium; Or, it is a naphthyl group substituted or unsubstituted with deuterium, and at least one of Ar1 and Ar2 is a phenyl group substituted or unsubstituted with deuterium.
  • Ar1 and Ar2 are the same or different from each other, and are each independently a phenyl group; Biphenyl group; or a naphthyl group, and at least one of Ar1 and Ar2 is a phenyl group.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or it is a substituted or unsubstituted arylene group.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or it is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or it is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Or it is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted phenylene group; Substituted or unsubstituted biphenylene group; Substituted or unsubstituted terphenylene group; Or a substituted or unsubstituted naphthylene group.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted phenylene group; Substituted or unsubstituted biphenylene group; Or a substituted or unsubstituted naphthylene group.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; A phenylene group substituted or unsubstituted with deuterium; Or it is a biphenylene group substituted or unsubstituted with deuterium.
  • L1 and L2 are the same or different from each other and are each independently directly bonded; phenylene group; Or biphenylene group.
  • L1 is a direct bond; Substituted or unsubstituted phenylene group; Substituted or unsubstituted biphenylene group; Substituted or unsubstituted terphenylene group; Or a substituted or unsubstituted naphthylene group.
  • L1 is a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L1 is a direct bond; A phenylene group substituted or unsubstituted with deuterium; A biphenylene group substituted or unsubstituted with deuterium; Terphenylene group substituted or unsubstituted with deuterium; Or it is a naphthylene group substituted or unsubstituted with deuterium.
  • L1 is a phenylene group substituted or unsubstituted with deuterium; Or it is a biphenylene group substituted or unsubstituted with deuterium.
  • L1 is a phenylene group; Or it is a biphenylene group.
  • L2 is a direct bond; Or a substituted or unsubstituted phenylene group.
  • L2 is a substituted or unsubstituted phenylene group.
  • L2 is a direct bond; Or it is a phenylene group substituted or unsubstituted with deuterium.
  • L2 is a phenylene group unsubstituted or substituted with deuterium.
  • L2 is a phenylene group.
  • At least one of X1 to X3 is N.
  • one of X1 to X3 is N.
  • two of X1 to X3 are N.
  • X1 to X3 are N.
  • X1 is N
  • X2 and X3 are CR.
  • X2 is N
  • X1 and X3 are CR
  • X3 is N, and X1 and X2 are CR.
  • X1 and X2 are N, and X3 is CR.
  • X1 and X3 are N, and X2 is CR.
  • X2 and X3 are N, and X1 is CR.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group substituted or unsubstituted with deuterium; Or it is an aryl group substituted or unsubstituted with deuterium.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 60 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 60 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 30 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 30 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 20 carbon atoms that is unsubstituted or substituted with deuterium.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with deuterium; or an aryl group having 6 to 20 carbon atoms substituted or unsubstituted with deuterium.
  • Ra, Rb, and R are the same or different from each other, and are each independently hydrogen; Or deuterium.
  • Ra, Rb, and R are all hydrogen.
  • Ra, Rb, and R are all deuterium.
  • a is an integer from 0 to 6, and when each a is 2 or more, 2 or more Ras are the same or different from each other.
  • a is an integer from 0 to 6.
  • a is an integer from 1 to 6.
  • a is 6.
  • a is 5.
  • a is 4.
  • a is 3.
  • a is 2.
  • a is 1.
  • a is 0.
  • b is an integer from 0 to 8, and when b is 2 or more, 2 or more Rb are the same or different from each other.
  • b is an integer from 0 to 8.
  • b is an integer from 1 to 8.
  • b is 8.
  • b is 7.
  • b is 6.
  • b is 5.
  • b is 4.
  • b is 3.
  • b is 2.
  • b is 1.
  • b 0.
  • Formula 1 is represented by any one of the following Formulas 1-1 to 1-4.
  • Ar1, Ar2, L1, L2, X1 to X3, Ra, Rb, a and b are the same as those in Formula 1 above.
  • Formula 1 is represented by any one of the following Formulas 1-A to 1-D.
  • Ar1, Ar2, L1, L2, X1 to X3, Ra, Rb, a and b are the same as those in Formula 1 above.
  • Formula 1 is represented by the following Formula 1-1-1.
  • Ar1, Ar2, L1, L2, X1 to X3, Ra, Rb, a and b are the same as those in Formula 1 above.
  • the compound represented by Formula 1 is at least 40% substituted with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is substituted by more than 50% with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is substituted by more than 60% with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is substituted by more than 70% with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is substituted by more than 80% with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is substituted by more than 90% with deuterium. In another exemplary embodiment, the compound represented by Formula 1 is 100% substituted with deuterium.
  • the compound represented by Formula 1 contains 40% to 60% of deuterium. In another exemplary embodiment, the compound represented by Formula 1 contains 40% to 80% of deuterium. In another exemplary embodiment, the compound represented by Formula 1 contains 60% to 80% of deuterium. In another exemplary embodiment, the compound represented by Formula 1 contains 80% to 100% of deuterium.
  • Formula 1 is represented by any one of the following compounds.
  • R1 is hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • n is an integer from 0 to 9, and when m is 2 or more, 2 or more R1 are the same as or different from each other,
  • n is an integer from 0 to 8
  • R2 to R6 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; or the following formula A,
  • At least one of R2 and R6 is of formula A below,
  • R7 to R11 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; or a substituted or unsubstituted aryl group, or adjacent substituents combine with each other to form a substituted or unsubstituted ring,
  • the dotted line (---) is the part connected to Chemical Formula 2.
  • R1 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • R1 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • R1 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • R1 is hydrogen; heavy hydrogen; An alkyl group substituted or unsubstituted with deuterium; Or it is an aryl group substituted or unsubstituted with deuterium.
  • R1 is hydrogen; heavy hydrogen; An alkyl group having 1 to 60 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 60 carbon atoms that is unsubstituted or substituted with deuterium.
  • R1 is hydrogen; heavy hydrogen; An alkyl group having 1 to 30 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 30 carbon atoms that is unsubstituted or substituted with deuterium.
  • R1 is hydrogen; heavy hydrogen; An alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 20 carbon atoms that is unsubstituted or substituted with deuterium.
  • R1 is hydrogen; Or deuterium.
  • m is an integer from 0 to 9.
  • m is an integer from 1 to 9.
  • m 0.
  • m is 1.
  • n 2 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 +
  • m is 3.
  • m is 4.
  • m is 5.
  • m is 6.
  • m 7.
  • m 8.
  • m 9.
  • m 9 and R1 is all deuterium.
  • m is 9, and 8 out of 9 R1 are deuterium.
  • m is 9, and 7 out of 9 R1 are deuterium.
  • m is 9, and 6 of the 9 R1 are deuterium.
  • m is 9, and 5 of the 9 R1 are deuterium.
  • m is 9, and 4 out of 9 R1 are deuterium.
  • m is 9, and 3 of the 9 R1 are deuterium.
  • m is 9, and two of the nine R1 are deuterium.
  • m is 9, and one of the nine R1 is deuterium.
  • D is deuterium
  • n is an integer from 0 to 8.
  • n is an integer from 1 to 8.
  • n 0.
  • n 1
  • n is 2.
  • n 3.
  • n 4.
  • n is 5.
  • n 6
  • n 7.
  • n 8.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or it is the formula A below.
  • R2 to R6 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group substituted or unsubstituted with deuterium; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 60 carbon atoms substituted or unsubstituted with deuterium; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 30 carbon atoms substituted or unsubstituted with deuterium; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with deuterium; Or it is the formula A below.
  • R2 to R6 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with deuterium; Or it is the formula A below.
  • R2 to R6 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is the formula A below.
  • At least one of R2 and R6 is of formula A below.
  • one of R2 and R6 is of formula A below.
  • R2 is the formula A below.
  • R6 is the formula A below.
  • R2 is the formula A below, R3 to R6 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted alkyl group.
  • R2 is the formula A below, R3 to R6 are the same as or different from each other, and are each independently hydrogen; Or deuterium.
  • R6 is the formula A below, R2 to R5 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted alkyl group.
  • R6 is the formula A below, R2 to R5 are the same as or different from each other, and are each independently hydrogen; Or it is deuterium.
  • R7 to R11 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; or a substituted or unsubstituted aryl group, or adjacent substituents combine with each other to form a substituted or unsubstituted ring,
  • the dotted line (---) is the part connected to Chemical Formula 2.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or, it is a substituted or unsubstituted aryl group, or adjacent substituents combine with each other to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or it is a substituted or unsubstituted aryl group, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Or, it is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or, it is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; Or, it is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group substituted or unsubstituted with deuterium; Or, it is an aryl group substituted or unsubstituted with deuterium, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 60 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 60 carbon atoms that is substituted or unsubstituted with deuterium, or is bonded to an adjacent group to form a ring substituted or unsubstituted with deuterium.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 30 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 30 carbon atoms that is substituted or unsubstituted with deuterium, or is bonded to an adjacent group to form a ring substituted or unsubstituted with deuterium.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; An alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with deuterium; Or, it is an aryl group having 6 to 20 carbon atoms that is substituted or unsubstituted with deuterium, or is bonded to an adjacent group to form a ring substituted or unsubstituted with deuterium.
  • R7 to R11 are the same or different from each other, and are each independently hydrogen; Or deuterium.
  • the remainders other than Formula A among R1 to R11 are the same as or different from each other, and are each independently hydrogen; Or deuterium.
  • Formula 2 includes at least one deuterium.
  • Formula 2 is represented by the following Formula 2-1.
  • the compound represented by Formula 2 is at least 40% substituted with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is substituted by more than 50% with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is substituted by more than 60% with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is substituted by more than 70% with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is substituted by more than 80% with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is substituted by more than 90% with deuterium. In another exemplary embodiment, the compound represented by Formula 2 is 100% substituted with deuterium.
  • the compound represented by Formula 2 contains 40% to 60% of deuterium. In another exemplary embodiment, the compound represented by Formula 2 contains 40% to 80% of deuterium. In another exemplary embodiment, the compound represented by Formula 2 contains 60% to 80% of deuterium. In another exemplary embodiment, the compound represented by Formula 2 contains 80% to 100% of deuterium.
  • Formula 2 is represented by any one of the following compounds.
  • the core structure of the compounds represented by Formula 1 and Formula 2 according to an exemplary embodiment of the present specification can be manufactured as in the method of the production example described later. Substituents may be combined by methods known in the art, and the type, position, or number of substituents may be changed according to techniques known in the art.
  • compounds having various energy band gaps can be synthesized by introducing various substituents into the core structure of the compounds represented by Formula 1 and Formula 2.
  • the HOMO and LUMO energy levels of the compound can be adjusted by introducing various substituents into the core structure of the above structure.
  • the organic light emitting device includes an anode; cathode; Comprising a first organic material layer and a second organic material layer provided between the anode and the cathode, wherein the first organic material layer includes a compound represented by the following formula (1), and the second organic layer includes a compound represented by the following formula (2) It is characterized by:
  • the organic light-emitting device of the present invention can be manufactured using conventional organic light-emitting device manufacturing methods and materials, except that the organic material layer is formed using the compound represented by the above-described formula (1) and the compound of the above-described formula (2). .
  • the compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention includes at least one layer among the organic material layer, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole injection and transport layer, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron transport and injection layer. It may have a structure containing .
  • the structure of the organic light emitting device of the present specification is not limited to this and may include fewer or more organic material layers.
  • the first organic material layer may be located between the second organic material layer and the cathode.
  • the first organic material layer may be an electron transport layer, an electron injection layer, or an electron transport and injection layer, and the electron transport layer, the electron injection layer, or the electron transport and injection layer is represented by Formula 1 It may contain compounds.
  • the second organic material layer may be a light-emitting layer, and the light-emitting layer may include the compound represented by Formula 2.
  • the light-emitting layer may include the compound represented by Formula 2 as a host and may further include a dopant.
  • the organic material layer may include two or more layers of a hole injection layer, a hole transport layer, or an electron blocking layer.
  • the organic material layer may include two or more layers of an electron injection layer, an electron transport layer, or a hole blocking layer.
  • the thickness of the first organic layer containing the compound represented by Formula 1 and the second organic layer including the compound represented by Formula 2 is 10 ⁇ to 600 ⁇ , preferably 50 ⁇ . ⁇ to 500 ⁇ , more preferably 200 ⁇ to 400 ⁇ .
  • first organic layer and the second organic layer may further include other organic compounds, metals, or metal compounds in addition to the compound represented by Formula 1 and the compound represented by Formula 2.
  • the first organic layer and the second organic layer do not contain any organic compounds, metals, or metal compounds other than the compound represented by the above-described formula (1) and the compound represented by the above-described formula (2).
  • the first organic material layer and the second organic material layer may be provided in contact with each other.
  • the first organic material layer and the second organic material layer may not be provided in contact with each other.
  • one or more organic layers are located between the first organic layer and the second organic layer.
  • a hole blocking layer is located between the first organic material layer and the second organic material layer.
  • the light emitting layer further includes a fluorescent dopant or a phosphorescent dopant.
  • the dopant in the light emitting layer is included in an amount of 1 to 50 parts by weight based on 100 parts by weight of the host.
  • the dopant is a phosphorescent material such as (4,6-F2ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distrylarylene (DSA), PFO-based polymer, and PPV-based polymer.
  • Fluorescent materials such as polymers, anthracene-based compounds, pyrene-based compounds, boron-based compounds, etc. may be used, but are not limited thereto.
  • the organic light emitting device includes an anode; cathode; and two or more organic layers provided between the anode and the cathode, wherein at least one of the two or more organic layers includes a compound represented by Formula 1 and a compound represented by Formula 2.
  • the two or more organic layers may be selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, a hole transport and injection layer, and an electron blocking layer.
  • the two or more organic layers may be selected from the group consisting of a light emitting layer, an electron transport layer, an electron injection layer, an electron transport and injection layer, an electron control layer, and a hole blocking layer.
  • the organic layer includes two or more electron transport layers, and at least one of the two or more electron transport layers includes the compound represented by Formula 1 and the compound represented by Formula 2.
  • the compound represented by Formula 1 and the compound represented by Formula 2 may be included in one layer of the two or more electron transport layers, and may be included in each of the two or more electron transport layers. You can.
  • the electron transport layer, the electron injection layer, or the electron transport and injection layer may further include an n-type dopant.
  • the n-type dopant may be one known in the art, for example, a metal or a metal complex.
  • the electron transport layer including the compound represented by Formula 1 and the compound represented by Formula 2 may further include Lithium Quinolate (LiQ).
  • LiQ Lithium Quinolate
  • the entire compound represented by Formula 1 and Formula 2 and the n-type dopant may be included in a weight ratio of 2:8 to 8:2, for example, 4:6 to 6:4.
  • the entire compound represented by Formula 1 and Formula 2 and the n-type dopant may be included in a weight ratio of 1:1.
  • the organic light emitting device is further provided with one or more organic material layers between the anode and the cathode, and the organic material layer includes a hole transport layer, a hole injection layer, a hole transport and injection layer, an electron blocking layer, and a light emitting layer. , it may further include one or more layers among an electron transport layer, an electron injection layer, an electron transport and injection layer, and a hole blocking layer.
  • the organic light emitting device may further include one or more light emitting layers.
  • the organic light-emitting device further includes one or more light-emitting layers in addition to the light-emitting layer, and each light-emitting layer may include the host compound described above.
  • the organic light-emitting device further includes one or more light-emitting layers in addition to the light-emitting layer, and each light-emitting layer further includes a fluorescent dopant or a phosphorescent dopant.
  • the dopant in the light emitting layer is included in an amount of 1 to 50 parts by weight based on 100 parts by weight of the host.
  • the organic light emitting device may include two or more light emitting layers.
  • An organic light emitting device includes two or more light emitting layers, at least one light emitting layer includes a fluorescent dopant, and at least one other light emitting layer includes a phosphorescent dopant.
  • An organic light emitting device may include three or more light emitting layers.
  • the maximum emission peak of the light emitting layer is 400 nm to 500 nm.
  • the organic light-emitting device includes two or more light-emitting layers, and the maximum emission peaks of the two or more light-emitting layers are each 400 nm to 500 nm.
  • the organic light-emitting device further includes one or more light-emitting layers, and each light-emitting layer exhibits a different wavelength band.
  • the organic light-emitting device includes three or more layers of light-emitting layers, the maximum emission peak of one light-emitting layer (light-emitting layer 1) is 400 nm to 500 nm, and the peak of the light-emitting layer of another layer (light-emitting layer 2) is 400 nm to 500 nm.
  • Maximum emission peak is 510 nm to 580 nm; Alternatively, it may exhibit a maximum emission peak of 610 nm to 680 nm, and the maximum emission peak of another layer of the light-emitting layer (emission layer 3) may have a maximum emission peak of 400 nm to 500 nm.
  • the two or more light-emitting layers may be positioned vertically or horizontally between the anode and the cathode.
  • the three or more light-emitting layers are positioned vertically from the anode to the cathode. At this time, all three or more light-emitting layers may be blue fluorescent light-emitting layers.
  • the organic light-emitting device includes a plurality of light-emitting layers
  • one or more organic material layers are additionally provided between the plurality of light-emitting layers
  • the organic material layer includes a hole transport layer, a hole injection layer, and hole transport and injection. It may further include one or more of the following layers, an electron blocking layer, a charge generation layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron transport and injection layer, and a hole blocking layer.
  • the organic light emitting device may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the organic light emitting device may have, for example, a stacked structure as shown below, but is not limited thereto.
  • the structure of the organic light emitting device of the present specification may have the same structure as shown in FIGS. 1 to 3, but is not limited thereto.
  • Figure 1 illustrates the structure of an organic light-emitting device in which a substrate 1, an anode 2, a second organic layer 22, a first organic layer 21, and a cathode 10 are sequentially stacked.
  • the compound represented by Formula 1 may be included in the first organic layer 21 and the compound represented by Formula 2 may be included in the second organic layer 22.
  • FIG. 2 shows a substrate (1), anode (2), hole injection layer (3), hole transport layer (4), electron blocking layer (5), light emitting layer (6), hole blocking layer (7), and electron transport layer (8).
  • the structure of an organic light-emitting device in which the electron injection layer 9 and the cathode 10 are sequentially stacked is illustrated.
  • the compound represented by Formula 1 may be included in the electron transport layer 8 or the electron injection layer 9, and the compound represented by Formula 2 may be included in the light-emitting layer 6.
  • FIG. 3 shows a substrate (1), anode (2), hole injection layer (3), hole transport layer (4), electron blocking layer (5), light emitting layer (6), hole blocking layer (7), electron injection and transport layer ( The structure of an organic light emitting device in which 11) and the cathode 10 are sequentially stacked is illustrated.
  • the compound represented by Formula 1 may be included in the electron injection and transport layer 11, and the compound represented by Formula 2 may be included in the light-emitting layer 6.
  • the organic light emitting device may have a tandem structure in which two or more independent devices are connected in series.
  • the tandem structure may be in a form in which each organic light-emitting device is bonded to a charge generation layer. Tandem-structured devices can be driven at lower currents than unit devices based on the same brightness, which has the advantage of greatly improving the device's lifespan characteristics.
  • the electron transport and injection layer and the light emitting layer may be provided adjacent to each other.
  • the electron transport and injection layer and the light emitting layer may be provided in physical contact with each other.
  • the electron transport layer and the light emitting layer may be provided adjacent to each other.
  • the electron transport layer and the light emitting layer may be provided in physical contact.
  • the hole blocking layer and the light emitting layer may be provided adjacent to each other.
  • the hole blocking layer and the light emitting layer may be provided in physical contact.
  • the organic light emitting device of the present specification is manufactured using materials and methods known in the art, except that at least one layer of the organic material layer contains the above compound, that is, the compound represented by Formula 1 and the compound represented by Formula 2. It can be.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device uses a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation to deposit a metal, a conductive metal oxide, or an alloy thereof on a substrate.
  • a PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light-emitting layer, an electron blocking layer, an electron transport layer, and an electron injection layer thereon, and then depositing a material that can be used as a cathode on it. It can be.
  • an organic light-emitting device can also be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic layer may further include one or more of a hole transport layer, a hole injection layer, an electron blocking layer, an electron transport and injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, and a hole transport and injection layer.
  • the organic material layer may have a multi-layer structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, or an electron transport and injection layer, but is not limited to this and may have a single-layer structure. there is.
  • the organic material layer uses a variety of polymer materials to form a smaller number of layers by using a solvent process rather than a deposition method, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be manufactured in layers.
  • the anode is an electrode that injects holes
  • the anode material is generally preferably a material with a large work function to ensure smooth hole injection into the organic layer.
  • anode materials that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combination of metal and oxide such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
  • the cathode is an electrode that injects electrons
  • the cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer.
  • Specific examples of cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;
  • There are multi-layer structure materials such as LiF/Al or LiO 2 /Al, but they are not limited to these.
  • the hole injection layer is a layer that serves to facilitate the injection of holes from the anode to the light emitting layer, and the hole injection material is a material that can well inject holes from the anode at a low voltage.
  • the hole injection material is HOMO (highest occupied). It is preferable that the molecular orbital is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • Specific examples of hole injection materials include the above-mentioned compounds or metal porphyrine, oligothiophene, arylamine-based organic material, hexanitrilehexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene. (perylene)-based organic materials, anthraquinone, and polyaniline- and polythiophene-based conductive polymers, etc., but are not limited to these.
  • the thickness of the hole injection layer may be 1 ⁇ to 150 ⁇ . If the thickness of the hole injection layer is 1 ⁇ or more, there is an advantage in preventing the hole injection characteristics from being deteriorated. If the thickness of the hole injection layer is 150 ⁇ or less, the thickness of the hole injection layer is so thick that the driving voltage is increased to improve the movement of holes. There is an advantage to preventing this.
  • the hole injection material may include an arylamine compound containing a carbazole group and a tetrafluorobenzonitrile compound.
  • the amine compound is expressed as Het101-L101-N(Ar101)(Ar102), where Het101 is a substituted or unsubstituted carbazole group, L101 is a direct bond or a substituted or unsubstituted arylene group, Ar101 and Ar102 may be the same or different from each other, and may each independently be a substituted or unsubstituted aryl group.
  • the amine compound and the tetrafluorobenzonitrile compound may be included in an appropriate molar ratio. According to one example, the amine compound and the tetrafluorobenzonitrile compound may be included in a mole ratio of 99.9:0.1 to 90:10.
  • the hole transport layer may play a role in facilitating the transport of holes.
  • the hole transport material is a material that can transport holes from the anode or hole injection layer and transfer them to the light emitting layer, and a material with high mobility for holes is suitable. Specific examples include, but are not limited to, the above-mentioned compounds or arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated portions.
  • the hole transport material may include an arylamine-based compound containing a carbazole group.
  • An additional hole buffer layer may be provided between the hole injection layer and the hole transport layer, and may include the above-described compound or a hole injection or transport material known in the art.
  • An electron blocking layer may be provided between the hole transport layer and the light emitting layer.
  • the electron blocking layer may include the above-mentioned compounds or materials known in the art.
  • the electron blocking material may include an arylamine-based compound containing a phenanthrenyl group. However, it is not limited to this.
  • the light-emitting layer may emit red, green, or blue light and may be made of a phosphorescent material or a fluorescent material.
  • the light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • Carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compound
  • Compounds of the benzoxazole, benzthiazole and benzimidazole series Compounds of the benzoxazole, benzthiazole and benzimidazole series
  • Poly(p-phenylenevinylene) (PPV) series polymer Poly(p-phenylenevinylene) (PPV) series polymer
  • Host materials for the light-emitting layer include condensed aromatic ring derivatives or heterocycle-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.
  • the light-emitting dopants include PIQIr(acac)(bis(1-phenylsoquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), and PQIr(tris(1-phenylquinoline)iridium).
  • phosphorescent materials such as PtOEP (octaethylporphyrin platinum), or fluorescent materials such as Alq 3 (tris(8-hydroxyquinolino)aluminum) may be used, but are not limited to these.
  • the light-emitting dopant may be a phosphor such as Ir(ppy) 3 (fac tris(2-phenylpyridine)iridium), Alq 3 (tris(8-hydroxyquinolino)aluminum), an anthracene compound, or pi.
  • Fluorescent substances such as lene-based compounds and boron-based compounds may be used, but are not limited thereto.
  • the light-emitting dopant may be a phosphorescent material such as (4,6-F 2 ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), or distrylarylene (DSA). ), PFO-based polymers, PPV-based polymers, anthracene-based compounds, pyrene-based compounds, boron-based compounds, etc. may be used, but are not limited to these.
  • a compound according to Chemical Formula 2 an anthracene-based compound, or a boron-based compound may be used as the light-emitting layer material.
  • a hole blocking layer may be provided between the electron transport layer and the light emitting layer.
  • the hole blocking layer is a layer that prevents holes from reaching the cathode, and can generally be formed under the same conditions as the hole injection layer. Specifically, it includes oxadiazole derivatives, triazole derivatives, triazine derivatives, phenanthroline derivatives, BCP, aluminum complex, etc., but is not limited thereto.
  • the hole blocking material may include a compound represented by the following chemical formula HB.
  • L is a direct bond; Substituted or unsubstituted arylene group; Substituted or unsubstituted alkylene group; A substituted or unsubstituted divalent alkoxy group; A substituted or unsubstituted divalent alkenyl group; Or a substituted or unsubstituted heteroarylene group,
  • X1 is N; or CR11, and X2 is N; or CR12, and X3 is N; or CR13,
  • At least one of X1 to X3 is N,
  • R11 to R13 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amide group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted arylsulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstitute
  • Ar3 and Ar4 are the same or different from each other and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted arylalkyl group; Substituted or unsubstituted arylalkenyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • L is a direct bond; Substituted or unsubstituted arylene group; Substituted or unsubstituted alkylene group; A substituted or unsubstituted divalent alkoxy group; A substituted or unsubstituted divalent alkenyl group; Or it is a substituted or unsubstituted heteroarylene group.
  • L is a direct bond; Substituted or unsubstituted arylene group; Or it is a substituted or unsubstituted heteroarylene group.
  • L is a direct bond; Or it is a substituted or unsubstituted arylene group.
  • L is a direct bond; Or it is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L is a direct bond; Or it is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms.
  • L is a direct bond; Or it is a substituted or unsubstituted arylene group having 6 to 12 carbon atoms.
  • L is a direct bond; Or it is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
  • L is a direct bond; Substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L is a direct bond; phenylene group; Or it is a biphenylene group.
  • L is a direct bond; Or it is a phenylene group.
  • L is a direct bond
  • R11 to R13 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or it is a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms.
  • R11 to R13 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms.
  • R11 to R13 are hydrogen; Or deuterium.
  • R11 to R13 are hydrogen.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or it is a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or it is a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted phenyl group; Or a substituted or unsubstituted biphenyl group.
  • Ar3 and Ar4 are the same as or different from each other, and are each independently a phenyl group; Or it is a biphenyl group.
  • the formula HB is represented by any one of the following formulas HB-A to HB-D.
  • the electron transport layer may play a role in facilitating the transport of electrons.
  • the electron transport material is a material that can easily receive electrons from the cathode and transfer them to the light-emitting layer, and a material with high mobility for electrons is suitable. Specific examples include the Al complex of 8-hydroxyquinoline; Complex containing Alq3; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these.
  • the thickness of the electron transport layer may be 1 to 500 ⁇ . If the thickness of the electron transport layer is 1 ⁇ or more, there is an advantage in preventing the electron transport characteristics from deteriorating, and if it is 500 ⁇ or less, the thickness of the electron transport layer is too thick to prevent the driving voltage from increasing to improve the movement of electrons. There are benefits to this.
  • the electron injection layer may serve to facilitate injection of electrons.
  • the electron injection material has the ability to transport electrons, has an excellent electron injection effect from the cathode, the light emitting layer or the light emitting material, prevents the movement of excitons generated in the light emitting layer to the hole injection layer, and also has an excellent electron injection effect to the light emitting layer or light emitting material.
  • Compounds with excellent thin film forming ability are preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals. These include, but are not limited to, complex compounds and nitrogen-containing five-membered ring derivatives.
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
  • the electron injection and transport material may include a compound or a triazine compound according to Chemical Formula 1, and may further include an n-type dopant or an organometallic compound.
  • the n-type dopant or organometallic compound may be LiQ
  • the triazole compound and the n-type dopant (or organometallic compound) are 2:8 to 8:2, such as 4:6 to 6: It may be included at a weight ratio of 4.
  • the organic light-emitting device according to the present invention may be a front-emitting type, a rear-emitting type, or a double-sided emitting type depending on the material used.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 ⁇ was placed in distilled water with a detergent dissolved in it and washed ultrasonically.
  • a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • BH-1 and BD-1 as shown below were vacuum deposited at a weight ratio of 40:1 with a film thickness of 200 ⁇ on the electron blocking layer to form a light emitting layer.
  • the compound [HB-1] was vacuum deposited on the light emitting layer to a film thickness of 50 ⁇ to form a hole blocking layer.
  • compound [ET-1] and the compound LiQ were vacuum deposited on the hole blocking layer at a weight ratio of 1:1 to form an electron transport and injection layer with a thickness of 300 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 2,000 ⁇ on the electron transport and injection layer.
  • LiF lithium fluoride
  • the deposition rate of organic matter was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the cathode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2 x 10 -7.
  • An organic light emitting device was manufactured by maintaining ⁇ 5 x 10 -6 torr.
  • An organic light-emitting device was manufactured in the same manner as Comparative Example 1, except that the compounds listed in Table 1 below were used instead of [ET-1] and [BH-1] in Comparative Example 1.
  • An organic light-emitting device was manufactured in the same manner as Comparative Example 1, except that the compounds listed in Table 1 below were used instead of [ET-1] and [BH-1] in Comparative Example 1.
  • An organic light-emitting device was manufactured in the same manner as Comparative Example 1, except that compounds 1-1, 1-2, and 1-3 were used instead of [ET-1].
  • An organic light-emitting device was manufactured in the same manner as Comparative Example 1, except that compounds 2-1, 2-2, and 2-3 were used instead of [BH-1].
  • An organic light-emitting device was manufactured in the same manner as Comparative Example 1, except that the compounds listed in Table 1 below were used instead of [ET-1] and [BH-1] in Comparative Example 1.
  • T95 refers to the time it takes for the luminance to decrease from the initial luminance (1600 nit) to 95%.
  • Comparative Examples 1 to 12 show device characteristics when ET-1 or ET-2 is used as the electron transport and injection layer, and any one of BH-1 to BH-6 is used as the light emitting layer.
  • Comparative Examples 37 to 45 show device characteristics when BH-7 to BH-10 are used instead of the compound of Formula 2.
  • the organic light emitting device of the experimental example basically exhibits the characteristics of low voltage, high efficiency, and long lifespan.
  • the compounds of formula 1 have the characteristics of high efficiency and the compounds of formula 2 have the characteristics of long lifespan. there is.
  • Comparative Examples 19 to 21 are cases where a compound (ET-2) not containing a cyano group was used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 19 to 21, Experimental Examples 1-1 to 1-9 using the compound of Formula 1 containing a cyano group have a lower driving voltage than Comparative Examples 19 to 21. It can be confirmed that the luminous efficiency is low, the luminous efficiency is high, and the lifespan is long.
  • Comparative Examples 22 to 24 are cases where a compound (BH-2) in which a phenyl group and dibenzofuran are linked to an anthracene core was used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 22 to 24, Experimental Examples 1-1 to 1-9 using a compound of Formula 2 in which naphthobenzofuran and a biphenyl group are linked to an anthracene core are Comparative Examples. It can be seen that the driving voltage is lower than that of 22 to 24, the luminous efficiency is high, and the lifespan is long.
  • Comparative Examples 25 to 27 and 43 to 45 are cases where compounds (BH-3 and BH-9) whose connection positions of naphthobenzofuran are different from those of Formula 2 herein were used. Comparing Experimental Examples 1-1 to 1-9 with Comparative Examples 25 to 27 and 43 to 45, the connection positions of naphthobenzofuran in Experimental Examples 1-1 to 1-9 using the compound of formula 2 are similar to those in the present invention. It can be confirmed that the driving voltage is lower, the luminous efficiency is higher, and the lifespan is longer than in Comparative Examples 25 to 27 and 43 to 45 using compounds different from Formula 2 (BH-3 and BH-9).
  • Comparative Examples 28 to 30 are cases where a compound (BH-4) in which a biphenyl group and dibenzofuran are linked to an anthracene core was used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 28 to 30, Experimental Examples 1-1 to 1-9 using a compound of Formula 2 in which naphthobenzofuran is linked to an anthracene core are compared to Comparative Examples 28 to 30. It can be seen that the driving voltage is lower, the luminous efficiency is higher, and the lifespan is longer.
  • Comparative Examples 31 to 34 are cases where a compound (BH-5) whose condensation position of benzene in naphthobenzofuran is different from that of Chemical Formula 2 herein was used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 31 to 34, Experimental Examples 1-1 to 1-9 using the compound of Formula 2 herein show that the condensation position of benzene in naphthobenzofuran is Formula 2 herein. It can be confirmed that the driving voltage is lower, the luminous efficiency is higher, and the lifespan is longer than in Comparative Examples 31 to 34 using a different compound (BH-5).
  • Comparative Examples 34 to 36 are cases where a compound (BH-6) in which a naphthyl group is connected to an anthracene core instead of a biphenyl group is used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 34 to 36, Experimental Examples 1-1 to 1-9 using a compound of Formula 2 in which a biphenyl group is connected to an anthracene core are more effective than Comparative Examples 34 to 36. It can be confirmed that the voltage is low, the luminous efficiency is high, and the lifespan is long.
  • Comparative Examples 37 to 39 are cases where a compound (BH-7) in which a biphenyl group including a para-phenyl group is linked to an anthracene core instead of a biphenyl group including an ortho-phenyl group is used. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 37 to 39, Experimental Examples 1-1 to 1-9 using a compound of Formula 2 in which a biphenyl group containing an ortho-phenyl group is connected to an anthracene core are compared. It can be confirmed that the driving voltage is lower, the luminous efficiency is higher, and the lifespan is longer than in Examples 37 to 39.
  • Comparative Examples 40 to 42 are cases of using a compound (BH-8) in which a phenyl group substituted with deuterium is connected to an anthracene core instead of a biphenyl group. Comparing Experimental Examples 1-1 to 1-9 and Comparative Examples 40 to 42, Experimental Examples 1-1 to 1-9 using a compound of Formula 2 in which a biphenyl group is connected to an anthracene core are more effective than Comparative Examples 40 to 42. It can be confirmed that the voltage is low, the luminous efficiency is high, and the lifespan is long.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. [대표도] 도 1

Description

유기 발광 소자
본 출원은 유기 발광 소자에 관한 것이다.
본 출원은 2022년 7월 27일 한국특허청에 제출된 한국 특허 출원 제 10-2022-0093438호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허문헌 제10-2017-0036641호
본 출원은 유기 발광 소자를 제공하고자 한다.
본 명세서의 일 실시상태는 애노드; 캐소드; 상기 애노드와 상기 캐소드 사이에 구비된 제1 유기물층 및 제2 유기물층을 포함하고, 상기 제1 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하며, 상기 제2 유기물층은 하기 화학식 2로 표시되는 화합물을 포함하는 것인 유기발광소자를 제공한다.
[화학식 1]
Figure PCTKR2023010576-appb-img-000001
상기 화학식 1에 있어서,
Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이며,
X1 내지 X3은 서로 같거나 상이하고, 각각 독립적으로 N; 또는 CR이며,
X1 내지 X3 중 적어도 하나는 N이고,
Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
a는 0 내지 6의 정수이고, a가 각각 2 이상인 경우, 2 이상의 Ra는 서로 같거나 상이하고,
b는 0 내지 8의 정수이고, b가 2 이상인 경우, 2 이상의 Rb는 서로 같거나 상이하고,
[화학식 2]
Figure PCTKR2023010576-appb-img-000002
상기 화학식 2에 있어서,
R1은 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
m은 0 내지 9의 정수이고, m이 2 이상인 경우, 2 이상의 R1은 서로 같거나 상이하고,
D는 중수소이고, n은 0 내지 8의 정수이며,
R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 하기 화학식 A이며,
R2 및 R6 중 적어도 하나는 하기 화학식 A이며,
[화학식 A]
Figure PCTKR2023010576-appb-img-000003
상기 화학식 A에 있어서,
R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
점선(---)은 화학식 2에 연결되는 부위이다.
본 명세서에 기재된 유기 발광 소자는 제1 유기물층에 화학식 1로 표시되는 화합물 및 제2 유기물층에 화학식 2로 표시되는 화합물을 포함함으로써, 낮은 구동전압, 고효율 및/또는 장수명의 효과가 있다.
도 1은 기판(1), 애노드(2), 제2 유기물층(22), 제1 유기물층(21) 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 애노드(2), 정공주입층(3), 정공수송층(4), 전자차단층(5), 발광층(6), 정공차단층(7), 전자수송층(8), 전자주입층(9) 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판(1), 애노드(2), 정공주입층(3), 정공수송층(4), 전자차단층(5), 발광층(6), 정공차단층(7), 전자주입 및 수송층(11) 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서, "점선(---)"은 화학식 또는 화합물에 결합되는 위치를 의미한다.
본 명세서에 있어서, 화합물의 중수소 치환율은 TLC-MS (Thin-Layer Chromatography/Mass Spectrometry)를 사용하여, 반응의 종결시점에서 분자량들이 이루는 분포의 max. 값을 기준으로 치환율을 계산하는 방법 또는 NMR을 이용한 정량분석 방법으로, Internal standard로 DMF를 첨가하고, 1H NMR 상의 integration 비율을 이용하여 총 peak의 적분량으로부터 D-치환율을 계산하는 방법을 통하여 파악할 수 있다.
본 명세서에 있어서, "에너지 준위"는 에너지 크기를 의미하는 것이다. 따라서 에너지 준위는 해당 에너지 값의 절대값을 의미하는 것으로 해석된다. 예컨대, 에너지 준위가 낮거나 깊다는 것은 진공 준위로부터 마이너스 방향으로 절대값이 커지는 것을 의미한다.
본 명세서에 있어서, HOMO(highest occupied molecular orbital)란, 전자가 결합에 참여할 수 있는 영역에서 가장 에너지가 높은 영역에 있는 분자궤도함수(최고 점유 분자 오비탈)를 의미하고, LUMO(lowest unoccupied molecular orbital)란, 전자가 반결합영역 중 가장 에너지가 낮은 영역에 있는 분자궤도함수(최저 비점유 분자 오비탈)를 의미하고, HOMO 에너지 준위란 진공 준위로부터 HOMO까지의 거리를 의미한다. 또한, LUMO 에너지 준위란 진공 준위로부터 LUMO까지의 거리를 의미한다.
본 명세서에 있어서, 밴드갭(bandgap)이란, HOMO와 LUMO의 에너지 준위 차이, 즉, HOMO-LUMO 갭(Gap)을 의미한다.
본 명세서에 있어서, HOMO 에너지 준위는 대기하 광전자 분광장치(RIKEN KEIKI Co., Ltd. 제조: AC3)를 이용하여 측정할 수 있고, LUMO 에너지 준위는 photoluminescence(PL)을 통하여 측정된 파장값으로 계산할 수 있다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 알킬기; 시클로알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(-F), 염소(-Cl), 브롬(-Br) 또는 요오드(-I)가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, 펜틸기, n-펜틸기, 헥실기, n-헥실기, 헵틸기, n-헵틸기, 옥틸기, n-옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 쿼터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기, 트리페닐레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2023010576-appb-img-000004
,
Figure PCTKR2023010576-appb-img-000005
등의 스피로플루오레닐기,
Figure PCTKR2023010576-appb-img-000006
(9,9-디메틸플루오레닐기), 및
Figure PCTKR2023010576-appb-img-000007
(9,9-디페닐플루오레닐기) 등의 치환된 플루오레닐기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 20이다. 헤테로고리기의 예로는 피리딘기, 피롤기, 피리미딘기, 퀴놀린기, 피리다지닐기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 카바졸기, 벤조카바졸기, 나프토벤조퓨란기, 벤조나프토티오펜기, 인데노카바졸기, 트리아지닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 상기 아릴렌기는 2가인 것을 제외하고는 상기 아릴기에 대한 설명이 적용될 수 있으며, 예를 들면 페닐렌기, 나프틸렌기, 바이페닐렌기, 플루오레닐렌기, 페난트릴렌기, 터페닐렌기, 안트라세닐렌기, 피레닐렌기 등이 예시된다.
본 명세서에 있어서, 2가의 헤테로고리기는 2가인 것을 제외하고는 상기 헤테로고리기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, n+1가의 아릴기는 n+1가인 것을 제외하고는 상기 아릴기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, n+1가의 헤테로고리기는 n+1가인 것을 제외하고는 상기 헤테로고리기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, 인접한 기와 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 탄화수소 고리; 또는 헤테로 고리를 의미한다.
상기 탄화수소 고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들의 축합고리를 형성하는 것을 의미한다. 상기 탄화수소고리는 탄소와 수소 원자로만 이루어진 고리를 의미한다. 상기 헤테로고리는 N, O, P, S, Si 및 Se 중에서 선택된 1 이상으로 포함하는 고리를 의미한다. 본 명세서에 있어서, 상기 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리는 단환 또는 다환일 수 있다.
본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다. 지방족 탄화수소고리의 예로는 시클로프로판, 시클로부탄, 시클로부텐, 시클로펜탄, 시클로펜텐, 시클로헥산, 시클로헥센, 1,4-시클로헥사디엔, 시클로헵탄, 시클로헵텐, 시클로옥탄, 시클로옥텐 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 방향족 탄화수소고리란 탄소와 수소 원자로만 이루어진 방향족의 고리를 의미한다. 방향족 탄화수소고리의 예로는 벤젠, 나프탈렌, 안트라센, 페난트렌, 페릴렌, 플루오란텐, 트리페닐렌, 페날렌, 파이렌, 테트라센, 크라이센, 펜타센, 플루오렌, 인덴, 아세나프틸렌, 벤조플루오렌, 스피로플루오렌 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 방향족 탄화수소고리는 아릴기와 동일한 의미로 해석될 수 있다.
본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족 고리를 의미한다. 지방족 헤테로고리의 예로는, 옥시레인(oxirane), 테트라하이드로퓨란, 1,4-디옥세인(1,4-dioxane), 피롤리딘, 피페리딘, 모르폴린(morpholine), 옥세판, 아조케인, 티오케인 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족 고리를 의미한다. 방향족 헤테로고리의 예로는, 피리딘, 피롤, 피리미딘, 피리다진, 퓨란, 티오펜, 이미다졸, 파라졸, 옥사졸, 이소옥사졸, 티아졸, 이소티아졸, 트리아졸, 옥사디아졸, 티아디아졸, 디티아졸, 테트라졸, 피란, 티오피란, 디아진, 옥사진, 티아진, 다이옥신, 트리아진, 테트라진, 이소퀴놀린, 퀴놀린, 퀴논, 퀴나졸린, 퀴녹살린, 나프티리딘, 아크리딘, 페난트리딘, 디아자나프탈렌, 드리아자인덴, 인돌, 인돌리진, 벤조티아졸, 벤조옥사졸, 벤조이미다졸, 벤조티오펜, 벤조퓨란, 디벤조티오펜, 디벤조퓨란, 카바졸, 벤조카바졸, 디벤조카바졸, 페나진, 이미다조피리딘, 페녹사진, 인돌로카바졸, 인데노카바졸 등이 있으나, 이에 한정되지 않는다.
이하 본 발명의 바람직한 실시상태를 상세히 설명한다. 그러나 본 발명의 실시상태는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시상태들에 한정되지는 않는다.
본 발명의 유기 발광 소자는 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 모두 포함하는 것이 특징으로, 본 발명의 유기 발광 소자는 저전압, 고효율 및/또는 장수명 효과를 나타낸다.
이하 화학식 1에 대하여 상세히 설명한다.
[화학식 1]
Figure PCTKR2023010576-appb-img-000008
상기 화학식 1에 있어서,
Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이며,
X1 내지 X3은 서로 같거나 상이하고, 각각 독립적으로 N; 또는 CR이며,
X1 내지 X3 중 적어도 하나는 N이고,
Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
a는 0 내지 6의 정수이고, a가 각각 2 이상인 경우, 2 이상의 Ra는 서로 같거나 상이하고,
b는 0 내지 8의 정수이고, b가 2 이상인 경우, 2 이상의 Rb는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 바이페닐기; 또는 중수소로 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 플루오레닐기이고, 상기 Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이고, 상기 Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 바이페닐기; 중수소로 치환 또는 비치환된 터페닐기; 중수소로 치환 또는 비치환된 나프틸기; 중수소로 치환 또는 비치환된 페난트레닐기; 또는 중수소로 치환 또는 비치환된 플루오레닐기이고, 상기 Ar1 및 Ar2 중 적어도 하나는 중수소로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 바이페닐기; 또는 중수소로 치환 또는 비치환된 나프틸기이고, 상기 Ar1 및 Ar2 중 적어도 하나는 중수소로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 페닐기; 바이페닐기; 또는 나프틸기이고, 상기 Ar1 및 Ar2 중 적어도 하나는 페닐기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐렌기; 치환 또는 비치환된 터페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 중수소로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 바이페닐렌기다.
본 명세서의 일 실시상태에 있어서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 페닐렌기; 또는 바이페닐렌기다.
본 명세서의 일 실시상태에 있어서, L1은 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐렌기; 치환 또는 비치환된 터페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L1은 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L1은 직접결합; 중수소로 치환 또는 비치환된 페닐렌기; 중수소로 치환 또는 비치환된 바이페닐렌기; 중수소로 치환 또는 비치환된 터페닐렌기; 또는 중수소로 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L1은 중수소로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L1은 페닐렌기; 또는 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2는 직접결합; 또는 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2는 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2는 직접결합; 또는 중수소로 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2는 중수소로 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2는 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X3 중 적어도 하나는 N이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X3 중 1개는 N이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X3 중 2개는 N이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X3은 N이다.
본 명세서의 일 실시상태에 있어서, X1은 N이고, X2 및 X3은 CR이다.
본 명세서의 일 실시상태에 있어서, X2는 N이고, X1 및 X3은 CR이다.
본 명세서의 일 실시상태에 있어서, X3은 N이고, X1 및 X2는 CR이다.
본 명세서의 일 실시상태에 있어서, X1 및 X2는 N이고, X3은 CR이다.
본 명세서의 일 실시상태에 있어서, X1 및 X3은 N이고, X2는 CR이다.
본 명세서의 일 실시상태에 있어서, X2 및 X3은 N이고, X1은 CR이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 알킬기; 또는 중수소로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 모두 수소이다.
본 명세서의 일 실시상태에 있어서, Ra, Rb 및 R은 모두 중수소이다.
본 명세서의 일 실시상태에 있어서, a는 0 내지 6의 정수이고, a가 각각 2 이상인 경우, 2 이상의 Ra는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, a는 0 내지 6의 정수이다.
본 명세서의 일 실시상태에 있어서, a는 1 내지 6의 정수이다.
본 명세서의 일 실시상태에 있어서, a는 6이다.
본 명세서의 일 실시상태에 있어서, a는 5이다.
본 명세서의 일 실시상태에 있어서, a는 4이다.
본 명세서의 일 실시상태에 있어서, a는 3이다.
본 명세서의 일 실시상태에 있어서, a는 2이다.
본 명세서의 일 실시상태에 있어서, a는 1이다.
본 명세서의 일 실시상태에 있어서, a는 0이다.
본 명세서의 일 실시상태에 있어서, b는 0 내지 8의 정수이고, b가 2 이상인 경우, 2 이상의 Rb는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, b는 0 내지 8의 정수이다.
본 명세서의 일 실시상태에 있어서, b는 1 내지 8의 정수이다.
본 명세서의 일 실시상태에 있어서, b는 8이다.
본 명세서의 일 실시상태에 있어서, b는 7이다.
본 명세서의 일 실시상태에 있어서, b는 6이다.
본 명세서의 일 실시상태에 있어서, b는 5이다.
본 명세서의 일 실시상태에 있어서, b는 4이다.
본 명세서의 일 실시상태에 있어서, b는 3이다.
본 명세서의 일 실시상태에 있어서, b는 2이다.
본 명세서의 일 실시상태에 있어서, b는 1이다.
본 명세서의 일 실시상태에 있어서, b는 0이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시된다.
[화학식 1-1]
Figure PCTKR2023010576-appb-img-000009
[화학식 1-2]
Figure PCTKR2023010576-appb-img-000010
[화학식 1-3]
Figure PCTKR2023010576-appb-img-000011
[화학식 1-4]
Figure PCTKR2023010576-appb-img-000012
상기 화학식 1-1 내지 1-4에 있어서,
Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-A 내지 1-D 중 어느 하나로 표시된다.
[화학식 1-A]
Figure PCTKR2023010576-appb-img-000013
[화학식 1-B]
Figure PCTKR2023010576-appb-img-000014
[화학식 1-C]
Figure PCTKR2023010576-appb-img-000015
[화학식 1-D]
Figure PCTKR2023010576-appb-img-000016
상기 화학식 1-A 내지 1-D에 있어서,
Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1-1로 표시된다.
[화학식 1-1-1]
Figure PCTKR2023010576-appb-img-000017
상기 화학식 1-1-1에 있어서,
Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 적어도 40% 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 50% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 60% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 70% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 80% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 90% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소로 100% 치환된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소를 40% 내지 60% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소를 40% 내지 80% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소를 60% 내지 80% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 중수소를 80% 내지 100% 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시된다.
Figure PCTKR2023010576-appb-img-000018
Figure PCTKR2023010576-appb-img-000019
Figure PCTKR2023010576-appb-img-000020
Figure PCTKR2023010576-appb-img-000021
이하, 화학식 2에 대하여 상세히 설명한다.
[화학식 2]
Figure PCTKR2023010576-appb-img-000022
상기 화학식 2에 있어서,
R1은 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
m은 0 내지 9의 정수이고, m이 2 이상인 경우, 2 이상의 R1은 서로 같거나 상이하고,
D는 중수소이고, n은 0 내지 8의 정수이며,
R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 하기 화학식 A이며,
R2 및 R6 중 적어도 하나는 하기 화학식 A이며,
[화학식 A]
Figure PCTKR2023010576-appb-img-000023
상기 화학식 A에 있어서,
R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
점선(---)은 화학식 2에 연결되는 부위이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 중수소로 치환 또는 비치환된 알킬기; 또는 중수소로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R1은 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 0 내지 9의 정수이다.
본 명세서의 일 실시상태에 있어서, m은 1 내지 9의 정수이다.
본 명세서의 일 실시상태에 있어서, m은 0이다.
본 명세서의 일 실시상태에 있어서, m은 1이다.
본 명세서의 일 실시상태에 있어서, m은 2이다.
본 명세서의 일 실시상태에 있어서, m은 3이다.
본 명세서의 일 실시상태에 있어서, m은 4이다.
본 명세서의 일 실시상태에 있어서, m은 5이다.
본 명세서의 일 실시상태에 있어서, m은 6이다.
본 명세서의 일 실시상태에 있어서, m은 7이다.
본 명세서의 일 실시상태에 있어서, m은 8이다.
본 명세서의 일 실시상태에 있어서, m은 9이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, R1은 모두 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 8개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 7개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 6개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 5개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 4개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 3개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 2개는 중수소이다.
본 명세서의 일 실시상태에 있어서, m은 9이고, 9개의 R1 중 1개는 중수소이다.
본 명세서의 일 실시상태에 있어서, D는 중수소이다.
본 명세서의 일 실시상태에 있어서, n은 0 내지 8의 정수이다.
본 명세서의 일 실시상태에 있어서, n은 1 내지 8의 정수이다.
본 명세서의 일 실시상태에 있어서, n은 0이다.
본 명세서의 일 실시상태에 있어서, n은 1이다.
본 명세서의 일 실시상태에 있어서, n은 2이다.
본 명세서의 일 실시상태에 있어서, n은 3이다.
본 명세서의 일 실시상태에 있어서, n은 4이다.
본 명세서의 일 실시상태에 있어서, n은 5이다.
본 명세서의 일 실시상태에 있어서, n은 6이다.
본 명세서의 일 실시상태에 있어서, n은 7이다.
본 명세서의 일 실시상태에 있어서, n은 8이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 및 R6 중 적어도 하나는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2 및 R6 중 하나는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2는 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R6은 하기 화학식 A이다.
본 명세서의 일 실시상태에 있어서, R2는 하기 화학식 A이고, R3 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R2는 하기 화학식 A이고, R3 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, R6은 하기 화학식 A이고, R2 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R6은 하기 화학식 A이고, R2 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
[화학식 A]
Figure PCTKR2023010576-appb-img-000024
상기 화학식 A에 있어서,
R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
점선(---)은 화학식 2에 연결되는 부위이다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 알킬기; 또는 중수소로 치환 또는 비치환된 아릴기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이거나, 또는 인접한 기와 서로 결합하여 중수소로 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이거나, 또는 인접한 기와 서로 결합하여 중수소로 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이거나, 또는 인접한 기와 서로 결합하여 중수소로 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, R1 내지 R11 중 상기 화학식 A가 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 적어도 하나의 중수소를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화학식 2-1로 표시된다.
[화학식 2-1]
Figure PCTKR2023010576-appb-img-000025
상기 화학식 2-1에 있어서, R1, m, D, n 및 R3 내지 R11의 정의는 상기 화학식 2에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 적어도 40% 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 50% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 60% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 70% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 80% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 90% 이상 치환된다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소로 100% 치환된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소를 40% 내지 60% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소를 40% 내지 80% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소를 60% 내지 80% 포함한다. 또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 중수소를 80% 내지 100% 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화합물 중 어느 하나로 표시된다.
Figure PCTKR2023010576-appb-img-000026
본 명세서의 일 실시상태에 따른 화학식 1 및 화학식 2로 표시되는 화합물은 후술하는 제조예의 방법과 같이 코어구조가 제조될 수 있다. 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
본 명세서에서는 상기 화학식 1 및 화학식 2로 표시되는 화합물의 코어 구조에 다양한 치환기를 도입함으로써 다양한 에너지 밴드갭을 갖는 화합물을 합성할 수 있다. 또한, 본 명세서에서는 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.
이하, 유기 발광 소자에 관하여 설명한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 따른 유기 발광 소자는 애노드; 캐소드; 상기 애노드와 상기 캐소드 사이에 구비된 제1 유기물층 및 제2 유기물층을 포함하고, 상기 제1 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하며, 상기 제2 유기물층은 하기 화학식 2로 표시되는 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 발광 소자는 전술한 화학식 1로 표시되는 화합물 및 전술한 화학식 2의 화합물을 이용하여 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 전자차단층, 발광층, 정공 주입 및 수송층, 전자수송층, 전자주입층, 정공차단층, 및 전자 수송 및 주입층 중 1층 이상을 포함하는 구조를 가질 수 있다. 그러나, 본 명세서의 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기물층을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층은 제2 유기물층과 캐소드 사이에 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층은 전자수송층, 전자주입층 또는 전자수송 및 주입층일 수 있으며,, 상기 전자수송층, 전자주입층 또는 전자수송 및 주입층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 유기물층은 발광층일 수 있으며, 상기 발광층은 상기 화학식 2로 표시되는 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 상기 화학식 2로 표시되는 화합물을 호스트로서 포함하고, 도펀트를 더 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에서, 상기 유기물층은 2층 이상의 정공주입층, 정공수송층 또는 전자차단층을 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에서, 상기 유기물층은 2층 이상의 전자주입층, 전자수송층 또는 정공차단층을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 제1 유기물층 및 상기 화학식 2로 표시되는 화합물을 포함하는 제2 유기물층의 두께는 10 Å 내지 600 Å이고, 바람직하게는 50 Å 내지 500 Å이고, 더욱 바람직하게는 200 Å 내지 400 Å이다.
또 하나의 실시상태에 있어서, 상기 제1 유기물층 및 제2 유기물층은 전술한 화학식 1로 표시되는 화합물 및 전술한 화학식 2로 표시되는 화합물 외에 다른 유기화합물, 금속 또는 금속화합물을 더 포함할 수 있다.
또 하나의 실시상태에 있어서, 상기 제1 유기물층 및 제2 유기물층은 전술한 화학식 1로 표시되는 화합물 및 전술한 화학식 2로 표시되는 화합물 외에 다른 유기화합물, 금속 또는 금속화합물을 포함하지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층 및 제2 유기물층은 서로 접하여 구비될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층 및 제2 유기물층은 서로 접하여 구비되지 않을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층 및 제2 유기물층 사이에는 1층 이상의 유기물층이 위치한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기물층과 제2 유기물층 사이에 정공차단층이 위치한다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에서, 상기 발광층은 형광 도펀트 또는 인광 도펀트를 더 포함한다. 이때, 발광층 내의 도펀트는 호스트 100 중량부 대비 1 중량부 내지 50 중량부로 포함된다.
이때, 상기 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자, 안트라센계 화합물, 파이렌계 화합물, 보론계 화합물 등과 같은 형광 물질이 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 2층 이상의 유기물층을 포함하고, 상기 2층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 2층 이상의 유기물층은 발광층, 정공 수송층, 정공 주입층, 정공 수송 및 주입층 및 전자 차단층으로 이루어진 군에서 2 이상이 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2층 이상의 유기물층은 발광층, 전자수송층, 전자주입층, 전자 수송 및 주입층, 전자조절층 및 정공 차단층으로 이루어진 군에서 2 이상이 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 2층 이상의 전자 수송층을 포함하고, 상기 2층 이상의 전자 수송층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함한다. 구체적으로 본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물은 상기 2층 이상의 전자 수송층 중 1층에 포함될 수도 있으며, 각각의 2층 이상의 전자 수송층에 포함될 수 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화합물이 상기 각각의 2층 이상의 전자 수송층에 포함되는 경우, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 제외한 다른 재료들은 서로 동일하거나 상이할 수 있다.
상기 화학식 1로 표시되는 화합물 또는 상기 화학식 2로 표시되는 화합물을 포함하는 유기물층이 전자수송층, 전자주입층, 또는 전자 수송 및 주입층인 경우, 상기 전자수송층, 전자주입층, 또는 전자 수송 및 주입층은 n형 도펀트를 더 포함할 수 있다. 상기 n형 도펀트는 당 기술분야에 알려져 있는 것들을 사용할 수 있으며, 예컨대 금속 또는 금속착체를 사용할 수 있다. 예를 들어, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함하는 전자 수송층은 LiQ(Lithium Quinolate)를 더 포함할 수 있다. 일 예에 따르면, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 전체와 상기 n형 도펀트는 2:8 내지 8:2, 예컨대 4:6 내지 6:4의 중량비로 포함될 수 있다.
일 예에 따르면, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 전체와 상기 n형 도펀트는 1:1의 중량비로 포함될 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 상기 애노드와 상기 캐소드 사이에 1층 이상의 유기물층이 추가로 구비되고, 상기 유기물층은 정공수송층, 정공주입층, 정공수송 및 주입층, 전자차단층, 발광층, 전자수송층, 전자주입층, 전자수송 및 주입층 및 정공차단층 중 1 층 이상을 더 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 1층 이상의 발광층을 더 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 상기 발광층 외에 1 이상의 발광층을 더 포함하며, 각 발광층은 전술한 호스트 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 상기 발광층 외에 1 이상의 발광층을 더 포함하며, 각 발광층은 형광 도펀트 또는 인광 도펀트를 더 포함한다. 이때, 발광층 내의 도펀트는 호스트 100 중량부 대비 1 중량부 내지 50 중량부로 포함된다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에는 2층 이상의 발광층을 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 2층 이상의 발광층을 포함하고, 적어도 하나의 발광층은 형광성 도펀트를 포함하고, 적어도 하나의 다른 발광층은 인광성 도펀트를 포함한다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 3층 이상의 발광층을 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자에서, 상기 발광층의 최대 발광 피크는 400 nm 내지 500 nm이다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 2층 이상의 발광층을 포함하고, 상기 2층 이상의 발광층의 최대 발광 피크는 각각 400 nm 내지 500 nm이다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 1층 이상의 발광층을 더 포함하고, 각각의 발광층은 각각 다른 파장대를 나타낸다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 3층 이상의 발광층을 포함하고, 한 층의 발광층(발광층 1)의 최대 발광 피크는 400 nm 내지 500 nm 이며, 다른 한 층의 발광층(발광층 2)의 최대 발광 피크는 510 nm 내지 580 nm; 또는 610 nm 680 nm의 최대 발광 피크를 나타낼 수 있고, 또 다른 한 층의 발광층(발광층 3)의 최대 발광 피크는 400 nm 내지 500 nm의 최대 발광 피크를 나타낼 수 있다.
또한, 본 출원의 일 실시상태에 따르면, 상기 2층 이상의 발광층은 애노드와 캐소드 사이에서 수직 방향으로 위치할 수도 있으며, 수평 방향으로 위치할 수도 있다.
본 출원의 일 실시상태에 따르면, 상기 3층 이상의 발광층은 애노드에서 캐소드 방향으로 수직 방향으로 위치한다. 이때, 3층 이상의 발광층은 전부 청색 형광 발광층일 수 있다.
본 명세서의 일 실시상태에 따른 유기 발광 소자가 복수의 발광층을 포함하는 경우, 상기 복수의 발광층 사이에 1층 이상의 유기물층이 추가로 구비되고, 상기 유기물층은 정공수송층, 정공주입층, 정공수송 및 주입층, 전자차단층, 전하생성층, 발광층, 전자수송층, 전자주입층, 전자수송 및 주입층 및 정공차단층 중 1층 이상을 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 애노드, 1층 이상의 유기물층 및 캐소드가 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 캐소드, 1층 이상의 유기물층 및 애노드가 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
상기 유기 발광 소자는 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
(1) 애노드/정공수송층/발광층/캐소드
(2) 애노드/정공주입층/정공수송층/발광층/캐소드
(3) 애노드/정공주입층/정공버퍼층/정공수송층/발광층/캐소드
(4) 애노드/정공수송층/발광층/전자수송층/캐소드
(5) 애노드/정공수송층/발광층/전자수송층/전자주입층/캐소드
(6) 애노드/정공주입층/정공수송층/발광층/전자수송층/캐소드
(7) 애노드/정공주입층/정공수송층/발광층/전자수송층/전자주입층/캐소드
(8) 애노드/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/캐소드
(9) 애노드/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/전자주입층 /캐소드
(10) 애노드/정공수송층/전자차단층/발광층/전자수송층/캐소드
(11) 애노드/정공수송층/전자차단층/발광층/전자수송층/전자주입층/캐소드
(12) 애노드/정공주입층/정공수송층/전자차단층/발광층/전자수송층/캐소드
(13) 애노드/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입 층/캐소드
(14) 애노드/정공수송층/발광층/정공차단층/전자수송층/캐소드
(15) 애노드/정공수송층/발광층/정공차단층/전자수송층/전자주입층/캐소드
(16) 애노드/정공주입층/정공수송층/발광층/정공차단층/전자수송층/캐소드
(17) 애노드/정공주입층/정공수송층/발광층/정공차단층/전자수송층/전자주입층/캐소드
(18) 애노드/정공주입층/제1 정공수송층/제2 정공수송층/발광층/전자 수송 및 주입층/캐소드
본 명세서의 유기 발광 소자의 구조는 도 1 내지 도 3에 나타난 것과 같은 구조를 가질 수 있으나 이에만 한정되는 것은 아니다.
도 1에는 기판(1), 애노드(2), 제2 유기물층(22), 제1 유기물층(21), 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 구조가 예시 되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 제1 유기물층(21) 및 상기 화학식 2로 표시되는 화합물은 제2 유기물층(22)에 포함될 수 있다.
도 2에는 기판(1), 애노드(2), 정공주입층(3), 정공수송층(4), 전자차단층(5), 발광층(6), 정공차단층(7), 전자수송층(8), 전자주입층(9) 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 전자수송층(8) 또는 전자주입층(9)에 포함될 수 있으며, 상기 화학식 2로 표시되는 화합물은 발광층(6)에 포함될 수 있다.
도 3에는 기판(1), 애노드(2), 정공주입층(3), 정공수송층(4), 전자차단층(5), 발광층(6), 정공차단층(7), 전자주입 및 수송층(11) 및 캐소드(10)가 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 전자주입 및 수송층(11) 및 상기 화학식 2로 표시되는 화합물은 발광층(6)에 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 두 개 이상의 독립된 소자가 직렬로 연결된 탠덤 구조일 수 있다. 일 실시상태에 있어서, 상기 탠덤 구조는 각각의 유기 발광 소자가 전하생성층으로 접합된 형태일 수 있다. 탠덤 구조의 소자는 같은 밝기를 기준으로 단위 소자보다 낮은 전류에서 구동 가능하므로, 소자의 수명 특성이 크게 향상되는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자 수송 및 주입층과 발광층은 인접하게 구비될 수 있다. 예컨대, 상기 전자 수송 및 주입층과 발광층은 물리적으로 접하여 구비될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자수송층과 발광층은 인접하게 구비될 수 있다. 예컨대, 상기 전자수송층과 발광층은 물리적으로 접하여 구비될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 정공차단층과 발광층은 인접하게 구비될 수 있다. 예컨대, 상기 정공차단층과 발광층은 물리적으로 접하여 구비될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물, 즉 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 애노드를 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자차단층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 캐소드로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 캐소드 물질부터 유기물층, 애노드 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공수송층, 정공주입층, 전자차단층, 전자수송 및 주입층, 전자수송층, 전자주입층, 정공차단층, 및 정공수송 및 주입층 중 1 층 이상을 더 포함할 수 있다.
상기 유기물층은 정공주입층, 정공수송층, 전자차단층, 발광층, 정공차단층, 전자수송층, 전자주입층 또는 전자수송 및 주입층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 애노드는 정공을 주입하는 전극으로, 애노드 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 애노드 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO, Indium Tin Oxide), 인듐아연 산화물(IZO, Indium Zinc Oxide)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 캐소드는 전자를 주입하는 전극으로, 캐소드 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 캐소드 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 애노드로부터 발광층으로 정공의 주입을 원활하게 하는 역할을 하는 층이며, 정공 주입 물질로는 낮은 전압에서 애노드로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 애노드 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 전술한 화합물 또는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층의 두께는 1Å 내지 150Å일 수 있다. 상기 정공주입층의 두께가 1Å 이상이면, 정공 주입 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 150Å 이하이면, 정공주입층의 두께가 너무 두꺼워 정공의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 정공주입 물질은 카바졸기를 포함하는 아릴아민 화합물과 테트라플루오로벤조니트릴 화합물을 포함할 수 있다. 일 예에 따르면, 상기 아민 화합물은 Het101-L101-N(Ar101)(Ar102)과 같이 표시되고, Het101은 치환 또는 비치환된 카바졸기이고, L101은 직접결합 또는 치환 또는 비치환된 아릴렌기이고, Ar101 및 Ar102는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기일 수 있다. 상기 아민 화합물과 테트라플루오로벤조니트릴 화합물은 적절한 몰비로 포함될 수 있고, 일 예에 따르면, 상기 아민 화합물과 테트라플루오로벤조니트릴 화합물은 99.9:0.1 내지 90:10의 몰비로 포함될 수 있다.
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 애노드나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 전술한 화합물 또는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 정공수송 물질로 카바졸기를 포함하는 아릴아민 계열의 화합물을 포함할 수 있다.
정공주입층과 정공수송층 사이에 추가로 정공버퍼층이 구비될 있으며, 전술한 화합물 또는 당 기술분야에 알려져 있는 정공주입 또는 수송재료를 포함할 수 있다.
정공수송층과 발광층 사이에 전자차단층이 구비될 수 있다. 상기 전자차단층에는 전술한 화합물 또는 당 기술분야에 알려져 있는 재료가 사용될 수 있으며, 구체적으로 본 명세서의 일 실시상태에 있어서, 상기 전자차단 물질로 페난트레닐기를 포함하는 아릴아민계 화합물이 포함될 수 있으나, 이에 한정되지 않는다.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
발광층이 적색 발광을 하는 경우, 발광 도펀트로는 PIQIr(acac)(bis(1-phenylisoquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), PQIr(tris(1-phenylquinoline)iridium), PtOEP(octaethylporphyrin platinum)와 같은 인광 물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 녹색 발광을 하는 경우, 발광 도펀트로는 Ir(ppy)3(fac tris(2-phenylpyridine)iridium)와 같은 인광물질이나, Alq3(tris(8-hydroxyquinolino)aluminum), 안트라센계 화합물, 파이렌계 화합물, 보론계 화합물과 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 청색 발광을 하는 경우, 발광 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자, 안트라센계 화합물, 파이렌계 화합물, 보론계 화합물 등과 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 발광층 물질로 본원 화학식 2에 따른 화합물, 안트라센계 화합물, 또는 보론계 화합물 등이 사용될 수 있다.
전자수송층과 발광층 사이에 정공차단층이 구비될 수 있으며, 상기 정공차단층은 정공의 캐소드 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 트리아진 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 정공차단 물질로 하기 화학식 HB로 표시되는 화합물이 포함될 수 있다.
[화학식 HB]
Figure PCTKR2023010576-appb-img-000027
상기 화학식 HB에 있어서,
L은 직접 결합; 치환 또는 비치환된 아릴렌기; 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 2가의 알콕시기; 치환 또는 비치환된 2가의 알케닐기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
X1은 N; 또는 CR11이고, X2는 N; 또는 CR12이며, X3는 N; 또는 CR13이며,
X1 내지 X3 중 적어도 하나는 N이고,
R11 내지 R13은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이며,
Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 아릴알킬기; 치환 또는 비치환된 아릴알케닐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 치환 또는 비치환된 아릴렌기; 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 2가의 알콕시기; 치환 또는 비치환된 2가의 알케닐기; 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 치환 또는 비치환된 탄소수 6 내지 12의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 페닐렌기; 또는 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, L은 직접 결합이다.
본 명세서의 일 실시상태에 따르면, R11 내지 R13은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, R11 내지 R13은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, R11 내지 R13은 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, R11 내지 R13은 수소이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 또는 치환 또는 비치환된 바이페닐기이다.
본 명세서의 일 실시상태에 따르면, Ar3 및 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 페닐기; 또는 바이페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 HB는 하기 화학식 HB-A 내지 HB-D 중 어느하나로 표시된다.
[화학식 HB-A]
Figure PCTKR2023010576-appb-img-000028
[화학식 HB-B]
Figure PCTKR2023010576-appb-img-000029
[화학식 HB-C]
Figure PCTKR2023010576-appb-img-000030
[화학식 HB-D]
Figure PCTKR2023010576-appb-img-000031
상기 화학식 HB-A 내지 HB-D에 있어서, L, Ar3, Ar4 및 X1 내지 X3의 정의는 상기 화학식 HB에서의 정의와 같다.
상기 전자수송층은 전자의 수송을 원활하게 하는 역할을 할 수 있다. 전자 수송 물질로는 캐소드로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 상기 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층의 두께는 1 내지 500Å 일 수 있다. 전자수송층의 두께가 1Å 이상이면, 전자 수송 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 500Å 이하이면, 전자수송층의 두께가 너무 두꺼워 전자의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 전자주입층은 전자의 주입을 원활하게 하는 역할을 할 수 있다. 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 캐소드로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 전자 주입 및 수송 물질은 본원 화학식 1에 따른 화합물 또는 트리아진 화합물을 포함할 수 있고, n형 도펀트 또는 유기 금속 화합물을 더 포함할 수 있다. 일 예에 따르면, 상기 n형 도펀트 또는 유기 금속 화합물은 LiQ일 수 있고, 상기 트리아졸 화합물과 상기 n형 도펀트(또는 유기 금속 화합물)는 2:8 내지 8:2, 예컨대 4:6 내지 6:4의 중량비로 포함될 수 있다.본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<제조예 1>
Figure PCTKR2023010576-appb-img-000032
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 2-(3'-브로모-[1,1'-바이페닐]-3-일)-4,6-다이페닐-1,3,5-트리아진 (5.50g, 11.84 mmol), 7-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)스피로[플루오렌-9,9'-잔텐]-2-카보니트릴 (6.30g, 13.03 mmol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액(120ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.41g, 0.36 mmol)을 넣은 후 8 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 320ml로 재결정하여 화합물 1-1 (5.88g, 73%)를 제조하였다.
MS[M+H]+= 741
<제조예 2>
Figure PCTKR2023010576-appb-img-000033
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 2-(4-브로모페닐)-4,6-다이페닐-1,3,5-트리아진 (5.50g, 14.18 mmol), 7-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)스피로[플루오렌-9,9'-잔텐]-2-카보니트릴 (7.54g, 15.59 mmol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액(120ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.49g, 0.43 mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 310ml로 재결정하여 화합물 1-2 (6.21g, 66%)를 제조하였다.
MS[M+H]+= 665
<제조예 3>
Figure PCTKR2023010576-appb-img-000034
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 2-(3-브로모페닐)-4,6-다이페닐-1,3,5-트리아진 (5.50g, 14.18 mmol), 7-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)스피로[플루오렌-9,9'-잔텐]-2-카보니트릴 (7.54g, 15.59 mmol)을 테트라하이드로퓨란 260ml에 완전히 녹인 후 2M 탄산칼륨수용액(130ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.49g, 0.43 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 280ml로 재결정하여 화합물 1-3 (6.41g, 68%)를 제조하였다.
MS[M+H]+= 665
<제조예 4>
Figure PCTKR2023010576-appb-img-000035
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 a (6.50g, 15.57 mmol), 4,4,5,5-테트라메틸-2-(나프토[2,3-b]벤조퓨란-1-일)-1,3,2-다이옥사보로레인 (5.90g, 17.13 mmol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액(120ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.54g, 0.47 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 320ml로 재결정하여 화합물 2-1 (5.91g, 68%)를 제조하였다.
MS[M+H]+= 555
<제조예 5>
Figure PCTKR2023010576-appb-img-000036
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 b (6.50g, 15.26 mmol), 4,4,5,5-테트라메틸-2-(나프토[2,3-b]벤조퓨란-1-일)-1,3,2-다이옥사보로레인 (5.78g, 16.78 mmol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액(120ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.53g, 0.46 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 340ml로 재결정하여 화합물 2-2 (6.67g, 78%)를 제조하였다.
MS[M+H]+= 564
<제조예 6>
Figure PCTKR2023010576-appb-img-000037
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 c (6.50g, 15.55 mmol), 4,4,5,5-테트라메틸-2-(나프토[2,3-b]벤조퓨란-1-일)-1,3,2-다이옥사보로레인 (5.89g, 17.11 mmol)을 테트라하이드로퓨란 220ml에 완전히 녹인 후 2M 탄산칼륨수용액(110ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.54g, 0.47 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 화합물 2-3 (6.34g, 73%)를 제조하였다.
MS[M+H]+= 556
비교예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화학식 [HI-1] 및 하기 화학식 [HI-2]의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다.
Figure PCTKR2023010576-appb-img-000038
상기 정공주입층 위에 정공을 수송하는 물질인 하기 화합물 [HT-1] (1150Å)를 진공 증착하여 정공수송층을 형성하였다.
Figure PCTKR2023010576-appb-img-000039
이어서, 상기 정공수송층 위에 막 두께 50Å으로 하기 화합물 [EB-1] (150Å)를 진공 증착하여 전자차단층을 형성하였다.
Figure PCTKR2023010576-appb-img-000040
이어서, 상기 전자차단층 위에 막 두께 200Å으로 아래와 같은 BH-1와 BD-1를 40:1의 중량비로 진공증착하여 발광층을 형성하였다.
Figure PCTKR2023010576-appb-img-000041
Figure PCTKR2023010576-appb-img-000042
상기 발광층 위에 막 두께 50Å으로 상기 화합물 [HB-1]를 진공 증착하여 정공차단층을 형성하였다.
이어서, 상기 정공차단층 위에 화합물 [ET-1]과 상기 화합물 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공 증착하여 300Å의 두께로 전자수송 및 주입층을 형성하였다.
상기 전자수송 및 주입층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 ⅹ10-7 ~5 ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
비교예 2 내지 12
비교예 1의 [ET-1] 및 [BH-1] 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예 1-1 내지 실험예 1-9
비교예 1의 [ET-1] 및 [BH-1] 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure PCTKR2023010576-appb-img-000043
Figure PCTKR2023010576-appb-img-000044
비교예 13 내지 15
[ET-1] 대신 화합물 1-1, 1-2, 1-3을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 16 내지 18
[BH-1] 대신 화합물 2-1, 2-2, 2-3을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 19 내지 21
[BH-1] 대신 화합물 2-1, 2-2, 2-3을 사용하고 [ET-1] 대신 [ET-2]를 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 22 내지 36
비교예 1의 [ET-1] 및 [BH-1] 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 37 내지 45
비교예 1의 [ET-1] 대신 화합물 1-1, 1-2 및 1-3을 사용하고, [BH-1] 대신 [BH-7] 내지 [BH-9]를 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 실험예 및 비교예에서 제조한 유기 발광 소자에 20 mA/cm2의 전류를 인가하였을 때, 상기 제조한 유기 발광 소자를 20 mA/cm2의 전류밀도에서 구동 전압, 발광 효율, 색 좌표를 측정하였고, 20 mA/cm2의 전류밀도에서 초기 휘도 대비 95%가 되는 시간(T95)을 측정하였다. 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물
(전자수송 및 주입층)
화합물
(발광층)
전압
(V
@20mA
/cm2)
효율
(cd/A
@20mA
/cm2)
색좌표
(x,y)
T98
(hr)
비교예 1 ET-1 BH-1 4.51 4.61 (0.144, 0.046) 241
비교예 2 ET-1 BH-2 4.41 4.66 (0.145, 0.047) 192
비교예 3 ET-1 BH-3 4.46 4.64 (0.146, 0.045) 213
비교예 4 ET-1 BH-4 4.48 4.68 (0.145, 0.044) 205
비교예 5 ET-1 BH-5 4.44 4.65 (0.146, 0.046) 209
비교예 6 ET-1 BH-6 4.50 4.71 (0.144, 0.045) 212
비교예 7 ET-2 BH-1 4.46 4.64 (0.144, 0.046) 210
비교예 8 ET-2 BH-2 4.36 4.69 (0.145, 0.047) 178
비교예 9 ET-2 BH-3 4.41 4.67 (0.146, 0.045) 195
비교예 10 ET-2 BH-4 4.43 4.71 (0.145, 0.044) 203
비교예 11 ET-2 BH-5 4.39 4.68 (0.146, 0.046) 199
비교예 12 ET-2 BH-6 4.45 4.74 (0.144, 0.045) 206
실험예 1-1 1-1 2-1 3.61 5.73 (0.144, 0.046) 374
실험예 1-2 1-1 2-2 3.65 5.71 (0.145, 0.045) 376
실험예 1-3 1-1 2-3 3.66 5.79 (0.144, 0.047) 343
실험예 1-4 1-2 2-1 3.73 5.67 (0.145, 0.045) 357
실험예 1-5 1-2 2-2 3.75 5.62 (0.146, 0.046) 352
실험예 1-6 1-2 2-3 3.77 5.62 (0.146, 0.045) 327
실험예 1-7 1-3 2-1 3.81 5.66 (0.145, 0.046) 368
실험예 1-8 1-3 2-2 3.83 5.64 (0.145, 0.046) 369
실험예 1-9 1-3 2-3 3.82 5.61 (0.144, 0.045) 335
비교예 13 1-1 BH-1 4.13 5.33 (0.144, 0.047) 284
비교예 14 1-2 BH-1 4.18 5.32 (0.145, 0.045) 263
비교예 15 1-3 BH-1 4.22 5.35 (0.146, 0.046) 272
비교예 16 ET-1 2-1 4.26 5.15 (0.144, 0.047) 309
비교예 17 ET-1 2-2 4.28 5.21 (0.145, 0.045) 326
비교예 18 ET-1 2-3 4.24 5.19 (0.145, 0.046) 304
비교예 19 ET-2 2-1 4.21 5.18 (0.146, 0.047) 307
비교예 20 ET-2 2-2 4.23 5.24 (0.145, 0.045) 285
비교예 21 ET-2 2-3 4.19 5.22 (0.145, 0.046) 274
비교예 22 1-1 BH-2 4.03 5.38 (0.146, 0.047) 237
비교예 23 1-2 BH-2 4.08 5.37 (0.145, 0.045) 218
비교예 24 1-3 BH-2 4.02 5.40 (0.146, 0.046) 224
비교예 25 1-1 BH-3 4.08 5.36 (0.145, 0.047) 253
비교예 26 1-2 BH-3 4.13 5.35 (0.146, 0.045) 232
비교예 27 1-3 BH-3 4.17 5.38 (0.146, 0.046) 249
비교예 28 1-1 BH-4 4.10 5.40 (0.145, 0.047) 246
비교예 29 1-2 BH-4 4.15 5.39 (0.145, 0.045) 220
비교예 30 1-3 BH-4 4.19 5.42 (0.146, 0.046) 235
비교예 31 1-1 BH-5 4.132 5.37 (0.146, 0.047) 253
비교예 32 1-2 BH-5 4.17 5.36 (0.145, 0.045) 232
비교예 33 1-3 BH-5 4.21 5.39 (0.146, 0.046) 244
비교예 34 1-1 BH-6 4.03 5.43 (0.145, 0.047) 264
비교예 35 1-2 BH-6 4.08 5.44 (0.145, 0.045) 247
비교예 36 1-3 BH-6 4.12 5.46 (0.146, 0.046) 253
비교예 37 1-1 BH-7 4.11 5.35 (0.145, 0.047) 234
비교예 38 1-2 BH-7 4.16 5.37 (0.145, 0.045) 223
비교예 39 1-3 BH-7 4.20 5.38 (0.146, 0.046) 217
비교예 40 1-1 BH-8 4.09 5.41 (0.145, 0.047) 252
비교예 41 1-2 BH-8 4.13 5.47 (0.145, 0.045) 239
비교예 42 1-3 BH-8 4.18 5.49 (0.146, 0.046) 245
비교예 43 1-1 BH-9 4.10 5.32 (0.145, 0.047) 255
비교예 44 1-2 BH-9 4.15 5.31 (0.146, 0.045) 234
비교예 45 1-3 BH-9 4.19 5.30 (0.146, 0.046) 229
상기 표 1에 나타난 바와 같이, 실험예 1-1 내지 1-9은, 화학식 1의 화합물과 화학식 2의 화합물을 각각 전자수송 및 주입층 및 발광층의 재료로 사용한 것으로, 화학식 1 및 화학식 2로 표시되는 화합물을 함께 적용한 소자의 특성을 나타낸다.
비교예 1 내지 12는 전자수송 및 주입층으로 ET-1 또는 ET-2를 사용하고, 발광층으로 BH-1 내지 BH-6 중 어느 하나를 사용하였을 때의 소자 특성을 나타낸다.
비교예 13 내지 36은 화학식 1의 화합물을 ET-1 또는 ET-2 대신 사용하거나, 또는 화학식 2의 화합물을 BH-1 내지 BH-6 중 어느 하나 대신 사용한 것으로, 화학식 1 및 화학식 2로 표시되는 화합물을 따로 사용한 소자의 특성을 나타낸다.
비교예 37 내지 45는 BH-7 내지 BH-10을 화학식 2의 화합물 대신 사용하였을 때의 소자 특성을 나타낸다.
이에 비교예와 대비하여, 실험예의 유기 발광 소자는 기본적으로 저전압, 고효율, 장수명의 특성을 나타내며, 특히 화학식 1의 화합물들은 고효율의 특성이 있고 화학식 2의 화합물들은 장수명의 특성을 가지고 있음을 확인할 수 있습니다.
구체적으로, 실험예 1-1 내지 1-9와 비교예 16 내지 21을 비교하면, 화학식 1의 화합물 및 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9는 화학식 1의 화합물을 사용하지 않은 비교예 16 내지 21 보다 효율이 최대 약 12% 증가한 결과를 나타내었다.
또한, 실험예 1-1 내지 1-9와 비교예 13 내지 15 및 22 내지 36을 비교하면, 화학식 1의 화합물 및 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9는 화학식 2의 화합물을 사용하지 않은 비교예 13 내지 15 및 22 내지 36 보다 수명이 최대 약 72% 증가한 결과를 나타내었다.
비교예 19 내지 21은 시아노기를 포함하지 않는 화합물(ET-2)을 사용한 경우이다. 실험예 1-1 내지 1-9와 비교예 19 내지 21을 비교하면, 시아노기를 포함하는 화학식 1의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 19 내지 21보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 22 내지 24는 안트라센 코어에 페닐기와 디벤조퓨란이 연결된 화합물(BH-2)을 사용한 경우이다. 실험예 1-1 내지 1-9와 비교예 22 내지 24를 비교하면, 안트라센 코어에 나프토벤조퓨란과 바이페닐기가 연결된 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 22 내지 24보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 25 내지 27 및 43 내지 45는 나프토벤조퓨란의 연결 위치가 본원 화학식 2와 상이한 화합물(BH-3 및 BH-9)을 사용한 경우이다. 실험예 1-1 내지 1-9와 비교예 25 내지 27 및 43 내지 45를 비교하면, 본원 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 나프토벤조퓨란의 연결 위치가 본원 화학식 2와 상이한 화합물(BH-3 및 BH-9)을 사용하는 비교예 25 내지 27 및 43 내지 45보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 28 내지 30은 안트라센 코어에 바이페닐기와 디벤조퓨란이 연결된 화합물(BH-4)을 사용한 경우이다. 실험예 1-1 내지 1-9와 비교예 28 내지 30을 비교하면, 안트라센 코어에 나프토벤조퓨란이 연결된 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 28 내지 30보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 31 내지 34는 나프토벤조퓨란에서 벤젠의 축합 위치가 본원 화학식 2와 상이한 화합물(BH-5)을 사용한 경우이다. 실험예 1-1 내지 1-9와 비교예 31 내지 34를 비교하면, 본원 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 나프토벤조퓨란에서 벤젠의 축합 위치가 본원 화학식 2와 상이한 화합물(BH-5)을 사용하는 비교예 31 내지 34보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 34 내지 36은 안트라센 코어에 바이페닐기 대신 나프틸기가 연결된 화합물(BH-6)을 사용하는 경우이다. 실험예 1-1 내지 1-9와 비교예 34 내지 36을 비교하면, 안트라센 코어에 바이페닐기가 연결된 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 34 내지 36보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 37 내지 39는 안트라센 코어에 ortho-페닐기를 포함하는 바이페닐기 대신 para-페닐기를 포함하는 바이페닐기가 연결된 화합물(BH-7)을 사용하는 경우이다. 실험예 1-1 내지 1-9와 비교예 37 내지 39를 비교하면, 안트라센 코어에 ortho-페닐기를 포함하는 바이페닐기가 연결된 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 37 내지 39보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
비교예 40 내지 42는 안트라센 코어에 바이페닐기 대신 중수소로 치환된 페닐기가 연결된 화합물(BH-8)을 사용하는 경우이다. 실험예 1-1 내지 1-9와 비교예 40 내지 42를 비교하면, 안트라센 코어에 바이페닐기가 연결된 화학식 2의 화합물을 사용하는 실험예 1-1 내지 1-9가 비교예 40 내지 42보다 구동 전압이 낮으며, 발광 효율이 높고, 수명이 긴 것을 확인할 수 있다.
이를 통하여, 본 발명의 화학식 1의 화합물을 전자수송 및 주입층 재료로 사용하고 본 발명의 화학식 2의 화합물을 발광층의 재료로 조합하여 사용하는 경우, 유기 발광 소자의 장수명 특성을 유지하면서 고효율 특성을 가지는 것이 가능하다는 것을 확인할 수 있다.
이상을 통해 본 발명의 바람직한 실시예(전자수송 및 주입층과 발광층의 조합실험)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
1: 기판
2: 애노드
3: 정공주입층
4: 정공수송층
5: 전자차단층
6: 발광층
7: 정공차단층
8: 전자수송층
9: 전자주입층
10: 캐소드
11: 전자수송 및 주입층
21: 제1 유기물층
22: 제2 유기물층

Claims (18)

  1. 애노드;
    캐소드;
    상기 애노드와 상기 캐소드 사이에 구비된 제1 유기물층 및 제2 유기물층을 포함하고,
    상기 제1 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하며,
    상기 제2 유기물층은 하기 화학식 2로 표시되는 화합물을 포함하는 것인 유기 발광 소자:
    [화학식 1]
    Figure PCTKR2023010576-appb-img-000045
    상기 화학식 1에 있어서,
    Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
    L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이며,
    X1 내지 X3은 서로 같거나 상이하고, 각각 독립적으로 N; 또는 CR이며,
    X1 내지 X3 중 적어도 하나는 N이고,
    Ra, Rb 및 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
    a는 0 내지 6의 정수이고, a가 2 이상인 경우, 2 이상의 Ra는 서로 같거나 상이하고,
    b는 0 내지 8의 정수이고, b가 2 이상인 경우, 2 이상의 Rb는 서로 같거나 상이하고,
    [화학식 2]
    Figure PCTKR2023010576-appb-img-000046
    상기 화학식 2에 있어서,
    R1은 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    m은 0 내지 9의 정수이고, m이 2 이상인 경우, 2 이상의 R1은 서로 같거나 상이하고,
    D는 중수소이고, n은 0 내지 8의 정수이며,
    R2 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 하기 화학식 A이며,
    R2 및 R6 중 적어도 하나는 하기 화학식 A이며,
    [화학식 A]
    Figure PCTKR2023010576-appb-img-000047
    상기 화학식 A에 있어서,
    R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 또는 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
    점선(---)은 화학식 2에 연결되는 부위이다.
  2. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시되는 것인 유기 발광 소자:
    [화학식 1-1]
    Figure PCTKR2023010576-appb-img-000048
    [화학식 1-2]
    Figure PCTKR2023010576-appb-img-000049
    [화학식 1-3]
    Figure PCTKR2023010576-appb-img-000050
    [화학식 1-4]
    Figure PCTKR2023010576-appb-img-000051
    상기 화학식 1-1 내지 1-4에 있어서,
    Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
  3. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-A 내지 1-D 중 어느 하나로 표시되는 것인 유기 발광 소자:
    [화학식 1-A]
    Figure PCTKR2023010576-appb-img-000052
    [화학식 1-B]
    Figure PCTKR2023010576-appb-img-000053
    [화학식 1-C]
    Figure PCTKR2023010576-appb-img-000054
    [화학식 1-D]
    Figure PCTKR2023010576-appb-img-000055
    상기 화학식 1-A 내지 1-D에 있어서,
    Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
  4. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-1-1로 표시되는 것인 유기 발광 소자:
    [화학식 1-1-1]
    Figure PCTKR2023010576-appb-img-000056
    상기 화학식 1-1-1에 있어서,
    Ar1, Ar2, L1, L2, X1 내지 X3, Ra, Rb, a 및 b의 정의는 상기 화학식 1에서의 정의와 같다.
  5. 청구항 1에 있어서,
    상기 화학식 2는 하기 화학식 2-1로 표시되는 것인 유기 발광 소자:
    [화학식 2-1]
    Figure PCTKR2023010576-appb-img-000057
    상기 화학식 2-1에 있어서, R1, m, D, n 및 R3 내지 R11의 정의는 상기 화학식 2에서의 정의와 같다.
  6. 청구항 1에 있어서,
    상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기인 것인 유기 발광 소자.
  7. 청구항 1에 있어서,
    상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기인 것인 유기 발광 소자.
  8. 청구항 1에 있어서,
    상기 X1 내지 X3은 N인 것인 유기 발광 소자.
  9. 청구항 1에 있어서,
    상기 R1 내지 R11 중 상기 화학식 A가 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 것인 유기 발광 소자.
  10. 청구항 1에 있어서,
    상기 화학식 2는 적어도 하나의 중수소를 포함하는 것인 유기 발광 소자.
  11. 청구항 1에 있어서,
    상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 유기 발광 소자:
    Figure PCTKR2023010576-appb-img-000058
    Figure PCTKR2023010576-appb-img-000059
    Figure PCTKR2023010576-appb-img-000060
    Figure PCTKR2023010576-appb-img-000061
    .
  12. 청구항 1에 있어서,
    상기 화학식 2는 하기 화합물 중 어느 하나로 표시되는 것인 유기 발광 소자:
    Figure PCTKR2023010576-appb-img-000062
    .
  13. 청구항 1에 있어서,
    상기 제1 유기물층은 제2 유기물층과 캐소드 사이에 위치하는 것인 유기 발광 소자.
  14. 청구항 1에 있어서,
    상기 제1 유기물층은 전자수송층, 전자주입층 또는 전자수송 및 주입층인 것인 유기 발광 소자.
  15. 청구항 13 또는 14에 있어서,
    상기 제1 유기물층과 제2 유기물층 사이에 정공차단층이 위치하는 것인 유기 발광 소자.
  16. 청구항 1에 있어서,
    상기 제2 유기물층은 발광층인 것인 유기 발광 소자.
  17. 청구항 16에 있어서,
    상기 발광층은 상기 화학식 2로 표시되는 화합물을 호스트로서 포함하고, 도펀트를 더 포함하는 것인 유기 발광 소자.
  18. 청구항 1에 있어서,
    상기 애노드와 상기 캐소드 사이에 1층 이상의 유기물층이 추가로 구비되고, 상기 유기물층은 정공수송층, 정공주입층, 정공수송 및 주입층, 전자차단층, 발광층, 전자수송층, 전자주입층, 전자수송 및 주입층 및 정공차단층 중 1층 이상을 더 포함하는 것인 유기 발광 소자.
PCT/KR2023/010576 2022-07-27 2023-07-21 유기 발광 소자 WO2024025265A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0093438 2022-07-27
KR1020220093438A KR102679233B1 (ko) 2022-07-27 2022-07-27 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2024025265A1 true WO2024025265A1 (ko) 2024-02-01

Family

ID=89706857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010576 WO2024025265A1 (ko) 2022-07-27 2023-07-21 유기 발광 소자

Country Status (2)

Country Link
KR (1) KR102679233B1 (ko)
WO (1) WO2024025265A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033769A (ko) * 2018-09-20 2020-03-30 주식회사 엘지화학 유기 발광 소자
KR20200034649A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 유기 발광 소자
KR20210093625A (ko) * 2020-01-20 2021-07-28 주식회사 엘지화학 유기 전계 발광 소자
KR20220090265A (ko) * 2020-12-22 2022-06-29 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20220092808A (ko) * 2020-12-24 2022-07-04 주식회사 엘지화학 유기 화합물을 포함하는 유기 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667228B (zh) 2015-09-24 2019-08-01 南韓商Lg化學股份有限公司 化合物及含有該化合物的有機電子裝置
KR102388876B1 (ko) * 2019-09-16 2022-04-21 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033769A (ko) * 2018-09-20 2020-03-30 주식회사 엘지화학 유기 발광 소자
KR20200034649A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 유기 발광 소자
KR20210093625A (ko) * 2020-01-20 2021-07-28 주식회사 엘지화학 유기 전계 발광 소자
KR20220090265A (ko) * 2020-12-22 2022-06-29 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20220092808A (ko) * 2020-12-24 2022-07-04 주식회사 엘지화학 유기 화합물을 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
KR102679233B1 (ko) 2024-06-26
KR20240015489A (ko) 2024-02-05

Similar Documents

Publication Publication Date Title
WO2018186670A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021010656A1 (ko) 유기 발광 소자
WO2021107728A1 (ko) 유기 발광 소자
WO2019225938A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020256480A1 (ko) 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021172664A1 (ko) 유기 발광 소자
WO2019194615A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2020184834A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020122671A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019172647A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2021172905A1 (ko) 유기 발광 소자
WO2021029709A1 (ko) 유기 발광 소자
WO2019221486A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022239962A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019066337A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2021101112A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021241882A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017073931A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2020153654A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2024025265A1 (ko) 유기 발광 소자
WO2024014916A1 (ko) 유기 발광 소자
WO2024034916A1 (ko) 유기 발광 소자
WO2024029809A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846924

Country of ref document: EP

Kind code of ref document: A1