WO2022085845A1 - 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법 - Google Patents

기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2022085845A1
WO2022085845A1 PCT/KR2020/016298 KR2020016298W WO2022085845A1 WO 2022085845 A1 WO2022085845 A1 WO 2022085845A1 KR 2020016298 W KR2020016298 W KR 2020016298W WO 2022085845 A1 WO2022085845 A1 WO 2022085845A1
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic
naturally
derived
biodegradable
dicarboxylic acid
Prior art date
Application number
PCT/KR2020/016298
Other languages
English (en)
French (fr)
Inventor
임헌영
조윤
유명제
Original Assignee
주식회사 안코바이오플라스틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 안코바이오플라스틱스 filed Critical 주식회사 안코바이오플라스틱스
Publication of WO2022085845A1 publication Critical patent/WO2022085845A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a naturally-derived biodegradable resin composition with improved mechanical properties, moldability and weather resistance, and a method for manufacturing the same. More particularly, it relates to a naturally-derived biodegradable resin composition that is environmentally friendly, exhibits excellent biodegradability, and has excellent mechanical properties, moldability and weather resistance, and a method for manufacturing the same.
  • biodegradable resins There are several types of biodegradable resins known so far, but they have different biodegradable properties, molecular weights, and various physical properties.
  • PBS polybutylene succinate
  • PBAT poly(butylene adipate-co-butylene terephthalate
  • biodegradable resin composition is composed only of materials obtained from fossil raw materials, environmental friendliness such as resource depletion and global warming is poor.
  • an aliphatic dicarboxylic acid obtained through fermentation of polysaccharides synthesized by photosynthesis of plants such as glucose, cellulose, and glucose derived from nature is used as a raw material for biodegradable aliphatic (or aliphatic / aromatic) polyester or is newly tried.
  • the aliphatic dicarboxylic acid obtained in this process needs to be extracted, neutralized, and purified according to the intended use in order to be used in polyester production due to impurities such as nitrogen, ammonia, and metal cations generated from the fermentation process.
  • dicarboxylic acid derived from biomass resources that has undergone the purification process contains nitrogen element or ammonia used in the refining process, nitrogen element contained therein, organic acids, inorganic acids, and metal cations, compared to dicarboxylic acids derived from fossil resources. Therefore, it is difficult to obtain sufficient molecular weight due to poor reactivity, so it is difficult to obtain a sufficient molecular weight, resulting in poor molding processability and difficult to obtain sufficient mechanical properties. .
  • Korean Patent Registration No. 10-1502051 (announced on March 06, 2015) discloses a dicarboxylic acid component comprising an aromatic dicarboxylic acid and a petroleum or naturally-derived aliphatic dicarboxylic acid; and petroleum or naturally-derived 1,4-butanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, and an aliphatic glycol component selected from the group consisting of polyols.
  • the biomass-derived aliphatic dicarboxylic acid is included in an amount of more than 15 to 30 mol% based on 100 mol% of the total dicarboxylic acid component, and the petroleum-based or biomass-derived polyol is based on 100 mol% of the total aliphatic glycol component.
  • a biodegradable copolyester resin is known, which is contained in 10-30 mol%, has a hardness (Shore D) of 30-50, and an intrinsic viscosity of 1.1-1.6 dL/g.
  • biodegradable polyester resins using the above-mentioned naturally-derived raw materials have a low degree of completion of the reaction due to impurities contained in the natural-derived raw materials, and thus hydrolysis occurs more easily compared to polyesters using fossil raw materials, resulting in a problem in durability. do.
  • One object of the present invention is to provide a naturally-derived biodegradable resin composition that is environmentally friendly, exhibits excellent biodegradability, and has excellent mechanical properties, moldability and weather resistance.
  • Another object of the present invention is to provide a method for preparing the naturally-derived biodegradable resin composition.
  • the present invention has mechanical properties, moldability and weather resistance, characterized in that it consists of a first biodegradable aliphatic/aromatic copolyester, a second biodegradable aliphatic/aromatic copolyester, and a chain extender. It provides an improved naturally-derived biodegradable resin composition.
  • the first biodegradable aliphatic/aromatic copolyester of the present invention is prepared through esterification and polycondensation of an acid component and an aliphatic diol including a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid. characterized in that
  • the acid component used for preparing the first biodegradable aliphatic/aromatic copolyester of the present invention is characterized in that it is a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid.
  • the naturally-derived aliphatic dicarboxylic acid contained in the acid component used in the preparation of the first biodegradable aliphatic/aromatic copolyester of the present invention is a naturally-derived aliphatic dicarboxylic acid having 4 carbon atoms and a naturally-derived aliphatic dicarboxylic acid having 10 carbon atoms. It is characterized in that it consists of an acid.
  • the naturally-derived aliphatic dicarboxylic acid having 4 carbon atoms and the naturally-derived aliphatic dicarboxylic acid having 10 carbon atoms of the present invention are mixed in a molar ratio of 75:25 to 25:75.
  • Aromatic dicarboxylic acid (or an esterified derivative thereof) contained in the acid component used in the production of the first biodegradable aliphatic/aromatic copolyester of the present invention is terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthoic acid and at least one selected from the group consisting of esterified derivatives thereof.
  • Naturally-derived aliphatic dicarboxylic acid and aromatic dicarboxylic acid used in the preparation of the first biodegradable aliphatic/aromatic copolyester of the present invention are mixed in a molar ratio of 65:35 to 50:50.
  • the aliphatic diol used in the preparation of the first biodegradable aliphatic/aromatic copolyester of the present invention is composed of at least one selected from the group consisting of C 2 to C 12 linear aliphatic diol and C 5 to C 15 cycloaliphatic diol. characterized in that
  • the acid component and the aliphatic diol included in the first biodegradable aliphatic/aromatic copolyester of the present invention are mixed in a molar ratio of 1:25 to 1:1.5.
  • the second biodegradable aliphatic/aromatic copolyester of the present invention is prepared through an esterification reaction and a polycondensation reaction of an acid component containing a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and an aliphatic diol characterized in that
  • the acid component used in the preparation of the second biodegradable aliphatic/aromatic copolyester of the present invention is characterized in that it is a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid.
  • the naturally-derived aliphatic dicarboxylic acid contained in the acid component used in the preparation of the second biodegradable aliphatic/aromatic copolyester of the present invention is characterized in that it is a naturally-derived aliphatic dicarboxylic acid having 4 carbon atoms.
  • the aromatic dicarboxylic acid included in the acid component used in the preparation of the second biodegradable aliphatic/aromatic copolyester of the present invention is composed of terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthoic acid, and esterified derivatives thereof. It is characterized in that it consists of one or more selected from the group.
  • the naturally-derived aliphatic dicarboxylic acid and aromatic dicarboxylic acid used in the preparation of the second biodegradable aliphatic/aromatic copolyester of the present invention are mixed in a molar ratio of 55:45 to 50:50.
  • the aliphatic diol used in the preparation of the second biodegradable aliphatic/aromatic copolyester of the present invention is composed of at least one selected from the group consisting of C 2 to C 12 linear aliphatic diol and C 5 to C 15 cycloaliphatic diol. characterized in that
  • the acid component and the aliphatic diol included in the second biodegradable aliphatic/aromatic copolyester of the present invention are mixed in a molar ratio of 1: 1.10 to 1: 1.35.
  • the first biodegradable aliphatic/aromatic copolyester of the present invention and the second biodegradable aliphatic/aromatic copolyester are mixed in a weight ratio of 70: 30 to 10: 90.
  • the chain extender of the present invention is characterized in that at least one of an isocyanate compound and a carbodiimide compound.
  • biodegradable resin composition with improved mechanical properties, moldability and weather resistance of the present invention may further include a polyfunctional compound represented by Formula 1 below.
  • m is an integer of 1 to 30.
  • the compound of Formula 1 of the present invention is characterized in that it is prepared by an esterification reaction by mixing DL-Malic acid and hydroquinone.
  • biodegradable resin composition with improved mechanical properties, moldability and weather resistance of the present invention may further contain one or more selected from the group consisting of antioxidants, UV stabilizers and lubricants in addition to the above components.
  • the present invention also provides a first raw material manufacturing step for preparing a first biodegradable aliphatic/aromatic copolyester, a second raw material manufacturing step for preparing a second biodegradable aliphatic/aromatic copolyester, Chain extension reaction by mixing the first biodegradable aliphatic/aromatic copolyester prepared through the first raw material manufacturing step, the second biodegradable aliphatic/aromatic copolyester prepared through the second raw material manufacturing step, and a chain extender
  • a method for producing a naturally-derived biodegradable resin composition with improved mechanical properties, moldability and weather resistance characterized in that it comprises a chain extension reaction step, and a solid-phase polymerization step of solid-state polymerization of a chain-extended reactant through the chain extension reaction step to provide.
  • the chain extension reaction step of the present invention is characterized in that it proceeds at a temperature of 100 to 180 °C.
  • the solid-state polymerization step of the present invention is characterized in that it proceeds at a temperature of 60 to 110 °C.
  • the first raw material preparation step and the second raw material preparation step of the present invention are characterized in that it is made in the presence of a polyfunctional compound represented by the following formula (1).
  • m is an integer of 1 to 30.
  • a biodegradable resin composition having excellent mechanical properties, moldability and weather resistance according to the present invention and a method for manufacturing the same are environmentally friendly, exhibit excellent biodegradability, and provide a biodegradable resin composition having excellent mechanical properties, moldability and weather resistance shows excellent effect.
  • FIG. 1 is a flowchart illustrating a method for preparing a biodegradable resin composition having excellent mechanical properties, moldability and weather resistance according to the present invention.
  • the present invention provides a naturally derived biodegradable resin composition with improved mechanical properties, moldability and weather resistance comprising a first biodegradable aliphatic/aromatic copolyester, a second biodegradable aliphatic/aromatic copolyester, and a chain extender. to provide.
  • the first biodegradable aliphatic/aromatic copolyester in order to distinguish between the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester for convenience, can be expressed as component A and the second biodegradable aliphatic/aromatic copolyester can be expressed as component B.
  • first biodegradable aliphatic/aromatic copolyester in order to better express the characteristics of the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester, a naturally-derived first biodegradable or second biodegradable aliphatic It can also be expressed as /aromatic copolyester.
  • the first biodegradable aliphatic/aromatic copolyester comprises an acid component and an aliphatic diol containing a mixed component of a naturally-derived aliphatic dicarboxylic acid having 4 and 10 carbon atoms and an aromatic dicarboxylic acid (or an esterified derivative thereof). It is obtained through an esterification reaction, an esterification exchange reaction, and a polycondensation reaction as a main component.
  • the second biodegradable aliphatic/aromatic copolyester is an ester mainly comprising an acid component and an aliphatic diol containing a naturally occurring aliphatic dicarboxylic acid having 4 carbon atoms and an aromatic dicarboxylic acid (or an esterified derivative thereof). It is obtained through an esterification reaction, an esterification exchange reaction, and a polycondensation reaction.
  • the naturally-derived aliphatic dicarboxylic acid having 4 carbon atoms used for preparing the first biodegradable aliphatic/aromatic copolyester is succinic acid
  • the naturally-derived aliphatic dicarboxylic acid having 10 carbon atoms is sebacic acid
  • the aromatic dicarboxylic acid (or The esterified derivative) may be at least one selected from the group consisting of terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthoic acid, and esterified derivatives thereof.
  • the aromatic dicarboxylic acid may be terephthalic acid, isophthalic acid, phthalic acid, or an esterified derivative thereof.
  • the input ratio of naturally-derived succinic acid and naturally-derived sebacic acid, which are aliphatic dicarboxylic acids used in the production of the first biodegradable aliphatic/aromatic copolyester, is 75: 25 to 25: 75 in a molar ratio.
  • the acid component is a mixed component of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid are 65: 35 to 50: It is a component mixed in a molar ratio of 50, preferably in a molar ratio of 52:48 to 55:45.
  • the content of the aromatic dicarboxylic acid is less than 35 moles, the effect of improving mechanical properties including elongation and tear strength cannot be expected, and if the content of the aromatic dicarboxylic acid is more than 50 moles, the biodegradability effect may be lost.
  • the naturally-derived aliphatic dicarboxylic acid having 4 carbon atoms used in the production of the second biodegradable aliphatic/aromatic copolyester is succinic acid
  • the aromatic dicarboxylic acid (or an esterified derivative thereof) is terephthalic acid, isophthalic acid, phthalic acid
  • the aromatic dicarboxylic acid may be terephthalic acid, isophthalic acid, phthalic acid, or an esterified derivative thereof.
  • the acid component is a mixed component of aliphatic dicarboxylic acid and aromatic dicarboxylic acid, and the aliphatic dicarboxylic acid and aromatic dicarboxylic acid are 55: 45 to 50: 50 It is a component mixed in a molar ratio.
  • the content of the aromatic dicarboxylic acid is less than 45 mol, the effect of improving mechanical properties including elongation and tear strength cannot be expected, and if it exceeds 50 mol, the biodegradability effect may be lost.
  • the acid component and the aliphatic diol including a mixed component of a naturally derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid are in a molar ratio of 1: 1.25 to 1: 1.5, preferably It can be mixed in a molar ratio of 1: 1.30 to 1: 1.35.
  • the esterification reaction or the transesterification reaction may not be smoothly performed, which may adversely affect the color of the obtained resin composition.
  • the molar ratio exceeds 1: 1.5, the production cost increases in terms of cost due to a decrease in the degree of vacuum in the reaction process, thereby reducing economic efficiency.
  • the acid component and the aliphatic diol including a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid in a molar ratio of 1: 1.10 to 1: 1.35, preferably Preferably, it can be mixed in a molar ratio of 1: 1.2 to 1: 1.30.
  • the esterification reaction or the transesterification reaction may not be smoothly performed, which may adversely affect the color of the obtained resin composition.
  • the molar ratio exceeds 1: 1.35, the production cost increases in terms of cost due to a decrease in the degree of vacuum in the reaction process, thereby reducing economic efficiency.
  • the aliphatic diol used in the preparation of the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester is composed of a C 2 to C 12 linear aliphatic diol and a C 5 to C 15 cycloaliphatic diol. At least one selected from the group, preferably, it is characterized in that it consists of at least one selected from the group consisting of C 2 to C 6 linear aliphatic diol and C 5 to C 6 cycloaliphatic diol.
  • the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester have a weight ratio of 70: 30 to 10: 90, preferably 60: 40 to 20: 80, more preferably It is mixed in a weight ratio of 50: 50 to 30: 70.
  • the content of the first biodegradable aliphatic/aromatic copolyester is less than 10 parts by weight, it is difficult to realize the desired tear strength and impact strength. There are difficulties in product molding.
  • aliphatic dicarboxylic acid and aromatic dicarboxylic acid are essentially present in the presence of a long-chain polyfunctional compound as a reaction accelerator.
  • the reaction rate is improved by mixing an acid component containing a mixed component of carboxylic acid and an aliphatic diol to carry out an esterification reaction, a transesterification reaction, and a polycondensation reaction, thereby improving productivity and economic feasibility, as well as providing superior productivity and economy compared to the prior art.
  • the biodegradable resin produced by preventing an increase in terminal carboxyl groups By reducing the polycondensation time of the biodegradable resin produced by preventing an increase in terminal carboxyl groups, it is possible to secure a resin composition with a low acid value.
  • the low terminal carboxyl group concentration in the composition suppresses the hydrolysis rate of the resin composition, thereby slowing the decomposition rate and improving durability.
  • the first biodegradable aliphatic/aromatic copolyester obtained after the polycondensation reaction and the second biodegradable aliphatic/aromatic copolyester are mixed in a predetermined ratio, and then a chain extension reaction and a solid-state polymerization reaction are essentially performed, and finally the existing Compared to the biodegradable aliphatic/aromatic biodegradable copolyester resin of It has a friendly advantage.
  • the biodegradable resin composition prepared through the present invention is an acid component comprising a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid in the presence of a polyfunctional compound represented by the following Chemical Formula 1, and an aliphatic diol
  • a twin screw extruder or a kneader is used to chain It is prepared by sequentially reacting an extension reaction and a solid-state polymerization reaction.
  • m is an integer of 1 to 30.
  • the polyfunctional compound may be a reaction accelerator that is added to the esterification reaction when the biodegradable resin composition is prepared.
  • the polyfunctional compound acts as a reaction accelerator in the esterification synthesis process of the biodegradable resin, and as compared to the conventional aliphatic/aromatic copolyester resin, a biodegradable resin composition having a desired number average molecular weight and weight average molecular weight can be obtained easily and quickly.
  • the improvement of the reaction rate has an economic advantage due to high productivity.
  • biodegradable aliphatic/aromatic copolyester resin prepared from the present invention can be prepared by shortening the high-temperature polycondensation reaction time due to the use of the polyfunctional compound due to the low concentration of terminal carboxyl groups in the prior art biodegradable aliphatic/aromatic copolyester It has a low acid value and has excellent durability due to its effect.
  • the polyfunctional compound has the advantage of easy handling and reaction control due to different reaction activities due to steric hindrance in the molecular structure and functional groups at different positions. That is, by using the polyfunctional compound as a reaction accelerator, the reaction rate is improved, and the reaction control of polyfunctional compounds such as citric acid and glycerol used as conventional reaction accelerators is difficult and gelation easily occurs. can do.
  • the reactivity is so high that it is difficult to control, and the active reaction site of the product after the polycondensation reaction is small because it is easily combined with the reaction site of the reactant, whereas in the present invention
  • the concentration of the remaining active reaction site is relatively high, so the efficiency of the chain extension reaction and the solid-state polymerization reaction sequentially performed after the polycondensation reaction which is essential in the present invention is high, so that an aliphatic having a desired molecular weight /aromatic copolyesters can be obtained.
  • the polyfunctional compound includes DL-Malic acid and hydroquinone in a molar ratio of 1: 1 to 1: 1.5, preferably 1: 1 to 1: 1.5, more preferably 1: 1.15 to 1: It can be obtained by esterification by mixing in a molar ratio of 1.3, most preferably 1:1.2 in molar ratio. In this case, when the molar ratio of DL-malic acid to hydroquinone is out of the range, the polyfunctional compound represented by Formula 1 may not be properly synthesized.
  • the polyfunctional compound may be prepared by Scheme 1 below.
  • the polyfunctional compound may be obtained by an esterification reaction by mixing DL-Malic acid and hydroquinone.
  • the polyfunctional compound may be mixed in an amount of 0.1 to 3 g, preferably 0.8 to 2.5 g, more preferably 1 to 2 g, and most preferably 1 to 1.5 g, per mole of the acid component. At this time, if the mixing amount of the polyfunctional compound is less than 0.1 g per 1 mol of the acid component, the esterification reaction of the acid component and the fatty acid diol does not sufficiently occur and the reaction rate may be slowed. Conversely, if it exceeds 3 g, the overall reaction rate may be increased, It induces gelation of the obtained resin to generate a gel or a fish eye in a product manufactured using the resin, or in severe cases, it is impossible to discharge the resin from the reactor.
  • the present invention provides a first raw material production step (S101) for producing a first biodegradable aliphatic/aromatic copolyester, a second raw material production step for producing a second biodegradable aliphatic/aromatic copolyester ( S101-1), the first biodegradable aliphatic/aromatic copolyester prepared through the first raw material manufacturing step (S101) and the second biodegradable aliphatic/ prepared through the second raw material manufacturing step (S101-1)
  • a chain extension reaction step (S103) of mixing the aromatic copolyester and a chain extender to a chain extension reaction, and a solid-state polymerization step (S105) of solid-state polymerization of the chain-extended reactant through the chain extension reaction step (S103) Provided is a method for preparing a naturally-derived biodegradable resin composition with improved mechanical properties, moldability and weather resistance.
  • a polyfunctional compound is used in the first raw material manufacturing step (S101) and the second raw material manufacturing step (S101-1), and the manufacturing process of the polyfunctional compound will be described below.
  • the preparation of the polyfunctional compound consists of a process of preparing a polyfunctional compound represented by the following Chemical Formula 1 by esterification of DL-malic acid and hydroquinone.
  • m is an integer of 1 to 30.
  • the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester prepared through the first raw material manufacturing step (S101) and the second raw material manufacturing step (S101-1) are the above It is made by performing an esterification reaction, a transesterification reaction, and a polycondensation reaction of an acid component including a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and an aliphatic diol in the presence of a polyfunctional compound of
  • the chain extension reaction step (S103) includes the first biodegradable aliphatic/aromatic copolyester prepared through the first raw material manufacturing step (S101) and the second prepared through the second raw material manufacturing step (S101-1).
  • a chain extension reaction by mixing biodegradable aliphatic/aromatic copolyester and chain extender, the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester are placed in a twin-screw extruder or a kneader.
  • 0.05 to 1 part by weight of one compound selected from an isocyanate compound or a carbodiimide compound is added as a chain extender, and the process is performed at a temperature of 100 to 180°C.
  • the solid-state polymerization step (S105) is a step of solid-state polymerization of the chain-extended reactant through the chain extension reaction step (S103). It consists of a process of preparing a biodegradable resin composition by solid-state polymerization at a temperature of 110 °C.
  • the preparation of the polyfunctional compound is a step of preparing the polyfunctional compound represented by Formula 1 by esterifying DL-malic acid and hydroquinone.
  • DL-malic acid and hydroquinone in a molar ratio of 1: 1 to 1: 1.5 are esterified at a temperature of 195 to 220 ° C. for 180 to 240 minutes to prepare a polyfunctional compound represented by Formula 1 is made in the process of
  • the esterification reaction may be performed by adding the DL-malic acid and hydroquinone to a reactor equipped with a reflux tower, and then slowly raising the temperature while stirring.
  • the final temperature rise temperature and reaction time during the esterification reaction is 180 to 240 minutes at 195 to 220 ° C., preferably 190 to 230 minutes at 200 to 215 ° C., more preferably 200 to 220 minutes at 205 to 215 ° C. can be done while If the final temperature rise temperature is less than 195° C. or the reaction time is less than 180 minutes, the esterification reaction may not proceed smoothly. Conversely, if the final temperature rise temperature exceeds 220° C. or the reaction time exceeds 240 minutes, a good quality polyfunctional compound cannot be obtained due to thermal decomposition of the obtained product.
  • the catalyst used may be at least one selected from the group consisting of monobutyltin oxide, titanium propoxide and tetrabutyl titanate, but is not limited thereto.
  • the catalyst is 0.01 to 0.2 g, more preferably 0.01 to 0.05 g per 1 mole of DL-malic acid, and then, while maintaining the temperature of the reactor at 195 to 220° C., completely draining the theoretical amount of water to obtain a polyfunctional compound can do.
  • an acid component including a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid in the presence of the polyfunctional compound, and an aliphatic diol esterification reaction, transesterification reaction and preparing a naturally-derived first biodegradable aliphatic/aromatic copolyester as a reaction product through a polycondensation reaction.
  • an acid component and an aliphatic diol containing a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid are mixed with 1:1.25 to First biodegradable aliphatic/aromatic copolyester derived from nature by mixing in a molar ratio of 1: 1.5, preparing an oligomer through esterification and transesterification at a temperature of 185 to 235° C., and then carrying out a polycondensation reaction of the obtained compound It consists of the process of manufacturing a product.
  • the acid component is a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid
  • the naturally-derived aliphatic dicarboxylic acid and the aromatic dicarboxylic acid have a molar ratio of 65: 35 to 50: 50, preferably 52 : 48 to 55: a component mixed in a molar ratio of 45.
  • the content of the aromatic dicarboxylic acid is less than 35 moles, the effect of improving mechanical properties including elongation and tear strength cannot be expected, and if the content of the aromatic dicarboxylic acid is more than 50 moles, the biodegradability effect may be lost.
  • aromatic dicarboxylic acid may be at least one selected from the group consisting of terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthoic acid, and esterified derivatives thereof.
  • the aromatic dicarboxylic acid may be terephthalic acid, isophthalic acid, phthalic acid, or an esterified derivative thereof, and more preferably terephthalic acid or dimethyl terephthalate, which is an esterified derivative thereof.
  • the aliphatic dicarboxylic acid is a mixed component of naturally-derived succinic acid and naturally-derived sebacic acid, and the input ratio is 75: 25 to 25: 75 in a molar ratio.
  • the molar ratio of sebacic acid among the aliphatic acid components is less than 25 moles, sufficient elongation, tear strength, and biodegradability of the resin may be lowered. It is disadvantageous in terms of blocking properties, mold release properties and shrinkage of the molded product.
  • the reaction temperature in the esterification reaction proceeding in the first raw material manufacturing step (S101) is preferably 185 to 235 °C, more preferably 190 to 200 °C, it is good to be carried out at 195 °C most preferably. If the temperature is less than 185°C, the esterification reaction and transesterification reaction may not sufficiently occur, and conversely, if the temperature is higher than 235°C, the resulting oligomer may be thermally decomposed.
  • the aliphatic diol may be a C 2 to C 12 linear aliphatic diol, a C 5 to C 15 cycloaliphatic diol, or a mixture thereof.
  • it may be a C 2 to C 6 linear aliphatic diol, a C 5 to C 6 cycloaliphatic diol, or a mixture thereof.
  • the aliphatic diol is ethylene glycol, 1,2-propanediol, 1.2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and 1,2-cyclohexanedimethanol, 1 It may be at least one selected from the group consisting of ,4-cyclohexanedimethanol. Even more preferably, 1,4-butanediol, ethylene glycol, or a mixture thereof may be used as the aliphatic diol.
  • the acid component and the aliphatic diol may be mixed in a molar ratio of 1: 1.25 to 1: 1.5, preferably 1: 1.30 to 1: 1.35.
  • the molar ratio of the aliphatic dicarboxylic acid to the aliphatic diol is less than 1: 1.25, the esterification reaction or the transesterification reaction may not be smoothly performed, which may adversely affect the color of the obtained resin composition.
  • the molar ratio exceeds 1: 1.5, the production cost increases in terms of cost due to a decrease in the degree of vacuum in the reaction process, thereby reducing economic efficiency.
  • the second raw material manufacturing step (S101-1) is an esterification reaction of an acid component including a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid in the presence of the polyfunctional compound, and an aliphatic diol, an ester
  • This is a step of preparing a first naturally-derived biodegradable aliphatic/aromatic copolyester as a reaction product through an exchange reaction and a polycondensation reaction.
  • the acid component is a mixed component of a naturally-derived aliphatic dicarboxylic acid and an aromatic dicarboxylic acid
  • the naturally-derived aliphatic dicarboxylic acid and the aromatic dicarboxylic acid have a molar ratio of 55: 45 to 50: 50, preferably 58 : 42 to 55: 45 is a component mixed in a molar ratio.
  • the content of the aromatic dicarboxylic acid is less than 45 moles, the effect of lowering processability due to a slow cooling rate and improving mechanical properties including elongation and tear strength cannot be expected, and if the content of the aromatic dicarboxylic acid is more than 50 moles, the biodegradability effect may be lost. .
  • aromatic dicarboxylic acid may be at least one selected from the group consisting of terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthoic acid, and esterified derivatives thereof.
  • the aromatic dicarboxylic acid may be terephthalic acid, isophthalic acid, phthalic acid, or an esterified derivative thereof, and more preferably terephthalic acid or dimethyl terephthalate, which is an esterified derivative thereof.
  • the reaction temperature in the esterification reaction proceeding in the second raw material manufacturing step (S101-1) is preferably 185 to 215 °C, more preferably 190 to 210 °C, most preferably 195 to 200 °C. good to do If the temperature is less than 185 ° C, the esterification reaction and transesterification reaction may not sufficiently occur. Conversely, when the temperature exceeds 215 ° C., the resulting oligomer is thermally decomposed or tetrahydrofuran is generated, thereby affecting the color and reactivity of the reactant. can give
  • the aliphatic diol may be a C 2 to C 12 linear aliphatic diol, a C 5 to C 15 cycloaliphatic diol, or a mixture thereof.
  • it may be a C 2 to C 6 linear aliphatic diol, a C 5 to C 6 cycloaliphatic diol, or a mixture thereof.
  • the aliphatic diol is ethylene glycol, 1,2-propanediol, 1.2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and 1,2-cyclohexanedimethanol, 1 It may be at least one selected from the group consisting of ,4-cyclohexanedimethanol. Even more preferably, 1,4-butanediol, ethylene glycol, or a mixture thereof may be used as the aliphatic diol.
  • the acid component and the aliphatic diol may be mixed in a molar ratio of 1: 1.10 to 1: 1.35, preferably 1: 1.2 to 1: 1.30.
  • the molar ratio of the aliphatic dicarboxylic acid to the aliphatic diol is less than 1: 1.10, the esterification reaction or the transesterification reaction may not be smoothly performed, which may adversely affect the color of the obtained resin composition.
  • the molar ratio exceeds 1: 1.35, the production cost increases in terms of cost due to a decrease in the degree of vacuum in the reaction process, thereby reducing economic efficiency.
  • succinic acid when used as the naturally-derived aliphatic dicarboxylic acid and dimethyl terephthalate is used as the aromatic dicarboxylic acid, the succinic acid reacts with the aliphatic glycol and water flows out as a by-product of the reaction, and dimethyl terephthalate is an aliphatic glycol It may react with methanol to generate methanol as a by-product of the reaction.
  • dimethyl terephthalate is an aliphatic glycol It may react with methanol to generate methanol as a by-product of the reaction.
  • a phenomenon in which the reactor column is clogged due to competition between the two reactions may not occur.
  • the mixed component of the naturally-derived aliphatic dicarboxylic acid and the aromatic dicarboxylic acid when used, it may be dividedly added within the range of use of the total amount or may be added at a time in one selected reaction step. Preferably, it is good to divide the reaction into two steps. For example, after adding succinic acid and an aliphatic diol, a theoretical amount of water is drained, and dimethyl terephthalate is added in the presence of an esterification reaction product of succinic acid and an aliphatic diol to proceed with the esterification reaction, and the theoretical amount of methanol is drained for the reaction. may be completed or the reaction may be carried out in the reverse order. In this case, the total amount of the aliphatic diol to be added may be added in the first step or divided according to the molar ratio in each step.
  • a catalyst may be further included, and the catalyst is specifically titanium isopropoxide, calcium acetate, antimony trioxide, dibutyltin oxide, and antimony acetate.
  • tetrabutyl titanate and tetrapropyl titanate may be used at least one selected from the group consisting of, but is not limited thereto.
  • the catalyst may be mixed in an amount of 0.01 to 0.5 g, more preferably 0.03 to 0.2 g, and most preferably 0.1 g per 1 mole of the acid component. At this time, if the content of the catalyst is less than 0.01 g, the reaction rate of the esterification reaction and the transesterification reaction may be delayed or may not react sufficiently. Conversely, if the content of the catalyst is more than 0.5 g, side reactions may occur or the reverse reaction rate may increase, thereby causing color change and deterioration of physical properties of the reactants.
  • a stabilizer may be further included at the initial stage or at the end of the esterification reaction and the transesterification reaction.
  • the stabilizer may include at least one selected from the group consisting of trimethyl phosphate, phosphoric acid and triphenyl phosphate, but is not limited thereto.
  • the stabilizer may be mixed in an amount of 0.01 to 0.5 g, more preferably 0.03 to 0.2 g, and most preferably 0.1 g per 1 mole of the acid component.
  • the content of the stabilizer is less than 0.01 g, the esterification reaction and the transesterification reaction may not react sufficiently, and on the contrary, if it exceeds 0.5 g, the reaction rate is slowed by hindering the reaction progress and the biodegradable resin having a sufficient amount of high molecular weight The composition cannot be obtained.
  • the reaction products of the esterification reaction and the esterification exchange reaction may be subjected to polycondensation to prepare a first biodegradable aliphatic/aromatic copolyester and a second biodegradable aliphatic/aromatic copolyester.
  • the reaction product prepared above is prepared by polycondensation reaction at 235 to 255° C. under a vacuum degree of 0.1 to 2 torr for 100 to 240 minutes, wherein the polycondensation temperature and pressure are 2 torr or less at 235 to 255° C. , preferably at 240 to 245 °C 0.1 to 2 torr, most preferably at 245 °C 1 to 1.5 torr conditions.
  • the first biodegradable aliphatic/aromatic copolyester produced through the first raw material manufacturing step (S101) has a number average molecular weight of 15,000 to 30,000, and a melt flow index of 190°C and 2,160 g under measurement conditions of 30 g/10 min to 50 g/10 min, and an acid value of 1.0 mgKOH/g to 1.5 mgKOH/g.
  • the second biodegradable aliphatic/aromatic copolyester produced through the second raw material manufacturing step (S101-1) has a number average molecular weight of 15,000 to 30,000, and a melt flow index of 190°C and 2,160 g. Under 25g/10min to 50g/10min, the acid value is 0.5mgKOH/g to 1.5mgKOH/g.
  • the chain extension reaction step (S103) includes the first biodegradable aliphatic/aromatic copolyester prepared through the first raw material manufacturing step (S101) and the second prepared through the second raw material manufacturing step (S101-1). This is a chain extension reaction by mixing biodegradable aliphatic/aromatic copolyester and a chain extender.
  • the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester After mixing the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester, it is added to a twin-screw extruder or a kneader, and 0.05 to 1 part by weight of a chain extender is added It is a step of chain extension reaction in the range of 100 to 180 °C.
  • the melt flow index is high, and when the chain extension reaction is carried out at a temperature exceeding the above range, the chain extension reaction rate increases and the pyrolysis reaction rate, which is a reverse reaction, also increases, so that the molecular weight distribution is excessively broadened, and due to oxidation products and short polymer chains generated by pyrolysis, mechanical properties may deteriorate and storage stability may be deteriorated due to rapid hydrolysis. Conversely, when the chain extension reaction is carried out at a temperature less than the above-mentioned range, the resin composition is not sufficiently melted in the reaction step, so that the reaction does not occur sufficiently, so that the effect cannot be obtained.
  • the mixing ratio of the first biodegradable aliphatic/aromatic copolyester and the second biodegradable aliphatic/aromatic copolyester is 70: 30 to 10: 90 by weight, preferably 60 : 40 to 20: 80, more preferably 50: 50 to 30: 70.
  • the content of the first biodegradable aliphatic/aromatic copolyester is less than 10 parts by weight, it is difficult to realize the desired tear strength and impact strength. There are difficulties in product molding.
  • chain extender used in the chain extension reaction step (S103) one compound selected from an isocyanate compound and a carbodiimide compound may be used.
  • the isocyanate compound used one selected from the group consisting of 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate may be used.
  • Another chain extender carbodiimide compound is 1,3-dicyclohexylcarbodiimide, HMV-8CA, HMV-10B sold by Nisshinbo, STABILIZER 9000, STABILIZER 7000 by Raschig, bis-(2,6-di one selected from the group consisting of isopropyl-phenylline-2,4-carbodiimide) and poly-(1,3,5-triisopropyl-phenyli-2,4-carbodiimide) may be used.
  • the reactant obtained through the chain extension reaction step (S103) has a number average molecular weight of 30,000 to 50,000, a melt flow index of 190° C. and 10 g/10 min to 25 g/10 min under measurement conditions of 2,160 g, and an acid value of 0.8 mgKOH/ g to 2.0 mgKOH/g.
  • the solid-state polymerization step (S105) is a step of solid-state polymerization of the chain-extended reactant through the chain extension reaction step (S103). It is a step of increasing the molecular weight by polymerization.
  • the solid-state polymerization step (S105) is a step of finally preparing a biodegradable resin composition by solid-state polymerization of the resin composition after the chain extension reaction has been completed at a temperature of 60 to 110 ° C. lower than the melting point.
  • a dehumidifying dryer or vacuum dryer in which dehumidified air is supplied to the reactor can be used, and more preferably, carrying out the reaction in a vacuum dryer capable of maintaining a vacuum of less than 50 torr is to shorten the reaction time. It is advantageous.
  • the final biodegradable resin composition obtained through solid-state polymerization can suppress side reactions by reacting below the melting temperature, and improve storage stability by improving hydrolysis resistance at the end of the resin composition, as well as with residual monomers in the resin composition. Because the content of the low molecular weight oligomer is low and the degree of crystallinity increases as the molecular weight increases, mechanical properties and processing performance can be improved.
  • the biodegradable resin composition prepared through the solid-state polymerization step (S105) has a melting point of 85 to 160° C., a number average molecular weight (Mn) of 45,000 to 80,000, and a weight average molecular weight (Mw) of 120,000 to 350,000, and a melt flow
  • the index is 0.5 to 10 g/10 min at 190° C. and a load of 2.16 kg, and the acid value is 0.8 mgKOH/g to 2.0 mgKOH/g.
  • additives commonly used in the art are added to the first raw material manufacturing step (S101), the second raw material manufacturing step (S101-1) as needed to improve performance during the production of the biodegradable resin composition.
  • the additive is preferably made of at least one selected from the group consisting of antioxidants, UV stabilizers and lubricants.
  • the antioxidant it is preferable to use a phenol-based antioxidant, and specifically, Adekastab AO series, Irgafos series, or mixtures thereof may be used.
  • the antioxidant may be mixed in an amount of 0.1 to 1.0 parts by weight based on 100 parts by weight of the biodegradable resin composition.
  • the UV stabilizer may use a HALS-based compound having an amine group, and the UV stabilizer may be mixed in an amount of 0.1 to 0.8 parts by weight based on 100 parts by weight of the biodegradable resin composition.
  • the lubricant may be an amide-based PE wax, and the lubricant may be mixed in an amount of 0.1 to 1.0 parts by weight based on 100 parts by weight of the biodegradable resin composition.
  • biodegradable resin composition prepared through the present invention can be used by compounding with a single component or a mixed component of polylactic acid or thermoplastic starch, which is known and commercialized as an existing naturally-derived resin composition, and the amount used is the natural origin of the present invention.
  • the amount of the biodegradable resin composition (C) and the polylactic acid or thermoplastic starch alone or mixed is in the range of 60: 40 to 90: 10 by weight.
  • n is an integer from 1 to 30.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 17.48 kg, 1,4-butanediol 11.25 kg, 300 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate, a catalyst, were added, and then the reactor temperature was stirred while stirring. was finally fixed at 195° C. by raising the temperature, and then methanol was drained. Then, 16.71 kg of naturally-derived sebacic acid, 3.25 kg of naturally-derived succinic acid, and 11.25 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 17.48 kg, 1,4-butanediol 10.81 kg, 250 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate, a catalyst, were added, and then the reactor temperature was stirred while stirring. After the temperature was raised and finally fixed at 200 °C, methanol was discharged. Then, 12.99 kg of naturally-derived succinic acid and 10.81 kg of 1,4-butanediol were put into the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 18.64 kg, 1,4-butanediol 11.25 kg, 325 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate as a catalyst were added, and then the reactor temperature was stirred while stirring. was finally fixed at 195° C. by raising the temperature, and then methanol was drained. Then, 12.64 kg of naturally-derived sebacic acid, 4.91 kg of naturally-derived succinic acid, and 11.25 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 18.64 kg, 1,4-butanediol 10.81 kg, 250 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate, a catalyst, were added, and then the reactor temperature was stirred while stirring. After the temperature was raised and finally fixed at 200 °C, methanol was discharged. Then, 12.28 kg of naturally-derived succinic acid and 10.81 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 15.53 kg, 1,4-butanediol 11.25 kg, 280 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate as a catalyst were added, and then the reactor temperature was stirred while stirring. was finally fixed at 195° C. by raising the temperature, and then methanol was drained. Then, 14.58 kg of naturally-derived sebacic acid, 5.67 kg of naturally-derived succinic acid, and 11.25 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 18.64 kg, 1,4-butanediol 10.81 kg, 250 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate, a catalyst, were added, and then the reactor temperature was stirred while stirring. After the temperature was raised and finally fixed at 200 °C, methanol was discharged. Then, 12.28 kg of naturally-derived succinic acid and 10.81 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 17.48 kg, 1,4-butanediol 11.25 kg, 300 g of the polyfunctional compound obtained in Preparation Example, and 9.6 g of tetrabutyl titanate, a catalyst, were added, and then the reactor temperature was stirred while stirring. was finally fixed at 195° C. by raising the temperature, and then methanol was drained. Then, 16.70 kg of naturally-derived sebacic acid, 3.25 kg of naturally-derived succinic acid, and 11.25 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • the 100L reactor was replaced with nitrogen, 15.95 kg of phthalic acid, 13.0 kg of naturally-derived succinic acid, 21.62 kg of 1,4-butanediol and 400 g of the polyfunctional compound obtained in Preparation Example were added, and then the temperature of the reactor was raised while stirring. Finally, after fixing at 238° C., water was drained. At this time, 10 g of dibutyltin oxide as a catalyst, 10 g of tetrabutyl titanate, and 15 g of trimethyl phosphate as a stabilizer were added. After the theoretical amount of water flowed out, the temperature was continuously increased and a polycondensation reaction was carried out at a temperature of 250° C.
  • a 100 L reactor was replaced with nitrogen, and 15.95 kg of phthalic acid, 12.64 kg of naturally-derived sebacic acid, 4.91 kg of naturally-derived succinic acid, 22.53 kg of 1,4-butanediol, 380 g of the polyfunctional compound obtained in Preparation Example and catalyst After 9.6 g of phosphorus tetrabutyl titanate was added, the temperature of the reactor was raised while stirring, and the temperature was finally fixed at 238° C., and then water was discharged. At this time, 10 g of dibutyltin oxide as a catalyst, 10 g of tetrabutyl titanate, and 15 g of trimethyl phosphate as a stabilizer were added.
  • a 100 L reactor was replaced with nitrogen, isophthalic acid 13.29 kg, naturally-derived sebacic acid 14.58 kg, naturally-derived succinic acid 4.91 kg, 1,4-butanediol 22.53 kg, the polyfunctional compound obtained in Preparation Example 385 g, and the catalyst tetrabutyl After adding 9.6 g of titanate, the temperature of the reactor was raised while stirring and finally fixed at 238° C., and then water was discharged. At this time, 10 g of dibutyltin oxide as a catalyst, 10 g of tetrabutyl titanate, and 15 g of trimethyl phosphate as a stabilizer were added.
  • the 100L reactor was replaced with nitrogen, and 18.64 kg of isophthalic acid, 12.28 kg of naturally-derived succinic acid, 21.62 kg of 1,4-butanediol and 350 g of the polyfunctional compound obtained in Preparation Example were added, and then the temperature of the reactor was raised while stirring and finally 238 After fixing at °C, water was discharged. At this time, 10 g of dibutyltin oxide as a catalyst, 10 g of tetrabutyl titanate, and 15 g of trimethyl phosphate as a stabilizer were added. After the theoretical amount of water flowed out, the temperature was continuously increased and a polycondensation reaction was carried out at a temperature of 250° C.
  • the 100L reactor was replaced with nitrogen, dimethyl terephthalate 17.48 kg, 1,4-butanediol 10.81 kg, and catalyst tetrabutyl titanate 9.6 g were added, and then the temperature of the reactor was raised while stirring. spilled out Then, 12.98 kg of naturally-derived succinic acid and 11.72 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged. At this time, 10 g of dibutyltin oxide as a catalyst, 10 g of titanium isopropoxide, and 20 g of trimethyl phosphate as a stabilizer were added. Thereafter, the temperature of the reactor was raised and a polycondensation reaction was performed at 245° C. under a reduced pressure of 1.5 torr for 252 minutes to obtain a biodegradable resin composition.
  • the 100 L reactor was replaced with nitrogen, dimethyl terephthalate 17.48 kg, 1,4-butanediol 22.53 kg, and catalyst tetrabutyl titanate 10.4 g were added, and then the temperature of the reactor was raised while stirring, and finally fixed at 200 ° C. and methanol was added. spilled out Then, 16.7 kg of naturally-derived sebacic acid and 3.24 kg of naturally-derived succinic acid were added to the reactor, the reaction temperature was raised, and finally fixed at 203° C., and the theoretical amount of water was discharged. At this time, 8 g of dibutyltin oxide as a catalyst, 8 g of titanium isopropoxide, and 15 g of trimethyl phosphate as a stabilizer were added. Thereafter, the temperature of the reactor was raised and a polycondensation reaction was performed at 245° C. under a reduced pressure of 1.5 torr for 268 minutes to obtain a biodegradable resin composition.
  • a 100 L reactor was replaced with nitrogen, dimethyl terephthalate 18.64 kg, 1,4-butanediol 10.81 kg, and tetrabutyl titanate 9.6 g as a catalyst were added, and then the temperature of the reactor was raised while stirring and finally fixed at 200 ° C., followed by methanol was leaked Then, 12.28 kg of naturally-derived succinic acid and 10.81 kg of 1,4-butanediol were added to the reactor, the reaction temperature was raised, and finally fixed at 205° C., and then the theoretical amount of water was discharged.
  • the biodegradable aliphatic/aromatic copolyester composition of Comparative Examples 1 and 2 was mixed using a supermixer in a weight ratio of 10: 90 to prepare 100 kg, and then compounded at 140° C. with a twin-screw extruder having a diameter of 58 mm to mix the biodegradable resin A composition was prepared.
  • 100 kg was prepared by mixing the biodegradable aliphatic/aromatic copolyester resin composition of Comparative Examples 1 and 2 in a weight ratio of 70: 30, 1,6-hexamethylene diisocyanate 550 g was added, and then mixed using a super mixer.
  • a chain extension reaction was carried out at 140°C with a twin-screw extruder having a diameter of 58 mm. Then, the reactant obtained by the chain extension reaction was put into a solid-state polymerization device equipped with a vacuum pump, and the solid-state polymerization reaction was performed at 95° C. for 10 hours to obtain a naturally-derived biodegradable resin composition.
  • biodegradable aliphatic/aromatic copolyester compositions of Comparative Examples 3 and 4 were mixed using a supermixer in a weight ratio of 10: 90, and then compounded at 140° C. with a twin-screw extruder having a diameter of 58 mm.
  • a naturally-derived biodegradable resin mixture composition got
  • the number average molecular weight and the weight average molecular weight distribution were measured using a gel permeation chromatography analysis method at 35° C. using an equipment equipped with a column filled with polystyrene. At this time, the developing solvent was chloroform, the concentration of the sample was 5 mg/mL, and the flow rate of the solvent was 1.0 mL/min.
  • the melting point was measured from 20°C to 200°C using a differential scanning calorimeter at a temperature increase rate of 10°C per minute in a nitrogen atmosphere.
  • the melt flow index was performed at 190°C and 2,160 g in accordance with the standard of ASTM D1238.
  • Comparative Examples 1 to 7 the polyfunctional compound is not included, so the polycondensation reaction takes a long time, a high acid value is high due to an increase in the reverse reaction due to a long reaction time, and the number average molecular weight and weight average molecular weight are carried out as a whole. It showed a significantly lower value compared to Examples 1 to 6, and the melt flow index was very high, and it was expected that extrusion formability, mechanical properties, and durability were weak.
  • the measurement sample was carried out by manufacturing a 25 ⁇ m thick film with an expansion ratio of 2.0 to 1 using a blown film machine having a screw diameter of 50 mm, a die gap of 2.2 mm, and a die diameter of 100 mm.
  • Tensile strength and elongation were measured using a universal test machine by preparing a 20um blown film and preparing a specimen conforming to ASTM D638 standard.
  • the dart impact strength was measured using a dart impact strength measuring device in a method conforming to ASTM D1709 by manufacturing a 20um blown film.
  • the sample prepared by the above method was recovered 12 months after burying at a depth of 30 cm from the soil surface and measured using the weight reduction method.
  • Comparative Examples 1 to 7 showed excellent biodegradability of 82.1% or more, but this was only due to the low molecular weight. was significantly reduced, and it was confirmed that the workability was not good at an average or poor level.
  • the naturally-derived biodegradable resin composition of Examples 1 to 6 and the resin composition prepared in Comparative Examples 1 to 7 were left at a temperature of 25° C. and a relative humidity of 75%, and then samples were collected every 6 months and the number average
  • the change in molecular weight is measured and compared with the initial value
  • the film produced by the method of Experimental Example 2 is left at a temperature of 25° C. and a relative humidity of 75%, and then a sample is taken every 6 months to measure the tensile strength and elongation.
  • the change over time was confirmed by comparing it with the initial value.
  • the biodegradable resin composition having excellent mechanical properties, moldability and weather resistance according to the present invention and a method for manufacturing the same are environmentally friendly, exhibit excellent biodegradability, and provide a biodegradable resin composition having excellent mechanical properties, moldability and weather resistance. to provide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 환경친화적이며, 우수한 생분해성을 나타낼 뿐만 아니라 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법에 관한 것이다. 보다 구체적으로, 상기 자연유래 생분해성 수지 조성물은 제1생분해성 지방족/방향족 코폴리에스테르, 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제로 이루어지며, 상기 자연유래 생분해성 수지 조성물은 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 제1원료제조단계, 제2생분해성 지방족/방향족 코폴리에스테르를 제조하는 제2원료제조단계, 상기 제1원료제조단계를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 사슬연장반응단계 및 상기 사슬연장반응단계를 통해 사슬연장된 반응물을 고상중합하는 고상중합단계를 통해 제조된다.

Description

기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법
본 발명은 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법에 관한 것이다. 더욱 상세하게는 환경 친화적이며, 우수한 생분해성을 나타낼 뿐만 아니라, 기계적 물성, 성형성 및 내후성이 우수한 자연유래 생분해성 수지 조성물 및 그 제조방법에 관한 것이다.
세계적으로 환경오염에 대해 사회문제가 대두되고 있으며, 기존 산업분야에서 사용되는 각종 플라스틱의 경우 자연분해가 어려운 난분해성 소재로 사용 후 매립 및 소각에 의해 처리하는 경우가 많다. 이 경우 매립지의 부족과 소각 시 발생하는 유해물질로 환경오염을 유발하는 문제가 있다. 이러한 문제점의 해결방안으로 생분해성 수지에 대한 연구가 활발하게 진행되고 있다.
지금까지 알려진 생분해성 수지는 여러 종류가 있으나 각각 생분해 특성이나 분자량, 각종 물성 등이 서로 달라서 제품에 적용 시 용도의 한계가 있거나 성형성 또는 제품성이 불량하여 사용이 제한되고 있는 실정이다.
현재 세계적으로 생분해성 필름용으로 각광을 받고 있는 지방족 폴리에스테르인 폴리부틸렌숙시네이트(PBS) 또는 폴리(부틸렌아디페이트-코-부틸렌테레프탈레이트(PBAT) 경우 폴리에틸렌 및 폴리프로필렌 등과 유사한 특성을 나타내기 때문에, 합성수지의 대체자원으로 기대되고 있다.
그러나, 상기 생분해성 수지 조성물은 화석원료로부터 얻어지는 물질로만 구성이 되어있어 자원 고갈 문제 및 지구 온난화 문제 발생 등의 친환경성이 떨어진다.
상기한 문제점을 해결하기 위한 노력으로 생분해성 수지 조성물에 사용되는 원료물질을 자연유래로 전환하는 연구가 활발히 진행되고 있다.
일례로, 자연 유래의 글루코즈, 셀룰로오스, 포도당 등 식물들의 광합성으로 합성되는 다당류의 발효를 통해 얻어지는 지방족 디카르복실산을 생분해성 지방족(또는 지방족/방향족) 폴리에스테르의 원료로 사용되거나 새롭게 시도되고 있다. 하지만 이 과정에서 얻어지는 지방족 디카르복실산은 발효과정으로부터 발생하는 질소, 암모니아, 금속 양이온 등의 불순물로 인해 폴리에스테르 제조에 사용하기 위해서는 용도에 맞게 추출, 중화 및 정제 등의 공정이 필요하다.
상기한 방법을 통해 얻은 자연 유래 디카르복실산을 이용한 폴리에스테르 제조 방법들이 다양한 문헌(미래 재료, 제1권, 제11호, 31 페이지(2001); 일본 특개 2005-27533호; Biotechnology and Bioengineering Symp. No.17(1986) 355-363; Journal of the American Chemical Society No.116 (1994) 399-400; Appl.Microbiol Biotechnol No.51 (1999) 545-552; 일본 특개 2005-139287호)에 개시되어 있다. 그러나, 정제 과정을 거친 바이오매스 자원 유래 디카르복실산은 화석자원 유래의 디카르복실산에 비해 질소 원소나 정제공정에서 사용되는 암모니아 및 그에 포함되어 있는 질소 원소와 유기산, 무기산, 금속 양이온을 함유하고 있어 반응성이 떨어져 충분한 분자량을 얻기 곤란하여 성형가공성이 떨어지고 충분한 기계적 물성을 얻기 어려울 뿐 아니라 반응시간도 상당히 길어져 경제적 측면으로도 불리한 문제점이 있고, 또한 내가수분해성이 떨어져 쉽게 경시변화가 일어나는 단점이 있다.
상기 문제점을 해결하기 위한 하나의 방법으로서, 한국등록특허 제10-1276100호(2013년 06월 12일 공고)에 제1 공중합 성분으로서 (a) 방향족 디카르복실산, 그 산무수물 또는 이들의 혼합물, 및 (b) 글루타르산을 포함하는 지방족 디카르복실산, 그 산무수물 또는 이들의 혼합물로 이루어지는 디카르복실산 성분; 및 제2 공중합 성분으로서 자연 유래 에틸렌글리콜, 이소소르비드 및 네오펜틸글리콜로 이루어지는 글리콜 성분;으로 이루어지고, 상기 디카르복실산 성분은 상기 방향족 디카르복실산, 그 산무수물 또는 이들의 혼합물(a)이 60 내지 95 몰%이고, 상기 글루타르산을 포함하는 지방족 디카르복실산, 그 산무수물 또는 이들의 혼합물(b)이 5 내지 40 몰%이며, 상기 글리콜 성분은 상기 자연유래 에틸렌글리콜이 80 내지 99.8 몰%, 상기 이소소르비드가 0.1 내지 10몰% 및 상기 네오펜틸글리콜이 0.1 내지 10 몰%인 것을 특징으로 하는 자연유래 원료로부터 만들어지는 생분해성 코폴리에스테르 수지가 공지되어 있다.
또한, 한국 등록특허 제10-1502051호(2015년 03월 06일 공고)에 방향족 디카르복실산, 및 석유계 또는 자연유래 지방족 디카르복실산으로 이루어진 디카르복실산 성분; 및 석유계 또는 자연유래 1,4-부탄디올, 에틸렌글리콜, 1,2-프로판디올, 네오펜틸글리콜, 및 폴리올로 이루어진 군으로부터 하나 이상 선택되는 지방족 글리콜 성분을 축합중합하여 제조되고, 상기 석유계 또는 바이오매스 유래 지방족 디카르복실산은 전체 디카르복실산 성분 100 몰%를 기준으로 15 초과 내지 30 이하 몰%로 포함되고, 상기 석유계 또는 바이오매스 유래 폴리올은 전체 지방족 글리콜 성분 100 몰%를 기준으로 10~30 몰%로 포함되며, 경도(Shore D)가 30~50이고, 극한점도가 1.1~1.6 dL/g인 것을 특징으로 하는 생분해성 코폴리에스테르 수지가 공지되어 있다.
또한, 한국 등록특허 제10-1514786호(2015년 04월 17일 공고)에 자연유래 2,5-비스하이드록시메틸퓨란 1 mol% 내지 30 mol% 및 2,5-비스하이드록시메틸퓨란 이외의 방향족 디올 화합물 및 지방족 디올 화합물 잔량을 포함한 디올 성분과 디카르복실산 성분의 반응물로 이루어지고, 상기 디카르복실산 성분과 디올 성분의 몰비는 1: 1.05 내지 1: 3.0이고, 80℃ 내지 100℃의 유리 전이 온도 및 0.5 내지 1.5 dl/g의 고유 점도를 갖는, 폴리에스테르 수지가 공지되어 있다.
그러나, 상기한 자연유래 원료를 이용한 생분해성 폴리에스테르 수지들은 자연유래 원료에 포함된 불순물로 인해 반응의 완결도가 떨어져 화석원료 유래 원료를 사용한 폴리에스테르에 비해 가수분해가 쉽게 일어나 내구성에 문제가 발생된다.
본 발명의 하나의 목적은 환경 친화적이며, 우수한 생분해성을 나타낼 뿐만 아니라, 기계적 물성, 성형성 및 내후성이 우수한 자연유래 생분해성 수지 조성물을 제공하는 것이다.
본 발명의 다른 하나의 목적은 상기 자연유래 생분해성 수지 조성물을 제조하는 방법을 제공하는 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않는다. 본 발명의 목적은 이하의 설명으로 보다 분명해질 것이며, 특허청구범위에 기재된 수단 및 그 조합으로 실현될 것이다.
상기한 목적을 달성하기 위하여, 본 발명은 제1생분해성 지방족/방향족 코폴리에스테르, 제2생분해성 지방족/방향족 코폴리에스테르, 및 사슬연장제로 이루어지는 것을 특징으로 하는 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물을 제공한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르는 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분은 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분인 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분에 포함되는 자연유래 지방족 디카르복실산은 탄소수 4의 자연유래 지방족 디카르복실산 및 탄소수 10의 자연유래 지방족 디카르복실산으로 이루어지는 것을 특징으로 한다.
본 발명의 상기 탄소수 4의 자연유래 지방족 디카르복실산 및 상기 탄소수 10의 자연유래 지방족 디카르복실산은 75: 25 내지 25: 75의 몰비로 혼합되는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분에 포함되는 방향족 디카르복실산(또는 그 에스테르화 유도체)은 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 자연유래 지방족 디카르복실산과 방향족 디카르복실산은 65: 35 내지 50: 50 몰비로 혼합되는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올 및 C 5 내지 C 15의 시클로 지방족 디올로 이루어진 군에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르에 포함되는 상기 산 성분과 상기 지방족 디올은 1: 25 내지 1: 1.5의 몰비로 혼합되는 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르는 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분은 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분인 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분에 포함되는 자연유래 지방족 디카르복실산은 탄소수 4의 자연유래 지방족 디카르복실산인 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 산 성분에 포함되는 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 자연유래 지방족 디카르복실산과 방향족 디카르복실산은 55: 45 내지 50: 50 몰비로 혼합되는 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르의 제조에 사용되는 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올 및 C 5 내지 C 15의 시클로 지방족 디올로 이루어진 군에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.
본 발명의 상기 제2생분해성 지방족/방향족 코폴리에스테르에 포함되는 상기 산 성분과 상기 지방족 디올은 1: 1.10 내지 1: 1.35의 몰비로 혼합되는 것을 특징으로 한다.
본 발명의 상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르는 70: 30 내지 10: 90의 중량비로 혼합된다.
본 발명의 상기 사슬연장제는 이소시아네이트 화합물 또는 카르보디이미드 화합물 중의 어느 하나 이상인 것을 특징으로 한다.
또한, 본 발명의 상기 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물은 하기 화학식 1의 다관능 화합물을 더 포함할 수 있다.
[화학식 1]
Figure PCTKR2020016298-appb-img-000001
(상기 화학식 1에서, m은 1 내지 30의 정수이다.)
본 발명의 상기 화학식 1의 화합물은 DL-말릭산(DL-Malic acid)과 하이드로퀴논을 혼합하여 에스테르화 반응으로 제조되는 것을 특징으로 한다.
또한, 본 발명의 상기 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물은 상기 성분들 이외에 산화방지제, 자외선 안정제 및 활제로 이루어진 그룹에서 선택된 하나 이상을 더 함유할 수 있다.
상기 목적을 달성하기 위하여, 또한 본 발명은 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 제1원료제조단계, 제2생분해성 지방족/방향족 코폴리에스테르를 제조하는 제2원료제조단계, 상기 제1원료제조단계를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 사슬연장반응단계, 및 상기 사슬연장반응단계를 통해 사슬연장된 반응물을 고상중합하는 고상중합단계로 이루어지는 것을 특징으로 하는 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물의 제조방법을 제공한다.
본 발명의 상기 사슬연장반응단계는 100 내지 180℃의 온도에서 진행되는 것을 특징으로 한다.
본 발명의 상기 고상중합단계는 60 내지 110℃의 온도에서 진행되는 것을 특징으로 한다.
본 발명의 상기 제1원료제조단계 및 제2원료제조단계는 하기 화학식 1의 다관능 화합물의 존재하에 이루어지는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2020016298-appb-img-000002
(상기 화학식 1에서, m은 1 내지 30의 정수이다.)
본 발명에 따른 기계적 물성, 성형성 및 내후성이 우수한 생분해성 수지 조성물 및 그 제조방법은 환경친화적이며, 우수한 생분해성을 나타낼 뿐만 아니라, 기계적 물성, 성형성 및 내후성이 우수한 생분해성 수지 조성물을 제공하는 탁월한 효과를 나타낸다.
도 1은 본 발명에 따른 기계적 물성, 성형성 및 내후성이 우수한 생분해성 수지 조성물의 제조방법을 나타낸 순서도이다.
하나의 양태로서, 본 발명은 제1생분해성 지방족/방향족 코폴리에스테르, 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제로 이루어진 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물을 제공한다.
본 발명에 있어서, 상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르를 편의상 구분하기 위하여, 제1생분해성 지방족/방향족 코폴리에스테르를 A 성분으로 표현할 수 있으며, 제2생분해성 지방족/방향족 코폴리에스테르를 B 성분으로 표현할 수 있다.
또한, 본 발명에 있어서, 상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르의 특성을 보다 잘 표현하기 위하여 자연유래 제1생분해성 또는 제2생분해성 지방족/방향족 코폴리에스테르로 표현할 수도 있다.
상기 제1생분해성 지방족/방향족 코폴리에스테르는 탄소수 4와 탄소수 10의 자연유래 지방족 디카르복실산의 혼합성분과 방향족 디카르복실산 (또는 그 에스테르화 유도체)을 포함하는 산 성분 및 지방족 디올을 주성분으로 하여 에스테르화 반응, 에스테르화 교환반응 및 축중합 반응을 통해 얻어진다.
또한, 상기 제2생분해성 지방족/방향족 코폴리에스테르는 탄소수 4의 자연유래 지방족 디카르복실산 및 방향족 디카르복실산(또는 그 에스테르화 유도체)을 포함하는 산 성분 및 지방족 디올을 주성분으로 하여 에스테르화 반응, 에스테르화 교환반응 및 축중합 반응을 통해 얻어진다.
상기 제1생분해성 지방족/방향족 코폴리에스테르 제조에 사용되는 탄소수 4의 자연유래 지방족 디카르복실산은 숙신산이고, 탄소수 10의 자연유래 지방족 디카르복실산은 세바스산이며, 상기 방향족 디카르복실산(또는 그 에스테르화 유도체)은 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 또는 이들의 에스테르화 유도체일 수 있다.
상기 제1생분해성 지방족/방향족 코폴리에스테르 제조에서 사용되는 지방족 디카르복실산인 자연유래 숙신산과 자연유래 세바스산의 투입비율은 몰비로 75: 25 내지 25: 75 이다.
상기 제1생분해성 지방족/방향족 코폴리에스테르 제조에서 산 성분은 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분으로, 상기 지방족 디카르복실산 및 방향족 디카르복실산이 65: 35 내지 50: 50 몰비, 바람직하게는 52: 48 내지 55: 45 몰비로 혼합된 성분이다. 이때, 상기 방향족 디카르복실산의 함량이 35몰 미만이면 신장률과 인열강도를 포함한 기계적 물성의 향상 효과를 기대할 수 없으며, 50몰 초과이면 생분해성 효과를 상실할 수 있다.
또한, 상기 제2생분해성 지방족/방향족 코폴리에스테르 제조에서 사용되는 탄소수 4의 자연유래 지방족 디카르복실산은 숙신산이고, 상기 방향족 디카르복실산(또는 그 에스테르화 유도체)은 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 또는 이들의 에스테르화 유도체일 수 있다.
상기 제2생분해성 지방족/방향족 코폴리에스테르 제조에서 산 성분은 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분으로 상기 지방족 디카르복실산 및 방향족 디카르복실산이 55: 45 내지 50: 50 몰비로 혼합된 성분이다. 이때, 상기 방향족 디카르복실산의 함량이 45몰 미만이면 신장률과 인열강도를 포함한 기계적 물성의 향상 효과를 기대할 수 없으며, 50몰 초과이면 생분해성 효과를 상실할 수 있다.
상기 제1생분해성 지방족/방향족 코폴리에스테르 제조에서 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올은 1: 1.25 내지 1: 1.5 몰비, 바람직하게는 1: 1.30 내지 1: 1.35 몰비로 혼합할 수 있다. 이때, 상기 지방족 디카르복실산과 지방족 디올의 몰비가 1: 1.25 미만이면 에스테르화 반응 또는 에스테르 교환반응이 원활하게 이루어지지 않아 수득되는 수지 조성물의 색상에 악영향을 줄 수 있다. 반대로, 상기 몰비가 1: 1.5를 초과하면 반응 공정상의 진공도 감소로 원가측면에서 생산비가 증대되어 경제적 효율이 저하될 수 있다.
또한, 상기 제1생분해성 지방족/방향족 코폴리에스테르 제조에서 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올은 1: 1.10 내지 1: 1.35 몰비, 바람직하게는 1: 1.2 내지 1: 1.30 몰비로 혼합할 수 있다. 이때, 상기 지방족 디카르복실산과 지방족 디올의 몰비가 1: 1.10 미만이면 에스테르화 반응 또는 에스테르 교환반응이 원활하게 이루어지지 않아 수득되는 수지 조성물의 색상에 악영향을 줄 수 있다. 반대로, 상기 몰비가 1: 1.35를 초과하면 반응 공정상의 진공도 감소로 원가측면에서 생산비가 증대되어 경제적 효율이 저하될 수 있다.
상기 제1생분해성 지방족/방향족 코폴리에스테르 및 제2생분해성 지방족/방향족 코폴리에스테르 제조에서 사용되는 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올 및 C 5 내지 C 15의 시클로 지방족 디올로 이루어진 군에서 선택된 하나 이상, 바람직하게는 C 2 내지 C 6의 선형 지방족 디올 및 C 5 내지 C 6의 시클로 지방족 디올로 이루어진 군에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.
상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르는 70: 30 내지 10: 90의 중량비, 바람직하게는 60: 40 내지 20: 80이며, 더욱 바람직하게는 50: 50 내지 30: 70의 중량비로 혼합된다. 상기 제1생분해성 지방족/방향족 코폴리에스테르의 함량이 10중량부 미만일 경우 원하는 인열강도 및 충격강도를 구현하기 어려우며, 70 중량부를 초과할 경우 냉각속도가 느려 가공성이 떨어지고 필름의 블로킹 현상이 심해져 제품 성형에 어려움이 있다.
상기의 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테를 제조과정에서는 필수적으로 반응촉진제인 긴 사슬을 가지는 다관능 화합물의 존재하에 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분과 지방족 디올을 혼합하여 에스테르화 반응, 에스테르 교환반응, 축중합 반응 실시함으로써 반응속도가 향상되어 생산성 및 경제성이 우수할 뿐 아니라, 종래의 기술에 비해 고온의 축중합 시간을 줄임으로써 제조되는 생분해성 수지의 말단 카르복실기의 증가를 방지하여 낮은 산가의 수지 조성물을 확보할 수 있다. 조성물 내의 낮은 말단 카르복실기 농도는 수지조성물의 가수분해 속도를 억제함으로써 분해속도를 늦추어 내구성이 향상된다.
또한, 축중합 반응 후 얻어진 제1생분해성 지방족/방향족 코폴리에스테르와 제2생분해성 지방족/방향족 코폴리에스테를 일정비율로 혼합한 후 사슬연장 반응 및 고상중합 반응을 필수로 수행하여 최종적으로 기존의 생분해성 지방족/방향족 생분해성 코폴리에스테르 수지에 비해 우수한 가공성, 내구성 및 물성이 우수한 높은 분자량의 생분해성 수지 조성물을 얻을 수 있을 뿐 아니라 자연환경 하에서 미생물에 의해 최종적으로 물과 이산화탄소로 분해되어 환경 친화적인 이점이 있다.
구체적으로 본 발명을 통해 제조되는 생분해성 수지 조성물은 하기 화학식 1로 표시되는 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분, 및 지방족 디올을 에스테르화 반응, 에스테르 교환반응, 축중합 반응을 통해 얻어지는 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테를 혼합한 후 이축압출기 또는 니이더를 사용하여 사슬연장 반응 및 고상중합 반응을 순차로 반응시켜 제조된다.
[화학식 1]
Figure PCTKR2020016298-appb-img-000003
(상기 화학식 1에서, m은 1 내지 30의 정수이다.)
상기 다관능 화합물은 상기 생분해성 수지 조성물의 제조시 에스테르화 반응에 투입되는 반응촉진제인 것일 수 있다. 상기 다관능 화합물은 상기 생분해성 수지의 에스테르화 합성 과정에서 반응촉진제로 작용하여 기존의 지방족/방향족 코폴리에스테르 수지에 비해 원하는 수평균분자량 및 중량평균분자량을 가지는 생분해성 수지 조성물을 쉽고 빠르게 수득할 수 있으며, 이러한 반응속도의 향상은 높은 생산성을 가져 경제적인 이점이 있다.
또한 상기 다관능 화합물 사용으로 인한 고온의 축중합 반응시간이 단축됨으로써 본 발명으로부터 제조되는 생분해성 지방족/방향족 코폴리에스테르 수지는 종래기술의 생분해성 지방족/방향족 코폴리에스테르 낮은 농도의 말단 카르복실기로 인해 낮은 산가를 가지며 이의 효과로 내구성이 우수하다.
또한, 상기 다관능 화합물은 분자구조 입체장애 및 관능기가 서로 다른 위치에 있어 그로 인한 반응활성이 달라 취급 및 반응조절이 용이한 이점이 있다. 즉, 상기 다관능 화합물을 반응촉진제로 사용함으로 인해 반응속도를 향상시켜줄 뿐 아니라 기존의 반응촉진제로 사용되는 시트릭산, 글리세롤과 같은 다관능 화합물의 반응조절이 까다롭고 겔화가 쉽게 발생하는 문제를 해소할 수 있다. 또한 기존 반응촉진제로 사용되는 시트릭산과 글리세롤의 경우 반응성이 제어하기 곤란할 정도로 높아 반응물의 반응 사이트(site)와 쉽게 결합하여 축중합 반응 이후 생성물의 활성 반응 사이트(site)가 적은 반면, 본 발명에서 사용하는 다관능 화합물의 경우 잔여 활성 반응 사이트(site)의 농도가 상대적으로 높아 본 발명에서 필수로 진행되는 축중합 반응 이후 순차적으로 수행되는 사슬연장반응 및 고상중합 반응의 효율이 높아 원하는 분자량의 지방족/방향족 코폴리에스테르를 수득할 수 있다.
이 밖에도 상기 생분해성 수지의 분자구조 주쇄에 곁가지 사슬을 형성시켜 인열강도를 향상시킬 뿐만 아니라 분자량 분포를 넓게 해주어 상기 생분해성 수지 조성물에 우수한 가공성을 부여할 수 있다.
상기 다관능 화합물은 DL-말릭산(DL-Malic acid)과 하이드로퀴논을 1: 1 내지 1: 1.5 몰비, 바람직하게는 1: 1 내지 1: 1.5 몰비, 보다 바람직하게는 1: 1.15 내지 1: 1.3 몰비, 가장 바람직하게는 1: 1.2 몰비로 혼합하여 에스테르화 반응하여 얻어질 수 있다. 이때, 상기 DL-말릭산과 하이드로퀴논의 몰비 범위를 벗어날 경우 상기 화학식 1로 표시되는 다관능 화합물로 제대로 합성되지 않을 수 있다.
상기 다관능 화합물은 하기 반응식 1에 의해 제조될 수 있다. 바람직하게는 상기 다관능 화합물은 DL-말릭산(DL-Malic acid)과 하이드로퀴논을 혼합하여 에스테르화 반응하여 얻어질 수 있다.
[반응식 1]
Figure PCTKR2020016298-appb-img-000004
(상기 반응식 1에서, m = 1 내지 30의 정수이다.)
상기 다관능 화합물은 상기 산 성분 1 몰당 0.1 ~ 3g, 바람직하게는 0.8 ~ 2.5g, 보다 바람직하게는 1 ~ 2g, 가장 바람직하게는 1 ~ 1.5 g을 혼합할 수 있다. 이때, 상기 다관능 화합물의 혼합량이 상기 산 성분 1 몰당 0.1g 미만이면 산 성분 및 지방산 디올의 에스테르화 반응이 충분히 일어나지 않으며 반응속도가 느려질 수 있고, 반대로 3g 초과이면 전체 반응속도는 빨라질 수 있으나, 수득되는 수지의 겔화를 유발시켜 상기 수지를 이용하여 제조되는 상품에 겔(gel) 또는 피쉬아이(fish eye)를 발생시키거나 심하게는 반응기에서 수지의 토출이 불가능하기도 한다.
다른 하나의 양태로, 본 발명은 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 제1원료제조단계(S101), 제2생분해성 지방족/방향족 코폴리에스테르를 제조하는 제2원료제조단계(S101-1), 상기 제1원료제조단계(S101)를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계(S101-1)를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 사슬연장반응단계(S103), 및 상기 사슬연장반응단계(S103)를 통해 사슬연장된 반응물을 고상중합하는 고상중합단계(S105)로 이루어지는 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물의 제조방법을 제공한다.
상기 제1원료제조단계(S101)와 상기 제2원료제조단계(S101-1)에서는 다관능 화합물이 이용되는데, 상기 다관능 화합물의 제조과정을 아래에 설명한다.
상기 다관능 화합물의 제조는 DL-말릭산과 하이드로퀴논을 에스테르화 반응하여 하기 화학식 1로 표시되는 다관능 화합물을 제조하는 과정으로 이루어진다.
[화학식 1]
Figure PCTKR2020016298-appb-img-000005
(상기 화학식 1에서, m은 1 내지 30의 정수이다.)
또한, 상기 제1원료제조단계(S101)와 상기 제2원료제조단계(S101-1)를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 제2생분해성 지방족/방향족 코폴리에스테르는 상기의 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분과 지방족 디올을 에스테르화 반응, 에스테르 교환반응 및 축중합반응을 진행하여 이루어진다.
상기 사슬연장반응단계(S103)는 상기 제1원료제조단계(S101)를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계(S101-1)를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 단계로, 제1생분해성 지방족/방향족 코폴리에스테르와 제2생분해성 지방족/방향족 코폴리에스테르를 이축압출기 또는 니이더에 투입한 후 사슬연장제로 이소시아네이트 화합물 또는 카르보디이미드 화합물 중 선택된 하나의 화합물을 0.05 내지 1 중량부 투입하여 100~180℃의 온도에서 진행된다.
상기 고상중합단계(S105)는 상기 사슬연장반응단계(S103)를 통해 사슬연장된 반응물을 고상중합하는 단계로, 상기 사슬연장반응단계(S103)를 통해 사슬연장반응된 반응물을 융점보다 낮은 60 내지 110℃ 온도에서 고상중합하여 생분해성 수지 조성물을 제조하는 과정으로 이루어진다.
이하에서는, 상기 생분해성 수지 조성물의 제조방법을 더욱 상세하게 설명하기로 한다.
구체적으로 상기 다관능 화합물의 제조는 DL-말릭산과 하이드로퀴논을 에스테르화 반응하여 상기 화학식 1로 표시되는 다관능 화합물을 제조하는 단계이다. 바람직하게는 촉매의 존재 하에서 1: 1 내지 1: 1.5 몰비의 DL-말릭산과 하이드로퀴논을 195 내지 220℃의 온도에서 180 내지 240분 동안 에스테르화 반응하여 상기 화학식 1로 표시되는 다관능 화합물을 제조하는 과정으로 이루어진다.
상기의 과정에서 에스테르화 반응은 환류탑이 장착된 반응기에 상기 DL-말릭산과 하이드로퀴논을 투입한 후 교반하면서 서서히 승온시켜 에스테르화 반응할 수 있다. 이때, 상기 에스테르화 반응 시 최종승온 온도 및 반응시간은 195 내지 220℃에서 180 내지 240분, 바람직하게는 200 내지 215℃에서 190 내지 230분, 보다 바람직하게는 205 내지 215℃에서 200 내지 220분 동안 수행할 수 있다. 상기 최종 승온 온도가 195℃ 미만이거나 반응시간이 180분 미만이면 에스테르화 반응이 원활하게 진행되지 않을 수 있다. 반대로 최종 승온 온도가 220℃ 초과이거나, 반응시간이 240분을 초과하면 수득되는 생성물의 열분해로 인해 양질의 다관능 화합물을 수득할 수 없다.
이때, 사용되는 촉매는 모노부틸틴옥사이드, 티타늄프로폭사이드 및 테트라부틸티타네이트로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 촉매는 DL-말릭산 1몰당 0.01~0.2 g, 보다 바람직하게는 0.01~0.05 g을 투입한 후 반응기의 온도를 195 내지 220℃로 유지하면서 이론량의 물을 완전히 유출시켜 다관능 화합물을 수득할 수 있다.
상기 제1원료제조단계(S101)는 상기 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분, 및 지방족 디올을 에스테르화 반응, 에스테르 교환반응 및 축중합 반응을 통해 반응 생성물인 자연유래 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 단계이다.
보다 구체적으로, 상기 제1원료제조단계(S101)는 상기 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올을 1: 1.25 내지 1: 1.5 몰비로 혼합하여 185 내지 235℃의 온도에서 에스테르화 반응, 에스테르 교환반응을 통해 올리고머를 제조한 후 수득된 합성물을 축중합 반응을 진행하여 자연유래 제1생분해성 지방족/방향족 코폴리에스테르 생성물을 제조하는 과정으로 이루어진다.
이때, 상기 산 성분은 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분으로 상기 자연유래 지방족 디카르복실산 및 방향족 디카르복실산이 65: 35 내지 50: 50 몰비, 바람직하게는 52: 48 내지 55: 45 몰비로 혼합된 성분이다. 이때, 상기 방향족 디카르복실산의 함량이 35몰 미만이면 신장률과 인열강도를 포함한 기계적 물성의 향상 효과를 기대할 수 없으며, 50몰 초과이면 생분해성 효과를 상실할 수 있다.
또한, 상기 방향족 디카르복실산의 구체적인 예로는 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 또는 이들의 에스테르화 유도체일 수 있고, 보다 바람직하게는 테레프탈산 또는 그 에스테르화 유도체인 디메틸테레프탈레이트일 수 있다.
또한, 상기 지방족 디카르복실산은 자연유래 숙신산과 자연유래 세바스산의 혼합성분으로 투입비율은 몰비율로 75: 25 내지 25: 75 이다.
지방족 산 성분 중 세바스산이 몰비율이 25몰 미만이면 충분한 수지의 신장률, 인열강도 및 생분해성이 저화될 수 있으며, 세바스산이 75몰 초과하면 수지의 냉각속도가 현저히 떨어져 가공성이 떨어지고 필름의 블로킹성과 사출물의 이형성 및 수축면에서 불리하다.
또한, 상기 제1원료제조단계(S101)에서 진행되는 에스테르화 반응에서 반응 온도는 바람직하게는 185 내지 235℃, 보다 바람직하게는 190 내지 200℃, 가장 바람직하게는 195℃에서 수행하는 것이 좋다. 상기 온도가 185℃ 미만이면 에스테르화 반응 및 에스테르 교환반응이 충분히 일어나지 않을 수 있고, 반대로 온도가 235℃ 초과이면 생성되는 올리고머가 열 분해될 수 있다.
또한, 상기 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올, C 5 내지 C 15의 시클로 지방족 디올 또는 이들의 혼합물일 수 있다. 바람직하게는 C 2 내지 C 6의 선형 지방족 디올, C 5 내지 C 6의 시클로 지방족 디올 또는 이들의 혼합물일 수 있다. 보다 바람직하게 상기 지방족 디올은 에틸렌글리콜, 1,2-프로판디올, 1.2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 1,6-헥산디올 및 1,2-시클로헥산디메탄올, 1,4-시클로헥산디메탄올로 이루어진 군에서 선택된 1종 이상일 수 있다. 보다 더 바람직하게는 상기 지방족 디올로 1,4-부탄디올, 에틸렌글리콜 또는 이들의 혼합물을 사용할 수 있다.
상기 산 성분과 지방족 디올은 1: 1.25 내지 1: 1.5 몰비, 바람직하게는 1: 1.30 내지 1: 1.35 몰비로 혼합할 수 있다. 이때, 상기 지방족 디카르복실산과 지방족 디올의 몰비가 1: 1.25 미만이면 에스테르화 반응 또는 에스테르 교환반응이 원활하게 이루어지지 않아 수득되는 수지 조성물의 색상에 악영향을 줄 수 있다. 반대로, 상기 몰비가 1: 1.5를 초과하면 반응 공정상의 진공도 감소로 원가측면에서 생산비가 증대되어 경제적 효율이 저하될 수 있다.
상기 제2원료제조단계(S101-1)는 상기 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분, 및 지방족 디올을 에스테르화 반응, 에스테르 교환반응 및 축중합 반응을 통해 반응 생성물인 자연유래 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 단계이다.
보다 구체적으로, 상기 제2원료제조단계(S101-1)는 상기 다관능 화합물의 존재 하에 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 포함하는 산 성분, 및 지방족 디올을 1: 1.10 내지 1: 1.35 몰비로 혼합하여 185 내지 215℃에서 에스테르화 반응, 에스테르 교환반응을 통해 올리고머를 제조한 후 수득된 합성물을 축중합 반응을 진행하여 자연유래 제2생분해성 지방족/방향족 코폴리에스테르를 제조하는 단계이다.
이때, 상기 산 성분은 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분으로 상기 자연유래 지방족 디카르복실산 및 방향족 디카르복실산이 55: 45 내지 50: 50 몰비, 바람직하게는 58: 42 내지 55: 45 몰비로 혼합된 성분이다.
상기 방향족 디카르복실산의 함량이 45몰 미만이면 느린 냉각속도로 인한 가공성 저하 및 신장률과 인열강도를 포함한 기계적 물성의 향상 효과를 기대할 수 없으며, 50몰 초과이면 생분해성 효과를 상실할 수 있다.
또한, 상기 방향족 디카르복실산의 구체적인 예로는 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 또는 이들의 에스테르화 유도체일 수 있고, 보다 바람직하게는 테레프탈산 또는 그 에스테르화 유도체인 디메틸테레프탈레이트일 수 있다.
또한, 상기 제2원료제조단계(S101-1)에서 진행되는 에스테르화 반응에서 반응 온도는 바람직하게는 185 내지 215℃, 보다 바람직하게는 190 내지 210℃, 가장 바람직하게는 195 내지 200℃에서 수행하는 것이 좋다. 상기 온도가 185℃ 미만이면 에스테르화 반응 및 에스테르 교환반응이 충분히 일어나지 않을 수 있고, 반대로 온도가 215℃를 초과하게 되면 생성되는 올리고머가 열 분해되거나 테트라하이드로퓨란이 발생하여 반응물에 색상 및 반응성에 영향을 줄 수 있다.
또한, 상기 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올, C 5 내지 C 15의 시클로 지방족 디올 또는 이들의 혼합물일 수 있다. 바람직하게는 C 2 내지 C 6의 선형 지방족 디올, C 5 내지 C 6의 시클로 지방족 디올 또는 이들의 혼합물일 수 있다. 보다 바람직하게 상기 지방족 디올은 에틸렌글리콜, 1,2-프로판디올, 1.2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 1,6-헥산디올 및 1,2-시클로헥산디메탄올, 1,4-시클로헥산디메탄올로 이루어진 군에서 선택된 1종 이상일 수 있다. 보다 더 바람직하게는 상기 지방족 디올로 1,4-부탄디올, 에틸렌글리콜 또는 이들의 혼합물을 사용할 수 있다.
상기 산 성분과 지방족 디올은 1: 1.10 내지 1: 1.35 몰비, 바람직하게는 1: 1.2 내지 1: 1.30 몰비로 혼합할 수 있다. 이때, 상기 지방족 디카르복실산과 지방족 디올의 몰비가 1: 1.10 미만이면 에스테르화 반응 또는 에스테르 교환반응이 원활하게 이루어지지 않아 수득되는 수지 조성물의 색상에 악영향을 줄 수 있다. 반대로, 상기 몰비가 1: 1.35를 초과하면 반응 공정상의 진공도 감소로 원가측면에서 생산비가 증대되어 경제적 효율이 저하될 수 있다.
상기 제1원료제조단계(S101) 및 제2원료제조단계(S101-1)의 에스테르화 반응 및 에스테르 교환반응에서 산 성분으로 상기 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분이 지방족 디올과의 반응에서 각기 다른 부산물이 발생할 경우 두 반응을 단계별로 구분지어 반응을 진행할 수 있다. 예를 들어, 상기 자연유래 지방족 디카르복실산으로 숙신산을, 방향족 디카르복실산으로 디메틸테레프탈레이트를 사용할 경우 숙신산은 지방족 글리콜과 반응하여 반응의 부산물로 물이 유출되고, 디메틸테레프탈레이트는 지방족 글리콜과 반응하여 반응의 부산물로 메탄올이 발생할 수 있다. 이 경우, 산 성분으로 두 성분을 함께 반응할 경우 두 반응의 경쟁으로 인해 반응기 컬럼이 막히는 현상이 발생되어 이루어지지 않을 수 있다.
이에 따라 상기 자연유래 지방족 디카르복실산 및 방향족 디카르복실산의 혼합성분을 사용할 경우 총량의 사용범위에서 나누어 투입되거나 선택된 하나의 반응단계에서 한 번에 투입될 수 있다. 바람직하게는 반응을 2단계로 나누어 실시하는 것이 좋다. 예를 들어, 숙신산과 지방족 디올을 투입한 후 이론량의 물을 유출시켜 숙신산과 지방족 디올의 에스테르화 반응 생성물 존재하에 디메틸테레프탈레이트를 투입하여 에스테르화 반응을 진행시켜 이론양의 메탄올을 유출시켜 반응을 완결하거나 또는 반대의 순서로 반응을 실시할 수 있다. 이때, 투입되는 지방족 디올은 첫 단계에 반응에 사용되는 총량을 투입하거나 각 단계에서 몰 비율에 맞게 나누어 투입할 수 있다.
상기 에스테르화 반응 및 에스테르 교환반응의 반응초기 또는 반응말기에서는 추가로 촉매를 더 포함할 수 있는데, 상기 촉매는 구체적으로 티타늄이소프로폭사이드, 칼슘아세테이트, 삼산화안티몬, 디부틸틴옥사이드, 안티모니아세테이트, 테트라부틸티타네이트 및 테트라프로필티타네이트로 이루어진 군에서 선택된 1종 이상인 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 촉매는 상기 산 성분 1몰당 0.01~0.5g, 보다 바람직하게는 0.03~0.2g, 가장 바람직하게는 0.1g을 혼합할 수 있다. 이때, 상기 촉매의 함량이 0.01g 미만이면 에스테르화 반응 및 에스테르 교환반응의 반응속도가 지연되거나 충분히 반응하지 않을 수 있다. 반대로 상기 촉매의 함량이 0.5g 초과이면 부반응이 발생하거나 역반응 속도가 증가하여 반응물의 색상변화 및 물성저하를 유발할 수 있다.
또한, 상기 에스테르화 반응 및 에스테르 교환반응의 반응초기 또는 반응말기에 추가로 안정제를 더 포함할 수 있다. 상기 안정제는 트리메틸포스페이트, 인산 및 트리페닐포스페이트로 이루어진 군에서 선택된 1종 이상인 것을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 안정제는 상기 산 성분 1몰당 0.01 내지 0.5g, 보다 바람직하게는 0.03 내지 0.2g, 가장 바람직하게는 0.1g을 혼합할 수 있다. 때, 상기 안정제의 함량이 0.01g 미만이면 에스테르화 반응 및 에스테르 교환반응이 충분히 반응하지 않을 수 있고, 반대로 0.5g 초과이면 반응진행을 방해하여 반응속도가 느려지고 충분한 양의 고분자량을 가지는 생분해성 수지 조성물을 수득할 수 없다.
상기의 에스테르화 반응과 에스테르화 교환반응의 반응생성물은 축중합 반응을 통해 제1생분해성 지방족/방향족 코폴리에스테르 및 2생분해성 지방족/방향족 코폴리에스테르를 제조할 수 있다.
바람직하게는 상기에서 제조한 반응생성물을 235 내지 255 ℃에서 0.1 내지 2 torr의 진공도 하에 100 내지 240분 동안 축중합 반응시켜 제조하며, 이때, 상기 축중합 온도 및 압력은 235 내지 255℃에서 2torr 이하, 바람직하게는 240 내지 245℃에서 0.1 내지 2torr, 가장 바람직하게는 245 ℃에서 1 내지 1.5torr 조건에서 수행할 수 있다.
상기 축중합 온도 및 진공 조건을 모두 만족하지 않으면 축중합 반응이 제대로 수행되지 않거나, 생성되는 수득물이 고온 및 산화에 의해 분해되어 생분해성 수지 조성물의 색상이 불량하거나 얻고자 하는 분자량의 수지를 수득할 수 없다.
상기의 제1원료제조단계(S101)를 통해 제조되는 제1생분해성 지방족/방향족 코폴리에스테르는 수평균 분자량 15,000 내지 30,000이고, 용융흐름지수가 190℃, 2,160g의 측정조건 하에서 30g/10min 내지 50g/10min이며, 산가는 1.0mgKOH/g 내지 1.5mgKOH/g이다.
또한, 상기의 제2원료제조단계(S101-1)를 통해 제조되는 제2생분해성 지방족/방향족 코폴리에스테르는 수평균 분자량이 15,000 내지 30,000이고, 용융흐름지수가 190℃, 2,160g의 측정조건 하에서 25g/10min 내지 50g/10min이며, 산가는 0.5mgKOH/g 내지 1.5mgKOH/g이다.
상기 사슬연장반응단계(S103)는 상기 제1원료제조단계(S101)를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계(S101-1)를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 단계이다.
보다 구체적으로, 상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르를 혼합한 후 이축압출기 또는 니이더에 투입한 후 사슬연장제를 0.05 내지 1 중량부 투입하여 100 내지 180℃의 범위에서 사슬연장 반응하는 단계이다.
상기 사슬연장반응단계(S103)에서 얻어진 반응물의 경우 용융흐름지수가 높아 상술의 범위를 초과하는 온도에서 사슬연장반응을 실시할 경우 사슬연장 반응속도 증가와 함께 역반응인 열분해 반응속도도 증가하여 분자량 분포가 과도하게 넓어지고 열분해 반응으로 생성된 산화 생성물과 짧은 고분자 사슬로 인해 기계적 물성 저하 및 빠른 가수분해로 인한 저장 안정성이 떨어질 수 있다. 반대로 상술의 범위 미만의 온도에서 사슬연장 반응을 실시할 경우 수지 조성물이 반응단계에서 충분히 용융되지 않아 반응이 충분히 일어나지 못하게 되어 그 효과를 얻을 수 없다.
상기 사슬연장반응단계(S103)에서 상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르의 혼합비율은 중량부로 70: 30 내지 10: 90이고 바람직하게는 60: 40 내지 20: 80이며, 더욱 바람직하게는 50: 50 내지 30: 70이다. 상기 제1생분해성 지방족/방향족 코폴리에스테르의 함량이 10중량부 미만일 경우 원하는 인열강도 및 충격강도를 구현하기 어려우며, 70 중량부를 초과할 경우 냉각속도가 느려 가공성이 떨어지고 필름의 블로킹 현상이 심해져 제품 성형에 어려움이 있다.
상기 사슬연장반응단계(S103)에서 사용되는 사슬연장제로는 이소시아네이트 화합물과 카르보디이미드 화합물 중 선택된 하나의 화합물을 사용할 수 있다. 이때, 사용되는 이소시아네이트 화합물은 1,6-헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 4,4‘-디페닐메탄디이소시아네이트 및 2,2’-디페닐메탄디이소시아네이트로 이루어진 군으로부터 선택된 하나를 사용할 수 있다. 또 다른 사슬연장제인 카르보디이미드 화합물은 1,3-디사이클로헥실카르보디이미드, Nisshinbo社에서 판매하는 HMV-8CA, HMV-10B, Raschig사의 STABILIZER 9000, STABILIZER 7000, 비스-(2,6-디이소프로필-페닐린-2,4-카르보디이미드) 및 폴리-(1,3,5-트리이소프로필-페닐리-2,4-카르보디이미드)로 이루어진 군으로부터 선택된 하나를 사용할 수 있다.
상기 사슬연장반응단계(S103)단계를 통해 얻어지는 반응물은 수평균 분자량이 30,000 내지 50,000이며, 용융흐름지수가 190℃, 2,160g의 측정조건 하에서 10g/10min 내지 25g/10min이며, 산가는 0.8mgKOH/g 내지 2.0mgKOH/g이다.
상기 고상중합단계(S105)는 상기 사슬연장반응단계(S103)를 통해 사슬연장된 반응물을 고상중합하는 단계로, 상기 사슬연장반응단계(S103)를 통해 사슬연장된 반응물을 융점보다 낮은 온도에서 고상중합하여 분자량을 증가시키는 단계이다.
보다 구체적으로, 상기 고상중합단계(S105)는 상기 사슬연장반응이 끝난 수지조성물을 융점보다 낮은 60 내지 110℃의 온도에서 고상중합하여 최종적으로 생분해성 수지 조성물을 제조하는 단계이다.
상기 단계의 고상중합반응은 반응기로 제습된 공기가 공급되는 제습드라이어나 진공건조기가 사용가능하며, 더욱 바람직하게는 50torr 미만의 진공상태를 유지할 수 있는 진공건조기에서 반응을 실시하는 것이 반응시간 단축에 유리하다. 이렇게 고상중합을 통해 얻어진 최종 생분해성 수지 조성물은 용융 온도 미만에서의 반응으로 부반응을 억제할 수 있고, 수지 조성물 말단의 내가수분해 성능의 향상으로 저장안정성이 우수해질 뿐 아니라 수지 조성물 내의 잔류 단량체와 저분자량 올리고머의 함량이 낮고 분자량이 증가하면서 결정화도도 증가하기 때문에 기계적 물성과 가공성능이 향상될 수 있다.
상기 고상중합단계(S105)를 통해 제조된 생분해성 수지 조성물은 융점이 85 내지 160℃이고, 수평균분자량(Mn)이 45,000 내지 80,000이며, 중량평균분자량(Mw)이 120,000 내지 350,000이고, 용융흐름지수가 190 ℃, 2.16 kg의 하중에서 0.5~10g/10min이며, 산가는 0.8mgKOH/g 내지 2.0mgKOH/g이다.
추가로, 본 발명은 상기 생분해성 수지 조성물의 제조 시 성능개선을 위해 필요에 따라 당해 기술분야에 통용되는 첨가제가 상기 제1원료제조단계(S101), 상기 제2원료제조단계(S101-1) 또는 상기 사슬연장반응단계(S103)단계에서 첨가될 수 있는데, 구체적으로 상기 첨가제는 산화방지제, 자외선 안정제 및 활제로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.
상기 산화방지제는 페놀계 산화방지제를 사용하는 것이 바람직하며, 구체적으로 Adekastab AO계열, Irgafos계열 또는 이들의 혼합물을 사용할 수 있다. 상기 산화방지제는 상기 생분해성 수지 조성물 100 중량부 기준으로 하여 0.1~1.0 중량부 범위로 혼합될 수 있다.
상기 자외선 안정제는 아민기를 가지는 HALS계 화합물을 사용할 수 있으며, 상기 자외선 안정제는 상기 생분해성 수지 조성물 100 중량부 기준으로 하여 0.1~0.8 중량부 범위로 혼합될 수 있다.
상기 활제는 아미드계열의 PE 왁스를 사용할 수 있으며, 상기 활제는 상기 생분해성 수지 조성물 100 중량부 기준으로 하여 0.1~1.0 중량부 범위로 혼합될 수 있다.
또한, 본 발명을 통해 제조되는 생분해성 수지 조성물은 기존 자연유래 수지 조성물로 알려지고 상용화된 폴리락트산 또는 열가소성 전분의 단독성분 또는 혼합성분과 컴파운딩하여 사용할 수 있으며, 그 사용량은 본 발명의 자연유래 생분해성 수지 조성물(C)와 폴리락트산 또는 열가소성 전분의 단독성분 또는 혼합성분이 중량부로 60: 40 내지 90: 10의 범위이다.
이하에서는, 본 발명에 따른 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물의 제조방법 및 그 제조방법을 통해 제조된 생분해성 수지 조성물의 물성을 실시예를 들어 설명하기로 한다.
<제조예> 다관능 화합물의 제조
1,000㎖의 둥근바닥 플라스크를 질소로 치환하고 DL-말릭산 268.16g, 하이드로퀴논 132.14g과 촉매로 모노부틸틴옥사이드 0.02g을 투입한 후 210℃에서 210분 동안 에스테르화 반응을 진행시켜 반응의 부산물인 물의 이론적 발생량이 2몰이 유출되면 반응의 완결로 확인하고 반응을 종료시켜 다관능 화합물을 제조하였다. 이러한 상기 다관능 화합물의 제조과정은 하기 반응식 2와 같이 나타내었다.
[반응식 2]
Figure PCTKR2020016298-appb-img-000006
(상기 반응식 1에서, m은 1 내지 30의 정수이다.)
<실시예 1>
1-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 17.48kg, 1,4-부탄디올 11.25kg, 상기 제조예에서 수득한 다관능 화합물 300g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 195℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 세바스산 16.71kg, 자연유래 숙신산 3.25kg 및 1,4-부탄디올 11.25kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 240℃의 온도에서 1.5torr의 감압 하에 204분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다.
1-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 17.48kg, 1,4-부탄디올 10.81kg, 상기 제조예에서 수득한 다관능 화합물 250g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 200℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 숙신산 12.99kg 및 1,4-부탄디올 10.81kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃의 온도에서 1.5torr의 감압 하에 192분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(B)을 얻었다.
1-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기에서 수득된 자연유래 생분해성 지방족/방향족 코폴리에스테르 수지 (A)와 (B)를 10: 90의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 145℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 12시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물 (C)을 얻었다.
<실시예 2>
2-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 18.64kg, 1,4-부탄디올 11.25kg, 상기 제조예에서 수득한 다관능 화합물 325g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 195℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 세바스산 12.64kg, 자연유래 숙신산 4.91kg 및 1,4-부탄디올 11.25kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 240℃의 온도에서 1.5torr의 감압 하에 204분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다.
2-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 18.64kg, 1,4-부탄디올 10.81kg, 상기 제조예에서 수득한 다관능 화합물 250g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 200℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 숙신산 12.28kg 및 1,4-부탄디올 10.81kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃의 온도에서 1.5torr의 감압 하에 186분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(B)을 얻었다.
2-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기에서 수득된 생분해성 지방족/방향족 코폴리에스테르 (A)와 (B)를 70: 30의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 8시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물 (C)을 얻었다.
<실시예 3>
3-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 15.53kg, 1,4-부탄디올 11.25kg, 상기 제조예에서 수득한 다관능 화합물 280g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 195℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 세바스산 14.58kg, 자연유래 숙신산 5.67kg 및 1,4-부탄디올 11.25kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205 ℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 240℃의 온도에서 1.5torr의 감압 하에 205분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다.
3-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 18.64kg, 1,4-부탄디올 10.81kg, 상기 제조예에서 수득한 다관능 화합물 250g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 200℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 숙신산 12.28kg 및 1,4-부탄디올 10.81kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃의 온도에서 1.5torr의 감압 하에 198분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(B)을 얻었다.
3-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기에서 수득된 생분해성 지방족/방향족 코폴리에스테르 (A)와 (B)를 50: 50의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 8시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물 (C)을 얻었다.
<실시예 4>
4-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 17.48kg, 1,4-부탄디올 11.25kg, 상기 제조예에서 수득한 다관능 화합물 300g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 195℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 세바스산 16.70kg, 자연유래 숙신산 3.25kg 및 1,4-부탄디올 11.25kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205 ℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 240℃의 온도에서 1.5torr의 감압 하에 212분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다.
4-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L 반응기를 질소로 치환하고 프탈산(Phtalic acid) 15.95kg, 자연유래 숙신산 13.0kg, 1,4-부탄디올 21.62kg 및 상기 제조예에서 수득한 다관능 화합물 400g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 238℃ 로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서, 온도를 상승시키고 250℃의 온도에서 1.5torr의 감압 하에 188분간 축중합 반응을 실시하여 생분해성 지방족/방향족 폴리에스테르 수지 조성물 (B)을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 20g, 안정제로 트리메틸포스파이트 20g을 첨가하였다.
4-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기에서 수득된 생분해성 지방족/방향족 코폴리에스테르 (A)와 (B)를 20:80의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하고 95℃에서 8.5시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물 (C)을 얻었다.
<실시예 5>
5-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 프탈산(Phtalic acid) 15.95kg과 자연유래 세바스산 12.64kg, 자연유래 숙신산 4.91kg, 1,4-부탄디올 22.53kg, 상기 제조예에서 수득한 다관능 화합물 380g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 238℃로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서, 온도를 상승시키고 250℃의 온도에서 1.5torr의 감압 하에 210분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 20g, 안정제로 트리메틸포스파이트 20g을 첨가하였다.
5-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L 반응기를 질소로 치환하고 프탈산(Phtalic acid) 14.95kg, 자연유래 숙신산 12.99kg, 1,4-부탄디올 21.62kg 및 상기 제조예에서 수득한 다관능 화합물 350g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 238℃로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서, 온도를 상승시키고 250℃의 온도에서 1.5torr의 감압 하에 201분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(B)을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 18g, 안정제로 트리메틸포스파이트 18g을 첨가하였다.
5-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기 실시예 5-1 및 5-2에서 수득된 생분해성 지방족/방향족 코폴리에스테르 (A)와 (B)를 70:30의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 550g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 9시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물 (C)을 얻었다.
<실시예 6>
6-1. 생분해성 지방족/방향족 코폴리에스테르 (A)의 제조
100L의 반응기를 질소로 치환하고, 이소프탈산 13.29kg과 자연유래 세바스산 14.58kg, 자연유래 숙신산 4.91kg, 1,4-부탄디올 22.53kg, 상기 제조예에서 수득한 다관능 화합물 385g 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 238℃로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서 온도를 상승시키고 250℃에서 1.5torr의 감압 하에 211분간 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물(A)을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 20g, 안정제로 트리메틸포스파이트 20g을 첨가하였다.
6-2. 생분해성 지방족/방향족 코폴리에스테르 (B)의 제조
100L 반응기를 질소로 치환하고 이소프탈산 18.64kg, 자연유래 숙신산 12.28kg, 1,4-부탄디올 21.62kg 및 상기 제조예에서 수득한 다관능 화합물 350g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 238℃로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서, 온도를 상승시키고 250℃의 온도에서 1.5torr의 감압 하에 204분간 축중합 반응을 실시하여 지방족/방향족 폴리에스테르 수지 조성물(B)을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 18g, 안정제로 트리메틸포스파이트 18g을 첨가하였다.
6-3. 자연유래 생분해성 수지 조성물 (C)의 제조
상기 실시예 6-1 및 6-2에서 수득된 생분해성 지방족/방향족 코폴리에스테르 (A)와 (B)를 40: 60의 중량부로 혼합하여 100kg를 준비한 후 1,6-헥사메틸렌디이소시아네이트 550g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 10시간 동안 고상중합 반응을 실시하여 최종 자연유래 생분해성 수지 조성물(C)을 얻었다.
<비교예 1>
100L 반응기를 질소로 치환하고, 디메틸테레프탈레이트 17.48kg, 1,4-부탄디올 10.81kg 및 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 195℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 숙신산 12.98kg 및 1,4-부탄디올 11.72kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃에서 1.5torr의 감압 하에 252분 동안 축중합 반응을 실시하여 생분해성 수지 조성물을 얻었다.
<비교예 2>
100L 반응기를 질소로 치환하고, 디메틸테레프탈레이트 17.48kg, 1,4-부탄디올 22.53kg 및 촉매인 테트라부틸티타네이트 10.4g을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 200℃로 고정시키고 메탄올을 유출시켰다. 그 다음 자연유래 세바스산 16.7kg, 자연유래 숙신산 3.24kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 203℃로 고정시키고 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 8g, 티타늄이소프로폭사이드 8g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃에서 1.5torr의 감압 하에 268분 동안 축중합 반응을 실시하여 생분해성 수지 조성물을 얻었다.
< 비교예 3>
100L의 반응기를 질소로 치환하고, 디메틸테레프탈레이트 18.64kg, 1,4-부탄디올 10.81kg을 촉매인 테트라부틸티타네이트 9.6g을 투입한 후 교반하면서 반응기 온도를 승온시켜 최종적으로 200℃로 고정한 후 메탄올을 유출시켰다. 그 다음 자연유래 숙신산 12.28kg 및 1,4-부탄디올 10.81kg을 반응기에 투입하고 반응온도를 승온시키며 최종적으로 205℃로 고정한 후 이론량의 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄이소프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이후 반응기의 온도를 상승시키고 245℃에서 1.5torr의 감압 하에 278분 동안 축중합 반응을 실시하여 자연유래 지방족/방향족 폴리에스테르 수지 조성물을 얻었다. 그 다음 축중합 반응을 통해 얻어진 수지 조성물 100kg와 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 125℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 80℃에서 8시간 고상중합 반응을 실시하여 생분해성 수지 조성물을 얻었다.
< 비교예 4>
100L 반응기를 질소로 치환하고 프탈산(Phtalic acid) 15.95kg, 자연유래 세바스산 12.63kg, 자연유래 숙신산(Succinic acid) 4.91kg 및 1,4-부탄디올 23.43kg을 투입한 후 교반하면서 반응기 온도를 승온시키며 최종적으로 235℃로 고정한 후 물을 유출시켰다. 이때, 촉매로서 디부틸틴옥사이드 10g, 티타늄프로폭사이드 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론적 물의 양이 유출된 후 계속해서 온도를 상승시키고 250℃의 온도에서 1.5torr의 감압 하에 325분간 축중합 반응을 실시하여 지방족 폴리에스테르 수지 조성물을 얻었다. 이때, 촉매로서 테트라부틸티타네이트 20g, 안정제로 트리메틸포스파이트 20g을 첨가하였다. 그 다음 축중합 반응을 통해 얻어진 수지 조성물 100kg과 1,6-헥사메틸렌디이소시아네이트 500g을 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 125℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 80℃에서 8시간 동안 고상중합 반응을 실시하여 생분해성 수지 조성물을 얻었다.
<비교예 5>
비교예 1과 2의 생분해성 지방족/방향족 코폴리에스테르 조성물을 10: 90의 중량비로 슈퍼믹서를 이용하여 혼합하여 100kg을 준비한 후 직경이 58mm인 이축압출기로 140℃에서 컴파운딩하여 생분해성 수지 혼합 조성물을 제조하였다.
<비교예 6>
비교예 1과 2의 생분해성 지방족/방향족 코폴리에스테르 수지조성물을 70: 30의 중량비로 혼합하여 100kg를 준비한하고 1,6-헥사메틸렌디이소시아네이트 550g을 첨가한 후 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 사슬연장 반응을 실시하였다. 그 다음 사슬연장 반응으로 얻어진 반응물을 진공펌프가 장착된 고상중합 장치에 투입하여 95℃에서 10시간 동안 고상중합 반응을 실시하여 자연유래 생분해성 수지 조성물을 얻었다.
<비교예 7>
비교예 3과 4의 생분해성 지방족/방향족 코폴리에스테르 조성물을 10: 90의 중량비로 슈퍼믹서를 이용하여 혼합한 후 직경이 58mm인 이축압출기로 140℃에서 컴파운딩하여 자연유래 생분해성 수지 혼합 조성물을 얻었다.
<실험예 1> 분자량, 융점, 용융흐름지수 물성 및 산가 측정
상기 실시예 1 내지 6의 자연유래 생분해성 수지 조성물 및 비교예 1 내지 7에서 제조된 수지 조성물에 대해 수평균분자량, 중량평균분자량, 융점, 용융흐름지수 및 산가를 확인하기 위해 다음과 같은 방법으로 평가하였다. 그 결과는 하기 표 1에 나타내었다.
[평가방법]
(1) 수평균분자량 및 중량평균분자량
수평균분자량 및 중량평균분자량 분포는 폴리스티렌으로 충진된 컬럼이 장착된 장비를 이용해 35℃에서 겔투과크로마토그래피 분석법을 이용하여 측정하였다. 이때, 전개용매는 클로로포름, 샘플의 농도는 5 mg/mL, 용매의 흐름속도는 1.0 mL/분의 속도로 실시하였다.
(2) 융점
융점은 시차주사열량계를 사용하여 질소 분위기 하에서 분당 승온속도 10℃로 20℃에서 200℃까지 측정하였다.
(3) 용융흐름지수
용융흐름지수는 ASTM D1238의 규격에 준하여 190℃, 2,160 g의 조건에서 실시하였다.
(4) 산가
산가는 수득된 수지를 0.5g 취하여 30ml 클로로포름에 완전 용해시킨 후 에탄올 20ml를 첨가하여 최종용액을 제조한 후 0.1N의 KOH용액으로 적정을 실시하였다.
구분 수평균
분자량
중량평균
분자량
융점(℃) 용융흐름지수
(g/10min)
축중합
반응시간(min)
산가
(mgKOH/g)
실시예 1 58,322 173,800 116 3.2 204/192
(A/B)
0.96
실시예 2 64,900 202,488 124 2.7 204/186(A/B) 1.24
실시예 3 59,730 182,050 112 3.1 205/198(A/B) 0.79
실시예 4 53,108 175,780 121 3.9 212/188(A/B) 0.80
실시예 5 68,750 198,688 125 2.1 210/201(A/B) 1.76
실시예 6 61,270 186,874 111 3.1 211/204(A/B) 0.88
비교예 1 21,199 67,752 120 51.8 252 3.9
비교예 2 17,440 69,340 113 62.0 268 3.7
비교예 3 40,337 104,215 124 12.8 278 3.6
비교예 4 32,289 113,157 123 21.0 325 3.2
비교예 5 17,240 66,350 118 72.2 - 4.8
비교예 6 41,240 129,949 119 10.3 - 3.4
비교예 7 38,650 110,792 123 14.2 - 3.8
상기 표 1의 결과에 의하면, 상기 긴사슬 다관능 화합물을 반응촉진제로 사용한 실시예 1~6의 수지 조성물의 축중합 반응시간이 경우 상기 비교예 1 내지 4의 축중합 반응물 수준에서만 비교하여 볼 때 짧은 반응시간에 높은 수평균분자량과 중량평균분자량 수치를 보임을 확인하였다. 또한 상기 실시예 1 내지 6은 상기 비교예 1 내지 7에 비해 낮은 용융흐름지수 값과 낮은 산가를 나타내어 압출 성형성 및 내후성에 유리하다는 것을 알 수 있었다.
이에 반해, 상기 비교예 1 내지 7의 경우 다관능 화합물을 포함하지 않아 축중합 반응시간이 오래 걸리고, 긴 반응시간으로 인한 역반응 증가로 높은 산가가 높고, 수평균분자량 및 중량평균분자량이 전체적으로 상기 실시예 1 내지 6에 비해 현저하게 낮은 수치를 보였으며, 용융흐름지수는 매우 높아 압출 성형성과 기계적 물성 및 내구성이 취약할 것으로 예상되었다.
<실험예 2> 기계적 물성 평가
상기 실시예 1 내지 6의 자연유래 생분해성 수지 조성물 및 비교예 1 내지 7에서 제조된 생분해성 수지 조성물에 대하여 인장강도, 신장률, 생분해도 및 가공성의 기계적 물성특성을 확인하기 위해 다음과 같은 방법으로 평가하였다. 그 결과는 하기 표 2에 나타내었다.
[평가방법]
측정시료는 스쿠류 직경 50mm, 다이갭 2.2mm, 다이스 직경 100mm의 블로운 필름기를 이용하여 팽창비 2.0 대 1로 두께 25um 필름을 제작하여 실시하였다.
(1) 인장강도 및 신장률
인장강도 및 신장률은 20um 블로운 필름을 제작하여 ASTM D638 규격에 준하는 시편을 준비하여 유니버셜 테스트 머신(unversal test machine)를 이용하여 측정하였다.
(2) 다트충격강도
다트충격강도는 20um 블로운 필름을 제작하여 ASTM D1709 규격에 준하는 방법으로 다트충격강도 측정장치를 이용하여 측정하였다.
(3) 분해도 평가
상기 방법에 의해 제작된 시료를 토양 지표로부터 30cm 깊이로 매립 후 12개월 후 회수하여 무게 감소법을 이용하여 측정하였다.
(4) 가공성
가공성은 필름 제조 시 버블 안정성 및 주름발생을 육안으로 관찰하였다. 이때, 가공성 평가기준으로는 필름의 상태가 양호하면 ○, 보통이면 △, 불량이면 X로 표시하였다.
구분 인장강도
(kgf/㎠)
신장률
(%)
다트충격강도
(g)
생분해도
(%)
가공성
실시예 1 312 523 339 86.1
실시예 2 338 436 360 79.4
실시예 3 293 545 315 84.8
실시예 4 283 627 492 89.2
실시예 5 287 594 493 88.7
실시예 6 275 586 491 86.6
비교예 1 98 250 83 88.0 X
비교예 2 102 200 78 85.6 X
비교예 3 180 325 128 84.1
비교예 4 172 350 134 82.3
비교예 5 95 150 69 87.6 X
비교예 6 192 350 137 83.5
비교예 7 182 350 133 82.1
* 가공성 평가기준: ○ 양호, △ 보통, X 불량
상기 표 2의 결과에 의하면, 상기 실시예 1 내지 6의 경우 상기 비교예 1 내지 7과 비교하여 인장강도, 신장률, 충격강도 및 가공성의 기계적 물성이 현저하게 향상된 수치를 보이는 반면 생분해도 실험결과에서는 유사한 생분해성을 가지는 것을 확인하였다.
이에 반해, 상기 비교예 1 내지 7의 경우 82.1% 이상의 우수한 생분해성을 보였으나, 이는 낮은 분자량에 기인한 것일 뿐 반대급부적으로 상기 용융흐름지수와 분자량 분석결과에서 예측한 바와 같이 인장강도 및 신장률이 현저하게 저하되었고, 가공성이 보통 또는 불량 수준으로 좋지 않은 것을 확인하였다.
<실험예 3> 내후성 평가
상기 실시예 1 내지 6의 자연유래 생분해성 수지 조성물과 비교예 1 내지 7에서 제조된 수지조성물에 대하여 온도 25℃, 상대습도 75%의 조건에 방치한 후 매 6개월 마다 시료를 채취하여 수평균 분자량의 변화를 측정하여 초기값과 비교하고, 실험예 2의 방법으로 제작된 필름을 온도 25℃, 상대습도 75%의 조건에 방치한 후 매 6개월 마다 시료를 채취하여 인장강도와 신장률을 측정하여 초기값과 비교하여 경시변화를 확인하였다.
구분 인장강도
(kgf/㎠)
신장률
(%)
수평균분자량
초기 6개월
12개월후 초기 6개월
12개월후 초기 6개월
12개월
실시예 1 312 306 293 523 513 492 58,322 57,214 54,823
실시예 2 338 329 325 436 424 419 64,900 63,083 62,369
실시예 3 293 287 281 545 535 523 59,730 58,595 57,284
실시예 4 283 275 268 627 609 594 53,108 51,621 50,346
실시예 5 287 280 272 594 579 564 68,750 66,963 63,547
실시예 6 275 268 260 586 572 554 61,270 59,800 56,570
비교예 1 98 92 74 250 238 185 21,199 20,139 15,800
비교예 2 102 95 77 200 190 150 17,440 16,568 13,080
비교예 3 180 168 135 325 309 225 40,337 38,320 30,250
비교예 4 172 160 129 350 333 250 32,289 30,675 24,217
비교예 5 95 90 71 150 143 125 17,240 16,378 12,980
비교예 6 192 180 144 350 333 260 41,240 39,178 30,950
비교예 7 182 172 137 350 333 250 38,650 36,718 28,900
상기 표 3의 결과에 의하면, 상기 실시예 1 내지 6의 경우 상기 비교예 1 내지 7과 비교하여 그 물성 경시변화 폭 및 수평균분자량 감소 폭이 현저히 작아 우수한 내구성을 가짐을 확인할 수 있었다.
따라서, 본 발명에 따른 기계적 물성, 성형성 및 내후성이 우수한 생분해성 수지 조성물 및 그 제조방법은 환경친화적이며, 우수한 생분해성을 나타낼 뿐만 아니라, 기계적 물성, 성형성 및 내후성이 우수한 생분해성 수지 조성물을 제공한다.
[부호의 설명]
S101 ; 제1원료제조단계
S101-1 ; 제2원료제조단계
S103 ; 사슬연장반응단계
S105 ; 고상중합단계

Claims (19)

  1. 제1생분해성 지방족/방향족 코폴리에스테르, 제2생분해성 지방족/방향족 코폴리에스테르, 및 사슬연장제로 이루어진 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물로서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르는 탄소수 4의 자연유래 지방족 디카르복실산 및 탄소수 10의 자연유래 지방족 디카르복실산으로 이루어진 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 것을 특징으로 하며,
    상기 제2생분해성 지방족/방향족 코폴리에스테르는 탄소수 4의 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 것을 특징으로 하는, 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물.
  2. 제1항에 있어서,
    상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 2,6-나프토산 및 이들의 에스테르화 유도체로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  3. 제1항에 있어서,
    상기 지방족 디올은 C 2 내지 C 12의 선형 지방족 디올 및 C 5 내지 C 15의 시클로 지방족 디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  4. 제1항에 있어서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르의 산 성분은 자연유래 지방족 디카르복실산과 방향족 디카르복실산이 65: 35 내지 50: 50 몰비로 혼합되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  5. 제1항 또는 제3항에 있어서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르의 자연유래 지방족 디카르복실산은 탄소수 4의 자연유래 지방족 디카르복실산 및 상기 탄소수 10의 자연유래 지방족 디카르복실산이 75: 25 내지 25: 75의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  6. 제1항에 있어서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르는 상기 산 성분과 상기 지방족 디올이 1: 25 내지 1: 1.5의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  7. 제1항에 있어서,
    상기 제2생분해성 지방족/방향족 코폴리에스테르의 탄소수 4의 자연유래 지방족 디카르복실산과 방향족 디카르복실산은 55: 45 내지 50: 50 몰비로 혼합되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  8. 제1항에 있어서,
    상기 제2생분해성 지방족/방향족 코폴리에스테르는 상기 산 성분과 상기 지방족 디올이 1: 1.10 내지 1: 1.35의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  9. 제1항에 있어서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르는 70: 30 내지 10: 90의 중량비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  10. 제1항에 있어서,
    상기 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르는 하기 화학식 1의 다관능 화합물의 존재하에 제조되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
    [화학식 1]
    Figure PCTKR2020016298-appb-img-000007
    (상기 화학식 1에서, m은 1 내지 30의 정수이다.)
  11. 제1항에 있어서,
    상기 사슬연장제는 이소시아네이트 화합물 또는 카르보디이미드 화합물로 이루어지는 것을 특징으로 하는 자연유래 생분해성 수지 조성물.
  12. 탄소수 4의 자연유래 지방족 디카르복실산 및 탄소수 10의 자연유래 지방족 디카르복실산으로 이루어진 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 제1생분해성 지방족/방향족 코폴리에스테르를 제조하는 제1원료제조단계;
    탄소수 4의 자연유래 지방족 디카르복실산과 방향족 디카르복실산의 혼합성분을 포함하는 산 성분 및 지방족 디올의 에스테르화반응과 축중합반응을 통해 제조되는 제2생분해성 지방족/방향족 코폴리에스테르를 제조하는 제2원료제조단계;
    상기 제1원료제조단계를 통해 제조된 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계를 통해 제조된 제2생분해성 지방족/방향족 코폴리에스테르 및 사슬연장제를 혼합하여 사슬연장반응시키는 사슬연장반응단계; 및
    상기 사슬연장반응단계를 통해 사슬연장된 반응물을 고상중합하는 고상중합단계;로 이루어지는 것을 특징으로 하는 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물의 제조방법.
  13. 제12항에 있어서,
    상기 제1원료제조단계의 산 성분은 자연유래 지방족 디카르복실산과 방향족 디카르복실산이 65: 35 내지 50: 50 몰비로 혼합되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  14. 제12항 또는 제3항에 있어서,
    상기 제1원료제조단계의 자연유래 지방족 디카르복실산은 탄소수 4의 자연유래 지방족 디카르복실산 및 상기 탄소수 10의 자연유래 지방족 디카르복실산이 75: 25 내지 25: 75의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  15. 제12항에 있어서,
    상기 제1원료제조단계의 제1생분해성 지방족/방향족 코폴리에스테르는 상기 산 성분과 상기 지방족 디올이 1: 25 내지 1: 1.5의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  16. 제12항에 있어서,
    상기 제2원료제조단계의 탄소수 4의 자연유래 지방족 디카르복실산과 방향족 디카르복실산은 55: 45 내지 50: 50 몰비로 혼합되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  17. 제12항에 있어서,
    상기 제2원료제조단계의 제2생분해성 지방족/방향족 코폴리에스테르는 상기 산 성분과 상기 지방족 디올이 1: 1.10 내지 1: 1.35의 몰비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  18. 제12항에 있어서,
    상기 제3사슬연장반응단계의 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2생분해성 지방족/방향족 코폴리에스테르는 70: 30 내지 10: 90의 중량비로 혼합된 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
  19. 제12항에 있어서,
    상기 제1원료제조단계의 제1생분해성 지방족/방향족 코폴리에스테르와 상기 제2원료제조단계의 제2생분해성 지방족/방향족 코폴리에스테르는 하기 화학식 1의 다관능 화합물의 존재하에 제조되는 것을 특징으로 하는 자연유래 생분해성 수지 조성물의 제조방법.
    [화학식 1]
    Figure PCTKR2020016298-appb-img-000008
    (상기 화학식 1에서, m은 1 내지 30의 정수이다.)
PCT/KR2020/016298 2020-10-20 2020-11-18 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법 WO2022085845A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0136256 2020-10-20
KR1020200136256A KR102436243B1 (ko) 2020-10-20 2020-10-20 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2022085845A1 true WO2022085845A1 (ko) 2022-04-28

Family

ID=81289849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016298 WO2022085845A1 (ko) 2020-10-20 2020-11-18 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR102436243B1 (ko)
WO (1) WO2022085845A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256471A (ja) * 1999-03-05 2000-09-19 Daicel Chem Ind Ltd 生分解性フィルム
KR20130008592A (ko) * 2010-03-24 2013-01-22 바스프 에스이 필름 제조 방법
KR20130010080A (ko) * 2010-03-24 2013-01-25 바스프 에스이 클링필름의 제조 방법
KR101989045B1 (ko) * 2017-12-28 2019-06-13 (주) 티엘씨 코리아 내후성 및 저장안정성이 우수한 생분해성 수지 조성물 및 그 제조방법
KR20200054781A (ko) * 2018-11-12 2020-05-20 주식회사 안코바이오플라스틱스 바이오매스 유래 성분을 이용한 기능성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256471A (ja) * 1999-03-05 2000-09-19 Daicel Chem Ind Ltd 生分解性フィルム
KR20130008592A (ko) * 2010-03-24 2013-01-22 바스프 에스이 필름 제조 방법
KR20130010080A (ko) * 2010-03-24 2013-01-25 바스프 에스이 클링필름의 제조 방법
KR101989045B1 (ko) * 2017-12-28 2019-06-13 (주) 티엘씨 코리아 내후성 및 저장안정성이 우수한 생분해성 수지 조성물 및 그 제조방법
KR20200054781A (ko) * 2018-11-12 2020-05-20 주식회사 안코바이오플라스틱스 바이오매스 유래 성분을 이용한 기능성 수지 조성물

Also Published As

Publication number Publication date
KR20220052191A (ko) 2022-04-27
KR102436243B9 (ko) 2023-04-12
KR102436243B1 (ko) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2014038774A1 (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
WO2022092558A1 (ko) 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
WO2013066002A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2021141236A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법
WO2013100494A1 (en) Method of preparing polysiloxane-polycarbonate copolymer
WO2014092275A1 (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
WO2014092276A1 (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
WO2018236192A1 (ko) 친환경 폴리우레탄 폼 형성용 조성물 및 폴리우레탄 폼의 제조 방법
WO2014092277A1 (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
WO2022102902A1 (ko) 생분해성 적층 필름 및 이의 제조 방법
WO2022085845A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
WO2021010591A1 (ko) 폴리에스테르 수지 혼합물
WO2023033547A1 (ko) 발포용 조성물, 생분해성 발포체 및 이의 제조방법
WO2017213448A1 (ko) 사출 또는 프레스 성형용 고내열 열가소성 폴리우레탄 조성물 및 그 제조방법
WO2022097903A1 (ko) 비스-2-하이드록시에틸 테레프탈레이트의 고순도화 정제 방법 및 이를 포함하는 폴리에스테르 수지
WO2022005191A1 (ko) 열접착성 복합 섬유, 그 제조방법, 이를 각각 포함하는 섬유 집합체 및 부직포
WO2023113509A1 (ko) 공중합 폴리에스테르 수지 및 이의 제조 방법
WO2024123072A1 (ko) 공중합체 및 공중합체의 제조 방법
WO2021040474A1 (ko) 바이오매스 유래 환형 단량체를 포함하는 고분자 화합물 및 그의 제조방법
WO2022059970A1 (ko) 폴리에스테르 중합체
WO2024128707A1 (ko) 생분해성 폴리에스테르 수지 및 이의 제조 방법
WO2024019560A1 (ko) 부타디엔 제조 방법
WO2023106707A1 (ko) 생분해성 폴리에스테르 수지 및 이의 제조 방법
WO2023121283A1 (ko) 공중합 폴리에스테르 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958795

Country of ref document: EP

Kind code of ref document: A1