WO2024022322A1 - 显示装置、像源装置、交通设备及显示方法 - Google Patents

显示装置、像源装置、交通设备及显示方法 Download PDF

Info

Publication number
WO2024022322A1
WO2024022322A1 PCT/CN2023/109064 CN2023109064W WO2024022322A1 WO 2024022322 A1 WO2024022322 A1 WO 2024022322A1 CN 2023109064 W CN2023109064 W CN 2023109064W WO 2024022322 A1 WO2024022322 A1 WO 2024022322A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual image
light
display device
image
source
Prior art date
Application number
PCT/CN2023/109064
Other languages
English (en)
French (fr)
Inventor
吴慧军
徐俊峰
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210901853.7A external-priority patent/CN117518464A/zh
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Publication of WO2024022322A1 publication Critical patent/WO2024022322A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • Embodiments of the present disclosure relate to a display device, an image source device, transportation equipment, and a display method.
  • Head-up display is also called a head-up display.
  • HUD Head-up display
  • the imaging window rear-mounted imaging plate or vehicle windshield, etc.
  • users can directly see the virtual image of the head-up display device without having to lower their heads, thereby improving the user experience.
  • a head-up display device can prevent users from being distracted by looking down at the instrument panel while driving, thus improving driving safety and providing a better driving experience.
  • the present disclosure provides at least a display device, image source device, transportation equipment and display method.
  • At least one embodiment of the present disclosure provides a display device configured to enable a user to observe a virtual image through an eyebox area of the display device, the virtual image at least including a left virtual image portion and/or Or the right virtual image part.
  • the image plane of the left virtual image part and/or the right virtual image part may be a plane or a curved surface.
  • At least one embodiment of the present disclosure provides a display device configured to enable a user to observe a virtual image through an eyebox area of the display device, where the virtual image at least includes an image plane extending in an intersecting direction.
  • the first virtual image part and the second virtual image part are connected, and the first virtual image part and the second virtual image part are connected.
  • At least one embodiment of the present disclosure provides a display device, the display device being Configured to enable the user to observe a virtual image through the eye box area of the display device, the virtual image at least includes a first virtual image part and a second virtual image part intersecting in the extending direction of the image plane, for forming the first virtual image part and the The light of the second virtual image portion comes from the same image source display included in the display device.
  • At least one embodiment of the present disclosure provides an image source device.
  • the image source device is an image source device used in a display device according to any one of the first to third aspects of the present disclosure, and the image source device includes The image source assembly and the refractor; or, the image source device is an image source device used for the display device according to any one of the first to third aspects of the present disclosure, and the image source device includes the bending Like the source monitor.
  • At least one embodiment of the present disclosure provides a transportation device, including the display device as described in any embodiment of the first aspect, the second aspect, and the third aspect or the image source as described in the fourth aspect. device.
  • At least one embodiment of the present disclosure provides a display method, including projecting imaging light to an imaging window of a display device so that a user can observe a virtual image in the field of view through an eye box area of the display device.
  • the virtual image at least includes a left virtual image part and/or a right virtual image part; and/or the virtual image at least includes a first virtual image part and a second virtual image part whose extending directions of the image planes intersect, and the first virtual image part connected to the second virtual image part.
  • the display method can be used in the display device described in any one of the first to third aspects of the present application.
  • the relevant descriptions in the display device provided in the first to third aspects of the present disclosure are also applicable to the display device provided in the present disclosure. Display method.
  • Figure 1 shows a schematic diagram of the positions of a continuously zoomed virtual image and a reference virtual image along the column direction.
  • Figure 2 shows a schematic diagram of different combinations of continuous virtual images.
  • 3(a)-3(j) respectively illustrate surface shapes imaged by a display device according to example embodiments of the present application. Schematic.
  • Figure 4 shows a schematic structural diagram of a display device according to some embodiments of the present application.
  • FIG. 5 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 6(a) shows a schematic structural diagram of a backward-inward U-shaped virtual image according to an embodiment of the present application.
  • Figure 6(b) shows a schematic structural diagram of a single left virtual image according to an embodiment of the present application.
  • Figure 6(c) shows a schematic structural diagram of a comparison between a backward concave U-shaped virtual image and a planar virtual image according to an embodiment of the present application.
  • Figure 6(d) shows a schematic structural diagram of a U-shaped virtual image that projects forward according to an embodiment of the present application.
  • Figure 7(a) shows a schematic structural diagram of a U-shaped glass brick according to some embodiments of the present application.
  • Figure 7(b) shows a schematic structural diagram of a U-shaped glass brick according to another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 9 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 10(a) shows a schematic structural diagram of a bending image source according to some embodiments of the present application.
  • Figure 10(b) shows a schematic structural diagram of a curved image source according to another embodiment of the present application.
  • Figure 11 shows a schematic structural diagram of a display device according to the third embodiment of the present application.
  • FIGS. 12-18 show schematic structural diagrams of a display device according to another embodiment of the present application.
  • Figure 19 shows a schematic structural diagram of a transparent light condensing part according to some embodiments of the present application.
  • Figure 20 shows a schematic structural diagram of a transparent light condensing part according to another embodiment of the present application.
  • Figure 21 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings represent the same or similar parts, and thus their repeated description will be omitted.
  • the head-up display uses a reflective optical design to finally project the light emitted from the image source onto the imaging window (imaging plate or windshield, etc.), and projects the image light to the eye box through the imaging window area, users can directly see the virtual image through the eye box area without having to lower their heads.
  • HUD can prevent users from being distracted by looking down at the instrument panel while driving, improve driving safety, and also provide a better driving experience.
  • a HUD based on reflection imaging by a flat mirror and a curved mirror.
  • the light emitted from the HUD image source is reflected by the flat mirror and the curved mirror in turn and then exits.
  • the emitted light can be reflected on the transparent imaging window and remain in the One side of the cockpit, into the user's eyes.
  • these light rays entering the user's eyes allow the user to see the virtual image displayed on the HUD image source on the other side of the transparent imaging window.
  • the imaging window itself is transparent, the ambient light on the other side of the imaging window can still be transmitted to the user's eyes through it, allowing the user to see the HUD imaging without affecting the user's driving process. Observe the road conditions outside the car.
  • the inventor of this application noticed during the research that when the user is driving normally, the actual road conditions observed by the user through the transparent imaging window are three-dimensional, while the traditional HUD generally forms a layer of vertical or approximately vertical virtual images, and the user During the observation process, problems such as visual errors (left and right binocularity) and/or visual convergence (conflict between the front and back brain-eye distances) may occur, making users prone to fatigue, nausea and other adverse physical conditions.
  • the reasons for visual vergence are as follows. When augmented reality (AR) content and environmental objects are not aligned, there will be a difference between the real physical distance when the eyes view the AR content and the perceived distance of the AR content perceived by the brain. There is a deviation between them. When this deviation is large, the user may feel uncomfortable.
  • virtual images generally do not fit well with external objects, it may be difficult to continuously provide stable and reliable instructions to users during the journey.
  • the present application provides a display device, image source device, transportation equipment and display method to improve the fusion effect of virtual images and environmental objects, for example, to improve the visual convergence problem.
  • embodiments of the present disclosure can make it easier for position matching between AR content and environmental objects (the matching refers to the alignment of the AR content and the environmental objects, which can refer to the coincidence of the two positions, or it can also be relatively close, and the distance is close to can meet the usage requirements).
  • the HUD provides at least one virtual image, part or all of at least one of the at least one virtual image being continuously zoomed.
  • at least one of the left virtual image portion and the right virtual image portion is a continuously zoomed image.
  • the imaging distance of part or all of the continuously zoomed virtual image gradually changes, which can reduce parallax and visual convergence problems. For example, it can adapt to environmental objects at different distances to display corresponding AR content.
  • the optical path of the light emitted from at least a partial area of the screen in the standard optical path by changing the optical path of the light emitted from at least a partial area of the screen in the standard optical path, at least partial areas on the left and/or right side of the virtual image produce correspondingly changed virtual image distances, thereby forming a continuous transition.
  • Special-shaped images improve visual errors and/or visual convergence issues.
  • the virtual image may be a 3D continuously distributed virtual image (hereinafter referred to as a continuous virtual image), and the formed continuous virtual image has a continuous zoom virtual image of at least one of the left and/or right sides.
  • the display device provided by some embodiments of the present disclosure may be a display device for a head-up display, or may be a display device for a non-head-up display type.
  • U-shaped glass or curved screens can be used to form a U-shaped virtual image, so that the U-shaped virtual image matches the external object and improves the instruction effect of the head-up display device to the user.
  • the standard light path is selected. It can be understood here that the standard light path can be an imaginary light path, that is, find or imagine a virtual image perpendicular to the ground (reference virtual image) for the corresponding screen.
  • the continuous zoom virtual image means that the distance from at least some pixels in at least one column (or row) in the virtual image to the corresponding pixels in the reference virtual image changes continuously.
  • continuous zooming may be continuous zooming in one of the column direction and row direction of the virtual image, or may be continuous zooming in both directions.
  • Figure 1 shows a schematic diagram of a continuously zoomed virtual image and a reference virtual image along the column direction.
  • the continuous virtual image formed by imaging can exist in various situations.
  • continuous virtual image imaging can be divided into left virtual image part (L), right virtual image part (R), front and lower sub-virtual image part (ground virtual image part) (G), The front sub-virtual image part (F) and the front upper sub-virtual image part (sky emptiness part) (T).
  • the combination of virtual images formed by continuous virtual images can have the following situations:
  • the imaging component can also be configured as LGF, RGF, LGT, RGT and other configurations.
  • the unilateral virtual image can be applied to different countries (left and right rudder).
  • the virtual image formed is a continuous transition.
  • the display device can be configured to enable the user to observe a virtual image formed by the display device in the eye box area.
  • the virtual image at least includes a first virtual image portion and a second virtual image portion that intersect in the extension direction of the image plane.
  • the first virtual image portion Connected to the second virtual image part.
  • the area where the observer needs to view the imaging can be preset according to actual needs, that is, the eyebox area (eyebox).
  • the eyebox area refers to the area where the observer's eyes are located and where the display device can be seen.
  • the area where the displayed image is placed can be, for example, a flat area or a three-dimensional area.
  • the first virtual image part and the second virtual image part may correspond to a left virtual image part (L), a right virtual image part (R), a front lower sub virtual image part (G), a front sub virtual image part (F), and a front upper sub virtual image part.
  • L left virtual image part
  • R right virtual image part
  • G front lower sub virtual image part
  • F front sub virtual image part
  • T front upper sub virtual image part
  • 3(a)-3(j) respectively show schematic diagrams of the surface structure of the display device imaged according to example embodiments of the present application.
  • Figures 3(a)-3(j) respectively correspond to the imaging states of the display device being L (single left virtual image part), R (single right virtual image part), L+G (left plus front and lower sub-virtual image part), L +T (left plus front and upper sub-virtual image portions), L+R+G (left and right sides plus front and lower sub-virtual image portions), L+R+F (left and right sides plus front and lower sub-virtual image portions), L+R+ T (left and right sides plus front and upper sub-virtual image portions), L+R+T+G (left and right sides plus front and upper sub-virtual image portions and front and upper sub-virtual image portions), L+R+T+G+F (left and right + Imaging in which the virtual image connection part of the front lower sub-virtual image part + front + sky) is an arc, L+R+T+G+F (left and right + ground + front sub-virtual image part + front upper sub-virtual image part)
  • a display device of an example embodiment is configured to enable a user to observe a virtual image through an eyebox area of the display device.
  • the virtual image includes at least a left virtual image part (L) and/or a right virtual image part (R). That is, it corresponds to the left virtual image part (L) and the right virtual image part (R) in FIG. 2 .
  • the display device of the present application is a head-up display device, and the head-up display device further includes an imaging window 300 configured to reflect incident light to the eye box area.
  • the head-up display system of this application has a multi-level imaging system. At least one layer is provided with a large-scale imaging layer, that is, a HUD with large-scale imaging is provided.
  • the arrangement of the HUD with large-scale imaging is consistent with the visible area of the windshield. Matching, so that the image presented by the light emitted by the large-area imaging HUD can cover the visible area of the windshield.
  • the image presented by the light emitted by the large-area imaging HUD can cover more than 40% of the area of the windshield. , and further can cover more than 50%, more than 60%, more than 70%, more than 80% or more than 90% of the windshield area as needed.
  • HUD Compared with traditional HUDs based on free-form surface mirrors and smaller Field of View (FOV) in related technologies, due to the arrangement of multiple light sources in a large-scale imaging HUD, which is consistent with the visible area of the windshield, Matching, so that the light emitted by the large-range imaging HUD can display an image covering the visible area of the windshield, achieving the purpose of displaying the image anywhere within the visible area of the windshield, thereby enabling large-scale imaging The HUD displays richer content, improving the HUD usage experience.
  • FOV Field of View
  • At least one embodiment of the present disclosure further provides an image source device, the image source device is an image source device for a display device, and the image source device includes an image source assembly 100 and a refractor 121; or, the image source device is An image source device is used for a display device, and the image source device includes a curved image source display 110 .
  • At least one embodiment of the present disclosure provides a transportation device including the display device in any embodiment.
  • At least one embodiment of the present disclosure provides a display method, including: projecting imaging light to an imaging window of a display device, so that a user can observe a virtual image in the field of view through an eye box area of the display device, and the virtual image at least includes a left virtual image. and/or the right virtual image part; and/or the virtual image at least includes a first virtual image part and a second virtual image part whose extension directions of the image planes intersect, and the first virtual image part and the second virtual image part are connected.
  • the type of the virtual image portion can be divided according to the position of the virtual image portion relative to the traveling route in the user's viewing effect.
  • the virtual image portion can be a left virtual image portion located on the left side of the traveling route, The right virtual image portion located on the right side of the traveling route or the front virtual image portion located between the left virtual image portion and the right virtual image portion.
  • the virtual image may include one virtual image part; or, the virtual image may include two virtual image parts, and the extending directions of the image plane where the two virtual image parts are located intersect or are substantially parallel; or, the virtual image may include two virtual image parts.
  • the virtual image includes at least three virtual image parts, and the extending directions of the image planes where at least some adjacent virtual image parts are located intersect.
  • the virtual image when the virtual image includes only the left virtual image portion (L), the virtual image is a continuous virtual image. That is, in this state, the picture content of the left virtual image part (L) may be continuous or discontinuous, but the entire left virtual image part (L) is imaged as a non-stitched and/or continuously zoomed virtual image, so that When the user observes the left virtual image portion (L), the user's problems such as parallax and/or visual vergence are solved by forming a continuously zoomed virtual image.
  • the virtual image can also be configured to include only the right virtual image portion (R), in which case the virtual image is also a continuous virtual image. That is, in this state, the picture content of the right virtual image portion (R) can be continuous or discontinuous, but the entire right virtual image portion (R) is imaged as a non-stitched, continuously zoomed virtual image, so that the user can In the process of observing the right virtual image portion (R), the user's problems such as parallax and/or visual vergence are solved by forming a continuously zoomed virtual image.
  • the virtual image may be configured to include both a left virtual image part (L) and a right virtual image part (R).
  • the virtual image is also a continuous virtual image. That is, the left virtual image part (L) or the right virtual image
  • the picture content of the left virtual image part (R) can be continuous or discontinuous, but the overall imaging of the left virtual image part (L) and the right virtual image part (R) is a non-stitched, continuously zoomed virtual image. Not only that, if the left virtual image part (L) and the right virtual image part (R) are connected, the connection between the two is also a non-stitched, continuously zoomed virtual image.
  • the virtual image formed by the display device may also include an intermediate virtual image portion, and the intermediate virtual image portion includes one or more of a front lower sub-virtual image portion (G), a front sub-virtual image portion (F), and a front upper sub-virtual image portion (T).
  • the front lower sub-virtual image part (G), the front sub-virtual image part (F) and the front upper sub-virtual image part (T) respectively display the picture on the ground, the picture in front and the picture in the sky.
  • one or more of the left virtual image part (L), the right virtual image part (R), the front lower sub virtual image part (G), the front sub virtual image part (F), and the front upper sub virtual image part (T) may be Configured perpendicular to the ground or inclined to the ground.
  • the virtual image is configured such that any adjacent virtual image portions are connected, and the connection between adjacent virtual image portions is a non-stitched, continuously zoomed virtual image.
  • the final continuous virtual image can be configured as a dustpan virtual image (LGR+F), that is, it includes left and right virtual images, a front and lower sub-virtual image, and a front sub-virtual image.
  • LGR+F dustpan virtual image
  • the left virtual image, the front and lower sub-virtual image, the left The virtual image and the front sub-virtual image, the right virtual image and the front and lower sub-virtual image, and the right virtual image and the front virtual image are all configured to be connected.
  • the dustpan-shaped virtual image (LGR+F) can solve the problem of the ground and the two sides, and the formation does not affect the distance ahead. screen display.
  • the front lower sub-virtual image part (G), the front sub-virtual image part (F) and the front upper sub-virtual image part (T) can be flexibly selected in the final virtual image according to needs.
  • the middle virtual image part includes more than one of the front lower sub-virtual image part (G), the front sub-virtual image part (F), and the front upper sub-virtual image part (T)
  • the adjacent ones in the middle virtual image part are at least partially connected.
  • the middle virtual image part includes the front and lower sub-virtual image part (G) and the front sub-virtual image part (F), then at the connection between the front and lower sub-virtual image part (G) and the front sub-virtual image part (F), at least part of the imaging is Non-stitched, continuously zoomed virtual images.
  • adjacent sub-virtual image portions in the intermediate virtual image portion are completely connected to obtain better effects of preventing parallax and visual convergence.
  • the display device can be configured to include an image source component having an image source display.
  • the image source display includes a first display area and a second display area, and the image light emitted from the first display area corresponds to the left virtual image portion. (L) and/or the right virtual image part (R), the image light emitted from the second display area should virtualize the rest of the image.
  • the first display area and the second display area are provided on the same image source display. That is, the light used to form the first virtual image portion and the second virtual image portion comes from the same image source display of the display device.
  • the virtual image at least includes a left virtual image part (L) and/or a right virtual image part (R). ).
  • a refraction member is provided on the imaging path of the image source display.
  • the refraction member is configured to refract the image light that emerges from the image source display and then enters the refraction member, so that the final virtual image imaged in the imaging window transitions continuously. of.
  • the image source display as a curved image source display, so that the image light generated by the image source display is initially the image light that can form a continuous transition of special-shaped images.
  • the image source display can be a special-shaped screen, a special-shaped projection screen, a special-shaped LED screen, a special-shaped organic light-emitting diode (OLED) screen, a special-shaped LCD screen, etc.
  • both sides can display virtual images that match both sides of the road in the real world. Therefore, it is possible to improve the user experience, improve the fit between the light field picture and the external object, and improve the indication effect.
  • irregular shapes refer to irregular shapes.
  • regular shapes include: rectangle, circle, triangle, parallelogram, and regular polygon.
  • special shapes include U-shaped, L-shaped, and dustpan-shaped, but are not limited to these.
  • Figure 4 shows a schematic structural diagram of a display device according to some embodiments of the present application.
  • a display device of some embodiments includes an image source component 100 and an amplification component 200 .
  • the image source component 100 includes an image source display 110 and a light modulating part 120 .
  • the light modulating part 120 includes a refracting member 121 .
  • the image source component 100 emits first image light.
  • the amplifying component 200 is disposed on the imaging path of the image source component 100 , and the first image light rays emitted by the image source component 100 are formed into second image rays after passing through the amplifying component 200 . That is, the amplifying component 200 is configured to amplify the incident image light to obtain amplified light for forming at least a partial virtual image.
  • the second image light is reflected by the imaging window 300 and forms a continuous virtual image in the eye box area.
  • the continuous virtual image includes at least one of a left virtual image part (L) and a right virtual image part (R).
  • the display device in the embodiment of the second aspect is the same as the display device in the embodiment of the first aspect in that:
  • the finally formed continuous virtual image may be configured to include a left virtual image part (L) and/or a right virtual image part (R).
  • the formed continuous virtual image may also include a front and lower sub-virtual image part (G), a front and a front sub-virtual image part (G).
  • the connection between adjacent virtual images is a non-stitched, continuously zoomed virtual image.
  • a U-shaped refractor such as a U-shaped glass brick
  • the U-shaped virtual image is Type refractors can add an optical path to the light passing through them.
  • the equivalent object distance will change, and the imaging distance will also change accordingly, ultimately achieving a U-shaped virtual image.
  • the real object distance is not changed during the imaging process.
  • the optically equivalent distance from the object to the optical device is changed, so the first image light generated by the image source assembly 100 is equivalent to The distance has also been changed.
  • the light emitted from the image source display 110 is refracted from the U-shaped glass brick and then emitted.
  • the position of the virtual image generated by the image source component 100 changes. That is, after adding the U-shaped glass brick, the object distance of the image source component 100 changes.
  • the final virtual image formed by the imaging window 300 also changes. Become a U shape.
  • the refractive index is the same, the thicker the glass brick, the closer the virtual image is to the human eye.
  • the refractive element 121 is associated with the image plane shape of the final virtual image.
  • the overall continuous virtual image reflected from the imaging window 300 to the human eye can ultimately be U-shaped.
  • Virtual images, dustpan-shaped virtual images, or virtual images with any other desired appearance are not specifically limited by this application.
  • the surface shape of at least part of the light-emitting surface of the refracting member 121 matches the shape of at least part of the image plane of the finally formed virtual image.
  • matching refers to the same or similar facial shape.
  • magnification component 200 may be a curved mirror, a convex lens, a diffractive waveguide, a geometric waveguide, a holographic optical element (HOE) windshield, etc.
  • HOE holographic optical element
  • the magnifying component 200 is a concave reflector; in this case, the surface of the concave reflector close to the display area is a concave curved surface.
  • the setting of the curved mirror can enlarge the imaging size of the image frame, so that the display device has a longer imaging distance and a larger imaging size, and the curved mirror can also cooperate with the imaging window 300 (such as a windshield) to eliminate imaging.
  • the virtual image distortion caused by window 300 is a concave reflector; in this case, the surface of the concave reflector close to the display area is a concave curved surface.
  • the setting of the curved mirror can enlarge the imaging size of the image frame, so that the display device has a longer imaging distance and a larger imaging size, and the curved mirror can also cooperate with the imaging window 300 (such as a windshield) to eliminate imaging.
  • the virtual image distortion caused by window 300 such as a windshield
  • FIG. 5 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • another display device includes an image source component 100 and an amplification component 200 .
  • the image source component 100 includes a curved image source display 110 , and the image source component 100 emits a first image light ray.
  • the amplifying component 200 is disposed on the imaging path of the image source component 100 , and the first image light rays emitted by the image source component 100 are formed into second image rays after passing through the amplifying component 200 .
  • the second image light is reflected by the imaging window 300 and forms a continuous virtual image in the eye box area.
  • the continuous virtual image includes at least one of a left virtual image part (L) and a right virtual image part (R).
  • the display device in the embodiment of the third aspect is the same as the display device in the embodiment of the first aspect in that the finally formed continuous virtual image can be configured to include a left virtual image part (L) and/or a right virtual image part (R). ), further, the formed continuous virtual image may also include one or more of the front lower sub-virtual image part (G), the front sub-virtual image part (F) and the front upper sub-virtual image part (T).
  • the connection between adjacent virtual images is a non-stitched, continuously zoomed virtual image.
  • the curved image source display 110 is an OLED screen, and the light-emitting surface of the OLED screen is a U-shaped arc surface. Finally, Form a U-shaped virtual image.
  • the curved image source display 110 includes a display area. The display area is provided on the light-emitting surface of the OLED screen. The first image light emitted by the display area of the curved image source display 110 is reflected by the amplifying component 200 to form a second image light. The second image light is After being reflected by the imaging window 300, a U-shaped virtual image is formed in the eye box area.
  • the surface shape of the curved image source display 110 is associated or matched with at least part of the image plane shape of the final virtual image.
  • the imaging virtual image reflected in the imaging window 300 can be changed.
  • the final continuous virtual image can be a U-shaped virtual image, a dustpan-shaped virtual image, or a virtual image with any other desired shape.
  • matching refers to the same or similar facial shape.
  • magnification component 200 may be a curved mirror, a convex lens, a diffraction waveguide and a geometric waveguide, a holographic optical element (HOE) windshield, etc.
  • HOE holographic optical element
  • the magnifying component 200 is a concave reflector; in this case, the surface of the concave reflector close to the display area is a concave curved surface.
  • the setting of the curved mirror can enlarge the imaging size of the image frame, so that the display device has a longer imaging distance and a larger imaging size, and the curved mirror can also cooperate with the imaging window 300 (such as a windshield) to eliminate imaging.
  • the virtual image distortion caused by window 300 is a concave reflector; in this case, the surface of the concave reflector close to the display area is a concave curved surface.
  • the setting of the curved mirror can enlarge the imaging size of the image frame, so that the display device has a longer imaging distance and a larger imaging size, and the curved mirror can also cooperate with the imaging window 300 (such as a windshield) to eliminate imaging.
  • the virtual image distortion caused by window 300 such as a windshield
  • Figure 6(a) shows a schematic structural diagram of a backward-inward U-shaped virtual image according to an embodiment of the present application.
  • Figure 6(b) shows a schematic structural diagram of a single left virtual image according to an embodiment of the present application.
  • Figure 6(c) shows a schematic structural diagram of a backward concave U-shaped virtual image plus a planar virtual image according to an embodiment of the present application.
  • Figure 6(d) shows a schematic structural diagram of a U-shaped virtual image that projects forward according to an embodiment of the present application.
  • the same image incident on the refracting member 121 The corresponding position of the image ray of the high line on the virtual image is on the same circle of the polar coordinate system, and the polar coordinate system uses the set reference point as the origin.
  • the part of the virtual image corresponding to the position with a larger polar coordinate angle among different positions of the virtual image is closer to the eye box area.
  • the AR content can be displayed at an appropriate size at a distance that matches the environmental objects, so that the AR content and the environmental objects can be aligned or Coincidence, thereby solving the problems of parallax and visual convergence, and realizing the gradual change of the point of interest (POI) from far to near.
  • POI point of interest
  • the display device tries its best to create a 3D continuously distributed picture in the external space of the car (hereinafter referred to as a special-shaped picture).
  • the picture includes at least one of the left and right pictures.
  • the picture must also be three-dimensional and continuous, especially to fit POIs such as buildings on both sides of the road.
  • the vertical picture of the traditional HUD is difficult to achieve this function. Because of the principle of AR, in terms of space, a three-dimensional virtual picture is needed to match the real three-dimensional world in order to realize AR in the true sense.
  • the display device provided by some embodiments of the present disclosure improves tilted images or tiled images to solve the fusion effect of POIs on the left and right sides of the road.
  • the display device provided by some embodiments of the present disclosure has obvious advantages when facing large FOV products.
  • the intermediate virtual image part includes the front and lower sub-virtual image part (G) and/or Or the front and upper sub-virtual image part (T), then among the different positions of the virtual image, the part of the virtual image corresponding to the position with a larger downward or upward angle of view is closer to the eye box area.
  • the user when the user is driving the vehicle, for example, when the user is using the display device according to any one of the embodiments of the first aspect, the second aspect, and the third aspect of the present application to perform assisted driving, the user can display the two sides of the road.
  • the center of the side is far, the sides are near, the near is large and the far is small, which can fit well with the objects in the external environment, effectively solve the user's parallax and visual convergence problems, and ease the user's driving fatigue.
  • the image plane shape of the left virtual image portion and/or the right virtual image portion is curved.
  • Curved virtual images can better fit the characteristics of objects of interest on both sides of the road, effectively solving problems such as user parallax and/or visual convergence.
  • an object of interest in a geographical information system, can be a house, a shop, a mailbox or a bus stop, etc.
  • the continuous virtual image formed by the display device has a front-lower sub-virtual image portion (ground virtual image portion) (G), for example, formed as a tile (with the ground).
  • G front-lower sub-virtual image portion
  • the connected parts of the virtual image can be right-angle or arc/rounded connections.
  • the continuous virtual image formed by the display device of any embodiment of the first aspect, the second aspect, and the third aspect includes at least one virtual virtual image that meets the following requirements, so that in this virtual image, more than one edge virtual image is relatively close to each other. , the distance between the center of the virtual image is relatively far, such as a U-shaped virtual image.
  • a U-shaped virtual image may refer to a U-shape that is convex forward or concave backward from left to right, that is, a virtual image with three parts: left, front, and right, as shown in Figure 6(a); or, The U-shaped virtual image may be a virtual image having three parts: left, ground, and right, as shown in Figure 6(d); or the U-shaped virtual image may be a virtual image having three parts, left, upper, and right.
  • the continuous virtual image may be a dustpan-shaped virtual image, that is, based on the U-shaped virtual image shape, a virtual image part is added, for example, a virtual image having four parts: left, front, right, and ground.
  • the continuous virtual image can add a virtual image part on the basis of the dustpan-shaped virtual image, for example, a virtual image having four parts: left, front, right, ground, and upper.
  • each of the above-mentioned virtual images can be arranged at an angle.
  • the U-shaped virtual image can also be tilted forward, backward, and backward.
  • the U-shaped virtual image can be formed like a dustpan, with the middle protruding forward, both sides extending backward, having a certain height in the up and down direction, and the upper end and/or the lower end extending backward. That is to say, the front, left, right, bottom and/or top of the dustpan-shaped virtual image can be configured to have virtual images present.
  • the U-shaped virtual image portion includes a left virtual image portion and a right virtual image portion, and the U-shaped virtual image portion further includes one of a front-lower sub-virtual image portion, a front sub-virtual image portion, and a front-upper sub-virtual image portion.
  • the continuous virtual image formed by the display device can also be configured to have an L-shaped virtual image portion, that is, an L-shaped virtual image is formed.
  • the L-shaped virtual image portion includes a left virtual image portion or a right virtual image portion, and the L-shaped virtual image portion further includes one of a front-lower sub-virtual image portion, a front sub-virtual image portion, and a front-upper sub-virtual image portion.
  • one or more of the left virtual image portion, the right virtual image portion, the front lower sub virtual image portion, the front sub virtual image portion and the front upper sub virtual image portion are perpendicular to the ground or inclined to the ground, or the front lower sub virtual image portion is tiled or parallel to the ground.
  • the virtual image displayed by the left virtual image portion includes information related to the left external object of interest located on the left side of the traveling route.
  • the virtual image displayed by the right virtual image portion includes information related to the right external object of interest located on the right side of the travel route.
  • the front lower sub-virtual image part (G), the front sub-virtual image part (F) and the front upper sub-virtual image part (T) can also be configured so that the displayed virtual image includes information related to the corresponding object of interest.
  • the virtual image formed by the display device can be configured and adjusted so that the Point of Interest (POI) is displayed on the continuous virtual images on both sides and integrated with the features on both sides of the real road, including buildings, parking lots, bus stops, and traffic. Signs, etc.; or display the navigation guidance user interface (UI) on the continuous virtual images on both sides, integrating with the real road intersection, including intersections, entry and exit main and auxiliary roads/ramps, etc.; or display blind spot prompts on the continuous virtual images on both sides
  • the UI is integrated with the obstacles (cars, bicycles, pedestrians, etc.) coming from the blind spots on both sides of the vehicle on the real road; or the navigation guidance UI is displayed on the continuous virtual image on the ground and integrated with the displayed road surface to provide guidance for merging and overtaking.
  • conventional multi-layer images cannot accurately match objects on both sides of the real road because of discontinuous distances.
  • obstacles such as trees, traffic signs, street lights, or walls (tunnels) on both sides of the road or on both sides of the FOV.
  • the distance between the virtual image showing POI or other related UI is larger than the real thing (the picture penetrates into the real thing), it will cause visual convergence, cause dizziness, and affect the experience; continuous pictures on the left and/or right sides can solve the above problems, and display The corresponding UI is presented at the matching virtual image distance.
  • Figure 7(a) shows a schematic structural diagram of a U-shaped glass brick according to some embodiments of the present application.
  • Figure 7(b) shows a schematic structural diagram of a U-shaped glass brick according to another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 9 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the continuous virtual image package is formed
  • the imaging virtual image imaged in the imaging window 300 can be reflected to the overall continuous virtual image at the human eye.
  • the final image can be a U-shaped virtual image, a dustpan-shaped virtual image, or a virtual image with any other desired shape.
  • the optical path of the refracted light corresponding to the refracted light emitted from at least part of the light exit surface of the refractive element gradually changes in the refractive element.
  • the structure of the U-shaped glass brick may have a concave arc surface or a half-concave arc surface.
  • the lower surface of the U-shaped glass brick is the surface of the refracting member 121 close to the image source (which can also be considered as the incident surface of the image rays), and the upper surface of the U-shaped glass brick is the surface of the refractive member 121 that is far away from the image source (which can also be considered as the incident surface of the image rays). the light-emitting surface).
  • the optical distance of the image light emitted from at least part of the area gradually changes during the process from incident on the lower surface of the refracting member 121 to emitted from the upper surface, thereby making the virtual image distance (VID) from different positions in the formed virtual image to the eye Gradual changes.
  • VID virtual image distance
  • the optical distance first increases and then decreases.
  • a U-shaped refractive element (such as a U-shaped glass brick) is placed on part of the light path of the image source.
  • This refractive element will increase the optical path of part of the light, while the optical path of the uncovered image source remains unchanged. Therefore, , the light that passes through the refractor eventually forms a U-shaped picture, while the light that does not pass through the refractor forms a vertical picture.
  • the refractive member 121 includes a plurality of stacked sub-refractive members.
  • the materials of the plurality of sub-refractive elements may be different to have different refractive indexes.
  • the optical distance of the image light emitted by the refractive element 121 from the image source display 110 to the amplifying component 200 refers to the geometric distance of the corresponding image light emitted from the image source display 110 when it exits to the amplifying component 200 and the refraction of the propagation medium. product of rates.
  • the geometric path of the image light rays emitted from the image source display 110 to the magnifying component 200 includes the part that passes through the refractive element 121 and the part that passes through the air.
  • the geometric path of the image light rays passes through refraction.
  • the product of the refractive index of the component part and the refractive component it passes through is the above-mentioned "additional optical distance".
  • the above-mentioned “additional optical distance” can also be defined as the part of the geometric path that the image light emitted from the image source propagates to the magnifying component 200 and passes through the refractive element 121 and the refractive index of the refractive element 121 it passes through minus the air.
  • the product of the refractive index differences obtained by the refractive index can also be defined as the part of the geometric path that the image light emitted from the image source propagates to the magnifying component 200 and passes through the refractive element 121 and the refractive index of the refractive element 121 it passes through minus the air.
  • the refractive index of the glass brick is changed through structural changes (the light exit surface is a U-shaped surface).
  • the refractive index of the entire glass brick can also be changed by changing the refractive index of the glass brick itself. That is, by changing the thickness and/or refractive index of the glass brick, the final U-shaped virtual image is formed. For example, along the direction perpendicular to the light incident surface of the refractive element 121, the thickness and/or refractive index of the refractive element 121 gradually changes.
  • the light exit side of the refracting member 121 has a cylindrical surface or a hyperbolic surface.
  • the refractive element 121 can be close to the image source display 110, or have a limited distance from the image source display 110, and the position of the image source display 110 can be selected according to usage requirements. For example, there will be a certain amount of light loss when the light is arranged at intervals, that is, part of the light will be reflected at the light incident surface of the refracting member 121, thus causing waste.
  • the distance between the incident surface of the refracting member 121 and the image source display 110 is not less than 10 mm. In other embodiments, the distance between the incident surface of the special-shaped refractive element 121 and the image source component 110 is less than 10 mm.
  • a fixing device such as a buckle or a slot, can be provided on the side of the refracting member 121 to fix the glass brick and prevent it from moving.
  • the number of the refracting member 121 is not limited to one.
  • multiple independent continuous virtual images may be formed, or multiple continuous continuous virtual images may be formed.
  • the arrangement positions of the image source display 110 and the refracting member 121 are independent of each other.
  • the position of the image source display 110 can be flexibly set.
  • the image source display 110 is arranged horizontally. It cooperates with the refracting member 121 to realize all/part of the U-shaped virtual image. There is no need to adjust the position of the image source display 110, which reduces the requirements for the installation angle of the image source.
  • the image source display 110 can also be at other angles (in theory, it can be any angle).
  • the required virtual image requirements can be achieved. This method can reduce the cost of the image source display 110 Installation angle requirements.
  • the U-shaped glass bricks constituting the refracting member 121 may be a complete structure or a spliced structure of multiple glass bricks.
  • the refractive element 121 is light-transmissive, and the refractive index of the refractive element 121 is different from the refractive index of air.
  • the refractive index of the refractive element 121 is greater than the refractive index of air (that is, greater than 1), so that the image light of the image source component 110 reaches The optical paths of the magnification components 200 are different, thereby achieving gradual zooming of at least part of the virtual image.
  • the material of the refractive element 121 may be at least one of inorganic materials, organic materials, and composite materials.
  • the inorganic material may include glass, quartz, etc.
  • the organic material may include polymer Sub-materials such as resin materials, etc.
  • the composite material may include metal oxide doped-polymethyl methacrylate, etc.
  • the material of the refractive member 121 is not limited to the above-mentioned materials, as long as it is light-transmissive and has a refractive index difference with air.
  • the light transmittance of the refracting member 121 to light is 60% to 100%.
  • the light transmittance of the refracting member 121 to light is 80% to 99%.
  • the light transmittance of the refracting member 121 to light is 90% to 99%.
  • the refractive element 121 can be disposed on the optical path along which the image light emitted from the image source display 110 propagates to the amplifying component 200.
  • the refractive component 121 can be located between the amplifying component 200 (curved mirror) and the image source (image source display 110). on the light path.
  • the refracting member 121 is located on the optical path where the image light emitted from the image source display 110 travels to the amplifying component 200 .
  • the refractive component 121 may also be located on the optical path where the amplifying component 200 reflects the image light to the imaging window 300 .
  • the incident surface of the refractive element 121 can be bonded to the display surface of the image source display 110 through transparent optical glue.
  • the incident surface of the refracting member 121 and the display surface of the image source display 110 may also be arranged at intervals.
  • the incident surface of the refracting member 121 and the display surface of the image source display 110 may also be arranged parallel and spaced apart.
  • the gap between the imaging position of the virtual image and the focus position of the user's line of sight is reduced by changing the imaging position of the virtual image, so as to improve the visual convergence conflict and improve the user experience. .
  • it can prevent or reduce users' fatigue, nausea and other adverse conditions, and improve driving safety.
  • Figure 10(a) shows a schematic structural diagram of a bending image source according to some embodiments of the present application.
  • Figure 10(b) shows a schematic structural diagram of a curved image source according to another embodiment of the present application.
  • Figure 11 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the image light generated by the image source display 110 is initially an image light capable of forming a continuously transitioning irregular image.
  • the shape of the overall continuous virtual image reflected from the imaging virtual image imaged in the imaging window 300 to the human eye can be changed.
  • the distance from at least part of the virtual image to the eye is made different and gradually changed, thereby achieving gradual zooming of the virtual image, and then the final continuous virtual image presents a U-shaped virtual image, a dustpan-shaped virtual image, or a virtual image with any other desired shape.
  • the gradual zooming may be a gradual zooming in one direction of the virtual image perpendicular to the ground and parallel to the ground, or it may be a combination of both directions.
  • the curved image source display 110 may be configured to have a concave arc surface or a half-concave arc surface. In other embodiments, the curved image source display 110 may have a concave arc surface or a half-concave arc surface. The display 110 may also be configured to have a convex arc surface or other shapes according to requirements.
  • the curved image source display 110 can be configured as a flat screen in one part and a curved screen in the other part.
  • the image rays passing through the amplifying component 200 on the flat screen finally form a vertical virtual image
  • the image rays passing through the amplifying component 200 on the curved screen finally form a U virtual image.
  • the vertical picture can be considered to be vertical or nearly vertical, and can have a certain angular range of error. For example, if the angle between the picture and the ground is within the range of 80-100 degrees, it can be considered to form a vertical picture.
  • a fixing device such as a buckle or a slot, may be provided on the side of the curved image source display 110 to fix the curved image source display 110 and prevent it from moving.
  • the number of curved image source displays 110 is not limited to one.
  • the curved image source display 110 can form multiple independent U-shaped virtual images, or multiple continuous U-shaped virtual images, etc.
  • the depth of field of the curved image source display 110 may be 0.5-1.5 cm.
  • the depth of field is 1cm. It can be understood here that the depth of field is the difference between the point of the virtual image formed by the curved image source display 110 that is farthest from the human eye and the point that is closest to the human eye.
  • the curved image source display 110 includes at least one of a micron-level LED display device, a millimeter-level LED display device, a silicon-based liquid crystal display device, a digital light processor, and a micro-electromechanical system display.
  • Figure 12 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the display device includes an image source component (image emitting part) 100 and an amplifying element 200 .
  • the amplifying element 200 includes a first reflective part 210 and a second reflective part 220 .
  • the first image light emitted by the image source component 100 is formed into a second image light after passing through the first reflective member 210 and the second reflective member 220 .
  • the second image light is reflected by the imaging window 300 and forms a continuous virtual image in the eye box area.
  • the continuous virtual image includes at least one of a left virtual image part (L) and a right virtual image part (R).
  • the amplifying element 200 may further include a third reflective element, a fourth reflective element, etc. This application does not place specific limitations on the number and arrangement of the reflective elements in the amplifying element 200 .
  • the first reflecting member 210 includes at least one of a plane mirror, a curved mirror, an aspherical mirror and a spherical mirror
  • the second reflecting member 220 is a curved mirror
  • the curved mirror may be a concave mirror.
  • the surface of the concave reflector close to the display area is a concave curved surface.
  • the setting of curved mirrors can make the head-up display
  • the device has a longer imaging distance and a larger imaging size, and the curved reflector can also be matched with a curved imaging window (mentioned later) such as a windshield to eliminate virtual image distortion caused by the imaging window.
  • the curved mirror can be configured as a zoom curved mirror.
  • the zoom curved mirror is set before leaving the factory and the curvature does not change during use; in other examples, the zoom curved mirror can adjust the curvature through an electric field. It can change the focal length of the curved mirror in real time and quickly during use.
  • the image source display 110 or the curved image source display 110 may be a monochrome image source or a color image source (for example, It is an image source that can emit RGB mixed light), such as a light-emitting diode (LED) display, or a liquid crystal display (LCD), etc.
  • a monochrome image source or a color image source for example, It is an image source that can emit RGB mixed light
  • LED light-emitting diode
  • LCD liquid crystal display
  • the image source display 110 or the curved image source display 110 can be a single image source, a dual image source or a multi-image source, such as a light emitting diode (LED) display, or a liquid crystal display (LCD), etc.
  • LED light emitting diode
  • LCD liquid crystal display
  • the image source display 110 or the curved image source display 110 may be configured as an imaging device such as a liquid crystal display (LCD), a light emitting diode (LED), an organic light emitting diode (OLED), a projection device, etc. that emits a virtual image or a real image, or may be configured as a display device. Configured as virtual or real images formed by these imaging devices.
  • an imaging device such as a liquid crystal display (LCD), a light emitting diode (LED), an organic light emitting diode (OLED), a projection device, etc. that emits a virtual image or a real image, or may be configured as a display device. Configured as virtual or real images formed by these imaging devices.
  • Figure 13 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 14 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 15 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • Figure 16 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the display device is configured to generate at least two virtual images at different times or at the same time, the at least two virtual images include a first virtual image and a second virtual image, and the first virtual image includes a left virtual image portion and/or a right virtual image. department.
  • the distance from the near end of the first virtual image to the eye box area of the display device is smaller than the distance from the near end of the second virtual image to the eye box area; the angle between the first virtual image and the horizontal direction is greater than, equal to, or less than 90 degrees, And the angle between the second virtual image and the horizontal direction is greater than, equal to, or less than 90 degrees.
  • the display device of the fourth aspect embodiment is configured to generate at least two layers of virtual images with different distances from the user.
  • the at least two layers of virtual images include a first virtual image, and the first virtual image includes a left virtual image portion and a / Or the virtual image part on the right side.
  • the angle between the first virtual image and the horizontal direction is greater than, equal to, or less than 90 degrees.
  • At least two layers of virtual images also include a second virtual image
  • the distance between the near end of the first virtual image and the eye box area of the display device is smaller than the distance between the near end of the second virtual image and the eye box area
  • the distance between the second virtual image and the horizontal direction The angle is greater than, equal to, or less than 90 degrees.
  • the display device is configured to generate at least one virtual image, the at least one virtual image includes a naked-eye 3D virtual image, and the display device is configured to enable the user to see at least one naked-eye 3D virtual image through the at least one virtual image.
  • the at least two virtual images further include a third virtual image
  • the third virtual image is a naked-eye 3D virtual image
  • the display device is configured to enable the user to see at least one naked-eye 3D virtual image through the at least one virtual image.
  • the third virtual image includes a left-eye virtual image and a right-eye virtual image
  • the image source component included in the display device is configured to emit left-eye light corresponding to the left-eye virtual image received by the left eye of the same user and light rays corresponding to the left-eye virtual image received by the right eye of the same user.
  • the right eye light corresponding to the right eye virtual image, the left eye light allows the user to see the left eye virtual image
  • the right eye light allows the user to see the right eye virtual image.
  • the left eye virtual image area and the right eye virtual image area are on the same imaging plane (that is, the imaging distance is basically the same), and the left eye light and the right eye light are emitted from the same image source, so that the user's left eye sees the pattern of the left eye virtual image area, and the right eye
  • the user can see a 3D effect. This effect can also be called naked-eye 3D.
  • the final two-layer virtual image is a U-shaped virtual image and a vertical virtual image.
  • the display device includes two image source displays 110, and the two image source displays 110 are respectively an arc image source 111 and a planar image source. 112.
  • the light rays emitted by the arc-shaped image source 111 and the plane image source 112 form a U-shaped virtual image and a vertical virtual image respectively.
  • the two virtual images shown in FIG. 13 have different imaging distances, and the U-shaped virtual image is closer to the imaging window 300 than the vertical virtual image.
  • the U-shaped virtual image can also be configured to be further away from the windshield than the vertical virtual image, so that the virtual image can be more easily integrated with objects in the surrounding environment and improve the imaging fit.
  • the imaging distances of the U-shaped virtual image and the vertical virtual image may also be the same, or partially the same.
  • the display device includes three image source displays 110.
  • the three image source displays 110 are respectively an arc image source 111, a planar image source 112 and a planar image source 113.
  • the arc image source 111, the planar image source 113 are respectively The source 112 and the plane image source 113 form a U-shaped virtual image and two vertical virtual images respectively.
  • the three virtual images shown in the figure have different imaging distances, and the U-shaped virtual image is set between two vertical virtual images.
  • the U-shaped virtual image may be located at the farthest end or the closest end.
  • the imaging distances can also be the same, or partially the same.
  • the types of image sources in the three image source displays 110 can be flexibly set according to needs, and are not limited to the setting state of the three image source displays 110 including the arc-shaped image source 111 .
  • planar image source 112 and the planar image source 113 may be configured side by side, or may be independent image source structures with different installation locations.
  • the number of image sources included in the image source display 110 may be more, such as five, six, etc., which is not specifically limited in this application.
  • a curved surface with multiple U-shaped structures may be provided on the arc-shaped image source 111 .
  • the image source display 110 is not limited to a specific number of image sources being curved screens. That is to say, in the case of multiple image sources, at least two image sources may be curved screens. , to form multiple arc-shaped virtual images.
  • multiple arc-shaped virtual images can also be realized through at least two U-shaped glass bricks.
  • the image source display 110 includes two arc-shaped image sources, namely a first arc-shaped image source and a second arc-shaped image source.
  • the first arc-shaped image source and the second arc-shaped image source emit The light rays form two U-shaped virtual images respectively.
  • the two U-shaped virtual images can be spaced apart from each other, or they can be at least partially connected together.
  • the image source display 110 includes an arc image source 111 and a planar image source 112, and a transflective element 60 is provided on the optical path of the arc image source 111 and the planar image source 112.
  • the arc image source 111 The emitted light A passes through the transflective element 60, and the light B emitted from the plane image source 112 strikes the transflective element 60 and is reflected, thereby forming light AB.
  • Light A finally forms a U-shaped virtual image A', and light B forms a vertical virtual image B.
  • the tilted virtual image A' and the vertical virtual image B' are coaxially set.
  • coaxiality if the center lines of the U-shaped virtual image A' and the vertical virtual image B' coincide or approximately coincide (the angle between the two center lines is within the set range, for example, the angle is within 10 degrees), it means that the The two virtual images are coaxial; further, if the projection of the smaller virtual image in the direction of the larger virtual image all falls within the range of the larger virtual image, it can also be called a coaxial virtual image.
  • the image source display 110 includes an arc-shaped image source 111 , a planar image source 112 and a planar image source 113 .
  • a transflective element 60 is provided on the optical path of the arc-shaped image source 111 and the planar image source 112.
  • the light A emitted by the arc-shaped image source 111 passes through the transflective element 60, and the light B emitted by the planar image source 112 passes through the transflective element 60. It is reflected on the transflective element 60 to form light AB, and light A is the most Finally, a U-shaped virtual image A' is formed, and the light B forms a vertical virtual image B'.
  • the U-shaped virtual image A' and the vertical virtual image B' are coaxially arranged.
  • the vertical virtual image C' formed by the plane image source 113 has the same or different imaging distance as the U-shaped virtual image A' or the vertical virtual image B'.
  • the coaxial display method can reduce the use of plane reflectors and optimize the spatial structure.
  • a U-shaped refracting member such as a U-shaped glass brick
  • the U-shaped refracting member can add an optical path to the light passing through it.
  • the equivalent object distance will be changes, the imaging distance will also change accordingly, ultimately achieving a U-shaped virtual image.
  • the glass brick can realize a U-shaped virtual image. In some embodiments, the two can be combined.
  • curved screens and U-shaped glass bricks are used to form U-shaped virtual images with different imaging distances.
  • At least one of the position, size, tilt degree and picture content of the plurality of virtual images may be different.
  • Figure 17 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the image source display 110 of the display device includes 8 columns of image source units, 2 first blocking units and 2 second blocking units as an example. There is a distance d2 between the light barrier and the image source display 110. Both the first blocking unit 410 and the second blocking unit 420 can block light, so some of the image source units (R1, R2, R3, R4 as shown in Figure 3) emit light. The second light ray cannot reach the left eye area, and only the first light rays emitted by the image source units L1, L2, L3, and L4 can be viewed in the left eye area; similarly, only the image source units R1, L2, and L4 can be viewed in the right eye area.
  • the first blocking unit 410 allows the first light to emit to the first designated area (the left eye area as shown in FIG. 3), such as the first light emitted by the image source units L1, L2, L3, and L4; while the second blocking unit 420 Allow the second light to hit the second designated area (the right eye area as shown in Figure 3), such as the second light emitted by the image source units R1, R2, R3, R4, by combining the visible virtual images of the left eye and the right eye. separated to achieve three-dimensional imaging.
  • the size of the first blocking unit 410 and the second blocking unit 420 and the position between the first blocking unit 410 and the second blocking unit 420 can be precisely calculated, thereby ensuring imaging at a specific position.
  • Figure 18 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • a display device controls the direction of light emitted by a light source
  • it usually uses an opaque housing arranged around the light source to control the direction of the light emitted by the light source, such as a hollow reflective cup.
  • an opaque housing arranged around the light source to control the direction of the light emitted by the light source, such as a hollow reflective cup.
  • An opaque shell will also affect the heat dissipation of the light source.
  • the image source display 110 of the display device of the present application includes a light source part with a plurality of light sources 114 and a light-transmitting collimating part 115.
  • the light emitted by the plurality of light sources 114 passes through the light-transmitting collimating part 115.
  • At least part of the plurality of light sources 114 Each is not provided with a reflective cup for reflecting the light emitted by the light source 114 .
  • at least a continuous gas medium layer is included between the light source layer where the plurality of light sources 114 is located and the collimation layer where the light-transmitting collimating part 115 is located.
  • the image source display 110 includes a light source part and a light-transmitting collimating part 115, and the light source part has a plurality of light sources 114.
  • the light emitted by the plurality of light sources 114 is directly incident on the light-transmitting collimating part 115 .
  • the image source display 110 includes a direction control module 116
  • the direction control module 116 includes a light-transmitting collimating part 115 and a plurality of transparent light-concentrating parts 117 and a plurality of transparent light-concentrating parts 117
  • the light emitted by the corresponding light source 114 passes through the plurality of transparent light condensing parts 117 and then passes through the light transmitting collimating part 115.
  • the area between the light transmitting collimating part 115 and the plurality of transparent light condensing parts 117 is at least continuous. Gas medium layer. Therefore, at least part of the light sources 114 may not be provided with a reflective cup, which is beneficial to heat dissipation of the light sources 114 .
  • the gas medium layer is adjacent to the collimation layer and the light source layer, so that the light emitted by the light source 114 passes through the gas medium layer and directly enters the collimating element; or the gas medium layer and the gas medium layer include a plurality of transparent light condensing parts 117 The light condensing layer and the collimating layer are adjacent to each other. Therefore, the light emitted by the light source 114 passes through the transparent light condensing part 117 and the gas medium layer and directly enters the collimating element.
  • the gas medium layer may be air or other gases.
  • the center of the collimating element is collinear with the center of the corresponding light source 114 .
  • the collimating element is a convex lens or a Fresnel lens, and the collimating element can reduce the divergence angle of the passing light.
  • the light emitted from the plurality of transparent light condensing parts 117 directly enters the light-transmitting collimating part 115 .
  • the plurality of transparent light condensing parts 117 have grooves for accommodating corresponding light sources 114 .
  • the plurality of transparent light condensing parts 117 are bonded to the corresponding light sources 114 .
  • the light-emitting surfaces of the plurality of transparent light condensing parts 117 are convex surfaces that protrude in a direction away from the corresponding light source 114 .
  • At least one of the plurality of transparent light condensing parts 117 is a plano-convex lens.
  • the light exit surface of the transparent light condensing part 117 includes at least a first exit surface.
  • the light source 114 can be arranged at the focus of the first light-emitting curved surface of the transparent light condensing part 117 .
  • the light source 114 may be provided inside the transparent light condensing part 117 .
  • the light source 114 is embedded inside the transparent light condensing part 117 and is located at the middle position of the lower surface of the transparent light condensing part 117 .
  • the transparent light condensing part 117 may be a plano-convex lens having one flat surface and one convex surface.
  • the light-emitting surface of the transparent light-condensing part 117 is a convex paraboloid, the light source 114 is embedded inside the transparent light-condensing part 117 and Located at the focus of the paraboloid; alternatively, the light-emitting surface of the transparent light-concentrating part 117 is a convex arc surface, and the light source 114 is embedded inside the transparent light-condensing part 117 and located at the focus of the arc surface; or, the transparent light-condensing part 117
  • the light-emitting surface 117 includes a first light-emitting curved surface and a second light-emitting side surface.
  • the first light-emitting curved surface is a convex parabola.
  • the light source 114 is embedded inside the transparent light condensing part and is located at the focus of the parabola; or, the transparent light condensing part 117
  • the light-emitting surface includes a first light-emitting curved surface and a second light-emitting side surface.
  • the first light-emitting curved surface is a convex arc surface.
  • the light source 114 is embedded inside the transparent light condensing part and is located at the focus of the arc surface.
  • the lower surface of the transparent light condensing part 117 is a flat surface that is attached to the substrate, and the upper surface is a convex surface along the light emitting direction of the light source 114 .
  • the transparent light condensing part 117 is located in the light emitting direction of the light source 114 .
  • the transparent light condensing part 117 is configured to converge the light emitted by the light source 114 to obtain the first converged light, and emit the first converged light to the light-transmitting collimating part 115.
  • the light-transmitting collimating part 115 is configured to condense the incident first converged light.
  • the light is further condensed to obtain a second condensed light, and the second condensed light is incident on the light condensing part 118 .
  • the utilization rate of the light emitted by the light source can be further improved.
  • Figure 21 shows a schematic structural diagram of a display device according to another embodiment of the present application.
  • the image source component 100 generally uses light in a target band to perform imaging, and the target waveband includes at least one spectral band; for example, the image source component 100 can use light in three color bands of RGB (red, green, and blue) to perform imaging.
  • the image source component 100 includes a liquid crystal panel
  • the image source component 100 can emit light with a specific polarization characteristic, such as light with a second polarization characteristic; and the transflective film 31 can reflect light with the second polarization characteristic in the target wavelength band.
  • the transflective film 31 has a higher reflectivity for light with a second polarization characteristic of at least one band, and a higher transmittance for other light, such as a light with a first polarization characteristic in the target band, And other light rays (including light rays with first polarization characteristics and light rays with second polarization characteristics) other than the target waveband have higher transmittance.
  • the transflective film 31 can reflect most of the light emitted from the image source component 100 to the observation area.
  • most of the external ambient light can also be incident on the observation area.
  • most of the light of the first polarization characteristic of the wavelength band can pass through the transflective film 31 and reach the observation area, so that the user can normally view external things.
  • the target band includes at least one spectrum band, and for example, the half-maximum width of the at least one spectrum band may be less than or equal to 60 nm.
  • the light guide device can emit light 410 to the image source component 100, and the light 410 is P-polarized light; when the light emitted by the image source component 100 is RGB light, the light 410 is RGB P-polarized light.
  • the image source component 100 can convert light 410 into light 420, which is imaging light, and the imaging light is RGB S-polarized light.
  • the transflective film 31 can reflect the RGB S-polarized light and transmit other light.
  • the transflective film 31 has a high reflectivity (for example, a transmittance of about 70% to 90%) for S-polarized red light, green light, and blue light, while it has a high reflectivity for light in other wavelength bands and P-polarized red light.
  • Light, green light and blue light have high transmittance (for example, the transmittance is about 70% to 90%).
  • the transflective film 31 has a high reflectivity for the light 420 . Therefore, most of the light 420 emitted from the image source component 100 can be transmitted.
  • the reflective film 31 reflects into light 430, and the light 430 is reflected to the observation area, improving the imaging brightness; and most of the light in the external ambient light 310 can be transmitted normally and will not affect the observation of the external environment; For example, there are things in the external environment that mainly emit light in the target band, such as traffic lights that emit red or green.
  • the light band generated by signal lights and other similar devices is close to or coincident with the target band such as RGB.
  • the light emitted by the signal light has a second polarization.
  • Part of the light 311 with the characteristic (such as S polarization state) is reflected by the reflective film 31, but the part of the light 312 with the first polarization characteristic (such as the P polarization state) in the light emitted by the signal lamp can still pass through the reflective film 31 with high transmittance. Users in the observation area can still see the light emitted by signal lights, etc. normally.
  • the light 312 may also include light in other wavelength bands besides the RGB band.
  • the above-mentioned first polarization characteristic may also be an S-polarization state, or may be a circular polarization, an elliptical polarization or other polarization states, which is not limited in this embodiment; and the above-mentioned RGB are red light, green light and blue light respectively.
  • the wavelength half-maximum width of the above-mentioned light is not greater than 60nm, and the peak wavelength of blue light
  • the position can be in the range of 410nm ⁇ 480nm
  • the peak position can be located in the range of 500nm to 565nm
  • the peak position of the red light wavelength can be located in the range of 590nm to 690nm.
  • the distance between the virtual image and the observation area ranges from 2-20m. It can be understood here that the coverage range of the display content of the virtual image can be within a range of 2-20m from the observation area. For example, the coverage range of the display content of the virtual image can be greater than or equal to 2 meters and less than or equal to 6 meters from the observation area. For example, the coverage range of the display content of the virtual image can be greater than or equal to 2 meters and less than or equal to 5 meters.
  • the coverage range of the display content of the virtual image can be greater than or equal to 2 meters and less than or equal to 4 meters; and/or, the coverage range of the display content of the virtual image can be greater than or equal to 10 meters from the observation area
  • the coverage range of the display content of the virtual image can be greater than or equal to 12 meters and less than or equal to 20 meters.
  • the coverage range of the display content of the virtual image can be greater than or equal to 14 meters. and within a range of less than or equal to 20 meters.
  • the observation area may be within a certain area where the user's eyes are located, such as an area where the user's eyes are located and where the image displayed by the display device can be seen.
  • it may be a plane area or a three-dimensional area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置、像源装置、交通设备及显示方法,显示装置被配置为使用户通过显示装置的眼盒区域观察到虚像,虚像至少包括左侧虚像部(L)和/或右侧虚像部(R)。显示装置能够提升虚像与环境物体的融合效果。

Description

显示装置、像源装置、交通设备及显示方法
相关申请的交叉引用
本申请要求于2022年07月28日递交的中国专利申请第202210901853.7号、第202221975965.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示装置、像源装置、交通设备及显示方法。
背景技术
抬头显示装置(head up display,HUD)也称为平视显示装置。通过将HUD的像源发出的光线最终投射到成像窗(后装的成像板或者车辆的挡风窗等)上,用户无需低头就可以直接看到抬头显示装置的虚像,从而可以提高用户体验。例如,在一些情形中,抬头显示装置可以避免用户在驾驶过程中低头看仪表盘所导致的分心,从而提高驾驶安全系数,同时也能带来更好的驾驶体验。
在所述背景技术部分,公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术信息。
发明内容
本公开至少提供一种显示装置、像源装置、交通设备及显示方法。
第一方面,本公开的至少一个实施例提供一种显示装置,所述显示装置被配置为使用户通过所述显示装置的眼盒区域观察到虚像,所述虚像至少包括左侧虚像部和/或右侧虚像部。
例如,左侧虚像部和/或右侧虚像部的像面可以为平面或曲面。
第二方面,本公开的至少一个实施例提供一种显示装置,所述显示装置被配置为使用户通过所述显示装置的眼盒区域观察到虚像,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,所述第一虚像部和所述第二虚像部相连。
第三方面,本公开的至少一个实施例提供一种显示装置,所述显示装置被 配置为使用户通过所述显示装置的眼盒区域观察到虚像,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,用于形成所述第一虚像部和所述第二虚像部的光线来自于所述显示装置包括的同一像源显示器。
第四方面,本公开的至少一个实施例提供一种像源装置,所述像源装置为用于本公开第一至三方面任一方面显示装置的像源装置,并且所述像源装置包括所述像源组件和所述折射件;或者,所述像源装置为用于本公开第一至三方面任一方面所述显示装置的像源装置,并且所述像源装置包括所述弯曲像源显示器。
第五方面,本公开的至少一个实施例提供一种交通设备,包括如第一方面、第二方面、第三方面中任一实施例中所述的显示装置或者第四方面所述的像源装置。
第六方面,本公开的至少一个实施例提供一种显示方法,包括:向显示装置的成像窗投射成像光线,以使用户通过所述显示装置的眼盒区域在视野中观察到虚像。其中,所述虚像至少包括左侧虚像部和/或右侧虚像部;和/或,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,所述第一虚像部和所述第二虚像部相连。
例如,该显示方法可以用于本申请第一至三方面中任一方面所述的显示装置,相应地,本公开第一至三方面提供的显示装置中的相关描述也适用于本公开提供的显示方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了沿着列方向连续变焦的虚像和参考虚像的位置示意图。
图2示出了不同组合的连续虚像的示意图。
图3(a)-3(j)分别示出根据本申请示例实施例的显示装置成像的面型 结构示意图。
图4示出了根据本申请一些实施例的显示装置的结构示意图。
图5示出了根据本申请另一实施例的显示装置的结构示意图。
图6(a)示出了根据本申请实施例的向后内凹的U型虚像的结构示意图。图6(b)示出了根据本申请实施例的单左侧虚像的结构示意图。图6(c)示出了根据本申请实施例的向后内凹的U型虚像与平面虚像对比的结构示意图。图6(d)示出了根据本申请实施例的向前凸起的U型虚像的结构示意图。
图7(a)示出了根据本申请一些实施例的U型玻璃砖的结构示意图。
图7(b)示出了根据本申请另一实施例的U型玻璃砖的结构示意图。
图8示出了根据本申请另一实施例的显示装置的结构示意图。
图9示出了根据本申请另一实施例的显示装置的结构示意图。
图10(a)示出了根据本申请一些实施例的弯曲像源的结构示意图。
图10(b)示出了根据本申请另一实施例的弯曲像源的结构示意图。
图11示出了根据本申请第三方面实施例的显示装置的结构示意图。
图12-图18示出了根据本申请另一实施例的显示装置的结构示意图。
图19示出了根据本申请一些实施例的透明聚光部的结构示意图。
图20示出了根据本申请另一实施例的透明聚光部的结构示意图。
图21示出了根据本申请另一实施例的显示装置的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料 或者操作。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
抬头显示装置(head up display,HUD)是通过反射式的光学设计,将图像源出射的光线最终投射到成像窗(成像板或挡风玻璃等)上,通过成像窗将图像光线投射到眼盒区域,用户无需低头就可以通过眼盒区域直接看到虚像。例如,HUD可以避免用户在驾驶过程中低头看仪表盘所导致的分心,提高驾驶安全系数,同时也能带来更好的驾驶体验。
例如,以基于平面反射镜和曲面反射镜反射成像的HUD为例,HUD像源出射的光线依次经平面反射镜、曲面镜反射后出射,出射的光线可以在透明成像窗上发生反射并保留在驾驶舱的一侧,进入用户的眼睛。例如,这些进入用户眼睛的光线,使得用户可以看到HUD像源上显示的虚像在透明成像窗的另一侧呈现的虚像。与此同时,由于成像窗本身是透明的,成像窗另一侧的环境光线依然可以透过它传输到用户眼睛里,使得用户在看到HUD成像的同时,还不影响用户在驾驶的过程中观察车外的路况。
本申请的发明人在研究中注意到,在用户正常驾驶的情况下,用户通过透明成像窗观察到的实际路况是三维立体的,而传统的HUD一般形成一层垂直或近似垂直的虚像,用户在观察的过程中会产生视觉误差(左右双目)和/或视觉辐辏(前后脑眼距离冲突)等问题,使得用户易于产生疲劳、恶心等不良的身体状况。例如,视觉辐辏产生的原因如下,在增强现实(Augmented Reality,AR)内容和环境物体没有对齐的情况下,会存在眼睛观看AR内容时的真实的物理距离和大脑感知的AR内容的感知距离之间存在偏差,当这一偏差较大时,用户可能会产生不适。此外,由于虚像画面一般与外界实物贴合效果不好,在行程的过程中,会存在难以给用户持续提供稳定可靠的指示效果的现象。
为了解决上述技术问题至少之一,本申请提供一种显示装置、像源装置、交通设备和显示方法,以提升虚像与环境物体的融合效果,例如可以改善视觉辐辏问题。例如,本公开实施例可以使AR内容和环境物体之间更容易位置匹配(该匹配是指AR内容和环境物体对齐,可以指两者位置重合,或者也可以是距离比较近,距离接近程度以能够满足使用需求为准)。例如,在一些实施例中,HUD提供至少一个虚像,该至少一个虚像中的至少一个的部分或全部虚像是连续变焦的。例如,左侧虚像部和右侧虚像部至少之一是连续变焦的画面。例如,该连续变焦的虚像的部分或全部虚像的成像距离逐渐变化,从而可以减少视差和视觉辐辏问题,例如可以适配不同距离的环境物体展示对应的AR内容。在一些实施例中,通过改变标准光路中从屏幕的至少部分区域出射的光线的光程,使得虚像的左和/或右侧的至少部分区域产生对应变化的虚像距离,从而,形成连续过渡的异形画面,改善视觉误差和/或视觉辐辏等问题。例如,虚像可以是呈3D连续分布的虚像(以下简称连续虚像),形成的连续虚像中具有左和/或右侧中至少一侧的连续变焦虚像。
这里需要理解的是,通过形成连续变焦的虚像解决视差和视觉辐辏的原理:视差问题产生的原因在于AR内容和对应的环境物体之间存在位置偏差,使得用户左眼和右眼总有一个看到的AR内容的虚像位置与环境物体无法对齐,显得AR内容显示不够真实。
本公开一些实施例提供的显示装置可以为用于抬头显示器的显示装置,或者可以为用于非抬头显示器类显示装置。
例如,在装配过程中,能够利用U型玻璃或弧形屏等方式形成U型虚像,实现U型虚像与外界实物相贴合,提高抬头显示装置对用户的指示效果。
以下结合附图对本申请的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本申请,并不用于限定本申请。
例如,如图1所示,选定标准光路,这里可以理解的是,标准光路可以是假想的光路,即找到或假想一个虚像是垂直于地面的虚像(参考虚像),用于对应的屏幕的位置。而连续变焦虚像,即指的虚像中至少一列(或一行)中的至少部分像素到参考虚像中对应像素的距离是连续变化的。例如,连续变焦可以是虚像的列方向和行方向中的一个方向连续变焦,也可以是两个方向上组合进行连续变焦。图1示出了沿着列方向连续变焦的虚像和参考虚像的示意图。
而成像形成的连续虚像则可以存在多种情况。
如图2所示,从虚像的角度来说,连续虚像成像可以被分为左侧虚像部(L)、右侧虚像部(R)、前下方子虚像部(地面虚像部)(G)、前方子虚像部(F)和前上方子虚像部(天空虚像部)(T)。
连续虚像形成的虚像组合可以有以下各种情况:
1、L-单左侧;R-单右侧;LR-左右双侧。
2、LG-左侧加地面;RG-右侧加地面。
3、LGR-左右两侧加地面。
4、LGR+F-左右两侧加地面,加前面。
5、LGR+F+T-左右+地面+前面+天空。
此外,根据成像组件的使用需求,还可以被配置为LGF、RGF、LGT、RGT等配置。
由于不同国家的驾驶舱设置位置可能不同,单侧的虚像可以适用于不同的国家(左右舵),在单侧的虚像中,形成的虚像为连续过渡的。
例如,在一些示例中,显示装置能够被配置为使用户在眼盒区域观察到显示装置形成的虚像,虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,第一虚像部和第二虚像部相连。
这里可以理解的是,可以根据实际需求预设观察者需要观看成像的区域,即眼盒区域(eyebox),该眼盒区域是指观察者双眼所在的、可以看到显示装 置显示的图像的区域,例如可以是平面区域或者立体区域。
例如,第一虚像部和第二虚像部可以是对应左侧虚像部(L)、右侧虚像部(R)、前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的任意两组虚像。
图3(a)-3(j)分别示出根据本申请示例实施例的显示装置成像的面型结构示意图。
图3(a)-3(j)分别对应显示装置成像状态为L(单左侧虚像部)、R(单右侧虚像部)、L+G(左侧加前下方子虚像部)、L+T(左侧加前上方子虚像部)、L+R+G(左右两侧加前下方子虚像部)、L+R+F(左右两侧加前方子虚像部)、L+R+T(左右两侧加前上方子虚像部)、L+R+T+G(左右两侧加前下方子虚像部和前上方子虚像部)、L+R+T+G+F(左右+前下方子虚像部+前面+天空)虚像连接部分为圆弧、L+R+T+G+F(左右+地面+前方子虚像部+前上方子虚像部)且虚像连接部分为直角的成像示意图。
参见图3(a)-3(j),示例实施例的显示装置被配置为使用户通过显示装置的眼盒区域观察到虚像。虚像至少包括左侧虚像部(L)和/或右侧虚像部(R)。即对应图2中的左侧虚像部(L)和右侧虚像部(R)。
例如,本申请的显示装置为抬头显示装置,抬头显示装置还包括成像窗300,成像窗300被配置为将入射的光线反射至眼盒区域。
例如,本申请的抬头显示***具有多层次成像***,至少一层设置有大范围成像层,即设置有大范围成像的HUD,大范围成像的HUD的排布方式与挡风玻璃的可视区域相匹配,使得大范围成像HUD发出的光线呈现出的图像能够覆盖挡风玻璃的可视区域,例如,大范围成像的HUD发出的光线呈现出的图像能够覆盖挡风玻璃的40%以上的区域,进一步可以根据需要覆盖挡风玻璃的50%以上、60%以上、70%以上、80%以上或90%以上的区域。与相关技术中基于自由曲面反射镜、视场角(Field of View,FOV)较小的传统HUD相比,由于大范围成像HUD中多个光源的排布方式与挡风玻璃的可视区域相匹配,使得大范围成像HUD发出的光线能够展示一个覆盖挡风玻璃的可视区域的图像,达到了能够在挡风玻璃的可视区域内的任何位置显示图像的目的,从而可以通过大范围成像HUD显示更加丰富的内容,提高了HUD的使用体验。
例如,本公开的至少一个实施例还提供一种像源装置,像源装置为用于显示装置的像源装置,并且像源装置包括像源组件100和折射件121;或者,像源装置为用于显示装置的像源装置,并且像源装置包括弯曲像源显示器110。
例如,本公开的至少一个实施例提供一种交通设备,包括任一实施例中的显示装置。
例如,本公开的至少一个实施例提供一种显示方法,包括:向显示装置的成像窗投射成像光线,以使用户通过显示装置的眼盒区域在视野中观察到虚像,虚像至少包括左侧虚像部和/或右侧虚像部;和/或,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,所述第一虚像部和所述第二虚像部相连。
这里可以理解的是,例如,在一些实施例中,可以根据用户观看效果中虚像部相对于行进路线的位置划分虚像部的类型,例如虚像部可以为位于行进路线左侧的左侧虚像部、位于行进路线右侧的右侧虚像部或者为位于左侧虚像部和右侧虚像部之间的前方虚像部。
例如,在一些实施例中,所述虚像可以包括一个虚像部;或者,所述虚像可以包括两个虚像部,并且这两个虚像部所在像面的延伸方向相交或基本平行;或者,所述虚像包括至少三个虚像部,并且至少部分相邻的虚像部所在像面的延伸方向相交。
例如,当虚像仅包括左侧虚像部(L)时,虚像为连续的虚像。即,在这种状态下,左侧虚像部(L)的画面内容可以为连续或不连续的,但左侧虚像部(L)整体成像为非拼接的和/或连续变焦的虚像,从而使得用户在观察左侧虚像部(L)的过程中,通过形成连续变焦的虚像解决用户的视差和/或视觉辐辏等问题。
同理,例如,虚像也可以被配置为仅包括右侧虚像部(R),此时虚像亦为连续的虚像。即,在这种状态下,右侧虚像部(R)的画面内容可以为连续或不连续的,但右侧虚像部(R)整体成像为非拼接的、连续变焦的虚像,从而使得用户在观察右侧虚像部(R)的过程中,通过形成连续变焦的虚像解决用户的视差和/或视觉辐辏等问题。
例如,虚像也可以被配置为同时包括左侧虚像部(L)和右侧虚像部(R),在这种配置状态下,虚像亦为连续的虚像。即,左侧虚像部(L)或右侧虚像 部(R)的画面内容可以为连续或不连续的,但左侧虚像部(L)和右侧虚像部(R)的整体成像均为非拼接的、连续变焦的虚像。不仅如此,如果左侧虚像部(L)和右侧虚像部(R)相连,则两者的连接处也为非拼接的、连续变焦的虚像。
进一步的,显示装置形成的虚像还可以包括中间虚像部,中间虚像部包括前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的一个或多个。例如,前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)依次对应显示地面上的画面、前方的画面和天空的画面。
例如,左侧虚像部(L)、右侧虚像部(R)、前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的一个或多个可以被配置为垂直于地面或倾斜于地面。
例如,虚像被配置为任意相邻的虚像部相连,且相邻的虚像部的连接处为非拼接的、连续变焦的虚像。如,最终形成的连续虚像可以被配置为簸箕型虚像(LGR+F),即包括左右两侧虚像、前下方子虚像以及前方子虚像,此时,左侧虚像和前下方子虚像、左侧虚像和前方子虚像、右侧虚像和前下方子虚像、右侧虚像和前方虚像之间都被配置为相连的状态,通过形成非拼接的、连续变焦的虚像,能够有效地解决用户的视差和/或视觉辐辏等问题。而簸箕型虚像(LGR+F)相较于U型虚像(LGR左地右或LFR左前右)而言,簸箕型虚像可以解决地面贴合、两侧贴合,且形成不影响前方远处的画面显示。
可以理解的是,在配置过程中,可以根据需求在最终形成的虚像中对前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)进行灵活选配。在最终配置完成的虚像中,如果中间虚像部包括前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的多者,则中间虚像部中相邻的虚像部之间至少部分相连。如,中间虚像部包括前下方子虚像部(G)和前方子虚像部(F),则在前下方子虚像部(G)和前方子虚像部(F)的连接处,至少部分成像均为非拼接的、连续变焦的虚像。可选地,中间虚像部中相邻的子虚像部完全相连,以获得更好的防止视差和视觉辐辏的效果。
在一些实施例中,显示装置能够被配置为包括具有像源显示器的像源组件,像源显示器包括第一显示区和第二显示区,从第一显示区出射的图像光线对应左侧虚像部(L)和/或右侧虚像部(R),从第二显示区出射的图像光线对 应虚像的其余部分。例如,第一显示区和第二显示区设置于同一个像源显示器上。即,用于形成第一虚像部和第二虚像部的光线来自于显示装置的同一像源显示器。
而在显示装置的具体配置过程中,则可以通过以下几种方式使得用户在眼盒区域观察到显示装置形成的虚像,虚像至少包括左侧虚像部(L)和/或右侧虚像部(R)。
1、在像源显示器的成像路径上设置折射件,折射件被配置为对从像源显示器出射后入射至折射件的图像光线进行折射处理,从而使得最终成像于成像窗的成像虚像是连续过渡的。
2、将像源显示器配置为弯曲像源显示器,使得像源显示器产生的图像光线在最初就是能形成连续过渡的异形图像的图像光线。例如,像源显示器可以是异形的屏幕、异形的投影屏、异形的LED屏、异形的有机发光二极管(Organic Light-Emitting Diode,OLED)屏、异形的LCD屏等。
本公开的至少一个实施例提供的显示装置,通过设置具有左右至少一侧的异形画面,两侧可以展示与真实世界中道路两侧匹配的虚拟图像。因此,能够提高用户的使用体验,提高光场画面与外界实物相贴合,提高指示效果。
在本公开的实施例中,异形是指非规则图形。例如,规则图形包括:矩形、圆形、三角形、平行四边形、正多边形。例如,异形包括U型、L型、簸箕型,但不限于此。
图4示出了根据本申请一些实施例的显示装置的结构示意图。
如图4所示,一些实施例的显示装置包括像源组件100和放大组件200。
如图4所示,像源组件100包括像源显示器110和调光部120,调光部120包括折射件121,像源组件100发射第一图像光线。
如图4所示,放大组件200设置于像源组件100的成像路径上,像源组件100发射的第一图像光线经由放大组件200后形成为第二图像光线。也就是说,放大组件200被配置为对入射的图像光线进行放大处理以得到用于形成至少部分虚像的放大光线。
如图4所示,第二图像光线经由成像窗300反射后在眼盒区域形成为连续虚像,连续虚像包括左侧虚像部(L)和右侧虚像部(R)中的至少一个。
第二方面实施例中的显示装置与第一方面实施例中的显示装置相同的是, 最终形成的连续虚像,可以被配置为包括左侧虚像部(L)和/或右侧虚像部(R),进一步地,形成的连续虚像中还可以包括前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的一个或多个。连续虚像中,相邻虚像的连接处为非拼接的、连续变焦的虚像。
以最终成像的整体异形虚像为U型虚像为例(成像也可以是簸箕形虚像或其他形状的虚像),在像源组件100的成像路径上设置U型折射件(如U型玻璃砖),U型折射件可以给经过其的光线附加光程。此时,对这部分光线而言,等效物距会改变,成像距离也会相应改变,最终实现U型虚像。
即,在成像过程中,真实物距并没有被改变。但是,通过在像源组件100的成像路径上设置U型折射件,使得光学上等效的物体到光学器件之间距离被改变了,因此像源组件100产生的第一图像光线的等效物距也被改变了。
例如,在设置U型玻璃砖后,像源显示器110射出的光线从U型玻璃砖中发生折射后射出。通过设置U型玻璃砖,像源组件100产生的虚像位置发生了变化,即增加U型玻璃砖后,像源组件100的物距改变,相应的,最终经成像窗300所成的虚像成像虚像也会变为U型。而在折射率相同的情况下,玻璃砖越厚的地方形成的虚像距离人眼越近。
同理,异形玻璃砖可以实现簸箕型画面的呈现。
例如,折射件121与最终形成的虚像的像面形状相关联,通过改变折射件121的选型,能够使得成像于成像窗300的成像虚像反射到人眼处的整体连续虚像最终可以是U型虚像、簸箕形虚像或是具有其他任意想要呈现的外形的虚像,本申请于此不做具体限制。例如,折射件121的至少部分出光面的面型与最终形成的虚像的至少部分的像面形状匹配。例如,匹配是指面型相同或相似。
可选地,放大组件200可以为曲面镜、凸透镜、衍射波导件和几何波导件、全息光学元件(Holographic Optical Element,HOE)挡风玻璃等。
可选地,放大组件200为凹面反射镜;此种情况下,凹面反射镜靠近显示区的表面为凹曲面。曲面反射镜的设置可以放大图像画面的成像尺寸,使得显示装置具有更远的成像距离和更大的成像尺寸,且曲面反射镜还可与成像窗300(如挡风玻璃)配合,以消除成像窗300造成的虚像畸变。
图5示出了根据本申请另一实施例的显示装置的结构示意图。
如图5所示,另一的显示装置包括像源组件100和放大组件200。
如图5所示,像源组件100包括弯曲像源显示器110,像源组件100发射第一图像光线。
如图5所示,放大组件200设置于像源组件100的成像路径上,像源组件100发射的第一图像光线经由放大组件200后形成为第二图像光线。
例如,第二图像光线经由成像窗300反射后在眼盒区域形成为连续虚像,连续虚像至少包括左侧虚像部(L)和右侧虚像部(R)之一。
第三方面实施例中的显示装置与第一方面实施例中的显示装置相同的是,最终形成的连续虚像,可以被配置为包括左侧虚像部(L)和/或右侧虚像部(R),进一步地,形成的连续虚像中还可以包括前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)中的一个或多个。连续虚像中,相邻虚像的连接处为非拼接的、连续变焦的虚像。
以最终成像的整体异形虚像为U型虚像为例(成像也可以是簸箕形虚像或其他形状的虚像),弯曲像源显示器110为OLED屏,该OLED屏的出光面为U型弧面,最终形成U型的虚像。弯曲像源显示器110包括显示区,显示区设在OLED屏的出光面,弯曲像源显示器110的显示区发出的第一图像光线被放大组件200反射后形成为第二图像光线,第二图像光线经由成像窗300反射后在眼盒区域形成U型虚像。
例如,弯曲像源显示器110的面型与最终形成的虚像的至少部分的像面形状相关联或匹配,通过改变弯曲像源显示器110的选型,能够改变成像于成像窗300的成像虚像反射到人眼处的整体连续虚像的形状。使得其最终的连续虚像呈现出U型虚像、簸箕形虚像或是具有其他任意想要呈现的外形的虚像。例如,匹配是指面型相同或相似。
可选地,放大组件200可以为曲面镜、凸透镜、衍射波导件和几何波导件、全息光学元件(Holographic Optical Elements,HOE)挡风玻璃等。
可选地,放大组件200为凹面反射镜;此种情况下,凹面反射镜靠近显示区的表面为凹曲面。曲面反射镜的设置可以放大图像画面的成像尺寸,使得显示装置具有更远的成像距离和更大的成像尺寸,且曲面反射镜还可与成像窗300(如挡风玻璃)配合,以消除成像窗300造成的虚像畸变。
图6(a)示出了根据本申请实施例的向后内凹的U型虚像的结构示意图。 图6(b)示出了根据本申请实施例的单左侧虚像的结构示意图。图6(c)示出了根据本申请实施例的向后内凹的U型虚像加平面虚像的结构示意图。图6(d)示出了根据本申请实施例的向前凸起的U型虚像的结构示意图。
参见图6(a)-图6(d),在本申请第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中,入射到折射件121的同一等高线的图像光线在虚像上对应的位置处于极坐标系的同一圆周上,极坐标系以设定参考点作为原点。对于连续虚像中的左侧虚像部(L)和/或右侧虚像部(R)而言,虚像的不同位置中极坐标角度越大的位置对应的虚像的部分,距离眼盒区域越近。
由于本实施例的虚像的成像距离能够在极坐标系内逐渐变化,因此可以将AR内容以适当的尺寸,展示在与环境物体匹配的距离处,从而使AR内容和环境物体之间能够对齐或者重合,从而解决视差和视觉辐辏问题,而且实现兴趣对象(point of interest,POI)由远到近的逐渐变化。
本公开一些实施例提供的显示装置,尽可能的创造一个在汽车的外界空间呈3D连续分布的画面(以下简称异形画面),该画面至少包括左、右画面中的一个。需要理解的是,要想贴合外界三维连续空间中的物体,画面肯定也是要三维连续的,尤其是要贴合路两边的建筑物等POI,传统HUD的垂直画面,难以实现这个功能。因为AR的原理,在空间上,需要一个三维虚拟画面,与现实三维世界相匹配,才能实现真正意义上的AR。本公开一些实施例提供的显示装置,对倾斜画面或平铺画面进行改善,解决道路左右两侧的POI的融合效果。本公开一些实施例提供的显示装置,面向大FOV产品时,有明显优势。
而如果在本申请第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中存在中间虚像部,且中间虚像部包括前下方子虚像部(G)和/或前上方子虚像部(T),则虚像的不同位置中下视角或仰视角越大的位置对应的虚像的部分,距离眼盒区域越近。
在这种设置状态下,用户在车辆行驶的过程中,例如用户利用本申请第一方面、第二方面以及第三方面的任一实施例的显示装置进行辅助驾驶的过程中,可以显得道路两侧中间远、两侧近、近大远小,进而能够很好的与外界环境中的物体贴合,有效地解决用户的视差和视觉辐辏等问题,缓解用户的驾驶 疲劳。
例如,第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中,左侧虚像部和/或右侧虚像部的像面形状是弯曲的,通过成像为弯曲虚像可以更加贴合道路两侧的兴趣对象特征,有效地解决用户的视差和/或视觉辐辏等问题。
这里可以理解的是,在地理信息***中,一个兴趣对象可以是一栋房子、一个商铺、一个邮筒或一个公交站等。
例如,第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中具有前下方子虚像部(地面虚像部)(G),例如形成为平铺(与地面平行或近似平行)或倾斜(远高近低)在地面上的虚像,且至少有左右两侧的一个虚像部,角度越大虚像距离越近。结合地面的虚像部,可以解决在地面显示画面的问题。例如,虚像的连接部分可以是直角或者圆弧形/圆角连接。
例如,第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中,至少包含一个具备以下要求的虚拟虚像,使得这个虚像,一个以上的边缘虚像距离比较近,虚像中央的距离比较远,例如U型虚像。例如,U型虚像可以是指从左至右向前凸起或向后内凹的U型,即具有左、前、右三部分的虚像,具体可如图6(a)所示;或者,U型虚像可以是具有左、地、右三部分的虚像,具体可如图6(d)所示;或者,U型虚像可以是具有左、上、右三部分的虚像。
进一步可选地,连续虚像可以为簸箕形虚像,即在U型虚像形状的基础上,增加一个虚像部分,例如是具有左、前、右、地四部分的虚像。进一步地,连续虚像可以在簸箕形虚像的基础上,增加一个虚像部分,例如是具有左、前、右、地、上四部分的虚像。例如,上述的各虚像可以倾斜设置。当然,U型虚像也可以向前后向后倾斜设置。
进一步的,例如,U型虚像可以像簸箕一样,形成为中间向前凸出、两侧向后延伸、在上下方向具有一定高度、上端和/或下端向后延伸的虚像。也就是说,簸箕形虚像的前方、左方、右方、下方和/或上方,可以被配置为都有虚像存在。
例如,U型虚像部包括左侧虚像部和右侧虚像部,并且U型虚像部还包括前下方子虚像部、前方子虚像部和前上方子虚像部之一。
可以理解的是,第一方面、第二方面以及第三方面的任一实施例的显示装置所形成的连续虚像中,也可以被配置为具有L型虚像部,即形成L型虚像。L型虚像部包括左侧虚像部或右侧虚像部,并且L型虚像部还包括前下方子虚像部、前方子虚像部和前上方子虚像部中之一。
例如,左侧虚像部、右侧虚像部、前下方子虚像部、前方子虚像部和前上方子虚像部中的一个或多个垂直于地面或倾斜于地面,或者前下方子虚像部平铺或平行于地面。
在第一方面、第二方面以及第三方面的任一实施例的显示装置的一些场景应用示例中,左侧虚像部显示的虚像包括与位于行进路线左侧的左侧外部兴趣对象相关的信息,和/或右侧虚像部显示的虚像包括与位于行进路线右侧的右侧外部兴趣对象相关的信息。同理,前下方子虚像部(G)、前方子虚像部(F)和前上方子虚像部(T)也可以被配置为显示的虚像包括对应的兴趣对象相关的信息。
例如,可以通过配置调节显示装置形成的虚像,使得在两侧连续虚像上显示兴趣对象(Point of Interest,POI),与现实道路两侧特征物融合,包括建筑物、停车场、公交站,交通标识牌等;或在两侧连续虚像上显示导航引导用户界面(User Interface,UI),与现实道路路口融合,包括十字路口,进出主辅路/匝道等;或在两侧连续虚像上显示盲区提示UI,与现实道路中,车身两侧盲区过来的障碍物(汽车、自行车、行人等)融合;或在地面连续虚像上显示导航引导UI,与显示道路路面融合,进行并线以及超车引导。
例如,常规多层画面因为距离不连续,不能精确和现实道路两侧物体匹配,当在道路两侧、FOV两侧,有树木,交通标识牌、路灯等障碍物,或墙面(隧道)时,呈现POI或其他相关UI的虚像画面距离大于实物时(画面钻入实物),会造成视觉辐辏,带来眩晕,影响体验;左和/或右两侧连续画面可以解决上述问题,在与显示匹配的虚像距离上呈现对应的UI。
图7(a)示出了根据本申请一些实施例的U型玻璃砖的结构示意图。图7(b)示出了根据本申请另一实施例的U型玻璃砖的结构示意图。图8示出了根据本申请另一实施例的显示装置的结构示意图。图9示出了根据本申请另一实施例的显示装置的结构示意图。
当通过在像源显示器的成像路径上设置折射件,使得成像的连续虚像包 括左侧虚像部(L)和右侧虚像部(R)中的至少一个时,通过改变折射件121的选型,能够使得成像于成像窗300的成像虚像反射到人眼处的整体连续虚像最终可以是U型虚像、簸箕形虚像或是具有其他任意想要呈现的外形的虚像。
在一些实施例中,从折射件的至少部分出光面出射的折射光线对应的光线在折射件中的光程逐渐变化。
例如,如图7(a)、图7(b)和图8、图9所示,U型玻璃砖的结构可以是具有下凹的弧面或一半下凹的弧面。U型玻璃砖的下表面为折射件121的靠近像源的面(也可以认为图像光线的入光面),U型玻璃砖的上表面为折射件121的远离像源的面(也可以认为图像光线的出光面)。沿左右方向,从至少部分区域出射的图像光线在从下表面入射折射件121到从上表面出射的过程中的光学距离逐渐变化,从而使形成的虚像中不同位置到眼睛的虚像距离(VID)逐渐变化。例如光学距离先增大再变小。这里可以理解的是,上述对于上下方向描写的内容,仅为了便于对附图进行描述,不对显示装置的实际结构产生限定。
如图9所示,U型折射元件(如U型玻璃砖)设置在像源的部分出光光路上,该折射件会增加部分光线的光程,未被覆盖的像源的光程不变,因此,经过折射件的光线最终形成U型画面,而未经过折射件的光线则形成垂直画面。
例如,折射件121包括堆叠的多个子折射件。例如多个子折射件的材料可以不同,以具有不同的折射率。
可以理解的是,折射件121从像源显示器110发出的图像光线传播到放大组件200的光学距离,指对应的像源显示器110发出的图像光线出射至放大组件200的几何路程与传播介质的折射率的乘积。在设置有折射件的情况下,从像源显示器110出射至放大组件200的图像光线的几何路程包括其穿过折射件121的部分以及穿过空气的部分,图像光线的几何路程的穿过折射件的部分与其穿过的折射件的折射率的乘积即为上述“附加光学距离”。
或者,上述“附加光学距离”也可以定义为从像源发出的图像光线传播到放大组件200过程中的几何路程的穿过折射件121的部分与其穿过的折射件121的折射率减去空气的折射率所得到的折射率差值的乘积。
在上述实施例中,例如图7(a)和图7(b),通过结构上的变化(出光面为U型面)改变了玻璃砖的折射率。而在另一些实施例中,还可通过改变玻璃砖自身折射率的方式改变玻璃砖整体的折射率。即通过改变玻璃砖的厚度和/或折射率,实现形成最终的U型虚像。例如,沿垂直于折射件121的入光面的方向,折射件121的厚度和/或折射率逐渐变化。
例如,折射件121的出光侧具有圆柱面或双曲面。设置折射件121时,折射件121可以紧贴像源显示器110,或者与像源显示器110之间具有限定间隔,可根据使用需求进行像源显示器110位置选择。例如,采用间隔设置的方式会有一定的光线损耗,即有一部分光线在折射件121的入光面处发生反射,从而造成浪费。
可选地,折射件121的入射面与像源显示器110间隔设置时的距离不小于10mm。在另一些实施例中,异形折射件121的入射面与像源组件110间隔设置时的距离小于10mm。
例如,折射件121的边侧可设置固定装置,如卡扣或者卡槽,将玻璃砖固定,避免其移动。例如,折射件121的数量不局限为一个,例如,可以形成多个独立的连续虚像,或者,多个连续的连续虚像等。
像源显示器110与折射件121的设置位置相互具有独立性,例如,当折射件121被配置为U型玻璃砖时,能够实现像源显示器110位置的灵活设置。例如在图7(a)中,像源显示器110水平设置,其配合折射件121可实现全部/部分U型虚像,无需调节像源显示器110的位置,便可降低对像源安装角度的要求。而在一些其他实施例中,像源显示器110还可为其他角度(理论上可以是任意角度),通过增加对应的U型玻璃砖,实现所需的虚像要求,此方式能降低对像源显示器110安装角度的要求。这里需要理解的是,构成折射件121的U型玻璃砖可以为完整结构,也可以为多个玻璃砖的拼接结构。
例如,折射件121是透光的,折射件121的折射率与空气的折射率不同,例如折射件121的折射率大于空气的折射率(即大于1),使得像源组件110的图像光线到放大组件200的光程不同,从而实现虚像的至少部分区域的逐渐变焦。
例如,折射件121的材料可以为无机材料、有机材料及复合材料中的至少一种。例如,该无机材料可以包括玻璃、石英等,该有机材料例如包括高分 子材料如树脂材料等,该复合材料可以包括金属氧化物掺杂-聚甲基丙烯酸甲酯等。折射件121的材料不限于上述列举材料,只要是透光的且与空气折射率存在差异即可。
例如,折射件121对光线的透光率为60%~100%。例如,折射件121对光线的透光率为80%~99%。例如,折射件121对光线的透光率为90%~99%。
例如,通过在像源显示器110出射的图像光线传播至放大组件200的光路上设置折射件121,换言之,折射件121可以位于放大组件200(曲面镜)与像源(像源显示器110)之间的光路上。例如,折射件121位于像源显示器110出射的图像光线传播至放大组件200的光路上,但不限于此,折射件121也可以位于放大组件200反射图像光线至成像窗300的光路上。
例如,折射件121的入射面可以通过透明光学胶与像源显示器110的显示面贴合。例如,折射件121的入射面与像源显示器110的显示面也可以间隔设置。例如,折射件121的入射面与像源显示器110的显示面也可以平行且间隔设置。
在一些实施例中,基于上述设置折射件的显示装置,通过对虚像的成像位置进行改变,减小虚像的成像位置与用户的视线聚焦位置之间的差距,以改善视觉辐辏冲突,提高用户体验。例如,可以防止或减少用户产生疲劳、恶心等不良状况,提高了驾驶的安全性。
图10(a)示出了根据本申请一些实施例的弯曲像源的结构示意图。图10(b)示出了根据本申请另一实施例的弯曲像源的结构示意图。图11示出了根据本申请另一实施例显示装置的结构示意图。
第三方面实施例的显示装置中,通过将像源显示器110配置为弯曲像源显示器110,使得像源显示器110产生的图像光线在最初就是能形成连续过渡的异形图像的图像光线。通过改变弯曲像源显示器110的选型,能够改变成像于成像窗300的成像虚像反射到人眼处的整体连续虚像的形状。使得至少部分虚像到眼睛的距离不同且逐渐变化,从而实现虚像的逐渐变焦,进而使得其最终的连续虚像呈现出U型虚像、簸箕形虚像或是具有其他任意想要呈现的外形的虚像。
逐渐变焦可以是虚像的垂直于地面方向和平行于地面方向中的一个方向逐渐变焦,也可以是两个方向组合逐渐变焦。
参见图10(a)、图10(b)和图11,弯曲像源显示器110可以被配置为具有下凹的弧面或具有一半下凹的弧面,而在其他实施例中,弯曲像源显示器110也可以根据需求被配置为具有上凸的弧面或其他形状。
例如,弯曲像源显示器110可以被配置为一部分为平面屏且另一部分为弧形屏,平面屏经过放大组件200的图像光线最终形成垂直虚像,弧形屏经过放大组件200的图像光线最终形成U型虚像。这里可以理解的是,垂直画面可以认为是垂直或近似垂直的,可以具有一定角度范围的误差,例如画面与地面之间的夹角在80-100度范围内,可以认为形成了垂直画面。
例如,弯曲像源显示器110的边侧可设置固定装置,如卡扣或者卡槽,将弯曲像源显示器110固定,避免其移动。
例如,弯曲像源显示器110的数量不局限为一个。
例如,弯曲像源显示器110可以形成多个独立的U型虚像,或者,多个连续的U型虚像等。
例如,弯曲像源显示器110的景深可以为0.5-1.5cm。可选地,景深为1cm。这里可以理解的是,景深为弯曲像源显示器110所形成的虚像距离人眼最远的点与距离人眼最近的点之间的差值。
例如,弯曲像源显示器110包括微米级LED显示设备、毫米级LED显示设备、硅基液晶显示设备、数字光处理器、微机电***显示器中的至少一种。
图12示出了根据本申请另一实施例的显示装置的结构示意图。
参见图12,显示装置包括像源组件(图像发出部)100和放大元件200。放大元件200包括第一反射件210和第二反射件220。
如图12所示,像源组件100发射的第一图像光线经由第一反射件210和第二反射件220后形成为第二图像光线。例如,第二图像光线经由成像窗300反射后在眼盒区域形成为连续虚像,连续虚像至少包括左侧虚像部(L)和右侧虚像部(R)之一。
例如,根据成像需求,放大元件200可以进一步包括第三反射件、第四反射件等,本申请对放大元件200中反射件的数量和布置形式不做具体限制。
例如,第一反射件210包括平面镜、曲面镜、非球面镜和球面镜中的至少一种,第二反射件220为曲面镜,曲面镜可以为凹面反射镜。此种情况下,凹面反射镜靠近显示区的表面为凹曲面。曲面反射镜的设置可以使得抬头显示 器具有更远的成像距离和更大的成像尺寸,且曲面反射镜还可与曲面的成像窗(后续提到)如挡风玻璃配合,以消除成像窗造成的虚像畸变。
例如,曲面镜可以被配置为变焦曲面镜,在一些示例中,变焦曲面镜在出厂之前完成设置,在使用过程中曲率不发生变化;在另一些示例中,变焦曲面镜可以通过电场调节曲率,以在使用过程中实时、迅速地改变曲面镜的焦距。
例如,在第一方面、第二方面以及第三方面的任一实施例的显示装置中,像源显示器110或弯曲像源显示器110可以为单色像源,也可以为彩色像源(例如,为可发出RGB混合光线的像源),如发光二极管(LED)显示器,或者液晶显示器(LCD)等。
例如,像源显示器110或弯曲像源显示器110可以为单像源、双像源或多像源,如发光二极管(LED)显示器,或者液晶显示器(LCD)等,本申请对像源显示器110或弯曲像源显示器110的种类不做限制。
例如,像源显示器110或弯曲像源显示器110可以被配置为发出虚像或者实像的液晶显示器(LCD)、发光二极管(LED)、有机发光二极管(OLED)、投影设备等显像设备,也可以被配置为由这些显像设备所形成的虚像或者实像。
图13示出了根据本申请另一实施例的显示装置的结构示意图。图14示出了根据本申请另一实施例的显示装置的结构示意图。图15示出了根据本申请另一实施例的显示装置的结构示意图。图16示出了根据本申请另一实施例的显示装置的结构示意图。
在一些实施例中,显示装置被配置为在不同时刻或同一时刻生成至少两个虚像,至少两个虚像包括第一虚像和第二虚像,第一虚像包括左侧虚像部和/或右侧虚像部。
例如,第一虚像的近端到显示装置的眼盒区域的距离小于第二虚像的近端到眼盒区域的距离;第一虚像与水平方向之间的夹角大于、等于或小于90度,并且第二虚像与水平方向之间的夹角为大于、等于或小于90度。
例如,参见图13-图16,第四方面实施例的显示装置被配置为生成与用户距离不等的至少两层虚像,至少两层虚像包括第一虚像,第一虚像包括左侧虚像部和/或右侧虚像部。第一虚像与水平方向之间的夹角大于、等于或小于90度。
例如,至少两层虚像还包括第二虚像,第一虚像的近端到显示装置的眼盒区域的距离小于第二虚像的近端到眼盒区域的距离,第二虚像与水平方向之间的夹角大于、等于或小于90度。
例如,显示装置被配置为生成至少一个虚像,至少一个虚像包括裸眼3D虚像,显示装置被配置为使用户通过至少一个虚像看到至少一个裸眼3D虚像。
例如,至少两个虚像还包括第三虚像,第三虚像为裸眼3D虚像,显示装置被配置为使用户通过至少一个虚像看到至少一个裸眼3D虚像。例如,第三虚像包括左眼虚像和右眼虚像,显示装置包括的像源组件被配置为发射供同一用户的左眼接收的左眼虚像对应的左眼光线和供同一用户的右眼接收的右眼虚像对应的右眼光线,左眼光线使用户看到左眼虚像,右眼光线使用户看到右眼虚像。
该左眼虚像区域和右眼虚像区域处于同一成像面(即成像距离基本相等),左眼光线和右眼光线由同一像源发出,从而使得用户的左眼看到左眼虚像区域的图案,右眼看到右眼虚像区域的图案,由于人眼的构造和大脑的视觉处理原理,使得用户可以看到3D效果,这一效果也可以称为裸眼3D。
例如,如图13所示,最终形成的两层虚像为U型虚像和垂直虚像,显示装置中包括两个像源显示器110,两个像源显示器110分别为弧形像源111和平面像源112。弧形像源111和平面像源112射出的光线,分别形成U型虚像和垂直虚像。
例如,图13中所示的两个虚像的成像距离不同,U型虚像比垂直虚像靠近成像窗300。而在其他未示出的实施例中,U型虚像也可以配置为比垂直虚像远离挡风玻璃,这样虚像更容易与周围环境中的物体融合,提高成像的贴合度。当然,在其他实施例中,U型虚像和垂直虚像的成像距离也可以相同,或者部分相同。
例如,如图14所示,显示装置包括三个像源显示器110,三个像源显示器110分别为弧形像源111、平面像源112和平面像源113,弧形像源111、平面像源112和平面像源113分别形成U型虚像和两个垂直虚像。例如,图中所示的三个虚像的成像距离不同,U型虚像设在两个垂直虚像之间。在另一些示例中,U型虚像可以设在最远端或最近端。在另一些示例中,三个虚像 的成像距离也可以相同,或者部分相同。另外,三个像源显示器110中像源的种类可以根据需求灵活设置,不局限于三个像源显示器110包括弧形像源111的设置状态。
例如,平面像源112和平面像源113可以被配置为并排设置,也可以为设置位置不同的独立像源结构。
进一步地,像源显示器110包括的像源数量可以为更多个,例如五个、六个等,本申请于此不做具体限制。
此外,在其他一些实施例中,弧形像源111上可以设置具有多个U型结构的曲面。在另一些实施例中,像源显示器110中不局限于在特定个数的像源为弧形屏,也就是说,在多个像源的情况下,可以至少两个像源为弧形屏,以形成多个弧形虚像。当然,在另一些实施例中,也可以通过至少两个U型玻璃砖实现多个弧形虚像。
例如,在一些实施例中,像源显示器110包括两个弧形像源,分别为第一弧形像源和第二弧形像源,第一弧形像源和第二弧形像源射出的光线,分别形成两个U型虚像。这两个U型虚像可以一远一近间隔开设置,也可以至少部分过度衔接在一起。进一步地,弧形像源可以为更多个,每个弧形像源分别形成多个U型虚像。
例如,如图15所示,像源显示器110包括弧形像源111和平面像源112,以及在弧形像源111和平面像源112的光路上设置透反元件60,弧形像源111出射的光线A透过透反元件60,平面像源112出射的光线B照射到透反元件60上发生反射,从而形成光线AB,光线A最终形成U型虚像A',光线B形成垂直虚像B',倾斜虚像A'和垂直虚像B'同轴设置。
关于同轴,U型虚像A'和垂直虚像B'的中心线重合或近似重合(二者中心线之间的夹角在设定范围内,例如夹角在10度范围内),则表示该两个虚像同轴;进一步地,如果较小虚像在较大虚像方向的投影,全部落在较大虚像的范围内,也可称之为同轴虚像。
例如,如图16所示,像源显示器110包括弧形像源111、平面像源112和平面像源113。如图16所示,在弧形像源111和平面像源112的光路上设置透反元件60,弧形像源111出射的光线A透过透反元件60,平面像源112出射的光线B照射到透反元件60上发生反射,从而形成光线AB,光线A最 终形成U型虚像A',光线B形成垂直虚像B',U型虚像A'和垂直虚像B'同轴设置。平面像源113形成的垂直虚像C'与U型虚像A'或垂直虚像B'的成像距离相同或不同。同轴显示的方式,可以减少平面反射镜的使用,能够优化空间结构。
例如,在像源显示器110的光路上设置U型折射件(如U型玻璃砖),U型折射件可以给经过其的光线附加光程,此时对这部分光线而言,等效物距会改变,成像距离也会相应改变,最终实现U型虚像。由于,弧形屏可以实现U型虚像,玻璃砖可以实现U型虚像。在一些实施例中,二者可以组合。
例如,可以利用弧形屏和U型玻璃砖配合,形成一个U型虚像,或者,形成拼接的虚像。例如,利用弧形屏和U型玻璃砖分别形成成像距离不同的U型虚像。
例如,多个虚像的位置、大小、倾斜程度和画面内容中的至少之一可以不同。
图17示出了根据本申请另一实施例的显示装置的结构示意图。
参见图17,对裸眼3D成像进行描述,显示装置的像源显示器110包括8列像源单元、2个第一阻挡单元和2个第二阻挡单元为例进行说明。光屏障与像源显示器110之间存在间隔d2,第一阻挡单元410和第二阻挡单元420均可以阻挡光线,故部分像源单元(如图3所示的R1、R2、R3、R4)发出的第二光线不能到达左眼区域,在左眼区域只能观看到像源单元L1、L2、L3、L4发出的第一光线;同理,在右眼区域只能观看到像源单元R1、R2、R3、R4发出的第二光线。第一阻挡单元410允许第一光线射至第一指定区域(如图3所示的左眼区域),如像源单元L1、L2、L3、L4发出的第一光线;而第二阻挡单元420允许第二光线射至第二指定区域(如图3所示的右眼区域),比如像源单元R1、R2、R3、R4发出的第二光线,通过将左眼和右眼的可视虚像分开,进而实现立体成像。例如,第一阻挡单元410和第二阻挡单元420的大小、以及第一阻挡单元410和第二阻挡单元420之间的位置可经过精密计算而得,从而可以确保在特定位置成像。
图18示出了根据本申请另一实施例的显示装置的结构示意图。
例如,显示装置对光源发出的光线进行方向控制时,通常采用围绕光源设置的不透光壳体控制光源发出的光线的方向,例如空心的反光杯。但是通过不 透光壳体控制光线的方向会导致虚像的均匀度差,无法保证画质,不透光壳体还会影响光源的散热。
本申请的显示装置的像源显示器110包括具有多个光源114的光源部和透光准直部115,多个光源114发出的光透过透光准直部115,至少部分多个光源114中的每个未设置用于反射光源114发出的光的反光杯。和/或,多个光源114所在的光源层与透光准直部115所在的准直层之间至少包括连续的气体介质层。这里可以理解的是,像源显示器110包括光源部和透光准直部115,光源部具有多个光源114。
例如,多个光源114发出的光直接入射至透光准直部115。
例如,如图18至图20所示,像源显示器110包括方向控制模组116,方向控制模组116包括透光准直部115和多个透明聚光部117与多个透明聚光部117相对应的光源114发出的光在透过多个透明聚光部117之后透过透光准直部115,透光准直部115和多个透明聚光部117之间的区域至少为连续的气体介质层。由此,至少部分光源114可以不设置反光杯,从而有利于光源114散热。
例如,气体介质层与准直层和光源层相邻,由此,光源114发出的光透过气体介质层后直接入射至准直件;或者,气体介质层与包括多个透明聚光部117的聚光层和准直层相邻,由此,光源114发出的光透过透明聚光部117和气体介质层后直接入射至准直件。
例如,气体介质层可以为空气或者其它气体。
例如,准直件的中心与对应的光源114的中心共线。
例如,准直件为凸透镜或菲涅尔透镜,准直件可以将经过的光线的发散角变小。
例如,从所述多个透明聚光部117出射的光直接入射至透光准直部115。
例如,多个透明聚光部117具有容纳对应的光源114的凹槽。
例如,多个透明聚光部117与对应的光源114贴合。
例如,多个透明聚光部117的出光面为沿远离对应的光源114的方向凸出的凸面。
例如,多个透明聚光部117中的至少一个为平凸透镜。
例如,如图19和图20所示,透明聚光部117的出光面至少包括第一出 光曲面,可将光源114设置在透明聚光部117的第一出光曲面的焦点处。光源114可以设置在透明聚光部117的内部。
例如,光源114嵌入在透明聚光部117的内部,并且位于透明聚光部117的下表面的中间位置。透明聚光部117可以是具有一个平面和一个凸面的平凸透镜。
在一些实施例中,在上述第一至第四方面中的任一实施例的基础上,透明聚光部117的出光面为凸起的抛物面,光源114嵌设在透明聚光部117内部且位于抛物面的焦点处;或者,透明聚光部117的出光面为凸起的圆弧面,光源114嵌设在透明聚光部117内部且位于圆弧面的焦点处;或者,透明聚光部117的出光面包括第一出光曲面和第二出光侧面,第一出光曲面为凸起的抛物面,光源114嵌设在透明聚光部内部且位于抛物面的焦点处;或者,透明聚光部117的出光面包括第一出光曲面和第二出光侧面,第一出光曲面为凸起的圆弧面,光源114嵌设在透明聚光部内部且位于圆弧面的焦点处。
例如,透明聚光部117下表面为贴合在基板上的平面,上表面为沿光源114的出光方向的凸面。透明聚光部117位于光源114的出光方向上。透明聚光部117配置为对光源114发出的光线进行会聚得到第一会聚光线,并将第一会聚光线出射至透光准直部115,透光准直部115配置为对入射的第一会聚光线进行进一步会聚得到第二会聚光线,并将第二会聚光线入射至光线会聚部118。通过透明聚光部117和透光准直部115对光源114发出的光线进行会聚,可以进一步提高对光源发出的光线的利用率。
图21示出了根据本申请另一实施例的显示装置的结构示意图。
例如,像源组件100一般利用目标波段的光线进行成像,该目标波段包含至少一个谱带;例如像源组件100可以利用RGB(红、绿、蓝)三种波段颜色的光线实现成像。在像源组件100包含液晶面板的情况下,像源组件100能够出射特定偏振特性的光线,例如第二偏振特性的光线;并且,透反膜31能够反射在目标波段内具有第二偏振特性的光线,该透反膜31对至少一个谱带的第二偏振特性的光线具有较高的反射率,对其他光线具有较高的透射率,例如对在目标波段内具有第一偏振特性的光线、以及除目标波段之外的其他光线(包括具有第一偏振特性的光线和具有第二偏振特性的光线)具有较高的透射率。该透反膜31能够将像源组件100射出的大部分光线反射至观察区, 并且,外部环境光的大部分也能够入射至观察区,例如大部分波段的第一偏振特性的光线均可透过该透反膜31到达观察区,使得用户可以正常观看外部事物。
例如,目标波段包括至少一个谱带,例如至少一个谱带的半高宽可以小于或等于60nm。
例如,参见图21所示,如果第一偏振特性的光线为P偏振态的光线(以下简称为P偏振光),第二偏振特性的光线为S偏振态的光线(以下简称为S偏振光),导光装置能够向像源组件100出射光线410,该光线410为P偏振光;在像源组件100发出的光线为RGB光线的情况下,该光线410为RGB的P偏振光。像源组件100能够将光线410转换为光线420,该光线420为成像光线,且该成像光线为RGB的S偏振光,透反膜31能够反射RGB的S偏振光,并透射其他光线。例如,透反膜31对S偏振态的红光、绿光和蓝光具有较高的反射率(例如,透射率约为70%~90%),而对其他波段的光线以及P偏振态的红光、绿光和蓝光具有较高的透射率(例如,透射率约为70%~90%)。
如图21所示,如果像源组件100出射S偏振态的RGB光线420,透反膜31对该光线420具有较高的反射率,因此,像源组件100出射的大部分光线420能够被透反膜31反射成光线430,且该光线430被反射至观察区,提升了成像亮度;并且,外部环境光310中的绝大部分光线都可以正常透射,也不会影响对外界环境的观察;例如外部环境中也存在主要出射目标波段光线的事物,例如发出红色、绿色的交通信号灯等,信号灯等类似装置产生的光线波段与RGB等目标波段接近或重合,信号灯发出的光线中具有第二偏振特性(例如S偏振态)的部分光线311被反射膜31反射,但信号灯发出的光线中具有第一偏振特性(例如P偏振态)的部分光线312仍能够以高透射率透过反射膜31,观察区的用户仍然可以正常观看到信号灯等发出的光线。例如,该光线312中还可以包括除RGB波段之外的其他波段的光线。
上述的第一偏振特性也可以为S偏振态,也可以为圆偏振、椭圆偏振等其他的偏振态,本实施例对此不做限定;以及,上述的RGB分别为红光、绿光及蓝光的简称;例如,其可以是连续波段内分布的红光、绿光和蓝光,也可以是非连续分布的红光、绿光和蓝光,例如上述光线的波长半高宽不大于60nm,蓝光波长峰值位置可以位于410nm~480nm区间范围内,绿光波长的 峰值位置可以位于500nm~565nm区间范围内,红光波长的峰值位置可以位于590nm~690nm区间范围内。
例如,虚像与观察区之间的距离范围为2-20m。这里可以理解,虚像的显示内容的覆盖范围可以为距离观察区的2-20m的范围内。例如,虚像的显示内容的覆盖范围可以为距离观察区大于或等于2米且小于或等于6米的范围内,例如虚像的显示内容的覆盖范围可以为大于或等于2米且小于或等于5米的范围内,例如虚像的显示内容的覆盖范围可以为大于或等于2米且小于或等于4米的范围内;和/或,虚像的显示内容的覆盖范围可以为距离观察区大于或等于10米且小于或等于20米的范围内,例如虚像的显示内容的覆盖范围可以为大于或等于12米且小于或等于20米的范围内,例如虚像的显示内容的覆盖范围可以为大于或等于14米且小于或等于20米的范围内。例如,观察区可以为用户眼睛所在的一定区域范围内,如用户双眼所在的、可以看到显示装置显示的图像的区域,例如可以是平面区域或者立体区域。
以上对本申请实施例进行了详细描述和解释。应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
最后应说明的是:以上所述仅为本公开的示例实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (37)

  1. 一种显示装置,其中,所述显示装置被配置为使用户通过所述显示装置的眼盒区域观察到虚像,
    所述虚像至少包括左侧虚像部和/或右侧虚像部。
  2. 一种显示装置,其中,所述显示装置被配置为使用户通过所述显示装置的眼盒区域观察到虚像,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,所述第一虚像部和所述第二虚像部相连。
  3. 一种显示装置,其中,所述显示装置被配置为使用户通过所述显示装置的眼盒区域观察到虚像,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,用于形成所述第一虚像部和所述第二虚像部的光线来自于所述显示装置包括的同一像源显示器。
  4. 根据权利要求1-3中任一项所述的显示装置,其中,
    所述虚像为连续的虚像,或者所述虚像包括像面延伸方向相交的多个虚像部且相邻的虚像部中的至少部分相连;和/或,
    所述显示装置包括具有像源显示器的像源组件,所述像源显示器包括第一显示区和第二显示区,从所述第一显示区出射的图像光线对应所述左侧虚像部和/或所述右侧虚像部,从所述第二显示区出射的图像光线对应所述虚像的其余部分。
  5. 根据权利要求1-4任一项所述的显示装置,其中,所述显示装置包括具有像源显示器的像源组件,其中,
    所述像源显示器为弯曲像源显示器;和/或,
    所述像源组件还包括折射件,所述折射件被配置为对从所述像源显示器出射后入射至所述折射件的所述图像光线进行折射处理。
  6. 根据权利要求5所述的显示装置,其中,
    在所述像源显示器为所述弯曲像源显示器的情况下,所述弯曲像源显示器的面型与所述虚像的至少部分的像面形状匹配;
    在所述像源组件包括所述折射件的情况下,所述折射件的至少部分出光面的面型与所述虚像的至少部分的像面形状匹配。
  7. 如权利要求5所述的显示装置,其中,入射到所述折射件的同一等高线的图像光线在虚像上对应的位置处于极坐标系的同一圆周上,所述极坐标系以设定参考点作为原点。
  8. 根据权利要求1-7中任一项所述的显示装置,其中,
    所述显示装置还包括放大组件,所述放大组件包括曲面反射镜、凸透镜、衍射波导件、几何波导件、HOE挡风玻璃中的一种或多种。
  9. 根据权利要求8所述的显示装置,其中,
    所述放大组件包括变焦曲面镜,所述变焦曲面镜的面型与所述虚像的至少部分的像面形状匹配。
  10. 根据权利要求1-9中任一项所述的显示装置,其中,
    所述左侧虚像部显示的画面包括与位于行进路线左侧的左侧外部兴趣对象相关的信息;和/或,
    所述右侧虚像部显示的画面包括与位于行进路线右侧的右侧外部兴趣对象相关的信息。
  11. 根据权利要求1-10中任一项所述的显示装置,其中,
    所述虚像的不同位置中极坐标角度越大的位置对应的虚像部分距离所述眼盒区域越近;和/或,
    所述虚像的不同位置中下视角或仰视角越大的位置对应的虚像部分距离所述眼盒区域越近。
  12. 根据权利要求1-11中任一项所述的显示装置,其中,所述虚像中至少部分虚像部的相连接部分为直角或圆角。
  13. 根据权利要求1-12中任一项所述的显示装置,其中,所述左侧虚像部和/或所述右侧虚像部的像面形状是弯曲的。
  14. 根据权利要求1-13中任一项所述的显示装置,其中,
    所述虚像至少包括截面为U型的U型虚像部,所述U型虚像部包括所述左侧虚像部和所述右侧虚像部,并且所述U型虚像部还包括前下方子虚像部、前方子虚像部和前上方子虚像部之一;和/或,
    所述虚像至少包括截面为L型的L型虚像部,所述L型虚像部包括所述左侧虚像部或所述右侧虚像部,并且所述L型虚像部还包括前下方子虚像部、前方子虚像部和前上方子虚像部之一。
  15. 根据权利要求1-14中任一项所述的显示装置,其中,
    所述左侧虚像部和/或所述右侧虚像部垂直于地面或倾斜于地面;或者,
    所述虚像还包括前方子虚像部,所述前方子虚像部包括前下方子虚像部、前方子虚像部和前上方子虚像部中的一个或多个,其中,所述左侧虚像部、所 述右侧虚像部、所述前下方子虚像部、所述前方子虚像部和所述前上方子虚像部中的一个或多个垂直于地面或倾斜于地面,或者所述前下方子虚像部平铺或平行于地面。
  16. 根据权利要求1-15中任一项所述的显示装置,其中,所述虚像还包括前方子虚像部,所述前方子虚像部包括前下方子虚像部、前方子虚像部和前上方子虚像部中的一个或多个,
    其中,所述前方子虚像部中相邻的子虚像部不相连,或者,所述前方子虚像部中任意相邻的子虚像部相连,或者所述前方子虚像部中相邻的部分子虚像部相连,和/或,所述左侧虚像部与和其相邻的至少部分子虚像部相连,和/或所述右侧虚像部与和其相邻的至少部分子虚像部相连。
  17. 根据权利要求1、4-7、9任一项所述的显示装置,其中,
    所述显示装置被配置为在不同时刻或同一时刻生成至少两个虚像,所述至少两个虚像包括第一虚像和第二虚像,所述第一虚像包括所述左侧虚像部和/或所述右侧虚像部。
  18. 根据权利要求17所述的显示装置,其中,所述第一虚像的近端到所述显示装置的眼盒区域的距离小于所述第二虚像的近端到所述眼盒区域的距离;
    所述第一虚像与水平方向之间的夹角大于、等于或小于90度,并且所述第二虚像与水平方向之间的夹角为大于、等于或小于90度。
  19. 根据权利要求1-18中任一项所述的显示装置,其中,
    所述显示装置被配置为生成至少一个虚像,所述至少一个虚像包括裸眼3D虚像,所述显示装置被配置为使用户通过至少一个虚像看到至少一个裸眼3D虚像。
  20. 根据权利要求4-7中任一项所述的显示装置,其中,
    所述显示装置的像源组件包括具有多个光源的光源部和透光准直部,所述多个光源发出的光透过所述透光准直部,
    其中,至少部分所述多个光源中的每个未设置用于反射所述光源发出的光的反光杯,和/或,所述多个光源所在的光源层与所述透光准直部所在的准直层之间至少包括连续的气体介质层。
  21. 根据权利要求20所述的显示装置,其中,
    所述光源发出的光直接入射至所述透光准直部;或者
    所述像源组件包括方向控制模组,所述方向控制模组包括所述透光准直部和多个透明聚光部,与所述多个透明聚光部相对应的光源发出的光在透过所述多个透明聚光部之后透过所述透光准直部,所述透光准直部和所述多个透明聚光部之间的区域至少为连续的气体介质层。
  22. 根据权利要求21所述的显示装置,其中,
    从所述多个透明聚光部出射的光直接入射至所述透光准直部;和/或,
    所述多个透明聚光部具有容纳对应的光源的凹槽;和/或,
    所述多个透明聚光部与对应的光源贴合;和/或,
    所述多个透明聚光部的出光面为沿远离对应的光源的方向凸出的凸面;和/或,
    所述多个透明聚光部中的至少一个为平凸透镜。
  23. 根据权利要求21或22所述的显示装置,其中,
    所述多个透明聚光部的出光面为凸起的抛物面,所述光源嵌设在所述多个透明聚光部内部且位于所述抛物面的焦点处;或者,
    所述多个透明聚光部的出光面为凸起的圆弧面,所述光源嵌设在所述多个透明聚光部内部且位于所述圆弧面的焦点处;或者,
    所述多个透明聚光部的出光面包括第一出光曲面和第二出光侧面,所述第一出光曲面为凸起的抛物面,所述光源嵌设在所述多个透明聚光部内部且位于所述抛物面的焦点处;或者,
    所述多个透明聚光部的出光面包括第一出光曲面和第二出光侧面,所述第一出光曲面为凸起的圆弧面,所述光源嵌设在所述多个透明聚光部内部且位于所述圆弧面的焦点处。
  24. 根据权利要求1-4中任一项所述的显示装置,还包括:
    像源组件,所述像源组件被配置为发射图像光线;
    折射件,其被配置为对入射的图像光线进行折射处理以得到折射光线;以及
    放大组件,其被配置为对入射的折射光线进行放大处理以得到用于形成至少部分所述虚像的放大光线。
  25. 根据权利要求24所述的显示装置,其中,所述折射件包括一个或多个子折射件,和/或所述折射件的至少部分出光面包括曲面和/或平面。
  26. 根据权利要求24或25所述的显示装置,其中,
    从所述折射件的至少部分出光面出射的折射光线对应的光线在所述折射件中的光程逐渐变化。
  27. 根据权利要求24或25所述的显示装置,其中,
    沿垂直于所述折射件的入光面的方向,所述折射件的厚度和/或折射率逐渐变化。
  28. 根据权利要求24或25所述的显示装置,其中,
    所述折射件的入射面与所述像源贴合设置或间隔设置,所述折射件的入射面与所述像源间隔设置时的距离不小于10mm。
  29. 如权利要求1-3中任一项所述的显示装置,还包括:
    像源组件,其包括弯曲的像源显示器,所述像源显示器被配置为发出图像光线;
    放大组件,其被配置为对入射的图像光线进行放大处理以得到用于形成至少部分所述虚像的放大光线。
  30. 根据权利要求29所述的显示装置,其中,所述弯曲像源至少部分出光面为曲面。
  31. 根据权利要求29所述的显示装置,其中,所述弯曲像源的出光面为弧形面,所述弯曲像源的景深为0.5-1.5cm。
  32. 根据权利要求29所述的显示装置,其中,所述弯曲像源包括微米级LED显示设备、毫米级LED显示设备、硅基液晶显示设备、数字光处理器、微机电***显示器中的至少一种。
  33. 根据权利要求1-3中任一项所述的显示装置,其中,所述虚像与观察区之间的距离范围为2-20m。
  34. 一种像源装置,其中,所述像源装置为用于如权利要求24-28任一项所述显示装置的像源装置,并且所述像源装置包括所述像源组件和所述折射件;
    或者,所述像源装置为用于如权利要求29-33任一项所述显示装置的像源装置,并且所述像源装置包括所述弯曲像源显示器。
  35. 根据权利要求1-33中任一项所述的显示装置,其中,所述显示装置为抬头显示装置,所述显示装置包括成像窗,所述成像窗被配置为将入射的光线反射至所述眼盒区域。
  36. 一种交通设备,包括如权利要求1-33中任一项所述的显示装置。
  37. 一种显示方法,包括:
    向显示装置的成像窗投射成像光线,以使用户通过所述显示装置的眼盒区域在视野中观察到虚像,
    其中,所述虚像至少包括左侧虚像部和/或右侧虚像部;和/或,所述虚像至少包括像面延伸方向相交的第一虚像部和第二虚像部,所述第一虚像部和所述第二虚像部相连。
PCT/CN2023/109064 2022-07-28 2023-07-25 显示装置、像源装置、交通设备及显示方法 WO2024022322A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221975965.9 2022-07-28
CN202210901853.7A CN117518464A (zh) 2022-07-28 2022-07-28 显示装置、像源装置、交通设备及显示方法
CN202221975965 2022-07-28
CN202210901853.7 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024022322A1 true WO2024022322A1 (zh) 2024-02-01

Family

ID=89705513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109064 WO2024022322A1 (zh) 2022-07-28 2023-07-25 显示装置、像源装置、交通设备及显示方法

Country Status (1)

Country Link
WO (1) WO2024022322A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109614A (ja) * 2015-12-16 2017-06-22 株式会社デンソー ヘッドアップディスプレイ装置
CN112534334A (zh) * 2018-10-10 2021-03-19 纳宝实验室株式会社 使影像位于地面而对驾驶员的视点实现增强现实的三维增强现实平视显示器
CN112731667A (zh) * 2021-01-05 2021-04-30 业成科技(成都)有限公司 投影装置及投影方法
CN113109939A (zh) * 2020-01-10 2021-07-13 未来(北京)黑科技有限公司 一种多层次成像***
CN114137725A (zh) * 2020-09-04 2022-03-04 未来(北京)黑科技有限公司 一种可显示三维图像的抬头显示***
CN219245861U (zh) * 2022-07-28 2023-06-23 未来(北京)黑科技有限公司 一种带有曲面像源的抬头显示装置和交通工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109614A (ja) * 2015-12-16 2017-06-22 株式会社デンソー ヘッドアップディスプレイ装置
CN112534334A (zh) * 2018-10-10 2021-03-19 纳宝实验室株式会社 使影像位于地面而对驾驶员的视点实现增强现实的三维增强现实平视显示器
CN113109939A (zh) * 2020-01-10 2021-07-13 未来(北京)黑科技有限公司 一种多层次成像***
CN114137725A (zh) * 2020-09-04 2022-03-04 未来(北京)黑科技有限公司 一种可显示三维图像的抬头显示***
CN112731667A (zh) * 2021-01-05 2021-04-30 业成科技(成都)有限公司 投影装置及投影方法
CN219245861U (zh) * 2022-07-28 2023-06-23 未来(北京)黑科技有限公司 一种带有曲面像源的抬头显示装置和交通工具

Similar Documents

Publication Publication Date Title
JP6875542B2 (ja) 導光板、及び映像表示装置
JP6004706B2 (ja) 表示装置及びこれを備えたヘッドアップディスプレイシステム
JP5990998B2 (ja) 虚像表示装置
US20100214635A1 (en) Display device, display method and head-up display
US20090009594A1 (en) Three-Dimensional Representation Apparatus
JP7348750B2 (ja) 情報表示システムとそれを利用した車両用情報表示システム
CN104380157A (zh) 定向照明波导布置方式
JP7195454B2 (ja) 光源装置、それを利用した情報表示システムおよびヘッドアップディスプレイ装置
CN103765294A (zh) 用于头戴式显示器的轻质目镜
JP7282174B2 (ja) 情報表示システム
CN212569297U (zh) 一种抬头显示装置及抬头显示***
US20150236302A1 (en) Organic light-emitting display device
WO2022037703A1 (zh) 多层图像显示装置、抬头显示器以及交通设备
WO2019073935A1 (ja) 情報表示装置
JP2018205451A (ja) 表示装置
CN113031264B (zh) 双光程投射装置和显示***
CN211375182U (zh) 一种抬头显示设备、成像***和车辆
WO2024022371A1 (zh) 显示装置、抬头显示装置和交通工具
WO2024022322A1 (zh) 显示装置、像源装置、交通设备及显示方法
CN218213623U (zh) 显示装置、抬头显示器以及交通设备
CN213338216U (zh) 抬头显示装置及车辆
WO2023123338A1 (zh) 显示装置、抬头显示器以及交通设备
JP2001021836A (ja) 車両用表示装置
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
WO2024022506A1 (zh) 像源、显示装置、抬头显示装置以及交通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845532

Country of ref document: EP

Kind code of ref document: A1