WO2024018947A1 - Sensor module - Google Patents

Sensor module Download PDF

Info

Publication number
WO2024018947A1
WO2024018947A1 PCT/JP2023/025538 JP2023025538W WO2024018947A1 WO 2024018947 A1 WO2024018947 A1 WO 2024018947A1 JP 2023025538 W JP2023025538 W JP 2023025538W WO 2024018947 A1 WO2024018947 A1 WO 2024018947A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
sensor module
light
holding body
substrate
Prior art date
Application number
PCT/JP2023/025538
Other languages
French (fr)
Japanese (ja)
Inventor
義晃 三浦
泉 志村
Original Assignee
タカハタプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカハタプレシジョン株式会社 filed Critical タカハタプレシジョン株式会社
Publication of WO2024018947A1 publication Critical patent/WO2024018947A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present invention relates to a sensor module that shines a laser beam onto an object to be measured and measures the object from its reflection.
  • a sensor is mounted on the roof of the cockpit of a construction machine and projects a light beam onto an object to obtain three-dimensional distance data, which is a collection of point cloud data.
  • a sensor storage device for construction machinery includes a cover case having an opening and a lid plate that opens and closes the opening of the cover case (Patent Document 1).
  • a first semiconductor device provided on the substrate and having a first surface facing the substrate and a second surface opposite to the first surface side; , a second semiconductor device having a first surface facing the substrate side and a second surface opposite to the first surface side; and a second semiconductor device provided on the second surface of the first semiconductor device; a second wiring provided on the second surface of the second semiconductor device and connected to the second surface of the second semiconductor device; and a second wiring provided on the first wiring and connected to the first wiring.
  • a first intermediate layer provided on the second wiring and connected to the second wiring; and a second intermediate layer provided on the second wiring and connected to the first intermediate layer and the second intermediate layer on the first intermediate layer and the second intermediate layer.
  • Patent Document 2 There is also a semiconductor module having a plate part, a column part or a wall part between the plate part and the substrate, and a third wiring having thermal conductivity in which the plate part and the board are connected via the column part or the wall part. known (Patent Document 2).
  • the present invention stabilizes the wavelength of light emitted from a light emitting element.
  • the sensor module includes: A substrate and a light-emitting element that emits light; an imaging element that captures reflected light from the light; a first holder that accommodates and holds the light emitting element and the image sensor; a second holder that supports the first holder in surface contact with the first holder on a first surface and holds the substrate on a second surface opposite to the first surface; a third holder supporting the second holder with a gap between the second holder and the second holder; It is characterized by
  • the invention according to claim 2 is the sensor module according to claim 1, comprising:
  • the first holding body, the second holding body, and the third holding body are made of a thermally conductive resin having a thermal conductivity of 1 W/m ⁇ K or more, and are thermally bonded to each other. It is characterized by
  • the invention according to claim 3 is the sensor module according to claim 2,
  • the second holder is in surface contact with the first holder at the first surface, and is in contact with the third holder at a part of the second surface to be thermally bonded. It is characterized by
  • the invention according to claim 4 is the sensor module according to claim 1,
  • the light emitting element is housed in a resin case body, and a side surface of the case body is thermally bonded to the first holder via an adhesive. It is characterized by
  • the invention according to claim 5 is the sensor module according to claim 4,
  • the bottom surface of the case body is made of a ceramic material and is thermally joined to the second holder via a reinforcing plate made of a thermally conductive material. It is characterized by
  • the invention according to claim 6 provides the sensor module type according to claim 1,
  • the image sensor is housed in a through hole provided in the first holder that penetrates in the thickness direction, and a circuit surface side opposite to the light receiving surface is in contact with the first surface of the second holder. , It is characterized by
  • the invention according to claim 7 is the sensor module according to claim 1,
  • the substrate is held on the second surface of the second holder so that the heating resistor element mounted on the surface faces the gap, It is characterized by
  • the invention according to claim 8 is the sensor module according to any one of claims 1 to 7,
  • the third holding body has a fin shape at least in part. It is characterized by
  • the wavelength of light emitted from the light emitting element can be stabilized.
  • heat generated by the light emitting element can be efficiently radiated to the outside.
  • the heat generated in the light emitting element can be radiated to the outside while being conducted in stages.
  • heat storage of the light emitting element can be promoted in a low temperature environment.
  • heat generated in the light emitting element can be efficiently conducted to the second support.
  • heat generated by the image sensor can be thermally conducted to the second support.
  • the heat conducted from the second holding body can be efficiently radiated to the outside.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a projector housed in a first support body.
  • (a) is a plan view showing the first holder
  • (b) is a vertical cross-sectional view
  • (c) is a vertical cross-sectional schematic diagram showing simple contact between the first holder and the second holder that accommodate the projector and image sensor module.
  • FIG. 1(a) is a schematic plan view showing the internal configuration of the sensor module 1 according to the present embodiment
  • FIG. 1(b) is a schematic vertical cross-sectional view
  • FIG. 1(c) is a bottom view.
  • the overall configuration of the sensor module 1 will be described below with reference to the drawings.
  • the sensor module 1 includes a substrate 10, a projector 20 consisting of a light emitting element that emits light, and an image sensor module 30 consisting of an image sensor that captures an image of the reflected light from the surface of the object to be measured. , a first holder 40 that accommodates and holds the projector 20 and the image sensor module 30, and a first surface 50a that is in surface contact with the first holder 40 to support the first holder 40 and that is opposite to the first surface 50a.
  • a second holder 50 that holds the substrate 10 on the second surface 50b of the side, and a third holder 60 that supports the second holder 50 with a gap G between the second holder 50 and the second holder 50 are covered with a case 70.
  • the sensor module 1 configured as described above emits a laser beam onto an object to be measured from a projector 20, images the reflected light reflected from the surface of the object with an image sensor module 30, acquires point cloud data, and processes the object. Measures the three-dimensional shape of the object.
  • FIG. 2(a) is a schematic diagram showing an example of mounting the processor P on the main surface 10a of the substrate 10
  • FIG. 2(b) is a schematic diagram showing an example of mounting the drive element on the back surface 10b of the substrate 10.
  • the substrate 10 is, for example, a PCB substrate, and has a main surface 10a and a back surface 10b.
  • a processor P that controls light emission by the projector 20 and imaging by the image sensor module 30 is arranged on the main surface 10a.
  • the back surface 10b is a surface facing the third holding body 60, and drive elements necessary for operating the projector 20 and the image sensor module 30 are mounted thereon.
  • the drive elements include driver ICs (U1 to U6) and resistors (R4 to R8: shown surrounded by broken lines in FIG. 2).
  • the resistors (R4 to R8) are heat generating resistive elements and generate heat when the projector 20 emits light. In this embodiment, the amount of heat generated is 1W to 3W.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the projector 20 housed in the first holder 40.
  • the projector 20 includes a VCSEL (Vertical Cavity Surface Emitting LASER) 21, which is an array light source consisting of a plurality of light emitting elements, and a transmissive diffractive optical element that controls the distribution of laser light above the VCSEL 21. (DOE) 22, and a case body 23 that accommodates the VCSEL 21 and the diffractive optical element (DOE) 22.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • the case body 23 is open upward and supports a diffractive optical element (DOE) 22.
  • the bottom surface 23A of the case body 23 is made of a ceramic material, and the VCSEL 21 is disposed on the top surface 23Aa via a copper plate 24a, which is a thermally conductive material and has a thermal conductivity of about 400 W/m ⁇ K.
  • the lower surface 23Ab of the bottom surface 23A of the case body 23 is thermally connected to the second holder 50 via a copper plate 24a having a thermal conductivity of approximately 400 W/m ⁇ K and a reinforcing plate 24b having a thermal conductivity of 10 W/m ⁇ K or more. It is joined.
  • the case body 23 is made of liquid crystal polymer (LCP), which has lower thermal conductivity than metal, except for the bottom surface 23A, and the side surface 23B is thermally bonded to the first holding body 40 via an adhesive. There is.
  • LCP liquid crystal polymer
  • the adhesive is preferably a high heat conductive adhesive, such as epoxy resin, polyimide resin, silicone resin, acrylic resin, phenol resin, bismaleimide triazine resin, or various engineering plastics, and is based on silver powder, carbon, copper, aluminum, or iron. It is possible to use powders or fibers of materials with high thermal conductivity, such as ceramics. The higher the thermal conductivity of the high thermal conductive adhesive, the more preferable it is, and specifically, it is preferable that it is 1 W/m ⁇ K or more. Thereby, it becomes possible to further enhance heat conduction from the side surface 23B of the case body 23 to the first holding body 40.
  • a high heat conductive adhesive such as epoxy resin, polyimide resin, silicone resin, acrylic resin, phenol resin, bismaleimide triazine resin, or various engineering plastics
  • the higher the thermal conductivity of the high thermal conductive adhesive the more preferable it is, and specifically, it is preferable that it is 1 W/m ⁇ K or more. Thereby, it becomes possible to further enhance heat
  • Ceramic materials have higher thermal conductivity than liquid crystal polymers (LCP), and the VCSEL 21, which is one of the heating elements, is held in a second position by the bottom surface 23A of the case body 23 via the reinforcing plate 24b, which is a thermally conductive material. By being thermally joined to the body 50, the generated heat is conducted to the second holding body 50 side.
  • LCP liquid crystal polymers
  • the image sensor module 30 uses a CMOS (Complementary Metal Oxide Semiconductor) image sensor as a photoelectric conversion element.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image sensor module 30 images the reflected light emitted from the projector 20 and reflected by the object to be measured, and acquires the image as point group data.
  • FIG. 4(a) is a plan view showing the first holder 40
  • FIG. 4(b) is a longitudinal cross-sectional view
  • FIG. FIG. 3 is a schematic vertical cross-sectional view showing simple contact.
  • the first holder 40 is made of a thermally conductive resin having a thermal conductivity of 1 W/m ⁇ K or more, and accommodates and holds the projector 20 and the image sensor module 30.
  • a through hole 41 penetrating from the lower surface 40b to the upper surface 40a is formed in the first holder 40, and the projector 20 is housed in the through hole 41.
  • the through hole 41 has a convex portion 41a on the inner surface, and contacts the side surface 23B of the case body 23 of the projector 20 housed in the through hole 41 to position the projector 20 and at the same time thermally It is joined.
  • the case body 23, except for the bottom surface 23A, is made of liquid crystal polymer (LCP), which has a lower thermal conductivity than metal, and is made of a thermally conductive resin with a thermal conductivity of 1 W/m ⁇ K or more. It is in contact with the first holding body 40 .
  • LCP liquid crystal polymer
  • the projector 20 housed in the through-hole 41 is exposed on the bottom surface 23A side of the case body 23, and the projector 20 has a thermal conductivity of 1 W/m ⁇ K or more through the reinforcing plate 24b, which is a thermally conductive material (see FIG. 3). It is thermally bonded by contacting with the first surface 50a of the second holding body 50 made of a thermally conductive resin.
  • the bottom surface 23A of the case body 23 is made of a ceramic material having a thermal conductivity of approximately 90 W/m ⁇ K, a copper plate 24a having a thermal conductivity of approximately 400 W/m ⁇ K, and a ceramic material having a thermal conductivity of approximately 400 W/m ⁇ K.
  • a through hole 42 is formed in the first holder 40 and penetrates from the lower surface 40b to the upper surface 40a, and the image sensor module 30 is housed therein. Since the image sensor module 30 uses a CMOS image sensor and is not a significant heat generating element, thermal bonding with the first holder 40 is not particularly considered.
  • FIG. 5(a) is a plan view showing the first holder 40 and the second holder 50
  • FIG. 5(b) is a longitudinal sectional view showing simple contact between the first holder 40 and the second holder 50.
  • the second holder 50 is made of a thermally conductive resin with a thermal conductivity of 1 W/m ⁇ K or more, and is thermally bonded to the first holder 40 by making surface contact with the first holder 40 at the first surface 50a. has been done. That is, the first holder 40 and the second holder 50 are made of a thermally conductive resin having a thermal conductivity of 1 W/m ⁇ K or more, and are thermally bonded to each other through simple contact.
  • part of the heat generated in the VCSEL 21 is conducted from the side surface 23B of the case body 23 to the second holder 50 via the first holder 40, and part of the heat is conducted directly from the bottom surface 23A of the case body 23 to the second holder 50.
  • the heat is conducted to the second holder 50.
  • the first holder 40 and the second holder 50 may be bonded together using a high heat conductive adhesive. Thereby, the heat conduction efficiency from the first holder 40 to the second holder 50 can be improved.
  • a second surface 50b of the second holder 50 opposite to the first surface 50a holds the substrate 10 such that the back surface 10b of the substrate 10 faces the third holder 60 side.
  • Resistors (R4 to R8) which are heating resistance elements, are mounted on the back surface 10b of the substrate 10, and the resistors (R4 to R8) face the gap G with the third holder 60. Thereby, the heat generated in the resistors (R4 to R8) is radiated into the gap G. Further, the heat generated in the resistors (R4 to R8) is also conducted to the second holder 50 via the attachment portion of the substrate 10.
  • FIG. 6(a) is a plan view showing the first surface 60a of the third holding body 60
  • FIG. 6(b) is a schematic cross-sectional view
  • FIG. 6(c) is a bottom view showing the second surface 60b of the third holding body 60.
  • the third holder 60 is made of a thermally conductive resin having a thermal conductivity of 1 W/m ⁇ K or more, and supports the second holder 50 with a gap G between the second holder 50 and the second holder 50. is thermally bonded to.
  • a boss body 60A serving as a spacer is erected on the first surface 60a of the third holding body 60, and the second holding body 50 is supported at a distance from the boss body 60A. That is, the second holder 50 and the third holder 60 are thermally joined by the boss body 60A, so that heat is conducted from the second holder 50 to the third holder 60.
  • a fin shape 60B is formed on the first surface 60a and the second surface 60b opposite to the first surface 60a of the third holding body 60.
  • the fin shape 60B is a heat radiation fin formed in a strip shape, and increases the contact area between the third holding body 60 and the surrounding air layer to efficiently radiate heat conducted from the second holding body 50 to the outside. be able to.
  • thermally conductive resin forming the first holder 40, the second holder 50, and the third holder 60 for example, a highly thermally conductive material made of a carbon-based material in the form of particles or fillers is used as a predetermined base resin.
  • a highly thermally conductive material made of a carbon-based material in the form of particles or fillers is used as a predetermined base resin.
  • a highly thermally conductive material made of a carbon-based material in the form of particles or fillers is used as a predetermined base resin.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • PA polyamide
  • PP polypropylene
  • PPS polyphenylene sulfide
  • ABS acrylonitrile butadiene styrene
  • LCP liquid crystal polymer
  • thermoplastic resin mixed with resin such as thermoplastic elastomer (TPE).
  • thermally conductive resins have a thermal conductivity of approximately 1 W/m ⁇ K to 10 W/m ⁇ K, but by adjusting the amount of high thermal conductive material mixed, the thermal conductivity can be increased to approximately 10 W/m ⁇ K. It can be increased up to 30 W/m ⁇ K, making it possible to further suppress heat accumulation in the sensor module 1.
  • FIG. 7 is a schematic diagram illustrating heat conduction and heat radiation in the sensor module 1.
  • the largest heat source in the sensor module 1 is the VCSEL 21, which is the array light source of the projector 20, and the resistors (R4 to R8) of the substrate 10 that control the light emission of the VCSEL 21 also serve as a heat source that generates a certain amount of heat.
  • the VCSEL 21 is housed in a case body 23, the side surface 23B of the case body 23 is thermally connected to the first holder 40, and the bottom surface 23A of the case body 23 is directly thermally connected to the second holder 50 via the copper plate 24. It is joined.
  • the first holder 40 and the second holder 50 are thermally bonded to each other through simple contact.
  • the second holding body 50 is thermally joined to the third holding body 60 via a boss body 61.
  • the heat source VCSEL 21 is thermally connected to the third holder 60 via the first holder 40 and the second holder 50.
  • the third holder 60 has a fin shape 60B formed on the first surface 60a and the second surface 60b to increase the contact area with the surrounding air layer.
  • the substrate 10 is thermally connected to the second holder 50 via the attachment portion, and a portion of the heat generated in the resistors (R4 to R8) of the substrate 10 is thermally conducted to the second holder 50.
  • the first holding body 40 is on the upper side, and the second holding body 50 is in surface contact with the first holding body 40 and is on the first side.
  • the holding body 40 is supported from below, and the third holding body 60 supports the second holding body 50 from below with a boss body 60A having a gap G therebetween.
  • the second holder 50 has a larger area than the first holder 40, and the third holder 60 has a larger area than the second holder 50.
  • the heat conducted from the first holder 40 to the second holder 50 can be easily radiated, and the heat transferred from the second holder 50 to the third holder 60 can be transferred to the outer surface of the third holder 60. It is easier to dissipate heat from the Further, on the first surface 60a of the third holder 60 and the second surface 60b opposite to the first surface 60a, radiation fins formed in a strip shape are formed, and the third holder 60 and the surrounding air layer are formed. It is possible to efficiently dissipate heat by increasing the contact area with the
  • the sensor module 1 is thermally connected from the heat source VCSEL 21 to the third holder 60 via the first holder 40 and the second holder 50, and in the initial stage of operation in a low-temperature environment, the case body 23 to the first holder 40 to promote heat storage in the projector 20, and when the case body 23 accumulates a certain amount of heat, the third holder passes through the first holder 40 and the second holder 50.
  • a sensor module characterized by: [2]
  • the first holding body, the second holding body, and the third holding body are made of a thermally conductive resin having a thermal conductivity of 1 W/m ⁇ K or more, and are thermally bonded to each other.
  • the image sensor is accommodated in a through hole provided in the first holder that penetrates in the thickness direction, and a circuit surface side opposite to the light receiving surface is in contact with the first surface of the second holder.
  • the substrate is held on the second surface of the second holder so that the heating resistor element mounted on the surface faces the gap
  • the sensor module according to any one of [1] to [6] characterized in that: [8]
  • the third holding body has a fin shape at least in part.
  • the sensor module according to any one of [1] to [7] characterized in that:
  • the wavelength of light emitted from the light emitting element can be stabilized.
  • heat generated in the light emitting element can be efficiently radiated to the outside.
  • the heat generated in the light emitting element can be radiated to the outside while being conducted in stages.
  • heat storage of the light emitting element can be promoted in a low temperature environment.
  • heat generated in the light emitting element can be efficiently conducted to the second support.
  • the heat generated by the image sensor can be thermally conducted to the second support.
  • the heat conducted from the second holding body can be efficiently radiated to the outside.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention stabilizes the wavelength of light emitted from a light-emitting element. This sensor module comprises: a substrate; a light-emitting element that emits light; an imaging element that images reflected light resulting from reflection of the light; a first holder that stores and holds the light-emitting element and the imaging element; a second holder that supports the first holder through surface contact with the first holder at a first surface and that holds the substrate between the first surface and a second surface opposite to the first surface; and a third holder that supports the second holder while having a gap from the second holder. The first, second, and third holders are made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or higher, and are thermally coupled to one another.

Description

センサモジュールsensor module
 本発明は、レーザ光を被測定物に当ててその反射から被測定物を測定するセンサモジュールに関する。 The present invention relates to a sensor module that shines a laser beam onto an object to be measured and measures the object from its reflection.
 建設機械の操縦室の屋根部に搭載され、光線を対象物に投射して、点群データの集合である3次元距離データを取得するセンサと、センサを覆い、センサが光線を投射する方向に開口を有するカバーケースと、カバーケースの開口を開閉する蓋板と、からなる建設機械用センサ格納装置が知られている(特許文献1)。 A sensor is mounted on the roof of the cockpit of a construction machine and projects a light beam onto an object to obtain three-dimensional distance data, which is a collection of point cloud data. 2. Description of the Related Art A sensor storage device for construction machinery is known that includes a cover case having an opening and a lid plate that opens and closes the opening of the cover case (Patent Document 1).
 基板と、基板上に設けられ、基板側を向く第1面及び第1面側とは反対側に第2面を有する第1半導体装置と、第1半導体装置と隣接し、基板上に設けられ、基板側を向く第1面及び第1面側とは反対側に第2面を有する第2半導体装置と、第1半導体装置の第2面上に設けられ、第1半導体装置の第2面と接続した第1配線と、第2半導体装置の第2面上に設けられ、第2半導体装置の第2面と接続した第2配線と、第1配線上に設けられ、第1配線と接続した第1中間層と、第2配線上に設けられ、第2配線と接続した第2中間層と、第1中間層及び第2中間層上に第1中間層及び第2中間層と接続する板部を有し、板部基板の間に柱部又は壁部を有し、柱部又は壁部を介して板部と基板が接続して、熱伝導性有する第3配線を有する半導体モジュールも知られている(特許文献2)。 a first semiconductor device provided on the substrate and having a first surface facing the substrate and a second surface opposite to the first surface side; , a second semiconductor device having a first surface facing the substrate side and a second surface opposite to the first surface side; and a second semiconductor device provided on the second surface of the first semiconductor device; a second wiring provided on the second surface of the second semiconductor device and connected to the second surface of the second semiconductor device; and a second wiring provided on the first wiring and connected to the first wiring. a first intermediate layer provided on the second wiring and connected to the second wiring; and a second intermediate layer provided on the second wiring and connected to the first intermediate layer and the second intermediate layer on the first intermediate layer and the second intermediate layer. There is also a semiconductor module having a plate part, a column part or a wall part between the plate part and the substrate, and a third wiring having thermal conductivity in which the plate part and the board are connected via the column part or the wall part. known (Patent Document 2).
特開2018-31153号公報JP 2018-31153 Publication 特開2022-53401号公報Japanese Patent Application Publication No. 2022-53401
 本発明は、発光素子から出射する光の波長を安定化させる。 The present invention stabilizes the wavelength of light emitted from a light emitting element.
 前記課題を解決するために、請求項1に記載のセンサモジュールは、
 基板と、
 光を出射する発光素子と、前記光が反射した反射光を撮像する撮像素子と、
 前記発光素子及び前記撮像素子を収容して保持する第1保持体と、
 第1面で前記第1保持体と面接触して前記第1保持体を支持し前記第1面と反対側の第2面で前記基板を保持する第2保持体と、
 前記第2保持体と空隙を有して前記第2保持体を支持する第3保持体と、を備えた、
 ことを特徴とする。
In order to solve the problem, the sensor module according to claim 1 includes:
A substrate and
a light-emitting element that emits light; an imaging element that captures reflected light from the light;
a first holder that accommodates and holds the light emitting element and the image sensor;
a second holder that supports the first holder in surface contact with the first holder on a first surface and holds the substrate on a second surface opposite to the first surface;
a third holder supporting the second holder with a gap between the second holder and the second holder;
It is characterized by
 請求項2に記載の発明は、請求項1に記載のセンサモジュールにおいて、
 前記第1保持体、前記第2保持体及び前記第3保持体は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、互いに熱的に接合されている、
 ことを特徴とする。
The invention according to claim 2 is the sensor module according to claim 1, comprising:
The first holding body, the second holding body, and the third holding body are made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and are thermally bonded to each other.
It is characterized by
 請求項3に記載の発明は、請求項2に記載のセンサモジュールにおいて、
 前記第2保持体は前記第1保持体と前記第1面で面接触し前記第3保持体と前記第2面の一部で接触して熱的に接合されている、
  ことを特徴とする。
The invention according to claim 3 is the sensor module according to claim 2,
The second holder is in surface contact with the first holder at the first surface, and is in contact with the third holder at a part of the second surface to be thermally bonded.
It is characterized by
 請求項4に記載の発明は、請求項1に記載のセンサモジュールにおいて、
 前記発光素子は、樹脂製のケース体に収容され、前記ケース体の側面が前記第1保持体と接着剤を介して熱的に接合されている、
 ことを特徴とする。
The invention according to claim 4 is the sensor module according to claim 1,
The light emitting element is housed in a resin case body, and a side surface of the case body is thermally bonded to the first holder via an adhesive.
It is characterized by
 請求項5に記載の発明は、請求項4に記載のセンサモジュールにおいて、
 前記ケース体の底面はセラミックス材料で構成され熱伝導性材料からなる補強板を介して前記第2保持体に熱的に接合されている、
 ことを特徴とする。
The invention according to claim 5 is the sensor module according to claim 4,
The bottom surface of the case body is made of a ceramic material and is thermally joined to the second holder via a reinforcing plate made of a thermally conductive material.
It is characterized by
 請求項6に記載の発明は、請求項1に記載のセンサモジュール型において、
 前記撮像素子は、前記第1保持体に設けられた厚み方向に貫通する貫通孔に収容され、受光面とは反対側の回路面側が前記第2保持体の前記第1面に接触している、
 ことを特徴とする。
The invention according to claim 6 provides the sensor module type according to claim 1,
The image sensor is housed in a through hole provided in the first holder that penetrates in the thickness direction, and a circuit surface side opposite to the light receiving surface is in contact with the first surface of the second holder. ,
It is characterized by
 請求項7に記載の発明は、請求項1に記載のセンサモジュールにおいて、
 前記基板は、表面に実装された発熱抵抗素子が前記空隙に面するように前記第2保持体の前記第2面に保持されている、
 ことを特徴とする。
The invention according to claim 7 is the sensor module according to claim 1,
The substrate is held on the second surface of the second holder so that the heating resistor element mounted on the surface faces the gap,
It is characterized by
 請求項8に記載の発明は、請求項1ないし7のいずれか1項に記載のセンサモジュールにおいて、
 前記第3保持体は、少なくとも一部にフィン形状を有する、
 ことを特徴とする。
The invention according to claim 8 is the sensor module according to any one of claims 1 to 7,
The third holding body has a fin shape at least in part.
It is characterized by
 請求項1に記載の発明によれば、発光素子から出射する光の波長を安定化させることができる。 According to the invention described in claim 1, the wavelength of light emitted from the light emitting element can be stabilized.
 請求項2に記載の発明によれば、発光素子で発生する熱を効率よく外部に放熱することができる。 According to the invention described in claim 2, heat generated by the light emitting element can be efficiently radiated to the outside.
 請求項3に記載の発明によれば、発光素子で発生する熱を段階的に熱伝導させながら外部に放熱することができる。 According to the invention set forth in claim 3, the heat generated in the light emitting element can be radiated to the outside while being conducted in stages.
 請求項4に記載の発明によれば、低温環境で発光素子の蓄熱を促進することができる。 According to the invention set forth in claim 4, heat storage of the light emitting element can be promoted in a low temperature environment.
 請求項5に記載の発明によれば、発光素子で発生する熱を第2支持体に効率的に熱伝導させることができる。 According to the invention set forth in claim 5, heat generated in the light emitting element can be efficiently conducted to the second support.
 請求項6に記載の発明によれば、撮像素子で発生する熱を第2支持体に熱伝導させることができる。 According to the invention set forth in claim 6, heat generated by the image sensor can be thermally conducted to the second support.
 請求項7に記載の発明によれば、基板の発熱抵抗素子で発生する熱を放熱することができる。 According to the invention set forth in claim 7, it is possible to radiate heat generated by the heat generating resistor element of the substrate.
 請求項8に記載の発明によれば、第2保持体から熱伝導する熱を外部に効率的に放熱することができる。 According to the invention set forth in claim 8, the heat conducted from the second holding body can be efficiently radiated to the outside.
(a)は本実施形態に係るセンサモジュール1の内部構成を示す平面模式図、(b)は縦断面模式図、(c)は底面図である。(a) is a schematic plan view showing the internal configuration of the sensor module 1 according to the present embodiment, (b) is a schematic vertical cross-sectional view, and (c) is a bottom view. (a)は基板の主面におけるプロセッサの実装例を示す模式図、(b)は基板の裏面における駆動素子の実装例を示す模式図である。(a) is a schematic diagram showing an example of mounting a processor on the main surface of the substrate, and (b) is a schematic diagram showing an example of mounting the drive element on the back surface of the substrate. 第1支持体に収容されたプロジェクタの構成を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing the configuration of a projector housed in a first support body. (a)は第1保持体を示す平面図、(b)は縦断面図、(c)はプロジェクタ及びイメージセンサモジュールを収容した第1保持体と第2保持体の単純接触を示す縦断面模式図である。(a) is a plan view showing the first holder, (b) is a vertical cross-sectional view, and (c) is a vertical cross-sectional schematic diagram showing simple contact between the first holder and the second holder that accommodate the projector and image sensor module. It is a diagram. (a)は第1保持体及び第2保持体を示す平面図、(b)は第1保持体と第2保持体の単純接触を示す縦断面図である。(a) is a plan view showing the first holding body and the second holding body, and (b) is a longitudinal cross-sectional view showing simple contact between the first holding body and the second holding body. (a)は第3保持体の第1面を示す平面図、(b)は縦断面模式図、(c)は第3保持体の第2面を示す底面図である。(a) is a plan view showing the first surface of the third holder, (b) is a schematic vertical cross-sectional view, and (c) is a bottom view showing the second surface of the third holder. センサモジュールにおける熱伝導と放熱を説明する模式図である。It is a schematic diagram explaining heat conduction and heat radiation in a sensor module.
 次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
 尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, specific examples of embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In the explanation using the drawings below, it should be noted that the drawings are schematic and the proportions of each dimension may differ from the actual ones. Illustrations of parts other than members are omitted as appropriate.
 (1)センサモジュールの全体構成
 図1(a)は本実施形態に係るセンサモジュール1の内部構成を示す平面模式図、(b)は縦断面模式図、(c)は底面図である。
 以下、図面を参照しながら、センサモジュール1の全体構成について説明する。
(1) Overall configuration of sensor module FIG. 1(a) is a schematic plan view showing the internal configuration of the sensor module 1 according to the present embodiment, FIG. 1(b) is a schematic vertical cross-sectional view, and FIG. 1(c) is a bottom view.
The overall configuration of the sensor module 1 will be described below with reference to the drawings.
 図1に示すように、センサモジュール1は、基板10と、光を出射する発光素子からなるプロジェクタ20と、被測定物の表面から反射した反射光を撮像する撮像素子からなるイメージセンサモジュール30と、プロジェクタ20及びイメージセンサモジュール30を収容して保持する第1保持体40と、第1面50aで第1保持体40と面接触して第1保持体40を支持し第1面50aと反対側の第2面50bで基板10を保持する第2保持体50と、第2保持体50と空隙Gを有して第2保持体50を支持する第3保持体60とがケース70で覆われて配置されている。
 このように構成されるセンサモジュール1は、被測定物にプロジェクタ20からレーザ光を発して被測定物の表面から反射する反射光をイメージセンサモジュール30で撮像して点群データを取得して被測定物の3次元形状を測定する。
As shown in FIG. 1, the sensor module 1 includes a substrate 10, a projector 20 consisting of a light emitting element that emits light, and an image sensor module 30 consisting of an image sensor that captures an image of the reflected light from the surface of the object to be measured. , a first holder 40 that accommodates and holds the projector 20 and the image sensor module 30, and a first surface 50a that is in surface contact with the first holder 40 to support the first holder 40 and that is opposite to the first surface 50a. A second holder 50 that holds the substrate 10 on the second surface 50b of the side, and a third holder 60 that supports the second holder 50 with a gap G between the second holder 50 and the second holder 50 are covered with a case 70. It is arranged in such a way.
The sensor module 1 configured as described above emits a laser beam onto an object to be measured from a projector 20, images the reflected light reflected from the surface of the object with an image sensor module 30, acquires point cloud data, and processes the object. Measures the three-dimensional shape of the object.
 (2)センサモジュールの構成
 図2(a)は基板10の主面10aにおけるプロセッサPの実装例を示す模式図、(b)は基板10の裏面10bにおける駆動素子の実装例を示す模式図である。
 基板10は、例えばPCB基板であり、主面10aおよび裏面10bを有する。主面10aにはプロジェクタ20の発光及びイメージセンサモジュール30の撮像を制御するプロセッサPが配置されている。裏面10bは、第3保持体60側を向く面であり、プロジェクタ20及びイメージセンサモジュール30を動作させるために必要な駆動素子が実装されている。駆動素子は、ドライバIC(U1~U6)や抵抗体(R4~R8: 図2中 破線で囲んで示す)を含んでいる。
 抵抗体(R4~R8)は、発熱抵抗素子であり、プロジェクタ20を発光させる際に発熱する。本実施形態においては、1W~3Wの発熱量を有する。
(2) Configuration of sensor module FIG. 2(a) is a schematic diagram showing an example of mounting the processor P on the main surface 10a of the substrate 10, and FIG. 2(b) is a schematic diagram showing an example of mounting the drive element on the back surface 10b of the substrate 10. be.
The substrate 10 is, for example, a PCB substrate, and has a main surface 10a and a back surface 10b. A processor P that controls light emission by the projector 20 and imaging by the image sensor module 30 is arranged on the main surface 10a. The back surface 10b is a surface facing the third holding body 60, and drive elements necessary for operating the projector 20 and the image sensor module 30 are mounted thereon. The drive elements include driver ICs (U1 to U6) and resistors (R4 to R8: shown surrounded by broken lines in FIG. 2).
The resistors (R4 to R8) are heat generating resistive elements and generate heat when the projector 20 emits light. In this embodiment, the amount of heat generated is 1W to 3W.
 図3は第1保持体40に収容されたプロジェクタ20の構成を示す断面模式図である。
 プロジェクタ20は、図3に示すように、複数の発光素子からなるアレイ光源であるVCSEL(Vertical Cavity Surface Emitting LASER)21と、VCSEL21の上側でレーザ光の配光制御を行う透過型の回折光学素子(DOE)22と、VCSEL21及び回折光学素子(DOE)22を収容するケース体23から構成されている。
FIG. 3 is a schematic cross-sectional view showing the configuration of the projector 20 housed in the first holder 40. As shown in FIG.
As shown in FIG. 3, the projector 20 includes a VCSEL (Vertical Cavity Surface Emitting LASER) 21, which is an array light source consisting of a plurality of light emitting elements, and a transmissive diffractive optical element that controls the distribution of laser light above the VCSEL 21. (DOE) 22, and a case body 23 that accommodates the VCSEL 21 and the diffractive optical element (DOE) 22.
 ケース体23は、上方に開口し、回折光学素子(DOE)22を支持している。ケース体23の底面23Aはセラミックス材料で構成され、上面23Aaに熱伝導性材料であり、熱伝導率が約400W/m・Kの銅板24aを介してVCSEL21が配置されている。ケース体23の底面23Aの下面23Abは熱伝導率が約400W/m・Kの銅板24a及び熱伝導率が10W/m・K以上の補強板24bを介して第2保持体50に熱的に接合されている。 The case body 23 is open upward and supports a diffractive optical element (DOE) 22. The bottom surface 23A of the case body 23 is made of a ceramic material, and the VCSEL 21 is disposed on the top surface 23Aa via a copper plate 24a, which is a thermally conductive material and has a thermal conductivity of about 400 W/m·K. The lower surface 23Ab of the bottom surface 23A of the case body 23 is thermally connected to the second holder 50 via a copper plate 24a having a thermal conductivity of approximately 400 W/m·K and a reinforcing plate 24b having a thermal conductivity of 10 W/m·K or more. It is joined.
 ケース体23は、底面23Aを除いて、金属よりも熱伝導性が低い液晶ポリマー(LCP)を材料として形成され、側面23Bが第1保持体40と接着剤を介して熱的に接合されている。これにより、低温環境における動作開始時にはVCSEL21の蓄熱を促進し、発光波長の変化を抑制することが可能となっている。そして、VCSEL21が発熱した場合は、第1保持体40へ熱伝導して蓄熱を抑制することで発光波長の変化を抑制している。 The case body 23 is made of liquid crystal polymer (LCP), which has lower thermal conductivity than metal, except for the bottom surface 23A, and the side surface 23B is thermally bonded to the first holding body 40 via an adhesive. There is. This makes it possible to promote heat storage in the VCSEL 21 and suppress changes in the emission wavelength at the start of operation in a low-temperature environment. When the VCSEL 21 generates heat, the heat is conducted to the first holding body 40 to suppress heat accumulation, thereby suppressing a change in the emission wavelength.
 接着剤としては、高熱伝導接着剤が好ましく、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、アクリル樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂、または、各種エンジニアリングプラスチック等をベースとし銀粉、カーボン、銅、アルミニウム、鉄、セラミック等、熱伝導率の大きい材料の粉末や繊維を混入したものを使用できる。高熱伝導接着剤は、熱伝導率が高いほど好ましく、具体的には、1W/m・K以上であることが好ましい。これにより、ケース体23の側面23Bから第1保持体40への熱伝導をより高めることが可能となる。 The adhesive is preferably a high heat conductive adhesive, such as epoxy resin, polyimide resin, silicone resin, acrylic resin, phenol resin, bismaleimide triazine resin, or various engineering plastics, and is based on silver powder, carbon, copper, aluminum, or iron. It is possible to use powders or fibers of materials with high thermal conductivity, such as ceramics. The higher the thermal conductivity of the high thermal conductive adhesive, the more preferable it is, and specifically, it is preferable that it is 1 W/m·K or more. Thereby, it becomes possible to further enhance heat conduction from the side surface 23B of the case body 23 to the first holding body 40.
 セラミックス材料は、液晶ポリマー(LCP)に比べて熱伝導率が高く、発熱体の一つであるVCSEL21は、ケース体23の底面23Aが熱伝導性材料である補強板24bを介して第2保持体50と熱的に接合されることで、発生する熱は第2保持体50側へ熱伝導される。 Ceramic materials have higher thermal conductivity than liquid crystal polymers (LCP), and the VCSEL 21, which is one of the heating elements, is held in a second position by the bottom surface 23A of the case body 23 via the reinforcing plate 24b, which is a thermally conductive material. By being thermally joined to the body 50, the generated heat is conducted to the second holding body 50 side.
 イメージセンサモジュール30(図1に示す)には、光電変換素子としてCMOS(Complementary  Metal  Oxide  Semiconductor)イメージセンサが用いられている。
 イメージセンサモジュール30は、プロジェクタ20から出射した光が被測定物で反射する反射光を撮像して点群データとして取得する。
The image sensor module 30 (shown in FIG. 1) uses a CMOS (Complementary Metal Oxide Semiconductor) image sensor as a photoelectric conversion element.
The image sensor module 30 images the reflected light emitted from the projector 20 and reflected by the object to be measured, and acquires the image as point group data.
 図4(a)は第1保持体40を示す平面図、(b)は縦断面図、(c)はプロジェクタ20及びイメージセンサモジュール30を収容した第1保持体40と第2保持体50の単純接触を示す縦断面模式図である。
 第1保持体40は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、プロジェクタ20及びイメージセンサモジュール30を収容して保持している。第1保持体40には下面40bから上面40aに貫通する貫通孔41が形成され、プロジェクタ20が収容されている。
FIG. 4(a) is a plan view showing the first holder 40, FIG. 4(b) is a longitudinal cross-sectional view, and FIG. FIG. 3 is a schematic vertical cross-sectional view showing simple contact.
The first holder 40 is made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and accommodates and holds the projector 20 and the image sensor module 30. A through hole 41 penetrating from the lower surface 40b to the upper surface 40a is formed in the first holder 40, and the projector 20 is housed in the through hole 41.
 貫通孔41は、図4に示すように、内面に凸部41aを有し、貫通孔41に収容されるプロジェクタ20のケース体23の側面23Bと接触してプロジェクタ20を位置決めすると同時に熱的に接合している。具体的には、ケース体23は底面23Aを除いて、金属よりも熱伝導率が低い液晶ポリマー(LCP)を材料として形成され、熱伝導率が1W/m・K以上の熱伝導性樹脂からなる第1保持体40と接触している。
 これにより、低温環境における動作初期においては、ケース体23から第1保持体40への熱伝導を抑制してプロジェクタ20の蓄熱を促進し、ケース体23が一定程度蓄熱した場合、第1保持体40に熱伝導することでプロジェクタ20の過熱を抑制することで、VCSEL21の発光波長の変動を小さくしている。
As shown in FIG. 4, the through hole 41 has a convex portion 41a on the inner surface, and contacts the side surface 23B of the case body 23 of the projector 20 housed in the through hole 41 to position the projector 20 and at the same time thermally It is joined. Specifically, the case body 23, except for the bottom surface 23A, is made of liquid crystal polymer (LCP), which has a lower thermal conductivity than metal, and is made of a thermally conductive resin with a thermal conductivity of 1 W/m·K or more. It is in contact with the first holding body 40 .
As a result, in the initial stage of operation in a low-temperature environment, heat conduction from the case body 23 to the first holder 40 is suppressed to promote heat storage in the projector 20, and when the case body 23 has accumulated heat to a certain extent, the first holder By suppressing overheating of the projector 20 by conducting heat to the VCSEL 40, fluctuations in the emission wavelength of the VCSEL 21 are reduced.
 貫通孔41に収容されたプロジェクタ20は、ケース体23の底面23A側が露出し、熱伝導性材料である補強板24bを介して(図3 参照)、熱伝導率が1W/m・K以上の熱伝導性樹脂からなる第2保持体50の第1面50aと接触することで熱的に接合している。
 具体的には、ケース体23の底面23Aは、熱伝導率が約90W/m・Kのセラミック材料で形成され、熱伝導率が約400W/m・Kである銅板24a及び熱伝導率が約10W/m・K以上である補強板24bを介して熱伝導率が1W/m・K以上の第2保持体50に熱伝導することで、VCSEL21の蓄熱を抑制することが可能となっている。
The projector 20 housed in the through-hole 41 is exposed on the bottom surface 23A side of the case body 23, and the projector 20 has a thermal conductivity of 1 W/m·K or more through the reinforcing plate 24b, which is a thermally conductive material (see FIG. 3). It is thermally bonded by contacting with the first surface 50a of the second holding body 50 made of a thermally conductive resin.
Specifically, the bottom surface 23A of the case body 23 is made of a ceramic material having a thermal conductivity of approximately 90 W/m·K, a copper plate 24a having a thermal conductivity of approximately 400 W/m·K, and a ceramic material having a thermal conductivity of approximately 400 W/m·K. It is possible to suppress heat accumulation in the VCSEL 21 by conducting heat to the second holding body 50 having a thermal conductivity of 1 W/m·K or more through the reinforcing plate 24b having a thermal conductivity of 10 W/m·K or more. .
 第1保持体40には下面40bから上面40aに貫通する貫通孔42が形成され、イメージセンサモジュール30が収容されている。イメージセンサモジュール30には、CMOSイメージセンサが用いられ、著しい発熱要素ではないことから、第1保持体40との熱的接合は特に考慮されていない。 A through hole 42 is formed in the first holder 40 and penetrates from the lower surface 40b to the upper surface 40a, and the image sensor module 30 is housed therein. Since the image sensor module 30 uses a CMOS image sensor and is not a significant heat generating element, thermal bonding with the first holder 40 is not particularly considered.
 図5(a)は第1保持体40及び第2保持体50を示す平面図、(b)は第1保持体40と第2保持体50の単純接触を示す縦断面図である。
 第2保持体50は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、第1面50aで第1保持体40と面接触して第1保持体40と熱的に接合されている。すなわち、第1保持体40及び第2保持体50は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、単純接触で互いに熱的に接合されている。
 これにより、VCSEL21で発生する熱は、一部はケース体23の側面23Bから第1保持体40を介して第2保持体50に熱伝導され、一部はケース体23の底面23Aから直接第2保持体50に熱伝導される。尚、第1保持体40と第2保持体50は高熱伝導接着剤を介して接合してもよい。これにより、第1保持体40から第2保持体50への熱伝導効率を向上させることができる。
5(a) is a plan view showing the first holder 40 and the second holder 50, and FIG. 5(b) is a longitudinal sectional view showing simple contact between the first holder 40 and the second holder 50.
The second holder 50 is made of a thermally conductive resin with a thermal conductivity of 1 W/m·K or more, and is thermally bonded to the first holder 40 by making surface contact with the first holder 40 at the first surface 50a. has been done. That is, the first holder 40 and the second holder 50 are made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and are thermally bonded to each other through simple contact.
As a result, part of the heat generated in the VCSEL 21 is conducted from the side surface 23B of the case body 23 to the second holder 50 via the first holder 40, and part of the heat is conducted directly from the bottom surface 23A of the case body 23 to the second holder 50. The heat is conducted to the second holder 50. Note that the first holder 40 and the second holder 50 may be bonded together using a high heat conductive adhesive. Thereby, the heat conduction efficiency from the first holder 40 to the second holder 50 can be improved.
 第2保持体50の第1面50aと反対側の第2面50bは基板10の裏面10bが第3保持体60側を向くようにして基板10を保持している。基板10の裏面10bには発熱抵抗素子である抵抗体(R4~R8)が実装され、抵抗体(R4~R8)は第3保持体60との空隙Gに面している。これにより、抵抗体(R4~R8)で発生する熱は空隙G内に放熱されるようになっている。また、抵抗体(R4~R8)で発生する熱は基板10の取り付け部を介して第2保持体50にも熱伝導される。 A second surface 50b of the second holder 50 opposite to the first surface 50a holds the substrate 10 such that the back surface 10b of the substrate 10 faces the third holder 60 side. Resistors (R4 to R8), which are heating resistance elements, are mounted on the back surface 10b of the substrate 10, and the resistors (R4 to R8) face the gap G with the third holder 60. Thereby, the heat generated in the resistors (R4 to R8) is radiated into the gap G. Further, the heat generated in the resistors (R4 to R8) is also conducted to the second holder 50 via the attachment portion of the substrate 10.
 図6(a)は第3保持体60の第1面60aを示す平面図、(b)は断面模式図、(c)は第3保持体60の第2面60bを示す底面図である。
 第3保持体60は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、第2保持体50と空隙Gを有して第2保持体50を支持し第2保持体50と熱的に接合されている。
 図6に示すように、第3保持体60の第1面60aにはスペーサとしてのボス体60Aが立設され、第2保持体50はボス体60Aで離隔して支持されている。すなわち、第2保持体50と第3保持体60はボス体60Aで熱的に接合され、第2保持体50から第3保持体60に熱伝導されるようになっている。
6(a) is a plan view showing the first surface 60a of the third holding body 60, FIG. 6(b) is a schematic cross-sectional view, and FIG. 6(c) is a bottom view showing the second surface 60b of the third holding body 60.
The third holder 60 is made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and supports the second holder 50 with a gap G between the second holder 50 and the second holder 50. is thermally bonded to.
As shown in FIG. 6, a boss body 60A serving as a spacer is erected on the first surface 60a of the third holding body 60, and the second holding body 50 is supported at a distance from the boss body 60A. That is, the second holder 50 and the third holder 60 are thermally joined by the boss body 60A, so that heat is conducted from the second holder 50 to the third holder 60.
 第3保持体60の第1面60a及び第1面60aとは反対側の第2面60bには、図6に示すように、フィン形状60Bが形成されている。フィン形状60Bは短冊状に形成された放熱フィンであり、第3保持体60と周囲空気層との接触面積を増加させて第2保持体50から熱伝導する熱を外部に効率的に放熱することができる。 As shown in FIG. 6, a fin shape 60B is formed on the first surface 60a and the second surface 60b opposite to the first surface 60a of the third holding body 60. The fin shape 60B is a heat radiation fin formed in a strip shape, and increases the contact area between the third holding body 60 and the surrounding air layer to efficiently radiate heat conducted from the second holding body 50 to the outside. be able to.
 第1保持体40、第2保持体50及び第3保持体60を形成する熱伝導性樹脂としては、例えば、粒子状又はフィラー状の炭素系材料からなる高熱伝導性材料を所定の基材樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリアミド(PA)、ポリプロピレン(PP)、ポリフェニレンスルファイド(PPS)、アクリロニトリルブタジエンスチレン(ABS)、液晶ポリマー(LCP)、熱可塑性エラストマー(TPE)等の樹脂に混合した熱可塑性樹脂が挙げられる。これらの熱伝導性樹脂は、熱伝導率が概ね1W/m・Kないし10W/m・Kであるが、高熱伝導性材料の混合量を調整することで熱伝導率は概ね10W/m・Kないし30W/m・Kまで高くすることができ、センサモジュール1の蓄熱をより抑制することが可能となる。 As the thermally conductive resin forming the first holder 40, the second holder 50, and the third holder 60, for example, a highly thermally conductive material made of a carbon-based material in the form of particles or fillers is used as a predetermined base resin. , for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), polyamide (PA), polypropylene (PP), polyphenylene sulfide (PPS), acrylonitrile butadiene styrene (ABS), liquid crystal polymer (LCP) , thermoplastic resin mixed with resin such as thermoplastic elastomer (TPE). These thermally conductive resins have a thermal conductivity of approximately 1 W/m・K to 10 W/m・K, but by adjusting the amount of high thermal conductive material mixed, the thermal conductivity can be increased to approximately 10 W/m・K. It can be increased up to 30 W/m·K, making it possible to further suppress heat accumulation in the sensor module 1.
 (3)センサモジュールにおける熱伝導及び放熱
 図7はセンサモジュール1における熱伝導と放熱を説明する模式図である。
 センサモジュール1における最も大きな熱源はプロジェクタ20のアレイ光源であるVCSEL21であり、VCSEL21の発光を制御する基板10の抵抗体(R4~R8)も一定の発熱量を有する熱源となっている。
(3) Heat conduction and heat radiation in the sensor module FIG. 7 is a schematic diagram illustrating heat conduction and heat radiation in the sensor module 1.
The largest heat source in the sensor module 1 is the VCSEL 21, which is the array light source of the projector 20, and the resistors (R4 to R8) of the substrate 10 that control the light emission of the VCSEL 21 also serve as a heat source that generates a certain amount of heat.
 VCSEL21はケース体23に収容され、ケース体23は側面23Bが第1保持体40と熱的に接合され、ケース体23の底面23Aが銅板24を介して直接第2保持体50と熱的に接合されている。第1保持体40と第2保持体50は単純接触で互いに熱的に接合されている。第2保持体50は第3保持体60とボス体61を介して熱的に接合されている。これにより、図7に矢印で示すように、熱源のVCSEL21から第1保持体40及び第2保持体50を経由して第3保持体60まで熱的に接合されている。第3保持体60は、第1面60a及び第2面60bにフィン形状60Bが形成され、周囲空気層との接触面積を増加させている。また、基板10は取り付け部を介して第2保持体50と熱的に接合され、基板10の抵抗体(R4~R8)で発生する熱の一部は第2保持体50に熱伝導する。 The VCSEL 21 is housed in a case body 23, the side surface 23B of the case body 23 is thermally connected to the first holder 40, and the bottom surface 23A of the case body 23 is directly thermally connected to the second holder 50 via the copper plate 24. It is joined. The first holder 40 and the second holder 50 are thermally bonded to each other through simple contact. The second holding body 50 is thermally joined to the third holding body 60 via a boss body 61. Thereby, as shown by the arrow in FIG. 7, the heat source VCSEL 21 is thermally connected to the third holder 60 via the first holder 40 and the second holder 50. The third holder 60 has a fin shape 60B formed on the first surface 60a and the second surface 60b to increase the contact area with the surrounding air layer. Further, the substrate 10 is thermally connected to the second holder 50 via the attachment portion, and a portion of the heat generated in the resistors (R4 to R8) of the substrate 10 is thermally conducted to the second holder 50.
 センサモジュール1の光の出射及び光が反射した反射光の受光側を上方とした場合、第1保持体40が上方側、第2保持体50は第1保持体40と面接触して第1保持体40を下方から支持し、第3保持体60は第2保持体50を下方からボス体60Aで空隙Gを有して下方から支持している。そして、平面視した場合、第1保持体40よりも第2保持体50が面積が広く、第2保持体50よりも第3保持体60が面積が広くなる構成となっている。これにより、第1保持体40から第2保持体50に熱伝導した熱を放熱しやすく、第2保持体50から第3保持体60に熱伝導した熱を第3保持体60の外表面側から放熱しやすくなっている。更に、第3保持体60の第1面60a及び第1面60aとは反対側の第2面60bには、短冊状に形成された放熱フィンが形成され、第3保持体60と周囲空気層との接触面積を増加させて効率的に放熱することができる。 When the light emission side of the sensor module 1 and the light reception side of the reflected light are set upward, the first holding body 40 is on the upper side, and the second holding body 50 is in surface contact with the first holding body 40 and is on the first side. The holding body 40 is supported from below, and the third holding body 60 supports the second holding body 50 from below with a boss body 60A having a gap G therebetween. When viewed in plan, the second holder 50 has a larger area than the first holder 40, and the third holder 60 has a larger area than the second holder 50. As a result, the heat conducted from the first holder 40 to the second holder 50 can be easily radiated, and the heat transferred from the second holder 50 to the third holder 60 can be transferred to the outer surface of the third holder 60. It is easier to dissipate heat from the Further, on the first surface 60a of the third holder 60 and the second surface 60b opposite to the first surface 60a, radiation fins formed in a strip shape are formed, and the third holder 60 and the surrounding air layer are formed. It is possible to efficiently dissipate heat by increasing the contact area with the
 このように、センサモジュール1は、熱源のVCSEL21から第1保持体40及び第2保持体50を経由して第3保持体60まで熱的に接合され、低温環境における動作初期においては、ケース体23から第1保持体40への熱伝導を抑制してプロジェクタ20の蓄熱を促進し、ケース体23が一定程度蓄熱した場合、第1保持体40及び第2保持体50を経由して第3保持体60に熱伝導することでプロジェクタ20の過熱を抑制することで、発光波長の変動を小さくしている。 In this way, the sensor module 1 is thermally connected from the heat source VCSEL 21 to the third holder 60 via the first holder 40 and the second holder 50, and in the initial stage of operation in a low-temperature environment, the case body 23 to the first holder 40 to promote heat storage in the projector 20, and when the case body 23 accumulates a certain amount of heat, the third holder passes through the first holder 40 and the second holder 50. By suppressing overheating of the projector 20 by conducting heat to the holder 60, fluctuations in the emission wavelength are reduced.
 (付記)
 本明細書は、少なくとも以下の発明を開示している。
[1]
 基板と、
 光を出射する発光素子と、前記光が反射した反射光を撮像する撮像素子と、
 前記発光素子及び前記撮像素子を収容して保持する第1保持体と、
 第1面で前記第1保持体と面接触して前記第1保持体を支持し前記第1面と反対側の第2面で前記基板を保持する第2保持体と、
 前記第2保持体と空隙を有して前記第2保持体を支持する第3保持体と、を備えた、
 ことを特徴とするセンサモジュール。
[2]
 前記第1保持体、前記第2保持体及び前記第3保持体は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、互いに熱的に接合されている、
 ことを特徴とする[1]に記載のセンサモジュール。
[3]
 前記第2保持体は前記第1保持体と前記第1面で面接触し前記第3保持体と前記第2面の一部で接触して熱的に接合されている、
 ことを特徴とする[2]に記載のセンサモジュール。
[4]
 前記発光素子は、樹脂製のケース体に収容され、前記ケース体の側面が前記第1保持体と接着剤を介して熱的に接合されている、
 ことを特徴とする[1]ないし[3]のいずれか1項に記載のセンサモジュール。
[5]
 前記ケース体の底面はセラミックス材料で構成され熱伝導性材料からなる補強板を介して前記第2保持体に熱的に接合されている、
 ことを特徴とする[4]に記載のセンサモジュール。
[6]
 前記撮像素子は、前記第1保持体に設けられた厚み方向に貫通する貫通孔に収容され、受光面とは反対側の回路面側が前記第2保持体の前記第1面に接触している、
 ことを特徴とする[1]ないし[5]のいずれか1項に記載のセンサモジュール。
[7]
 前記基板は、表面に実装された発熱抵抗素子が前記空隙に面するように前記第2保持体の前記第2面に保持されている、
 ことを特徴とする[1]ないし[6]のいずれか1項に記載のセンサモジュール。
[8]
 前記第3保持体は、少なくとも一部にフィン形状を有する、
 ことを特徴とする[1]ないし[7]のいずれか1項に記載のセンサモジュール。
(Additional note)
This specification discloses at least the following inventions.
[1]
A substrate and
a light-emitting element that emits light; an imaging element that captures reflected light from the light;
a first holder that accommodates and holds the light emitting element and the image sensor;
a second holder that supports the first holder in surface contact with the first holder on a first surface and holds the substrate on a second surface opposite to the first surface;
a third holder supporting the second holder with a gap between the second holder and the second holder;
A sensor module characterized by:
[2]
The first holding body, the second holding body, and the third holding body are made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and are thermally bonded to each other.
The sensor module according to [1], characterized in that:
[3]
The second holder is in surface contact with the first holder at the first surface, and is in contact with the third holder at a part of the second surface to be thermally bonded.
The sensor module according to [2], characterized in that:
[4]
The light emitting element is housed in a resin case body, and a side surface of the case body is thermally bonded to the first holder via an adhesive.
The sensor module according to any one of [1] to [3], characterized in that:
[5]
The bottom surface of the case body is made of a ceramic material and is thermally joined to the second holder via a reinforcing plate made of a thermally conductive material.
The sensor module according to [4], characterized in that:
[6]
The image sensor is accommodated in a through hole provided in the first holder that penetrates in the thickness direction, and a circuit surface side opposite to the light receiving surface is in contact with the first surface of the second holder. ,
The sensor module according to any one of [1] to [5], characterized in that:
[7]
The substrate is held on the second surface of the second holder so that the heating resistor element mounted on the surface faces the gap,
The sensor module according to any one of [1] to [6], characterized in that:
[8]
The third holding body has a fin shape at least in part.
The sensor module according to any one of [1] to [7], characterized in that:
 [1]に記載の発明によれば、発光素子から出射する光の波長を安定化させることができる。
 [2]に記載の発明によれば、発光素子で発生する熱を効率よく外部に放熱することができる。
 [3]に記載の発明によれば、発光素子で発生する熱を段階的に熱伝導させながら外部に放熱することができる。
 [4]に記載の発明によれば、低温環境で発光素子の蓄熱を促進することができる。
 [5]に記載の発明によれば、発光素子で発生する熱を第2支持体に効率的に熱伝導させることができる。
 [6]に記載の発明によれば、撮像素子で発生する熱を第2支持体に熱伝導させることができる。
 [7]に記載の発明によれば、基板の発熱抵抗素子で発生する熱を放熱することができる。
 [8]に記載の発明によれば、第2保持体から熱伝導する熱を外部に効率的に放熱することができる。
According to the invention described in [1], the wavelength of light emitted from the light emitting element can be stabilized.
According to the invention described in [2], heat generated in the light emitting element can be efficiently radiated to the outside.
According to the invention described in [3], the heat generated in the light emitting element can be radiated to the outside while being conducted in stages.
According to the invention described in [4], heat storage of the light emitting element can be promoted in a low temperature environment.
According to the invention described in [5], heat generated in the light emitting element can be efficiently conducted to the second support.
According to the invention described in [6], the heat generated by the image sensor can be thermally conducted to the second support.
According to the invention described in [7], it is possible to radiate heat generated by the heat generating resistive element of the substrate.
According to the invention described in [8], the heat conducted from the second holding body can be efficiently radiated to the outside.
1・・・センサモジュール
10・・・基板
20・・・プロジェクタ、21・・・VCSEL、22・・・回折光学素子、23・・・ケース体
30・・・イメージセンサモジュール
40・・・第1保持体
50・・・第2保持体
60・・・第3保持体
DESCRIPTION OF SYMBOLS 1... Sensor module 10... Substrate 20... Projector, 21... VCSEL, 22... Diffractive optical element, 23... Case body 30... Image sensor module 40... First Holding body 50...Second holding body 60...Third holding body

Claims (8)

  1.  基板と、
     光を出射する発光素子と、前記光が反射した反射光を撮像する撮像素子と、
     前記発光素子及び前記撮像素子を収容して保持する第1保持体と、
     第1面で前記第1保持体と面接触して前記第1保持体を支持し前記第1面と反対側の第2面で前記基板を保持する第2保持体と、
     前記第2保持体と空隙を有して前記第2保持体を支持する第3保持体と、を備えた、
     ことを特徴とするセンサモジュール。
    A substrate and
    a light emitting element that emits light; an imaging element that captures reflected light from which the light is reflected;
    a first holder that accommodates and holds the light emitting element and the image sensor;
    a second holder that supports the first holder in surface contact with the first holder on a first surface and holds the substrate on a second surface opposite to the first surface;
    a third holder that supports the second holder with a gap between the second holder and the third holder;
    A sensor module characterized by:
  2.  前記第1保持体、前記第2保持体及び前記第3保持体は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなり、互いに熱的に接合されている、
     ことを特徴とする請求項1に記載のセンサモジュール。
    The first holding body, the second holding body, and the third holding body are made of a thermally conductive resin having a thermal conductivity of 1 W/m·K or more, and are thermally bonded to each other.
    The sensor module according to claim 1, characterized in that:
  3.  前記第2保持体は前記第1保持体と前記第1面で面接触し前記第3保持体と前記第2面の一部で接触して熱的に接合されている、
     ことを特徴とする請求項2に記載のセンサモジュール。
    The second holder is in surface contact with the first holder at the first surface, and is in contact with the third holder at a part of the second surface to be thermally bonded.
    The sensor module according to claim 2, characterized in that:
  4.  前記発光素子は、樹脂製のケース体に収容され、前記ケース体の側面が前記第1保持体と接着剤を介して熱的に接合されている、
     ことを特徴とする請求項1に記載のセンサモジュール。
    The light emitting element is housed in a resin case body, and a side surface of the case body is thermally bonded to the first holder via an adhesive.
    The sensor module according to claim 1, characterized in that:
  5.  前記ケース体の底面はセラミックス材料で構成され熱伝導性材料からなる補強板を介して前記第2保持体に熱的に接合されている、
     ことを特徴とする請求項4に記載のセンサモジュール。
    The bottom surface of the case body is made of a ceramic material and is thermally joined to the second holder via a reinforcing plate made of a thermally conductive material.
    The sensor module according to claim 4, characterized in that:
  6.  前記撮像素子は、前記第1保持体に設けられた厚み方向に貫通する貫通孔に収容され、受光面とは反対側の回路面側が前記第2保持体の前記第1面に接触している、
     ことを特徴とする請求項1に記載のセンサモジュール。
    The image sensor is accommodated in a through hole provided in the first holder that penetrates in the thickness direction, and a circuit surface side opposite to the light receiving surface is in contact with the first surface of the second holder. ,
    The sensor module according to claim 1, characterized in that:
  7.  前記基板は、表面に実装された発熱抵抗素子が前記空隙に面するように前記第2保持体の前記第2面に保持されている、
     ことを特徴とする請求項1に記載のセンサモジュール。
    The substrate is held on the second surface of the second holder so that the heating resistor element mounted on the surface faces the gap,
    The sensor module according to claim 1, characterized in that:
  8.  前記第3保持体は、少なくとも一部にフィン形状を有する、
     ことを特徴とする請求項1ないし7のいずれか1項に記載のセンサモジュール。
    The third holding body has a fin shape at least in part.
    The sensor module according to any one of claims 1 to 7, characterized in that:
PCT/JP2023/025538 2022-07-19 2023-07-11 Sensor module WO2024018947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114880 2022-07-19
JP2022114880A JP2024012998A (en) 2022-07-19 2022-07-19 sensor module

Publications (1)

Publication Number Publication Date
WO2024018947A1 true WO2024018947A1 (en) 2024-01-25

Family

ID=89617863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025538 WO2024018947A1 (en) 2022-07-19 2023-07-11 Sensor module

Country Status (2)

Country Link
JP (1) JP2024012998A (en)
WO (1) WO2024018947A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181360A (en) * 1987-01-22 1988-07-26 Mitsubishi Electric Corp Semiconductor device
JP2007042881A (en) * 2005-08-03 2007-02-15 Sharp Corp Infrared communication device
JP2013235887A (en) * 2012-05-07 2013-11-21 Aoi Electronics Co Ltd Method of manufacturing light source-integrated optical sensor
CN106469660A (en) * 2015-08-21 2017-03-01 意法半导体(R&D)有限公司 There is molding range finding and the proximity sensor of optical resin lens
JP2018044989A (en) * 2016-09-12 2018-03-22 APRESIA Systems株式会社 Optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181360A (en) * 1987-01-22 1988-07-26 Mitsubishi Electric Corp Semiconductor device
JP2007042881A (en) * 2005-08-03 2007-02-15 Sharp Corp Infrared communication device
JP2013235887A (en) * 2012-05-07 2013-11-21 Aoi Electronics Co Ltd Method of manufacturing light source-integrated optical sensor
CN106469660A (en) * 2015-08-21 2017-03-01 意法半导体(R&D)有限公司 There is molding range finding and the proximity sensor of optical resin lens
JP2018044989A (en) * 2016-09-12 2018-03-22 APRESIA Systems株式会社 Optical module

Also Published As

Publication number Publication date
JP2024012998A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
US6956883B2 (en) Semiconductor laser device including light receiving element for receiving monitoring laser beam
JP6049860B2 (en) Image sensor
US20070285740A1 (en) Image sensor module
JP6049859B2 (en) Image sensor
JP6019975B2 (en) Semiconductor light source unit for vehicle lamp, vehicle lamp
JP2006049887A (en) Circuit board, photoelectronic device, manufacturing method of circuit board
US6867366B2 (en) Semiconductor integrated apparatus
WO2012132086A1 (en) Information acquisition device and object detection device having information acquisition device mounted therein
US7890967B2 (en) Optical pickup device with heat radiating structure
JPH11163410A (en) Led lighting device
WO2024018947A1 (en) Sensor module
JP2007311524A (en) Heat radiator of laser scanning apparatus
JP5323518B2 (en) Parallel optical transmission equipment
JP2006066725A (en) Semiconductor device equipped with heat dissipation structure, and its assembly method
KR102634784B1 (en) Semiconductor Package Assembly having Thermal Blocking member and Electronic Equipment having the Same
TW202108934A (en) Light emitting module combining enhanced safety features and thermal management
JP2005017545A (en) Lighting device and image reader
CN108490577A (en) Structured light projector, image acquiring device and electronic equipment
TW202212886A (en) optical transmitter
TWM406752U (en) Light source device of a backlight module and LED package structure thereof
JP2005039039A (en) Infrared data communication device
KR100575639B1 (en) Optical signal storage module being united entirely heat sink plate and pcb
JP2013149667A (en) Optical module and optical transmitter
JP2014063600A (en) Linear light source device
JP2015070506A (en) Image sensor head and reading apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842872

Country of ref document: EP

Kind code of ref document: A1