WO2024022013A1 - 一种改善光路遮挡的mems微镜及其制备方法 - Google Patents

一种改善光路遮挡的mems微镜及其制备方法 Download PDF

Info

Publication number
WO2024022013A1
WO2024022013A1 PCT/CN2023/104250 CN2023104250W WO2024022013A1 WO 2024022013 A1 WO2024022013 A1 WO 2024022013A1 CN 2023104250 W CN2023104250 W CN 2023104250W WO 2024022013 A1 WO2024022013 A1 WO 2024022013A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed frame
mems micromirror
mems
film
wafer
Prior art date
Application number
PCT/CN2023/104250
Other languages
English (en)
French (fr)
Inventor
游桥明
宋秀敏
夏长锋
Original Assignee
西安知微传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安知微传感技术有限公司 filed Critical 西安知微传感技术有限公司
Publication of WO2024022013A1 publication Critical patent/WO2024022013A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00865Multistep processes for the separation of wafers into individual elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a MEMS micromirror and a preparation method thereof. Specifically, it relates to a MEMS micromirror that improves the problem of light path blocking caused by the structure of the micromirror during the beam scanning process and a preparation method thereof.
  • MEMS micromirror is a microelectromechanical system chip based on semiconductor micromachining technology. It is a microactuator and can achieve precise reflection control of laser beams. It is widely used in the fields of laser scanning, laser projection display, lidar and optical communications.
  • MEMS micromirrors mainly include a closed fixed frame located around it, and a movable structure located in the center of the fixed frame, including a plane reflector and a driver.
  • the plane reflector and driver are connected to the fixed frame through a torsion axis and are suspended between the fixed frame.
  • the plane mirror in the MEMS micromirror structure can be driven by the driving structure to twist around its axis.
  • the incident laser beam is generally projected onto the mirror surface from a direction perpendicular to the torsion axis of the mirror and at a certain angle to the plane where the mirror is located. After the laser beam is reflected by the twisted mirror, it can achieve 2 times the performance of MEMS micromirrors.
  • solutions are generally sought from the perspective of the structure design and micro-machining of the chip itself.
  • One method is to protrude the surface of the mirror from the plane of the fixed frame.
  • this solution requires relatively complex micro-machining technology and processes to achieve.
  • the processing cost is high, and the protruding structure is not convenient for subsequent processing and assembly operations of MEMS micromirrors.
  • Expanding the distance between the reflective mirror and the fixed frame is another solution, but this solution will increase the area occupied by a single chip and also increase the cost.
  • the above two solutions still have the problem of the frame blocking the light path at a specific angle, and cannot completely solve the light path blocking.
  • the purpose of the present invention is to provide a MEMS micromirror that improves light path blocking and a preparation method thereof, so as to completely solve the problem of light beam blocking by the MEMS micromirror fixed frame itself during the scanning process at a lower cost.
  • the present invention considers the use of MEMS micromirrors without changing the conditions of the driver and mirror processing technology in the MEMS micromirror and without affecting the normal operation of the MEMS micromirror.
  • the fixed frame is optimized and the fixed frame is transformed from a traditional closed frame to a non-closed fixed frame with a gap to ensure reliable support and at the same time, during the large-angle scanning process, the fixed frame is blocked by the traditional fixed frame.
  • the emitted light can be emitted directly from the gap, thereby completely solving the problem of the beam being blocked by the MEMS micromirror fixed frame itself during the scanning process.
  • the technical solution of the present invention is to provide a MEMS micromirror that improves light path blocking, including a fixed frame and a movable structure located in the center of the fixed frame and connected to the fixed frame through a torsion beam.
  • the connection point between the torsion beam and the fixed frame is defined as an anchor. point;
  • the above-mentioned fixed frame is formed during the cutting stage of the MEMS micromirror wafer, and a gap is opened on the above-mentioned fixed frame.
  • the above-mentioned gap is located on the edge of the frame where the non-anchor point is located, ensuring that during the large-angle scanning process, the emitted light passes through the gap. The part is shot directly.
  • the above-mentioned fixed frame is a rectangular, circular or other special-shaped frame. Therefore, the present invention is applicable to all MEMS micromirrors with different structural forms.
  • the length of the above-mentioned notch is equal to the length of the side of the fixed frame where the other non-anchor point is located.
  • the torsion beam can be on the same side or on different sides with the movable structure.
  • the movable structure includes a plane mirror and a driver, where the mirror surface and the driver can also be on the same side or on different sides.
  • the thickness of the movable structure may be the same as that of the fixed frame, or may be thinner than the fixed frame.
  • the present invention also provides a processing method for the above-mentioned MEMS micromirror that improves light path blocking, which is special in that it includes the following steps:
  • Step 1 Determine whether the upper and lower surfaces of the movable structure in the MEMS micromirror to be processed are partially coplanar with the fixed frame. If so, proceed to step 2. Otherwise, make the surface of the movable structure concave in the plane of the fixed frame. Place one side on the regular sheet film and perform step 3;
  • Step 2 Project the specific structure of the MEMS micromirror chip onto the dicing film. Reserve the glue layer on the dicing film corresponding to the non-enclosed fixed frame area and the chip-free area of the wafer for fixing the chip. The adhesive layer in the moving structure area and the structural gap area is degummed until it is completely non-sticky, and a dicing film of the patterned adhesive layer is made; the MEMS micromirror wafer is aligned and attached to the dicing film of the patterned adhesive layer;
  • Step 3 Cut the chip into the shape of a fixed frame according to the designed scribing path, that is, a fixed frame with a gap on the edge of the frame where the non-anchor points are located;
  • Step 4 Use the film expansion process to enlarge the spacing of the MEMS micromirror chip array on the wafer until it is convenient to take out the core, forming a micromirror chip array with independent mutual gaps and reasonable gaps;
  • Step 5 Deglue the entire cut and expanded wafer until the viscosity is reduced, and then take out the core.
  • the diced film in step 2 is an adhesive film whose viscosity can be adjusted by specific externally applied conditions.
  • the above-mentioned adhesive film may be a UV deglutable film or a thermal decomposable glue film.
  • step 2 the glue layer in all projection areas except the fixed frame projection is deglued until there is no tackiness at all, and a dicing film of the patterned glue layer is made.
  • degluing is achieved by the following method:
  • step 2 when the MEMS micromirror wafer is aligned and bonded to the dicing film of the patterned adhesive layer, the front side (reflective mirror surface) of the MEMS micromirror can be attached to the dicing film of the patterned adhesive layer. , you can also attach the back side of the MEMS micromirror to the dicing film of the patterned adhesive layer.
  • the present invention also provides another method for processing the above-mentioned MEMS micromirror to improve light path occlusion, which is special in that it includes the following steps:
  • Step 1 Determine whether the upper and lower surfaces of the movable structure in the MEMS micromirror to be processed are partially coplanar with the fixed frame. If so, proceed to step 2. Otherwise, make the surface of the movable structure concave in the plane of the fixed frame. Place one side on the regular sheet film and perform step 3;
  • Step 2 Use screen printing to create a patterned additive layer at the position of the non-enclosed fixed frame of the MEMS micromirror wafer to ensure a good formation between the screen printing paste and the non-enclosed fixed frame of the MEMS micromirror wafer.
  • the adhesion of the slurry and the surface of the slurry are smooth; the MEMS micromirror wafer with the screen printing added layer is attached to the conventional chipping film, so that the MEMS micromirror can adhere to the conventional chipping film through the screen printing added layer.
  • the MEMS micromirror wafer part corresponding to the movable structure of the chip will not contact and fit with the conventional chip film due to the existence of the screen printing added layer;
  • Step 3 Cut the chip into a fixed frame shape according to the designed dicing path
  • Step 4 Use the film expansion process to enlarge the spacing of the MEMS micromirror chip array on the wafer until it is convenient to take out the core, forming a micromirror chip array with independent mutual gaps and reasonable gaps;
  • Step 5 Deglue the entire cut and expanded wafer until the viscosity is reduced, and then take out the core.
  • the thickness of the screen printing added layer is 10-500um.
  • step 2 the screen printing added layer is located on the side of the MEMS micromirror wafer with a larger printable area.
  • This invention starts from the cutting design of MEMS micromirror wafers, and on the premise of ensuring reliable support, transforms the fixed frame from a traditional closed frame into a non-closed fixed frame with a gap.
  • the emitted light blocked by the traditional fixed frame can be emitted directly from the gap, thus completely solving the problem of the MEMS micromirror fixed frame itself blocking the light beam during the scanning process.
  • the fixed frame can be completed during the cutting stage of the wafer, does not affect the processing technology of the driver and mirror in the MEMS micromirror, and reduces the size of the chip to a certain extent, resulting in lower cost.
  • the present invention prevents the movable structure of the MEMS micromirror chip from being adhered to the dicing film through a specially designed patterned adhesive layer dicing film or adding a screen printing layer to the corresponding part of the MEMS micromirror wafer frame. It creates conditions for subsequent chip cutting, film expansion and coring steps, and the process is simple and reliable.
  • Figure 1 is a schematic diagram of the MEMS micromirror scanning process using a traditional closed fixed frame
  • Figure 2 is a schematic diagram of the MEMS micromirror scanning process in the embodiment
  • Figure 3 is a top plan view and a cross-sectional view of the MEMS micromirror of the embodiment;
  • Figure a is a top plan view of the MEMS micromirror, and
  • Figure b1 is a cross-sectional view along the Y line in Figure a.
  • the torsion beam and the reflector are located Different sides;
  • Figure b2 is a schematic cross-sectional view along line Y in Figure a.
  • the torsion beam and the reflector are on the same side;
  • Figure c is a schematic cross-section along line X in Figure a;
  • Figure 4 is a schematic diagram of the patterned adhesive layer dicing film in the embodiment
  • Figure 5 is a schematic diagram of the design of the wafer cutting lane in Embodiment 1;
  • Figure 6 is a top plan view and cross-sectional view of a MEMS micromirror using a traditional closed fixed frame
  • Figure a is a top plan view of the MEMS micromirror
  • Figure b1 is a cross-sectional view along the Y line in Figure a.
  • the twist in this figure The beam and the reflector are located on different sides
  • Figure b2 is a schematic cross-sectional view along the Y line in Figure a. In this figure, the torsion beam and the reflector are on the same side
  • Figure c is a schematic cross-sectional view along the X line in Figure a;
  • Figure 7 is a schematic diagram of the MEMS micromirror in Embodiment 1 in which the movable structure suspended in the non-enclosed fixed frame is recessed in the fixed frame;
  • Figure 8 is a schematic diagram of a MEMS micromirror in which the upper and lower surfaces of the movable structure suspended in a non-enclosed fixed frame in Embodiment 1 are partially coplanar with the fixed frame;
  • Figure 9 shows the patterned adhesive layer of the dicing film used in the MEMS micromirror corresponding to the fixed frame in the embodiment;
  • Figure a shows the MEMS micromirror, and
  • Figure b shows the patterned adhesive layer of the dicing film;
  • Figure 10 is a flow chart of the method for making a patterned adhesive layer dicing film in Example 1;
  • Figure 11 is a schematic diagram of the MEMS micromirror array processed in Example 1 and its required dicing film patterned adhesive layer; where a is the MEMS micromirror array, and b is the required dicing film patterned adhesive layer;
  • Figure 12a is a schematic cross-sectional view along the X-axis of the MEMS micromirror wafer adhered to the dicing film in Example 1;
  • Figure 12b is a schematic cross-sectional view along the Y-axis of the MEMS micromirror wafer adhered to the dicing film in Example 1;
  • Figure 13 is a schematic diagram of the screen printing added layer on the MEMS micromirror wafer in Example 2;
  • Figure a is a top plan view of the MEMS micromirror, and
  • Figure B is a cross-sectional schematic diagram along the Y line in Figure a. The twist in this figure The beam and the reflector are located on different sides;
  • Figure c is a schematic cross-sectional view along the X line in Figure a;
  • FIG. 14 is a schematic diagram of the screen printing additive layer and the conventional sheet film attached to the MEMS micromirror wafer in Example 2.
  • the present invention envisages that if a MEMS micromirror can be developed from the cutting stage after the MEMS micromirror wafer processing is completed, which is easy to implement in terms of technology and can completely and effectively solve the problem of light path blocking, it will have greater application value and economic benefits. .
  • the present invention starts from the cutting design of MEMS micromirror wafers.
  • the fixed frame is optimized, as shown in Figure 2, and the fixed frame is transformed from a traditional closed frame to a non-closed fixed frame with a gap.
  • the fixed frame can be defined as a non-enclosed fixed frame 2 or a C-shaped fixed frame.
  • the outgoing light 14 reflected by the reflector 3 and blocked by the traditional fixed frame can be directly emitted from the gap, thereby completely solving the problem of the MEMS micromirror fixed frame itself blocking the light beam during the scanning process.
  • the size of the non-enclosed fixed frame 2 can be flexibly adjusted, which can still ensure the support reliability required by the MEMS chip frame and reduce the size of the chip to a certain extent.
  • the anchor points of each torsion beam 4 5 needs to be fixed on the same rigid support frame, so the gap 6 of the non-closed fixed frame 2 is opened on a side of the frame where the non-anchor point 5 is located.
  • the emitted light can directly emit from the notch 6 without being blocked by the fixed frame.
  • the specific structural form of the fixed frame is not limited, for example, it can be a rectangular, circular or other special-shaped frame.
  • the MEMS micromirror chip is suspended and movable, the MEMS micromirror is cut from the entire wafer into independent single chips, and the coring process is the same as that of conventional semiconductor chips (such as IC chips, LEDs, etc.) There is a big difference in the process of chip).
  • Conventional grinding wheel mechanical cutting and laser cutting cannot be used in MEMS micromirror wafer processing because the presence of water impact and particle contamination have a great impact on the performance of MEMS micromirror wafers.
  • the current method that can be applied to MEMS micromirror wafer cutting is mainly laser modified stealth cutting. During the cutting process, MEMS micromirror wafers also have some special requirements for the film-mounting auxiliary materials used.
  • the current solution is mainly to optimize the design of MEMS micromirrors so that existing conventional films can be used. Although design-side optimization can achieve the expected goals, this type of solution comes at the expense of higher chip processing costs and more complex processing processes.
  • the present invention divides the dicing film corresponding to the non-enclosed fixed frame area and the crystal
  • the adhesive layer in the circular chip-free area is reserved for fixing the chip, and the adhesive layer corresponding to the movable structure area and the structural gap area is deglued until it is completely non-sticky, and a dicing film of the patterned adhesive layer is made.
  • the striped area corresponds to the adhesive layer in the non-enclosed fixed frame area of the wafer and the chip-free area of the wafer.
  • the blank area is the adhesive-free area, corresponding to the movable structure area and the structural gap area.
  • the movable structure is prevented from adhering to the dicing film.
  • the process is simple and reliable.
  • the main structure of the MEMS micromirror to be designed and processed in this embodiment can be divided into a movable structure and a non-enclosed fixed frame 2.
  • the movable structure includes a reflector 3. Both sides of the reflector 3 are connected to the non-enclosed fixed frame 2 through a torsion beam 4.
  • the connection point between the torsion beam 4 and the non-enclosed fixed frame 2 is the anchor point 5.
  • the movable structure is suspended in the non-enclosed fixed frame 2.
  • the movable structure can twist back and forth around the torsion beam 4 under the application of external driving force to realize the function of the MEMS micromirror. .
  • the non-enclosed fixed frame 2 is the frame of the chip and the fixed base of all other structures. It is a rectangular frame with a notch 6 on it.
  • the notch 6 is located on the side of the frame where the non-anchor point 5 is located, and the length is the same as that of the other non-anchor point.
  • the lengths of the sides of the frame where point 5 is located are equal. In other embodiments, the length of the notch 6 can be adjusted according to the actual size of the MEMS micromirror reflecting mirror and the size of the laser spot in the usage scenario.
  • the thickness of the torsion beam and the movable structure can be the same as that of the non-enclosed fixed frame 2, or can be thinner than the fixed frame. If thinner than the fixed frame, the torsion beam and movable structure can be thinned by wet etching or dry etching from the upper or lower surface.
  • the cutting lanes of the MEMS micromirror wafer are designed in the appropriate X and Y axis directions, as shown in Figure 5.
  • the black dotted lines in the figure are the cutting lanes, so that the MEMS micromirror chip will have a non-closed fixed frame 2 structure after cutting, and the closed fixed frame
  • the "closed" shape of frame 02 is shown in Figure 6.
  • torsion beam suspended in the non-enclosed fixed frame 2 and the upper surface 81 of the movable structure and the lower surface 82 of the movable structure have partial areas coplanar with the non-enclosed fixed frame 2 (see Figure 8), then It needs to be assisted by a specially designed and processed graphic scribing film. Follow the following steps to complete cutting, film expansion and coring.
  • the specific preparation method is as follows:
  • a dicing film to be fixed on the dicing ring.
  • the dicing film can be a UV deglue film, a thermal decomposition film, or other glue whose viscosity can be adjusted by specific externally applied conditions. Mucous membrane.
  • the specific structure of the MEMS micromirror chip is projected on the dicing film, and the adhesive layer of the non-enclosed fixed frame 2 and the projected area of the wafer without a chip is reserved for fixing the chip, and this area is defined as the adhesive area 11 (Fig.
  • the patterning of the adhesive layer on the dicing film can be achieved by mask-assisted light degumming or gluing, imprinting and gluing, or fixed-point heating degumming. Achieved, or by attaching an additional layer of patterned viscosity release film to the dicing film adhesive layer.
  • the MEMS micromirror wafer 10 is aligned and bonded to the dicing film with patterned adhesive layer.
  • the alignment accuracy depends on the structural size of the MEMS micromirror chip and the size of the patterned adhesive layer. Determined by accuracy, the general accuracy requirements are not high, about ⁇ 0.2mm.
  • the chip is cut into a "C"-shaped frame according to the designed dicing path.
  • the film is expanded until the MEMS micromirror chip array on the wafer is expanded to facilitate core removal, forming a micromirror chip array with independent gaps and reasonable gaps.
  • the entire cut and expanded wafer is deglued until the viscosity is significantly reduced.
  • the degree of reduction is set according to the actual situation.
  • the main structure of the MEMS micromirror to be designed and processed in this embodiment can be divided into a movable structure and a fixed frame.
  • the movable structure includes a reflector 3. Both sides of the reflector 3 are connected to the fixed frame through a torsion beam 4. The connection point between the torsion beam 4 and the fixed frame is the anchor point 5.
  • the movable structure is suspended in the fixed frame. When the fixed frame is fixed, the movable structure can twist back and forth around the torsion beam 4 under the application of external driving force to realize the function of the MEMS micromirror.
  • the fixed frame is the frame of the chip and the fixed base of all other structures. It is a rectangular frame with a notch 6 on it.
  • the notch 6 is located on the side of the frame where the non-anchor point 5 is located, and has the same length as the other frame where the non-anchor point 5 is located.
  • the lengths of the sides are equal.
  • the length of the notch 6 can be adjusted according to the actual size of the three surfaces of the MEMS micromirror mirror and the size of the laser spot in the usage scenario.
  • the thickness of the torsion beam and movable structure can be the same as that of the fixed frame, or can be thinner than the fixed frame. If thinner than the fixed frame, the torsion beam and movable structure can be thinned by wet etching or dry etching from the upper or lower surface.
  • the cutting lanes of the MEMS micromirror wafer are designed in the appropriate X and Y axis directions, so that the MEMS micromirror chip will take on the "C" shape of an open fixed frame after cutting, rather than the "closed” shape of a closed frame.
  • the torsion beam suspended in the non-enclosed fixed frame 2 and the upper surface 81 of the movable structure and the lower surface 82 of the movable structure have partial areas coplanar with the non-enclosed fixed frame 2 (see Figure 8), then the additional layer needs to be produced by screen printing on the wafer, and then a conventional dicing film is used to complete cutting, film expansion and coring according to the following steps.
  • a screen printing slurry and use screen printing to create a patterned screen printing added layer 7 at the non-enclosed fixed frame 2 position of the MEMS micromirror wafer, with a thickness of 10-100um. Ensure that good adhesion is formed between the screen printing slurry and the non-enclosed fixed frame 2 of the MEMS micromirror wafer and that the slurry surface has a smooth surface.
  • the screen printing surface can be any side of the MEMS micromirror wafer, preferably the side with a larger printable area.
  • the MEMS micromirror wafer with the screen-printed additive layer 7 is attached to the conventional chip film 13, so that the screen-printed additive layer 7 adheres to the conventional chip film 13, and the chip can Due to the existence of the screen printing added layer 7, the moving structure 8 will not contact and adhere to the regular sheet film 13.
  • the chip is cut into a similar "C"-shaped frame according to the designed dicing path, rather than a conventional "closed” shape.
  • the film is expanded until the MEMS micromirror chip array on the wafer is expanded to facilitate core removal, forming a micromirror chip array with independent gaps and reasonable gaps.
  • the entire cut and expanded wafer is deglued until the viscosity is significantly reduced.
  • the degree of reduction is set according to the actual situation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明涉及一种MEMS微镜及其制备方法,具体涉及一种改善光路遮挡的MEMS微镜及其制备方法。本发明在不改变MEMS微镜中驱动器和反射镜加工工艺的条件以及不影响MEMS微镜正常工作的前提下,从MEMS微镜晶圆的切割设计出发,优化固定框架,将固定框架由传统封闭式框架转变为非封闭状的具有缺口的固定框架,确保支撑可靠的同时,在大角度扫描过程中,被传统固定框架遮挡的出射光可以从缺口部位直接出射,从而彻底解决扫描过程中MEMS微镜固定框架本身对光束的遮挡问题。

Description

一种改善光路遮挡的MEMS微镜及其制备方法 技术领域
本发明涉及一种MEMS微镜及其制备方法,具体涉及一种改善光束扫描过程中,微镜自身结构引起光路遮挡问题的MEMS微镜及其制备方法。
背景技术
MEMS微镜是一种基于半导体微加工技术实现的微机电***芯片,属于微执行器,可以实现激光光束的精准反射操纵,广泛用于激光扫描、激光投影显示、激光雷达和光通信领域。MEMS微镜主要包含有位于四周的封闭式固定框架,以及位于固定框架中心的可动结构,包括平面反射镜和驱动器,平面反射镜和驱动器通过扭转轴连接到固定框架上并且悬空于固定框架之内。在施加特定驱动信号的条件下,MEMS微镜结构中的平面反射镜可以在驱动结构的带动下发生绕轴扭转。当一束激光投射到平面反射镜面后,随着反射镜面的扭转,反射激光光束的方向也将随之改变,从而实现激光扫描。
在MEMS微镜的具体使用场景中,入射激光光束一般从垂直于反射镜扭转轴且与反射镜所在平面成一定角度投射到镜面上,激光光束经扭转的镜面反射后可以实现2倍于MEMS微镜机械扭转角的光学扫描角度范围。由于MEMS微镜四周固定框架的存在,不可避免地,当扫描角度较大时会使部分出射光被固定框架遮挡造成激光能量的部分损失,甚至是全遮挡造成扫描角度范围受限制,如图1所示,图中附图标记1为激光器,02为封闭式固定框架,3为反射镜。然而MEMS振镜的固定框架是平面反射镜的锚点所在,对于实现MEMS微镜的功能是不可缺少的重要结构,因此探索一种合适的方式来解决其对光路遮挡问题对于推进MEMS微镜的应用以及扩大MEMS微镜的应用场景具有重要意义。
目前,一般都是从芯片本身结构的设计与微加工角度来寻求解决方案,反射镜面平面凸出于固定框架平面是其中一种方法,但是该方案需要较为复杂的微加工技术和流程才能实现,加工成本较高,而且凸出的结构也不便于后续MEMS微镜的继续加工装配操作。扩大反射镜面与固定框架之间的距离是另一种方案,但是这种方案会增大单颗芯片的占用面积,同样也会增加成本。除了成本因素之外,上述两种方案仍然存在特定角度下的框架遮挡光路问题,并无法彻底解决光路遮挡。
技术问题
本发明的目的是提供一种改善光路遮挡的MEMS微镜及其制备方法,以较低的成本彻底解决扫描过程中MEMS微镜固定框架本身对光束的遮挡问题。
技术解决方案
本发明的构思是:
为了以低成本的方式彻底解决固定框架对光束的遮挡问题,本发明考虑在不改变MEMS微镜中驱动器和反射镜加工工艺的条件以及不影响MEMS微镜正常工作的前提下,从MEMS微镜晶圆的切割设计出发,优化固定框架,将固定框架由传统封闭式框架转变为非封闭状的具有缺口的固定框架,确保支撑可靠的同时,在大角度扫描过程中,被传统固定框架遮挡的出射光可以从缺口部位直接出射,从而彻底解决扫描过程中MEMS微镜固定框架本身对光束的遮挡问题。
本发明的技术方案是提供一种改善光路遮挡的MEMS微镜,包括固定框架以及位于固定框架中心且通过扭转梁与固定框架连接的可动结构,将扭转梁与固定框架的连接点定义为锚点;
其特殊之处在于:上述固定框架成型于MEMS微镜晶圆切割阶段,上述固定框架上开设缺口,上述缺口位于非锚点所在的框架边上,确保在大角度扫描过程中,出射光从缺口部位直接出射。
进一步地,上述固定框架为矩形、圆形或其他异形框架,因此,本发明可适用于所有不同结构形式的MEMS微镜。
进一步地,为了便于加工,上述缺口的长度与另一非锚点所在固定框架边的长度相等。
进一步地,扭转梁可以与可动结构同侧或异侧,可动结构包括平面反射镜和驱动器,其中反射镜面和驱动器也可以同侧或异侧。
进一步地,可动结构的厚度可以与固定框架等同厚度,也可以比固定框架薄。
本发明还提供一种上述改善光路遮挡的MEMS微镜的加工方法,其特殊之处在于,包括以下步骤:
步骤1、判断待加工MEMS微镜中可动结构的上下两个表面是否均有部分区域与固定框架共面,若是,则执行步骤2,否则,将可动结构表面内凹于固定框架平面这一侧贴于常规划片膜上,执行步骤3;
步骤2、将MEMS微镜芯片的具体结构投影于划片膜上,将划片膜上对应于非封闭式固定框架区域和晶圆无芯片区域的胶层保留用于固定芯片,将对应于可动结构区域和结构间隙区域的胶层解胶至完全没有粘性,制作成图形化胶层的划片膜;将MEMS微镜晶圆与图形化胶层的划片膜对准并贴合;
步骤3、按照所设计好的划片道将芯片切割成固定框架形状,即为在非锚点所在的框架边上开设缺口的固定框架;
步骤4、将晶圆上MEMS微镜芯片阵列通过扩膜工艺扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列;
步骤5、将整个切割扩膜后的晶圆进行解胶直至粘度降低之后进行取芯。
进一步地,步骤2中划片膜为粘度可通过特定外部施加条件调节的胶粘膜。
进一步地,上述胶粘膜可以为UV解胶膜或热解胶膜。
进一步地,步骤2中,将除固定框架投影之外的所有投影区域的胶层解胶至完全没有粘性,制作成图形化胶层的划片膜,具体通过下述方法实现解胶:
可以通过掩膜版辅助光照解胶或涂胶的方式实现,也可以通过压印涂胶的方式实现,或者通过模具辅助的定点加热解胶的方式实现,还可以通过额外贴附一层图形化粘度隔离薄膜于划片膜胶层上。
进一步地,步骤2中,将MEMS微镜晶圆与图形化胶层的划片膜对准并贴合时,可以将MEMS微镜的正面(反射镜面)贴到图形化胶层的划片膜上,也可以将MEMS微镜的背面贴到图形化胶层的划片膜上。
本发明还提供另一种上述改善光路遮挡的MEMS微镜的加工方法,其特殊之处在于,包括以下步骤:
步骤1、判断待加工MEMS微镜中可动结构的上下两个表面是否均有部分区域与固定框架共面,若是,则执行步骤2,否则,将可动结构表面内凹于固定框架平面这一侧贴于常规划片膜上,执行步骤3;
步骤2、通过丝网印刷方式在MEMS微镜晶圆的非封闭式固定框架位置制作图形化的添加层,确保丝网印刷浆料与MEMS微镜晶圆的非封闭式固定框架之间形成良好的粘附性并且浆料表面光滑;将制作了丝网印刷添加层的MEMS微镜晶圆与常规划片膜贴合,使MEMS微镜通过丝网印刷添加层粘附于常规划片膜上,而芯片可动结构对应的MEMS微镜晶圆部分由于丝网印刷添加层的存在不会与常规划片膜接触和贴合;
步骤3、按照所设计好的划片道将芯片切割成固定框架形状;
步骤4、将晶圆上MEMS微镜芯片阵列通过扩膜工艺扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列;
步骤5、将整个切割扩膜后的晶圆进行解胶直至粘度降低之后进行取芯。
进一步地,步骤2中,丝网印刷添加层的厚度为10-500um。
进一步地,步骤2中,丝网印刷添加层位于MEMS微镜晶圆可印刷面积较大的一面。
有益效果
本发明的有益效果是:
1、本发明从MEMS微镜晶圆的切割设计出发,确保支撑可靠的前提下,将固定框架由传统封闭式框架转变为非封闭状的具有缺口的固定框架,在大角度扫描过程中,被传统固定框架遮挡的出射光可以从缺口部位直接出射,从而彻底解决扫描过程中MEMS微镜固定框架本身对光束的遮挡问题。同时,该固定框架在晶圆的切割阶段即可完成,不影响MEMS微镜中驱动器和反射镜加工工艺,并在一定程度上减小了芯片的尺寸,成本较低。
2、本发明通过特殊设计的图形化胶层划片膜或增加丝网印刷添加层于MEMS微镜晶圆框架对应部位,避免MEMS微镜芯片的可动结构被粘附于划片膜上,为后续芯片的切割、扩膜和取芯步骤创造条件,工艺简单可靠。
附图说明
图1为采用传统封闭式固定框架的MEMS微镜扫描过程示意图;
图中:1-激光器,02-封闭式固定框架,3-反射镜;
图2为实施例中MEMS微镜扫描过程示意图;
图中:1-激光器,2-非封闭式固定框架,3-反射镜,14-出射光;
图3为实施例MEMS微镜的俯视平面示意图和截面示意图;其中a图为MEMS微镜的俯视平面示意图,b1图为沿a图中Y线的截面示意图,该图中扭转梁与反射镜位于不同侧;b2图为沿a图中Y线的截面示意图,该图中扭转梁与反射镜位于同侧;c图为沿a图中X线的截面示意图;
图中:2-非封闭式固定框架,3-反射镜,4-扭转梁,5-锚点,6-缺口;
图4为实施例中图形化胶层划片膜的示意图;
图5为实施例1中晶圆切割道设计示意图;
图6为采用传统封闭式固定框架的MEMS微镜的俯视平面示意图和截面示意图;其中a图为MEMS微镜的俯视平面示意图,b1图为沿a图中Y线的截面示意图,该图中扭转梁与反射镜位于不同侧;b2图为沿a图中Y线的截面示意图,该图中扭转梁与反射镜位于同侧;c图为沿a图中X线的截面示意图;
图中:02-封闭式固定框架,3-反射镜;
图7为实施例1中悬置于非封闭式固定框架内的可动结构凹陷于固定框架之内MEMS微镜的示意图;
图中:2-非封闭式固定框架,8-可动结构,9-凹陷面;
图8为实施例1中悬置于非封闭式固定框架内的可动结构的上下两个表面均有部分与固定框架共面的MEMS微镜示意图;
图中:2-非封闭式固定框架,81-可动结构的上表面,82-可动结构的下表面;
图9为实施例中MEMS微镜所用划片膜的图形化胶层与固定框架对应;其中a图为MEMS微镜,b图为划片膜的图形化胶层;
图中,2-非封闭式固定框架,11-粘胶区;
图10为实施例1中制作图形化胶层划片膜的方法流程图;
图11为实施例1中加工的MEMS微镜阵列及其所需划片膜图形化胶层的示意图;其中a为MEMS微镜阵列,b为所需划片膜图形化胶层;
图12a为实施例1中MEMS微镜晶圆粘附与划片膜上后沿X轴的截面示意图;
图12b为实施例1中MEMS微镜晶圆粘附与划片膜上后沿Y轴的截面示意图;
图中:10-MEMS微镜晶圆,11-粘胶区,12-解胶区;
图13为实施例2中MEMS微镜晶圆上制作丝网印刷添加层示意图;其中a图为MEMS微镜的俯视平面示意图,b图为沿a图中Y线的截面示意图,该图中扭转梁与反射镜位于不同侧;c图为沿a图中X线的截面示意图;
图中,2-非封闭式固定框架,3-反射镜,4-扭转梁,5-锚点,6-缺口,7-丝网印刷添加层;
图14为实施例2中MEMS微镜晶圆上黏贴丝网印刷添加层与常规划片膜的示意图。
图中,7-丝网印刷添加层,8-可动结构,13-常规划片膜。
本发明的实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
本发明设想如果能从MEMS微镜晶圆加工完成之后的切割阶段开发一种从工艺上容易实现,又能彻底有效解决光路遮挡问题的MEMS微镜,将会具有较大的应用价值和经济效益。
基于该设想,本发明从MEMS微镜晶圆的切割设计出发,在该阶段,优化固定框架,如图2所示,将固定框架由传统封闭式框架转变为非封闭状的具有缺口的固定框架,可以将该固定框架定义为非封闭式固定框架2或C形固定框架。在大角度扫描过程中,被传统固定框架遮挡的经反射镜3反射的出射光14可以从缺口部位直接出射,从而彻底解决扫描过程中MEMS微镜固定框架本身对光束的遮挡问题。该非封闭式固定框架2尺寸可以灵活调整,依旧可以保证MEMS芯片框架所需要的支撑可靠性,并在一定程度上可以减小芯片的尺寸。如图3所示,为了保证MEMS微镜可动结构(包括反射镜3和驱动器)的相对位置与功能的长期稳定性,以及后续MEMS微镜装配的可操作性,各个扭转梁4的锚点5需要固定在同一刚性支撑框架上,因此该非封闭式固定框架2的缺口6开设在一条非锚点5所在的框架边上。缺口6的大小只要保证,在设定的大角度扫描过程中,出射光可以从缺口6部位直接出射,而不被固定框架遮挡。对固定框架的具体结构形式不做限定,如可以是矩形、圆形或其他异形框架。
但是,MEMS微镜由于其芯片的反射镜结构是悬空可动的,因此,MEMS微镜由整张晶圆裁切成独立的单颗芯片,以及取芯过程与常规的半导体芯片(如IC芯片、LED芯片)的工艺相比存在较大差异。常规的砂轮机械切割和激光切割,因为存在的水冲击和颗粒污染对MEMS微镜晶圆性能影响较大,而无法应用于MEMS微镜晶圆加工。目前可以应用于MEMS微镜晶圆切割的方法主要为激光改质隐形切割。在该切割过程中,MEMS微镜晶圆对使用的贴膜辅材也有一些特殊的要求,不仅需要满足能固定晶圆和切割后的单颗芯片、可扩膜等一般要求,同时又要满足取芯时可动结构免受膜层的黏连损坏。目前的解决方案主要是通过在MEMS微镜设计端进行优化以便可以使用现有的常规膜。设计端优化虽然可以达到预期的目标,然而该类方案需要以较高的芯片加工成本和较复杂的加工工艺流程为代价。
本发明为了实现具有非封闭式固定框架2的MEMS微镜芯片的顺利切割、扩膜和取芯三步骤,如图4所示,通过将划片膜上对应于非封闭式固定框架区域和晶圆无芯片区域的胶层保留用于固定芯片,而将对应于可动结构区域和结构间隙区域的胶层解胶至完全没有粘性,制作成图形化胶层的划片膜。图4中条纹区域对应于晶圆非封闭式固定框架区域和晶圆无芯片区域的胶粘层,空白区域为无胶区,对应于可动结构区域和结构间隙区域。在切割过程中,使可动结构避免粘附于划片膜上。也可以在MEMS微镜晶圆非封闭式固定框架和晶圆无芯片区域添加丝网印刷添加层,再将制作了丝网印刷添加层的MEMS微镜晶圆与常规划片膜贴合,之后进行切割,也同样可以使可动结构不粘附于划片膜上,为后续芯片的切割、扩膜和取芯步骤创造条件,工艺简单可靠。
在图形化胶层划片膜或者丝网印刷添加层的辅助下,无论MEMS微镜可动结构是与芯片正面或反面共面,还是与芯片的正反面均不共面,由于可动结构始终未与划片膜粘合,切割后的扩膜环节并不会引起可动微结构随着膜的拉升而变形损坏,最终保障具有非封闭式固定框架的MEMS微镜切割、扩膜和取芯均得以顺利实现。
以下结合具体实施例对本发明做详细描述。
实施例1
本实施例以一款电磁驱动或静电驱动的单轴MEMS微镜为例进行说明:
如图3所示,本实施例所要设计加工的MEMS微镜,主要结构可以分为可动结构和非封闭式固定框架2。可动结构包括反射镜3,反射镜3两侧通过扭转梁4与非封闭式固定框架2连接,扭转梁4与非封闭式固定框架2的连接点为锚点5。可动结构悬置于非封闭式固定框架2之中,当非封闭式固定框架2固定后,可动结构在施加外部驱动力条件下可以绕着扭转梁4往复扭转从而实现MEMS微镜的功能。非封闭式固定框架2为芯片的边框,是所有其它结构的固定基座,为矩形框架,其上开设缺口6,缺口6位于非锚点5所在的框架边上,且长度与另一非锚点5所在框架边的长度相等,在其他实施例中缺口6的长度可根据实际MEMS微镜反射镜面大小和使用场景中的激光光斑尺寸大小来调整。
扭转梁和可动结构的厚度可以与非封闭式固定框架2等同厚度,也可以比固定框架薄。如果比固定框架薄,那么扭转梁和可动结构可以从上表面或者下表面湿法腐蚀或干法刻蚀减薄来实现。
MEMS微镜晶圆的切割道设计在合适的X和Y轴方向,如图5,图中黑色虚线为切割道,使MEMS微镜芯片切割后呈非封闭式固定框架2的结构,封闭式固定框架02的“封闭”形见图6。
如果悬置于非封闭式固定框架2内的扭转梁4和可动结构8至少有一面未与非封闭式固定框架2共面,而是凹陷于非封闭式固定框架2之内(见图7中的凹陷面9),则可以不用特殊设计加工的图形化划片膜,只需要将结构凹陷的一面贴于常规划片膜上,此时划片膜与可动结构8中的凹陷面9不接触,因此,正常切割、扩膜和取芯即可。如果悬置于非封闭式固定框架2内的扭转梁和可动结构的上表面81和可动结构的下表面82均有部分区域与非封闭式固定框架2共面(见图8),则需要通过特殊设计加工的图形化划片膜进行辅助,按照以下步骤完成切割、扩膜和取芯。
具体制备方法如下:
结合图9至图12a、图12b,选择一款划片膜固定与划片环上,划片膜可以是UV解胶膜、热解胶膜,或其它粘度可通过特定外部施加条件调节的胶粘膜。将MEMS微镜芯片的具体结构投影于划片膜上,将非封闭式固定框架2和晶圆无芯片区域的投影部位胶层保留用于固定芯片,将该区域定义为粘胶区11(图9及图11),而将可动结构和结构间隙区域的投影部位胶层解胶至完全没有粘性,将该区域定义为解胶区12(图12a和图12b),制作成图形化胶层的划片膜。
如图10所示,划片膜上胶层的图形化可以通过掩膜版辅助光照解胶或涂胶的方式实现,也可以通过压印涂胶的方式实现,或者通过定点加热解胶的方式实现,或者通过额外贴附一层图形化粘度隔离薄膜于划片膜胶层上。
如图12a和图12b所示,将MEMS微镜晶圆10与胶层图形化的划片膜对准并贴合,对准精度根据MEMS微镜芯片的结构尺寸大小和图形化胶层的尺寸精度决定,一般精度要求不高,大约为±0.2mm。贴合时可以将MEMS微镜的正面(反射镜面)贴到划片膜上,也可以将MEMS微镜的背面贴到划片膜上,并无特殊要求,可以视实际需要选择和设计恰当的夹具辅助对准贴膜。
 MEMS微镜晶圆10贴附固定于划片膜上之后,按照所设计好的划片道将芯片切割成类似“C”形边框。
切割后再进行扩膜,直至将晶圆上MEMS微镜芯片阵列扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列。
取芯之前,将整个切割扩膜后的晶圆进行解胶直至粘度明显降低,降低程度依据实际情况需要设定。
实施例2
本实施例以一款电磁驱动或静电驱动的单轴MEMS微镜为例:
本实施例所要设计加工的MEMS微镜,主要结构可以分为可动结构和固定框架。可动结构包括反射镜3,反射镜3两侧通过扭转梁4与固定框架连接,扭转梁4与固定框架的连接点为锚点5。可动结构悬置于固定框架之中,当固定框架固定后,可动结构在施加外部驱动力条件下可以绕着扭转梁4往复扭转从而实现MEMS微镜的功能。固定框架为芯片的边框,是所有其它结构的固定基座,为矩形框架,其上开设缺口6,缺口6位于非锚点5所在的框架边上,且长度与另一非锚点5所在框架边的长度相等,在其他实施例中缺口6的长度可根据实际MEMS微镜反射镜3面大小和使用场景中的激光光斑尺寸大小来调整。
扭转梁和可动结构的厚度可以与固定框架等同厚度,也可以比固定框架薄。如果比固定框架薄,那么扭转梁和可动结构可以从上表面或者下表面湿法腐蚀或干法刻蚀减薄来实现。
MEMS微镜晶圆的切割道设计在合适的X和Y轴方向,使MEMS微镜芯片切割后呈开口状固定框架的“C”形,而非封闭框架的“封闭”形。
如果悬置于非封闭式固定框架2内的扭转梁4和可动结构8至少有一面未与非封闭式固定框架2共面,而是凹陷于非封闭式固定框架2之内(见图7中的凹陷面9),则可以不用制作丝网印刷添加层7,只需要将结构凹陷的一面贴于常规划片膜上,正常切割、扩膜和取芯即可。如果悬置于非封闭式固定框架2内的扭转梁和可动结构的上表面81和可动结构的下表面82均有部分区域与非封闭式固定框架2共面(见图8),则需要通过丝网印刷制作添加层于晶圆上,然后采用常规的划片膜按照以下步骤完成切割、扩膜和取芯。
如图13所示,选择一款丝网印刷浆料,通过丝网印刷方式在MEMS微镜晶圆的非封闭式固定框架2位置制作图形化的丝网印刷添加层7,厚度10-100um,确保丝网印刷浆料与MEMS微镜晶圆的非封闭式固定框架2之间形成良好的粘附性并且浆料表面具有光滑表面。丝网印刷面可以是MEMS微镜晶圆的任何一面,优选可印刷面积较大的一面。
如图14所示,将制作了丝网印刷添加层7的MEMS微镜晶圆与常规划片膜13贴合,使丝网印刷添加层7粘附于常规划片膜13上,而芯片可动结构8由于丝网印刷添加层7的存在不会与常规划片膜13接触和贴合。
MEMS微镜晶圆贴附固定于常规划片膜13上之后,按照所设计好的划片道将芯片切割成类似“C”形框架,而非常规的“封闭”形。
切割后再进行扩膜,直至将晶圆上MEMS微镜芯片阵列扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列。
取芯之前,将整个切割扩膜后的晶圆进行解胶直至粘度明显降低,降低程度依据实际情况需要设定。

Claims (13)

  1. 一种改善光路遮挡的MEMS微镜,包括固定框架以及位于固定框架中心且通过扭转梁(4)与固定框架连接的可动结构(8),将扭转梁(4)与固定框架的连接点定义为锚点(5);
    其特征在于:所述固定框架成型于MEMS微镜晶圆切割阶段,所述固定框架上开设缺口(6),所述缺口(6)位于非锚点所在的框架边上,确保在大角度扫描过程中,出射光从缺口(6)部位直接出射。
  2. 根据权利要求1所述的改善光路遮挡的MEMS微镜,其特征在于:所述固定框架为矩形、圆形或其他异形框架。
  3. 根据权利要求2所述的改善光路遮挡的MEMS微镜,其特征在于:所述缺口(6)的长度与另一非锚点所在框架边的长度相等。
  4. 根据权利要求3所述的改善光路遮挡的MEMS微镜,其特征在于:扭转梁(4)与可动结构(8)位于同侧或异侧;可动结构(8)包括平面反射镜(3)和驱动器,平面反射镜(3)和驱动器位于同侧或异侧。
  5. 根据权利要求4所述的改善光路遮挡的MEMS微镜,其特征在于:可动结构(8)的厚度小于等于固定框架的厚度。
  6. 一种权利要求1-5任一所述改善光路遮挡的MEMS微镜的加工方法,其特征在于,包括以下步骤:
    步骤1、判断待加工MEMS微镜中可动结构(8)的上下两个表面是否均有部分区域与固定框架共面,若是,则执行步骤2,否则,将可动结构(8)表面内凹于固定框架平面这一侧贴于常规划片膜(13)上,执行步骤3;
    步骤2、将MEMS微镜芯片的具体结构投影于划片膜上,将划片膜上对应于非封闭式固定框架区域和晶圆无芯片区域的胶层保留用于固定芯片,将对应于可动结构区域和结构间隙区域的胶层解胶至完全没有粘性,制作成图形化胶层的划片膜;将MEMS微镜晶圆与图形化胶层的划片膜对准并贴合;
    步骤3、按照所设计好的划片道将芯片切割成固定框架形状;
    步骤4、将晶圆上MEMS微镜芯片阵列通过扩膜工艺扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列;
    步骤5、将整个切割扩膜后的晶圆进行解胶直至粘度降低之后进行取芯。
  7. 根据权利要求6所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于:步骤2中划片膜为粘度能够通过特定外部施加条件调节的胶粘膜。
  8. 根据权利要求7所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于:所述胶粘膜为UV解胶膜或热解胶膜。
  9. 根据权利要求8所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于:步骤2中,将除固定框架投影之外的所有投影区域的胶层解胶至完全没有粘性,制作成图形化胶层的划片膜,具体通过下述方法实现解胶:
    通过掩膜版辅助光照解胶;
    或通过压印涂胶的方式实现;
    或者通过模具辅助的定点加热解胶的方式实现;
    或者通过额外贴附一层图形化粘度隔离薄膜于划片膜胶层上实现。
  10. 根据权利要求9所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于:步骤2中,将MEMS微镜晶圆与图形化胶层的划片膜对准并贴合时,将MEMS微镜的正面贴到图形化胶层的划片膜上,或将MEMS微镜的背面贴到图形化胶层的划片膜上。
  11. 一种权利要求1-5任一所述改善光路遮挡的MEMS微镜的加工方法,其特征在于,包括以下步骤:
    步骤1、判断待加工MEMS微镜中可动结构(8)的上下两个表面是否均有部分区域与固定框架共面,若是,则执行步骤2,否则,将可动结构(8)表面内凹于固定框架平面这一侧贴于常规划片膜(13)上,执行步骤3;
    步骤2、通过丝网印刷方式在MEMS微镜晶圆的非封闭式固定框架和晶圆无芯片区域位置制作图形化的添加层;将制作了丝网印刷添加层(7)的MEMS微镜晶圆与常规划片膜(13)贴合,使MEMS微镜芯片通过丝网印刷添加层(7)粘附于常规划片膜(13)上,芯片可动结构(8)对应的MEMS微镜晶圆部分由于丝网印刷添加层(7)的存在不会与常规划片膜(13)接触和贴合;
    步骤3、按照所设计好的划片道将芯片切割成固定框架形状;
    步骤4、将晶圆上MEMS微镜芯片阵列通过扩膜工艺扩大间距直至方便取芯,形成相互独立间隙合理的微镜芯片阵列;
    步骤5、将整个切割扩膜后的晶圆进行解胶直至粘度降低之后进行取芯。
  12. 根据权利要求11所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于,步骤2中,丝网印刷添加层(7)的厚度为10-500um。
  13. 根据权利要求12所述的改善光路遮挡的MEMS微镜的加工方法,其特征在于,步骤2中,丝网印刷添加层(7)位于MEMS微镜晶圆可印刷面积较大的一面。
PCT/CN2023/104250 2022-07-26 2023-06-29 一种改善光路遮挡的mems微镜及其制备方法 WO2024022013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210886743.8 2022-07-26
CN202210886743.8A CN117492198A (zh) 2022-07-26 2022-07-26 一种改善光路遮挡的mems微镜及其制备方法

Publications (1)

Publication Number Publication Date
WO2024022013A1 true WO2024022013A1 (zh) 2024-02-01

Family

ID=89666531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104250 WO2024022013A1 (zh) 2022-07-26 2023-06-29 一种改善光路遮挡的mems微镜及其制备方法

Country Status (2)

Country Link
CN (1) CN117492198A (zh)
WO (1) WO2024022013A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047019A (ko) * 2001-12-07 2003-06-18 조동일 마이크로미러 및 그 제조 방법
CN101852917A (zh) * 2010-03-31 2010-10-06 重庆大学 大转角压电扫描微镜
CN106383377A (zh) * 2016-01-30 2017-02-08 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN110737088A (zh) * 2019-10-10 2020-01-31 贺思源 用于大角度激光扫描的外置电磁铁柔性印刷电路板微镜
CN210222357U (zh) * 2019-09-02 2020-03-31 无锡微视传感科技有限公司 二维扫描微镜
CN113341560A (zh) * 2021-05-22 2021-09-03 南京理工大学 一种曲面异形mems二维扫描微镜机器制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047019A (ko) * 2001-12-07 2003-06-18 조동일 마이크로미러 및 그 제조 방법
CN101852917A (zh) * 2010-03-31 2010-10-06 重庆大学 大转角压电扫描微镜
CN106383377A (zh) * 2016-01-30 2017-02-08 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN210222357U (zh) * 2019-09-02 2020-03-31 无锡微视传感科技有限公司 二维扫描微镜
CN110737088A (zh) * 2019-10-10 2020-01-31 贺思源 用于大角度激光扫描的外置电磁铁柔性印刷电路板微镜
CN113341560A (zh) * 2021-05-22 2021-09-03 南京理工大学 一种曲面异形mems二维扫描微镜机器制备方法

Also Published As

Publication number Publication date
CN117492198A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US20030095318A1 (en) Yokeless hidden hinge digital micromirror device
JP2010020350A (ja) 光吸収性マスクを有する装置
KR20000006261A (ko) 기능소자와그제조방법및이기능소자를이용한광디스크장치
US9618740B2 (en) Micromirror and manufacturing method for at least one micromirror which is situatable or situated in a micromirror device
WO2024022013A1 (zh) 一种改善光路遮挡的mems微镜及其制备方法
CN101373274A (zh) 一种合光棱镜及其安装对位方法
JP3557525B2 (ja) 微小可動デバイス
CN101549848A (zh) 一种大角度扭转微镜面驱动器制作方法
JPH04410A (ja) 光アイソレータおよびその製造方法
WO2021248630A1 (zh) 显示装置的制备方法
WO2021047008A1 (zh) Led基板及led显示面板的制作方法
US6649435B2 (en) Precision micromirror positioning
EP0826992A2 (en) Mounting a planar optical component on a mounting member
CN105403946A (zh) 偏光片及其制备方法、显示面板和显示装置
JP2005338722A (ja) ペリクルフレーム及びフォトリソグラフィー用ペリクル
JP3425747B2 (ja) 液晶表示素子の製造方法
JP2013067751A (ja) 光学フィルム及び画像表示装置
JP2000292910A (ja) ペリクルフレームおよびこれを用いたリソグラフィー用ペリクル
CN216286132U (zh) 一种匀光元件和投影装置
CN211207016U (zh) 一种无缝拼接tft-lcd大屏
JP2004333887A (ja) 光スイッチ装置の製造方法
WO2023024094A1 (zh) 显示面板及其制备方法、显示装置
JPS597324A (ja) 光フアイバ用結合器
KR100431358B1 (ko) 백 라이트의 도광판용 접착식 산란 패턴 제작 방법 및접착식 산란 패턴 조립체
JP2004109979A (ja) 光部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845226

Country of ref document: EP

Kind code of ref document: A1