WO2022037703A1 - 多层图像显示装置、抬头显示器以及交通设备 - Google Patents

多层图像显示装置、抬头显示器以及交通设备 Download PDF

Info

Publication number
WO2022037703A1
WO2022037703A1 PCT/CN2021/114139 CN2021114139W WO2022037703A1 WO 2022037703 A1 WO2022037703 A1 WO 2022037703A1 CN 2021114139 W CN2021114139 W CN 2021114139W WO 2022037703 A1 WO2022037703 A1 WO 2022037703A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
display
sub
image
reflection
Prior art date
Application number
PCT/CN2021/114139
Other languages
English (en)
French (fr)
Inventor
徐俊峰
吴慧军
方涛
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Publication of WO2022037703A1 publication Critical patent/WO2022037703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • At least one embodiment of the present disclosure relates to a multilayer image display apparatus, a head-up display, and a transportation device.
  • the Head Up Display (HUD) device can use the reflective optical design to project the image light (including vehicle information such as vehicle speed) from the image source onto the imaging window (such as windshield, imaging plate, etc.) Allowing users (such as drivers and/or passengers) to see information directly without looking down at the instrument panel while driving can improve driving safety and bring a better driving experience.
  • vehicle information such as vehicle speed
  • imaging window such as windshield, imaging plate, etc.
  • At least one embodiment of the present disclosure provides a multi-layer image display device, a head-up display, and a transportation device.
  • a multi-layer image display device provided by an embodiment of the present disclosure includes: an image source, including at least two display areas, the at least two display areas including a first display area and a second display area; a first display area a reflective element configured to reflect image light emitted by the at least two display areas; a second reflective element configured to reflect the image propagated toward the second reflective element after being reflected by the first reflective element light.
  • the first reflection element includes at least a first sub-reflection element and a second sub-reflection element, and the image light emitted from the first display area propagates to the second reflection after being reflected by the first sub-reflection element element, the image light emitted from the second display area propagates to the second reflection element after being reflected by the second sub-reflection element.
  • an embodiment of the present disclosure provides a multi-layer image display device, comprising: an image source; a first reflecting element configured to reflect image light emitted by the image source; and a second reflecting element configured to reflect The image light rays propagated to the second reflection element after being reflected by the first reflection element, wherein the image light rays are reflected by the second reflection element to form a plurality of sub-virtual images, and the plurality of sub-virtual images include the first A sub-virtual image, a second sub-virtual image and a third sub-virtual image, among the first sub-virtual image, the second sub-virtual image and the third sub-virtual image, the sub-virtual image with the center imaging distance is inclined with respect to the horizontal direction and the inclination degree is smaller than that of the other two sub-virtual images The angle relative to the horizontal.
  • the first display area and the second display area of the at least two display areas are emitted from the first display area and the second display area and propagate to the
  • the optical distances of the image rays of the second reflection element are the same or different, and the image rays emitted from the first display area and the second display area of the at least two display areas and propagated to the second reflection element form different virtual images .
  • the optical light of the image light emitted from the first display area and propagated to the second reflective element The distance is less than the optical distance of the image light rays exiting the second display area and propagating to the second reflective element.
  • the second display area is located on a side of the first display area away from the second reflective element
  • the second sub-reflection element is located on a side of the first sub-reflection element away from the second reflection element
  • the distance between the center of the second sub-reflection element and the second display area is greater than the distance between the center of the second sub-reflection element and the second display area The distance between the center of the first sub-reflection element and the first display area.
  • the display surface of the first display area and the display surface of the second display area are parallel, and the The included angle between the reflection surface of the first sub-reflection element and the reflection surface of the second sub-reflection element is not greater than 20°.
  • the image source includes a first sub-image source
  • the first sub-image source includes the first display area and the second display area
  • a light-shielding structure is arranged between the first display area and the second display area.
  • the area of the first display area is smaller than the area of the second display area.
  • the first sub-reflection element and the second sub-reflection element are integrally formed.
  • the at least two display areas further include a third display area
  • the first reflective element further includes a third display area.
  • a sub-reflection element, the image light emitted by the third display area is transmitted to the second reflection element after being reflected by the third sub-reflection element.
  • the included angle between the display surface of the first display area and the display surface of the third display area 5° ⁇ 90°.
  • the optical light of the image light emitted from the first display area and propagated to the second reflective element a distance less than the optical distance of the image light rays exiting the third display area and propagating to the second reflective element, and the image exiting the third display area and propagating to the second reflective element
  • the optical distance of the light rays is less than the optical distance of the image light rays that exit from the second display area and travel to the second reflection element; or, exit from the third display area and travel to the second reflection element
  • the optical distance of the image light rays is smaller than the optical distance of the image light rays exiting from the first display area and propagating to the second reflection element.
  • the third display area is located on a side of the second display area away from the second reflective element
  • the third sub-reflection element is located on a side of the second sub-reflection element away from the second reflection element, and the distance between the center of the third sub-reflection element and the third display area is smaller than the distance between the center of the third sub-reflection element and the third display area.
  • the distance between the center of the first sub-reflection element and the first display area; or, the third display area is located on the side of the first display area close to the second reflection element, and the third sub-reflection element on the side of the first sub-reflection element close to the second reflection element.
  • the first sub-reflection element, the second sub-reflection element, and the third sub-reflection element are all is a plane reflection mirror; or, in the case that the third sub-reflection element is located on the side of the first sub-reflection element close to the second reflection element, the first sub-reflection element and the second sub-reflection element
  • the reflective elements are all flat mirrors
  • the third sub-reflection element is a transflective element, and is configured to transmit at least one of the first sub-reflection element and the second sub-reflection element and reflect toward the second sub-reflection element the image rays of the reflective element.
  • the transflective element includes a polarized transflective element, and the third display area emits a light having a first polarization Polarized light, the light emitted by at least one of the first display area and the second display area has at least a second polarization, the first polarization and the second polarization are different, and the transflective element is is configured to reflect the polarized light with the first polarization and transmit the light with the second polarization; or, the transflective element is a wavelength selective transflective element, and the light emitted from the third display area
  • the waveband where the image light is located is the first waveband group
  • the waveband where the image light beam emitted by at least one of the first display area and the second display area is located is the second waveband group
  • the transflective element is configured to reflect the The image light of the first waveband group is transmitted and the image light of the second waveband group is
  • the image source further includes a second sub-image source, and the second sub-image source includes the third sub-image source display area; or, the first sub-image source includes the third display area.
  • At least one embodiment of the present disclosure provides a head-up display including a reflective imaging part and a display device, wherein the reflective imaging part is configured to reflect image light reflected from the second reflective element to the reflective imaging part to a an observation area, and transmits ambient light; wherein, the display device is any of the above-mentioned display devices.
  • the distance between the first virtual image formed by the image light emitted by the first display area and reflected by the reflection imaging part and the observation area is 2-4 meters
  • the distance between the second virtual image formed by the image light emitted by the second display area and reflected by the reflection imaging part and the observation area is 20-50 meters.
  • the at least two display areas further include the third display area
  • the display surface of the first display area and the display surface of the third display area The included angle between them is 5° to 90°.
  • the image light emitted by the third display area is reflected by the reflection imaging part
  • the distance between the formed third virtual image and the observation area is 7-14 meters
  • the first virtual image and the second virtual image are parallel or have a non-zero included angle
  • the third virtual image and the first virtual image are parallel.
  • the included angle between a virtual image is 5° to 90°.
  • the first virtual image and the second virtual image are in a vertical direction, and the third virtual image is inclined in a direction away from the observation area.
  • a virtual image formed by the image light emitted by the second display area being reflected by the second reflection element is located at the focal plane of the reflection imaging part.
  • At least one of the first virtual image, the second virtual image, and the third virtual image is inclined in a direction away from the observation area.
  • a virtual image formed by the image light emitted by the first display area and reflected by the reflection imaging part is a first virtual image
  • the image emitted by the second display area The virtual image formed by the light reflected by the reflection imaging part is the second virtual image
  • the virtual image formed by the image light emitted by the third display area and reflected by the reflection imaging part is the third virtual image
  • the first virtual image , the second virtual image and the third virtual image, the inclination degree of the virtual image centered from the observation area relative to the horizontal direction is smaller than the included angle of the remaining two virtual images relative to the horizontal direction.
  • the head-up display further includes a package housing having an opening, wherein the image source, the first reflection element and the second reflection element are all located in the package housing,
  • the reflection imaging part is located outside the package casing, and the image light emitted from the opening of the packaging case is reflected to the observation area by the reflection imaging part.
  • a transparent dustproof film is provided at the opening position to encapsulate the opening, and a light shield is provided outside the transparent dustproof film, and the light shield does not block the passage from the opening.
  • the light path of the image light beams that are emitted and propagated to the reflection imaging part, and the light shielding cover is configured to block part of the ambient light.
  • At least one embodiment of the present disclosure provides a transportation device, including any of the above-mentioned display devices, or any of the above-mentioned head-up displays.
  • the reflective imaging part is a windshield or an imaging window of the traffic equipment.
  • the first sub virtual image in the display device provided by the second aspect of the present disclosure may be the first virtual image in the head-up display provided by any embodiment of the present disclosure, and/or the display provided by the second aspect of the present disclosure
  • the second sub-virtual image in the device may be the second virtual image in the head-up display provided by any embodiment of the present disclosure
  • the third sub-virtual image in the display device provided by the second aspect of the present disclosure may be any implementation of the present disclosure
  • the third virtual image in the head-up display provided by the example
  • FIG. 1 is a schematic partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure
  • FIG. 2 is a schematic partial structural diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • FIG. 3 is a schematic plan view of the sub-image source shown in FIG. 1;
  • FIG. 4 is a schematic partial structural diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • FIG. 5 is a schematic partial structural diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • FIG. 6A is a schematic structural diagram of a head-up display provided according to an example of an embodiment of the present disclosure.
  • FIG. 6B is a schematic structural diagram of a head-up display provided according to an example of another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a head-up display provided according to an example of another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a package housing in the head-up display shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • FIGS. 10A to 10D are schematic structural diagrams of a reflective light guide element provided according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a combination of a light beam converging element and a reflective light guiding element provided according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of an optical path of a combination of a reflective light guide element, a beam condensing element, and a beam diffusing element provided according to an embodiment of the present disclosure
  • FIG. 13 is a schematic partial structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • FIG. 14 is a schematic partial structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • FIG. 15 is a partial structural schematic diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • 16 is an exemplary block diagram of a transportation device provided according to another embodiment of the present disclosure.
  • the distance between the image displayed by the head-up display and the human eye is fixed when the head-up display is in use, and the real scene around the vehicle, such as buildings, pedestrians or other vehicles, is constantly moving relative to the vehicle during the driving process of the vehicle using the head-up display. , the distance between the real scene around the vehicle and the driver is constantly changing.
  • the inventors of the present disclosure found that the distance between the image displayed by the head-up display and the human eye is generally fixed when in use, for example, the distance between the image and the human eye is about 5-20 meters.
  • the user such as a driver
  • the user needs to switch the line of sight between the image with a fixed distance displayed by the head-up display and the real scene with different distances, which is prone to conflict in the adjustment of visual vergence, causing the driver to experience problems such as blurring and dizziness. Waiting for visual fatigue, which reduces the experience of using the head-up display.
  • Embodiments of the present disclosure provide a multi-layer image display device, a head-up display, and a transportation device.
  • the display device includes an image source, a first reflection element and a second reflection element.
  • the image source includes at least two display areas, the at least two display areas include a first display area and a second display area; the first reflection element is configured to reflect the image light emitted by the at least two display areas; the second reflection element is is configured to reflect image light rays propagating toward the second reflective element after being reflected by the first reflective element.
  • the first reflection element includes at least a first sub-reflection element and a second sub-reflection element.
  • images at different distances can be imaged at different distances, which facilitates the matching and fusion of images at different distances with real scenes at different distances, so that when the display device is applied to a head-up display, the user does not need to Switching back and forth between images at a fixed distance and real scenes at different distances avoids the conflict of visual vergence adjustment and improves the use experience of the display device.
  • FIG. 1 is a schematic partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • the display device includes an image source 100 , a first reflection element 200 and a second reflection element 300 .
  • the image source 100 includes at least two display areas 110 .
  • the first reflection element 200 is configured to reflect the image light emitted from the at least two display areas 110 .
  • the first reflective element 200 is located on the display side of the image source 100 . But not limited to this, the first reflective element 200 may also be located on the non-display side of the image source, and the light emitted by the image source is radiated toward the first reflective element through other reflective structures.
  • the second reflective element 300 is configured to reflect the image light that propagates toward the second reflective element 300 after being reflected by the first reflective element 200 .
  • the image light emitted by the image source 100 is reflected by the first reflection element 200 toward the second reflection element 300 .
  • the second reflection element 300 is located on the side of the first reflection element 200 facing the image source 100 .
  • no optical element may be arranged between the first reflective element and the second reflective element, and the light reflected by the first reflective element may directly enter the second reflective element, but not limited to this, the first reflective element and the second reflective element
  • Other optical elements, such as a reflective structure or a lens, may also be disposed between, and the light processed by the above-mentioned other optical elements is incident on the second reflective element.
  • the display device provided by the embodiments of the present disclosure can be imaged at different positions, which improves the user experience.
  • the optical distances of image light rays emitted from the first display area 111 and the second display area 112 of the at least two display areas 110 and propagated to the second reflection element 300 are the same or different.
  • the optical distances of image light rays emitted from the first display area 111 and the second display area 112 of the at least two display areas 110 and propagated to the second reflective element 300 are the same to realize the same-layer display.
  • the optical distances of the image rays emitted from the at least two display areas 110 to the second reflection element 300 are different.
  • the image light emitted from the at least two display areas 110 is reflected by the first reflective element 200 to the second reflective element 300.
  • the optical distances of the image light from the at least two display areas 110 are different so that they are reflected by the second reflective light path.
  • At least two virtual images reflected by the reflective element 300 have different distances from the user.
  • the above-mentioned "optical distance” refers to the product of the geometric distance of the image light emitted from the display area to the second reflective element and the refractive index of the propagation medium.
  • the above-mentioned "display side of the image source” refers to the side from which the image source emits light.
  • the optical distances of the image rays emitted from at least two display areas to the second reflective element are different, and the images can be imaged at different distances, which is beneficial to match the images at different distances with the real scenes at different distances. Fusion, so that when the display device is applied to the head-up display, the user does not need to switch back and forth between the image at a fixed distance and the real scene at different distances, which avoids the conflict of visual vergence adjustment and improves the use experience of the display device.
  • each of the at least two display areas 110 may display different images to meet the user's requirement of viewing different images.
  • the embodiments of the present disclosure are not limited thereto, for example, a part of the at least two display areas may also display the same image.
  • the image light rays emitted from the first display area 111 and the second display area 112 of the at least two display areas 110 and propagated to the second reflection element 300 form different virtual images.
  • the above-mentioned different virtual images may refer to different virtual images, for example, at least one of the virtual image position, the virtual image size, the virtual image inclination degree, and the virtual image content is different.
  • the first reflection element 200 may include at least two sub-reflection elements, and the at least two display areas 110 may correspond to the at least two sub-reflection elements one-to-one.
  • the one-to-one correspondence is explained as follows: when there is a one-to-one correspondence between the sub-reflection elements and the display area, different sub-reflection elements can reflect the image light displayed in different display areas to the second reflection element.
  • the embodiment of the present disclosure is not limited thereto.
  • the image rays emitted from the at least two display areas to the second reflective element may also both be incident on the same first reflector. a reflective element.
  • the at least two display areas 110 include a first display area 111 and a second display area 112
  • the first reflective element 200 includes a first sub-reflection element 210 and a second sub-reflection element 220
  • the first sub-reflection element 220 210 is configured to reflect the image light emitted by the first display area 111 to the second reflection element 300
  • the second sub-reflection element 220 is configured to reflect the image light emitted by the second display area 112 to the second reflection element 300 .
  • FIG. 1 schematically shows that there are no other optical elements between the display area and the first reflective element.
  • the image light emitted by the first display area can be directly incident on the first sub-reflection element, and the image emitted by the second display area can be directly incident.
  • Light rays can be directly incident on the second sub-reflection element.
  • the present disclosure is not limited thereto, and other optical elements, such as lenses, etc., may also be disposed between the display area and the first reflective element.
  • the image light emitted by the first display area may be processed by other optical elements and then incident on the first sub-reflection element.
  • the image light emitted from the second display area can be processed by other optical elements and then incident on the second sub-reflection element.
  • the image light emitted by one of the first display area and the second display area is processed by other optical elements and then incident on the first reflective element, and the image light emitted by the other is not processed by other optical elements. directly incident on the first reflective element.
  • the geometric path of the image light emitted from the first display area 111 to the reflection surface of the first sub-reflection element 210 is A1
  • the image light is reflected from the first sub-reflection element 210 to the reflection surface of the second reflection element 300 .
  • the geometric path of the image light is A2. Taking the image light emitted from the first display area 111 propagating in air (the refractive index n is about 1) as an example, the image light emitted from the first display area 111 to the second reflection element 300
  • the optical distance is (A1+A2).
  • the optical distance of the image light from the first display area 111 to the second reflection element 300 is equal to the optical distance of the main transmission light from the first display area 111 to the first sub-reflection element 210 plus the optical distance from the first sub-reflection element 210 is the optical distance traveled by the main transmission light reflected to the second reflective element 300 .
  • the geometric path of the image light emitted from the second display area 112 to the reflection surface of the second sub-reflection element 220 is B1 , and the image light is reflected from the second sub-reflection element 220 to the reflection surface of the second reflection element 300 .
  • the geometric path of the image light is B2. Taking the image light emitted from the second display area 112 propagating in air (the refractive index n is about 1) as an example, the image light emitted from the second display area 112 to the second reflection element 300 The optical distance is (B1+B2), and (A1+A2) ⁇ (B1+B2).
  • the optical distance of the image light from the second display area 112 to the second reflection element 300 is equal to the optical distance of the main transmission light from the second display area 112 to the second sub-reflection element 220 plus the optical distance from the second sub-reflection element 220 is the optical distance transmitted by the main transmission light reflected to the second reflective element 300 .
  • the distance between the first sub-reflection element and the first display area and the second reflection element and the distance between the second sub-reflection element and the second display area and the second The optical distances of the image rays emitted from the display areas to the second reflection element are different.
  • the second reflecting element 300 can be a curved mirror, for example, the curved mirror can be a concave mirror; in this case, the surface of the concave mirror close to the display area is a concave curved surface.
  • the curved mirror is a concave mirror (that is, a mirror whose reflective surface is a concave curved surface)
  • the curved surface of the curved mirror faces the display area, if the optical distance between the display area and the concave mirror is smaller than that of the concave mirror
  • the focal length of the mirror the concave mirror forms an upright enlarged virtual image based on the image output from the display area.
  • the concave reflection increases with the increase of the optical distance between the display area and the concave reflector, that is, the larger the optical distance between the display area and the concave reflector, the greater the optical distance between the display area and the concave reflector, the higher the optical distance between the display area and the concave reflector. The greater the distance between the user and the image he is viewing.
  • the reflection surface of the second reflection element 300 may be a free-form surface, that is, the reflection surface of the second reflection element 300 does not have rotational symmetry, so as to improve the imaging quality of the display device.
  • the display surface of the first display area 111 and the display surface of the second display area 112 are parallel, and the included angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is It is not greater than 20°, so that the virtual images formed by the image light rays displayed in the first display area and the second display area after being reflected by the second reflective element are substantially parallel.
  • the present disclosure is not limited thereto.
  • the angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 may also be If the angle is greater than 20°, in this case, the virtual image formed by the image light displayed in the first display area and the second display area after being reflected by the second reflective element has a non-zero included angle.
  • the included angle between the display surface of the first display area 111 and the display surface of the second display area 112 may not be greater than 20°.
  • the angle of the reflection surface of the first sub-reflection element 210 relative to the reference surface is ⁇ 1
  • the second sub-reflection element 220 The angle of the reflective surface relative to the reference plane is ⁇ 2, and ⁇ 1 may be greater than ⁇ 2, or ⁇ 1 may be smaller than ⁇ 2.
  • the included angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is not greater than 15°.
  • the included angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is not greater than 10°.
  • the included angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is not greater than 5°.
  • the included angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is 0°.
  • the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 may be arranged in parallel.
  • first sub-reflection element 210 and the second sub-reflection element 220 may be flat mirrors, and the above “the angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is not greater than 15°" ” may refer to the included angle between two plane reflective surfaces not greater than 15°.
  • first sub-reflection element 210 and the second sub-reflection element 220 may also be one or more of curved mirrors, aspherical mirrors, spherical mirrors, etc.
  • the included angle between the surface and the reflection surface of the second sub-reflection element 220 is not greater than 15°" may refer to the included angle between the planes enclosed by the edges of the reflection surface being not greater than 15°.
  • the first sub-reflection element 210 and the second sub-reflection element 220 may be the same type of reflection mirror or different types of reflection mirrors.
  • the embodiment of the present disclosure schematically shows the first sub-reflection element 210 and the second sub-reflection element 220
  • the reflecting elements 220 are all flat reflecting mirrors. By using a flat reflector, the manufacture of the display device can be facilitated, the optical path in the display device can be folded to save space, and additional distortion and size changes can be avoided to the images displayed by the display device.
  • the second reflective element 300 may be a curved mirror, eg, a free-form curved mirror.
  • the setting of the curved mirror can make the head-up display have a longer imaging distance and a larger imaging size, and the curved mirror can also be combined with the reflection imaging part of the curved surface (subsequent mentioned) such as the windshield to eliminate the virtual image distortion caused by the reflection imaging part.
  • the image light emitted from the at least two display areas 110 includes only the first reflection elements 200 for reflecting the image light of the respective display areas 110 in the light path reflected by the first reflection element 200 to the second reflection element 300 .
  • the second sub-reflection element 220 is not in the light path of the image light emitted from the first display area 111 to the second reflection element 300
  • the first sub-reflection element 210 is not emitted from the second display area 112 to the second reflection element 300 in the light path.
  • the first display area 111 and the second display area 112 may be located on the same plane, then by adjusting the positions and angles of the first sub-reflection element 210 and the second sub-reflection element 220 , the at least two The optical distances of the image light rays emitted from the display area to the second reflection element are different.
  • the embodiment of the present disclosure is not limited thereto.
  • the first display area and the second display area may also be located on different planes, and the first sub-reflection element and the second sub-reflection element are located in the same plane (or different planes).
  • the positions of the display area and the second display area can realize that the optical distances of the image light rays emitted from the at least two display areas to the second reflection element are different.
  • the image source 100 includes a first sub-image source 101
  • the first sub-image source 101 includes a first display area 111 and a second display area 112
  • the first display area 111 and the second display area 112 may perform partitioned display for display areas located at different positions on the same sub-image source, for example, the same screen, so as to save space and cost.
  • the embodiment of the present disclosure is not limited thereto, and the first display area and the second display area may also be located on different sub-image sources, for example, the screens of different sub-image sources may be close to each other; for example, the display surfaces of different sub-image sources are parallel to each other so that the The first display area and the second display area are parallel.
  • the distance between different sub-image sources can be set larger to prevent the image light emitted from the two display areas from influencing each other.
  • the light shielding structure 400 when the first sub-image source 101 includes the first display area 111 and the second display area 112 , disposing the light shielding structure 400 between the first display area 111 and the second display area 112 can avoid different display areas
  • the emitted image rays affect each other.
  • the light shielding structure 400 may be a light blocking plate.
  • the first sub-image source 101 may include the above-mentioned light shielding structure 400, but is not limited thereto, and the above-mentioned light-shielding structure may not be the structure of the first sub-image source.
  • the above-mentioned light-shielding structure 400 can be located on the display side of the first sub-image source 101, for example, at least disposed on/installed on/attached (for example, can be attached, fixed, closely attached, adhered or adsorbed, etc.) on the first sub-image source 101 on the display screen of the image source 101 .
  • the first sub-reflection element 210 and the second sub-reflection element 220 may be two independent reflection elements, so that they can be adjusted independently.
  • the first sub-reflection element 210 and the second sub-reflection element 220 may also have an integral structure, and the two are integrally formed, such as a stepped reflection Mirror, which can be easily made and set up.
  • the connection portion 201 between the two sub-reflection elements hardly affects the propagation of image light emitted from any display area.
  • integral molding is as follows: it can be understood that at least part of the first sub-reflection element and at least part of the second sub-reflection element respectively belong to a part of an integral piece, rather than belong to separate parts.
  • the base material of the connecting part 201 can be the same as the material of the sub-reflection element, such as glass and other materials, and the side of the base material of the connecting part 201 facing the display area can be covered with black flannel or sprayed with black flannel paint, dark frosted and other materials
  • the fitting is explained as follows: one or more of black flannel or sprayed black fluff paint, dark frosted and other materials can be kept fixed with the side of the base material of the connecting part 201 facing the display area connect.
  • the connecting portion may also be made of different materials from the sub-reflection element, for example, one or more of plastic or metal structural members are used to connect and fix the first sub-reflection element and the second sub-reflection element at both ends. .
  • the optical distance (A1+A2) of the image light from the first display area 111 to the second reflection element 300 is smaller than the optical distance of the image light from the second display area 112 to the second reflection element 300 (B1+B2), then the virtual image formed by the second reflective element to the image light emitted from the second display area to the second reflective element is compared with the virtual image formed by the image light emitted from the first display area to the second reflective element. farther.
  • the second display area 112 is located on the side of the first display area 111 away from the second reflection element 300 , for example, the minimum distance between the second display area 112 and the second reflection element 300 is greater than that of the first display area 111 The minimum distance between the display area 111 and the second reflective element 300 .
  • the first display area 111 is located between the second display area 112 and the second reflection element 300 .
  • the second sub-reflection element 220 is located on the side of the first sub-reflection element 210 away from the second reflection element 300, for example, the minimum distance between the second sub-reflection element 220 and the second reflection element 300 is greater than that of the first sub-reflection element The minimum distance between 210 and the second reflective element 300.
  • the first sub-reflection element 210 is located between the second sub-reflection element 220 and the second reflection element 300 .
  • the distance between the center of the second sub-reflection element 220 and the second display area 112 is greater than the distance between the center of the first sub-reflection element 210 and the first display area 111 .
  • the geometric path B1 of the image light rays emitted from the second display area 112 to the reflection surface of the second sub-reflection element 220 is greater than the geometric path A1 of the image rays emitted from the first display area 111 to the reflection surface of the first sub-reflection element 210
  • the geometric path B2 of the image light reflected by the second sub-reflection element 220 to the reflecting surface of the second reflecting element 300 is greater than the geometric path A2 of the image light reflected by the first sub-reflecting element 210 to the reflecting surface of the second reflecting element 300 , by This (B1+B2)>(A1+A2).
  • the first display area 111 can display a close-up picture, such as displaying key driving data such as vehicle instruments, for example, displaying one or more parameters such as vehicle speed, fuel level, and steering;
  • the second display area 112 can display a long-range picture, such as construction, etc.
  • the distant view picture displayed in the second display area 112 may include a bank
  • the image of the bank displayed by the image source may include a logo of the bank
  • the logo image of the bank may be matched and merged with the actual location of the bank, so that the user can see the building in the distance
  • the logo of the bank is displayed on the display screen.
  • FIG. 3 shows a schematic plan view of the first display area and the second display area.
  • the area of the first display area 111 is smaller than that of the second display area 112 so that the imaging size of the virtual image formed by the second reflection element 300 reflecting the image light emitted by the first display area 111 is smaller than that of the second reflection element 300 is the imaging size of the virtual image formed by reflecting the image light emitted by the second display area 112 .
  • the shape of the first display area 111 and the shape of the second display area 112 may be the same, or the shapes of the two may also be different.
  • the size of the imaging area in the horizontal direction (for example, the direction parallel to the ground is the horizontal direction) after the first display area is reflected by the optical elements such as the first reflective element and the second reflective element is greater than or equal to that of the second display area.
  • the size in the vertical direction (for example, the direction perpendicular to the ground is the vertical direction) is smaller than or equal to the size in the vertical direction of the imaging area after the second display area is reflected by the optical elements such as the first reflective element and the second reflective element .
  • the first display area is configured to display a close-up picture
  • the display content of the close-up picture may be key driving parameters such as vehicle instruments, so that the size of the displayed close-up picture may be smaller
  • the second display area is configured to display a long-range picture
  • the display content of the long-range picture needs to be matched and merged with the real scene outside the car, such as a real scene such as a building, so that the size of the long-range picture displayed is larger than that of the close-up picture. For example, a smaller-sized close-up picture will not block a larger-sized distant picture.
  • FIG. 4 is a schematic partial structure diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • the difference from the example shown in FIG. 1 is that at least two display areas 110 further include a third display area 113 , the first reflective element 200 further includes a third sub-reflection element 230 , and the third display area 113 emits After being reflected by the third sub-reflection element 230 , the image light of the image propagates to the second reflection element 300 .
  • the third sub-reflection element 230 is configured to reflect the image light emitted from the third display area 113 to the second reflection element 300 .
  • the light reflected by the third sub-reflection element 230 directly enters the second reflection element 300 .
  • other optical elements such as other reflective structures or lenses, may be disposed between the third sub-reflection element 230 and the second reflection element 300, and the light reflected by the third sub-reflection element 230 may be processed by the other optical elements and then incident on the third sub-reflection element 230.
  • Two reflective elements 300 may be disposed between the third sub-reflection element 230 and the second reflection element 300, and the light reflected by the third sub-reflection element 230 may be processed by the other optical elements and then incident on the third sub-reflection element 230.
  • no optical element may be arranged between the third display area and the third sub-reflection element, and the image light emitted by the third display area is directly incident on the third sub-reflection element; or the third display area and the third sub-reflection element Other optical elements, such as lenses, etc., may be provided, and the image light emitted by the third display area may be processed by other optical elements and then incident on the third sub-reflection element.
  • the display surface of the first display area 111 and the display surface of the second display area 112 are parallel, and the angle between the reflection surface of the first sub-reflection element 210 and the reflection surface of the second sub-reflection element 220 is not greater than 20°, and The included angle between the display surface of the first display area 111 and the display surface of the third display area 113 is 5° ⁇ 90°. Therefore, the virtual images formed by the image light displayed in the first display area and the second display area after being reflected by the second reflecting element are approximately parallel, while the image light displayed in the third display area is formed by being reflected by the second reflecting element. The virtual image is not parallel to the virtual image formed by the image light displayed in the first display area after being reflected by the second reflective element. For example, the angle between the two virtual images may be 5° ⁇ 90°.
  • the included angle between the display surface of the first display area 111 and the display surface of the third display area 113 is 10° ⁇ 80°.
  • the included angle between the display surface of the first display area 111 and the display surface of the third display area 113 is 30° ⁇ 70°.
  • the included angle between the display surface of the first display area 111 and the display surface of the third display area 113 is 45° ⁇ 60°.
  • the above-mentioned "the angle between the display surface of the first display area 111 and the display surface of the third display area 113" may refer to the angle between the plane where the first display area is located and the plane where the third display area is located.
  • the embodiment of the present disclosure takes the first display area and the third display area as a flat display area as an example, but is not limited to this.
  • the first display area and the third display area may also be non-planar display areas.
  • the included angle of the three display areas may refer to the included angle between the plane enclosed by the edge of the first display area and the plane enclosed by the edge of the third display area.
  • the inclined third display area 113 has a first end e1 close to the second display area 112 and an end e1 away from the second display area 112 .
  • the distance between the first end e1 of the third display area 113 and the plane where the second display area 112 is located is greater than the distance between the second end e2 and the plane.
  • the second end e2 of the third display area 113 may be located on the above-mentioned plane, and the first end e1 is closer to the area where the first reflection element 200 is located than the second end e2.
  • the second end e2 of the third display area 113 is farther away from the second reflective element 300 than the first end e1, so that the second The object distance at the end e2 is larger.
  • the distance between the first end e1 of the third display area 113 and the third sub-reflection element 230 is smaller than the distance between the second end e2 of the third display area 113 and the third sub-reflection element 230 .
  • the geometric path of the image light emitted from the first display area 111 to the reflection surface of the first sub-reflection element 210 is A1
  • the image light is reflected from the first sub-reflection element 210 to the reflection surface of the second reflection element 300 .
  • the geometric path of the image light is A2. Taking the image light emitted from the first display area 111 propagating in air (the refractive index n is about 1) as an example, the image light emitted from the first display area 111 to the second reflection element 300
  • the optical distance is (A1+A2).
  • the geometric path of the image light emitted from the second display area 112 to the reflection surface of the second sub-reflection element 220 is B1
  • the geometric path of the image light reflected from the second sub-reflection element 220 to the reflection surface of the second reflection element 300 is B2
  • the optical distance of the image light emitted from the second display area 112 to the second reflecting element 300 is (B1+B2 ).
  • the geometric path of the image light from the third display area 113 to the reflection surface of the third sub-reflection element 230 is C1
  • the geometric path of the image light from the third sub-reflection element 230 to the reflection surface of the second reflection element 300 is C2 , taking the image light emitted from the third display area 113 propagating in air (the refractive index n is about 1) as an example, the optical distance of the image light emitted from the third display area 113 to the second reflecting element 300 is (C1+C2 ).
  • the optical distance of the image light from the third display area 113 to the second reflection element 300 is equal to the optical distance of the main transmission light from the third display area 113 to the third sub-reflection element 230 plus the optical distance from the third sub-reflection element 230 is the optical distance transmitted by the main transmission light reflected to the second reflective element 300 .
  • the optical distances of the image rays emitted from the above three display areas to the second reflection element 300 satisfy the following relationship: (A1+A2) ⁇ (B1+B2) ⁇ (C1+C2).
  • the optical distances of the image rays emitted from the three display areas to the second reflective element can be different, for example, so that images can be formed at different distances, which is conducive to the performance of images at different distances and real scenes at different distances.
  • Matching and fusion so that when the display device is applied to the head-up display, the user does not need to switch back and forth between the image at a fixed distance and the real scene at different distances, which avoids the conflict of visual vergence adjustment and improves the use experience of the display device.
  • Embodiments of the present disclosure can adjust the distance between the first sub-reflection element and the first display area and the second reflection element, the distance between the second sub-reflection element and the second display area and the second reflection element, and the third sub-reflection element.
  • the distance between the reflective element and the third display area and the second reflective element realizes that the optical distances of the image rays exiting from the three display areas to the second reflective element are different.
  • the first sub-reflection element 210, the second sub-reflection element 220, and the third sub-reflection element 230 may be the same type of reflector or different types of reflectors.
  • the embodiment of the present disclosure schematically shows the first sub-reflector.
  • the reflection element 210 , the second sub-reflection element 220 and the third sub-reflection element 230 are all flat reflection mirrors.
  • the image light rays emitted from the at least two display areas 110 in the light paths reflected by the first reflective element 200 to the second reflective element 300 only include a first light beam for reflecting the image rays of the respective display areas 110 .
  • a reflective element 200 is
  • the second sub-reflection element 220 is not in the optical path of the image light emitted from the first display area 111 to the second reflection element 300 and the optical path of the image light emitted from the third display area 113 to the second reflection element 300;
  • the first The sub-reflection element 210 is not in the optical path of the image light emitted from the second display area 112 to the second reflection element 300 and the optical path of the image light emitted from the third display area 113 to the second reflection element 300;
  • the third sub-reflection element 230 It is not in the optical path of the image light emitted from the second display area 112 to the second reflection element 300 and the optical path of the image light emitted from the first display area 111 to the second reflection element 300 .
  • the optical distance (A1+A2) of the image light from the first display area 111 to the second reflection element 300 is smaller than the optical distance of the image light from the third display area 113 to the second reflection element 300 (C1+C2)
  • the optical distance (C1+C2) of the image light from the third display area 113 to the second reflection element 300 is smaller than the optical distance of the image light from the second display area 112 to the second reflection element 300 ( B1+B2), for example, (B1+B2)>(C1+C2)>(A1+A2), then the virtual image formed by the second reflective element to the image light emitted from the third display area is located in the first display area and between two virtual images formed by the image light emitted from the second display area.
  • the first display area 111 can display a close-up picture, such as displaying key driving data such as vehicle instruments, for example, displaying one or more of parameters such as vehicle speed, fuel level, and steering;
  • the third display area 113 can display a mid-range picture.
  • the third display area 113 can display a lane picture. For example, when the picture is tilted relative to the ground, the matching and fusion effect of the actual lane is better, and the user can see that the lane is marked by image fusion, and guide the user to take this lane;
  • the second display area 112 can display a distant view picture, such as a building, etc.
  • the second display area 112 displays a distant view picture, such as a bank
  • the image of the bank displayed by the image source can include the bank logo
  • the bank logo image can match the actual location of the bank Fusion so that users can see distant buildings, such as a bank, with the bank's logo on the display.
  • the first display area 111 is located on the side of the second display area 112 close to the second reflective element 300
  • the third display area 113 is located on the side of the second display area 112 away from the second reflective element 300
  • the third sub-reflection element 230 is located on the side of the second sub-reflection element 220 away from the second reflection element 200
  • the distance between the center of the third sub-reflection element 230 and the third display area 113 is smaller than that of the first sub-reflection element 210 The distance between the center and the first display area 111 .
  • the first display area 111 may be located between the second display area 112 and the second reflection element 300, the second display area 112 and the third display area 113 and the second reflection element 300, and the second sub-reflection element 220 may be located between the second display area 112 and the second reflection element 300. between the second reflection element 200 and the third sub-reflection element 230 .
  • the first display area 111 and the third display area 113 may be located on different image sources.
  • the image source 100 includes a first sub-image source 101 and a second sub-image source 102
  • the first sub-image source 101 includes a first display area 111 and a second display area 112
  • the second sub-image source 102 includes a third display area 113.
  • the angle between the display surface of the first display area 111 and the display surface of the third display area 113 may be the angle between the display surface of the first sub-image source 101 and the display surface of the second sub-image source 102 .
  • the virtual image formed by reflecting the image light emitted from the first display area by the second reflective element and the second sub-image source can be The virtual image formed by the reflection element reflecting the image light emitted from the third display area is not parallel, so as to satisfy the user's requirement for viewing the image.
  • the area of the third display area 113 may be larger than the area of the first display area 111 and the area of the second display area 112 , so that the second reflective element 300 reflects the image light emitted by the third display area 113 to form a virtual image.
  • the size is larger than the imaging size of the virtual image formed by the second reflection element 300 reflecting the image rays emitted from the first display area 111 and the second display area 112 .
  • the shape of the third display area 113 may be the same as that of at least one of the first display area 111 and the second display area 112, but not limited thereto, the first display area, the second display area and the third display area The shape, for example, can vary.
  • the medium shot displayed in the third display area is tilted.
  • setting the inclined picture can help the image to fit the road surface and improve the use effect; for example, because the inclined picture needs to match the actual road surface, the size of the inclined mid-range picture is larger, which can cover at least half or the whole Lane, so that the driver can have a better viewing effect, for example, the inclined mid-range image covers the lane line to make it easier for the driver to see the lane line after the image marking, which can better prompt the driver to keep or change lanes, Enhance the driving experience.
  • the imaging height of the inclined picture formed by the third display area is at least lower than the imaging height of the first display area and/or the second display area, so that the inclined picture can achieve a better effect on the ground.
  • the imaging height can be interpreted as: the distance between the virtual image and the direction of the road surface along the vertical direction.
  • the height of the inclined screen may be the lowest, or may be the second height.
  • the oblique picture can be located in the middle layer, which has a better grounding effect.
  • FIG. 5 is a schematic partial structure diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • the difference from the example shown in FIG. 4 is that the sub-reflection elements in the first reflection element 200 close to the second reflection element 300 are transflective elements instead of flat reflection mirrors.
  • the third display area 113 is located on the side of the first display area 111 close to the second reflection element 300
  • the third sub-reflection element 230 is located at a side of the first sub-reflection element 210 close to the second reflection element 300 . side.
  • the first sub-reflection element 210 and the second sub-reflection element 220 are both flat mirrors
  • the third sub-reflection element 230 is a transflective element, and is configured to transmit the first sub-reflection element 210 and the second sub-reflection element 220 At least one of the image light rays is reflected toward the second reflective element 300 .
  • the third display area 113 is located between the first display area 111 and the second reflection element 300
  • the third sub-reflection element 230 is located between the first sub-reflection element 210 and the second reflection element 300 .
  • the third sub-reflection element 230 is configured to transmit the image light reflected by the first sub-reflection element 210 and the second sub-reflection element 220 toward the second reflection element 300 .
  • the third sub-reflection element 230 is configured to reflect the image light emitted from the third display area 113 to the second reflection element 300, and to transmit the first sub-reflection element 210 and the second sub-reflection element 220 and reflect toward the second reflection element 300 image light; the image light emitted by the second display area 112 is also transmitted by the third sub-reflection element 230 during the process of being reflected by the second sub-reflection element 220 to the second reflection element 300; the image emitted by the first display area 111 The light is also transmitted by the third sub-reflection element 230 during the process of being reflected by the first sub-reflection element 210 to the second reflection element 300 .
  • the reflectivity of the third sub-reflection element 230 to the image light emitted by the third display area 113 may be 30%, 40%, 50% or other applicable values, and at least for the first display area 111 and the second display area 112
  • the transmittance of one of the emitted image rays may be 70%, 60%, 50%, or other suitable values.
  • the transmittance of the third sub-reflection element 230 to the image light emitted from the first display area 111 and the second display area 112 may be 70%, 60%, 50% or other applicable values.
  • the third sub-reflection element 230 (ie, the transflective element) includes a polarized transflective element, the third display area 113 emits the first polarized light (polarized light with the first polarization), the first display area 111 and the second display area At least one of the regions 112 emits a second polarized light (polarized light having a second polarization), the polarization directions of the first polarized light and the second polarized light are perpendicular, and the transflective element is configured to reflect the first polarized light and transmit the second polarized light polarized light. For example, both the first display area 111 and the second display area 112 emit the second polarized light transmitted through the third sub-reflection element 230 .
  • the polarizing transflective element may be an element formed by coating or sticking a film on a transparent substrate.
  • the polarized transflective element can be a transflective film coated or pasted on the substrate with the characteristics of reflecting the first polarized light and transmitting the second polarized light, such as a reflective polarized brightness enhancement film (Dual Brightness Enhance Film, DBEF) or a prism One or more of Brightness Enhancement Film (BEF), etc.
  • DBEF Reflective polarized brightness enhancement film
  • BEF Brightness Enhancement Film
  • the transflective element may also be an integrated element.
  • the polarizing transflective element can be an optical film with a polarizing transflective function.
  • the polarizing transflective element can be formed by combining multiple layers of films with different refractive indices in a certain stacking order, and the thickness of each film layer is about Between 10 and 1000 nm; the material of the film layer can be selected from inorganic dielectric materials, such as one or more of metal oxides and metal nitrides; polymer materials can also be selected, such as polypropylene, polyvinyl chloride or poly One or more of ethylene etc.
  • one of the first polarized light and the second polarized light includes light in the S polarization state, and the other of the first polarized light and the second polarized light includes light in the P polarization state.
  • the angle between the polarization directions of the first polarized light and the second polarized light may be approximately 90°.
  • the embodiment of the present disclosure is not limited thereto.
  • the first polarized light and the second polarized light may also be non-S polarized light or non-P polarized light, such as
  • the first polarized light and the second polarized light can be two kinds of linearly polarized light whose polarization directions are perpendicular to each other, or two kinds of circularly polarized light whose polarization directions are perpendicular to each other, or two kinds of elliptically polarized light whose polarization directions are perpendicular to each other.
  • the transflective element is a wavelength selective transflective element
  • the wavelength band of the image light emitted by the first display area 111 is the first band group
  • the wavelength band of the image light emitted by the second display area 112 is the second wavelength band group
  • the transflective element is configured to reflect the image light of the first waveband group and transmit the image light of the second waveband group.
  • the above-mentioned "wavelength band” may include a single wavelength or a mixed range of multiple wavelengths.
  • a wavelength band includes a single wavelength, light at that wavelength may be mixed with light at nearby wavelengths due to process errors.
  • the image light of the first waveband group and the second waveband group may each include red, green, and blue (RGB) light in three wavebands, and the full width at half maximum of each of the RGB wavebands is not greater than 50 nm.
  • the first waveband group and the second waveband group both include image rays of three wavebands.
  • the peak value of the first waveband of the three wavebands is located in the range of 410nm to 480nm, and the peak value of the second waveband is located at 500nm. Within the range of ⁇ 565nm, the peak of the third band is located in the range of 590nm to 690nm.
  • the wavelength of the image light in the first band in the first band group is different from the wavelength of the image light in the first band in the second band group; the wavelength of the image light in the second band in the first band group is different from the wavelength of the image light in the first band in the second band group
  • the wavelength of the image light in the second band in the two-band group; the wavelength of the image light in the third band in the first band group is different from the wavelength of the image light in the third band in the second band group.
  • the wavelengths of the image rays of each wavelength band in the first wavelength band group are all smaller than the wavelengths of the image rays of each wavelength band in the second wavelength band group.
  • the wavelength of red light is 620 nanometers
  • the wavelength of green light is 500 nanometers
  • the wavelength of blue light is 450 nanometers.
  • the wavelength of red light is 650 nanometers
  • the wavelength of green light is 530 nanometers
  • the wavelength of blue light is 470 nanometers.
  • the wavelengths of the image rays of each wavelength band in the first wavelength band group are all larger than the wavelengths of the image rays of each wavelength band in the second wavelength band group.
  • the wavelength of red light is 670 nanometers
  • the wavelength of green light is 550 nanometers
  • the wavelength of blue light is 470 nanometers.
  • the wavelength of red light is 650 nanometers
  • the wavelength of green light is 530 nanometers
  • the wavelength of blue light is 450 nanometers.
  • the setting of the above wavelength band relationship can facilitate the fabrication of the wavelength selective transflective element.
  • the image rays of the first and second waveband groups may include image rays of multiple wavelength bands, for example, at least three wavelength bands of RGB to form color image rays, and the color image rays may form a color image.
  • the image rays of the first waveband group and the second waveband group may include image rays of one color waveband, for example, the image rays include one of the above-mentioned three wavebands of RGB; for another example, in the first waveband group
  • the image light includes any color band light in the visible light range to form a monochromatic image light, and the monochromatic image light can form a monochromatic image, which is the same as the above implementation process. similar.
  • the reflectivity of the third sub-reflection element 230 using the wavelength selective transflective element to the image light emitted from the third display area 113 may be 70%, 80%, 90%, 95% or other applicable values.
  • the transmittance of the image light emitted from the first display area 111 and the second display area 112 may be 70%, 80%, 90%, 95% or other applicable values. Therefore, the utilization rate of the image light by the third sub-reflection element can be improved, so as to minimize the optical energy loss of the image light emitted from the first display area, the second display area and the third display area.
  • the first sub-image source 101 and the second sub-image source 102 are image sources that can emit RGB mixed light, such as a light emitting diode (LED) display or a liquid crystal display (LCD).
  • LED light emitting diode
  • LCD liquid crystal display
  • the above wavelength selective transflective element may include a selective transflective film formed by stacking inorganic oxide films or polymer films, and the transflective film is formed by stacking at least two film layers with different refractive indices.
  • the "different refractive index” here means that the refractive index of the film layer is different in at least one of the three directions of xyz.
  • a transflective film with selective reflection and selective transmission characteristics can be formed, which can selectively reflect certain Light of one characteristic, light passing through another.
  • the composition of the film is selected from the group consisting of tantalum pentoxide, titanium dioxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, magnesium fluoride, silicon nitride, silicon oxynitride , one or more of aluminum fluoride.
  • the film layer of the organic polymer material includes at least two thermoplastic organic polymer film layers.
  • two thermoplastic polymer film layers are alternately arranged to form an optical film, and the two thermoplastic polymer film layers have different refractive indices.
  • the molecules of the above organic polymer materials are chain-like structures.
  • thermoplastic polymer can be polyethylene terephthalate (PET) and its derivatives with different degrees of polymerization, polyethylene naphthalate (PEN) and its derivatives with different degrees of polymerization, One or more of polybutylene terephthalate (PBT) and its derivatives, etc.
  • the optical distance of the image light emitted from the third display area 113 and propagated to the second reflection element 300 is smaller than the optical distance of the image light emitted from the first display area 111 and propagated to the second reflection element 300 .
  • a display device includes: an image source; a first reflection element, configured to reflect image light emitted by the image source; and a second reflection element, configured to be reflected by the first reflection
  • the element reflects the image light that propagates toward the second reflective element.
  • the image source, the first reflective element, and the second reflective element in this embodiment may be the image source, the first reflective element, and the second reflective element shown in any of the examples in FIG. 1 to FIG. 5 .
  • a plurality of sub-virtual images are formed, and the plurality of sub-virtual images include a first sub-virtual image, a second sub-virtual image and a third sub-virtual image.
  • the first sub-virtual image can be a virtual image formed by the first display area after passing through the first reflective element and the second reflective element
  • the second sub-virtual image can be formed by the second display area after passing through the first reflective element and the second reflective element
  • the third sub-virtual image may be a virtual image formed by the third display area after passing through the first reflective element and the second reflective element.
  • the sub-virtual image with the intermediate imaging distance is inclined relative to the horizontal direction and the inclination degree is smaller than the included angle of the remaining two sub-virtual images relative to the horizontal direction. For example, take the direction parallel to the ground as the horizontal direction.
  • FIG. 7 is a schematic structural diagram of a head-up display provided according to an example of another embodiment of the present disclosure.
  • FIG. 7 schematically shows that the head-up display includes the display device and the reflective imaging part 500 shown in FIG. 4 as an example, the embodiment of the present disclosure is not limited to this, and the head-up display may also include any of the examples shown in FIGS. 1-2 to provide display device and reflection imaging unit.
  • the reflective imaging part 500 is located on the light-emitting side of the second reflective element 300 , and is configured to reflect the image light reflected from the second reflective element 300 to the reflective imaging part 500 to the observation area 600 and transmit the light to the observation area 600 .
  • ambient light A user located in the observation area 600 can view a plurality of virtual images 1110 - 1130 formed by the image light emitted by the reflective imaging part 500 to the display device and the environmental scene located on the side of the reflective imaging part 500 away from the observation area 600 .
  • the optical distance of the main transmission light from the first display area 111 to the reflection imaging part 500 and the optical distance of the main transmission light from the second display area 112 to the reflection imaging part 500 may be the same or different.
  • the optical distance of the main transmission light from the first display area 111 to the second reflection element 300 is different from the optical distance of the main transmission light from the second display area 112 to the second reflection element 300.
  • the first display area 111 The optical distance between the second reflective element 300 and the reflective imaging part 500 and the optical distance between the second reflective element 300 and the reflective imaging part 500 for the main transmission light emitted from the second display area 112 Can be the same, or can be different.
  • the optical distance of the main transmission light emitted from the first display area 111 between the second reflection element 300 and the reflection imaging part 500 is different from that of the main transmission light emitted from the second display area 112 between the second reflection element 300 and the reflection imaging part 500 .
  • the optical distance transmitted between the parts 500 , the optical distance transmitted by the main transmission light from the first display area 111 to the second reflection element 300 and the optical distance of the main transmission light from the second display area 112 to the second reflection element 300 Can be the same, or can be different.
  • the optical distance between the first display area 111 and the reflective imaging part 500 the optical distance between the second display area 112 and the reflective imaging part 500 , and the optical distance between the third display area 113 and the reflective imaging part 500
  • the three optical distances may be different, or the two may be the same, or both may be the same.
  • the optical distance of the main transmission light from the first display area 111 to the second reflection element 300 the optical distance of the main transmission light from the second display area 112 to the second reflection element 300 , and the output of the third display area 113
  • the optical distances transmitted by the main transmission light to the second reflection element 300 may be different, for example, or at least two of them may be the same, or both may be the same.
  • the main transmission light emitted from the first display area 111 is reflected on the second reflection element 300 and The optical distance transmitted between the imaging parts 500, the optical distance of the main transmission light emitted from the second display area 112 between the second reflective element 300 and the reflective imaging part 500, and the main transmission light emitted from the third display area 113 in the first
  • the optical distances transmitted between the two reflection elements 300 and the reflection imaging part 500 may be different, for example, or at least two of them may be the same, or for example, a plurality of them may be the same.
  • the image light emitted by the display device is incident on the reflective imaging part 500, and the light reflected by the reflective imaging part 500 is incident on the user, for example, the observation area 600 where the driver's eyes are located, and the user can observe the virtual image formed, for example, outside the reflective imaging part , and does not affect the user's observation of the external environment.
  • the above-mentioned observation area 600 may be an eyebox area
  • the eyebox area refers to a plane area where the user's eyes are located and where the image displayed by the head-up display can be seen.
  • the user's eyes deviate from the center of the eye box area by a certain distance, such as moving up and down, left and right for a certain distance, the user can still see the image displayed by the head-up display when the user's eyes are still in the eye box area.
  • the reflection imaging part 500 may be a windshield or an imaging window of a motor vehicle.
  • the windshield is a windshield
  • the imaging window is a transparent imaging plate.
  • the windshield is used to transmit and reflect the image light from the windshield head-up display (W-HUD) and the imaging window is used to transmit and reflect the image light from the combined head-up display (C-HUD).
  • W-HUD windshield head-up display
  • C-HUD combined head-up display
  • the image light emitted from the first display area 111 in the first sub-image source 101 is reflected by the first sub-reflection element 210 to the second reflection element 300 , and the second reflection element 300 reflects the image light.
  • a first virtual image 1110 is formed; the image light emitted by the second display area 112 in the first sub-image source 101 is reflected by the second sub-reflection element 220 to the second reflection element 300, and the second reflection element 300 will The image light is reflected to the reflection imaging part 500 to form a second virtual image 1120; the image light emitted from the third display area 113 in the second sub-image source 102 is reflected by the third sub-reflection element 230 to the second reflection element 300, and the second The reflection element 300 reflects the image light to the reflection imaging part 500 to form a third virtual image 1130 .
  • the distance between the first virtual image 1110 and the observation area 600 is 2-4 meters
  • the distance between the second virtual image 1120 and the observation area 600 is 20-50 meters
  • the distance between the first virtual image 1110 and the observation area 600 is 2.5-3.5 meters
  • the distance between the second virtual image 1120 and the observation area 600 is 30-40 meters
  • the first virtual image 1110 may be a close-up picture, such as displaying key driving data such as vehicle instruments, for example, displaying one or more of parameters such as vehicle speed, fuel level, and steering;
  • the third virtual image 1130 may be a medium-view picture
  • the third virtual image can be a lane image.
  • the second virtual image 1120 may be a distant view image, such as a building, for example, a bank.
  • the image of the bank displayed by the second virtual image may include the logo of the bank, and the image of the logo of the bank may be matched and merged with the actual location of the bank, so that the user can see the distance in the distance.
  • the first virtual image 1110 and the second virtual image 1120 are parallel to the viewing area 600 .
  • the first virtual image 1110 and the second virtual image 1120 can be images perpendicular to the ground and can be fused with the real scene.
  • the fusion can be interpreted as: the virtual image covers the real scene, or It is located around the real scene and realizes the identification function of the real scene.
  • the display surface of the first display area 111 and the display surface of the second display area 112 may be parallel or nearly parallel to the ground.
  • the first virtual image and the second virtual image may be along a vertical direction, which may refer to a direction parallel to a plane where the viewing area is located, or a direction perpendicular to the driving surface of the traffic device.
  • the placement height of the second sub-reflection element 220 may be higher than that of the first sub-reflection element 220 .
  • the sub-reflection elements corresponding to the above-mentioned display areas may not be parallel to the ground, for example, the end of the corresponding sub-reflection element close to the second reflection element
  • the distance from the display area is greater than the distance between the end of the corresponding sub-reflection element far from the second reflection element and the display area, but not limited to this, for example, the corresponding sub-reflection element can reflect the image light emitted by the display area. Reflected towards the second reflective element.
  • the corresponding sub-reflection element can be explained as follows: the image light emitted by the sub-reflection element corresponding to the display area will be incident on the corresponding reflection element.
  • the angle between the third virtual image 1130 and the first virtual image 1110 is 5° ⁇ 90°, and the end of the third virtual image 1130 away from the ground is farther from the observation area 600 than the end of the third virtual image 1130 close to the ground. Realize the tilt of the picture, so that the matching and fusion effect with the actual lane is better.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 10° ⁇ 80°.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 30° ⁇ 70°.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 45° ⁇ 60°.
  • the third virtual image is tilted away from the viewing area.
  • at least one of the first virtual image 1110 , the second virtual image 1120 and the third virtual image 1130 is inclined in a direction away from the observation area 600 .
  • a certain angle exists between the display surface of the second sub-image source 102 and the display surface of the first sub-image source 101 , so that the third virtual image 1130 formed by the second sub-image source 102 and the third virtual image 1130 formed by the first sub-image source 101 There is also a certain angle between the first virtual image 1110 and the second virtual image 1120 .
  • the third virtual image 1130 is inclined toward the traveling direction of traffic equipment such as vehicles, and the inclined screen can match the image to the road surface.
  • the angle between the third virtual image 1130 and the road surface can be 5° ⁇ 90°.
  • the virtual image formed by the second display area 112 reflected by the second reflecting element 300 is located at the focal plane of the reflection imaging part 500 , or the distance between the virtual image and the reflection imaging part 500 is smaller than the focal length and the virtual image is Near the focal plane of the reflection imaging unit 500 .
  • the second virtual image 1120 will be formed at a relatively far distance or even infinity, which is suitable for matching and fitting with the real scene in the distance.
  • the head-up display provided by the embodiments of the present disclosure can form multiple layers of images (for example, a first virtual image, a second virtual image, and a third virtual image), and the imaging distances of different images are different, and different images can be fused with real scenes at different distances,
  • the line of sight of a user (such as a driver) does not need to switch back and forth between the image at a fixed distance and the real scene at different distances, which effectively improves the use experience of the head-up display.
  • the head-up display provided by the embodiments of the present disclosure can form multi-layer images (for example, a first virtual image, a second virtual image, and a third virtual image), and the multi-layer images can be set as shown in FIG. set as shown in Figure 6b.
  • the embodiment of the present disclosure is not limited to this, and the inflow and multi-layer images may also adopt other setting manners.
  • the head-up display further includes a package housing 700 having an opening 710
  • the image source 100 , the first reflective element 200 and the second reflective element 300 are all located in the package housing 700
  • the reflective imaging part 500 is located in the package Outside the housing 700
  • the second reflecting element 300 reflects the image light emitted by the image source 100 to the position of the opening 710 of the packaging housing 700 to exit from the opening 710 of the packaging housing 700 and exit from the opening 710 of the packaging housing 700
  • the image light is reflected by the reflection imaging part 500 to the observation area 600 .
  • FIG. 7 schematically shows that the third virtual image 1130 is an oblique virtual image, and the distance between the third virtual image 1130 and the observation area 600 is greater than the distance between the first virtual image 1110 and the observation area 600 , and smaller than the second virtual image 1120
  • the distance from the observation area 600 for example, the third virtual image 1130 is located between the first virtual image 1110 and the second virtual image 1120 .
  • the oblique virtual image may also be the virtual image with the farthest distance from the observation area, or the virtual image with the closest distance from the observation area, which is not limited in the embodiment of the present disclosure.
  • the virtual image formed by the image light emitted by the first display area 111 being reflected by the reflective imaging unit 500 is the first virtual image 1110
  • the image light emitted by the second display area 112 is reflected by the
  • the virtual image formed by reflection by the reflection imaging part 500 is the second virtual image 120
  • the virtual image formed by the image light emitted by the third display area 113 being reflected by the reflection imaging part 500 is the third virtual image 130 , the first virtual image 130 .
  • the inclination of the virtual images centered from the observation area 600 relative to the horizontal direction is smaller than the included angles of the remaining two virtual images relative to the horizontal direction.
  • the horizontal direction may refer to a direction perpendicular to the plane where the observation area is located, or a direction parallel to the driving surface of the traffic device.
  • the embodiment of the present disclosure is not limited to the first virtual image and the second virtual image being arranged in the vertical direction, and the third virtual image being arranged in the oblique direction.
  • one of the first virtual image and the second virtual image may also be an oblique virtual image, for example, along the direction from the virtual image to the observation area, the virtual image is inclined toward the observation area.
  • at least one of the display surface of the first display area and the display surface of the second display area may be inclined, for example, the display surface of the third display area shown in FIG.
  • the formed virtual image can be set obliquely.
  • FIG. 8 is a schematic structural diagram of the packaging case in the head-up display shown in FIG. 7 .
  • a transparent dustproof film 720 is provided at the position of the opening 710 of the packaging case 700 to encapsulate the opening 710.
  • the transparent dustproof film 720 can prevent dust and sundries from entering the interior of the package housing, but does not affect the image light emitted from the opening 710 to the reflection imaging part 500 , so the transparent dustproof film 720 adopts a transparent film material.
  • a light shield 730 is provided outside the transparent dustproof film 720,
  • the light shield 730 is not passed by the light path of the image light emitted from the opening 710 to the reflected imaging part 500 , and the light shield 730 is configured to shield part of the ambient light O1 .
  • the light shield 730 may be made of the same material as the package case 700 and formed in the same process as the package case 700 to save process.
  • the shading cover 730 can be an inclined surface, which is used to prevent glare from entering the eyes of the user in the observation area, which can improve the use experience of the head-up display.
  • the opening of the packaging case 700 may be located at the upper part of the case, and the light shield 730 may be located at the upper side of the opening to block part of the ambient light 01 .
  • FIG. 9 is a schematic structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • FIG. 9 schematically shows that the head-up display includes the display device and the reflective imaging part 500 shown in FIG. 5 as an example, the embodiment of the present disclosure is not limited to this, and the head-up display may also include any of the examples shown in FIGS. 1-2 to provide display device and reflection imaging unit.
  • the difference between the head-up display in the example shown in FIG. 9 and FIG. 7 is that the display device shown in FIG. 4 is used in FIG. 7 , while the display device shown in FIG. 5 is used in FIG. 9 .
  • the head-up display in the example shown in FIG. 7 has the same characteristics and will not be repeated here.
  • the image light emitted from the first display area 111 in the first sub-image source 101 is reflected by the first sub-reflection element 210 and transmitted by the third sub-reflection element 230 , it enters the second sub-reflection element 230 .
  • the reflection element 300, the second reflection element 300 reflects the image light to the reflection imaging part 500 to form a first virtual image 1110; the image light emitted from the second display area 112 in the first sub-image source 101 is reflected by the second sub-reflection element 220 After being reflected and transmitted by the third sub-reflection element 230, it is incident on the second reflection element 300, and the second reflection element 300 reflects the image light to the reflection imaging part 500 to form a second virtual image 1120; the second sub-image source 102 The image light emitted from the third display area 113 is reflected by the third sub-reflection element 230 to the second reflection element 300 , and the second reflection element 300 reflects the image light to the reflection imaging part 500 to form a third virtual image 1130 .
  • the first virtual image, the second virtual image and the third virtual image in this example have the same characteristics as the first virtual image, the second virtual image and the third virtual image in the example shown in FIG. 7 , and details are not repeated here.
  • the image source in at least one embodiment of the present disclosure may include a light source, a backlight assembly, and an image generating part.
  • the light source may include at least one electroluminescent device that generates light through electric field excitation, such as Light Emitting Diode (LED), Organic Light-Emitting Diode (OLED), Mini Light Emitting Diode (Mini LED), Micro LED (Micro LED), Cold Cathode FluoreScent Lamp (CCFL), Cold LED Light (CLL), Electro LumineScent (EL), Electron Emission (Field EmiSSion DiSPlay, FED) ) or quantum dot light source (Quantum Dot, QD), etc.
  • LED Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • Mini LED Mini Light Emitting Diode
  • Micro LED Micro LED
  • Cold Cathode FluoreScent Lamp CCFL
  • Cold LED Light CLL
  • Electro LumineScent EL
  • Electron Emission Field EmiSSion DiSPlay, FED
  • QD quantum dot light source
  • the image generating section may include a liquid crystal display panel.
  • the liquid crystal display panel may include an array substrate, an opposite substrate, a liquid crystal layer between the array substrate and the opposite substrate, and a frame sealant for encapsulating the liquid crystal layer.
  • the liquid crystal display panel further includes a first polarizing layer disposed on a side of the array substrate away from the opposite substrate and a second polarizing layer disposed on a side of the opposite substrate away from the array substrate.
  • the light source is configured to provide a backlight to the liquid crystal display panel, which is converted into image light after passing through the liquid crystal display panel.
  • the polarization axis direction of the first polarizing layer and the polarization axis direction of the second polarizing layer are perpendicular to each other, but not limited thereto.
  • the first polarizing layer may pass the first linearly polarized light
  • the second polarizing layer may pass the second linearly polarized light, but not limited thereto.
  • the polarization direction of the first linearly polarized light is perpendicular to the polarization direction of the second linearly polarized light, but not limited thereto.
  • the backlight assembly may include a reflective light guide element, a light beam condensing element and a light beam diffusing element, and the reflective light guiding element, the light beam condensing element and the light beam diffusing element are sequentially disposed between the light source and the image generating part.
  • the reflective light guide element is arranged in the light emitting direction of the light source. The light emitted by the light source propagates in the reflective light guide element and exits to the beam condensing element, and the light emitted by the beam converging element enters the beam diffusing element.
  • FIGS. 10A to 10D are schematic structural diagrams of a reflective light guide element provided according to an embodiment of the present disclosure.
  • FIG. 10A is a schematic cross-sectional view of the reflective light guide element shown in FIG. 10B .
  • the reflective light guide element 60 is arranged in the light exit direction of the light source 10 , and the light emitted by the light source 10 propagates in the reflective light guide element 60 and then exits the light beam condensing element.
  • the inner surface of the reflective light guide element 60 is provided with a reflective surface, and the large-angle light emitted by the light source 10 (the angle relative to the center line of the reflective light guide element 60 ) will pass through the reflective surface. After the reflection, the light is gathered, and the utilization rate of the light emitted by the light source 10 is improved.
  • the reflective light guide element 60 may be a hollow casing with a reflective surface disposed inside, and the casing includes an end for arranging the light source 10 and a light outlet 60-1 for emitting light.
  • the shape of the housing may be a triangular pyramid shape, a quadrangular pyramid shape or a paraboloid shape.
  • the shape of the light outlet 60-1 and the end portion can be rectangle, square, trapezoid or parallelogram or a combination of many of them, and the shape of the light outlet 60-1 and the end portion can be The same can also be different.
  • the reflective light guide element 60 may include a solid transparent member, the solid transparent member includes an end portion 63 where the light source 10 is disposed, and the refractive index of the transparent member is greater than 1, so that part of the light emitted by the light source 10 is solid and transparent
  • the internal reflection surface of the component is totally reflected and then exits, and another part of the light emitted by the light source 10 is transmitted and exited in the transparent component.
  • the end 63 of the solid transparent component where the light source 10 is disposed is provided with a cavity 62, and the side of the cavity 62 close to the light emitting surface 60-1 is provided with a collimating portion 61 that can adjust the light emitted by the light source 10 into parallel light.
  • the internal reflection surface of the solid transparent member may be the inner surface of the solid transparent member, for example, the shape of the inner surface may include a parabolic shape or a free-form surface shape.
  • the reflective light guide element 60 may include a solid transparent part, the end 63 of the solid transparent part where the light source 10 is arranged is provided with a cavity 62 , and the light emitting surface 60 - 1 of the solid transparent part is provided with a cavity 62 toward the end
  • the bottom surface of the opening 60-2 close to the end portion 63 is provided with a collimating portion 61 that can adjust the light emitted by the light source 10 into parallel light.
  • FIG. 11 is a schematic structural diagram of a combination of a beam condensing element and a reflective light guide element provided according to an embodiment of the present disclosure
  • FIG. 12 is a light path of a combination of a reflective light guide element, a beam converging element, and a beam diffusing element provided according to an embodiment of the present disclosure Schematic.
  • the beam condensing element 70 is configured to control the direction of the light 71 emitted from the reflective light guide element 60 , so that the light 72 emitted from the beam condensing element 70 can be concentrated to a certain range, for example, the observation of the image source The range can further gather the light and improve the utilization of light.
  • the light beam converging element 70 may include a lens or a lens combination, such as one or more of a convex lens, a Fresnel lens, or a lens combination, and a convex lens is used as an example for schematic illustration in FIG. 11 .
  • the above-mentioned certain range may be a point, such as the focal point of a convex lens, or it may be an area with a smaller area. Setting the beam converging element in the image source can further condense the large-angle light emitted by the light source and improve the utilization rate of the light.
  • the beam diffusing element 80 diffuses the incident beam 72 and can precisely control the degree of diffusion of the incident beam 72 .
  • the optical axis OA of the diffused beam 81 and the optical axis of the incident beam 72 are located on the same straight line
  • the optical axis of the light beam passing through the light beam diffusing element 80 can be kept unchanged, and the edge rays of the diffused light beam 81 are spread out by a certain angle along the optical axis thereof.
  • optical axis refers to the center line of the light beam.
  • the diffusion angle ⁇ 1 of the diffused light beam 81 in the first direction may range from 5° to 20°, and the range of the diffusion angle ⁇ 2 in the second direction may be 5° to 10°.
  • the diffusion angle refers to the two maximum lines of sight.
  • the cross-sectional spot of the light beam along the propagation direction may be a rectangle.
  • the first direction is the extension direction of the long side of the rectangle
  • the second direction is the extension direction of the short side of the rectangle.
  • the diffusion angle of the direction refers to the included angle ⁇ 1 between the light rays connected to the two ends of the long side of the rectangular light spot
  • the above-mentioned diffusion angle of the second direction refers to the included angle ⁇ 2 of the light rays connected to the two ends of the short side of the rectangular light spot.
  • the cross-sectional shape of the light beam refers to the cross-section obtained by cutting the light ray exiting the beam diffusing element using a plane perpendicular to the centerline or main transmission axis of the light beam, ie the cross-section of the light beam is perpendicular to the centerline of the light beam.
  • the incident light beam 72 passes through the beam diffusing element 80 , it will be diffused into a light spot with a specific size and shape along the propagation direction, and the energy distribution is uniform. Structure is precisely controlled.
  • the above-mentioned specific shapes may include, but are not limited to, linear, circular, oval, square, and rectangular.
  • the propagation angle and spot size of the diffused beam determine the brightness and visible area of the final image. The smaller the diffusion angle, the higher the imaging brightness and the smaller the visible area; and vice versa. Specific can be interpreted as follows: is the meaning of presupposition.
  • the beam diffusing element 80 can be a low-cost scattering optical element, such as one or more of a homogenizing sheet, a diffusing sheet, etc.
  • the scattering optical element such as the homogenizing sheet
  • scattering will occur, and the A small amount of diffraction, but scattering plays a major role, and a larger spot is formed when the beam passes through the scattering optics.
  • the beam diffusing element 80 can also be a diffractive optical element (Diffractive Optical Elements, DOE) that controls the diffusing effect more precisely, such as a beam shaper (Beam Shaper).
  • DOE diffractive Optical Elements
  • Beam Shaper Beam Shaper
  • the first predetermined area refers to a plane observation area
  • Most of the light is collected in the first predetermined area (for example, more than 90% of the light intensity of the light beams incident on the plane where the first predetermined area is located is collected in the first predetermined area, and the light incident on the plane where the first predetermined area is located is collected.
  • the light beam diffusing element 800 is removed from the optical path of the display device, the light emitted by the display device is reflected by the reflection imaging part 500 and then reaches the second predetermined area located in the first predetermined area.
  • the second predetermined area may be a small area.
  • the second predetermined area may be a point.
  • the second predetermined area may be a certain range where the light beam condensing element 70 collects the light.
  • the first predetermined area may include an eyebox area, namely the observation area 600
  • the second predetermined area may be a small area in the observation area 600 , such as a point, such as the center.
  • FIG. 13 is a schematic partial structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • the reflection imaging part 500 includes a first layer 20-1, a second layer 20-2, and a gap between the first layer 20-1 and the second layer 20-2 (hereinafter referred to as an interlayer) ; the wedge-shaped film 21 is located in the interlayer of the reflective imaging part 500 (ie, the gap between the first layer 20-1 and the second layer 20-2).
  • the light incident on the reflective imaging part 500 of the display device 1000 may have the effect of eliminating ghost images due to the wedge-shaped film provided in the reflective imaging part 500 .
  • the reflection imaging part 500 is exemplified by the reflection imaging part 500 provided with the wedge-shaped film 21 on the windshield of the vehicle (eg, the front windshield) and the head-up display shown in FIG. 13 having an anti-ghosting function.
  • the windshield adopts a double-layer glass structure, and a wedge-shaped polyvinyl butyral (PVB) layer is embedded between the two layers of glass.
  • PVB polyvinyl butyral
  • the images reflected from the inner and outer surfaces of the glass ie, the image reflected from the first layer 20-1 and the image reflected from the second layer 20-2) can be made to overlap into one image, thereby enabling the head-up display to have ghosting suppression (eg, eliminating the ghosting) function.
  • the wedge-shaped film 21 has a thin end and a thick end, and also has a certain angle, and the angle of the wedge-shaped film 21 needs to be set according to the requirements of the head-up display.
  • images reflected from the surfaces of the reflective imaging part close to the display device and away from the display device can be overlapped into one image to solve the ghosting problem.
  • FIG. 14 is a schematic partial structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • the surface of the reflection imaging part 500 facing the display device is provided with a selective reflection film 501 , a P-polarized light reflection film 501 or a first retardation part 501 .
  • the surface of the reflective imaging part 500 facing the display device is provided with a selective reflection film 501, and the selective reflection film 501 is configured so that the reflectivity of the wavelength band where the image light emitted by the display device is located is greater than that of the wavelength band where the image light emitted by the display device is located.
  • the reflectance of light in the wavelength band may be greater than 80%, 90%, 95%, 99.5% or other applicable values.
  • the reflectivity of the selective reflection film 501 to light in wavelength bands other than the wavelength band of the image light emitted from the display device may be less than 30%, 20%, 10%, 5%, 1%, 0.5% or other applicable values.
  • the selective reflection film 501 is configured to reflect the image light emitted by the display device, and transmit light in a wavelength band other than the wavelength band of the image light emitted by the display device.
  • the selective reflection film 501 only reflects the image light emitted by the display device.
  • the image light includes light in three wavelength bands of red, green and blue (RGB)
  • the selective reflection film 501 can only reflect the light in the three wavelength bands of RGB and transmit other light in the three wavelength bands. wavelengths of light. The image light will not be reflected twice on the surface of the reflective imaging part away from the display device, which can eliminate ghosting.
  • the above-mentioned selective reflection film 501 may include a selective transflective film formed by stacking inorganic oxide films or polymer films, and the transflective film is formed by stacking at least two film layers with different refractive indices.
  • the "different refractive index" here means that the refractive index of the film layer is different in at least one of the three directions of xyz.
  • a transflective film with selective reflection and selective transmission characteristics can be formed, which can selectively reflect certain Light of one characteristic, light passing through another.
  • the composition of the film is selected from the group consisting of tantalum pentoxide, titanium dioxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, magnesium fluoride, silicon nitride, silicon oxynitride , one or more of aluminum fluoride.
  • the film layer of the organic polymer material includes at least two thermoplastic organic polymer film layers.
  • two thermoplastic polymer film layers are alternately arranged to form an optical film, and the two thermoplastic polymer film layers have different refractive indices.
  • the molecules of the above organic polymer materials are chain-like structures.
  • thermoplastic polymer can be polyethylene terephthalate (PET) and its derivatives with different degrees of polymerization, polyethylene naphthalate (PEN) and its derivatives with different degrees of polymerization, One or more of polybutylene terephthalate (PBT) and its derivatives, etc.
  • the image light emitted by the display device may include light in the P-polarized state
  • the surface of the reflection imaging part 500 facing the display device is provided with a P-polarized light reflective film 501 to reflect the light in the P-polarized state emitted by the display device toward the reflection imaging part 500 ( That is, P-polarized light)
  • the reflectivity of the P-polarized light reflective film 501 to the light of the P-polarized state is greater than the reflectivity of the light of the S-polarized state.
  • the image light in the P-polarized state can be reflected by the P-polarized light reflective film 501 and then incident on the observation area 600 .
  • the material of the reflection imaging part 500 includes glass
  • the transmittance of the glass to P-polarized light is high, and the reflectivity is low.
  • the P-polarized light reflected by the P-polarized light reflective film 501 the P-polarized light transmitted through the glass
  • the brightness reflected by the outer surface of the reflected imaging part 500 toward the observation area 600 is very low, which can eliminate ghost images.
  • the structure of the P-polarized light reflective film is similar to that of the above-mentioned selective reflective film, and can be realized by stacking multiple layers of films, which can be a structure formed by stacking organic films or inorganic films.
  • the P-polarized light reflective film may be a reflective polarizer mirror (RPM), for example, an RPM film.
  • RPM reflective polarizer mirror
  • the surface of the reflective imaging part 500 facing the display device is provided with a first phase retardation part 501
  • the light emitted from the display device includes light in an S-polarized state (ie, S-polarized light)
  • the first phase retardation part 501 is configured to emit light into
  • the light in the S-polarized state of the first phase retardation part 501 is converted into light in the non-S-polarized state, for example, one or more of the light in the P-polarized state, circularly polarized light, or elliptically polarized light.
  • the image light emitted by the display device includes light in the S polarization state
  • the first phase retardation part 501 may be a 1/2 wave plate
  • a part of the light in the S polarization state incident on the first phase retardation part 501 may be reflected by the imaging part 500 is reflected to the observation area 600, and the other part is converted into the light of the P polarization state by the first phase retardation part 501.
  • the light of the P polarization state has a very low reflectivity on the outer inner surface of the reflection imaging part 500, and is basically transmitted out, which can be eliminated. ghosting.
  • the image light emitted by the display device includes light in the S polarization state
  • the first phase retardation part 501 may be a 1/4 wave plate
  • a part of the light in the S polarization state incident on the first phase retardation part 501 may be reflected by the imaging part 500 is reflected to the observation area 600, and the other part is converted into circularly polarized light by the first phase retardation part 501.
  • the circularly polarized light has a very low reflectivity on the outer inner surface of the reflection imaging part 500, which can eliminate ghosting.
  • the surface of the first phase retardation part 501 is close to the surface of the reflection imaging part 500;
  • the reflection imaging section 500 is also enlarged in the figure. For example, the thickness of the reflection imaging part 500 is enlarged.
  • ghosting can be effectively eliminated by arranging a wedge-shaped film, a selective reflection film, a P-polarized light reflection film or a first phase retardation part in the reflection imaging part.
  • the reflection imaging part such as the windshield of a motor vehicle, has a relatively high reflectivity to the light in the S-polarized state (S-polarized light), and the light emitted by the display device of the head-up display generally includes S-polarized light.
  • S-polarized light S-polarized light
  • the sunglasses filter S-polarized light, and the driver cannot see the image of the head-up display when wearing the sunglasses.
  • a P-polarized light reflective film is provided on the side of the reflective imaging part 500 in the head-up display facing the display device, and when the image light emitted by the display device includes light in the P-polarized state, the reflective imaging is performed.
  • the part 500 can reflect the image light in the P-polarized state to the observation area 600 so that a user wearing sunglasses whose eyes are located in the observation area 600 can still see the image displayed by the display device, thereby improving the user experience.
  • FIG. 15 is a schematic partial structural diagram of a head-up display provided according to another example of another embodiment of the present disclosure.
  • a second phase retardation part 502 such as a quarter wave plate, is provided between the display device of the head-up display and the reflection imaging part 500 .
  • the above-mentioned second phase retardation part 502 is not closely arranged on the reflection imaging part 500 of the head-up display. After the two-phase retardation part 502 is reflected by the reflection imaging part 500 , it does not enter the second phase retardation part 502 again, but directly exits the observation area 600 .
  • the light emitted from the display device includes the light of the S polarization state
  • the second phase retardation part 502 is configured to convert the light of the S polarization state incident to the second phase retardation part 502 into the light of the circular polarization state (circularly polarized light) Or elliptically polarized light (elliptically polarized light)
  • circularly polarized light or elliptically polarized light is reflected by the reflection imaging part 500 and then directed to the observation area 600, because the circularly polarized light or the elliptically polarized light includes a P-polarized component, after being filtered by the sunglasses,
  • the light in the P-polarized state enables a user with sunglasses whose eyes are located in the observation area 600 to still see the image displayed by the display device, thereby improving the user's use experience.
  • the second phase delay part 502 may be disposed at the position of the opening 710 of the package case 700 .
  • FIG. 16 is an exemplary block diagram of a transportation device provided in accordance with another embodiment of the present disclosure.
  • the transportation device includes a heads-up display provided by at least one embodiment of the present disclosure.
  • the traffic device may also be a traffic device including any of the above-mentioned display devices.
  • a front window of a traffic device (eg, a front windshield) is multiplexed as the reflective imaging portion 500 of the head-up display.
  • a traffic device eg, a front windshield
  • the first virtual image 1110 and the second virtual image 1120 shown in FIG. 6a to FIG. 7 , FIG. 9 , FIG. 14 or FIG. 15 are perpendicular to the ground, and the third virtual image 1130 is away from one end of the ground. The distance from the end of the third virtual image 1130 closer to the ground is farther from the observation area 600 , so that each virtual image is matched and fused with the corresponding real scene.
  • the traffic equipment provided by the embodiments of the present disclosure applies the above head-up display, so that the driver can view images at different distances, which is conducive to the matching and fusion of images at different distances and real scenes at different distances, so that the driver does not need images at a fixed distance. Switching back and forth with real scenes at different distances avoids the conflict of visual vergence adjustment and improves the experience of using transportation equipment.
  • the above three virtual images may or may not be displayed simultaneously.
  • one or two virtual images are displayed at the same time period.
  • the transportation equipment may be various suitable vehicles.
  • a front window is provided at the driving position of the transportation equipment and an image is projected on the front window through an in-vehicle display system, it may include various types of automobiles, etc.
  • Transportation equipment or it can be water transportation equipment such as boats.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

一种多层图像显示装置、抬头显示器以及交通设备。显示装置包括像源(100)、第一反射元件(200)以及第二反射元件(300)。像源(100)包括至少两个显示区(110),至少两个显示区(110)包括第一显示区(111)和第二显示区(112);第一反射元件(200)被配置为反射至少两个显示区(110)发出的图像光线;第二反射元件(300)被配置为反射在被第一反射元件(200)反射后向第二反射元件(300)传播的图像光线。第一反射元件(200)至少包括第一子反射元件(210)和第二子反射元件(220),第一显示区(111)发出的图像光线在被第一子反射元件(210)反射后传播至第二反射元件(300),第二显示区(112)发出的图像光线在被第二子反射元件(220)反射后传播至第二反射元件(300)。显示装置可以在不同位置处成像,提高了用户的使用体验。

Description

多层图像显示装置、抬头显示器以及交通设备
本申请要求于2020年8月21日递交的中国专利申请第202010849122.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种多层图像显示装置、抬头显示器以及交通设备。
背景技术
抬头显示(Head Up Display,HUD)器可以利用反射式光学设计,通过将图像源发出的图像光(包括车速等车辆信息)投射到成像窗(例如挡风玻璃、成像板等结构)上,以使用户(例如驾驶员和/或乘客)在驾驶过程中无需低头看仪表盘就可以直接看到信息,既能提高驾驶安全系数,又能带来更好的驾驶体验。
发明内容
本公开的至少一实施例提供一种多层图像显示装置、抬头显示器以及交通设备。
第一方面,本公开实施例提供的一种多层图像显示装置,包括:像源,包括至少两个显示区,所述至少两个显示区包括第一显示区和第二显示区;第一反射元件,被配置为反射所述至少两个显示区发出的图像光线;第二反射元件,被配置为反射在被所述第一反射元件反射后向所述第二反射元件传播的所述图像光线。所述第一反射元件至少包括第一子反射元件和第二子反射元件,所述第一显示区发出的所述图像光线在被所述第一子反射元件反射后传播至所述第二反射元件,所述第二显示区发出的所述图像光线在被所述第二子反射元件反射后传播至所述第二反射元件。
第二方面,本公开实施例提供的一种多层图像显示装置,包括:像源;第一反射元件,被配置为反射所述像源发出的图像光线;第二反射元件,被配置为反射在被所述第一反射元件反射后向所述第二反射元件传播的图像光线,其中,所述图像光线在被所述第二反射元件反射后形成多个子虚像,所述多个子虚像包括第一子虚像、第二子虚像和第三子虚像,所述第一子虚像、第二子虚像和第三子虚像中成像距离居中的子虚像相对于水平方向倾斜且倾斜程度小于其余两个子虚像相对于水平方向的夹角。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,从所述至少两个显示区的第一显示区和第二显示区出射且传播至所述第二反射元件的图像光线的光学距离相同或不同,并且从所述至少两个显示区的第一显示区和第二显示区出射且传播至所述第二反射元件的图像光线形成不同的虚像。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第二显示区出射且传播至所述第二反射元件的所述图像光线的光学距离。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第二显示区位于所述第一显示区远离所述第二反射元件的一侧,所述第二子反射元件位于所述第一子反射元件远离所述第二反射元件的一侧,且所述第二子反射元件的中心与所述第二显示区之间的距离大于所述第一子反射元件的中心与所述第一显示区之间的距离。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第一显示区的显示面和所述第二显示区的显示面平行,且所述第一子反射元件的反射面和所述第二子反射元件的反射面的夹角不大于20°。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述像源包括第一子像源,所述第一子像源包括所述第一显示区和所述第二显示区,且所述第一显示区和所述第二显示区之间设置遮光结构。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第一显示区的面积小于所述第二显示区的面积。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第一子反射元件和所述第二子反射元件一体成型。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述至少两个显示区还包括第三显示区,所述第一反射元件还包括第三子反射元件,所述第三显示区发出的所述图像光线在被所述第三子反射元件反射后传播至所述第二反射元件。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第一显示区的显示面和所述第三显示区的显示面之间的夹角为5°~90°。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离,且从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第二显示区出射且传播至所述第二反射元件的所述图像光线的光学距离;或者,从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第三显示区位于所述第二显示区远离所述第二反射元件的一侧,所述第三子反射元件位于所述第二子反射元件远离所述第二反射元件的一侧,且所述第三子反射元件的中 心与所述第三显示区之间的距离小于所述第一子反射元件的中心与所述第一显示区的距离;或者,所述第三显示区位于所述第一显示区靠近所述第二反射元件的一侧,所述第三子反射元件位于所述第一子反射元件靠近所述第二反射元件的一侧。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述第一子反射元件、所述第二子反射元件和所述第三子反射元件均为平面反射镜;或者,在所述第三子反射元件位于所述第一子反射元件靠近所述第二反射元件的一侧的情况下,所述第一子反射元件和所述第二子反射元件均为平面反射镜,所述第三子反射元件为透反元件,且被配置为透射所述第一子反射元件和所述第二子反射元件的至少之一反射向所述第二反射元件的所述图像光线。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述透反元件包括偏振透反元件,所述第三显示区发出具有第一偏振性的偏振光,所述第一显示区和所述第二显示区至少之一发出的光线至少具有第二偏振性,所述第一偏振性和所述第二偏振性不同,所述透反元件被配置为反射所述具有第一偏振性的偏振光且透射所述具有第二偏振性的光线;或者,所述透反元件为波长选择性透反元件,所述第三显示区发出的所述图像光线所在波段为第一波段组,所述第一显示区和所述第二显示区至少之一发出的所述图像光线所在波段为第二波段组,所述透反元件被配置为反射所述第一波段组的图像光线且透射所述第二波段组的图像光线。
例如,对于本公开第一方面或第二方面提供的显示装置,在本公开至少一实施例中,所述像源还包括第二子像源,所述第二子像源包括所述第三显示区;或者,所述第一子像源包括所述第三显示区。
本公开至少一实施例提供一种抬头显示器,包括反射成像部以及显示装置,其中,所述反射成像部被配置为将从所述第二反射元件反射至所述反射成像部的图像光线反射至观察区,且透射环境光;其中,所述显示装置上述任一显示装置。
例如,在本公开至少一实施例中,所述第一显示区发出的所述图像光线被所述反射成像部反射所成的第一虚像与所述观察区之间的距离为2~4米,所述第二显示区发出的所述图像光线被所述反射成像部反射所成的第二虚像与所述观察区之间的距离为20~50米。
例如,在本公开至少一实施例中,在所述至少两个显示区还包括所述第三显示区的情况下,所述第一显示区的显示面和所述第三显示区的显示面之间的夹角为5°~90°。
例如,在本公开至少一实施例中,在所述至少两个显示区还包括所述第三显示区的情况下,所述第三显示区发出的所述图像光线被所述反射成像部反射所成的第三虚像与所述观察区之间的距离为7~14米,所述第一虚像与所述第二虚像平行或具有非零夹角,且所述第三虚像与所述第一虚像之间的夹角为5°~90°。
例如,在本公开至少一实施例中,所述第一虚像和所述第二虚像沿竖直方向,且所 述第三虚像向远离所述观察区的方向倾斜。
例如,在本公开至少一实施例中,所述第二显示区发出的图像光线被所述第二反射元件反射所成的虚像位于所述反射成像部的焦平面。
例如,在本公开至少一实施例中,所述第一虚像、所述第二虚像和所述第三虚像的至少之一向远离所述观察区的方向倾斜。
例如,在本公开至少一实施例中,所述第一显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第一虚像,所述第二显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第二虚像,所述第三显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第三虚像,所述第一虚像、第二虚像和第三虚像中距离所述观察区的距离居中的虚像相对于水平方向的倾斜程度小于其余两个虚像相对于所述水平方向的夹角。
例如,在本公开至少一实施例中,抬头显示器还包括具有开口的封装壳体,其中,所述像源、所述第一反射元件和所述第二反射元件均位于所述封装壳体内,所述反射成像部位于所述封装壳体外部,从所述封装壳体的开口出射的图像光线被所述反射成像部反射至所述观察区。
例如,在本公开至少一实施例中,所述开口位置处设置有透明防尘膜以封装所述开口,所述透明防尘膜外侧设置有遮光罩,所述遮光罩不遮挡从所述开口出射后传播至所述反射成像部的图像光线的光路,且所述遮光罩被配置为遮挡部分环境光。
本公开至少一实施例提供一种交通设备,包括上述任一显示装置,或者包括上述任一抬头显示器。
例如,在本公开至少一实施例中,所述反射成像部为所述交通设备的挡风窗或成像窗。
在一些实施例中,本公开第二方面提供的显示装置中的第一子虚像可以为本公开任一实施例提供的抬头显示器中的第一虚像,和/或本公开第二方面提供的显示装置中的第二子虚像可以为本公开任一实施例提供的抬头显示器中的第二虚像,和/或本公开第二方面提供的显示装置中的第三子虚像可以为本公开任一实施例提供的抬头显示器中的第三虚像。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例的一示例提供的显示装置的局部结构示意图;
图2为根据本公开一实施例的另一示例提供的显示装置的局部结构示意图;
图3为图1所示的子像源的平面结构示意图;
图4为根据本公开一实施例的另一示例提供的显示装置的局部结构示意图;
图5为根据本公开一实施例的另一示例提供的显示装置的局部结构示意图;
图6A为根据本公开一实施例的一示例提供的抬头显示器的结构示意图;
图6B为根据本公开另一实施例的一示例提供的抬头显示器的结构示意图;
图7为根据本公开另一实施例的一示例提供的抬头显示器的结构示意图;
图8为图7所示的抬头显示器中的封装壳体的结构示意图;
图9为根据本公开另一实施例的另一示例提供的抬头显示器的结构示意图;
图10A至图10D为根据本公开实施例提供的反射导光元件的结构示意图;
图11为根据本公开实施例提供的光束会聚元件与反射导光元件组合的结构示意图;
图12为根据本公开实施例提供的反射导光元件、光束会聚元件和光束扩散元件组合的光路示意图;
图13为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意图;
图14为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意图;
图15为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意图;以及
图16为根据本公开另一实施例提供的交通设备的示例性框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开实施例中使用的“平行”、“垂直”以及“相同”等特征均包括严格意义的“平行”、“垂直”、“相同”等特征,以及“大致平行”、“大致垂直”、“大致相同”等包含一定误差的情况,考虑到测量和与特定量的测量相关的误差(例如,测量***的限制),表示在本领域的普通技术人员所确定的对于特定值的可接受的偏差范围内。例如,“大致”能够表示在一个或多个标准偏差内,或者在所述值的10%或者5%内。在本公开实施例的下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个, 或可理解为至少一个。“至少一个”指一个或多个,“多个”指至少两个。
抬头显示器在使用时显示的图像距离人眼的距离是固定的,而应用抬头显示器的车辆在行驶过程中,车辆周围的实景,如建筑、行人或其他车辆等,相对于该车辆是不断运动的,由此车辆周围的实景与驾驶员之间的距离在不停变化。
在研究中,本公开的发明人发现:抬头显示器在使用时显示的图像距离人眼的距离一般都是固定的,例如,图像与人眼之间的距离在5~20米左右。在使用抬头显示器显示图像时,用户(例如驾驶员)需要在抬头显示器显示的具有固定距离的图像和距离不同的实景之间切换视线,容易出现视觉辐辏调节冲突,导致驾驶员出现诸如模糊、眩晕等视疲劳现象,降低了抬头显示器的使用体验。
本公开的实施例提供一种多层图像显示装置、抬头显示器以及交通设备。该显示装置包括像源、第一反射元件以及第二反射元件。像源包括至少两个显示区,至少两个显示区包括第一显示区和第二显示区;第一反射元件,被配置为反射至少两个显示区发出的图像光线;第二反射元件,被配置为反射在被第一反射元件反射后向第二反射元件传播的图像光线。第一反射元件至少包括第一子反射元件和第二子反射元件,第一显示区发出的图像光线在被第一子反射元件反射后传播至第二反射元件,第二显示区发出的图像光线在被第二子反射元件反射后传播至第二反射元件。在一些实施例中,例如,可以在不同距离处成像可以在不同距离处成像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使该显示装置应用于抬头显示器时,用户无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了显示装置的使用体验。
下面结合附图对本公开实施例提供的多层图像显示装置、抬头显示器以及交通设备进行描述。
图1为根据本公开一实施例的一示例提供的显示装置的局部结构示意图。如图1所示,显示装置包括像源100、第一反射元件200以及第二反射元件300。像源100包括至少两个显示区110。第一反射元件200被配置为反射至少两个显示区110发出的图像光线。例如,第一反射元件200位于像源100的显示侧。但不限于此,第一反射元件200也可以位于像源的非显示侧,通过其他反射结构将像源发出的光射向第一反射元件。第二反射元件300被配置为反射在被第一反射元件200反射后向第二反射元件300传播的图像光线。例如,像源100发出的图像光线被第一反射元件200反射向第二反射元件300。例如,第二反射元件300位于第一反射元件200面向像源100的一侧。例如,第一反射元件与第二反射元件之间可以不设置光学元件,第一反射元件反射的光线可以直接入射至第二反射元件,但不限于此,第一反射元件与第二反射元件之间还可以设置其他光学元件,如反射结构或者透镜等,被上述其他光学元件处理后的光线入射至第二反射元件。
本公开实施例提供的显示装置可以在不同位置处成像,提高了用户的使用体验。
例如,从至少两个显示区110的第一显示区111和第二显示区112出射且传播至第 二反射元件300的图像光线的光学距离相同或不同。
例如,从至少两个显示区110的第一显示区111和第二显示区112出射且传播至第二反射元件300的图像光线的光学距离相同以实现同层显示。
例如,从至少两个显示区110出射至第二反射元件300的图像光线的光学距离不同。例如,从至少两个显示区110出射的图像光线被第一反射元件200反射至第二反射元件300,该反射光路中,至少两个显示区110的图像光线的光学距离不同以使被第二反射元件300反射所成的至少两个虚像距用户的距离不同。例如,上述“光学距离”指显示区发出的图像光线出射至第二反射元件的几何路程与传播介质的折射率的乘积。上述“像源的显示侧”指像源发出光线的一侧。
本公开实施例提供的显示装置中,从至少两个显示区出射至第二反射元件的图像光线的光学距离不同,可以在不同距离处成像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使该显示装置应用于抬头显示器时,用户无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了显示装置的使用体验。
例如,至少两个显示区110中各显示区可以显示不同的图像以满足用户想观看不同图像的需求。本公开实施例不限于此,例如,至少两个显示区中的部分显示区也可以显示相同的图像。
例如,从至少两个显示区110的第一显示区111和第二显示区112出射且传播至第二反射元件300的图像光线形成不同的虚像。例如上述不同的虚像可以指不完全相同的虚像,例如虚像位置、虚像大小、虚像倾斜程度和虚像内容的至少之一不同。
例如,第一反射元件200可以包括至少两个子反射元件,至少两个显示区110可以与至少两个子反射元件一一对应。一一对应的解释如下:子反射元件与显示区存在一一对应关系时,不同子反射元件可以将不同显示区显示的图像光线反射向第二反射元件。本公开实施例不限于此,例如,在至少两个显示区出射至第二反射元件的图像光线的光学距离不同的情况下,至少两个显示区出射的图像光线也可以均入射到同一个第一反射元件。
如图1所示,至少两个显示区110包括第一显示区111和第二显示区112,第一反射元件200包括第一子反射元件210和第二子反射元件220,第一子反射元件210被配置为将第一显示区111发出的图像光线反射至第二反射元件300,第二子反射元件220被配置为将第二显示区112发出的图像光线反射至第二反射元件300。例如,图1示意性的示出显示区与第一反射元件之间没有其他光学元件,例如,第一显示区发出的图像光线可以直接入射到第一子反射元件,第二显示区发出的图像光线可以直接入射到第二子反射元件。但本公开不限于此,显示区与第一反射元件之间还可以设置其他光学元件,例如透镜等,例如,第一显示区发出的图像光线可以被其他光学元件处理后入射到第一子反射元件,第二显示区发出的图像光线可以被其他光学元件处理后入射到第二子反射元件。 例如,在设置其他光学元件的情况下,第一显示区和第二显示区之一发出的图像光线被其他光学元件处理后入射到第一反射元件,另一个发出的图像光线没有被其他光学元件处理而直接入射到第一反射元件。
例如,如图1所示,第一显示区111出射至第一子反射元件210的反射面的图像光线的几何路程为A1,从第一子反射元件210反射至第二反射元件300的反射面的图像光线的几何路程为A2,以第一显示区111出射的图像光线在空气(折射率n约为1)中传播为例,则第一显示区111出射至第二反射元件300的图像光线的光学距离为(A1+A2)。例如,第一显示区111出射至第二反射元件300的图像光线的光学距离等于第一显示区111出射至第一子反射元件210的主传输光线传输的光学距离加上从第一子反射元件210反射至第二反射元件300的主传输光线传输的光学距离。
例如,如图1所示,第二显示区112出射至第二子反射元件220的反射面的图像光线的几何路程为B1,从第二子反射元件220反射至第二反射元件300的反射面的图像光线的几何路程为B2,以第二显示区112出射的图像光线在空气(折射率n约为1)中传播为例,则第二显示区112出射至第二反射元件300的图像光线的光学距离为(B1+B2),且(A1+A2)≠(B1+B2)。例如,第二显示区112出射至第二反射元件300的图像光线的光学距离等于第二显示区112出射至第二子反射元件220的主传输光线传输的光学距离加上从第二子反射元件220反射至第二反射元件300的主传输光线传输的光学距离。
本公开实施例可以通过调节第一子反射元件与第一显示区和第二反射元件之间的距离以及第二子反射元件与第二显示区和第二反射元件之间的距离实现从至少两个显示区出射至第二反射元件的图像光线的光学距离不同的目的。
例如,第二反射元件300可以为曲面反射镜,例如,曲面反射镜可以为凹面反射镜;此种情况下,凹面反射镜靠近显示区的表面为凹曲面。
例如,在曲面反射镜为凹面反射镜(也即,反射面为凹曲面的反射镜)的情况下,曲面反射镜的曲面朝向显示区,如果显示区与凹面反射镜之间的光学距离小于凹面反射镜的焦距,则凹面反射镜基于显示区输出的图像形成正立放大的虚像。例如,根据凹面反射镜的成像性质可知,在显示区与凹面反射镜之间的光学距离小于凹面反射镜的焦距情况下(也即,显示区位于凹面反射镜的一倍焦距以内),凹面反射镜的像距随显示区与凹面反射镜之间的光学距离的增大而增大,也即,显示区与凹面反射镜之间的光学距离越大,则使用包括该显示装置的抬头显示器的用户与其观看到的图像之间的距离越大。
例如,第二反射元件300的反射面可以为自由曲面,也即,第二反射元件300的反射面不具有旋转对称特性,以提升显示装置的成像质量。
例如,如图1所示,第一显示区111的显示面和第二显示区112的显示面平行,且第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于20°,由此,第一显示区和第二显示区显示的图像光线被第二反射元件反射后所成的虚像大致为平行 的。本公开不限于此,第一显示区111的显示面和第二显示区112的显示面平行时,第一子反射元件210的反射面和第二子反射元件220的反射面的夹角也可以大于20°,在这种情况下,第一显示区和第二显示区显示的图像光线被第二反射元件反射后所成的虚像之间具有非零夹角。例如,第一子反射元件210的反射面和第二子反射元件220的反射面平行时,第一显示区111的显示面和第二显示区112的显示面的夹角可以不大于20°。
例如,以第一显示区111和第二显示区112的显示面平行时的显示面为基准面,第一子反射元件210的反射面相对于该基准面的角度为θ1,第二子反射元件220的反射面相对于该基准面的角度为θ2,θ1可以大于θ2,或者θ1可以小于θ2。
例如,如图1所示,第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于15°。例如,第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于10°。例如,第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于5°。例如,第一子反射元件210的反射面和第二子反射元件220的反射面的夹角为0°。例如第一子反射元件210的反射面和第二子反射元件220的反射面可以平行设置。
例如,第一子反射元件210和第二子反射元件220可以为平面反射镜,则上述“第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于15°”可以指两个平面反射面的夹角不大于15°。
例如,第一子反射元件210和第二子反射元件220还可以为曲面反射镜、非球面反射镜和球面反射镜等中的一种或多种,则上述“第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于15°”可以指反射面边缘围成的平面之间的夹角不大于15°。
例如,第一子反射元件210和第二子反射元件220可以为相同类型的反射镜也可以为不同类型的反射镜,本公开实施例示意性的示出第一子反射元件210和第二子反射元件220均为平面反射镜。通过采用平面反射镜可以方便显示装置的制作,对显示装置内的光路起到折叠作用以节约空间,也可以避免给显示装置显示的图像带来额外的畸变、大小变化等。
例如,第二反射元件300可以为曲面反射镜,例如,自由曲面反射镜。本公开实施例提供的显示装置应用于抬头显示器时,曲面反射镜的设置可以使得抬头显示器具有更远的成像距离和更大的成像尺寸,且曲面反射镜还可与曲面的反射成像部(后续提到)如挡风玻璃配合,以消除反射成像部造成的虚像畸变。
例如,从至少两个显示区110出射的图像光线在被第一反射元件200反射向第二反射元件300的光路中仅包括用于反射各自显示区110的图像光线的第一反射元件200。例如,第二子反射元件220不在从第一显示区111出射的图像光线出射至第二反射元件300的光路里,第一子反射元件210不在从第二显示区112出射至第二反射元件300的光路 里。
例如,如图1所示,第一显示区111和第二显示区112可以位于同一平面,则通过调节第一子反射元件210和第二子反射元件220的位置以及角度可以实现从至少两个显示区出射至第二反射元件的图像光线的光学距离不同。本公开实施例不限于此,例如,第一显示区和第二显示区也可以位于不同的平面,第一子反射元件和第二子反射元件位于同一平面(或不同平面),通过调节第一显示区和第二显示区的位置可以实现从至少两个显示区出射至第二反射元件的图像光线的光学距离不同。
例如,如图1所示,像源100包括第一子像源101,第一子像源101包括第一显示区111和第二显示区112,例如,第一显示区111和第二显示区112可以为位于同一子像源上的不同位置处的显示区,例如同一个屏幕进行分区显示,以节省空间和成本。本公开实施例不限于此,第一显示区和第二显示区也可以分别位于不同子像源上,例如不同子像源的屏幕可以紧密靠近;例如不同子像源的显示面彼此平行以使第一显示区和第二显示区平行,此时可以将不同子像源之间的距离设置较大以防止两个显示区出射的图像光线互相影响。
例如,如图1所示,第一子像源101包括第一显示区111和第二显示区112时,第一显示区111和第二显示区112之间设置遮光结构400可以避免不同显示区发出的图像光线互相影响。例如,遮光结构400可以为挡光板。
例如,第一子像源101可以包括上述遮光结构400,但不限于此,上述遮光结构也可以不是第一子像源的结构。例如,上述遮光结构400可以位于第一子像源101的显示侧,例如至少设置于/安装于/附着(例如可以贴合设置、固定、紧贴、粘附或吸附等)于在第一子像源101的显示屏上。
例如,如图1所示,第一子反射元件210和第二子反射元件220可以为彼此独立的两个反射元件,以便于两者独立调节。例如,图2为本实施例另一示例提供的显示装置,如图2所示,第一子反射元件210和第二子反射元件220还可以为一体结构,两者一体成型,例如台阶式反射镜,可以方便制作和设置。例如,在第一子反射元件和第二子反射元件为一体成型的台阶式反射镜时,两个子反射元件之间的连接部201几乎不影响任一显示区发出的图像光线的传播。一体成型的解释如下:可以理解为第一子反射元件的至少部分与第二子反射元件的至少部分分别属于一个整体件的一部分,而非属于各自独立的部件。例如,连接部201的基底材料可与子反射元件的材料相同,例如玻璃等材料,连接部201的基底材料面向显示区的一侧可以贴合黑色绒布或喷涂黑色绒毛漆、深色磨砂等材料中的一种或多种,该贴合解释如下:黑色绒布或喷涂黑色绒毛漆、深色磨砂等材料中的一种或多种与连接部201的基底材料面向显示区的一侧可保持固定连接。本公开实施例不限于此,连接部还可与子反射元件的材料不同,例如采用塑料或金属结构件等中的一种多多种连接并固定两端的第一子反射元件和第二子反射元件。
例如,如图1所示,第一显示区111出射至第二反射元件300的图像光线的光学距离(A1+A2)小于第二显示区112出射至第二反射元件300的图像光线的光学距离(B1+B2),则第二反射元件对第二显示区出射至第二反射元件的图像光线所成的虚像比对第一显示区出射至第二反射元件的图像光线所成的虚像距离用户更远。
例如,如图1所示,第二显示区112位于第一显示区111远离第二反射元件300的一侧,例如,第二显示区112与第二反射元件300之间的最小距离大于第一显示区111与第二反射元件300之间的最小距离。例如,第一显示区111位于第二显示区112与第二反射元件300之间。例如,第二子反射元件220位于第一子反射元件210远离第二反射元件300的一侧,例如,第二子反射元件220与第二反射元件300之间的最小距离大于第一子反射元件210与第二反射元件300之间的最小距离。例如,第一子反射元件210位于第二子反射元件220与第二反射元件300之间。例如,第二子反射元件220的中心与第二显示区112之间的距离大于第一子反射元件210的中心与第一显示区111之间的距离。例如,第二显示区112出射至第二子反射元件220的反射面的图像光线的几何路程B1大于第一显示区111出射至第一子反射元件210的反射面的图像光线的几何路程A1,且第二子反射元件220反射至第二反射元件300的反射面的图像光线的几何路程B2大于第一子反射元件210反射至第二反射元件300的反射面的图像光线的几何路程A2,由此(B1+B2)>(A1+A2)。
例如,第一显示区111可以显示近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;第二显示区112可以显示远景画面,例如建筑等。例如,第二显示区112显示的远景画面可以包括银行,像源显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,从而用户可以看到远处的建筑物,例如银行时,显示画面中标识了银行的标志。
例如,图3示出了第一显示区和第二显示区的平面示意图。如图3所示,第一显示区111的面积小于第二显示区112的面积以使第二反射元件300反射第一显示区111发出的图像光线所成的虚像的成像尺寸小于第二反射元件300反射第二显示区112发出的图像光线所成的虚像的成像尺寸。例如,第一显示区111的形状可以与第二显示区112的形状相同,或者,两者的形状也可以不同。
例如,第一显示区被第一反射元件和第二反射元件等光学元件反射后的成像区域在水平方向(例如以平行于地面的方向为水平方向)上的尺寸大于或等于第二显示区被第一反射元件和第二反射元件等光学元件反射后的成像区域水平方向上的尺寸;和/或第一显示区被第一反射元件和第二反射元件等光学元件反射后的成像区域在竖直方向(例如以垂直于地面的方向为竖直方向)上的尺寸小于或等于第二显示区被第一反射元件和第二反射元件等光学元件反射后的成像区域在竖直方向上的尺寸。
例如,第一显示区被配置为显示近景画面,近景画面的显示内容可以是车辆仪表等 关键驾驶参数,由此显示的近景画面的尺寸可以较小;第二显示区被配置为显示远景画面,远景画面的显示内容需要和车外的实景,例如建筑物等实景匹配融合,由此显示的远景画面的尺寸比近景画面的尺寸大。例如,尺寸较小的近景画面不会遮挡尺寸较大的远景画面。
例如,图4为根据本公开一实施例的另一示例提供的显示装置的局部结构示意图。如图4所示,与图1所示示例不同之处在于至少两个显示区110还包括第三显示区113,第一反射元件200还包括第三子反射元件230,第三显示区113发出的所述图像光线在被所述第三子反射元件230反射后传播至所述第二反射元件300。例如,第三子反射元件230被配置为将第三显示区113发出的图像光线反射至第二反射元件300。例如,第三子反射元件230与第二反射元件300之间不设置任何光学元件,则第三子反射元件230反射的光线直接入射至第二反射元件300。例如,第三子反射元件230与第二反射元件300之间可以设置其他光学元件,例如其他反射结构或者透镜等,第三子反射元件230反射的光线可以被上述其他光学元件处理后入射至第二反射元件300。例如,第三显示区与第三子反射元件之间可以不设置任何光学元件,第三显示区发出的图像光直接入射到第三子反射元件上;或者第三显示区与第三子反射元件可以设置其他光学元件,例如透镜等,第三显示区发出的图像光可以被其他光学元件处理后入射到第三子反射元件上。
例如,第一显示区111的显示面和第二显示区112的显示面平行,且第一子反射元件210的反射面和第二子反射元件220的反射面的夹角不大于20°,且第一显示区111的显示面和第三显示区113的显示面之间的夹角为5°~90°。由此,第一显示区和第二显示区显示的图像光线被第二反射元件反射后所成的虚像大致为平行的,而第三显示区显示的图像光线被第二反射元件反射后所成的虚像与第一显示区显示的图像光线被第二反射元件反射后所成的虚像不平行,例如两个虚像之间的夹角可以为5°~90°。
例如,第一显示区111的显示面和第三显示区113的显示面之间的夹角为10°~80°。例如,第一显示区111的显示面和第三显示区113的显示面之间的夹角为30°~70°。例如,第一显示区111的显示面和第三显示区113的显示面之间的夹角为45°~60°。上述“第一显示区111的显示面和第三显示区113的显示面之间的夹角”可以指第一显示区所在平面和第三显示区所在平面之间的夹角。本公开实施例以第一显示区和第三显示区为平面显示区为例,但不限于此,第一显示区和第三显示区也可以为非平面显示区,则第一显示区和第三显示区的夹角可以指第一显示区边缘围成的平面与第三显示区边缘围成的平面之间的夹角。
例如,如图4所示,以第三显示区113为倾斜的显示区为例,则倾斜的第三显示区113具有靠近第二显示区112的第一端e1和远离第二显示区112的第二端e2。例如,沿垂直于第二显示区112的方向,第三显示区113的第一端e1与第二显示区112所在平面的距离大于第二端e2与该平面的距离。例如,第三显示区113的第二端e2可以位于上 述平面上,第一端e1相对于第二端e2更靠近第一反射元件200所在区域。
例如,如图4所示,在第三显示区113为倾斜的显示区时,第三显示区113的第二端e2相比于第一端e1更远离第二反射元件300,以使第二端e2的物距更大。例如,第三显示区113的第一端e1与第三子反射元件230之间的距离小于第三显示区113的第二端e2与第三子反射元件230之间的距离。
例如,如图4所示,第一显示区111出射至第一子反射元件210的反射面的图像光线的几何路程为A1,从第一子反射元件210反射至第二反射元件300的反射面的图像光线的几何路程为A2,以第一显示区111出射的图像光线在空气(折射率n约为1)中传播为例,则第一显示区111出射至第二反射元件300的图像光线的光学距离为(A1+A2)。第二显示区112出射至第二子反射元件220的反射面的图像光线的几何路程为B1,从第二子反射元件220反射至第二反射元件300的反射面的图像光线的几何路程为B2,以第二显示区112出射的图像光线在空气(折射率n约为1)中传播为例,则第二显示区112出射至第二反射元件300的图像光线的光学距离为(B1+B2)。第三显示区113出射至第三子反射元件230的反射面的图像光线的几何路程为C1,从第三子反射元件230反射至第二反射元件300的反射面的图像光线的几何路程为C2,以第三显示区113出射的图像光线在空气(折射率n约为1)中传播为例,则第三显示区113出射至第二反射元件300的图像光线的光学距离为(C1+C2)。例如,第三显示区113出射至第二反射元件300的图像光线的光学距离等于第三显示区113出射至第三子反射元件230的主传输光线传输的光学距离加上从第三子反射元件230反射至第二反射元件300的主传输光线传输的光学距离。例如,上述三个显示区出射至第二反射元件300的图像光线的光学距离满足以下关系:(A1+A2)≠(B1+B2)≠(C1+C2)。
本示例提供的显示装置中,从三个显示区出射至第二反射元件的图像光线的光学距离例如可以不同,由此可以在不同距离处成像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使该显示装置应用于抬头显示器时,用户无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了显示装置的使用体验。本公开实施例可以通过调节第一子反射元件与第一显示区和第二反射元件之间的距离、第二子反射元件与第二显示区和第二反射元件之间的距离以及第三子反射元件与第三显示区和第二反射元件之间的距离实现从三个显示区出射至第二反射元件的图像光线的光学距离不同。
例如,第一子反射元件210、第二子反射元件220以及第三子反射元件230可以为相同类型的反射镜也可以为不同类型的反射镜,本公开实施例示意性的示出第一子反射元件210、第二子反射元件220以及第三子反射元件230均为平面反射镜。
例如,如图4所示,从至少两个显示区110出射的图像光线在被第一反射元件200反射向第二反射元件300的光路中仅包括用于反射各自显示区110的图像光线的第一反 射元件200。例如,第二子反射元件220不在从第一显示区111出射至第二反射元件300的图像光线的光路以及从第三显示区113出射至第二反射元件300的图像光线的光路里;第一子反射元件210不在从第二显示区112出射至第二反射元件300的图像光线的光路以及从第三显示区113出射至第二反射元件300的图像光线的光路里;第三子反射元件230不在从第二显示区112出射至第二反射元件300的图像光线的光路以及从第一显示区111出射至第二反射元件300的图像光线的光路里。
例如,如图4所示,第一显示区111出射至第二反射元件300的图像光线的光学距离(A1+A2)小于第三显示区113出射至第二反射元件300的图像光线的光学距离(C1+C2),且第三显示区113出射至第二反射元件300的图像光线的光学距离(C1+C2)小于第二显示区112出射至第二反射元件300的图像光线的光学距离(B1+B2),例如,(B1+B2)>(C1+C2)>(A1+A2),则第二反射元件对第三显示区出射的图像光线所成的虚像位于对第一显示区和第二显示区出射的图像光线所成的两个虚像之间。
例如,第一显示区111可以显示近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;第三显示区113可以显示中景画面,例如第三显示区113可以显示出车道画面,例如,画面相对于地面为倾斜状态时与实际车道匹配融合效果更好,用户可以看到车道被图像融合标记,指引用户走这条车道;第二显示区112可以显示远景画面,例如建筑等,第二显示区112显示的远景画面例如为银行,像源显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,从而用户可以看到远处建筑物,例如银行时,显示画面中标识了银行的标志。
例如,如图4所示,第一显示区111位于第二显示区112靠近第二反射元件300的一侧,第三显示区113位于第二显示区112远离第二反射元件300的一侧,第三子反射元件230位于第二子反射元件220远离第二反射元件200的一侧,且第三子反射元件230的中心与第三显示区113之间的距离小于第一子反射元件210的中心与第一显示区111之间的距离。例如,第一显示区111可以位于第二显示区112与第二反射元件300之间,第二显示区112第三显示区113与第二反射元件300之间,第二子反射元件220位于第二反射元件200与第三子反射元件230之间。
例如,第一显示区111和第三显示区113可以位于不同的像源上。例如,像源100包括第一子像源101和第二子像源102,第一子像源101包括第一显示区111和第二显示区112,第二子像源102包括第三显示区113,第一显示区111的显示面和第三显示区113的显示面之间的夹角可以为第一子像源101的显示面和第二子像源102的显示面之间的夹角。本公开实施例通过将第一子像源的显示面与第二子像源的显示面设置为不平行,可以使得第二反射元件反射第一显示区发出的图像光线所成的虚像与第二反射元件反射第三显示区发出的图像光线所成的虚像不平行,以满足用户观看图像的需求。
例如,第三显示区113的面积可以大于第一显示区111的面积和第二显示区112的面积,以使第二反射元件300反射第三显示区113发出的图像光线所成的虚像的成像尺寸大于第二反射元件300反射第一显示区111和第二显示区112发出的图像光线所成的虚像的成像尺寸。例如,第三显示区113的形状可以与第一显示区111和第二显示区112的至少之一的形状相同,但不限于此,第一显示区、第二显示区和第三显示区的形状例如可以不同。
例如,第三显示区显示的中景画面是倾斜的。例如,通过设置倾斜画面可以有利于图像贴合路面,提高使用效果;例如,因为倾斜的画面需要与实际的路面匹配贴合,倾斜的中景画面的尺寸较大,至少可覆盖半个或整个车道,使驾驶员可以有更好的观看效果,例如倾斜的中景画面覆盖车道线以使驾驶员可以更容易看清楚图像标记后的车道线,可更好的提示驾驶员保持或更换车道,提升驾驶体验。
例如,第三显示区所形成的倾斜画面,其成像高度至少低于第一显示和/或第二显示区的成像高度,以使倾斜画面实现更好的贴地效果。成像高度可以解释为:虚像沿垂直与行驶路面所在面方向的距离。例如,倾斜画面的高度可以为最低,或者,也可以为第二高度。例如,在成像距离方面,倾斜画面可以位于中间层,其具有更好的贴地效果。
例如,图5为根据本公开一实施例的另一示例提供的显示装置的局部结构示意图。如图5所示,与图4所示的示例不同之处在于第一反射元件200中靠近第二反射元件300的子反射元件为透反元件,而不是平面反射镜。例如,如图5所示,第三显示区113位于第一显示区111靠近第二反射元件300的一侧,第三子反射元件230位于第一子反射元件210靠近第二反射元件300的一侧。例如,第一子反射元件210和第二子反射元件220均为平面反射镜,第三子反射元件230为透反元件,且被配置为透射第一子反射元件210和第二子反射元件220的至少之一反射向第二反射元件300的图像光线。例如,第三显示区113位于第一显示区111与第二反射元件300之间,第三子反射元件230位于第一子反射元件210与第二反射元件300之间。
例如,第三子反射元件230被配置为透射第一子反射元件210和第二子反射元件220反射向第二反射元件300的图像光线。例如,第三子反射元件230被配置为将第三显示区113发出的图像光线反射至第二反射元件300,且透射第一子反射元件210和第二子反射元件220反射向第二反射元件300的图像光线;第二显示区112发出的图像光线在被第二子反射元件220反射至第二反射元件300的过程中还被第三子反射元件230透射;第一显示区111发出的图像光线在被第一子反射元件210反射至第二反射元件300的过程中还被第三子反射元件230透射。
例如,第三子反射元件230对第三显示区113发出的图像光线的反射率可以为30%、40%、50%或其它适用的数值,对第一显示区111和第二显示区112至少之一发出的图像光线的透光率可以为70%、60%、50%或其它适用的数值。例如,第三子反射元件230 对第一显示区111和第二显示区112发出的图像光线的透光率可以为70%、60%、50%或其它适用的数值。
例如,第三子反射元件230(即透反元件)包括偏振透反元件,第三显示区113发出第一偏振光(具有第一偏振性的偏振光),第一显示区111和第二显示区112至少之一发出第二偏振光(具有第二偏振性的偏振光),第一偏振光和第二偏振光的偏振方向垂直,透反元件被配置为反射第一偏振光且透射第二偏振光。例如,第一显示区111和第二显示区112均发出透过第三子反射元件230的第二偏振光。
例如,偏振透反元件可以是透明基板镀膜或贴膜形成的元件。例如,偏振透反元件可以是基板上镀设或贴覆具有反射第一偏振光、透射第二偏振光特性的透反膜,例如反射式偏光增亮膜(Dual Brightness Enhance Film,DBEF)或棱镜膜(Brightness Enhancement Film,BEF)等中的一种或多种。本公开实施例不限于此,例如,透反元件还可以是一体化元件。
例如,偏振透反元件可以是具有偏振透反功能的光学膜,例如偏振透反元件可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成,每个膜层的厚度约在10~1000nm之间;膜层的材料可以选用无机电介质材料,例如,金属氧化物和金属氮化物等中的一种或多种;也可以选用高分子材料,例如聚丙烯、聚氯乙烯或聚乙烯等中的一种或多种。
例如,第一偏振光和第二偏振光之一包括S偏振态的光线,第一偏振光和第二偏振光的另一个包括P偏振态的光线。例如,第一偏振光和第二偏振光的偏振方向之间的夹角可以为大致90°。本公开实施例不限于此,例如,在第一偏振光和第二偏转光的偏振方向垂直的情况下,第一偏振光和第二偏振光还可以是非S偏振光或非P偏振光,如第一偏振光和第二偏振光可以是偏振方向互相垂直的两种线偏振光,或者偏振方向互相垂直的两种圆偏振光,或者偏振方向互相垂直的两种椭圆偏振光等。
例如,透反元件为波长选择性透反元件,第一显示区111发出的图像光线所在波段为第一波段组,第二显示区112发出的图像光线所在波段为第二波段组,透反元件被配置为反射第一波段组的图像光线且透射第二波段组的图像光线。
例如,上述“波段”可以包括单一波长,也可以包括多个波长的混合范围。例如,在波段包括单一波长的情况下,能受到工艺误差的影响导致该波长的光可能混合了附近波长的光。
例如,上述第一波段组和第二波段组的图像光线均可以包括红绿蓝(RGB)三个波段的光线,RGB每个波段的光线的半高宽不大于50nm。例如,第一波段组和第二波段组均包括三个波段的图像光线,例如,这三个波段中的第一个波段的峰值位于410nm~480nm区间范围内,第二个波段的峰值位于500nm~565nm区间范围内,第三个波段的峰值位于590nm~690nm区间范围内。
例如,第一波段组中第一个波段的图像光线的波长不同于第二波段组中第一个波段的图像光线的波长;第一波段组中第二个波段的图像光线的波长不同于第二波段组中第二个波段的图像光线的波长;第一波段组中第三个波段的图像光线的波长不同于第二波段组中第三个波段的图像光线的波长。
例如,第一波段组中各波段的图像光线的波长均小于第二波段组中各波段的图像光线的波长。例如,第一波段组中,红光波长为620纳米,绿光波长为500纳米,蓝光波长为450纳米。例如,第二波段组中,红光波长为650纳米,绿光波长为530纳米,蓝光波长为470纳米。本公开实施例不限于此,例如,第一波段组中各波段的图像光线的波长均大于第二波段组中各波段的图像光线的波长。例如,第一波段组中,红光波长为670纳米,绿光波长为550纳米,蓝光波长为470纳米。例如,第二波段组中,红光波长为650纳米,绿光波长为530纳米,蓝光波长为450纳米。上述波段关系的设置可以方便波长选择性透反元件的制作。
例如,上述第一波段组和第二波段组的图像光线可以包括多个波段的图像光线,例如至少包括上述RGB三个波段的光线以构成彩色图像光线,彩色图像光线可形成彩色图像。例如,上述第一波段组和第二波段组的图像光线可以包括一种颜色波段的图像光线,例如,图像光线包括上述RGB三个波段的光线中的一种;再例如,在第一波段组的图像光线与第二波段组的图像光线的波长不同的情况下,图像光线包括可见光范围内任意颜色的波段光线以形成单色图像光线,单色图像光线可以形成单色图像,与上述实现过程类似。
例如,采用波长选择性透反元件的第三子反射元件230对第三显示区113发出的图像光线的反射率可以为70%、80%、90%、95%或其它适用的数值,对第一显示区111和第二显示区112发出的图像光线的透光率可以为70%、80%、90%、95%或其它适用的数值。由此,可以提高第三子反射元件对图像光线的利用率,以使第一显示区、第二显示区和第三显示区出射的图像光线的光能损失降到最低。
例如,第一子像源101和第二子像源102为可发出RGB混合光线的像源,如发光二极管(LED)显示器,或者液晶显示器(LCD)等。
例如,上述波长选择性透反元件可以包括由无机氧化物薄膜或高分子薄膜堆叠而成的选择性透反膜,该透反膜由至少两种具有不同折射率的膜层堆叠而成。这里的“不同折射率”指的是膜层在xyz三个方向上至少有一个方向上的折射率不同。例如,预先选取所需的不同折射率的膜层,并按照预先设置好的顺序对膜层进行堆叠,可以形成具备选择反射和选择透射特性的透反膜,该透反膜可以选择性反射某一特性的光线、透过另一特性的光线。例如,对于采用无机氧化物材料的膜层,该膜层的成分选自五氧化二钽、二氧化钛、氧化镁、氧化锌、氧化锆、二氧化硅、氟化镁、氮化硅、氮氧化硅、氟化铝中的一种或多种。例如,对于采用有机高分子材料的膜层,该有机高分子材料的膜层包括 至少两种热塑性有机聚合物膜层。例如,两种热塑性聚合物膜层交替排列形成光学膜,且两种热塑性聚合物膜层的折射率不同。例如,上述有机高分子材料的分子为链状结构,拉伸后分子朝某个方向排列,造成不同方向上折射率不同,即通过特定的拉伸工艺即可形成所需的薄膜。例如,上述热塑性聚合物可以为不同聚合程度的聚对苯二甲酸乙二酯(PET)及其衍生物、不同聚合程度的聚萘二甲酸乙二醇酯(PEN)及其衍生物、不同聚合程度的聚对苯二酸丁二酯(PBT)及其衍生物等中的一种或多种。
例如,从第三显示区113出射且传播至第二反射元件300的图像光线的光学距离小于从第一显示区111出射且传播至第二反射元件300的图像光线的光学距离。
本公开实施例提供的一种显示装置,包括:像源;第一反射元件,被配置为反射所述像源发出的图像光线;第二反射元件,被配置为反射在被所述第一反射元件反射后向所述第二反射元件传播的图像光线。本实施例中的像源、第一反射元件以及第二反射元件可以为图1至图5任一示例所示的像源、第一反射元件以及第二反射元件。图像光线在被第二反射元件反射后形成多个子虚像,多个子虚像包括第一子虚像、第二子虚像和第三子虚像。例如,第一子虚像可以为第一显示区经第一反射元件和第二反射元件后所成的虚像,第二子虚像可以为第二显示区经第一反射元件和第二反射元件后所成的虚像,第三子虚像可以为第三显示区经第一反射元件和第二反射元件后所成的虚像。第一子虚像、第二子虚像和第三子虚像中成像距离居中的子虚像相对于水平方向倾斜且倾斜程度小于其余两个子虚像相对于水平方向的夹角。例如,以平行于地面的方向为水平方向。
例如,图7为根据本公开另一实施例的一示例提供的抬头显示器的结构示意图。图7示意性的示出抬头显示器包括图4所示的显示装置以及反射成像部500为例,本公开实施例不限于此,抬头显示器还可以包括图1-图2所示的任一示例提供的显示装置以及反射成像部。例如,如图7所示,反射成像部500位于第二反射元件300的出光侧,且被配置为将从第二反射元件300反射至反射成像部500的图像光线反射至观察区600,且透射环境光。位于观察区600的用户可以观看到反射成像部500对显示装置发出的图像光线所成的多个虚像1110-1130以及位于反射成像部500远离观察区600一侧的环境景象。
例如,第一显示区111出射至反射成像部500的主传输光线传输的光学距离与第二显示区112出射至反射成像部500的主传输光线传输的光学距离可以相同,或者,也可以不同。例如,第一显示区111出射至第二反射元件300的主传输光线传输的光学距离不同于第二显示区112出射至第二反射元件300的主传输光线传输的光学距离,第一显示区111出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离与第二显示区112出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离可以相同,或者,也可以不同。例如,第一显示区111出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离不同于第二显示区112出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离,第一显示区111 出射至第二反射元件300的主传输光线传输的光学距离与第二显示区112出射至第二反射元件300的主传输光线传输的光学距离可以相同,或者,也可以不同。
例如,第一显示区111与反射成像部500之间的光学距离、第二显示区112与反射成像部500之间的光学距离以及第三显示区113与反射成像部500之间的光学距离中的三个光学距离例如可以不同,或者,也可以两个相同,或者均相同。例如,第一显示区111出射至第二反射元件300的主传输光线传输的光学距离、第二显示区112出射至第二反射元件300的主传输光线传输的光学距离以及第三显示区113出射至第二反射元件300的主传输光线传输的光学距离例如可以不同,或者,也可以至少有两个相同,或者均相同,第一显示区111出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离、第二显示区112出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离以及第三显示区113出射的主传输光线在第二反射元件300与反射成像部500之间传输的光学距离例如可以不同,或者,也可以至少有两个相同,或者例如,多个相同。
例如,显示装置发出的图像光线入射至反射成像部500,被反射成像部500反射的光线入射至用户,例如驾驶员眼睛所在的观察区600,用户可观察到形成于例如反射成像部外侧的虚像,也不影响用户对外界环境的观察。
例如,上述观察区600可为眼盒(eyebox)区域,该眼盒区域是指用户眼睛所在的、可以看到抬头显示器显示的图像的平面区域。例如,用户的眼睛相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离时,在用户眼睛仍处于眼盒区域内的情况下,用户仍然可以看到抬头显示器显示的图像。
例如,反射成像部500可为机动车的挡风窗或成像窗。例如,挡风窗为挡风玻璃,成像窗为透明成像板。例如,挡风窗用于透射、反射风挡式抬头显示器(W-HUD)发出的图像光线和成像窗用于透射、反射组合式抬头显示器(C-HUD)发出的图像光线。
例如,如图7所示,第一子像源101中的第一显示区111出射的图像光线被第一子反射元件210反射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第一虚像1110;第一子像源101中的第二显示区112出射的图像光线被第二子反射元件220反射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第二虚像1120;第二子像源102中的第三显示区113出射的图像光线被第三子反射元件230反射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第三虚像1130。
例如,第一虚像1110与观察区600之间的距离为2~4米,第二虚像1120与观察区600之间的距离为20~50米,第三虚像1130与观察区600之间的距离为7~14米。例如,第一虚像1110与观察区600之间的距离为2.5~3.5米,第二虚像1120与观察区600之间的距离为30~40米,第三虚像1130与观察区600之间的距离为10~12米。
例如,第一虚像1110可以为近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;例如,第三虚像1130可以为中景画面,例如第三虚像可以为车道画面,例如,画面相对于地面为倾斜状态时与实际车道匹配融合效果更好,从而用户可以看到车道被图像融合标记,指引用户走这条车道;例如,第二虚像1120可以为远景画面,例如建筑等,例如为银行,第二虚像显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,从而用户可以看到远处建筑物,例如银行时,显示画面中标识了银行的标志。
例如,第一虚像1110和第二虚像1120平行于观察区600。例如当本实施例提供的抬头显示器应用于例如车辆等交通设备时,第一虚像1110和第二虚像1120可以为垂直于地面的像可以实现与实景融合,融合可以解释为:虚像覆盖实景、或位于实景周围位置,实现对实景的标识作用。例如,第一显示区111的显示面和第二显示区112的显示面可以平行于或趋于平行于地面。例如,第一虚像和第二虚像可以沿竖直方向,该竖直方向可以指平行于观察区所在平面的方向,或者指垂直于交通设备行驶面的方向。
例如,如图7所示,在第一显示区110和第二显示区112的显示面齐平时,第二子反射元件220的放置高度可以高于第一子反射元件220的放置高度。例如,在第一显示区111和第二显示区112平行于地面时,与上述显示区相应的子反射元件可以与地面不平行,例如,相应的子反射元件的靠近第二反射元件的端部与显示区之间的距离大于相应的子反射元件的远离第二反射元件的端部与显示区之间的距离,但不限于此,例如,相应的子反射元件可以将显示区发出的图像光反射向第二反射元件。对于相应的子反射元件的可以解释如下:与显示区相应的子反射元件所发射出的图像光线会入射到该相应的反射元件上。
例如,第三虚像1130与第一虚像1110之间的夹角为5°~90°,且第三虚像1130远离地面的一端比第三虚像1130靠近地面的一端距离观察区600的距离更远以实现画面的倾斜,从而与实际车道匹配融合效果更好。例如,第三虚像1130与第一虚像1110之间的夹角为10°~80°。例如,第三虚像1130与第一虚像1110之间的夹角为30°~70°。例如,第三虚像1130与第一虚像1110之间的夹角为45°~60°。例如,第三虚像向远离观察区的方向倾斜。例如,第一虚像1110、第二虚像1120和第三虚像1130的至少之一向远离观察区600的方向倾斜。
例如,第二子像源102的显示面与第一子像源101的显示面之间存在一定角度,使得第二子像源102形成的第三虚像1130与第一子像源101形成的第一虚像1110和第二虚像1120之间也存在一定角度。
例如,第三虚像1130朝向例如车辆等交通设备的行驶方向倾斜,倾斜的画面可以使图像与路面的匹配贴合,例如第三虚像1130与路面之间的夹角可以为5°~90°。
例如,如图7所示,第二显示区112被第二反射元件300反射所成的虚像位于反射 成像部500的焦平面,或上述虚像与反射成像部500之间的距离小于焦距且上述虚像接近反射成像部500的焦平面处。此情况下,根据曲面成像规律,第二虚像1120会形成在较远的距离乃至无穷远处,适合与远处的实景进行匹配贴合。
例如,本公开实施例提供的抬头显示器可形成多层图像(例如第一虚像、第二虚像以及第三虚像),且不同图像的成像距离不同,不同的图像可以与不同距离的实景进行融合,用户(例如驾驶员)的视线无需在固定距离的图像和不同距离的实景之间来回切换,有效提高了抬头显示器的使用体验。
例如,本公开实施例提供的抬头显示器可形成多层图像(例如第一虚像、第二虚像以及第三虚像),多层图像可以采用如图6a所示的方式设置,或者,也可以采用如图6b所示的方式设置。但是,本公开实施例并不限于此,流入,多层图像还可以采用其他的设置方式。
例如,如图7所示,抬头显示器还包括具有开口710的封装壳体700,像源100、第一反射元件200和第二反射元件300均位于封装壳体700内,反射成像部500位于封装壳体700外部,第二反射元件300将像源100发出的图像光线反射至封装壳体700的开口710的位置处以从封装壳体700的开口710出射,且从封装壳体700的开口710出射的图像光线被反射成像部500反射至观察区600。
例如,图7示意性的示出第三虚像1130为倾斜虚像,且第三虚像1130与观察区600之间的距离大于第一虚像1110与观察区600之间的距离,且小于第二虚像1120与观察区600之间的距离,例如第三虚像1130位于第一虚像1110与第二虚像1120之间。但不限于此,倾斜的虚像也可以为与观察区之间距离最远的虚像,或者与观察区之间距离最近的虚像,本公开实施例对此不作限制。
例如,如图7所示,第一显示区发111出的图像光线被反射成像部500反射所成的虚像为第一虚像1110,所述第二显示区112发出的所述图像光线被所述反射成像部500反射所成的虚像为第二虚像120,所述第三显示区113发出的所述图像光线被所述反射成像部500反射所成的虚像为第三虚像130,所述第一虚像110、第二虚像120和第三虚像130中距离所述观察区600的距离居中的虚像相对于水平方向的倾斜程度小于其余两个虚像相对于所述水平方向的夹角。该水平方向可以指垂直于观察区所在平面的方向,或者指平行于交通设备行驶面的方向。
当然,本公开实施例不限于第一虚像和第二虚像沿竖直方向设置,第三虚像沿倾斜方向设置。例如,第一虚像和第二虚像之一也可以是倾斜的虚像,例如沿虚像到观察区方向,虚像面向观察区倾斜。例如,第一显示区的显示面和第二显示区的显示面的至少之一可以倾斜设置,例如与图7所示第三显示区的显示面具有相同角度或者不同角度的倾斜设置方式,从而可以使得形成的虚像倾斜设置。
例如,图8为图7所示的抬头显示器中的封装壳体的结构示意图。如图8所示,封 装壳体700的开口710的位置处设置有透明防尘膜720以封装开口710。例如,透明防尘膜720可以避免灰尘和杂物进入封装壳体的内部,但不影响从开口710出射至反射成像部500的图像光线,因此透明防尘膜720采用透明的膜材。然而,在研究中,本公开的发明人还发现太阳光会在透明防尘膜表面发生强烈的眩光,因此本公开实施例的至少一示例中,透明防尘膜720外侧设置有遮光罩730,遮光罩730不被从开口710出射至反射成像部500的图像光线的光路经过,且遮光罩730被配置为遮挡部分环境光01。例如,遮光罩730可以采用与封装壳体700相同的材料且与封装壳体700在同一步工艺中形成以节省工艺。
例如,如图8所示,遮光罩730可以为倾斜设置的斜面,用于防止眩光进入观察区中用户的眼睛里,可以提升抬头显示器的使用体验。
例如,封装壳体700的开口可以位于壳体的上部,遮光罩730可以位于开口上侧处以遮挡部分环境光01。
例如,图9为根据本公开另一实施例的另一示例提供的抬头显示器的结构示意图。图9示意性的示出抬头显示器包括图5所示的显示装置以及反射成像部500为例,本公开实施例不限于此,抬头显示器还可以包括图1-图2所示的任一示例提供的显示装置以及反射成像部。图9和图7所示示例中的抬头显示器的区别在于图7采用的是图4所示的显示装置,而图9采用的是图5所示的显示装置,则本示例提供的抬头显示器与图7所示示例中的抬头显示器具有相同的特性,在此不再赘述。
需要注意的是,如图9所示,附图中的元件的尺寸和比例关系、以及几何路程的尺寸仅是示意性的,并不限制其为实际元件的尺寸和比例、以及几何路程的尺寸,具体涉及几何路程的长短需结合文字说明进行理解。
例如,如图9所示,第一子像源101中的第一显示区111出射的图像光线被第一子反射元件210反射且被所述第三子反射元件230透射后,入射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第一虚像1110;第一子像源101中的第二显示区112出射的图像光线被第二子反射元件220反射且被所述第三子反射元件230透射后,入射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第二虚像1120;第二子像源102中的第三显示区113出射的图像光线被第三子反射元件230反射至第二反射元件300,第二反射元件300将该图像光线反射至反射成像部500后形成第三虚像1130。
例如,本示例中的第一虚像、第二虚像以及第三虚像与图7所示示例中的第一虚像、第二虚像以及第三虚像具有相同的特性,在此不再赘述。
例如,本公开至少一实施例中的像源可以包括光源、背光组件以及图像生成部。
例如,光源可以包括至少一个电致发光器件,通过电场激发产生光线,如发光二极管(Light Emitting Diode,LED)、有机发光二极管(Organic Light-Emitting Diode,OLED)、 迷你发光二极管(Mini LED)、微发光二极管(Micro LED)、冷阴极荧光灯管(Cold Cathode FluoreScent LamP,CCFL)、LED冷光源(Cold LED Light,CLL)、电激发光(Electro LumineScent,EL)、电子发射(Field EmiSSion DiSPlay,FED)或量子点光源(Quantum Dot,QD)等。
例如,图像生成部可以包括液晶显示面板。例如,液晶显示面板可以包括阵列基板、对置基板、位于阵列基板和对置基板之间的液晶层以及封装液晶层的封框胶。例如,液晶显示面板还包括设置在阵列基板远离对置基板的一侧的第一偏振层和设置在对置基板远离阵列基板的一侧的第二偏振层。例如,光源被配置为向液晶显示面板提供背光,背光通过液晶显示面板后转变为图像光。
例如,第一偏振层的偏光轴方向和第二偏振层的偏光轴方向互相垂直,但不限于此。例如,第一偏振层可通过第一线偏振光,第二偏振层可通过第二线偏振光,但不限于此。例如,第一线偏振光的偏振方向垂直于第二线偏振光的偏振方向,但不限于此。
例如,背光组件可以包括反射导光元件、光束会聚元件和光束扩散元件,且反射导光元件、光束会聚元件和光束扩散元件依次设置在光源和图像生成部之间。反射导光元件设置在光源的出光方向上,光源发出的光线在反射导光元件内传播,出射至光束会聚元件,光束会聚元件出射的光线入射至光束扩散元件。
例如,图10A至图10D为根据本公开实施例提供的反射导光元件的结构示意图。图10A为图10B所示的反射导光元件的截面示意图。如图10A和图10B所示,反射导光元件60设置在光源10的出光方向上,光源10发出的光线在反射导光元件60内传播,然后出射至光束会聚元件。
例如,如图10A和图10B所示,反射导光元件60的内表面设置有反光面,光源10发出的大角度光线(相对于反射导光元件60的中心线的夹角)会经反光面的反射后聚拢,提高光源10发射的光线的利用率。例如,反射导光元件60可以为内部设置有反光面的中空壳体,壳体包括用于设置光源10的端部和用于出射光线的出光口60-1。例如,壳体的形状可为三棱锥形状、四棱锥形状或抛物面形状。例如,四棱锥形状的中空壳体,其出光口60-1和端部的形状可为矩形、正方形、梯形或平行四边形或其中多种的组合,出光口60-1和端部的形状可以相同也可以不同。
例如,如图10C所示,反射导光元件60可以包括实心透明部件,实心透明部件包括设置光源10的端部63,透明部件的折射率大于1,以使光源10发出的部分光线在实心透明部件的内反射面上发生全反射后出射,光源10发出的另一部分光线在透明部件内传输并出射。例如,实心透明部件设置光源10的端部63设有空腔62,空腔62靠近出光面60-1的一面设置有可将光源10发出的光线调整为平行光线的准直部61。例如,实心透明部件的内反射面可以是实心透明部件的内表面,例如,该内表面的形状可以包括抛物面形状或自由曲面形状。
例如,如图10D所示,反射导光元件60可以包括实心透明部件,实心透明部件设置光源10的端部63设有空腔62,且实心透明部件的出光面60-1设有向端部63延伸的开孔60-2,开孔60-2靠近端部63的底面设置有可将光源10发出的光线调整为平行光线的准直部61。
例如,图11为根据本公开实施例提供的光束会聚元件与反射导光元件组合的结构示意图,图12为根据本公开实施例提供的反射导光元件、光束会聚元件和光束扩散元件组合的光路示意图。如图11所示,光束会聚元件70被配置为对从反射导光元件60出射的光线71进行方向控制,可以将从光束会聚元件70出射的光线72聚集至一定范围,例如,像源的观察范围,可以进一步聚拢光线,提高光线利用率。
例如,光束会聚元件70可包括透镜或透镜组合,如凸透镜、菲涅尔透镜或透镜组合等中的一种或多种,图11中以凸透镜为例进行示意说明。例如,上述一定范围可以是一个点,比如凸透镜的焦点,或者,也可以是一个面积较小的区域。在像源中设置光束会聚元件可以对光源出射的大角度光线进行进一步的聚拢,提高光线利用率。
例如,如图12所示,光束扩散元件80对入射光束72起扩散作用,且可以精确控制入射光束72的扩散程度,扩散后的光束81的光轴OA与入射光束72的光轴位于同一直线上,可以使通过光束扩散元件80的光束的光轴不变,扩散后的光束81的边缘光线沿其光轴扩散开一定的角度。上述“光轴”指光束的中心线。
例如,扩散后的光束81在第一方向的扩散角β1的范围可以为5°~20°,第二方向的扩散角β2的范围可以为5°~10°,扩散角是指两条最大视线轴之间的夹角。例如,入射光束72经光束扩散元件80后,光束沿传播方向的截面光斑可以为矩形,上述第一方向为矩形长边的延伸方向,第二方向为矩形短边的延伸方向,则上述第一方向的扩散角指与矩形光斑的长边两端连接的光线之间的夹角β1,上述第二方向的扩散角指与矩形光斑的短边两端连接的光线之间的夹角β2。例如,在光束被光束扩散结构后,光束沿传播方向的截面形状为圆形时,扩散角为圆形截面边缘光线与光轴之间的夹角,且各方向扩散角均相同。光束的截面形状是指使用垂直于光束的中心线或者主传输轴线的平面剖切离开光束扩散元件的光线获得的截面,也即,光束的截面垂直于光束的中心线。
例如,入射光束72通过光束扩散元件80后,会扩散为沿传播方向具有特定大小和形状,且能量分布均匀化的光斑,光斑的大小和形状可以由光束扩散元件80的表面设计的特定的微结构精确控制。上述特定形状可以包括但不限于线形、圆形、椭圆形、正方形、和长方形。例如,光束扩散后的传播角度和光斑尺寸决定了最终成像的亮度及可视区域,扩散角度越小,成像亮度越高,可视区域也越小;反之亦然。特定可以解释为如下:为预设的意思。
例如,光束扩散元件80可以为成本较低的散射光学元件,如匀光片、扩散片等中的一种或多种,光束透过匀光片等散射光学元件时会发生散射,还会发生少量的衍射,但 散射起主要作用,光束透过散射光学元件后会形成较大的光斑。
例如,光束扩散元件80也可以为对扩散效果控制更加精确的衍射光学元件(Diffractive Optical Elements,DOE),例如光束整形片(Beam Shaper)等。例如,衍射光学元件通过在表面设计特定的微结构,可以通过衍射起到光扩束作用,光斑较小,且光斑的大小和形状可控。特定可以解释为如下:为预设的意思。
例如,光源10出射的光线在通过光束会聚元件70以及光束扩散元件80后,显示装置出射的光线通过反射成像部500的反射后到达第一预定区域,该第一预定区域指一平面观察区域,该第一预定区域内聚集了大部分光(例如入射到第一预定区域所在的平面的光束中的90%以上光强的光聚集在了第一预定区域,入射到第一预定区域所在的平面的光束中的80%以上光强的光聚集在了第一预定区域,或者入射到第一预定区域所在的平面的光束中的60%以上光强的光聚集在了第一预定区域),且入射到第一预定区域的光遍布于第一预定区域。在显示装置的光路中去除光束扩散元件800的情况下,显示装置出射的光线被反射成像部500反射后到达位于第一预定区域内的第二区预定区域。例如,第二预定区域可以为面积很小的区域。例如,第二预定区域可能为一个点。例如,第二预定区域可以为上述光束会聚元件70将光线聚集的一定范围。例如,上述第一预定区域可以包括眼盒区域,即观察区600,上述第二预定区域可以为观察区600中的一个面积很小的区域,例如一个点,例如中心。通过在图像源中设置光束扩散元件,可以保证入射至观察区的图像光至少完全覆盖观察区,在实现高光效的同时也不会影响正常的观察。
例如,图13为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意图。如图13所示,反射成像部500包括第一层20-1、第二层20-2以及位于第一层20-1和第二层20-2之间的间隙(后面称之为夹层);楔形膜21位于反射成像部500的夹层(也即,第一层20-1和第二层20-2之间的间隙)中。显示装置1000入射到反射成像部500的光可以因反射成像部500中设置楔形膜而起到消除重影的效果。
以反射成像部500为对交通工具的挡风玻璃(例如,前挡风玻璃)设置了楔形膜21的反射成像部500以及图13所示的抬头显示器具有消重影功能进行示例性说明。例如,挡风玻璃采用双层玻璃结构,在两层玻璃之间嵌入楔形的聚乙烯醇缩丁醛酯(PVB)层,通过使得反射成像部500实现为设置了楔形膜21的挡风玻璃,可以使得玻璃内外表面反射的图像(也即,第一层20-1反射的图像和第二层20-2反射的图像)重叠成一个影像,由此使得抬头显示器具有重影抑制(例如,消重影)功能。
例如,楔形膜21具有薄的一端和厚的一端,还具有一定的角度,楔形膜21的角度需要根据抬头显示器的要求来设置。本公开至少一实施例通过在反射成像部设置楔形膜,可以使反射成像部靠近显示装置以及远离显示装置的表面反射的图像重叠成一个影像以解决重影问题。
例如,图14为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意图。如图14所示,反射成像部500面向显示装置的表面设置有选择性反射膜501、P偏振光反射膜501或者第一相位延迟部501。
需要注意的是,如图14所示,附图中的元件的尺寸和比例关系、以及几何路程的尺寸仅是示意性的,并不限制其为实际元件的尺寸和比例、以及几何路程的尺寸,具体涉及几何路程的长短需结合文字说明进行理解。
例如,反射成像部500面向显示装置的表面设置有选择性反射膜501,选择性反射膜501被配置为对显示装置出射的图像光线所在波段的反射率大于除显示装置出射的图像光线所在波段以外波段的光线的反射率。例如,选择性反射膜501对显示装置出射的图像光线所在波段的反射率可以大于80%、90%、95%、99.5%或其它适用的数值。例如,选择性反射膜501对除显示装置出射的图像光线所在波段以外波段的光线的反射率可以小于30%、20%、10%、5%、1%、0.5%或其它适用的数值。
例如,选择性反射膜501被配置为反射显示装置出射的图像光线,且透过除显示装置出射的图像光线所在波段以外波段的光线。例如,选择性反射膜501只反射显示装置发出的图像光线,如图像光线包括红绿蓝(RGB)三个波段的光线,可以选择性反射膜501只反射RGB三个波段的光线并透过其他波段的光线。图像光线不会在反射成像部远离显示装置的表面发生二次反射,可以消除重影。
例如,上述选择性反射膜501可以包括由无机氧化物薄膜或高分子薄膜堆叠而成的选择性透反膜,该透反膜由至少两种具有不同折射率的膜层堆叠而成。这里的“不同折射率”指的是膜层在xyz三个方向上至少有一个方向上的折射率不同。例如,预先选取所需的不同折射率的膜层,并按照预先设置好的顺序对膜层进行堆叠,可以形成具备选择反射和选择透射特性的透反膜,该透反膜可以选择性反射某一特性的光线、透过另一特性的光线。例如,对于采用无机氧化物材料的膜层,该膜层的成分选自五氧化二钽、二氧化钛、氧化镁、氧化锌、氧化锆、二氧化硅、氟化镁、氮化硅、氮氧化硅、氟化铝中的一种或多种。例如,对于采用有机高分子材料的膜层,该有机高分子材料的膜层包括至少两种热塑性有机聚合物膜层。例如,两种热塑性聚合物膜层交替排列形成光学膜,且两种热塑性聚合物膜层的折射率不同。例如,上述有机高分子材料的分子为链状结构,拉伸后分子朝某个方向排列,造成不同方向上折射率不同,即通过特定的拉伸工艺即可形成所需的薄膜。例如,上述热塑性聚合物可以为不同聚合程度的聚对苯二甲酸乙二酯(PET)及其衍生物、不同聚合程度的聚萘二甲酸乙二醇酯(PEN)及其衍生物、不同聚合程度的聚对苯二酸丁二酯(PBT)及其衍生物等中的一种或多种。
例如,显示装置出射的图像光线可以包括P偏振态的光线,反射成像部500面向显示装置的表面设置有P偏振光反射膜501以反射显示装置射向反射成像部500的P偏振态的光线(即P偏振光),P偏振光反射膜501对P偏振态的光线的反射率大于对S偏 振态的光线的反射率。
例如,反射成像部500的表面通过设置P偏振光反射膜501可以使P偏振态的图像光线经P偏振光反射膜501反射后入射到观察区600。例如,反射成像部500的材料包括玻璃时,玻璃对P偏振光的透射率较高,反射率较低,除被P偏振光反射膜501反射的P偏振光外,透射过玻璃的P偏振光被反射成像部500外表面反射向观察区600的亮度很低,可以消除重影。
例如,P偏振光反射膜的结构与上述选择性反射膜的结构类似,可通过多层膜堆叠的方式来实现,可以是有机膜堆叠或者无机膜堆叠而成的结构。例如,P偏振光反射膜可以为反射式偏光镜(Reflecting polarizer mirror,RPM),例如,RPM膜。
例如,反射成像部500面向显示装置的表面设置有第一相位延迟部501,显示装置出射的光线包括S偏振态的光线(即S偏振光),第一相位延迟部501被配置为将射入第一相位延迟部501的S偏振态的光线转换为非S偏振态的光线,例如P偏振态的光线、圆偏振光或椭圆偏振光中的一种或多种。
例如,显示装置出射的图像光包括S偏振态的光线,第一相位延迟部501可以为1/2波片,入射到第一相位延迟部501的S偏振态的光线的一部分可以被反射成像部500反射至观察区600,另一部分被第一相位延迟部501转换为P偏振态的光线,P偏振态的光线在反射成像部500外侧内表面的反射率很低,基本都会透射出去,可以消除重影。
例如,显示装置出射的图像光包括S偏振态的光线,第一相位延迟部501可以为1/4波片,入射到第一相位延迟部501的S偏振态的光线的一部分可以被反射成像部500反射至观察区600,另一部分被第一相位延迟部501转换为圆偏振光,圆偏振光在反射成像部500外侧内表面的反射率很低,可以消除重影。
需要说明的是,为方便说明,第一相位延迟部501和反射成像部500之间具有间隙,但在实际应用中,第一相位延迟部501的表面紧贴反射成像部500的表面;图14中也放大了反射成像部500。例如,放大了反射成像部500的厚度。
本公开至少一实施例提供的抬头显示器中,通过在反射成像部设置楔形膜、选择性反射膜、P偏振光反射膜或者第一相位延迟部可以有效消除重影。
例如,反射成像部,例如机动车的挡风玻璃对S偏振态的光线(S偏振光)的反射率较高,抬头显示器的显示装置出射的光线一般包括S偏振光,若用户,例如驾驶员佩戴墨镜时,墨镜是过滤S偏振光的,驾驶员佩戴墨镜时无法看到抬头显示器的图像。本公开至少一实施例的一示例中,在抬头显示器中的反射成像部500面向显示装置的一侧设置P偏振光反射膜,且显示装置出射的图像光线包括P偏振态的光线时,反射成像部500可以将P偏振态的图像光线反射至观察区600以使眼睛位于观察区600的戴墨镜的用户依然可以看到显示装置显示的图像,从而提高用户的使用体验。
例如,图15为根据本公开另一实施例的另一示例提供的抬头显示器的局部结构示意 图。如图15所示,在抬头显示器的显示装置和反射成像部500之间设置第二相位延迟部502,例如四分之一波片。上述的第二相位延迟部502是不紧贴设置在抬头显示器的反射成像部500上的,第二相位延迟部502与反射成像部500之间可以具有一定距离,显示装置出射的光线透过第二相位延迟部502后,被反射成像部500反射后,不会再次入射到第二相位延迟部502,而是直接出射至观察区600。例如,显示装置出射的光线包括S偏振态的光线,第二相位延迟部502被配置为将入射至第二相位延迟部502的S偏振态的光线转换为圆偏振态的光线(圆偏振光)或椭圆偏振态的光线(椭圆偏振光),圆偏振光或椭圆偏振光被反射成像部500反射后射向观察区600,因圆偏振光或椭圆偏振光包括P偏振分量,被墨镜过滤后,P偏振态的光线使眼睛位于观察区600的戴墨镜的用户依然可以看到显示装置显示的图像,从而提高用户的使用体验。
例如,第二相位延迟部502可以设置在封装壳体700的开口710位置处。
需要注意的是,如图15所示,附图中的元件的尺寸和比例关系、以及几何路程的尺寸仅是示意性的,并不限制其为实际元件的尺寸和比例、以及几何路程的尺寸,具体涉及几何路程的长短需结合文字说明进行理解。
例如,图16为根据本公开另一实施例提供的交通设备的示例性框图。如图16所示,该交通设备包括本公开的至少一个实施例提供的抬头显示器。交通设备也可以为包括上述任一显示装置的交通设备。
例如,交通设备的前窗(例如,前挡风玻璃)被复用为抬头显示器的反射成像部500。例如,在上述抬头显示器应用于交通设备时,图6a至图7、图9、图14或图15所示的第一虚像1110和第二虚像1120垂直于地面,第三虚像1130远离地面的一端比第三虚像1130靠近地面的一端距离观察区600的距离更远使各虚像均与相应的实景进行匹配融合。
本公开实施例提供的交通设备应用上述抬头显示器,可以使驾驶员在不同距离处观看到图像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使驾驶员无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了交通设备的使用体验。
例如,上述三个虚像可以同时显示,也可以不同时显示。例如,同一时间段显示一个或者两个虚像。
例如,该交通设备可以是各种适当的交通工具,例如,在交通设备驾驶位置设置前窗且通过车载显示***将图像投射到前窗上的情况下,其可以包括各种类型的汽车等陆上交通设备,或可以是船等水上交通设备。
需要说的是,为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本 公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (27)

  1. 一种多层图像显示装置,包括:
    像源,包括至少两个显示区,所述至少两个显示区包括第一显示区和第二显示区;
    第一反射元件,被配置为反射所述至少两个显示区发出的图像光线;
    第二反射元件,被配置为反射在被所述第一反射元件反射后向所述第二反射元件传播的所述图像光线,
    其中,所述第一反射元件至少包括第一子反射元件和第二子反射元件,所述第一显示区发出的所述图像光线在被所述第一子反射元件反射后传播至所述第二反射元件,所述第二显示区发出的所述图像光线在被所述第二子反射元件反射后传播至所述第二反射元件。
  2. 根据权利要求1所述的显示装置,其中,从所述至少两个显示区的第一显示区和第二显示区出射且传播至所述第二反射元件的图像光线的光学距离相同或不同,并且从所述至少两个显示区的第一显示区和第二显示区出射且传播至所述第二反射元件的图像光线形成不同的虚像。
  3. 根据权利要求2所述的显示装置,其中,从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第二显示区出射且传播至所述第二反射元件的所述图像光线的光学距离。
  4. 根据权利要求3所述的显示装置,其中,所述第二显示区位于所述第一显示区远离所述第二反射元件的一侧,所述第二子反射元件位于所述第一子反射元件远离所述第二反射元件的一侧,且所述第二子反射元件的中心与所述第二显示区之间的距离大于所述第一子反射元件的中心与所述第一显示区之间的距离。
  5. 根据权利要求2-4任一项所述的显示装置,其中,所述第一显示区的显示面和所述第二显示区的显示面平行,且所述第一子反射元件的反射面和所述第二子反射元件的反射面的夹角不大于20°。
  6. 根据权利要求1-5任一项所述的显示装置,其中,所述像源包括第一子像源,所述第一子像源包括所述第一显示区和所述第二显示区,且所述第一显示区和所述第二显示区之间设置遮光结构。
  7. 根据权利要求2-6任一项所述的显示装置,其中,所述第一显示区的面积小于所述第二显示区的面积。
  8. 根据权利要求1-7任一项所述的显示装置,其中,所述第一子反射元件和所述第二子反射元件一体成型。
  9. 根据权利要求1-8任一项所述的显示装置,其中,所述至少两个显示区还包括第三显示区,所述第一反射元件还包括第三子反射元件,所述第三显示区发出的所述图像光线 在被所述第三子反射元件反射后传播至所述第二反射元件。
  10. 根据权利要求9所述的显示装置,其中,所述第一显示区的显示面和所述第三显示区的显示面之间的夹角为5°~90°。
  11. 根据权利要求9或10所述的显示装置,其中,从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离,且从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第二显示区出射且传播至所述第二反射元件的所述图像光线的光学距离;或者,
    从所述第三显示区出射且传播至所述第二反射元件的所述图像光线的光学距离小于从所述第一显示区出射且传播至所述第二反射元件的所述图像光线的光学距离。
  12. 根据权利要求11所述的显示装置,其中,所述第三显示区位于所述第二显示区远离所述第二反射元件的一侧,所述第三子反射元件位于所述第二子反射元件远离所述第二反射元件的一侧,且所述第三子反射元件的中心与所述第三显示区之间的距离小于所述第一子反射元件的中心与所述第一显示区的距离;或者,
    所述第三显示区位于所述第一显示区靠近所述第二反射元件的一侧,所述第三子反射元件位于所述第一子反射元件靠近所述第二反射元件的一侧。
  13. 根据权利要求12所述的显示装置,其中,所述第一子反射元件、所述第二子反射元件和所述第三子反射元件均为平面反射镜;或者,
    在所述第三子反射元件位于所述第一子反射元件靠近所述第二反射元件的一侧的情况下,所述第一子反射元件和所述第二子反射元件均为平面反射镜,所述第三子反射元件为透反元件,且被配置为透射所述第一子反射元件和所述第二子反射元件的至少之一反射向所述第二反射元件的所述图像光线。
  14. 根据权利要求13所述的显示装置,其中,所述透反元件包括偏振透反元件,所述第三显示区发出具有第一偏振性的偏振光,所述第一显示区和所述第二显示区至少之一发出的光线至少具有第二偏振性,所述第一偏振性和所述第二偏振性不同,所述透反元件被配置为反射所述具有第一偏振性的偏振光且透射所述具有第二偏振性的光线;或者,
    其中,所述透反元件为波长选择性透反元件,所述第三显示区发出的所述图像光线所在波段为第一波段组,所述第一显示区和所述第二显示区至少之一发出的所述图像光线所在波段为第二波段组,所述透反元件被配置为反射所述第一波段组的图像光线且透射所述第二波段组的图像光线。
  15. 根据权利要求9-14任一项所述的显示装置,其中,所述像源还包括第二子像源,所述第二子像源包括所述第三显示区;或者,
    所述第一子像源包括所述第三显示区。
  16. 一种抬头显示器,包括反射成像部以及显示装置,
    其中,所述反射成像部被配置为将从所述第二反射元件反射至所述反射成像部的图像光线反射至观察区,且透射环境光;其中,
    所述显示装置为权利要求1-15任一项所述的显示装置,或者,
    所述显示装置为权利要求1-8任一项所述的显示装置,所述显示装置的所述至少两个显示区还包括第三显示区,所述显示装置的所述第一反射元件还包括第三子反射元件,所述第三显示区发出的所述图像光线在被所述第三子反射元件反射后传播至所述第二反射元件。
  17. 根据权利要求16所述的抬头显示器,其中,所述第一显示区发出的所述图像光线被所述反射成像部反射所成的第一虚像与所述观察区之间的距离为2~4米,所述第二显示区发出的所述图像光线被所述反射成像部反射所成的第二虚像与所述观察区之间的距离为20~50米。
  18. 根据权利要求16或17所述的抬头显示器,其中,在所述至少两个显示区还包括所述第三显示区的情况下,所述第一显示区的显示面和所述第三显示区的显示面之间的夹角为5°~90°。
  19. 根据权利要求16-18任一项所述的抬头显示器,其中,在所述至少两个显示区还包括所述第三显示区的情况下,所述第三显示区发出的所述图像光线被所述反射成像部反射所成的第三虚像与所述观察区之间的距离为7~14米,所述第一虚像与所述第二虚像平行或具有非零夹角,且所述第三虚像与所述第一虚像之间的夹角为5°~90°。
  20. 根据权利要求19所述的抬头显示器,其中,所述第一虚像和所述第二虚像沿竖直方向,且所述第三虚像向远离所述观察区的方向倾斜。
  21. 根据权利要求16-20任一项所述的抬头显示器,其中,所述第二显示区发出的图像光线被所述第二反射元件反射所成的虚像位于所述反射成像部的焦平面。
  22. 根据权利要求19所述的抬头显示器,其中,所述第一虚像、所述第二虚像和所述第三虚像的至少之一向远离所述观察区的方向倾斜。
  23. 根据权利要求16所述的抬头显示器,其中,所述第一显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第一虚像,所述第二显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第二虚像,所述第三显示区发出的所述图像光线被所述反射成像部反射所成的虚像为第三虚像,所述第一虚像、第二虚像和第三虚像中距离所述观察区的距离居中的虚像相对于水平方向的倾斜程度小于其余两个虚像相对于所述水平方向的夹角。
  24. 根据权利要求16-23任一项所述的抬头显示器,还包括具有开口的封装壳体,其中,所述像源、所述第一反射元件和所述第二反射元件均位于所述封装壳体内,所述反射成像部位于所述封装壳体外部,从所述封装壳体的开口出射的图像光线被所述反射成像部反射至所述观察区。
  25. 根据权利要求24所述的抬头显示器,其中,所述开口位置处设置有透明防尘膜以封装所述开口,所述透明防尘膜外侧设置有遮光罩,所述遮光罩不遮挡从所述开口出射后传播至所述反射成像部的图像光线的光路,且所述遮光罩被配置为遮挡部分环境光。
  26. 一种交通设备,包括权利要求1-15任一项所述的显示装置,或者权利要求16-25任一项所述的抬头显示器。
  27. 根据权利要求26所述的交通设备,其中,所述反射成像部为所述交通设备的挡风窗或成像窗。
PCT/CN2021/114139 2020-08-21 2021-08-23 多层图像显示装置、抬头显示器以及交通设备 WO2022037703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010849122.3 2020-08-21
CN202010849122.3A CN114077052A (zh) 2020-08-21 2020-08-21 多层图像显示装置、抬头显示器以及交通设备

Publications (1)

Publication Number Publication Date
WO2022037703A1 true WO2022037703A1 (zh) 2022-02-24

Family

ID=80282318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114139 WO2022037703A1 (zh) 2020-08-21 2021-08-23 多层图像显示装置、抬头显示器以及交通设备

Country Status (2)

Country Link
CN (1) CN114077052A (zh)
WO (1) WO2022037703A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184276A1 (zh) * 2022-03-30 2023-10-05 华为技术有限公司 一种显示方法、显示***和终端设备
CN117850050A (zh) * 2024-03-07 2024-04-09 河南百合特种光学研究院有限公司 一种贴地成像的连续深度增强现实显示方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125667A (zh) * 2022-12-30 2023-05-16 惠州市德赛西威汽车电子股份有限公司 一种多焦面抬头显示***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206421102U (zh) * 2016-12-22 2017-08-18 深圳点石创新科技有限公司 抬头显示装置及装有该抬头显示装置的车辆
CN108663807A (zh) * 2017-03-31 2018-10-16 宁波舜宇车载光学技术有限公司 平视显示光学***和装置及其成像方法
CN110554497A (zh) * 2018-05-31 2019-12-10 东莞创奕电子科技有限公司 显示装置及其车用抬头显示***
US20200018977A1 (en) * 2018-07-13 2020-01-16 Conserve & Associates , Inc. Display device and automobile head-up display system using the same
CN210666205U (zh) * 2019-09-02 2020-06-02 未来(北京)黑科技有限公司 一种抬头显示设备、成像***和车辆
CN211375182U (zh) * 2019-09-02 2020-08-28 未来(北京)黑科技有限公司 一种抬头显示设备、成像***和车辆
CN213092017U (zh) * 2020-08-21 2021-04-30 未来(北京)黑科技有限公司 多层图像显示装置、抬头显示器以及交通设备
CN113109939A (zh) * 2020-01-10 2021-07-13 未来(北京)黑科技有限公司 一种多层次成像***
CN113126294A (zh) * 2020-01-10 2021-07-16 未来(北京)黑科技有限公司 一种多层次成像***
CN213987029U (zh) * 2020-08-21 2021-08-17 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示***及交通设备
CN113296266A (zh) * 2021-06-07 2021-08-24 合肥疆程技术有限公司 一种显示***、车载抬头显示器和车辆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206421102U (zh) * 2016-12-22 2017-08-18 深圳点石创新科技有限公司 抬头显示装置及装有该抬头显示装置的车辆
CN108663807A (zh) * 2017-03-31 2018-10-16 宁波舜宇车载光学技术有限公司 平视显示光学***和装置及其成像方法
CN110554497A (zh) * 2018-05-31 2019-12-10 东莞创奕电子科技有限公司 显示装置及其车用抬头显示***
US20200018977A1 (en) * 2018-07-13 2020-01-16 Conserve & Associates , Inc. Display device and automobile head-up display system using the same
CN210666205U (zh) * 2019-09-02 2020-06-02 未来(北京)黑科技有限公司 一种抬头显示设备、成像***和车辆
CN211375182U (zh) * 2019-09-02 2020-08-28 未来(北京)黑科技有限公司 一种抬头显示设备、成像***和车辆
CN113109939A (zh) * 2020-01-10 2021-07-13 未来(北京)黑科技有限公司 一种多层次成像***
CN113126294A (zh) * 2020-01-10 2021-07-16 未来(北京)黑科技有限公司 一种多层次成像***
CN213092017U (zh) * 2020-08-21 2021-04-30 未来(北京)黑科技有限公司 多层图像显示装置、抬头显示器以及交通设备
CN213987029U (zh) * 2020-08-21 2021-08-17 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示***及交通设备
CN113296266A (zh) * 2021-06-07 2021-08-24 合肥疆程技术有限公司 一种显示***、车载抬头显示器和车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184276A1 (zh) * 2022-03-30 2023-10-05 华为技术有限公司 一种显示方法、显示***和终端设备
CN117850050A (zh) * 2024-03-07 2024-04-09 河南百合特种光学研究院有限公司 一种贴地成像的连续深度增强现实显示方法及装置
CN117850050B (zh) * 2024-03-07 2024-06-04 河南百合特种光学研究院有限公司 一种贴地成像的连续深度增强现实显示方法及装置

Also Published As

Publication number Publication date
CN114077052A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022037703A1 (zh) 多层图像显示装置、抬头显示器以及交通设备
CN213987029U (zh) 双层成像抬头显示装置、抬头显示***及交通设备
CN212569297U (zh) 一种抬头显示装置及抬头显示***
CN213092017U (zh) 多层图像显示装置、抬头显示器以及交通设备
KR20050110614A (ko) 광각 p-편광 반사식 편광기 및 편광된 광원을 구비한헤드-업 디스플레이
CN114077053A (zh) 双层成像抬头显示装置、抬头显示***及交通设备
CN213240675U (zh) 一种抬头显示装置及抬头显示***
JP7355013B2 (ja) 表示装置及びヘッドアップディスプレイ装置
JP7195454B2 (ja) 光源装置、それを利用した情報表示システムおよびヘッドアップディスプレイ装置
US20180348523A1 (en) Display apparatus
WO2019077939A1 (ja) 虚像表示装置
CN213092015U (zh) 图像源、抬头显示器以及交通设备
CN114077057A (zh) 一种抬头显示装置及抬头显示***
JP7510552B2 (ja) 車両用情報表示システム及び情報表示システム
WO2023123338A1 (zh) 显示装置、抬头显示器以及交通设备
CN218213623U (zh) 显示装置、抬头显示器以及交通设备
CN216748171U (zh) 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN114326108A (zh) 基于像源的防眩光组件、抬头显示装置及机动车
CN116413907A (zh) 显示装置、抬头显示器以及交通设备
CN216748172U (zh) 导光装置、光源装置、抬头显示器和交通设备
CN216927135U (zh) 导光装置、光源装置以及抬头显示器
WO2022022675A1 (zh) 图像源、抬头显示器以及交通设备
CN216817084U (zh) 显示***及包含其的交通工具
CN213338218U (zh) 基于像源的防眩光组件、抬头显示装置及机动车
WO2020233528A1 (zh) 抬头显示装置及机动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857790

Country of ref document: EP

Kind code of ref document: A1