WO2024019560A1 - 부타디엔 제조 방법 - Google Patents

부타디엔 제조 방법 Download PDF

Info

Publication number
WO2024019560A1
WO2024019560A1 PCT/KR2023/010475 KR2023010475W WO2024019560A1 WO 2024019560 A1 WO2024019560 A1 WO 2024019560A1 KR 2023010475 W KR2023010475 W KR 2023010475W WO 2024019560 A1 WO2024019560 A1 WO 2024019560A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanediol
polymer blend
temperature
thermal decomposition
pyrolysis
Prior art date
Application number
PCT/KR2023/010475
Other languages
English (en)
French (fr)
Inventor
김시민
강동균
정우철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220089692A external-priority patent/KR20240012145A/ko
Priority claimed from KR1020220089693A external-priority patent/KR20240012146A/ko
Priority claimed from KR1020220121582A external-priority patent/KR20240042819A/ko
Priority claimed from KR1020220127102A external-priority patent/KR20240047721A/ko
Priority claimed from KR1020230094098A external-priority patent/KR20240012334A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP23843406.2A priority Critical patent/EP4382517A1/en
Publication of WO2024019560A1 publication Critical patent/WO2024019560A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/213Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by splitting of esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead

Definitions

  • the present invention relates to a method for producing butadiene by thermally decomposing polyester containing repeating units derived from 1,4-butanediol or a polymer blend containing it.
  • Plastics are inexpensive and durable materials that can be used to produce a variety of products that find use in a wide range of applications. Accordingly, the production of plastics has been increasing dramatically over the past few decades. Moreover, more than 50% of these plastics are used in single-use, disposable or short-lived products that are discarded within one year of manufacture, such as packaging, agricultural films, single-use consumer goods, etc. Additionally, due to the durability of polymers, significant amounts of plastic end up in landfills and natural habitats around the world, causing increasing environmental problems. Even biodegradable plastics can last for decades, depending on local environmental factors such as levels of UV exposure, temperature, and the presence of appropriate microorganisms.
  • PET polyethylene terephthalate
  • PET waste mainly bottles
  • PET waste mainly bottles
  • sorted, and recycled They are pressed into batches, crushed, washed, cut into flakes, melted and extruded into pellets and offered for sale.
  • these plastic recycling methods only apply to plastic articles containing only PET, requiring excessive prior sorting.
  • plastic recycling allows recovering the chemical components of the polymer.
  • the resulting monomers, after purification, can be used to re-produce plastic articles, creating a need for chemical regeneration methods to recycle the polymers.
  • the present invention is intended to provide a method for producing butadiene by thermally decomposing polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing it.
  • a method for producing butadiene is provided by thermally decomposing polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same.
  • the weight average molecular weight can be measured using gel permeation chromatography (GPC). Specifically, the polyester is dissolved in chloroform to a concentration of 2 mg/ml, then 20 ⁇ l is injected into GPC, and GPC analysis is performed at 40°C. At this time, the mobile phase of GPC uses chloroform and flows at a flow rate of 1.0 mL/min, the column uses two Agilent Mixed-Bs connected in series, and the detector uses an RI Detector. The Mw value is derived using a calibration curve formed using a polystyrene standard specimen.
  • GPC gel permeation chromatography
  • the weight average molecular weights of the polystyrene standard specimens were 2,000 g/mol, 10,000 g/mol, 30,000 g/mol, 70,000 g/mol, 200,000 g/mol, 700,000 g/mol, 2,000,000 g/mol, 4,000,000 g/mol, and 10,000,000.
  • 10,000 g/mol 10,000 g/mol
  • 30,000 g/mol 70,000 g/mol
  • 200,000 g/mol g/mol
  • 700,000 g/mol 2,000,000 g/mol
  • 4,000,000 g/mol 10,000,000.
  • Nine types of g/mol were used.
  • a polymer blend is manufactured by mechanically or chemically mixing polymers produced through monomer polymerization, and can be manufactured, for example, by compounding two or more types of polymers in a molten state.
  • a method for producing butadiene including the step of producing butadiene by thermally decomposing polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same.
  • polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing it is pyrolyzed, butadiene, a recyclable monomer, can be recovered with high purity and high yield, respectively, and thus the present invention. Completed.
  • the method for producing butadiene according to the embodiment is, prior to the step of producing butadiene by pyrolyzing the polyester containing the repeating unit derived from 1,4-butanediol or a polymer blend containing the same, the repeating unit derived from 1,4-butanediol It may further include melting the polyester containing or a polymer blend containing it. That is, before the thermal decomposition, the polyester containing the 1,4-butanediol-derived repeating unit or the polymer blend containing it can be melted.
  • the melting may be performed at a temperature of 150°C or higher and 280°C or lower.
  • the melting temperature may be 150°C or higher, 160°C or higher, 170°C or higher, 180°C or higher, and may be 280°C or lower, 270°C or lower, 260°C or lower, and 250°C or lower. If the melting temperature is too low, the polyester containing the repeating unit derived from 1,4-butanediol or the polymer blend containing it may not melt, and if the melting temperature is too high, the polyester containing the repeating unit derived from 1,4-butanediol may not melt.
  • Polyester or a polymer blend containing it is thermally decomposed without melting, which reduces the recovery rate of monomers, or there is no process to remove impurities before thermal decomposition, so a large amount of impurities may be introduced, and bumping may occur due to a rapid increase in temperature. .
  • the melting may be carried out solvent free.
  • the polyester containing the 1,4-butanediol-derived repeating unit or the polymer blend containing the same may be melted without being dissolved in the solvent.
  • no solvent other than polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same is added to the reactor, and the temperature applied to the reactor is adjusted to the temperature applied to the reactor containing the repeating unit derived from 1,4-butanediol. It can be directly transferred to polyester or a polymer blend containing it and melted.
  • impurities may be formed in the process of thermally decomposing the polyester containing the repeating unit derived from 1,4-butanediol or a polymer blend containing it, and the process of removing the solvent and additional impurities A removal process may be required, which may complicate the process or require additional equipment. Additionally, side reactions may occur during the process of removing the solvent, reducing the recovery rate and purity of monomers. Additionally, there is a disadvantage in that economic efficiency is lowered due to the use of additional solvents.
  • thermal decomposition may be performed under a tin catalyst.
  • the tin catalyst is, for example, tin 2-ethylhexanoate (Tin(II) 2-ethylhexanoate), tin 2-methylhexanoate (Tin(II) 2-methylhexanoate), tin 2-propylhexanoate ( Tin(II) 2-propylhexanoate), dioctyltin dilaurate, dihexyltin dilaurate, dibutyltin dilaurate, dipropyltin dilaurate dilaurate), diethyltin dilaurate, dimetyltin dilaurate, dibutyltin bis(lauryl mercaptide), dimethyltin bis(lauryl mercaptide) Mercaptide) (Dimethyltin bis(lauryl mercaptide)), Diethyltin bis(lauryl mercaptide), Dipropyltin bis(
  • the tin catalyst may be used in an amount of 0.0001 parts by weight, 0.0010 parts by weight, 0.0100 parts by weight, or 0.1000 parts by weight based on 100 parts by weight of the polyester containing the repeating unit derived from 1,4-butanediol or a polymer blend containing the same. , may be used in amounts of 10 parts by weight or less, 7 parts by weight or less, 5 parts by weight or less, 3 parts by weight or less, and 1 part by weight or less. If the amount of the tin catalyst added is too small, thermal decomposition of polyester or polymer blend may not occur, and if the amount of the tin catalyst added is too large, the economic feasibility may worsen due to the excessive amount added.
  • the thermal decomposition may be performed at a temperature of 400°C or higher.
  • the thermal decomposition may be carried out at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower, 650 °C or higher. It may be °C or lower, 630 °C or lower, 600 °C or lower, or 550 °C or lower. If the thermal decomposition temperature is too low, thermal decomposition of the polyester or polymer blend may not occur, making it difficult to recover butadiene, and if the thermal decomposition temperature is too high, many unexpected impurities may be generated.
  • the thermal decomposition can be carried out solvent free.
  • the polyester containing the 1,4-butanediol-derived repeating unit or the polymer blend containing the same may be thermally decomposed without being dissolved in the solvent.
  • impurities may be formed in the process of thermally decomposing the polyester containing the repeating unit derived from 1,4-butanediol or a polymer blend containing it, and the process of removing the solvent and additional impurities A removal process may be required, which may complicate the process or require additional equipment. Additionally, side reactions may occur during the process of removing the solvent, reducing the recovery rate and purity of monomers. Additionally, there is a disadvantage in that economic efficiency is lowered due to the use of additional solvents.
  • the polyester containing the repeating unit derived from 1,4-butanediol is not particularly limited as long as it is a polymer containing the repeating unit derived from 1,4-butanediol, but contains 1,4-butanol as an aliphatic glycol and dicarboxylic acid. It may be a polyester containing an aliphatic or aromatic dicarboxylic acid as the acid.
  • PBAT polybutylene adipate terephthalate
  • polybutylene adipate isophthalate polybutylene adipate, polybutylene terephthalate, polybutylene isophthalate, polybutylene succinate, polybutylene Na. It may be phthalate, etc.
  • the polyester containing the repeating unit derived from 1,4-butanediol may be the polybutylene adipate terephthalate, and the polybutylene adipate terephthalate is an aliphatic glycol composed of 1,4 butanediol and dicarboxylic acid. It may be an aliphatic/aromatic copolyester manufactured using adipic acid, an aliphatic acid, and dimethyl terephthalate, an aromatic component, as raw materials.
  • the polybutylene adipate terephthalate has a weight average molecular weight (Mw) measured using gel permeation chromatography (GPC) of 50,000 to 300,000 g/mol, more specifically, 50,000 g/mol or more, It has a weight average molecular weight of 70,000 g/mol or more, or 100,000 g/mol or more, and 300,000 g/mol or less, or 200,000 g/mol or less, or 150,000 g/mol or less. If the weight average molecular weight of the polybutylene adipate terephthalate is too small, the overall mechanical properties may be significantly reduced, and if the weight average molecular weight is too large, the processing process may be difficult and processability and elongation may be reduced.
  • Mw weight average molecular weight measured using gel permeation chromatography
  • the polymer blend may be a polymer blend of polylactic acid and polybutylene adipate terephthalate, or a polymer blend of hydroxyalkanoate copolymer and polybutylene adipate terephthalate.
  • the hydroxyalkanoate copolymer may include two or more types of repeating units selected from the group consisting of repeating units derived from 3-hydroxypropionic acid, repeating units derived from lactic acid or lactide, and repeating units derived from glycolic acid or glycolide. .
  • the hydroxyalkanoate copolymer is 3-hydroxypropionate-lactide copolymer, glycolide-lactide copolymer, or 3-hydroxypropionate-glycol. It may be a ride copolymer.
  • the hydroxyalkanoate copolymer is two types selected from the group consisting of a block containing a repeating unit derived from 3-hydroxypropionic acid, a block containing a repeating unit derived from lactic acid or lactide, and a block containing a repeating unit derived from glycolic acid or glycolide. It may be a block copolymer containing the above blocks.
  • the hydroxyalkanoate copolymer may be 3-hydroxypropionate-lactide block copolymer, glycolide-lactide block copolymer, or 3-hydroxyalkanoate copolymer. It may be a propionate-glycolide block copolymer.
  • the method for producing butadiene according to the embodiment is wherein the polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same includes polylactic acid and a polyester containing a repeating unit derived from 1,4-butanediol. It may be a polymer blend.
  • Preparing lactide by first thermally decomposing a polymer blend containing polylactic acid and polyester containing repeating units derived from 1,4-butanediol;
  • It may include producing butadiene by secondary pyrolysis of the polymer blend containing the first pyrolysis of polylactic acid and polyester containing repeating units derived from 1,4-butanediol.
  • repeating units derived from polylactic acid and 1,4-butanediol may further include melting the polymer blend containing the polyester.
  • Polylactic acid included in the polymer blend may be manufactured by fermentation or polycondensation of lactic acid or lactide.
  • the lactide can be divided into L-lactide composed of L-lactic acid, D-lactide composed of D-lactic acid, and meso-lactide composed of one L-form and one D-form. Additionally, L-lactide and D-lactide mixed in a 50:50 weight ratio may be D,L-lactide or rac-lactide.
  • L- or D-polylactide (PLLA or PDLA) with very high stereoregularity can be obtained. Lactide has a faster crystallization rate and can also have a higher crystallization rate than polylactide, which has low optical purity.
  • the polylactic acid has a weight average molecular weight (Mw) measured using gel permeation chromatography (GPC) of 50,000 to 300,000 g/mol, more specifically, 50,000 g/mol or more, 70,000 g/mol or more. , or 100,000 g/mol or more, and has a weight average molecular weight of 300,000 g/mol or less, or 200,000 g/mol or less, or 150,000 g/mol or less. If the weight average molecular weight of the polylactic acid is too small, the overall mechanical properties may be significantly reduced, and if the weight average molecular weight is too large, the process may be difficult and processability and elongation may be low.
  • Mw weight average molecular weight measured using gel permeation chromatography
  • the lactic acid or lactide may be a plastic and biodegradable compound manufactured from renewable sources through microbial fermentation, and polylactic acid formed by polymerizing it may also contain a large amount of bio raw materials while exhibiting environmental friendliness and biodegradability. there is.
  • lactide produced by thermally decomposing a polymer blend containing polylactic acid containing the bio raw material may also contain a large amount of bio raw material.
  • the polymer blend can be produced by compounding the polylactic acid and polyester containing repeating units derived from 1,4-butanediol in a molten state.
  • the weight ratio of the polylactic acid and the polyester containing repeating units derived from 1,4-butanediol contained in the polymer blend is 1:99 to 99:1, 5:95 to 95:5, 10:90 to 90:10, It may be 15:85 to 85:15, 20:80 to 80:20, 25:75 to 75:25, or 30:70 to 70:30.
  • the first and second thermal decomposition can be performed under solvent-free conditions and under a tin catalyst. Meanwhile, the first thermal decomposition may be carried out at a temperature of 220 °C or higher and 300 °C or lower, for example, 220 °C or higher, 230 °C or higher, 240 °C or higher, 250 °C or higher, 300 °C or lower, 290 °C or lower, 280 °C or higher. It may be below °C. If the first pyrolysis temperature is too low, thermal decomposition of the polymer blend may not be achieved, and if the first pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the first thermal decomposition may be performed at a pressure of more than 0.01 torr and less than 50 torr, for example, more than 0.01 torr, more than 0.05 torr, more than 0.1 torr, more than 0.5 torr, more than 1 torr, more than 2 torr, more than 4 torr. , may be 5 torr or more, 50 torr or less, 40 torr or less, 30 torr or less, and 20 torr or less, but is not limited thereto. The lower the pyrolysis pressure, the easier it may be to separate and recover lactide.
  • the lactide After the step of producing lactide by first thermal decomposition of the polymer blend, the lactide can be separated by reduced pressure distillation.
  • the first thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the lactide produced at this time can be recovered through reduced pressure distillation. Additionally, even if the first pyrolysis is not performed under reduced pressure conditions, the lactide can be recovered through distillation.
  • Butadiene can be produced by secondary pyrolysis of the polymer blend remaining after the lactide is recovered.
  • the secondary thermal decomposition may be performed at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower. , may be 650°C or lower, 630°C or lower, 600°C or lower, and 550°C or lower. If the secondary pyrolysis temperature is too low, secondary pyrolysis of the polymer blend may not occur, making it difficult to recover butadiene, and if the secondary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the difference between the first pyrolysis temperature and the second pyrolysis temperature may be 150 °C or more and 350 °C or less, for example, 150 °C or more, 160 °C or more, 170 °C or more, 180 °C or more, 190 °C or more, 200 °C or more, It may be 210°C or higher, 350°C or lower, 340°C or lower, 330°C or lower, 320°C or lower, and 310°C or lower. If the difference between the first and second pyrolysis temperatures is too small, recovery of the butadiene may be difficult, and if the difference between the first and second pyrolysis temperatures is too large, many unexpected impurities may be generated. . Butadiene produced through the secondary pyrolysis can be recovered using a gas collection device.
  • the step of producing butadiene by pyrolyzing polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same the step of producing butadiene by pyrolyzing polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same,
  • Preparing lactide by first thermal decomposing a polymer blend containing the 3-hydroxypropionate-lactide copolymer and a polyester containing a repeating unit derived from 1,4-butanediol;
  • It may include the step of producing butadiene by tertiary pyrolysis of the polymer blend containing the secondary pyrolysis of the 3-hydroxypropionate-lactide copolymer and polyester containing a repeating unit derived from 1,4-butanediol. there is.
  • step 3 -It may further include melting a polymer blend containing a hydroxypropionate-lactide copolymer and a polyester containing a repeating unit derived from 1,4-butanediol.
  • the 3-hydroxypropionate-lactide copolymer may be a block copolymer obtained by polymerizing polylactic acid prepolymer and poly(3-hydroxypropionate) prepolymer.
  • the 3-hydroxypropionate-lactide copolymer exhibits the excellent tensile strength and elastic modulus characteristics of the polylactic acid prepolymer, while the poly(3-hydroxypropionate) prepolymer has a glass transition temperature (Tg).
  • Tg glass transition temperature
  • the polylactic acid prepolymer may be manufactured by fermentation or polycondensation of lactic acid.
  • the polylactic acid prepolymer may have a weight average molecular weight of 1,000 g/mol or more, or 5,000 g/mol or more, or 6,000 g/mol or more, or 8,000 g/mol or more, and 50,000 g/mol or less, or 30,000 g/mol or less,
  • the polylactic acid prepolymer must be greater than 20,000 g/mol, or 22,000 g/mol or more, or 23,000 g/mol.
  • the weight average molecular weight of the polylactic acid prepolymer is less than 20,000 g/mol, the polymer crystals are small and it is difficult to maintain the crystallinity of the polymer in the final manufactured block copolymer. If the weight average molecular weight of the polylactic acid prepolymer exceeds 50,000 g/mol, it is difficult to maintain the crystallinity of the polymer. During polymerization, the side reaction rate occurring within the prepolymer chain becomes faster than the reaction rate between polylactic acid prepolymers. Meanwhile, 'lactic acid' used in the present invention refers to L-lactic acid, D-lactic acid, or a mixture thereof.
  • the poly(3-hydroxypropionate) prepolymer may be manufactured by fermenting or condensation polymerization of 3-hydroxypropionate.
  • the weight average molecular weight of the poly(3-hydroxypropionate) prepolymer is 1,000 g/mol or more, or 5,000 g/mol or more, or 8,000 g/mol or more, or 8,500 g/mol or more, and 50,000 g/mol or less, Alternatively, it may be 30,000 g/mol or less, and when it is desired to increase the crystallinity of the repeating unit derived from the poly(3-hydroxypropionate) prepolymer in the final manufactured block copolymer, the poly(3-hydroxypropionate)
  • the prepolymer has a high weight average molecular weight of more than 20,000 g/mol, or more than 22,000 g/mol, or more than 25,000 g/mol, and less than or equal to 50,000 g/mol, or less than or equal to 30,000 g/mol, or less than or equal to 2
  • the weight average molecular weight of the poly(3-hydroxypropionate) prepolymer is 20,000 g/mol or less, the polymer crystals are small, making it difficult to maintain the crystallinity of the polymer in the final manufactured block copolymer. It is difficult, and if the weight average molecular weight of the poly(3-hydroxypropionate) prepolymer exceeds 50,000 g/mol, the side reaction rate occurring inside the prepolymer chain is higher than the reaction rate between poly(3-hydroxypropionate) prepolymers during polymerization. becomes faster.
  • At least one of the polylactic acid prepolymer and the poly(3-hydroxypropionate) prepolymer may have a weight average molecular weight of more than 20,000 g/mol and less than or equal to 50,000 g/mol.
  • the 3-hydroxypropionate-lactide copolymer is a block copolymer in which polylactic acid prepolymer and poly(3-hydroxypropionate) prepolymer are polymerized, and in the block copolymer, the polylactic acid prepolymer and poly(3 -Hydroxypropionate)
  • the weight ratio of the prepolymer is 95:5 to 50:50, 90:10 to 55:45, 90:10 to 60:40, 90:10 to 70:30, or 90:10 to 80:20. It can be.
  • the poly(3-hydroxypropionate) prepolymer may increase brittleness, and the poly(3-hydroxypropionate) prepolymer may increase brittleness. If too much prepolymer is included, the molecular weight may be lowered and processability and heat stability may be reduced.
  • the 3-hydroxypropionate-lactide copolymer has a weight average molecular weight (Mw) measured using gel permeation chromatography (GPC) of 50,000 to 300,000 g/mol, more specifically 50,000. g/mol or more, 70,000 g/mol or more, or 100,000 g/mol or more, and has a weight average molecular weight of 300,000 g/mol or less, or 200,000 g/mol or less, or 150,000 g/mol or less. If the weight average molecular weight of the hydroxyalkanoate-lactide copolymer is too small, the overall mechanical properties may be significantly reduced, and if the weight average molecular weight is too large, the process may be difficult and processability and elongation may be low.
  • Mw weight average molecular weight measured using gel permeation chromatography
  • the lactic acid and 3-hydroxypropionate may be plastic and biodegradable compounds produced from renewable sources by microbial fermentation, and polylactic acid prepolymer and poly(3-hydroxypropionate) formed by polymerizing them
  • the block copolymer containing a prepolymer may also contain a large amount of bio raw materials while exhibiting environmental friendliness and biodegradability.
  • lactide and acrylic acid produced by thermally decomposing a copolymer containing the bio raw materials may also contain a large amount of bio raw materials.
  • the polymer blend can be prepared by compounding the 3-hydroxypropionate-lactide copolymer with a polyester containing a repeating unit derived from 1,4-butanediol in a molten state.
  • the weight ratio of the 3-hydroxypropionate-lactide copolymer and the polyester containing repeating units derived from 1,4-butanediol contained in the polymer blend is 1:99 to 99:1, 5:95 to 95: 5, 10:90 to 90:10, 15:85 to 85:15, 20:80 to 80:20, 25:75 to 75:25, or 30:70 to 70:30.
  • the first, second and third thermal decomposition may be carried out under solvent-free conditions and under a tin catalyst. Meanwhile, the first thermal decomposition may be performed at a temperature of 200 °C or higher and 250 °C or lower, for example, 200 °C or higher, 210 °C or higher, 220 °C or higher, 250 °C or lower, 240 °C or lower, 230 °C or lower. . If the first pyrolysis temperature is too low, thermal decomposition of the polymer blend may not be achieved, and if the first pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the first thermal decomposition may be performed at a pressure of more than 0.01 torr and less than 50 torr, for example, more than 0.01 torr, more than 0.05 torr, more than 0.1 torr, more than 0.5 torr, more than 1 torr, more than 2 torr, more than 4 torr. , may be 5 torr or more, 50 torr or less, 40 torr or less, 30 torr or less, and 20 torr or less, but is not limited thereto. The lower the pyrolysis pressure, the easier it may be to separate and recover lactide.
  • the lactide can be separated by reduced pressure distillation.
  • the first thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the lactide produced at this time can be recovered through reduced pressure distillation. Additionally, even if the first pyrolysis is not performed under reduced pressure conditions, the lactide can be recovered through distillation.
  • Acrylic acid can be produced by secondary pyrolysis of the polymer blend remaining after the lactide is recovered.
  • the secondary thermal decomposition may be carried out at a temperature of 260 °C or higher and 350 °C or lower, for example, 260 °C or higher, 270 °C or higher, 280 °C or higher, 290 °C or higher, 350 °C or lower, 340 °C or lower, 330 °C or higher. It may be below °C. If the secondary pyrolysis temperature is too low, secondary pyrolysis of the polymer blend may not occur and acrylic acid may not be produced, and if the secondary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • Butadiene can be produced by third thermal decomposition of the polymer blend remaining after the acrylic acid is recovered.
  • the third thermal decomposition may be performed at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower. , may be 650°C or lower, 630°C or lower, 600°C or lower, and 550°C or lower. If the tertiary pyrolysis temperature is too low, tertiary pyrolysis of the polymer blend may not occur, making it difficult to recover butadiene, and if the tertiary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the acrylic acid After producing acrylic acid by performing secondary pyrolysis of the first pyrolyzed polymer blend, the acrylic acid can be separated by reduced pressure distillation.
  • the secondary thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the acrylic acid produced at this time can be recovered through reduced pressure distillation. Additionally, even if the secondary thermal decomposition is not performed under reduced pressure conditions, the acrylic acid can be recovered through distillation.
  • the difference between the first pyrolysis temperature and the second pyrolysis temperature may be 20 °C or more and 100 °C or less, for example, 20 °C or more, 30 °C or more, 40 °C or more, 50 °C or more, 100 °C or less, It may be 90°C or lower, 80°C or lower, or 70°C or lower. If the difference between the first and second pyrolysis temperatures is too small, recovery of the acrylic acid may be difficult, and if the difference between the first and second pyrolysis temperatures is too large, many unexpected impurities may be generated. .
  • Butadiene can be produced by third thermal decomposition of the polymer blend remaining after the acrylic acid is recovered.
  • the third thermal decomposition may be performed at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower. , may be 650°C or lower, 630°C or lower, 600°C or lower, and 550°C or lower. If the tertiary pyrolysis temperature is too low, tertiary pyrolysis of the polymer blend may not occur, making it difficult to recover butadiene, and if the tertiary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the difference between the secondary pyrolysis temperature and the tertiary pyrolysis temperature may be 150 °C or more and 350 °C or less, for example, 150 °C or more, 160 °C or more, 170 °C or more, 180 °C or more, 190 °C or more, 200 °C or more, It may be 210°C or higher, 350°C or lower, 340°C or lower, 330°C or lower, 320°C or lower, and 310°C or lower.
  • Butadiene produced through the third pyrolysis can be recovered using a gas collection device.
  • the polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same is a glycolide-lactide copolymer and a repeating unit derived from 1,4-butanediol. It may be polyester.
  • Preparing lactide and glycolide by first thermal decomposing a polymer blend containing the glycolide-lactide copolymer and a polyester containing a repeating unit derived from 1,4-butanediol; and
  • It may include the step of producing butadiene by secondary pyrolysis of the polymer blend containing the primary pyrolysis of the glycolide-lactide copolymer and polyester containing a repeating unit derived from 1,4-butanediol.
  • the glycolide- It may further include melting the polymer blend including a lactide copolymer and a polyester containing repeating units derived from 1,4-butanediol.
  • glycolide-lactide copolymer included in the polymer blend is not particularly limited as long as it is a copolymer of glycolide monomer and lactide monomer, but for example, it may be a random copolymer of glycolide monomer and lactide monomer. there is.
  • the glycolide-lactide copolymer may be a block copolymer including one or more polyglycolide blocks and one or more polylactide blocks. That is, the glycolide-lactide copolymer may be a block copolymer obtained by polymerizing polylactide prepolymer and polyglycolide prepolymer. As the glycolide-lactide copolymer contains the above-mentioned blocks, it can exhibit the environmental friendliness and biodegradability of polyglycolide and polylactide.
  • the polylactide prepolymer may be manufactured by fermentation or polycondensation of lactic acid.
  • the polylactide prepolymer may have a weight average molecular weight of 1,000 g/mol or more, or 5,000 g/mol or more, or 6,000 g/mol or more, or 8,000 g/mol or more, and 50,000 g/mol or less, or 30,000 g/mol or less.
  • the polylactide prepolymer is greater than 20,000 g/mol, or more than 22,000 g/mol, or 23,000 g/mol.
  • the weight average molecular weight of the polylactide prepolymer is 20,000 g/mol or less, the polymer crystals are small and it is difficult to maintain the crystallinity of the polymer in the final manufactured block copolymer, and the weight average molecular weight of the polylactide prepolymer is 50,000 g/mol. If it is exceeded, the rate of side reactions occurring inside the prepolymer chain becomes faster than the rate of reaction between polylactide prepolymers during polymerization.
  • 'lactic acid' used in the present invention refers to L-lactic acid, D-lactic acid, or a mixture thereof.
  • the polyglycolide prepolymer may be manufactured by fermenting or condensation polymerization of glycolide.
  • the weight average molecular weight of the polyglycolide prepolymer may be 1,000 g/mol or more, or 5,000 g/mol or more, or 8,000 g/mol or more, or 8,500 g/mol or more, and 50,000 g/mol or less, or 30,000 g/mol or less.
  • the polyglycolide prepolymer must be greater than 20,000 g/mol, or greater than 22,000 g/mol, or greater than 25,000 g/mol. and preferably has a high weight average molecular weight of 50,000 g/mol or less, or 30,000 g/mol or less, or 28,000 g/mol or less.
  • the weight average molecular weight of the polyglycolide prepolymer is 20,000 g/mol or less, the crystals of the polymer are small, making it difficult to maintain the crystallinity of the polymer in the final manufactured block copolymer. If the weight average molecular weight exceeds 50,000 g/mol, the side reaction rate that occurs inside the prepolymer chain becomes faster than the reaction rate between polyglycolide prepolymers during polymerization.
  • At least one of the polylactide prepolymer and the polyglycolide prepolymer may have a weight average molecular weight of more than 20,000 g/mol and less than 50,000 g/mol.
  • the glycolide-lactide copolymer is a block copolymer in which polylactide prepolymer and polyglycolide prepolymer are polymerized, and the weight ratio of the polylactide prepolymer and polyglycolide prepolymer in the block copolymer is 90:10 to 30: It may be 70, 80:20 to 40:60, or 75:25 to 50:50. If too little of the polyglycolide prepolymer is included in the polylactide prepolymer, brittleness may increase, and if too much of the polyglycolide prepolymer is included in the polylactide prepolymer, the molecular weight is lowered, thereby improving processability and heat resistance. Stability may be reduced.
  • the glycolide-lactide copolymer has a weight average molecular weight (Mw) measured using gel permeation chromatography (GPC) of 20,000 to 300,000 g/mol, more specifically, 20,000 g/mol or more, 30,000 g/mol or more, 40,000 g/mol or more, 50,000 g/mol or more, 70,000 g/mol or more, or 100,000 g/mol or more, and 300,000 g/mol or less, or 200,000 g/mol or less, or 150,000 g/mol or less It has a weight average molecular weight of .
  • Mw weight average molecular weight measured using gel permeation chromatography
  • the weight average molecular weight of the glycolide-lactide copolymer is too small, the overall mechanical properties may be significantly reduced, and if the weight average molecular weight is too large, the process may be difficult and processability and elongation may be low.
  • the polymer blend can be produced by compounding the glycolide-lactide copolymer and polyester containing repeating units derived from 1,4-butanediol in a molten state.
  • the weight ratio of the glycolide-lactide copolymer and the polyester containing repeating units derived from 1,4-butanediol contained in the polymer blend is 1:99 to 99:1, 5:95 to 95:5, and 10:90. to 90:10, 15:85 to 85:15, 20:80 to 80:20, 25:75 to 75:25, or 30:70 to 70:30.
  • the first and second thermal decomposition may be performed without a solvent or under a tin catalyst. Meanwhile, the first thermal decomposition may be performed at a temperature of 200 °C or higher and 380 °C or lower, for example, 200 °C or higher, 210 °C or higher, 220 °C or higher, 380 °C or lower, 300 °C or lower, or 250 °C or lower. . If the first pyrolysis temperature is too low, thermal decomposition of the polymer blend may not occur, and if the first pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the first thermal decomposition may be performed at a pressure of more than 0.01 torr and less than 50 torr, for example, more than 0.01 torr, more than 0.05 torr, more than 0.1 torr, more than 0.5 torr, more than 1 torr, more than 2 torr, more than 4 torr. , may be 5 torr or more, 50 torr or less, 40 torr or less, 30 torr or less, and 20 torr or less, but is not limited thereto. The lower the pyrolysis pressure, the easier it may be to separate and recover lactide.
  • the lactide and glycolide After the step of producing lactide and glycolide by first thermal decomposition of the polymer blend, the lactide and glycolide can be separated by reduced pressure distillation.
  • the first thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the lactide and glycolide produced at this time can be recovered through reduced pressure distillation. Additionally, even if the first pyrolysis is not performed under reduced pressure conditions, the lactide and glycolide can be recovered through distillation.
  • Butadiene can be produced by secondary pyrolysis of the polymer blend remaining after the lactide and glycolide are recovered.
  • the secondary thermal decomposition may be performed at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower. , may be 650°C or lower, 630°C or lower, 600°C or lower, and 550°C or lower. If the secondary pyrolysis temperature is too low, secondary pyrolysis of the polymer blend may not occur, making it difficult to recover butadiene, and if the secondary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the difference between the first pyrolysis temperature and the second pyrolysis temperature may be 100 °C or more and 400 °C or less, 100 °C or more, 150 °C or more, 180 °C or more, 200 °C or more, 220 °C or more, 250 °C or more, 280 °C or more. It may be °C or higher, and may be 400 °C or lower, 380 °C or lower, 350 °C or lower, 330 °C or lower, and 300 °C or lower.
  • Butadiene produced through the secondary pyrolysis can be recovered using a gas collection device.
  • the polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same is derived from 3-hydroxypropionate-glycolide copolymer and 1,4-butanediol. It may be a polymer blend containing polyester containing repeating units.
  • Preparing glycolide by first thermal decomposing a polymer blend containing the 3-hydroxypropionate-glycolide copolymer and a polyester containing a repeating unit derived from 1,4-butanediol;
  • It may include the step of producing butadiene by tertiary pyrolysis of the polymer blend containing the secondary pyrolysis of the 3-hydroxypropionate-glycolide copolymer and polyester containing a repeating unit derived from 1,4-butanediol. there is.
  • step 3 -It may further include melting a polymer blend containing a hydroxypropionate-glycolide copolymer and a polyester containing a repeating unit derived from 1,4-butanediol.
  • the 3-hydroxypropionate-glycolide copolymer includes a block containing a repeating unit derived from 3-hydroxypropionate and a block containing a repeating unit derived from glycolide, and these blocks are directly bonded or ester bonded. , amide bond, urethane bond, or carbonate bond, it can compensate for the disadvantage of low elongation characteristics of biodegradable resins containing only polyglycolide. Additionally, these copolymers can have excellent biodegradability while complementing the mechanical properties of each homopolymer.
  • the 3-hydroxypropionate-glycolide copolymer includes a block containing a 3-hydroxypropionate-derived repeating unit represented by the following formula (2), and a glycolide-derived repeating unit represented by the following formula (3) It can contain blocks that contain it.
  • the repeating unit derived from 3-hydroxypropionate represented by Formula 2 has the advantage of excellent mechanical properties and a high elongation to break due to a glass transition temperature (Tg) as low as -20°C. Therefore, by chemically combining poly(3-hydroxypropionate) and polyglycolide to produce a block copolymer, a biodegradable material with excellent mechanical properties can be produced.
  • Tg glass transition temperature
  • repeating unit represented by Formula 2 and the repeating unit represented by Formula 3 may be linked by a direct bond, an ester bond, an amide bond, a urethane bond, a urea bond, or a carbonate bond, for example, the 3-hydroxypro
  • the cypionate-glycolide copolymer may be a block copolymer represented by the following formula (1).
  • R 1 and R 2 are each independently hydrogen, N, O, S, or substituted or unsubstituted C 1-20 alkyl,
  • R' is each independently hydrogen, or C 1-20 alkyl
  • L is a direct bond; Substituted or unsubstituted C 1-10 alkylene; Substituted or unsubstituted C 6-60 arylene; or a C 2-60 heteroarylene containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S,
  • n and m may each independently be an integer from 1 to 10,000.
  • n refers to the number of repetitions of the repeating unit derived from 3-hydroxypropionate, and when introduced within the above range, physical properties such as elongation can be adjusted while maintaining the inherent physical properties of polyglycolide.
  • m refers to the number of repeats of the glycolide-derived repeating unit.
  • X 1 , X 2 , and L may be a direct bond.
  • the above Chemical Formula 1 may be expressed as the following Chemical Formula 1-1.
  • n and m may be as described above.
  • n is 10 to 700
  • m can be 10 to 700
  • n is 20 or more, 30 or more, 40 or more, 50 or more, or 60 or more, and is 650 or less, 600 or less, 550 or less, 500 or less.
  • m may be 20 or more, 30 or more, 40 or more, 50 or more, or 60 or more, and may be 650 or less, 600 or less, 550 or less, 500 or less, or 450 or less.
  • the 3-hydroxypropionate-glycolide copolymer may have a weight average molecular weight of 10,000 g/mol or more and 500,000 g/mol or less.
  • the weight average molecular weight of the copolymer is 12,000 g/mol or more, 15,000 g/mol or more, 20,000 g/mol or more, 25,000 g/mol or more, or 30,000 g/mol or more, and 480,000 g/mol or less, It may be less than or equal to 460,000 g/mol, less than or equal to 440,000 g/mol, or less than or equal to 420,000 g/mol.
  • the 3-hydroxypropionate-glycolide copolymer may be a block copolymer obtained by ring-opening polymerization of a glycolide monomer in the presence of a poly(3-hydroxypropionate) initiator.
  • the 3-hydroxypropionate-glycolide copolymer may be prepared by preparing poly(3-hydroxypropionate) (step 1); and preparing a block copolymer by ring-opening polymerizing a glycolide monomer in the presence of the poly(3-hydroxypropionate) initiator (step 2).
  • Step 1 is a step of preparing the poly(3-hydroxypropionate), wherein the poly(3-hydroxypropionate) refers to a homopolymer of 3-hydroxypropionic acid, and the n and Those manufactured by adjusting the degree of polymerization taking into account the range of m can be used.
  • the poly(3-hydroxypropionate) initiator has a weight average molecular weight of 1,000 g/mol or more and 500,000 g/mol or less, 2,000 g/mol or more and 400,000 g/mol or less, 3,000 g/mol or more and 300,000 g/mol or less, It may be 4,000 g/mol or more and 200,000 g/mol or less, 5,000 g/mol or more and 100,000 g/mol or less, and 10,000 g/mol or more and 90,000 g/mol or less.
  • Step 2 may be a step of ring-opening polymerization of glycolide monomer using poly(3-hydroxypropionate) as an initiator.
  • Step 2 can be carried out as bulk polymerization substantially without using a solvent.
  • substantially not using a solvent may include the use of a small amount of solvent to dissolve the catalyst, for example, a maximum of less than 1 ml of solvent per kg of monomer used.
  • the weight ratio of the poly(3-hydroxypropionate) initiator and glycolide monomer is 1:99 to 99:1, 5:95 to 90:10, 10:90 to 80:20, and 15:85 to 70:30. , or 20:80 to 50:50.
  • the glycolide ring-opening polymerization reaction since it is accompanied, it may be carried out in the presence of a glycolide ring-opening catalyst.
  • the ring-opening catalyst may be a catalyst represented by the following formula (4).
  • M is Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti or Zr,
  • p is an integer from 0 to 2
  • a 1 and A 2 may each independently be an alkoxy or carboxyl group.
  • the catalyst represented by Chemical Formula 4 may be tin(II) 2-ethylhexanoate (Sn(Oct) 2 ).
  • Preparation of the 3-hydroxypropionate-glycolide copolymer may be performed at a temperature of 150 to 200° C. for 5 minutes to 10 hours or for 10 minutes to 1 hour.
  • the polymer blend can be prepared by compounding the 3-hydroxypropionate-glycolide copolymer and polyester containing repeating units derived from 1,4-butanediol in a molten state.
  • the weight ratio of the 3-hydroxypropionate-glycolide copolymer and the polyester containing repeating units derived from 1,4-butanediol contained in the polymer blend is 1:99 to 99:1, 5:95 to 95: 5, 10:90 to 90:10, 15:85 to 85:15, 20:80 to 80:20, 25:75 to 75:25, or 30:70 to 70:30.
  • the first, second and third thermal decomposition may be performed without a solvent or under a tin catalyst.
  • the first thermal decomposition may be carried out at a temperature of 200 °C or higher and 250 °C or lower, for example, 200 °C or higher, 210 °C or higher, 220 °C or higher, 250 °C or lower, 240 °C or lower, 230 °C or lower. If the first pyrolysis temperature is too low, thermal decomposition of the polymer blend may not be achieved, and if the first pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the first thermal decomposition may be performed at a pressure of more than 0.01 torr and less than 50 torr, for example, more than 0.01 torr, more than 0.05 torr, more than 0.1 torr, more than 0.5 torr, more than 1 torr, more than 2 torr, more than 4 torr. , may be 5 torr or more, 50 torr or less, 40 torr or less, 30 torr or less, and 20 torr or less, but is not limited thereto. The lower the pyrolysis pressure, the easier the separation and recovery of glycolide.
  • the glycolide After the step of producing glycolide by first thermal decomposition of the polymer blend, the glycolide can be separated by reduced pressure distillation.
  • the first thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the glycolide produced at this time can be recovered through reduced pressure distillation. Additionally, even if the first thermal decomposition is not performed under reduced pressure conditions, the glycolide can be recovered through distillation.
  • Acrylic acid can be produced by secondary pyrolysis of the polymer blend remaining after the glycolide is recovered.
  • the secondary thermal decomposition may be carried out at a temperature of 260 °C or higher and 380 °C or lower, for example, 260 °C or higher, 270 °C or higher, 280 °C or higher, 290 °C or higher, 380 °C or lower, 350 °C or lower, 330 °C or higher. It may be below °C. If the secondary pyrolysis temperature is too low, secondary pyrolysis of the polymer blend may not occur and acrylic acid may not be produced, and if the secondary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • Butadiene can be produced by third thermal decomposition of the polymer blend remaining after the acrylic acid is recovered.
  • the third thermal decomposition may be performed at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or lower. , may be 650°C or lower, 630°C or lower, 600°C or lower, and 550°C or lower. If the tertiary pyrolysis temperature is too low, tertiary pyrolysis of the polymer blend may not occur, making it difficult to recover butadiene, and if the tertiary pyrolysis temperature is too high, many unexpected impurities may be generated.
  • the acrylic acid After producing acrylic acid by performing secondary pyrolysis of the first pyrolyzed polymer blend, the acrylic acid can be separated by reduced pressure distillation.
  • the secondary thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the acrylic acid produced at this time can be recovered through reduced pressure distillation. Additionally, even if the secondary thermal decomposition is not performed under reduced pressure conditions, the acrylic acid can be recovered through distillation.
  • the difference between the first pyrolysis temperature and the second pyrolysis temperature may be 20 °C or more and 100 °C or less, for example, 20 °C or more, 30 °C or more, 40 °C or more, 50 °C or more, 100 °C or less, It may be 90°C or lower, 80°C or lower, or 70°C or lower. If the difference between the first and second pyrolysis temperatures is too small, recovery of the acrylic acid may be difficult, and if the difference between the first and second pyrolysis temperatures is too large, many unexpected impurities may be generated. .
  • the difference between the secondary pyrolysis temperature and the tertiary pyrolysis temperature may be 150 °C or more and 350 °C or less, for example, 150 °C or more, 160 °C or more, 170 °C or more, 180 °C or more, 190 °C or more, 200 °C or more, It may be 210°C or higher, 350°C or lower, 340°C or lower, 330°C or lower, 320°C or lower, and 310°C or lower.
  • Butadiene produced through the third pyrolysis can be recovered using a gas collection device.
  • the polyester containing a repeating unit derived from 1,4-butanediol or a polymer blend containing the same may be a polyester containing a repeating unit derived from 1,4-butanediol.
  • It may include the step of producing butadiene by secondary pyrolysis of the polyester containing repeating units derived from 1,4-butanediol that has been subjected to primary pyrolysis.
  • the step of producing 1,4-butanediol by first pyrolyzing the polyester containing the repeating unit derived from 1,4-butanediol the step of melting the polyester containing the repeating unit derived from 1,4-butanediol. More may be included.
  • the first and second thermal decomposition can be performed under solvent-free conditions and under a tin catalyst.
  • the first thermal decomposition may be carried out at a temperature of 220 °C or higher and 350 °C or lower, for example, 220 °C or higher, 230 °C or higher, 240 °C or higher, 250 °C or higher, 350 °C or lower, 340 °C or lower, 330 °C or lower. , may be 320°C or lower, 310°C or lower, and 300°C or lower.
  • the pyrolysis of the polyester containing the 1,4-butanediol-derived repeating unit may not be achieved, and if the first pyrolysis temperature is too high, many unexpected impurities may be generated. .
  • the first thermal decomposition may be performed at a pressure of more than 0.01 torr and less than 50 torr, for example, more than 0.01 torr, more than 0.05 torr, more than 0.1 torr, more than 0.5 torr, more than 1 torr, more than 2 torr, more than 4 torr. , may be 5 torr or more, 50 torr or less, 40 torr or less, 30 torr or less, and 20 torr or less, but is not limited thereto.
  • the lower the pyrolysis pressure the easier it may be to separate and recover 1,4-butanediol.
  • the 1,4-butanediol After the step of producing 1,4-butanediol by first thermal decomposition of the polyester containing the repeating unit derived from 1,4-butanediol, the 1,4-butanediol can be separated by distillation or reduced pressure distillation.
  • the first thermal decomposition is performed under reduced pressure conditions at a pressure exceeding 1 torr, and the 1,4-butanediol produced at this time can be recovered through reduced pressure distillation. Additionally, even if the first thermal decomposition is not performed under reduced pressure conditions, the 1,4-butanediol can be recovered through distillation.
  • Butadiene can be produced by secondary thermal decomposition of the polyester containing the 1,4-butanediol-derived repeating unit remaining after the 1,4-butanediol is recovered.
  • the secondary thermal decomposition may be carried out at a temperature of 400 °C or higher, for example, 400 °C or higher, 420 °C or higher, 440 °C or higher, 460 °C or higher, 480 °C or higher, 500 °C or higher, 800 °C or lower, 700 °C or higher. It may be °C or lower, 650 °C or lower, 630 °C or lower, 600 °C or lower, or 550 °C or lower.
  • the thermal decomposition of the polyester containing the repeating unit derived from 1,4-butanediol in the first pyrolysis may not occur, making it difficult to recover butadiene, and if the secondary pyrolysis temperature is too high, it may be difficult to recover butadiene. A lot of impurities may be created that were not made.
  • the difference between the first pyrolysis temperature and the second pyrolysis temperature may be 100 °C or more and 300 °C or less, for example, 100 °C or more, 120 °C or more, 140 °C or more, 160 °C or more, 180 °C or more, 200 °C or more. and may be 300°C or lower, 280°C or lower, 270°C or lower, 260°C or lower, and 250°C or lower. If the difference between the first and second pyrolysis temperatures is too small, recovery of the butadiene may be difficult, and if the difference between the first and second pyrolysis temperatures is too large, many unexpected impurities may be generated. . Butadiene produced through the secondary pyrolysis can be recovered using a gas collection device.
  • the recovery rate of lactide, glycolide, acrylic acid, 1,4-butanediol and/or butadiene is 30% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, for example, 40 to 99.9%, 50 to 99.9%, 60 to 99.9%, 70 to 99.9%, 80 to 99.9%, 90 to 99.9%, 40 to 99%, 50 to 99%, 60 to 99%, 70 to 99%, 80 to 99%, 90 to 99%, 40 to 97%, 50 to 97%, 60 to 97%, 70 to 97%, 80 to 97%, 90 to 97%, 40 to 95%, 50 to 95%, It may be 60 to 95%, 70 to 95%, 80 to 95%, or 90 to 95%.
  • the recovery rate may be calculated on a mole basis.
  • each of the lactide, glycolide, acrylic acid, 1,4-butanediol and/or butadiene is 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, such as 40 to 99.9%, 50 to 99.9%, 60 to 99.9%, 70 to 99.9%, 80 to 99.9%, 90 to 99.9%, 40 to 99%, 50 to 99%, 60 to 99%, 70 to 99%, 80 to 99%, 90 to 99%, 40 to 97%, 50 to 97%, 60 to 97%, 70 to 97%, 80 to 97%, 90 to 97%, 40 to 95%, 50 to 95%, 60 to 95%, It may be 70 to 95%, 80 to 95%, or 90 to 95%.
  • a butadiene production method that converts polyester containing repeating units derived from 1,4-butanediol or a polymer blend containing it into recyclable butadiene, etc. with high purity and high yield in an environmentally friendly and economical manner. It can be.
  • the polylactic acid prepolymer and the poly(3-hydroxypropionate) prepolymer were mixed in a 100 ml Schlenk flask in an oil bath at a weight ratio of 8:2, added to a total content of 30 g, and p-toluenesulfonic acid ( 90 mg of p-TSA) was added, and annealing was performed at 60°C for 3 hours.
  • p-TSA p-toluenesulfonic acid
  • 3-hydroxypropionate-lactide block copolymer was prepared by solid-phase polymerization reaction using an evaporator and mixing at 150°C and 0.5 mbar for 24 hours.
  • the weight average molecular weight of the polylactic acid prepolymer, poly(3-hydroxypropionate) prepolymer, and block copolymer was measured using gel permeation chromatography (GPC).
  • PBAT polybutylene adipate terephthalate
  • PSH hydroxyalkanoate-glycolide copolymer
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative example 2 episode transference number (%) Lactide 83.3 75.7 87.5 87.5 83 81 - 87.0 - glycolide - - - - 81 - - acrylic acid - - 57.1 66.7 - - 59 - 70.0 butadiene 68.1 46.4 52.8 53.3 62 58 63 - - Purity (%) Lactide ⁇ 98.0 ⁇ 98.0 ⁇ 98.0 > 98 > 98 - ⁇ 98.0 - glycolide - - - > 98 > 98 ⁇ 98 - - acrylic acid - - ⁇ 98.0 ⁇ 98.0 - - 99 - 99.4 butadiene ⁇ 99.0 ⁇ 99.0 ⁇ 98.0 ⁇ 98.0 > 98 > 98 > 98 ⁇ 99 - - -
  • Example 8 Example 9 1,4-Butanediol and butadiene recovery (g) (1,4-butanediol:butadiene weight ratio) 1.8 : 0.7 0:1.1 1,4-Butanediol recovery rate (%) 44.8 - 1,4-Butanediol purity (%) ⁇ 98.0 - Butadiene recovery rate (%) 52.6 45.8 Butadiene purity (%) ⁇ 98.0 ⁇ 98.0
  • Examples 1 and 2 can recover lactide and butadiene with high purity and high yield, respectively, and Examples 3 and 4 can recover lactide, acrylic acid, and butadiene with high purity and high yield, respectively.
  • Examples 5 and 6 recover lactide and glycolide with a recovery rate of 81% or more, and butadiene with a recovery rate of 58% or more, and the purities of each exceed 98%, and Example 7 recovers acrylic acid, It was confirmed that glycolide and butadiene could be recovered with high purity and high yield, respectively, and Examples 8 and 9 confirmed that 1,4-butanediol and/or butadiene could be recovered with high purity and high yield, respectively.
  • Example 8 when PBAT was pyrolyzed at 250 to 300°C, it was confirmed that a lot of PBAT still remained in the residue, and the temperature was further raised to 500°C for pyrolysis to recover butadiene. Meanwhile, it was confirmed that only lactide was recovered in Comparative Example 1, only acrylic acid was recovered in Comparative Example 2, and only 1,4-butanediol was recovered in Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 발명에서는 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계를 포함하는 부타디엔 제조 방법이 제공된다.

Description

부타디엔 제조 방법
본 발명은 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 방법에 관한 것이다.
플라스틱은 저렴하고 내구성이 있는 물질이며, 이는 광범위한 응용예에서 용도를 찾을 수 있는 다양한 제품의 생산에 사용될 수 있다. 따라서, 플라스틱의 생산은 지난 수십년 동안 극적으로 증가되고 있다. 더욱이, 이러한 플라스틱의 50 % 이상이 포장, 농업용 필름, 일회용 소비물품 등과 같은 단일 용도의 일회용 또는 제조 후 1년 이내에 폐기되는 단기 제품에 사용된다. 또한 폴리머의 내구성으로 인하여, 상당한 양의 플라스틱이 전세계 매립지에 그리고 자연 서식지에 매립되어 환경 문제의 증가를 야기한다. 심지어 생분해가능한 플라스틱도 자외선 노출의 수준, 온도, 적절한 미생물의 존재 등과 같은 국소 환경 인자에 따라 수십년 동안 존속될 수 있다.
이에, 플라스틱 분해로부터 플라스틱 재생에 이르기까지 플라스틱의 축적과 상관되는 경제적인 그리고 환경적인 영향을 감소시키기 위한 다른 해결책이 연구되고 있다.
한 예로서, 폴리에틸렌테레프탈레이트(PET)는 가장 클로즈드-루프(closed-loop: 제조 공정에서 나온 폐기물을 처리해서 재활용하는 시스템)한 재생 플라스틱으로서, PET 폐기물(주로 병)이 수집되고, 분류되고, 가압되어 묶음으로 만들어지고, 파쇄되고, 세척되고, 플레이크로 절단되고, 용융되고 펠릿을 압출되고 판매를 위해 제공된다. 그러나, 이러한 플라스틱 재생 방법은 단지 PET 만을 포함하는 플라스틱 물품에만 적용되어, 선행하는 과도한 분류를 요구한다.
또한, 플라스틱을 재생하기 위한 다른 잠재적인 방법은 폴리머의 화학적 구성성분들을 회수하는 것을 허용하는 화학적 재생(chemical recycling)이다. 그 결과의 모노머는, 정제 후, 플라스틱 물품을 재-생산에 사용될 수 있어, 폴리머를 재활용하기 위한 화학적 재생 방법이 필요한 실정이다.
본 발명은 본 발명은 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 방법을 제공하기 위한 것이다.
본 발명의 일 구현예에 따르면, 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조 방법이 제공된다.
이하 발명의 구체적인 구현예에 따른 부타디엔 제조 방법에 관하여 보다 상세하게 설명하기로 한다.
본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성 요소(또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
또한, 본 명세서에서 기술하는 제조 방법을 구성하는 단계들은 순차적 또는 연속적임을 명시하거나 다른 특별한 급이 있는 경우가 아니면, 하나의 제조 방법을 구성하는 하나의 단계와 다른 단계가 명세서 상에 기술된 순서로 제한되어 해석되지 않는다. 따라서 당업자가 용이하게 이해될 수 있는 범위 내에서 제조 방법의 구성 단계의 순서를 변화시킬 수 있으며, 이 경우 그에 부수하는 당업자에게 자명한 변화는 본 발명의 범위에 포함되는 것이다.
또, 본 명세서에서 별도의 언급이 없는 한, 중량평균 분자량은 겔 투과 크로마토그래피(GPC)를 이용하여 측정할 수 있다. 구체적으로는 상기 폴리에스테르를 2 mg/ml의 농도가 되도록 클로로폼에 용해시킨 후 GPC에 20 ㎕를 주입하고, 40 ℃에서 GPC 분석을 수행한다. 이때 GPC의 이동상은 클로로폼을 사용하고, 1.0 mL/분의 유속으로 유입하며, 컬럼은 Agilent Mixed-B 2개를 직렬로 연결하여 사용하며, 검출기로는 RI Detector를 사용한다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 값을 유도한다. 폴리스티렌 표준 시편의 중량평균 분자량은 2,000 g/mol, 10,000 g/mol, 30,000 g/mol, 70,000 g/mol, 200,000 g/mol, 700,000 g/mol, 2,000,000 g/mol, 4,000,000 g/mol, 및 10,000,000 g/mol의 9종을 사용하였다.
본 명세서에서, 1차, 2차 및 3차 등의 용어는 다양한 공정을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소(공정)를 다른 구성 요소(공정)로부터 구별하는 목적으로만 사용된다.
본 명세서에서, 고분자 블렌드는 모노머 중합으로 생성된 폴리머를 기계적 또는 화학적으로 잘 혼합하여 제조된 것으로, 예를 들어 2 종 이상의 폴리머를 용융 상태에서 컴파운딩하여 제조할 수 있다.
발명의 일 구현예에 따르면, 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계를 포함하는 부타디엔 제조 방법을 제공한다.
본 발명자들은, 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하는 경우 재활용 가능한 모노머인 부타디엔 등을 각각 고순도 및 고수율로 회수할 수 있다는 점을 알아내어 본 발명을 완성하였다.
또한, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 재활용 가능한 모노머를 제조함으로 인해 환경 친화적이고 경제적이다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계 이전에, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 용융하는 단계를 더 포함할 수 있다. 즉, 상기 열분해 전에 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 용융시킬 수 있다.
상기 열분해 전에, 용융시킴으로 인해 잔류된 휘발성 물질 및/또는 재활용시 유입되는 불순물을 제거할 수 있다. 또한, 상기 용융으로 인해 폴리에스테르 또는 이를 포함한 고분자 블렌드의 이동성을 증가시켜 열분해 반응기로 수월하게 투입할 수 있으며, 이러한 점을 이용하여 향후 연속적으로 열분해를 진행할 수 있다.
상기 용융은 150 ℃ 이상 280 ℃ 이하의 온도에서 이루어질 수 있다. 예를 들어, 상기 용융시 온도는 150 ℃ 이상, 160 ℃ 이상, 170 ℃ 이상, 180 ℃ 이상일 수 있고, 280 ℃ 이하, 270 ℃ 이하, 260 ℃ 이하, 250 ℃ 이하일 수 있다. 상기 용융 온도가 지나치게 낮으면 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 용융되지 않을 수 있고, 상기 용융 온도가 지나치게 높으면 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 용융되지 않고 열분해가 이루어져 모노머의 회수율이 감소하거나, 열분해 전 불순물을 제거하는 공정이 없어 불순물이 많이 유입될 수 있으며, 급격한 온도 상승으로 인한 범핑 등이 발생할 수 있다.
한편, 상기 용융은 무용매(solvent free) 하에서 이루어질 수 있다. 예를 들어, 상기 용융이 무용매 하에서 이루어지는 경우, 용매에 용해(dissolution)되지 않은 상태에서 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 용융될 수 있다. 예를 들어, 상기 반응기에는 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드 외에 다른 용매는 투입되지 않고, 반응기에 가해진 온도가 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드에 직접 전달되어 용융될 수 있다. 상기 반응기에 용매(solvent)가 투입되는 경우 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하는 공정에서 불순물이 형성될 수 있으며, 용매를 제거하는 공정 및 추가적인 불순물 제거 공정이 필요하여 공정이 복잡해지거나, 추가적인 장치가 필요할 수 있다. 또한 용매를 제거하는 과정에서 부반응이 일어나 모노머의 회수율 및 순도가 저하될 수 있다. 또한 추가적인 용매의 사용으로 경제성이 낮아지는 단점이 있다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 열분해는 주석 촉매 하에서 이루어질 수 있다.
상기 주석 촉매는 예를 들어, 주석 2-에틸헥사노에이트 (Tin(Ⅱ) 2-ethylhexanoate), 주석 2-메틸헥사노에이트(Tin(Ⅱ) 2-methylhexanoate), 주석 2-프로필헥사노에이트(Tin(Ⅱ) 2-propylhexanoate), 디옥틸주석 디라우레이트(dioctyltin dilaurate), 디헥실주석 디라우레이트(dihexyltin dilaurate), 디부틸주석 디라우레이트(dibutyltin dilaurate), 디프로필주석 디라우레이트(dipropyltin dilaurate), 디에틸주석 디라우레이트(diethyltin dilaurate), 디메틸주석 디라우레이트(dimetyltin dilaurate), 디부틸주석 비스(라우릴 메르캅티드) (Dibutyltin bis(lauryl mercaptide)), 디메틸주석 비스(라우릴 메르캅티드) (Dimethyltin bis(lauryl mercaptide)), 디에틸주석 비스(라우릴 메르캅티드) (Diethyltin bis(lauryl mercaptide)), 디프로필주석 비스(라우릴 메르캅티드) (Dipropyltin bis(lauryl mercaptide)), 디헥실주석 비스(라우릴 메르캅티드) (Dihexyltin bis(lauryl mercaptide)), 디옥틸주석 비스(라우릴 메르캅티드) (Dioctyltin bis(lauryl mercaptide)), 디메틸주석 비스(이소옥틸말레이트) (Dimethyltin bis(isooctylmaleate)), 디에틸주석 비스(이소옥틸말레이트) (Diethyltin bis(isooctylmaleate)), 디프로필주석 비스(이소옥틸말레이트) (Dipropyltin bis(isooctylmaleate)), 디부틸주석 비스(이소옥틸말레이트) (Dibutyltin bis(isooctylmaleate)), 디헥실주석 비스(이소옥틸말레이트) (Dihexyltin bis(isooctylmaleate)) 및 디옥틸주석 비스(이소옥틸말레이트) (Dioctyltin bis(isooctylmaleate))로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이로써 한정되는 것은 아니다.
상기 주석 촉매는 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드 100 중량부 대비 0.0001 중량부 이상, 0.0010 중량부 이상, 0.0100 중량부 이상, 0.1000 중량부 이상으로 사용될 수 있고, 10 중량부 이하, 7 중량부 이하, 5 중량부 이하, 3 중량부 이하, 1 중량부 이하로 사용될 수 있다. 상기 주석 촉매의 투입량이 지나치게 적으면 폴리에스테르 또는 고분자 블렌드의 열분해가 일어나지 않을 수 있고, 상기 주석 촉매의 투입량이 지나치게 많으면 과량 투입으로 인해 경제성이 나빠질 수 있다.
또한, 상기 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있다. 상기 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 열분해 온도가 지나치게 낮으면 상기 폴리에스테르 또는 고분자 블렌드의 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
또한, 상기 열분해는 무용매(solvent free) 하에서 이루어질 수 있다. 예를 들어, 상기 열분해가 무용매 하에서 이루어지는 경우, 용매에 용해(dissolution)되지 않은 상태에서 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 열분해될 수 있다. 상기 반응기에 용매(solvent)가 투입되는 경우 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하는 공정에서 불순물이 형성될 수 있으며, 용매를 제거하는 공정 및 추가적인 불순물 제거 공정이 필요하여 공정이 복잡해지거나, 추가적인 장치가 필요할 수 있다. 또한 용매를 제거하는 과정에서 부반응이 일어나 모노머의 회수율 및 순도가 저하될 수 있다. 또한 추가적인 용매의 사용으로 경제성이 낮아지는 단점이 있다.
또한, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르는, 1,4-부탄디올 유래 반복단위를 포함하는 폴리머라면 특별히 한정하지 않으나, 지방족 글리콜으로서 1,4-부탄올을 포함하고 디카르복실산으로서 지방족 또는 방향족 디카르복실산을 포함하는 폴리에스테르일 수 있다. 예를 들어 폴리부틸렌 아디페이트 테레프탈레이트(PBAT), 폴리부틸렌 아디페이트 이소프탈레이트, 폴리부틸렌 아디페이트, 폴리부틸렌 테레프탈레이트, 폴리부틸렌 이소프탈레이트, 폴리부틸렌 석시네이트, 폴리부틸렌 나프탈레이트 등일 수 있다.
한편, 상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르는 상기 폴리부틸렌 아디페이트 테레프탈레이트일 수 있으며, 상기 폴리부틸렌 아디페이트 테레프탈레이트는 지방족 글리콜로서 1,4 부탄디올과, 디카르복실산으로서 지방족 성분인 아디프산과, 방향족 성분인 디메틸 테레프탈레이트를 원료로 사용하여 제조된 지방족/방향족 코폴리에스테르(co-polyester)일 수 있다.
상기 폴리부틸렌 아디페이트 테레프탈레이트는 겔 투과 크로마토그래피(GPC: gel permeation chromatography)를 이용하여 측정한 중량평균 분자량(Mw)이 50,000 내지 300,000 g/mol이며, 보다 구체적으로는 50,000 g/mol 이상, 70,000 g/mol 이상, 또는 100,000 g/mol 이상이고, 300,000 g/mol 이하, 또는 200,000 g/mol 이하 또는 150,000g/mol 이하의 중량평균 분자량을 갖는다. 상기 폴리부틸렌 아디페이트 테레프탈레이트의 중량평균 분자량이 지나치게 작으면 전반적인 기계적 물성이 현격히 저하될 수 있고, 중량평균 분자량이 지나치게 크면 공정 과정이 어렵고 가공성 및 신율이 낮아질 수 있다.
상기 고분자 블렌드는 폴리락트산 및 폴리부틸렌아디페이트테레프탈레이트의 고분자 블렌드, 또는 하이드록시알카노에이트 공중합체 및 폴리부틸렌아디페이트테레프탈레이트의 고분자 블렌드일 수 있다.
상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피온산 유래 반복단위, 락트산 또는 락타이드 유래 반복단위, 및 글리콜산 또는 글리콜라이드 유래 반복단위로 이루어진 군에서 선택된 2 종 이상의 반복단위를 포함할 수 있다. 또한, 부타디엔 등을 다량으로 회수하기 위해, 상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피오네이트-락타이드 공중합체, 글리콜라이드-락타이드 공중합체 또는 3-하이드록시프로피오네이트-글리콜라이드 공중합체일 수 있다.
또한, 상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피온산 유래 반복단위 포함 블럭, 락트산 또는 락타이드 유래 반복단위 포함 블럭, 및 글리콜산 또는 글리콜라이드 유래 반복단위 포함 블럭으로 이루어진 군에서 선택된 2 종 이상의 블록을 포함하는 블록 공중합체일 수 있다. 또한, 부타디엔 등을 고순도 및 고수율로 회수하기 위해, 상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피오네이트-락타이드 블록 공중합체, 글리콜라이드-락타이드 블록 공중합체 또는 3-하이드록시프로피오네이트-글리콜라이드 블록 공중합체일 수 있다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드일 수 있다.
또한, 상기 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계; 및
상기 1차 열분해된 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 부타디엔을 제조하는 단계를 포함할 수 있다.
또한, 상기 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계 이전에, 상기 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 용융하는 단계를 더 포함할 수 있다.
상기 고분자 블렌드에 포함되는 폴리락트산은 락트산 또는 락타이드를 발효 또는 축중합(Polycondensation)하여 제조된 것일 수 있다. 상기 락타이드는 L-락트산으로 이루어진 L-락타이드, D-락트산으로 이루어진 D-락타이드, L-형태와 D-형태가 각각 하나씩으로 이루어진 meso-락타이드로 구분될 수 있다. 또한, L-락타이드와 D-락타이드가 50:50중량비로 섞여있는 것을 D,L- 락타이드 혹은 rac-락타이드일 수 있다. 이들 락타이드 중 광학적 순도가 높은 L- 락타이드 혹은 D-락타이드만을 이용해 중합을 진행하면 입체 규칙성이 매우 높은 L- 혹은 D-폴리락타이드(PLLA 혹은 PDLA)가 얻어질 수 있고, 이러한 폴리락타이드는 광학적 순도가 낮은 폴리락타이드 대비 결정화 속도가 빠르고 결정화도 또한 높을 수 있다.
상기 폴리락트산은 겔 투과 크로마토그래피(GPC: gel permeation chromatography)를 이용하여 측정한 중량평균 분자량(Mw)이 50,000 내지 300,000 g/mol이며, 보다 구체적으로는 50,000 g/mol 이상, 70,000 g/mol 이상, 또는 100,000 g/mol 이상이고, 300,000 g/mol 이하, 또는 200,000 g/mol 이하 또는 150,000g/mol 이하의 중량평균 분자량을 갖는다. 상기 폴리락트산의 중량평균 분자량이 지나치게 작으면 전반적인 기계적 물성이 현격히 저하될 수 있고, 중량평균 분자량이 지나치게 크면 공정 과정이 어렵고 가공성 및 신율이 낮아질 수 있다.
한편, 상기 락트산 또는 락타이드는 미생물 발효에 의해 재생가능한 공급원으로부터 제조되는 가소성 및 생분해성 화합물일 수 있으며, 이를 중합하여 형성된 폴리락트산 또한 친환경성 및 생분해성을 나타내면서도 다량의 바이오 원료를 포함할 수 있다.
또한, 상기 바이오 원료를 포함하는 폴리락트산을 포함하는 고분자 블렌드를 열분해하여 제조된 락타이드도 바이오 원료를 다량 함유할 수 있다.
상기 고분자 블렌드는, 상기 폴리락트산과 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 용융 상태에서 컴파운딩하여 제조될 수 있다.
상기 고분자 블렌드에 포함된 상기 폴리락트산과 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 10:90 내지 90:10, 15:85 내지 85:15, 20:80 내지 80:20, 25:75 내지 75:25, 또는 30:70 내지 70:30일 수 있다.
상기 1차 및 2차 열분해는 무용매 조건에서 이루어질 수 있고, 주석 촉매 하에서 이루어질 수 있다. 한편, 상기 1차 열분해는 220 ℃ 이상 300 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 220 ℃ 이상, 230 ℃ 이상, 240 ℃ 이상, 250 ℃ 이상일 수 있고, 300 ℃ 이하, 290 ℃ 이하, 280 ℃ 이하일 수 있다. 상기 1차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 열분해가 이루어지지 못할 수 있고, 상기 1차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
또한, 상기 1차 열분해는 0.01 torr 초과 50 torr 이하의 압력에서 이루어질 수 있으며, 예를 들어 0.01 torr 초과, 0.05 torr 이상, 0.1 torr 이상, 0.5 torr 이상, 1 torr 이상, 2 torr 이상, 4 torr 이상, 5 torr 이상일 수 있고, 50 torr 이하, 40 torr 이하, 30 torr 이하, 20 torr 이하일 수 있으나, 이로써 한정하는 것은 아니다. 상기 열분해 압력이 낮을수록 락타이드의 분리 및 회수가 용이할 수 있다.
상기 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계 이후, 상기 락타이드를 감압 증류로 분리할 수 있다.
예를 들어, 상기 1차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 락타이드는 감압 증류로 회수될 수 있다. 또한, 상기 1차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 락타이드는 증류를 통해 회수할 수 있다.
상기 락타이드가 회수되고 남은 상기 고분자 블렌드를 2차 열분해하여 부타디엔을 제조할 수 있다.
상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 2차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 2차 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 2차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 150 ℃ 이상 350 ℃ 이하일 수 있으며, 예를 들어 150 ℃ 이상, 160 ℃ 이상, 170 ℃ 이상, 180 ℃ 이상, 190 ℃ 이상, 200 ℃ 이상, 210 ℃ 이상일 수 있고, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하, 320 ℃ 이하, 310 ℃ 이하일 수 있다. 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 적으면 상기 부타디엔의 회수가 어려울 수 있고, 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다. 상기 2차 열분해를 통해 제조된 부타디엔은 가스 포집 장치를 이용해 회수될 수 있다.
상기 일 구현예에 따른 부타디엔 제조 방법, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계;
상기 1차 열분해된 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계; 및
상기 2차 열분해된 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 3차 열분해하여 부타디엔을 제조하는 단계를 포함할 수 있다.
또한, 상기 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계 이전에, 상기 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 용융하는 단계를 더 포함할 수 있다.
상기 3-하이드록시프로피오네이트-락타이드 공중합체는 폴리락트산 프리폴리머 및 폴리(3-하이드록시프로피오네이트) 프리폴리머가 중합된 블록 공중합체일 수 있다. 상기 3-하이드록시프로피오네이트-락타이드 공중합체는 상기 폴리락트산 프리폴리머가 가진 인장강도 및 탄성률이 우수한 특징을 나타내면서도, 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머가 유리 전이 온도(Tg)를 낮추어 유연성을 증가시키고, 충격 강도 등의 기계적 물성을 개선함으로써, 폴리락트산이 갖는 신율이 나빠 쉽게 깨지는 특성(Brittleness)을 방지할 수 있다.
상기 폴리락트산 프리폴리머는 락트산을 발효 또는 축중합(Polycondensation)하여 제조된 것일 수 있다. 상기 폴리락트산 프리폴리머는 중량평균 분자량이 1,000 g/mol 이상 또는 5,000 g/mol 이상, 또는 6,000 g/mol 이상, 또는 8,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하일 수 있으며, 최종 제조되는 블록 공중합체 내 폴리락트산 프리폴리머 유래 반복단위를 포함하는 블록의 결정성을 높이고자 할 경우, 상기 폴리락트산 프리폴리머가 20,000 g/mol 초과, 또는 22,000g/mol 이상, 또는 23,000g/mol 이상, 또는 25,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하, 또는 28,000 g/mol 이하, 또는 26,000g/mol 이하의 높은 중량평균 분자량을 갖는 것이 바람직하다.
폴리락트산 프리폴리머의 중량평균 분자량이 20,000 g/mol 이하이면 고분자의 결정이 작아 최종 제조된 블록 공중합체에서 고분자의 결정성을 유지하기 어렵고, 폴리락트산 프리폴리머의 중량평균 분자량이 50,000 g/mol을 초과하면 중합 시 폴리락트산 프리폴리머 사이의 반응속도보다 프리폴리머 사슬 내부에서 일어나는 부반응 속도가 빨라지게 된다. 한편, 본 발명에서 사용하는 '락트산'은 L-락트산, D-락트산, 또는 이의 혼합물을 지칭한다.
상기 폴리(3-하이드록시프로피오네이트) 프리폴리머는 3-하이드록시프로피오네이트를 발효 또는 축중합하여 제조된 것일 수 있다. 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머의 중량평균 분자량은 1,000 g/mol 이상 또는 5,000 g/mol 이상, 또는 8,000 g/mol 이상, 또는 8,500 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하일 수 있고, 최종 제조되는 블록 공중합체 내 폴리(3-하이드록시프로피오네이트) 프리폴리머 유래 반복단위의 결정성을 높이고자 할 경우, 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머가 20,000 g/mol 초과, 또는 22,000g/mol 이상, 또는 25,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하, 또는 28,000 g/mol 이하의 높은 중량평균 분자량을 갖는 것이 바람직하다.
상기 폴리락트산 프리폴리머에서 설명한 바와 같이, 폴리(3-하이드록시프로피오네이트) 프리폴리머의 중량평균 분자량이 20,000 g/mol 이하이면 고분자의 결정이 작아 최종 제조된 블록 공중합체에서 고분자의 결정성을 유지하기 어렵고, 폴리(3-하이드록시프로피오네이트) 프리폴리머의 중량평균 분자량이 50,000 g/mol을 초과하면 중합 시 폴리(3-하이드록시프로피오네이트) 프리폴리머 사이의 반응속도보다 프리폴리머 사슬 내부에서 일어나는 부반응 속도가 빨라지게 된다.
즉, 상기 폴리락트산 프리폴리머 및 폴리(3-하이드록시프로피오네이트) 프리폴리머 중 적어도 하나는 중량평균 분자량이 20,000 g/mol 초과 50,000 g/mol 이하일 수 있다.
상기 3-하이드록시프로피오네이트-락타이드 공중합체는 폴리락트산 프리폴리머 및 폴리(3-하이드록시프로피오네이트) 프리폴리머가 중합된 블록 공중합체이며, 상기 블록 공중합체에서 상기 폴리락트산 프리폴리머와 폴리(3-하이드록시프로피오네이트) 프리폴리머의 중량비는 95:5 내지 50:50, 90:10 내지 55:45, 90:10 내지 60:40, 90:10 내지 70:30 또는 90:10 내지 80:20일 수 있다. 상기 폴리락트산 프리폴리머에 대해 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머가 지나치게 적게 포함되면 깨지는 특성(Brittleness)이 커질 수 있고, 상기 폴리락트산 프리폴리머에 대해 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머가 지나치게 많이 포함되면 분자량이 낮아져서 가공성 및 내열 안정성이 저하될 수 있다.
상기 3-하이드록시프로피오네이트-락타이드 공중합체는 겔 투과 크로마토그래피(GPC: gel permeation chromatography)를 이용하여 측정한 중량평균 분자량(Mw)이 50,000 내지 300,000 g/mol이며, 보다 구체적으로는 50,000 g/mol 이상, 70,000 g/mol 이상, 또는 100,000 g/mol 이상이고, 300,000 g/mol 이하, 또는 200,000 g/mol 이하 또는 150,000g/mol 이하의 중량평균 분자량을 갖는다. 상기 하이드록시알카노에이트-락타이드 공중합체의 중량평균 분자량이 지나치게 작으면 전반적인 기계적 물성이 현격히 저하될 수 있고, 중량평균 분자량이 지나치게 크면 공정 과정이 어렵고 가공성 및 신율이 낮아질 수 있다.
한편, 상기 락트산 및 3-하이드록시프로피오네이트는 미생물 발효에 의해 재생가능한 공급원으로부터 제조되는 가소성 및 생분해성 화합물일 수 있으며, 이를 중합하여 형성된 폴리락트산 프리폴리머 및 폴리(3-하이드록시프로피오네이트) 프리폴리머를 포함하는 상기 블록 공중합체 또한 친환경성 및 생분해성을 나타내면서도 다량의 바이오 원료를 포함할 수 있다.
또한, 상기 바이오 원료를 포함하는 공중합체를 열분해하여 제조된 락타이드 및 아크릴산도 바이오 원료를 다량 함유할 수 있다.
상기 고분자 블렌드는, 상기 3-하이드록시프로피오네이트-락타이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 용융 상태에서 컴파운딩하여 제조될 수 있다.
상기 고분자 블렌드에 포함된 상기 3-하이드록시프로피오네이트-락타이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 10:90 내지 90:10, 15:85 내지 85:15, 20:80 내지 80:20, 25:75 내지 75:25, 또는 30:70 내지 70:30일 수 있다.
상기 1차, 2차 및 3차 열분해는 무용매 조건에서 이루어지고, 주석 촉매 하에서 이루어질 수 있다. 한편, 상기 1차 열분해는 200 ℃ 이상 250 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 200 ℃ 이상, 210 ℃ 이상, 220 ℃ 이상일 수 있고, 250 ℃ 이하, 240 ℃ 이하, 230 ℃ 이하일 수 있다. 상기 1차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 열분해가 이루어지지 못할 수 있고, 상기 1차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
또한, 상기 1차 열분해는 0.01 torr 초과 50 torr 이하의 압력에서 이루어질 수 있으며, 예를 들어 0.01 torr 초과, 0.05 torr 이상, 0.1 torr 이상, 0.5 torr 이상, 1 torr 이상, 2 torr 이상, 4 torr 이상, 5 torr 이상일 수 있고, 50 torr 이하, 40 torr 이하, 30 torr 이하, 20 torr 이하일 수 있으나, 이로써 한정하는 것은 아니다. 상기 열분해 압력이 낮을수록 락타이드의 분리 및 회수가 용이할 수 있다.
상기 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계 이후, 상기 락타이드를 감압 증류로 분리할 수 있다. 예를 들어, 상기 1차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 락타이드는 감압 증류로 회수될 수 있다. 또한, 상기 1차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 락타이드는 증류를 통해 회수할 수 있다.
상기 락타이드가 회수되고 남은 상기 고분자 블렌드를 2차 열분해하여 아크릴산을 제조할 수 있다.
한편, 상기 2차 열분해는 260 ℃ 이상 350 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 260 ℃ 이상, 270 ℃ 이상, 280 ℃ 이상, 290 ℃ 이상일 수 있고, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하일 수 있다. 상기 2차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 2차 열분해가 이루어지지 못해 아크릴산이 생성될 수 없을 수 있고, 상기 2차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
상기 아크릴산이 회수되고 남은 상기 고분자 블렌드를 3차 열분해하여 부타디엔을 제조할 수 있다.
상기 3차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 3차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 3차 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 3차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
상기 1차 열분해된 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계 이후, 상기 아크릴산을 감압 증류로 분리할 수 있다. 예를 들어, 상기 2차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 아크릴산은 감압 증류로 회수될 수 있다. 또한, 상기 2차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 아크릴산은 증류를 통해 회수할 수 있다.
한편, 상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 20 ℃ 이상 100 ℃ 이하일 수 있으며, 예를 들어 20 ℃ 이상, 30 ℃ 이상, 40 ℃ 이상, 50 ℃ 이상일 수 있고, 100 ℃ 이하, 90 ℃ 이하, 80 ℃ 이하, 70 ℃ 이하일 수 있다. 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 적으면 상기 아크릴산의 회수가 어려울 수 있고, 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다.
상기 아크릴산이 회수되고 남은 상기 고분자 블렌드를 3차 열분해하여 부타디엔을 제조할 수 있다.
상기 3차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 3차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 3차 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 3차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
상기 2차 열분해 온도와 상기 3차 열분해 온도의 차이는 150 ℃ 이상 350 ℃ 이하일 수 있으며, 예를 들어 150 ℃ 이상, 160 ℃ 이상, 170 ℃ 이상, 180 ℃ 이상, 190 ℃ 이상, 200 ℃ 이상, 210 ℃ 이상일 수 있고, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하, 320 ℃ 이하, 310 ℃ 이하일 수 있다. 상기 2차 열분해 온도와 3차 열분해 온도의 차이가 지나치게 적으면 상기 부타디엔의 회수가 어려울 수 있고, 상기 2차 열분해 온도와 3차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다. 상기 3차 열분해를 통해 제조된 부타디엔은 가스 포집 장치를 이용해 회수될 수 있다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드는 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르일 수 있다.
또한, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드 및 글리콜라이드를 제조하는 단계; 및
상기 1차 열분해된 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 부타디엔을 제조하는 단계를 포함할 수 있다.
또한, 상기 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드 및 글리콜라이드를 제조하는 단계 이전에, 상기 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 용융하는 단계를 더 포함할 수 있다.
상기 고분자 블렌드에 포함되는 글리콜라이드-락타이드 공중합체는 글리콜라이드 모노머 및 락타이드 모노머가 중합된 공중합체라면 특별히 제한하지 않으나, 예를 들어 글리콜라이드 모노머 및 락타이드 모노머가 중합된 랜덤 공중합체일 수 있다.
또한, 상기 글리콜라이드-락타이드 공중합체는 1개 이상의 폴리글리콜라이드 블록 및 1개 이상의 폴리락타이드 블록을 포함하는 블록 공중합체일 수 있다. 즉, 상기 글리콜라이드-락타이드 공중합체는 폴리락타이드 프리폴리머 및 폴리글리콜라이드 프리폴리머가 중합된 블록 공중합체일 수 있다. 상기 글리콜라이드-락타이드 공중합체가 상술한 블록들을 포함함에 따라, 폴리글리콜라이드 및 폴리락타이드가 갖는 친환경성 및 생분해성을 나타낼 수 있다.
상기 폴리락타이드 프리폴리머는 락트산을 발효 또는 축중합(Polycondensation)하여 제조된 것일 수 있다. 상기 폴리락타이드 프리폴리머는 중량평균 분자량이 1,000 g/mol 이상 또는 5,000 g/mol 이상, 또는 6,000 g/mol 이상, 또는 8,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하일 수 있으며, 최종 제조되는 블록 공중합체 내 폴리락타이드 프리폴리머 유래 반복단위를 포함하는 블록의 결정성을 높이고자 할 경우, 상기 폴리락타이드 프리폴리머가 20,000 g/mol 초과, 또는 22,000g/mol 이상, 또는 23,000g/mol 이상, 또는 25,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하, 또는 28,000 g/mol 이하, 또는 26,000g/mol 이하의 높은 중량평균 분자량을 갖는 것이 바람직하다.
폴리락타이드 프리폴리머의 중량평균 분자량이 20,000 g/mol 이하이면 고분자의 결정이 작아 최종 제조된 블록 공중합체에서 고분자의 결정성을 유지하기 어렵고, 폴리락타이드 프리폴리머의 중량평균 분자량이 50,000 g/mol을 초과하면 중합 시 폴리락타이드 프리폴리머 사이의 반응속도보다 프리폴리머 사슬 내부에서 일어나는 부반응 속도가 빨라지게 된다. 한편, 본 발명에서 사용하는 '락트산'은 L-락트산, D-락트산, 또는 이의 혼합물을 지칭한다.
상기 폴리글리콜라이드 프리폴리머는 글리콜라이드를 발효 또는 축중합하여 제조된 것일 수 있다. 상기 폴리글리콜라이드 프리폴리머의 중량평균 분자량은 1,000 g/mol 이상 또는 5,000 g/mol 이상, 또는 8,000 g/mol 이상, 또는 8,500 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하일 수 있고, 최종 제조되는 블록 공중합체 내 폴리글리콜라이드 프리폴리머 유래 반복단위의 결정성을 높이고자 할 경우, 상기 폴리글리콜라이드 프리폴리머가 20,000 g/mol 초과, 또는 22,000g/mol 이상, 또는 25,000 g/mol 이상이고, 50,000 g/mol 이하, 또는 30,000 g/mol 이하, 또는 28,000 g/mol 이하의 높은 중량평균 분자량을 갖는 것이 바람직하다.
상기 폴리락타이드 프리폴리머에서 설명한 바와 같이, 폴리글리콜라이드 프리폴리머의 중량평균 분자량이 20,000 g/mol 이하이면 고분자의 결정이 작아 최종 제조된 블록 공중합체에서 고분자의 결정성을 유지하기 어렵고, 폴리글리콜라이드 프리폴리머의 중량평균 분자량이 50,000 g/mol을 초과하면 중합 시 폴리글리콜라이드 프리폴리머 사이의 반응속도보다 프리폴리머 사슬 내부에서 일어나는 부반응 속도가 빨라지게 된다.
즉, 상기 폴리락타이드 프리폴리머 및 폴리글리콜라이드 프리폴리머 중 적어도 하나는 중량평균 분자량이 20,000 g/mol 초과 50,000 g/mol 이하일 수 있다.
상기 글리콜라이드-락타이드 공중합체는 폴리락타이드 프리폴리머 및 폴리글리콜라이드 프리폴리머가 중합된 블록 공중합체이며, 상기 블록 공중합체에서 상기 폴리락타이드 프리폴리머와 폴리글리콜라이드 프리폴리머의 중량비는 90:10 내지 30:70, 80:20 내지 40:60, 또는 75:25 내지 50:50일 수 있다. 상기 폴리락타이드 프리폴리머에 대해 상기 폴리글리콜라이드 프리폴리머가 지나치게 적게 포함되면 깨지는 특성(Brittleness)이 커질 수 있고, 상기 폴리락타이드 프리폴리머에 대해 상기 폴리글리콜라이드 프리폴리머가 지나치게 많이 포함되면 분자량이 낮아져서 가공성 및 내열 안정성이 저하될 수 있다.
상기 글리콜라이드-락타이드 공중합체는 겔 투과 크로마토그래피(GPC: gel permeation chromatography)를 이용하여 측정한 중량평균 분자량(Mw)이 20,000 내지 300,000 g/mol이며, 보다 구체적으로는 20,000 g/mol 이상, 30,000 g/mol 이상, 40,000 g/mol 이상, 50,000 g/mol 이상, 70,000 g/mol 이상, 또는 100,000 g/mol 이상이고, 300,000 g/mol 이하, 또는 200,000 g/mol 이하 또는 150,000g/mol 이하의 중량평균 분자량을 갖는다. 상기 글리콜라이드-락타이드 공중합체의 중량평균 분자량이 지나치게 작으면 전반적인 기계적 물성이 현격히 저하될 수 있고, 중량평균 분자량이 지나치게 크면 공정 과정이 어렵고 가공성 및 신율이 낮아질 수 있다.
상기 일 구현예에 따른 락타이드 및 글리콜라이드 제조 방법에서, 상기 글리콜라이드-락타이드 공중합체는 예를 들어, sigma-aldrich社의 P2066 (lactide:glycolide = 65:35), P2191 (lactide:glycolide = 50:50), P1941 (lactide:glycolide = 75:25) 등이거나, BLD pharm社의 BD01128150일 수 있다.
상기 고분자 블렌드는, 상기 글리콜라이드-락타이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 용융 상태에서 컴파운딩하여 제조될 수 있다.
상기 고분자 블렌드에 포함된 상기 글리콜라이드-락타이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 10:90 내지 90:10, 15:85 내지 85:15, 20:80 내지 80:20, 25:75 내지 75:25, 또는 30:70 내지 70:30일 수 있다.
상기 1차 및 2차 열분해는 무용매 하에서 이루어질 수 있고, 주석 촉매 하에서 이루어질 수 있다. 한편, 상기 1차 열분해는 200 ℃ 이상 380 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 200 ℃ 이상, 210 ℃ 이상, 220 ℃ 이상일 수 있고, 380 ℃ 이하, 300 ℃ 이하, 250 ℃ 이하일 수 있다. 상기 1차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 열분해가 이루어지지 못할 수 있고, 상기 1차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
또한, 상기 1차 열분해는 0.01 torr 초과 50 torr 이하의 압력에서 이루어질 수 있으며, 예를 들어 0.01 torr 초과, 0.05 torr 이상, 0.1 torr 이상, 0.5 torr 이상, 1 torr 이상, 2 torr 이상, 4 torr 이상, 5 torr 이상일 수 있고, 50 torr 이하, 40 torr 이하, 30 torr 이하, 20 torr 이하일 수 있으나, 이로써 한정하는 것은 아니다. 상기 열분해 압력이 낮을수록 락타이드의 분리 및 회수가 용이할 수 있다.
상기 고분자 블렌드를 1차 열분해하여 락타이드 및 글리콜라이드를 제조하는 단계 이후, 상기 락타이드 및 글리콜라이드를 감압 증류로 분리할 수 있다.
예를 들어, 상기 1차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 락타이드 및 글리콜라이드는 감압 증류로 회수될 수 있다. 또한, 상기 1차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 락타이드 및 글리콜라이드는 증류를 통해 회수할 수 있다.
상기 락타이드 및 글리콜라이드가 회수되고 남은 상기 고분자 블렌드를 2차 열분해하여 부타디엔을 제조할 수 있다.
상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 2차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 2차 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 2차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
한편, 상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 100 ℃ 이상 400 ℃ 이하일 수 있으며, 100 ℃ 이상, 150 ℃ 이상, 180 ℃ 이상, 200 ℃ 이상, 220 ℃ 이상, 250 ℃ 이상, 280 ℃ 이상일 수 있고, 400 ℃ 이하, 380 ℃ 이하, 350 ℃ 이하, 330 ℃ 이하, 300 ℃ 이하일 수 있다. 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 적으면 상기 부타디엔의 회수가 어려울 수 있고, 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다. 상기 2차 열분해를 통해 제조된 부타디엔은 가스 포집 장치를 이용해 회수될 수 있다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드는 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드일 수 있다.
또한, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 글리콜라이드를 제조하는 단계;
상기 1차 열분해된 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계; 및
상기 2차 열분해된 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 3차 열분해하여 부타디엔을 제조하는 단계를 포함할 수 있다.
또한, 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 글리콜라이드를 제조하는 단계 이전에, 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 용융하는 단계를 더 포함할 수 있다.
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 3-하이드록시프로피오네이트 유래 반복단위를 포함하는 블록 및 글리콜라이드 유래 반복단위를 포함하는 블록을 포함하고, 이들 블록들이 직접 결합, 에스터 결합, 아마이드 결합, 우레탄 결합, 또는 카보네이트 결합됨으로 인해, 폴리글리콜라이드만을 포함하는 생분해성 수지가 갖는 신율 특성이 낮아지는 단점을 보완할 수 있다. 또한, 이들 공중합체는 각각의 호모 중합체의 기계적 물성을 보완하면서도 우수한 생분해성을 가질 수 있다.
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 하기 화학식 2로 표시되는 3-하이드록시프로피오네이트 유래 반복단위를 포함하는 블록을 포함하고, 하기 화학식 3으로 표시되는 글리콜라이드 유래 반복단위를 포함하는 블록을 포함할 수 있다.
[화학식 2]
Figure PCTKR2023010475-appb-img-000001
[화학식 3]
Figure PCTKR2023010475-appb-img-000002
상기 화학식 2로 표시되는 3-하이드록시프로피오네이트 유래 반복단위는, 기계적 물성이 우수하면서도 유리 전이 온도(Tg)가 -20 ℃ 정도로 낮아 신율(Elongation to Break)이 높다는 장점을 갖고 있다. 따라서, 이러한 폴리(3-하이드록시프로피오네이트)와 폴리글리콜라이드를 화학적으로 결합하여 블록 공중합체를 제조하게 되면 기계적 물성이 우수하며 생분해가 가능한 소재를 제조할 수 있다.
또한, 상기 화학식 2로 표시되는 반복단위 및 화학식 3으로 표시되는 반복단위는 직접 결합, 에스터 결합, 아마이드 결합, 우레탄 결합, 유레아 결합 또는 카보네이트 결합으로 연결될 수 있으며, 예를 들어 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 하기 화학식 1로 표시되는 블록 공중합체일 수 있다.
[화학식 1]
Figure PCTKR2023010475-appb-img-000003
상기 화학식 1에 있어서,
R1 및 R2는 각각 독립적으로, 수소, N, O, S, 또는 치환 또는 비치환된 C1-20 알킬이고,
X1 및 X2는 각각 독립적으로, 직접 결합, -COO-, -NR’CO-, -(NR’)(COO)-, -R’NCONR’-, 또는 -OCOO-이고,
R’는 각각 독립적으로, 수소, 또는 C1-20 알킬이고,
L은 직접 결합; 치환 또는 비치환된 C1-10 알킬렌; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O, 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴렌이고,
n 및 m은 각각 독립적으로, 1 내지 10,000의 정수일 수 있다.
상기 n은 3-하이드록시프로피오네이트 유래 반복단위의 반복수를 의미하며, 상기 범위로 도입됨에 따라 폴리글리콜라이드의 고유 물성을 유지하면서도 신율 등의 물성을 조절할 수 있다. 또한, 상기 m은 글리콜라이드 유래 반복단위의 반복수를 의미한다.
또한, 상기 X1, X2, 및 L은 직접 결합일 수 있다.
상기 화학식 1은 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2023010475-appb-img-000004
상기 화학식 1-1에서
n 및 m은 상술한 바와 같을 수 있다.
바람직하게는, n은 10 내지 700이고, m은 10 내지 700일 수 있고, n은 20 이상, 30 이상, 40 이상, 50 이상, 또는 60 이상이고, 650 이하, 600 이하, 550 이하, 500 이하, 또는 450 이하일 수 있고, m은 20 이상, 30 이상, 40 이상, 50 이상, 또는 60 이상이고, 650 이하, 600 이하, 550 이하, 500 이하, 또는 450 이하일 수 있다.
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 중량평균분자량이 10,000 g/mol 이상 500,000 g/mol 이하일 수 있다. 예를 들어, 상기 공중합체의 중량평균분자량이 12,000 g/mol 이상, 15,000 g/mol 이상, 20,000 g/mol 이상, 25,000 g/mol 이상, 또는 30,000 g/mol 이상이고, 480,000 g/mol 이하, 460,000 g/mol 이하, 440,000 g/mol 이하, 또는 420,000 g/mol 이하일 수 있다.
또한, 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 폴리(3-하이드록시프로피오네이트) 개시제 존재 하에 글리콜라이드 단량체가 개환 중합된 블록 공중합체일 수 있다.
예를 들어, 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체는 폴리(3-하이드록시프로피오네이트)를 제조하는 단계(단계 1); 및 상기 폴리(3-하이드록시프로피오네이트) 개시제의 존재 하에, 글리콜라이드 단량체를 개환 중합하여 블록 공중합체를 제조하는 단계(단계 2)를 포함하는 제조 방법을 통해 제조될 수 있다.
상기 단계 1은, 상기 폴리(3-하이드록시프로피오네이트)를 제조하는 단계로, 상기 폴리(3-하이드록시프로피오네이트)는 3-하이드록시프로피온산의 호모 중합체를 의미하며, 상술한 n과 m의 범위를 감안하여 중합 정도를 조절하여 제조한 것을 사용할 수 있다.
상기 폴리(3-하이드록시프로피오네이트) 개시제는 중량평균분자량이 1,000 g/mol 이상 500,000 g/mol 이하, 2,000 g/mol 이상 400,000 g/mol 이하, 3,000 g/mol 이상 300,000 g/mol 이하, 4,000 g/mol 이상 200,000 g/mol 이하, 5,000 g/mol 이상 100,000 g/mol 이하, 10,000 g/mol 이상 90,000 g/mol 이하일 수 있다.
상기 단계 2는, 폴리(3-하이드록시프로피오네이트)를 개시제로 하여, 글리콜라이드 단량체를 개환 중합하는 단계일 수 있다. 상기 단계 2는 실질적으로 용매를 사용하지 않는 벌크 중합으로 진행할 수 있다. 이때, 실질적으로 용매를 사용하지 않는다 함은 촉매를 용해시키기 위한 소량의 용매, 예를 들어, 사용 단량체 1 kg 당 최대 1 ml 미만의 용매를 사용하는 경우까지 포괄할 수 있다. 상기 단계 2를 벌크 중합으로 진행함에 따라, 중합 후 용매 제거 등을 위한 공정의 생략이 가능해지며, 이러한 용매 제거 공정에서의 수지의 분해 또는 손실 등도 억제할 수 있다.
상기 폴리(3-하이드록시프로피오네이트) 개시제 및 글리콜라이드 단량체의 중량비는 1:99 내지 99:1, 5:95 내지 90:10, 10:90 내지 80:20, 15:85 내지 70:30, 또는 20:80 내지 50:50일 수 있다.
한편, 상기 글리콜라이드 개환 중합 반응이 수반되므로, 글리콜라이드 개환 촉매의 존재 하에 진행될 수 있으며, 예를 들어, 상기 개환 촉매는 하기 화학식 4로 표시되는 촉매일 수 있다.
[화학식 4]
MA1 pA2 2-p
상기 화학식 4에서,
M은 Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti 또는 Zr이고,
p는 0 내지 2의 정수이고,
A1과 A2는 각각 독립적으로 알콕시 또는 카르복실기일 수 있다.
예를 들어, 상기 화학식 4로 표시되는 촉매는 촉매는 주석(II) 2-에틸헥사노에이트(Sn(Oct)2)일 수 있다.
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체의 제조는 150 내지 200 ℃의 온도에서 5분 내지 10시간 동안 또는 10분 내지 1시간 동안 수행될 수 있다.
상기 고분자 블렌드는, 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 용융 상태에서 컴파운딩하여 제조될 수 있다.
상기 고분자 블렌드에 포함된 상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체와 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 10:90 내지 90:10, 15:85 내지 85:15, 20:80 내지 80:20, 25:75 내지 75:25, 또는 30:70 내지 70:30일 수 있다.
상기 1차, 2차 및 3차 열분해는 무용매 하에서 이루어질 수 있고, 주석 촉매 하에서 이루어질 수 있다. 상기 1차 열분해는 200 ℃ 이상 250 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 200 ℃ 이상, 210 ℃ 이상, 220 ℃ 이상일 수 있고, 250 ℃ 이하, 240 ℃ 이하, 230 ℃ 이하일 수 있다. 상기 1차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 열분해가 이루어지지 못할 수 있고, 상기 1차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
또한, 상기 1차 열분해는 0.01 torr 초과 50 torr 이하의 압력에서 이루어질 수 있으며, 예를 들어 0.01 torr 초과, 0.05 torr 이상, 0.1 torr 이상, 0.5 torr 이상, 1 torr 이상, 2 torr 이상, 4 torr 이상, 5 torr 이상일 수 있고, 50 torr 이하, 40 torr 이하, 30 torr 이하, 20 torr 이하일 수 있으나, 이로써 한정하는 것은 아니다. 상기 열분해 압력이 낮을수록 글리콜라이드의 분리 및 회수가 용이할 수 있다.
상기 고분자 블렌드를 1차 열분해하여 글리콜라이드를 제조하는 단계 이후, 상기 글리콜라이드를 감압 증류로 분리할 수 있다.
예를 들어, 상기 1차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 글리콜라이드는 감압 증류로 회수될 수 있다. 또한, 상기 1차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 글리콜라이드는 증류를 통해 회수할 수 있다.
상기 글리콜라이드가 회수되고 남은 상기 고분자 블렌드를 2차 열분해하여 아크릴산을 제조할 수 있다.
한편, 상기 2차 열분해는 260 ℃ 이상 380 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 260 ℃ 이상, 270 ℃ 이상, 280 ℃ 이상, 290 ℃ 이상일 수 있고, 380 ℃ 이하, 350 ℃ 이하, 330 ℃ 이하일 수 있다. 상기 2차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 2차 열분해가 이루어지지 못해 아크릴산이 생성될 수 없을 수 있고, 상기 2차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
상기 아크릴산이 회수되고 남은 상기 고분자 블렌드를 3차 열분해하여 부타디엔을 제조할 수 있다.
상기 3차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 3차 열분해 온도가 지나치게 낮으면 상기 고분자 블렌드의 3차 열분해가 이루어지지 못해 부타디엔을 회수하기 어려울 수 있고, 상기 3차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물이 많이 생성될 수 있다.
1차 열분해된 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계 이후, 상기 아크릴산을 감압 증류로 분리할 수 있다.
예를 들어, 상기 2차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 아크릴산은 감압 증류로 회수될 수 있다. 또한, 상기 2차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 아크릴산은 증류를 통해 회수할 수 있다.
한편, 상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 20 ℃ 이상 100 ℃ 이하일 수 있으며, 예를 들어 20 ℃ 이상, 30 ℃ 이상, 40 ℃ 이상, 50 ℃ 이상일 수 있고, 100 ℃ 이하, 90 ℃ 이하, 80 ℃ 이하, 70 ℃ 이하일 수 있다. 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 적으면 상기 아크릴산의 회수가 어려울 수 있고, 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다.
상기 2차 열분해 온도와 상기 3차 열분해 온도의 차이는 150 ℃ 이상 350 ℃ 이하일 수 있으며, 예를 들어 150 ℃ 이상, 160 ℃ 이상, 170 ℃ 이상, 180 ℃ 이상, 190 ℃ 이상, 200 ℃ 이상, 210 ℃ 이상일 수 있고, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하, 320 ℃ 이하, 310 ℃ 이하일 수 있다. 상기 2차 열분해 온도와 3차 열분해 온도의 차이가 지나치게 적으면 상기 부타디엔의 회수가 어려울 수 있고, 상기 2차 열분해 온도와 3차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다. 상기 3차 열분해를 통해 제조된 부타디엔은 가스 포집 장치를 이용해 회수될 수 있다.
상기 일 구현예에 따른 부타디엔 제조 방법은, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드가 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르일 수 있다.
또한, 상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 1차 열분해하여 1,4-부탄디올을 제조하는 단계; 및
상기 1차 열분해된 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 2차 열분해하여 부타디엔을 제조하는 단계를 포함할 수 있다.
상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 1차 열분해하여 1,4-부탄디올을 제조하는 단계 이전에, 상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 용융하는 단계를 더 포함할 수 있다.
상기 1차 및 2차 열분해는 무용매 조건에서 이루어질 수 있고, 주석 촉매 하에서 이루어질 수 있다. 상기 1차 열분해는 220 ℃ 이상 350 ℃ 이하의 온도에서 이루어질 수 있으며, 예를 들어 220 ℃ 이상, 230 ℃ 이상, 240 ℃ 이상, 250 ℃ 이상일 수 있고, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하, 320 ℃ 이하, 310 ℃ 이하, 300 ℃ 이하일 수 있다. 상기 1차 열분해 온도가 지나치게 낮으면 상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르의 열분해가 이루어지지 못할 수 있고, 상기 1차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
또한, 상기 1차 열분해는 0.01 torr 초과 50 torr 이하의 압력에서 이루어질 수 있으며, 예를 들어 0.01 torr 초과, 0.05 torr 이상, 0.1 torr 이상, 0.5 torr 이상, 1 torr 이상, 2 torr 이상, 4 torr 이상, 5 torr 이상일 수 있고, 50 torr 이하, 40 torr 이하, 30 torr 이하, 20 torr 이하일 수 있으나, 이로써 한정하는 것은 아니다. 상기 열분해 압력이 낮을수록 1,4-부탄디올의 분리 및 회수가 용이할 수 있다.
상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 1차 열분해하여 1,4-부탄디올을 제조하는 단계 이후, 상기 1,4-부탄디올을 증류 또는 감압 증류로 분리할 수 있다.
예를 들어, 상기 1차 열분해는 1 torr 초과의 압력에서 이루어지는 감압 조건에서 열분해가 이루어지게 하여, 이때 제조되는 1,4-부탄디올은 감압 증류로 회수될 수 있다. 또한, 상기 1차 열분해가 감압 조건에서 이루어지지 않더라도, 상기 1,4-부탄디올은 증류를 통해 회수할 수 있다.
상기 1,4-부탄디올이 회수되고 남은 상기 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 2차 열분해하여 부타디엔을 제조할 수 있다. 한편, 상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어질 수 있으며, 예를 들어 400 ℃ 이상, 420 ℃ 이상, 440 ℃ 이상, 460 ℃ 이상, 480 ℃ 이상, 500 ℃ 이상일 수 있고, 800 ℃ 이하, 700 ℃ 이하, 650 ℃ 이하, 630 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하일 수 있다. 상기 2차 열분해 온도가 지나치게 낮으면 상기 1차 열분해된 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르의 열분해가 이루어지지 못하여 부타디엔을 회수하기 어려울 수 있고, 상기 2차 열분해 온도가 지나치게 높으면 예상하지 못한 불순물의 많이 생성될 수 있다.
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 100 ℃ 이상 300 ℃ 이하일 수 있으며, 예를 들어 100 ℃ 이상, 120 ℃ 이상, 140 ℃ 이상, 160 ℃ 이상, 180 ℃ 이상, 200 ℃ 이상일 수 있고, 300 ℃ 이하, 280 ℃ 이하, 270 ℃ 이하, 260 ℃ 이하, 250 ℃ 이하일 수 있다. 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 적으면 상기 부타디엔의 회수가 어려울 수 있고, 상기 1차 열분해 온도와 2차 열분해 온도의 차이가 지나치게 크면 예상하지 못한 불순물의 많이 생성될 수 있다. 상기 2차 열분해를 통해 제조된 부타디엔은 가스 포집 장치를 이용해 회수될 수 있다.
한편, 락타이드, 글리콜라이드, 아크릴산, 1,4-부탄디올 및/또는 부타디엔 각각의 회수율이 30% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 또는 90% 이상, 예컨대, 40 내지 99.9%, 50 내지 99.9%, 60 내지 99.9%, 70 내지 99.9%, 80 내지 99.9%, 90 내지 99.9%, 40 내지 99%, 50 내지 99%, 60 내지 99%, 70 내지 99%, 80 내지 99%, 90 내지 99%, 40 내지 97%, 50 내지 97%, 60 내지 97%, 70 내지 97%, 80 내지 97%, 90 내지 97%, 40 내지 95%, 50 내지 95%, 60 내지 95%, 70 내지 95%, 80 내지 95%, 또는 90 내지 95%일 수 있다. 상기 회수율은 몰(mol) 기준으로 산정된 것일 수 있다.
상기 락타이드, 글리콜라이드, 아크릴산, 1,4-부탄디올 및/또는 부타디엔 각각의 순도는 50% 이상, 60% 이상, 70% 이상, 80% 이상, 또는 90% 이상, 예컨대, 40 내지 99.9%, 50 내지 99.9%, 60 내지 99.9%, 70 내지 99.9%, 80 내지 99.9%, 90 내지 99.9%, 40 내지 99%, 50 내지 99%, 60 내지 99%, 70 내지 99%, 80 내지 99%, 90 내지 99%, 40 내지 97%, 50 내지 97%, 60 내지 97%, 70 내지 97%, 80 내지 97%, 90 내지 97%, 40 내지 95%, 50 내지 95%, 60 내지 95%, 70 내지 95%, 80 내지 95%, 또는 90 내지 95%일 수 있다.
본 발명에 따르면, 환경 친화적이고 경제적인 방법으로, 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 재활용 가능한 부타디엔 등으로 고순도 및 고수율로 전환하는, 부타디엔 제조 방법이 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
제조예 1: 고분자 블렌드 제조
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 70 g 및 폴리락트산 (PLA, NatureWorks 社) 30 g을 스크류 압출기(Thermo scientific社, MiniCTW)에 50 g/min으로 투입하고, 250 ℃에서 압출 및 혼합하여 고분자 블렌드를 제조하였다.
제조예 2: 3-하이드록시프로피오네이트-락타이드 블록 공중합체 제조
(1) 폴리락트산 프리폴리머 제조
오일배스에 100 ml Schlenk 플라스크에 85 % L-락트산 수용액 25 g을 투입하고 70 ℃ 및 50 mbar 조건에서 2 시간 동안 감압하여 L-락트산 내 수분을 제거하였다. 이후 락테이트 100 중량부 기준, p-톨루엔설폰산(p-TSA) 0.4 중량부 및 SnCl2 촉매 0.1 중량부를 각각 투입하고, 150 ℃의 온도에서 12 시간 동안 용융 축중합 반응하였다. 반응이 종결된 이후, 반응물을 클로로폼에 용해시킨 후 메탄올로 추출하여 폴리락트산 프리폴리머를 수득하였다(중량평균 분자량: 8,000 g/mol).
(2) 폴리(3-하이드록시프로피오네이트) 프리폴리머 제조
오일배스에 100 ml Schlenk 플라스크에 60 % 3-하이드록시프로피오네이트 수용액을 25 ml을 투입하고 50 ℃ 및 50 mbar에서 3 시간 동안 3-하이드록시프로피오네이트 내 수분을 제거하고, 이후 70 ℃ 및 20 mbar에서 2 시간 동안 올리고머화를 시킨 후 반응플라스크에 3-하이드록시프로피오네이트 100 중량부 기준 p-톨루엔설폰산(p-TSA) 촉매 0.4 중량부를 투입하고, 110 ℃의 온도에서 24 시간 동안 용융 축중합 반응하였다. 반응이 종결된 이후, 반응물을 클로로폼에 용해시킨 후 메탄올로 추출하여 폴리(3-하이드록시프로피오네이트) 프리폴리머를 수득하였다(중량평균 분자량: 26,000g/mol).
(3) 블록 공중합체 제조
오일배스에 100 ml Schlenk 플라스크에 상기 폴리락트산 프리폴리머 및 상기 폴리(3-하이드록시프로피오네이트) 프리폴리머를 8:2의 중량비로 혼합하여 총 함량 30 g이 되도록 투입한 후, p-톨루엔설폰산(p-TSA)을 90 mg 투입하고, 60 ℃에서 3 시간 동안 어닐링(annealing)을 진행하였다. 이후, evaporator를 이용하여 150 ℃ 및 0.5 mbar의 조건에서 24 시간 동안 혼합하며 고상 중합 반응시켜 3-하이드록시프로피오네이트-락타이드 블록 공중합체(중량평균 분자량: 130,000 g/mol)를 제조하였다.
한편, 상기 폴리락트산 프리폴리머, 폴리(3-하이드록시프로피오네이트) 프리폴리머 및 블록 공중합체의 중량평균 분자량은 겔 투과 크로마토그래피(GPC)를 이용하여 측정하였다.
제조예 3: 고분자 블렌드 제조
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 70 g 및 상기 제조예 2에서 제조된 3-하이드록시프로피오네이트-락타이드 블록 공중합체(PLH) 30 g을 스크류 압출기(Thermo scientific社, MiniCTW)에 50 g/min으로 투입하고, 250 ℃에서 압출 및 혼합하여 고분자 블렌드를 제조하였다.
제조예 4: 고분자 블렌드 제조
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 70 g 및 글리콜라이드-락타이드 공중합체(PLGA, P1941, sigma-aldrich 社, Lactide : glycolide = 75 : 25) 30 g을 스크류 압출기(Thermo scientific社, MiniCTW)에 50 g/min으로 투입하고, 250 ℃에서 압출 및 혼합하여 고분자 블렌드를 제조하였다.
제조예 5: 고분자 블렌드 제조
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 50 g 및 글리콜라이드-락타이드 공중합체(PLGA, P1941, sigma-aldrich社, Lactide : glycolide = 75 : 25) 50 g을 스크류 압출기(Thermo scientific社, MiniCTW)에 50 g/min으로 투입하고, 250 ℃에서 압출 및 혼합하여 고분자 블렌드를 제조하였다.
제조예 6: 하이드록시알카노에이트-글리콜라이드 공중합체 제조
(1) 폴리(3-하이드록시프로피오네이트)의 제조
오일배스에 100 ml Schlenk 플라스크에 60 % 3-하이드록시프로피오네이트 수용액을 25 ml을 투입하고 50 ℃ 및 50 mbar에서 3 시간 동안 3-하이드록시프로피오네이트 내 수분을 제거하고, 이후 70 ℃ 및 20 mbar에서 2 시간 동안 올리고머화를 시킨 후 반응플라스크에 3-하이드록시프로피오네이트 100 중량부 기준 p-톨루엔설폰산(p-TSA) 촉매 0.4 중량부를 투입하고, 110 ℃의 온도에서 24 시간 동안 용융 축중합 반응하였다. 반응이 종결된 이후, 반응물을 클로로폼에 용해시킨 후 메탄올로 추출하여 폴리(3-하이드록시프로피오네이트)를 수득하였다(중량평균 분자량: 26,000 g/mol).
(2) 블록 공중합체 제조
500 mL의 테플론 코팅된 둥근 플라스크에 글리콜라이드 20 g, 상기 폴리(3-하이드록시프로피오네이트) 5 g, 및 주석(II) 2-에틸헥사노에이트를 20 mg의 함량으로 투입하고 충분히 진공을 걸어주어 상온에서 4 시간 동안 진공 건조하였다. 이후, 130℃ 프리-히팅(pre-heating)된 오일 배스에 상기 플라스크를 넣고, 220 ℃로 승온한 이후 30분간 개환 중합 반응하였다. 반응이 종결된 이후, 생성물의 탈휘발화 단계를 통해 잔류 단량체를 제거하여 최종 블록 공중합체(중량평균 분자량: 130,000 g/mol)를 수득하였다.
한편, 상기 폴리(3-하이드록시프로피오네이트) 및 블록 공중합체의 중량평균 분자량은 겔 투과 크로마토그래피(GPC)를 이용하여 측정하였다.
제조예 7: 고분자 블렌드 제조
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 70 g 및 상기 제조예 6에서 제조된 하이드록시알카노에이트-글리콜라이드 공중합체(PGH) 30 g을 스크류 압출기(Thermo scientific社, MiniCTW)에 50 g/min으로 투입하고, 250 ℃에서 압출 및 혼합하여 고분자 블렌드를 제조하였다.
실시예 1
제조예 1에서 제조된 고분자 블렌드(PBAT:PLA의 중량비는 70:30) 10 g을 플라스크에 투입하고, 250 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하고 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 2.5 g을 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔을 포집하였다.
실시예 2
제조예 1에서 제조된 고분자 블렌드(PBAT:PLA의 중량비는 30:70) 10 g을 플라스크에 투입하고, 250 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하고 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 5.3 g을 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔을 포집하였다.
실시예 3
제조예 3에서 제조된 고분자 블렌드(PBAT:PLH의 중량비는 70:30) 10 g을 플라스크에 투입하고, 180 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 220 ℃로 승온한 후 반응기를 5 torr로 감압하여 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 4.9 g을 회수하였다. 이후, 상기 반응기 내부 온도를 290 ℃로 승온하고 교반하여 2차 열분해 반응을 진행하였고, 증류 장치로 아크릴산 0.8 g을 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔 0.38 g을 포집하였다.
실시예 4
제조예 3에서 제조된 고분자 블렌드(PBAT:PLH의 중량비는 30:70) 10 g을 플라스크에 투입하고, 180 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 220 ℃로 승온한 후 반응기를 5 torr로 감압하여 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 2.1 g을 회수하였다. 이후, 상기 반응기 내부 온도를 290 ℃로 승온하고 교반하여 2차 열분해 반응을 진행하였고, 증류 장치로 아크릴산 0.4 g을 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔 0.9 g을 포집하였다.
실시예 5
제조예 4에서 제조된 고분자 블렌드(PBAT:PLGA의 중량비는 70:30) 10 g을 플라스크에 투입하고, 180 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 220 ℃로 승온한 후 반응기를 5 torr로 감압하여 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 및 글리콜라이드 2.5 g (회수율: 83 %)를 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔 4.3 g (회수율: 62 %)를 포집하였다.
실시예 6
제조예 5에서 제조된 고분자 블렌드(PBAT:PLGA의 중량비는 50:50) 10 g을 플라스크에 투입하고, 180 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 220 ℃로 승온한 후 반응기를 5 torr로 감압하여 1차 열분해 반응을 진행하였고, 증류 장치로 락타이드 및 글리콜라이드 4.1 g (회수율: 81 %)를 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔 2.9 g (회수율: 58 %)를 포집하였다.
실시예 7
제조예 7에서 제조된 고분자 블렌드(PBAT:PGH의 중량비는 70:30) 10 g을 플라스크에 투입하고, 180 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 220 ℃로 승온한 후 반응기를 5 torr로 감압하여 1차 열분해 반응을 진행하였고, 증류 장치로 글리콜라이드를 회수하였다(회수율 81 %, 순도 98 % 이상). 이후, 상기 반응기 내부를 290 ℃로 승온하여 2차 열분해 반응을 진행하였고, 증류 장치로 아크릴산을 회수하였다(회수율 59 %, 순도 99 %). 이후, 상기 반응기 내부 온도를 500 ℃로 승온하고 교반하여, 가스 포집 장치로 부타디엔을 포집하였다(회수율 63 %, 순도 99 % 이상).
실시예 8
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 10 g을 플라스크에 투입하고, 180 내지 200 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응 온도를 250 내지 300 ℃로 승온 및 교반하여 1차 열분해 반응을 진행하였고, 증류 장치로 1,4-부탄디올 1.8 g을 회수하였다. 이후, 상기 반응기 내부 온도를 500 ℃로 승온 및 교반하고 가스 포집 장치로 부타디엔 0.7 g을 포집하였다.
실시예 9
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 10 g을 플라스크에 투입하고, 180 내지 200 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응기 내부 온도를 500 ℃로 승온 및 교반하고 가스 포집 장치로 부타디엔 1.1 g을 포집하였다.
비교예 1
스크류 압출기(Thermo scientific社, MiniCTW)에 폴리락트산을 50 g/min로 투입하고 주석 2-옥틸레이트를 5 g/min로 투입하면서 내부 온도를 220 ℃로 승온하고, 15 mmHg로 감압하여 증류되어 나오는 락타이드를 회수하였다.
비교예 2
폴리(프로피오락톤) 2.0 g 및 하이드로퀴논 모노에틸에터(MEHQ) 8.6 mg을 혼합한 후, 210 ℃ 및 500 mtorr에서 감압 및 가온하여 99.4 %의 아크릴산 1.39 g을 수득하였다.
비교예 3
폴리부틸렌 아디페이트 테레프탈레이트(PBAT, Solpol 1000N, SOLTECH 社) 10 g을 플라스크에 투입하고, 180 내지 200 ℃로 가열하여 용해시켰다. 용해 확인 후, 주석 2-에틸헥사노에이트를 0.03 ml를 첨가하였다. 이후, 반응기 내부 온도를 280 ℃로 승온 및 교반하고 가스 포집 장치로 1,4-부탄디올 1.8 g을 포집하였다.
평가
1. 모노머 회수율 평가
실시예 및 비교예에서 락타이드, 글리콜라이드, 1,4-부탄디올, 아크릴산 및/또는 부타디엔 회수율((실제회수량 / 이론회수량) *100)을 계산하고, 그 결과를 하기 표 1 및 2에 나타내었다.
2. 모노머 순도 평가
실시예 및 비교예에서 락타이드, 글리콜라이드, 1,4-부탄디올, 아크릴산 및/또는 부타디엔의 순도를 각각 1H NMR (400 MHz, CDCl3)을 사용하여 측정하고, 그 결과를 하기 표 1 및 2에 나타내었다.
- 락타이드(δ, CDCl3) 1.71(d, 3H), 5.05 (m, 1H)
- 아크릴산(δ, CDCl3) 5.97(d, 1H), 6.14(q, 1H), 6.53(d, 1H)
- 글리콜라이드 (δ, CDCl3) 4.99(s, 4H)
- 1,4-부탄디올(δ, CDCl3) 1.86 (m, 2H), 3.74(t, 2H)
- 부타디엔(δ, CDCl3) 5.12(d, 2H), 5.22(d, 2H), 6.32~6.37(m, 2H)
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7 비교예1 비교예2

수율 (%)
락타이드 83.3 75.7 87.5 87.5 83 81 - 87.0 -
글리콜라이드 - - - - 81 - -
아크릴산 - - 57.1 66.7 - - 59 - 70.0
부타디엔 68.1 46.4 52.8 53.3 62 58 63 - -
순도 (%) 락타이드 ≥ 98.0 ≥ 98.0 ≥ 98.0 ≥ 98.0 > 98 > 98 - ≥ 98.0 -
글리콜라이드 - - - - > 98 > 98 ≥ 98 - -
아크릴산 - - ≥ 98.0 ≥ 98.0 - - 99 - 99.4
부타디엔 ≥ 99.0 ≥ 99.0 ≥ 98.0 ≥ 98.0 > 98 > 98 ≥ 99 - -
실시예 8 실시예 9
1,4-부탄디올 및 부타디엔 회수율 (g)
(1,4-부탄디올:부타디엔 중량비)
1.8 : 0.7 0 : 1.1
1,4-부탄디올 회수율 (%) 44.8 -
1,4-부탄디올 순도 (%) ≥ 98.0 -
부타디엔 회수율 (%) 52.6 45.8
부타디엔 순도 (%) ≥ 98.0 ≥ 98.0
상기 표 1 및 2에 따르면, 실시예 1 및 2는 락타이드 및 부타디엔을 각각 고순도 및 고수율로 회수할 수 있고, 실시예 3 및 4 락타이드, 아크릴산 및 부타디엔을 각각 고순도 및 고수율로 회수할 수 있고, 실시예 5 및 6은 81 % 이상 회수율로 락타이드 및 글리콜라이드를 회수하고, 58 % 이상의 회수율로 부타디엔을 회수하고, 이들 각각의 순도는 98 %을 초과하고, 실시예 7은 아크릴산, 글리콜라이드 및 부타디엔을 각각 고순도 및 고수율로 회수할 수 있고, 실시예 8 및 9는 1,4-부탄디올 및/또는 부타디엔을 각각 고순도 및 고수율로 회수할 수 있다는 점을 확인했다. 참고로, 실시예 8의 경우 250 내지 300 ℃에서 PBAT를 열분해하는 경우 잔여물에 PBAT가 여전히 많이 남아있다는 점을 확인하고, 추가적으로 500 ℃로 승온하여 열분해하여 부타디엔을 회수하였다. 한편, 비교예 1은 락타이드만 회수되고, 비교예 2는 아크릴산만이 회수되고, 비교예 3은 1,4-부탄디올만을 회수하였다는 점을 확인했다.

Claims (25)

1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계를 포함하는, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계 이전에,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 용융하는 단계;를 더 포함하는, 부타디엔 제조 방법.
제2항에 있어서,
상기 용융은 무용매(solvent free) 하에서 이루어지는, 부타디엔 제조 방법.
제2항에 있어서,
상기 용융은 150 ℃ 이상 280 ℃ 이하의 온도에서 이루어지는, 부타디엔 제조 방법.
제1항에 있어서,
상기 열분해는 주석 촉매 하에서 이루어지는, 부타디엔 제조 방법.
제1항에 있어서,
상기 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제1항에 있어서,
상기 열분해는 무용매 하에서 이루어지는, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르는 폴리부틸렌아디페이트테레프탈레이트(PBAT)인, 부타디엔 제조 방법.
제1항에 있어서,
상기 고분자 블렌드는 폴리락트산 및 폴리부틸렌아디페이트테레프탈레이트의 고분자 블렌드, 또는 하이드록시알카노에이트 공중합체 및 폴리부틸렌아디페이트테레프탈레이트의 고분자 블렌드인, 부타디엔 제조 방법.
제9항에 있어서,
상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피온산 유래 반복단위, 락트산 또는 락타이드 유래 반복단위, 및 글리콜산 또는 글리콜라이드 유래 반복단위로 이루어진 군에서 선택된 2 종 이상의 반복단위를 포함하는, 부타디엔 제조 방법.
제9항에 있어서,
상기 하이드록시알카노에이트 공중합체는 3-하이드록시프로피오네이트-락타이드 공중합체, 글리콜라이드-락타이드 공중합체 또는 3-하이드록시프로피오네이트-글리콜라이드 공중합체인, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계; 및
상기 1차 열분해된 폴리락트산 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 부타디엔을 제조하는 단계;를 포함하는, 부타디엔 제조 방법.
제12항에 있어서,
상기 1차 열분해는 220 ℃ 이상 300 ℃ 이하의 온도에서 이루어지고,
상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제12항에 있어서,
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 150 ℃ 이상 350 ℃ 이하인, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드를 제조하는 단계;
상기 1차 열분해된 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계; 및
상기 2차 열분해된 3-하이드록시프로피오네이트-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 3차 열분해하여 부타디엔을 제조하는 단계;를 포함하는, 부타디엔 제조 방법.
제15항에 있어서,
상기 1차 열분해는 200 ℃ 이상 250 ℃ 이하의 온도에서 이루어지고,
상기 2차 열분해는 260 ℃ 이상 350 ℃ 이하의 온도에서 이루어지고,
상기 3차 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제15항에 있어서,
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 20 ℃ 이상 100 ℃ 이하이고,
상기 2차 열분해 온도와 상기 3차 열분해 온도의 차이는 150 ℃ 이상 350 ℃ 이하인, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 락타이드 및 글리콜라이드를 제조하는 단계; 및
상기 1차 열분해된 글리콜라이드-락타이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 부타디엔을 제조하는 단계;를 포함하는, 부타디엔 제조 방법.
제18항에 있어서,
상기 1차 열분해는 200 ℃ 이상 380 ℃ 이하의 온도에서 이루어지고,
상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제18항에 있어서,
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 100 ℃ 이상 400 ℃ 이하인, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
상기 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 1차 열분해하여 글리콜라이드를 제조하는 단계;
상기 1차 열분해된 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 2차 열분해하여 아크릴산을 제조하는 단계; 및
상기 2차 열분해된 3-하이드록시프로피오네이트-글리콜라이드 공중합체 및 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르를 포함하는 고분자 블렌드를 3차 열분해하여 부타디엔을 제조하는 단계;를 포함하는, 부타디엔 제조 방법.
제21항에 있어서,
상기 1차 열분해는 200 ℃ 이상 250 ℃ 이하의 온도에서 이루어지고,
상기 2차 열분해는 260 ℃ 이상 380 ℃ 이하의 온도에서 이루어지고,
상기 3차 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제1항에 있어서,
상기 1,4-부탄디올 유래 반복단위를 함유한 폴리에스테르 또는 이를 포함한 고분자 블렌드를 열분해하여 부타디엔을 제조하는 단계는,
1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 1차 열분해하여 1,4-부탄디올을 제조하는 단계; 및
상기 1차 열분해된 1,4-부탄디올 유래 반복단위를 포함하는 폴리에스테르를 2차 열분해하여 부타디엔을 제조하는 단계;를 포함하는, 부타디엔 제조 방법.
제23항에 있어서,
상기 1차 열분해는 220 ℃ 이상 350 ℃ 이하의 온도에서 이루어지고,
상기 2차 열분해는 400 ℃ 이상의 온도에서 이루어지는, 부타디엔 제조 방법.
제23항에 있어서,
상기 1차 열분해 온도와 상기 2차 열분해 온도의 차이는 100 ℃ 이상 300 ℃ 이하인, 부타디엔 제조 방법.
PCT/KR2023/010475 2022-07-20 2023-07-20 부타디엔 제조 방법 WO2024019560A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23843406.2A EP4382517A1 (en) 2022-07-20 2023-07-20 Butadiene preparation method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR20220089694 2022-07-20
KR1020220089692A KR20240012145A (ko) 2022-07-20 2022-07-20 부탄디올 및 부타디엔 제조 방법
KR10-2022-0089692 2022-07-20
KR10-2022-0089694 2022-07-20
KR1020220089693A KR20240012146A (ko) 2022-07-20 2022-07-20 락타이드, 아크릴산 및 부타디엔 제조 방법
KR10-2022-0089693 2022-07-20
KR10-2022-0121582 2022-09-26
KR1020220121582A KR20240042819A (ko) 2022-09-26 2022-09-26 락타이드, 글리콜라이드 및 부타디엔 제조 방법
KR1020220127102A KR20240047721A (ko) 2022-10-05 2022-10-05 아크릴산, 글리콜라이드 및 부타디엔 제조 방법
KR10-2022-0127102 2022-10-05
KR10-2023-0094098 2023-07-19
KR1020230094098A KR20240012334A (ko) 2022-07-20 2023-07-19 부타디엔 제조 방법

Publications (1)

Publication Number Publication Date
WO2024019560A1 true WO2024019560A1 (ko) 2024-01-25

Family

ID=89618319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010475 WO2024019560A1 (ko) 2022-07-20 2023-07-20 부타디엔 제조 방법

Country Status (2)

Country Link
EP (1) EP4382517A1 (ko)
WO (1) WO2024019560A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315681A1 (en) * 2010-02-11 2012-12-13 Johan Van Walsem Process For Producing A Monomer Component From A Genetically Modified Polyhydroxyalkanoate Biomass
KR20150032579A (ko) * 2012-07-16 2015-03-26 바스프 에스이 하나 이상의 분자 활성 화합물에 의해 촉매작용되는 폴리-3-하이드록시프로피오네이트의 열분해에 의한 아크릴산의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315681A1 (en) * 2010-02-11 2012-12-13 Johan Van Walsem Process For Producing A Monomer Component From A Genetically Modified Polyhydroxyalkanoate Biomass
KR20150032579A (ko) * 2012-07-16 2015-03-26 바스프 에스이 하나 이상의 분자 활성 화합물에 의해 촉매작용되는 폴리-3-하이드록시프로피오네이트의 열분해에 의한 아크릴산의 제조 방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FENG LIDONG, FENG SONGYANG, BIAN XINCHAO, LI GAO, CHEN XUESI: "Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 157, 1 November 2018 (2018-11-01), GB , pages 212 - 223, XP093130595, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2018.10.008 *
JALIL R., NIXON J. R.: "Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties.", JOURNAL OF MICROENCAPSULATION, vol. 07., no. 03., 1 July 1990 (1990-07-01), GB , pages 297 - 325., XP000142031, ISSN: 0265-2048 *
MARINHO VITHÓRIA A.D.; PEREIRA CAMILA A.B.; VITORINO MARIA B.C.; SILVA ALINE S.; CARVALHO LAURA H.; CANEDO EDUARDO L.: "Degradation and recovery in poly(butylene adipate-co-terephthalate)/ thermoplastic starch blends", POLYMER TESTING, ELSEVIER, AMSTERDAM, NL, vol. 58, 26 December 2016 (2016-12-26), AMSTERDAM, NL , pages 166 - 172, XP029922303, ISSN: 0142-9418, DOI: 10.1016/j.polymertesting.2016.12.028 *
SIGNORI, F. ; COLTELLI, M.B. ; BRONCO, S.: "Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 94, no. 1, 1 January 2009 (2009-01-01), GB , pages 74 - 82, XP025799264, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2008.10.004 *
YOSHIOKA, T. ; GRAUSE, G. ; OTANI, S. ; OKUWAKI, A.: "Selective production of benzene and naphthalene from poly(butylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate) by pyrolysis in the presence of calcium hydroxide", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 91, no. 5, 1 May 2006 (2006-05-01), GB , pages 1002 - 1009, XP027949504, ISSN: 0141-3910 *

Also Published As

Publication number Publication date
EP4382517A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
WO2022092558A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
WO2024019560A1 (ko) 부타디엔 제조 방법
WO2021141236A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법
WO2023195668A1 (ko) 비스(글리콜)테레프탈레이트의 제조방법 및 이를 이용한 폴리에스테르 수지
WO2014142590A1 (ko) 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체
WO2021010591A1 (ko) 폴리에스테르 수지 혼합물
WO2022004995A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2023234687A1 (ko) 아크릴산 및/또는 글리콜라이드 제조 방법
WO2022097903A1 (ko) 비스-2-하이드록시에틸 테레프탈레이트의 고순도화 정제 방법 및 이를 포함하는 폴리에스테르 수지
WO2022102936A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2023158206A1 (ko) 생분해성 고분자의 재생 방법
WO2024039113A1 (ko) 비스(글리콜)테레프탈레이트 올리고머 및 폴리에스테르 수지의 제조 방법
WO2024112099A1 (ko) 재생 비스(4-히드록시부틸)테레프탈레이트, 이의 제조방법 및 이를 이용한 폴리에스테르 수지
WO2023008826A1 (ko) 우수한 압출 가공성 및 재활용이 가능한 압출 취입 수지 및 이를 포함하는 조성물
WO2023171986A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 이용한 폴리에스테르 수지 및 이를 포함하는 물품
WO2022085845A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법
WO2020149469A1 (ko) 폴리에스테르 필름 및 이의 제조 방법
WO2023003277A1 (ko) 재활용 플라스틱 합성용 단량체 조성물, 이의 제조방법, 그리고 이를 이용한 재활용 플라스틱, 성형품 및 가소제 조성물
WO2023204561A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 포함하는 폴리에스테르 수지 및 필름
WO2024123072A1 (ko) 공중합체 및 공중합체의 제조 방법
WO2022235113A1 (ko) 분지형 폴리(락트산-3-하이드록시프로피온산) 공중합체 및 이의 제조 방법
WO2023058916A1 (ko) 재사용 단량체를 포함하는, 압출 가공성이 개선된 폴리에스테르 공중합체
WO2022005191A1 (ko) 열접착성 복합 섬유, 그 제조방법, 이를 각각 포함하는 섬유 집합체 및 부직포
WO2022103067A1 (ko) 강도가 우수한 폴리에스테르 공중합체 및 이를 포함하는 물품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 23843406.2

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023843406

Country of ref document: EP

Effective date: 20240305