WO2024018944A1 - 電極触媒層、膜電極接合体、および、固体高分子形燃料電池 - Google Patents

電極触媒層、膜電極接合体、および、固体高分子形燃料電池 Download PDF

Info

Publication number
WO2024018944A1
WO2024018944A1 PCT/JP2023/025471 JP2023025471W WO2024018944A1 WO 2024018944 A1 WO2024018944 A1 WO 2024018944A1 JP 2023025471 W JP2023025471 W JP 2023025471W WO 2024018944 A1 WO2024018944 A1 WO 2024018944A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
ionic liquid
mass
electrode catalyst
particles
Prior art date
Application number
PCT/JP2023/025471
Other languages
English (en)
French (fr)
Inventor
雅弘 上野
均 栗原
克行 岸
まどか 小澤
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022117534A external-priority patent/JP2024014589A/ja
Priority claimed from JP2022164944A external-priority patent/JP2024057940A/ja
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2024018944A1 publication Critical patent/WO2024018944A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to an electrode catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell includes a membrane electrode assembly having a polymer electrolyte membrane having proton conductivity and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane in the thickness direction.
  • One of the electrode catalyst layers constitutes a fuel electrode, which is an anode, and the other electrode catalyst layer constitutes an air electrode, which is a cathode.
  • the electrode catalyst layer contains catalyst particles including a carrier supporting metal particles such as platinum, and a polymer electrolyte (see, for example, Patent Documents 1 and 2).
  • a fuel gas containing hydrogen is supplied to the fuel electrode, and an oxidant gas containing oxygen is supplied to the air electrode.
  • protons and electrons are generated from the fuel gas.
  • Protons are conducted by the polymer electrolyte included in the electrode catalyst layer and the polymer electrolyte membrane, and move to the air electrode through the polymer electrolyte membrane.
  • Electrons are extracted from the fuel electrode to an external circuit and travel through the external circuit to the air electrode.
  • the oxidant gas reacts with protons and electrons that have migrated from the fuel electrode to generate water. The progress of these electrode reactions causes a current flow.
  • Patent No. 7026669 Japanese Patent Application Publication No. 2008-4541
  • the configuration of the electrode catalyst layer is an important factor for improving the power generation performance of the fuel cell. Therefore, much research has been conducted on the materials of the electrode catalyst layer and the ratios of each material. In particular, there is still room for improvement regarding the structure of the catalyst particles and the characteristics of the electrode catalyst layer related to the structure of the catalyst particles.
  • an electrode catalyst layer for solving the above problems is an electrode catalyst layer containing catalyst particles, a polymer electrolyte, and a fibrous material, the catalyst particles comprising metal particles, a conductive carrier, and an ionic liquid.
  • the electrode catalyst layer has a density of 1000 mg/cm 3 or more and 1600 mg/cm 3 or less.
  • FIG. 1 is a diagram showing the configuration of a basic membrane electrode assembly in each embodiment.
  • FIG. 2 is a diagram showing the configuration of the basic electrode catalyst layer in each embodiment.
  • FIG. 3 is a diagram showing the configuration of catalyst particles of the basic configuration in each embodiment.
  • FIG. 4A is a diagram showing the basic structure of catalyst particles in each embodiment, and FIGS. 4B and 4C are sectional views of essential parts of the catalyst particles.
  • FIG. 5 is a diagram showing the configuration of a basic polymer electrolyte fuel cell in each embodiment.
  • FIG. 6 is a diagram showing the structure of catalyst particles according to the second embodiment.
  • FIG. 7 is an enlarged view showing the structure of catalyst particles according to the second embodiment.
  • FIG. 8A is a diagram showing the element distribution in catalyst particles of an example of the third embodiment.
  • FIG. 8B is a diagram showing the element distribution in catalyst particles of an example of the third embodiment.
  • FIG. 8C is a diagram showing the element distribution in catalyst particles of an example of the third embodiment.
  • the membrane electrode assembly 20 includes a polymer electrolyte membrane 21 and a pair of electrode catalyst layers.
  • the pair of electrode catalyst layers is a fuel electrode catalyst layer 22A and an air electrode catalyst layer 22C.
  • the fuel electrode catalyst layer 22A constitutes a fuel electrode that is an anode of a polymer electrolyte fuel cell.
  • the air electrode catalyst layer 22C constitutes an air electrode that is a cathode of the polymer electrolyte fuel cell.
  • the fuel electrode catalyst layer 22A is a layer for separating fuel gas into protons and electrons, and the air electrode catalyst layer 22C receives electrons from an external circuit and also receives protons transported via the polymer electrolyte membrane 21. , a layer for oxidation with an oxidizing agent containing oxygen.
  • the polymer electrolyte membrane 21 is sandwiched between the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C in the thickness direction.
  • the fuel electrode catalyst layer 22A is in contact with one of the two surfaces of the polymer electrolyte membrane 21, and the air electrode catalyst layer 22C is in contact with the other of the two surfaces of the polymer electrolyte membrane 21.
  • the thicknesses of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C may be the same or different.
  • the outer shapes of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C are almost the same, and these outer shapes are the same as the outer shapes of the polymer electrolyte membrane 21.
  • the external shapes of the catalyst layers 22A, 22C and the polymer electrolyte membrane 21 are not particularly limited, and may be rectangular, for example.
  • Polymer electrolyte membrane 21 contains a polymer electrolyte.
  • the polymer electrolyte used in the polymer electrolyte membrane 21 may be any polymer electrolyte that has proton conductivity, such as a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte.
  • fluoropolymer electrolytes are Nafion (registered trademark: manufactured by Chemours), Flemion (registered trademark: manufactured by Asahi Glass Co., Ltd.), and Gore-Select (registered trademark: manufactured by Gore Japan LLC).
  • Examples of hydrocarbon polymer electrolytes are engineering plastics and engineering plastics into which sulfonic acid groups have been introduced.
  • the thickness of the polymer electrolyte membrane 21 is, for example, 0.05 mm or more and 0.25 mm or less.
  • FIG. 2 schematically shows the configuration of the air electrode catalyst layer 22C.
  • the air electrode catalyst layer 22C includes catalyst particles 10 and polymer electrolyte 16. Furthermore, it is preferable that the air electrode catalyst layer 22C contains the fibrous material 17.
  • the fuel electrode catalyst layer 22A includes catalyst particles and a polymer electrolyte. Furthermore, it is preferable that the fuel electrode catalyst layer 22A contains a fibrous material. Note that the air electrode catalyst layer 22C and the fuel electrode catalyst layer 22A may have different materials and proportions of the catalyst particles, polymer electrolyte, and fibrous substances contained therein.
  • the catalyst particles 10 include a conductive carrier and metal particles supported on the conductive carrier. The detailed structure of the catalyst particles 10 will be described later.
  • the polymer electrolyte 16 has a block shape in which the polymer electrolyte, which is an ionomer, aggregates due to cohesive force. Cohesive force includes Coulomb force and van der Waals force that act between ionomers.
  • the polymer electrolyte 16 may be any polymer electrolyte that has proton conductivity, such as a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte.
  • a fluorine-based polymer electrolyte is an electrolyte having a tetrafluoroethylene skeleton, such as Nafion (registered trademark, manufactured by Chemours).
  • hydrocarbon polymer electrolytes include sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene.
  • the number of types of polymer electrolytes contained in the electrode catalyst layer may be one, or two or more types.
  • the adhesion of the electrode catalyst layer to the polymer electrolyte membrane 21 is enhanced. Also, from the viewpoint of reducing the interfacial resistance at the interface between the polymer electrolyte membrane 21 and the electrode catalyst layer, and from the viewpoint of reducing the difference in dimensional change rate between the polymer electrolyte membrane 21 and the electrode catalyst layer when the humidity changes. In this case, it is preferable that the polymer electrolytes used for the polymer electrolyte membrane 21 and the electrode catalyst layer are the same polymer electrolytes or polymer electrolytes with similar coefficients of thermal expansion.
  • the content of the polymer electrolyte 16 in the electrode catalyst layer is preferably 10 parts by mass or more and 200 parts by mass or less, and 40 parts by mass or more and 140 parts by mass, when the content of the conductive carrier in the electrode catalyst layer is 100 parts by mass. More preferably, it is less than parts by mass.
  • the content of the polymer electrolyte 16 is 10 parts by mass or more, preferably 40 parts by mass or more, it is possible to suppress a decrease in proton conductivity due to lack of a proton conduction path. As a result, it becomes easier to obtain a suitable balance between proton conductivity and electron conductivity in the electrode catalyst layer.
  • the content of the polymer electrolyte 16 is 200 parts by mass or less, preferably 140 parts by mass or less, a three-phase interface is likely to be formed in the electrode catalyst layer, so that the catalytic activity is enhanced.
  • the fibrous substance 17 is made of a material that is not attacked by the catalyst particles 10 and the polymer electrolyte 16. From the viewpoint of lowering the resistance of the electrode catalyst layer, the fibrous material 17 preferably has electron conductivity or proton conductivity.
  • Examples of the fibrous material 17 exhibiting electron conductivity are carbon fibers such as carbon fibers, carbon nanofibers, and carbon nanotubes. Among them, carbon nanofibers and carbon nanotubes are preferably used.
  • An example of the fibrous material 17 exhibiting proton conductivity is a fiber obtained by processing a polymer electrolyte into a fibrous form.
  • a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used.
  • An example of the fluoropolymer electrolyte is Nafion (registered trademark, manufactured by Chemours).
  • hydrocarbon polymer electrolytes are engineering plastics and engineering plastics into which sulfonic acid groups have been introduced.
  • acid-doped polybenzazoles that exhibit proton conductivity by doping with acid can also be suitably used.
  • the fibrous material 17 may be hydrophilic carbon fiber or high molecular weight polymer fiber.
  • hydrophilic carbon fibers include VGCF (Vapor Grown Carbon Fiber) and CNT (Carbon Nano Tube), which have been given hydrophilic properties.
  • An example of the polymer fiber is a nanofiber made of an amine polymer having an imide structure or an azole structure.
  • the shape of the fibrous material 17 is not particularly limited, and for example, the fibrous material 17 may have a hollow structure or a solid structure. Further, the number of fibrous substances 17 contained in the electrode catalyst layer may be one type, or two or more types.
  • the fibrous material 17 may include an acidic or basic functional group in its molecular structure.
  • Examples of the fibrous material 17 having an acidic functional group include hydrophilic carbon fibers, and examples of the fibrous material 17 having a basic functional group include polymer fibers having an imide structure or an azole structure.
  • Examples of acidic functional groups include carbonyl groups, and examples of basic functional groups include amine groups including pyridine and imide. This makes it easier for the polymer electrolyte 16 to exist around the fibrous substance 17.
  • a proton conductive site such as a sulfonyl group contained in the polymer electrolyte 16 forms a hydrogen bond with the acidic functional group, so that the periphery of the fibrous material 17 The polymer electrolyte 16 is likely to exist in the area.
  • an acidic proton conductive site such as a sulfonyl group contained in the polymer electrolyte 16 bonds to the basic functional group as an acid and a base. This makes it easier for the polymer electrolyte 16 to exist around the fibrous substance 17.
  • the fibrous material 17 contains a basic functional group.
  • the fibrous material 17 has a basic functional group containing a nitrogen atom in its molecular structure, the polymer electrolyte 16 tends to exist around the fibrous material 17 .
  • the acidic proton conducting site in the polymer electrolyte 16 binds to the basic functional group in the fibrous material 17, the surface of the fibrous material 17 is covered with the polymer electrolyte 16, and the fibrous material 17 becomes proton-conducting. It also becomes possible to exhibit conductivity.
  • Specific examples of basic functional groups include imino groups, amino groups, amine derivatives, pyridine derivatives, imidazole derivatives, and imidazolium groups.
  • Specific examples of the material of the fibrous substance 17 containing basic functional groups include polybenzimidazole (PBI), polybenzoxazole, polybenzthioazole, polyvinylimidazole, polyallylamine, and the like. Among these, polybenzimidazole (PBI) having an azole structure is preferably used from the viewpoint of proton conductivity and processability.
  • the average fiber diameter of the fibrous material 17 is preferably 0.5 nm or more and 500 nm or less, more preferably 10 nm or more and 300 nm or less. If the average fiber diameter is within the above range, the voids within the electrode catalyst layer are appropriately secured.
  • the average fiber diameter or the peak of the fiber diameter distribution of the fibrous material 17 is preferably 100 nm or more and 400 nm or less, more preferably 150 nm or more and 250 nm or less, and even more preferably 180 nm or more and 220 nm or less.
  • the fiber diameter is within the above range, it is possible to increase the voids in the electrode catalyst layer and suppress a decrease in proton conductivity, thereby increasing the output of the fuel cell. If the fiber diameter is too small, the voids become narrow and sufficient drainage and gas diffusivity may not be ensured. In this case, water may remain in the electrode catalyst layer, which may promote a decrease in output and deterioration of the electrode catalyst layer. If the fiber diameter is too large, the proton conduction path by the polymer electrolyte 16 and the electron conduction path by the conductive carrier 11 may be blocked, resulting in an increase in resistance.
  • the fiber diameter of the fibrous material 17 can be obtained, for example, by observing a cross section of the electrode catalyst layer using a scanning electron microscope (SEM) and measuring the diameter of the cross section of the fibrous material 17.
  • SEM scanning electron microscope
  • the shape of the observable cross section may be elliptical.
  • the fiber diameter of the fibrous material 17 can be obtained by measuring the diameter of a perfect circle fitted along the short axis.
  • the average fiber length of the fibrous material 17 is preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less. If the average fiber length is within the above range, the occurrence of cracks in the electrode catalyst layer can be suitably suppressed, thereby increasing the durability of the electrode catalyst layer and the membrane electrode assembly. Furthermore, since the voids in the electrode catalyst layer are appropriately secured, it is possible to improve the output of the fuel cell.
  • the peak of the fiber length distribution of the fibrous material 17 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less. If the peak of the fiber length distribution is within the above range, the occurrence of cracks in the electrode catalyst layer can be suitably suppressed, thereby increasing the durability of the electrode catalyst layer and the membrane electrode assembly. Furthermore, since the voids in the electrode catalyst layer are appropriately secured, it is possible to improve the output of the fuel cell.
  • the content of the fibrous substance 17 in the electrode catalyst layer is preferably 1 part by mass or more and 300 parts by mass or less, and 5 parts by mass or more and 100 parts by mass or less, when the content of the conductive carrier in the electrode catalyst layer is 100 parts by mass. It is more preferably not more than 5 parts by mass and even more preferably not less than 5 parts by mass and not more than 20 parts by mass.
  • a network of the fibrous substances 17 is suitably formed. Thereby, it is possible to suitably construct a proton conduction path, an electron conduction path, improve gas diffusivity, and improve the strength of the electrode catalyst layer in the electrode catalyst layer.
  • the power generation performance of the fuel cell is improved.
  • the content of the fibrous material 17 is 300 parts by mass or less, preferably 100 parts by mass or less, and more preferably 20 parts by mass or less, resistance increases and catalytic reactions due to an increase in the thickness of the electrode catalyst layer occur. Can suppress inhibition.
  • the catalyst particles 10 have a catalyst-carrying carrier 15 consisting of a conductive carrier 11 and a plurality of metal particles 12 supported on the conductive carrier 11. Further, the catalyst particles 10 include an inorganic coating 13 that covers a portion of the catalyst-supporting carrier 15, and an ionic liquid 14 impregnated into the catalyst-supporting carrier 15.
  • the inorganic coating 13 mainly covers the metal particles 12. A portion of the surface of the metal particle 12 is exposed from the inorganic coating 13, and the metal particle 12 is in contact with the ionic liquid 14 in at least a portion of this exposed portion. Further, the inorganic coating 13 may also cover a part of the surface of the conductive carrier 11. The thickness of the inorganic coating 13 may be uniform or non-uniform.
  • the plurality of metal particles 12 include metal particles 12 whose entire surfaces are covered with the inorganic coating 13 , metal particles 12 whose entire surfaces are exposed from the inorganic coating 13 , and metal particles 12 that are not in contact with the ionic liquid 14 . At least one of the particles 12 may be included.
  • the ionic liquid 14 further contacts a part of the surface of the conductive carrier 11 and permeates at least a part of the inside of the conductive carrier 11. Furthermore, when the inorganic coating 13 has gaps such as pores inside thereof, the ionic liquid 14 may also permeate at least a portion of the inside of the inorganic coating 13 . The ionic liquid 14 can penetrate into any gaps between the catalyst-supporting carrier 15 and the inorganic coating 13 .
  • the inorganic coating 13 may cover the metal particles 12 via the ionic liquid 14. That is, the ionic liquid 14 may be interposed between the inorganic coating 13 and the metal particles 12. Further, the inorganic film 13 may cover the surface of the conductive carrier 11 via the ionic liquid 14. That is, the ionic liquid 14 may be interposed between the inorganic coating 13 and the surface of the conductive carrier 11.
  • the conductive carrier 11 is a fine particle having conductivity and is made of a material that is not corroded by the metal particles 12.
  • the conductive carrier 11 has pores including mesopores. It is preferable that the conductive carrier 11 is made of a carbon material. Examples of the carbon material used as the conductive carrier 11 include carbon black, graphite, graphite, activated carbon, and fullerene. Note that the number of constituent materials of the conductive carrier 11 included in the electrode catalyst layer may be one type, or two or more types.
  • the average particle diameter of the conductive carrier 11 is preferably 10 nm or more and 1000 nm or less, more preferably 10 nm or more and 100 nm or less. If the average particle size of the conductive carrier 11 is 10 nm or more, electron conduction paths will be easily formed within the electrode catalyst layer. Further, since the conductive carrier 11 does not clog the electrode catalyst layer too densely, it is possible to suppress a decrease in gas diffusivity of the electrode catalyst layer. Moreover, if the average particle diameter of the conductive carrier 11 is 1000 nm or less, an increase in resistance due to an increase in the thickness of the electrode catalyst layer can be suppressed. Moreover, generation of cracks in the electrode catalyst layer can be suppressed.
  • the average particle diameter of the conductive carrier is a volume average diameter determined by a laser diffraction/scattering method.
  • the metal particles 12 include platinum group elements such as platinum, palladium, ruthenium, iridium, rhodium, and osmium, and metal particles such as gold, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. Metals, alloys thereof, oxides, double oxides, carbides, etc. are used. Among them, platinum, gold, palladium, rhodium, ruthenium, and alloys thereof are preferably used because of their high activity as catalysts. In particular, it is preferable that the metal particles 12 are platinum or a platinum alloy. In addition, the number of constituent materials of the metal particles 12 included in the electrode catalyst layer may be one type, or two or more types.
  • the average particle diameter of the metal particles 12 is preferably 0.5 nm or more and 20 nm or less, more preferably 1 nm or more and 5 nm or less. If the average particle diameter of the metal particles 12 is 0.5 nm or more, the stability as a catalyst will be enhanced. If the average particle diameter of the metal particles 12 is 20 nm or less, the activity as a catalyst will be enhanced.
  • the average particle diameter of particles is the average diameter determined by TEM image analysis (for example, JIS H7804:2005).
  • the total mass of the metal particles 12 contained in the electrode catalyst layer is preferably 5% by mass or more and 75% by mass or less, and preferably 10% by mass or more and 70% by mass or less, based on the total mass of the catalyst supporting carrier 15. More preferred.
  • the material of the inorganic coating 13 preferably contains one or more of silica (SiO 2 ), zirconia (ZrO 2 ), and titania (TiO 2 ).
  • the material of the inorganic coating 13 is preferably silica, and particularly preferably silica obtained by hydrolyzing and dehydrating condensation of either tetraethoxysilane or triethoxymethylsilane.
  • silica the inorganic coating 13 is formed into a multilayer structure made of silica films, so that the ionic liquid 14 is easily held inside the inorganic coating 13.
  • the composition of silica produced from tetraethoxysilane is (SiO) n .
  • the composition of silica produced from triethoxymethylsilane is (SiO-Me-SiO) n
  • the silica is porous silica (low crystallinity silica).
  • the thickness of the inorganic coating 13 is preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more and 50 nm or less, and even more preferably 20 nm or more and 40 nm or less.
  • the thickness of the inorganic coating 13 is 1 nm or more, the formation of the inorganic coating 13 is easy.
  • the film thickness of the inorganic film 13 is 100 nm or less, it is easy to ensure sufficient gaps between layers in the multilayer structure. Moreover, the inorganic coating 13 becomes difficult to peel off.
  • the ionic liquid 14 is an imidazolium salt.
  • An imidazolium salt is a salt of a cation and a counter anion having an imidazole ring structure.
  • the cation is, for example, a compound represented by the following structural formula.
  • counteranions are Cl ⁇ , Br ⁇ , I ⁇ , BF 4 ⁇ , PF 6 ⁇ , FSI ((FSO 2 ) 2 N ⁇ ), TFSI ((CF 3 SO 2 ) 2 N ⁇ ).
  • the ionic liquid 14 preferably contains 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.
  • the alkyl group contained in the compound is, for example, a methyl group, an ethyl group, a butyl group, a pentyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, and the like.
  • the alkyl group is preferably an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group, and more preferably an ethyl group.
  • the ionic liquid 14 includes 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-propyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-butyl-3-methyl.
  • the ionic liquid 14 is preferably composed only of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; It may also contain lium bis(trifluoromethanesulfonyl)imide.
  • the ionic liquid 14 contains multiple types of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide It is preferable that the content is 50% or more of the total mass of the ionic liquid 14.
  • the total mass of the ionic liquid 14 contained in the electrode catalyst layer is preferably 2% by mass or more and 30% by mass or less based on the total mass of the catalyst-supporting carrier 15.
  • the polymer electrolyte fuel cell 30 includes a membrane electrode assembly 20, a pair of gas diffusion layers 31A, 31C, and a pair of separators 32A, 32C.
  • the membrane electrode assembly 20 is sandwiched between a gas diffusion layer 31A and a gas diffusion layer 31C, the gas diffusion layer 31A is in contact with the fuel electrode catalyst layer 22A, and the gas diffusion layer 31C is in contact with the air electrode catalyst layer 22C. ing.
  • the gas diffusion layers 31A and 31C are layers for uniformly diffusing the supplied gas, and have gas diffusivity and conductivity.
  • the gas diffusion layers 31A and 31C include, for example, a porous material such as carbon cloth, carbon paper, or nonwoven fabric.
  • the gas diffusion layer 31A constitutes a fuel electrode together with the fuel electrode catalyst layer 22A
  • the gas diffusion layer 31C constitutes an air electrode together with the air electrode catalyst layer 22C.
  • a laminate of the membrane electrode assembly 20 and gas diffusion layers 31A and 31C is sandwiched between separators 32A and 32C.
  • Separators 32A and 32C are gas impermeable and electrically conductive.
  • the material of the separators 32A and 32C is, for example, a carbon-based or metal-based material.
  • the material of the separators 32A, 32C is preferably a material with good strength and moldability.
  • the separator 32A faces the gas diffusion layer 31A, and the separator 32C faces the gas diffusion layer 31C.
  • a gas flow path 33A is formed on the surface facing the gas diffusion layer 31A, and a cooling water flow path 34A is formed on the surface opposite to the gas diffusion layer 31A.
  • a gas flow path 33C is formed on the surface facing the gas diffusion layer 31C, and a cooling water flow path 34C is formed on the surface opposite to the gas diffusion layer 31C.
  • a fuel gas such as hydrogen is flowed through the gas flow path 33A of the separator 32A, and an oxidizing gas such as oxygen is flowed through the gas flow path 33C of the separator 32C.
  • Cooling water is also flowed through the cooling water channels 34A, 34C of each separator 32A, 32C.
  • the fuel gas is supplied from the gas flow path 33A to the fuel electrode, and the oxidant gas is supplied from the gas flow path 33C to the air electrode, so that the electrode reactions shown in (Equation 1) and (Equation 2) below are carried out.
  • an electromotive force is generated between the fuel electrode and the air electrode.
  • Fuel electrode H 2 ⁇ 2H + + 2e - (Formula 1)
  • Air electrode 1/2O 2 + 2H + + 2e - ⁇ H 2 O... (Formula 2)
  • the polymer electrolyte fuel cell 30 may be used in the single cell state shown in FIG. 5, or may be used as one fuel cell by stacking and connecting a plurality of polymer electrolyte fuel cells 30 in series. may be used. By assembling the polymer electrolyte fuel cell 30 into a gas supply device, a cooling device, and other accompanying devices, the polymer electrolyte fuel cell 30 can be used.
  • the polymer electrolyte fuel cell 30 may include a member such as a gasket for suppressing gas leakage.
  • the gas diffusion layer 31A and the separator 32A may be an integral structure, and the gas diffusion layer 31C and the separator 32C may be an integral structure.
  • the gas diffusion layers 31A and 31C may be members constituting the membrane electrode assembly 20.
  • Catalyst particles 10 are manufactured by making a conductive carrier 11 support metal particles 12 to generate a catalyst-supporting carrier 15, impregnating the catalyst-supporting carrier 15 with an ionic liquid 14, and then forming an inorganic coating 13. .
  • the catalyst supporting carrier 15 may be impregnated with a solution of the ionic liquid 14, and then the solvent may be removed.
  • An example of a solvent is acetonitrile.
  • a known film forming method such as a sol-gel method using raw materials such as TEOS is used.
  • the inorganic film 13 When forming the inorganic film 13 before impregnation with the ionic liquid 14, the inorganic film 13 is formed after adding a surfactant to the catalyst-supporting carrier 15 in order to adjust the charging state of the surface of the metal particles 12, It is then necessary to remove the surfactant. Since the surfactant removal step requires heat treatment at a high temperature, the catalyst-carrying carrier 15 is exposed to high temperatures, resulting in deterioration of the conductive carrier 11, that is, crystallization, if the conductive carrier 11 is a carbon material. deterioration occurs. As a result, the durability of the electrode catalyst layer using the catalyst particles 10 decreases.
  • the inorganic coating 13 can be formed without requiring a surfactant. Therefore, heat treatment can be avoided and deterioration of the conductive carrier 11 can be suppressed, and a decrease in durability of the electrode catalyst layer can be suppressed.
  • the peak intensity ratio (G/D ratio) of G band and D band measured by Raman spectroscopy of the conductive carrier 11, which is a carbon material is preferably 1.6 or more and 2.2 or less, and more preferably is 1.8 or more and 2.0 or less. If the G/D ratio is within the above range, the crystallinity of the conductive carrier 11 is suitable, and therefore it is possible to suppress a decrease in the durability of the electrode catalyst layer.
  • the inorganic coating 13 is formed after impregnating the catalyst supporting carrier 15 with the ionic liquid 14, even if the catalyst particles 10 have the inorganic coating 13, the G/D ratio of the conductive carrier 11 can be improved. It is easy to keep it within the above range.
  • the wavelength of laser light used in Raman spectroscopy is 532 nm.
  • the G band means a Raman peak located around 1580 cm ⁇ 1
  • the D band means a Raman peak located around 1360 cm ⁇ 1 .
  • Each of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C can be manufactured by applying a catalyst layer slurry containing the material of each electrode catalyst layer to a base material to form a coating film, and drying the coating film.
  • the solvent of the catalyst layer slurry functions as a dispersion medium of the catalyst layer slurry.
  • the solvent is not particularly limited as long as it does not corrode the material of the electrode catalyst layer and can dissolve the polymer electrolyte in a highly fluid state or disperse it as a fine gel.
  • the solvent includes a volatile organic solvent.
  • Examples of the solvent include water, alcohols, ketones, ethers, amines, and esters.
  • Examples of alcohols are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol.
  • ketones are acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methylcyclohexanone, acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl ketone It is.
  • ethers are tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, diethyl ether, dipropyl ether, dibutyl ether.
  • amines are isopropylamine, butylamine, isobutylamine, cyclohexylamine, diethylamine, aniline.
  • esters are propyl formate, isobutyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, butyl propionate.
  • solvents include acetic acid, propionic acid, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diacetone alcohol, 1-methoxy -2-propanol, 1-ethoxy-2-propanol, etc. may also be used.
  • the solvent contains a lower alcohol
  • the amount of water added is not particularly limited as long as it does not cause clouding or gelation of the polymer electrolyte due to separation of the polymer electrolyte.
  • a dispersion treatment may be performed on the catalyst layer slurry.
  • a planetary ball mill, a bead mill, an ultrasonic homogenizer, etc. are used for the dispersion treatment.
  • the method of applying the slurry for the catalyst layer is not particularly limited, and for example, a doctor blade method, a die coating method, a curtain coating method, a dipping method, a screen printing method, a laminator roll coating method, a spray method, a method using a squeegee, etc. may be used. Can be done.
  • the drying temperature is preferably 40°C or more and 200°C or less, more preferably 40°C or more and 120°C or less.
  • the drying time is preferably 0.5 minutes or more and 1 hour or less, more preferably 1 minute or more and 30 minutes or less. During drying, it is preferable to press the electrode catalyst layer in the thickness direction.
  • the base material for forming the electrode catalyst layer may be a transfer base material that is peeled off after transferring the catalyst layers 22A, 22C to the polymer electrolyte membrane 21, or may be the gas diffusion layers 31A, 31C. Alternatively, the polymer electrolyte membrane 21 may be used.
  • the base material is a transfer base material
  • the transfer base material is peeled off from the catalyst layers 22A, 22C. Thereby, the membrane electrode assembly 20 is formed.
  • the material of the transfer base material is, for example, a fluororesin or an organic polymer compound other than a fluororesin.
  • a transfer base material containing a fluororesin has excellent transferability.
  • fluororesins include ethylenetetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE).
  • organic polymer compounds examples include polyimide, polyethylene terephthalate, polyamide (nylon: registered trademark), polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyarylate, polyethylene naphthalate.
  • the catalyst layer 22A, 22C supported by the gas diffusion layer 31A, 31C is joined to the polymer electrolyte membrane 21 by thermocompression bonding, thereby forming the membrane electrode assembly 20. It is formed.
  • the catalyst layers 22A and 22C are formed directly on the surface of the polymer electrolyte membrane 21. Thereby, the membrane electrode assembly 20 is formed. Forming the catalyst layers 22A, 22C directly on the polymer electrolyte membrane 21 increases the adhesion between the polymer electrolyte membrane 21 and the catalyst layers 22A, 22C, and there is no fear that the catalyst layers 22A, 22C will be crushed by pressure bonding. Therefore, it is preferable.
  • the pressure and temperature applied to the electrode catalyst layer during transfer of the electrode catalyst layer affect the power generation performance of the membrane electrode assembly 20. do.
  • the pressure applied to the electrode catalyst layer is preferably 0.1 MPa or more and 20 MPa or less. By setting the pressure to 20 MPa or less, the electrode catalyst layer is prevented from being excessively compressed.
  • the pressure is 0.1 MPa or more, it is possible to suppress a decrease in power generation performance due to a decrease in bonding between the electrode catalyst layer and the polymer electrolyte membrane 21.
  • the temperature at the time of bonding is set around the glass transition point of the polymer electrolyte included in the polymer electrolyte membrane 21 or the electrode catalyst layer, from the viewpoint of improving bonding properties between the polymer electrolyte membrane 21 and the electrode catalyst layer and suppressing interfacial resistance. It is preferable that
  • the thickness of the electrode catalyst layer is preferably 2 ⁇ m or more and 20 ⁇ m or less. If the thickness of the electrode catalyst layer is 20 ⁇ m or less, the occurrence of cracks can be suppressed, and good gas and water diffusivity and conductivity can be easily obtained. When the thickness of the electrode catalyst layer is 2 ⁇ m or more, variations in the thickness of the electrode catalyst layer are less likely to occur, and the distribution of the catalyst-carrying carrier 15 and the polymer electrolyte 16 in the electrode catalyst layer tends to be uniform.
  • the thickness of the electrode catalyst layer can be measured, for example, by observing the cross section of the membrane electrode assembly 20 using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the thickness of the electrode catalyst layer may be measured within a field of view that covers the entire electrode catalyst layer at an observation magnification of about 1,000 times to 10,000 times.
  • known methods such as ion milling and ultramicrotome can be used, for example.
  • Patent Document 1 Japanese Patent No. 7026669 states that by containing an ionic liquid in the electrode catalyst layer, an improvement in output under low humidification conditions can be expected. However, since the ionic liquid reduces the porosity within the electrode catalyst layer, drainage performance is reduced. As a result, under highly humidified conditions, flooding with generated water occurs, reducing power generation performance. Furthermore, although Patent Document 1 describes the types and weight ratios of catalysts and ionic liquids, it does not describe the structure of the electrode catalyst layer.
  • the first embodiment aims to provide an electrode catalyst layer that can improve drainage properties and gas diffusivity even though it contains an ionic liquid, and has high output and high durability under high and low humidification conditions. do.
  • the electrode catalyst layer includes the ionic liquid 14 in addition to the catalyst supporting carrier 15, the polymer electrolyte 16, and the fibrous material 17. This makes it possible to suppress a decrease in proton transport efficiency even under low humidification conditions. Further, the inorganic coating 13 can suppress the coarsening of the metal particles 12 and the outflow of the ionic liquid 14, and can improve durability. However, in order to solve the problems of the first embodiment, the inorganic coating 13 is not essential.
  • the density of the electrode catalyst layer of the first embodiment is 1000 mg/cm 3 or more and 1600 mg/cm 3 or less.
  • the density of the electrode catalyst layer may be 1050 mg/cm 3 or more, or 1100 mg/cm 3 or more.
  • the drying temperature is preferably 40° C. or more and 150° C. or less
  • the pressing pressure is preferably 0.05 MPa or more and 8 MPa or less.
  • the total mass of the metal particles 12 included in the electrode catalyst layer is preferably 5% by mass or more and 75% by mass or less based on the total mass of the catalyst-supporting carrier 15.
  • the total mass of the polymer electrolyte 16 included in the electrode catalyst layer is preferably 0.1 or more and 2.0 or less in mass ratio to the mass of the conductive carrier 11.
  • the total mass of the ionic liquid 14 included in the electrode catalyst layer is preferably 2% by mass or more and 30% by mass or less based on the total mass of the catalyst-supporting carrier 15.
  • the content of the fibrous substance 17 in the electrode catalyst layer is preferably 1% by mass or more and 300% by mass or less based on the total mass of the conductive carrier 11. If the content of the fibrous material 17 is too large, the density will decrease and drainage performance will improve, but the electrode catalyst layer will become thicker and the performance will tend to deteriorate. If the content of the fibrous material 17 is too low, the density tends to increase and flooding tends to occur.
  • the electrode catalyst layer includes a catalyst-supporting carrier 15, a polymer electrolyte 16, a fibrous material 17, and an ionic liquid 14, and the density of the electrode catalyst layer is 1000 mg/cm 3 or more and 1600 mg/cm 3 or less. It is possible to improve the properties and gas diffusivity, and high output and high durability can be obtained under high and low humidification conditions.
  • the electrode catalyst layer containing the ionic liquid 14 if the density of the electrode catalyst layer is low as in the conventional case, it is considered that the electrical resistance and diffusion resistance increase due to the increase in the thickness of the electrode catalyst layer. In the electrode catalyst layer containing the ionic liquid 14, it is thought that when the density of the electrode catalyst layer increases to a certain extent, electrical resistance and diffusion resistance are reduced while gas diffusivity and drainage performance are sufficiently ensured. Note that it is sufficient that at least one of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C has the characteristics of the first embodiment described above.
  • the metal particles 12 may be supported on the fibrous substance 17 instead of the conductive carrier 11, or the metal particles 12 may be supported on both the conductive carrier 11 and the fibrous substance 17. good.
  • the voids formed by the entanglement of the fibrous substances 17 can serve as a discharge path for water produced by power generation.
  • the fibrous material 17 supports the metal particles 12
  • an electrode reaction also occurs within the discharge path of the generated water.
  • the conductive carrier 11 supports the metal particles 12
  • reaction points due to the three-phase interface caused by the conductive carrier 11, metal particles 12, and gas and spaces formed by the fibrous material 17 are generated. This is preferable because it is possible to improve the drainage performance of the electrode catalyst layer since the discharge route of the produced water can be distinguished from the discharge route.
  • Example 1-1 20 g of platinum-supported carbon (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.), which is a catalyst particle containing an ionic liquid, was placed in a container and mixed with water.
  • the 20g consists of 9.38g of conductive carrier, 8.32g of platinum, and 2.30g of ionic liquid.
  • 1-propanol a polymer electrolyte (Nafion (registered trademark) dispersion, electrolyte mass 7.50 g, manufactured by Wako Pure Chemical Industries, Ltd.), and 10 g of carbon nanofibers (trade name "VGCF”), which is a fibrous material, were added.
  • VGCF carbon nanofibers
  • the membrane electrode assembly having the electrode catalyst layer of Example 1-1 was prepared by applying the catalyst layer slurry to a polymer electrolyte membrane (Nafion 212, manufactured by Chemours) using a die coating method and drying it in an oven. Obtained.
  • Example 1-2 The electrode catalyst layer of Example 1-2 was prepared in the same manner as in Example 1-1, except that resin fibers having an azole structure (fiber diameter of about 200 nm, fiber length of about 20 ⁇ m) were used as the fibrous material. A membrane electrode assembly was obtained.
  • Example 1-3 A membrane electrode assembly having the electrode catalyst layer of Example 1-3 was obtained in the same manner as in Example 1-1 except that the platinum-supported carbon containing the ionic liquid was coated with silica.
  • Example 1-4 The electrode catalyst layer of Example 1-4 was prepared in the same manner as in Example 1-3, except that resin fibers having an azole structure (fiber diameter of about 200 nm, fiber length of about 20 ⁇ m) were used as the fibrous material. A membrane electrode assembly was obtained.
  • Comparative example 1-1 A membrane electrode assembly having an electrode catalyst layer of Comparative Example 1-1 was obtained in the same manner as in Example 1-1 except that platinum-supported carbon containing no ionic liquid was used.
  • Comparative example 1-2 The electrode catalyst of Comparative Example 1-2 was prepared in the same manner as in Example 1-1, except that the amount of fibrous material was increased by 1.5 times so that the density of the electrode catalyst layer was less than 1000 mg/ cm2 . A membrane electrode assembly having layers was obtained.
  • Comparative example 1-3 The electrode catalyst layer of Comparative Example 1-3 was prepared in the same manner as in Example 1-1, except that the amount of fibrous material was reduced by 0.5 times so that the density of the electrode catalyst layer exceeded 1600 mg/ cm2 . A membrane electrode assembly was obtained.
  • Comparative example 1-4 A membrane electrode assembly having an electrode catalyst layer of Comparative Example 1-4 was obtained in the same manner as in Example 1-1 except that no fibrous material was added.
  • the density of the electrode catalyst layer was determined from the mass and thickness of the electrode catalyst layer. For the mass, the mass or dry mass determined from the coated amount of the catalyst layer slurry was used. The thickness was determined by observing the cross section of the electrode catalyst layer with a scanning electron microscope (magnification: 2000 times).
  • a gas diffusion layer (SIGRACET(R) 22BB, manufactured by SGL) was placed outside the electrode catalyst layer, and power generation characteristics were evaluated using a commercially available JARI standard cell.
  • the cell temperature was 80°C.
  • hydrogen (100% RH) was supplied to the anode and air (100% RH) to the cathode
  • hydrogen (30% RH) was supplied to the anode and air (30% RH) to the cathode.
  • Table 2 shows the density of the electrode catalyst layer, the evaluation results of power generation characteristics under low humidification conditions and high humidification conditions, and the evaluation results of durability for each example and each comparative example. Power generation performance and durability are shown as a ratio to Comparative Example 1 with Comparative Example 1 as a reference.
  • the catalyst content in the electrode catalyst layer is the same for all membrane electrode assemblies.
  • the electrode catalyst layer contains a catalyst supporting carrier, an ionic liquid, a polymer electrolyte, and a fibrous material, and the density of the electrode catalyst layer is 1000 mg/cm 3 or more and 1600 mg/cm 3 or less. It was confirmed that no cracks occurred in the electrode catalyst layer and that high output and high durability could be obtained under both high and low humidification conditions even with the electrode catalyst layer containing an ionic liquid.
  • Patent Document 1 Japanese Patent No. 7026669 states that when the electrode catalyst layer contains an ionic liquid, proton transport is promoted and an improvement in output under low humidification conditions can be expected.
  • the second embodiment aims to provide an electrode catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell with excellent power generation performance and durability.
  • the inorganic coating 13 coats the surface of the conductive carrier 11 and the surface of the metal particles 12 via the ionic liquid 14 that contacts the surfaces of the conductive carrier 11 and the metal particles 12. ing. It is sufficient that a part of the surface of the conductive carrier 11 is coated with the inorganic coating 13 , and a part of the surface of the metal particles 12 is coated with the inorganic coating 13 .
  • the inorganic coating 13 mainly covers the metal particles 12 via the ionic liquid 14.
  • Inorganic coating 13 contains silica.
  • the inorganic film 13 is preferably composed of silica obtained by hydrolyzing and dehydrating condensation of tetraethoxysilane.
  • the ratio of the number of silicon atoms to the total number of atoms of carbon, nitrogen, oxygen, fluorine, silicon, sulfur, and platinum elements obtained by energy dispersive X-ray spectroscopy of the electrode catalyst layer is It is 0.5 at% or more and 10 at% or less.
  • the ratio of the number of silicon atoms can be measured, for example, by performing elemental mapping using a transmission electron microscope (TEM-EDX) equipped with an energy dispersive X-ray spectrometer.
  • TEM-EDX transmission electron microscope
  • the X-ray acceleration voltage in TEM-EDX is preferably 200 kV. With such an accelerating voltage, it is possible to transmit the electron beam to a thickness of about 100 nm in a specific region, and information on the elements of the electrode catalyst layer can be obtained.
  • the shape of the observation area which is the region where elemental mapping is performed, is, for example, rectangular.
  • the observation area is, for example, a square with a length of 150 nm and a width of 150 nm, or a rectangle with a length of 30 nm and a width of 50 nm.
  • the observation area is preferably a region in which the catalyst particles 10 occupy 20% or more of the area.
  • the electrode catalyst layer to be subjected to elemental mapping is processed into a thin piece of about 100 nm.
  • processing into thin pieces for example, known methods such as a focused ion beam or an ultramicrotome can be used.
  • the inventor found that the power generation performance is greatly influenced by the proton conductivity in the electrode catalyst layer, and that the metal particles 12 that are the catalyst and the catalyst It has been found that proton conductivity can be improved by coating the conductive carrier 11 supporting the ionic liquid 14 with the ionic liquid 14. Furthermore, the inventor discovered that by coating the metal particles 12 and the conductive carrier 11 with an inorganic coating 13 containing Si, the outflow of the ionic liquid 14 and the coarsening of the metal particles 12 are suppressed, and high power generation performance is achieved over a long period of time. I found out that it is possible.
  • the metal particles 12 are prevented from eluting into the polymer electrolyte 16 surrounding the catalyst particles 10 in the electrode catalyst layer.
  • the inorganic film 13 directly covers the metal particles 12, contact between the polymer electrolyte 16 that conducts protons and the metal particles 12 that acts as a catalyst for electrode reaction is prevented.
  • the ionic liquid 14 through which protons can pass is interposed between the inorganic coating 13 and the metal particles 12, protons are conducted via the ionic liquid 14.
  • the ionic liquid 14 in the inorganic coating 13 also contributes to proton conduction. Furthermore, it is advantageous from the viewpoint of electron conduction if the metal particles 12 have exposed portions that are not covered with the ionic liquid 14 and the inorganic coating 13.
  • the ratio of the number of silicon atoms to the total number of atoms of carbon, nitrogen, oxygen, fluorine, silicon, sulfur, and platinum elements obtained by energy dispersive X-ray spectroscopy of the electrode catalyst layer is 0.5at. % or more and 10 at % or less, a polymer electrolyte fuel cell exhibiting high power generation performance and excellent durability can be obtained.
  • the fact that the ratio of the number of silicon atoms is 0.5 at% or more means that the amount of the inorganic coating 13 that suppresses the outflow of the ionic liquid 14 and the coarsening of the metal particles 12 is appropriately secured. .
  • the fact that the ratio of the number of silicon atoms is 10 at % or less means that the amount of the inorganic coating 13 is not excessive and that inhibition of proton and electron conduction by the inorganic coating 13 can be suppressed.
  • the electrode catalyst layer and membrane can have sufficient drainage performance, gas diffusivity, and proton conductivity, and can exhibit high power generation performance over the long term.
  • An electrode assembly and a polymer electrolyte fuel cell can be obtained. Note that it is sufficient that at least one of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C has the characteristics of the second embodiment described above.
  • Example 2-1 ⁇ Creation of catalyst particles
  • Platinum-supported carbon in which platinum particles are supported on a highly crystallized carbon carrier (Pt mass ratio 50% by mass) is added to acetonitrile, and an amount corresponding to 60% of the mesopore volume of the platinum-supported carbon is added. of ionic liquid was added.
  • the mesopore volume of the platinum-supported carbon serving as the catalyst-supporting support is substantially the same as the mesopore volume of the conductive support.
  • This mixture was subjected to ultrasonic dispersion for 30 minutes, stirred with a stirrer overnight, and then acetonitrile was removed with an evaporator to obtain platinum-supported carbon impregnated with an ionic liquid.
  • ionic liquid a liquid consisting only of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide was used.
  • the mesopore volume of the platinum-supported carbon was determined for pores ranging from 2 nm to 100 nm using a low-temperature nitrogen adsorption method.
  • the platinum-supported carbon impregnated with the ionic liquid was added to water, and after ultrasonic stirring, a mixed solution containing tetraethoxysilane (TEOS) and ethanol was added. Thereafter, sodium hydroxide was added and after stirring for 2 hours, a separated product was obtained using a centrifuge. Then, the separated product was dried at 80° C. for 6 hours to obtain catalyst particles of Example 1.
  • the catalyst particles have an inorganic coating made of silica.
  • the coating amount of the inorganic film on the catalyst particles was adjusted by the amount of TEOS so that the weight ratio of the inorganic film (weight of silica/total weight of silica and platinum-supported carbon) was 0.1.
  • slurry for the catalyst layer was prepared by carrying out a dispersion treatment on a mixed solution of the catalyst particles of Example 1, a polymer electrolyte, a fibrous material, and a dispersion medium. did. The following materials were used except for the catalyst particles.
  • Polymer electrolyte Fluorine polymer electrolyte (Nafion (registered trademark) dispersion liquid, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Fibrous substance resin fiber with azole structure (average fiber length 20 ⁇ m, average fiber diameter 220 nm)
  • Dispersion medium mixture of water and 1-propanol at a mass ratio of 1:1
  • the blending amounts of the polymer electrolyte and the fibrous material are 70 parts by mass of the polymer electrolyte and 20 parts by mass of the fibrous material, based on 100 parts by mass of the conductive carrier in the catalyst particles in the slurry for the catalyst layer. It is.
  • the blending amount of the dispersion medium was such that the solid content concentration in the catalyst ink was 10% by mass.
  • the dispersion treatment was carried out using a planetary ball mill at a rotation speed of 600 rpm for 60 minutes. At that time, a zirconia ball having a diameter of 2 mm was added to about one-third of the zirconia container.
  • the catalyst layer slurry was applied to one side of a polymer electrolyte membrane (Nafion (registered trademark) 211, manufactured by DuPont) to a thickness of 100 ⁇ m to form a coating film. Formed. The shape of the coating film was square, and the length of one side was 50 mm. Then, a drying process was performed using an oven at 80° C. to volatilize the dispersion medium contained in the coating film, thereby forming an air electrode catalyst layer.
  • a polymer electrolyte membrane Nifion (registered trademark) 211, manufactured by DuPont
  • a coating film was formed by applying the catalyst layer slurry to a thickness of 30 ⁇ m on the surface of the polymer electrolyte membrane opposite to the surface on which the air electrode catalyst layer was formed.
  • the shape of the coating film is square, and the length of one side is 50 mm.
  • the coating film was formed at a position facing the air electrode catalyst layer.
  • a drying process was performed using an oven at 80° C. to volatilize the dispersion medium contained in the coating film, thereby forming a fuel electrode catalyst layer. Thereby, a membrane electrode assembly including the electrode catalyst layer of Example 2-1 was obtained.
  • Example 2-2 was performed using the same materials and steps as Example 2-1, except that in the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.2. A membrane electrode assembly was obtained.
  • Example 2-3 was performed using the same materials and steps as Example 2-1, except that in the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.01. A membrane electrode assembly was obtained.
  • Example 2-4 In the process of preparing the catalyst layer slurry, carbon nanofibers (VGCF-H (registered trademark), manufactured by Showa Denko Packaging Co., Ltd., average fiber length 7 ⁇ m, average fiber diameter 150 nm) were added as a fibrous substance.
  • VGCF-H registered trademark
  • a membrane electrode assembly of Example 2-4 was obtained by the same method as Example 2-1.
  • Comparative Example 2-1 was prepared using the same materials and steps as Example 2-1, except that in the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.3. A membrane electrode assembly was obtained.
  • Comparative example 2-2 A membrane electrode assembly of Comparative Example 2-2 was obtained using the same materials and steps as in Example 2-1, except that no inorganic coating was formed on the platinum-supported carbon. That is, the catalyst particles of Comparative Example 2-2 do not have an inorganic coating.
  • Comparative example 2-3 A membrane electrode assembly of Comparative Example 2-3 was obtained using the same materials and steps as in Example 2-1, except that the platinum-supported carbon was not impregnated with an ionic liquid and the inorganic coating was not formed. That is, the catalyst particles of Comparative Example 2-3 consisted only of platinum-supported carbon and did not have an ionic liquid or an inorganic coating.
  • Table 3 shows the ratio of the number of silicon atoms in the air electrode catalyst layer and the evaluation results of power generation performance and durability for each Example and each Comparative Example.
  • a case where the voltage is 0.65V or more when the current is 35A is evaluated as " ⁇ ”
  • a case where the voltage is less than 0.65V when the current is 35A but the current is 25A is evaluated as " ⁇ ”.
  • the case where the voltage was 0.65V or more was marked as "O”
  • the case where the voltage was less than 0.65V when the current was 25A was marked as "x”.
  • the ratio of the number of silicon atoms in the electrode catalyst layer was 0.5 at% or more and 10 at% or less.
  • the evaluations of power generation performance and durability were both " ⁇ " or " ⁇ ". That is, in Examples 2-1 to 2-4, membrane electrode assemblies capable of forming fuel cells with excellent power generation performance and durability were obtained.
  • the ratio of the number of silicon atoms in the electrode catalyst layer was outside the range of 0.5 at% or more and 10 at% or less.
  • at least one of them was rated "x". That is, when the ratio of the number of silicon atoms in the electrode catalyst layer was outside the above range, at least one of power generation performance and durability decreased.
  • a membrane electrode assembly capable of forming a fuel cell with excellent power generation performance and durability can be obtained when the ratio of the number of silicon atoms in the electrode catalyst layer is 0.5 at% or more and 10 at% or less. It was done.
  • a third embodiment of an electrode catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell will be described.
  • the third embodiment has the same basic configuration as the first embodiment.
  • differences between the third embodiment and the first embodiment will be mainly described, and the same components as those in the first embodiment will be given the same reference numerals and the description thereof will be omitted. Note that the features of the third embodiment can be combined with the features of other embodiments.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2008-4541 proposes coating metal particles with a porous inorganic material such as silica in order to suppress the elution of metal particles.
  • platinum has been widely used as metal particles, but since platinum is expensive, there is a desire to reduce the amount of platinum used in the electrode catalyst layer. Particularly in the electrode catalyst layer in which the amount of platinum is reduced, the above-mentioned decrease in output voltage occurs significantly.
  • the inorganic coating 13 mainly covers the metal particles 12 . A portion of the surface of the metal particle 12 is exposed from the inorganic coating 13, and the metal particle 12 is in contact with the ionic liquid 14 in at least a portion of this exposed portion.
  • the inorganic coating 13 covers the metal particles 12, elution of the metal particles 12 into the polymer electrolyte 16 surrounding the catalyst particles 10 in the electrode catalyst layer is suppressed.
  • the inorganic coating 13 completely covers each metal particle 12, contact between the polymer electrolyte 16, which conducts protons, and the metal particles 12, which acts as a catalyst for the electrode reaction, is prevented.
  • the ionic liquid 14 through which protons can pass is in contact with the metal particles 12, so protons are conducted via the ionic liquid 14.
  • the ionic liquid 14 permeates into the gaps within the inorganic coating 13 the ionic liquid 14 in the inorganic coating 13 also contributes to proton conduction.
  • an electron conduction path is also secured.
  • the inorganic coating 13 is made of a hydrophilic material such as silica
  • the generated water may flow near the inorganic coating 13, especially at the air electrode where water is generated by electrode reaction.
  • the drainage performance of the electrode catalyst layer decreases.
  • the ionic liquid 14 with low hydrophilicity it is possible to suppress water retention near the ionic liquid 14, that is, near the catalyst particles 10. This suppresses deterioration in drainage performance of the electrode catalyst layer.
  • the weight ratio of the inorganic coating 13 to the total weight of the inorganic coating 13 and the catalyst supporting carrier 15 is 0.01 or more and 0.2 or less.
  • the weight of the catalyst supporting carrier 15 is the total weight of the conductive carrier 11 and the metal particles 12 supported on the conductive carrier 11.
  • the weight ratio of the inorganic coating 13 is 0.01 or more, the inorganic coating 13 will be formed on the surface of the catalyst-supporting carrier 15 to such an extent that elution of the metal particles 12 can be sufficiently suppressed. Further, the ionic liquid 14 is easily retained within the inorganic coating 13. If the weight ratio of the inorganic coating 13 is 0.2 or less, the thickness and formation range of the inorganic coating 13 will not become too large, and the metal particles 12 and the ionic liquid 14 will be mixed to the extent that suitable proton conduction can be obtained. Contact can be secured. Note that the weight ratio of the inorganic coating 13 can be determined using, for example, XPS (X-ray photoelectron spectroscopy).
  • the volume of the ionic liquid 14 is preferably 10% or more and 50% or less, and more preferably 10% or more and 30% or less of the mesopore volume of the catalyst-supporting carrier 15.
  • the mesopore volume, ie, the pore volume of the mesopore region, is the total volume of pores from 2 nm to 100 nm.
  • the mesopore volume can be determined, for example, by a low-temperature nitrogen adsorption method.
  • the volume ratio of the ionic liquid 14 is 10% or more, proton conduction between the polymer electrolyte and the metal particles 12 via the ionic liquid 14 becomes possible. In particular, sufficient oxygen reduction activity can be obtained in the electrode catalyst layer of the air electrode. Moreover, if the volume ratio of the ionic liquid 14 is 50% or less, the amount of the ionic liquid 14 will not become too large. Although the ionic liquid 14 has the ability to pass protons, its degree is supplementary compared to the polymer electrolyte 16, and if the amount of the ionic liquid 14 becomes too large, the catalyst particles 10 and the polymer The distance from the electrolyte 16 becomes large and the resistance increases. On the other hand, if the volume ratio of the ionic liquid 14 is 50% or less, an increase in resistance due to an excess of the ionic liquid 14 can be suppressed.
  • the fuel cell using the catalyst particles 10 of this embodiment can achieve good power generation performance.
  • a platinum-based metal is used as the metal particles 12
  • high output can be obtained even if the amount of metal particles 12 supported is reduced.
  • At least one of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C has the characteristics of the third embodiment described above.
  • the air electrode catalyst layer 22C has the characteristics of the third embodiment.
  • Example 3-1 ⁇ Creation of catalyst particles Using platinum-supported carbon (support density 30% by mass) as a catalyst-supporting carrier, add platinum-supported carbon to acetonitrile, and further add an ionic liquid in an amount equivalent to 50% of the mesopore volume of the platinum-supported carbon. was added. This mixture was subjected to ultrasonic dispersion for 30 minutes, stirred with a stirrer overnight, and then acetonitrile was removed with an evaporator to obtain a catalyst-supported carrier impregnated with the ionic liquid.
  • ionic liquid a liquid consisting only of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide was used.
  • the mesopore volume of the platinum-supported carbon was determined for pores ranging from 2 nm to 100 nm using a low-temperature nitrogen adsorption method.
  • the catalyst-supported carrier impregnated with the ionic liquid was added to water, and after ultrasonic stirring, a mixed solution containing tetraethoxysilane (TEOS) and ethanol was added. Thereafter, sodium hydroxide was added and after stirring for 2 hours, a separated product was obtained using a centrifuge. Then, the separated product was dried at 80° C. for 6 hours to obtain catalyst particles of Example 3-1.
  • the catalyst particles have an inorganic coating made of silica.
  • the amount of the inorganic film coated on the catalyst particles was adjusted by the amount of TEOS so that the weight ratio of the inorganic film (weight of silica/total weight of silica and catalyst supporting carrier) was 0.1.
  • slurry for the catalyst layer was prepared by carrying out a dispersion treatment on a mixed solution of the catalyst particles of Example 1, a polymer electrolyte, a fibrous material, and a dispersion medium. did. The following materials were used except for the catalyst particles.
  • Polymer electrolyte Fluorine polymer electrolyte (Nafion (registered trademark) dispersion liquid, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Fibrous substance carbon fiber (VGCF-H (registered trademark), manufactured by Showa Denko, average fiber length 6 ⁇ m, average fiber diameter 150 nm)
  • Dispersion medium mixture of water and 1-propanol at a mass ratio of 1:1
  • the blending amounts of the polymer electrolyte and the fibrous material are 70 parts by mass of the polymer electrolyte and 20 parts by mass of the fibrous material, based on 100 parts by mass of the conductive carrier in the catalyst particles in the slurry for the catalyst layer. It is.
  • the blending amount of the dispersion medium was such that the solid content concentration in the catalyst layer slurry was 10% by mass.
  • the dispersion treatment was carried out using zirconia balls with a diameter of 3 mm and a planetary ball mill at a rotation speed of 600 rpm for 60 minutes.
  • a coating film was formed by applying the catalyst layer slurry to one side of a polymer electrolyte membrane (Nafion (registered trademark) 211, manufactured by DuPont) using a die coater.
  • the shape of the coating film is square, and the length of one side is 50 mm.
  • the amount of the catalyst layer slurry applied was such that the amount of platinum supported in the coating film was 0.1 mg/cm 2 .
  • a drying process was performed using an oven at 80° C. to volatilize the dispersion medium contained in the coating film, thereby forming an air electrode catalyst layer.
  • a coating film was formed by applying the catalyst layer slurry to the surface of the polymer electrolyte membrane opposite to the surface on which the air electrode catalyst layer was formed.
  • the shape of the coating film is square, and the length of one side is 50 mm.
  • the coating amount of the catalyst layer slurry was such that the amount of platinum supported in the coating film was 0.05 mg/cm 2 .
  • a drying process was performed using an oven at 80° C. to volatilize the dispersion medium contained in the coating film, thereby forming a fuel electrode catalyst layer. Thereby, a membrane electrode assembly including the electrode catalyst layer of Example 3-1 was obtained.
  • Example 3 was produced using the same materials and steps as in Example 3-1, except that in the catalyst particle generation process, the amount of ionic liquid added was changed to an amount equivalent to 30% of the mesopore volume of the platinum-supported carbon. -2 membrane electrode assembly was obtained.
  • Example 3 was produced using the same materials and steps as in Example 3-1, except that in the catalyst particle generation process, the amount of ionic liquid added was changed to an amount equivalent to 10% of the mesopore volume of the platinum-supported carbon. -3 membrane electrode assembly was obtained.
  • Example 3-4 was performed using the same materials and steps as Example 3-1, except that in the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.2. A membrane electrode assembly was obtained.
  • Example 3-5 In the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.2, and the amount of ionic liquid added was equivalent to 30% of the mesopore volume of the platinum-supported carbon. A membrane electrode assembly of Example 3-5 was obtained using the same materials and steps as in Example 3-1, except that the amount was changed.
  • Example 3-6 In the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.2, and the amount of ionic liquid added was equivalent to 10% of the mesopore volume of the platinum-supported carbon.
  • a membrane electrode assembly of Example 3-6 was obtained using the same materials and steps as in Example 3-1, except that the amount was changed.
  • Comparative Example 3 was produced using the same materials and steps as in Example 3-1, except that in the catalyst particle generation process, the amount of ionic liquid added was changed to an amount equivalent to 60% of the mesopore volume of the platinum-supported carbon. -1 membrane electrode assembly was obtained.
  • Comparative Example 3 was produced using the same materials and steps as in Example 3-1, except that in the catalyst particle generation process, the amount of ionic liquid added was changed to an amount equivalent to 5% of the mesopore volume of the platinum-supported carbon. -2 membrane electrode assembly was obtained.
  • Comparative example 3-3 In the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.2, and the amount of ionic liquid added was adjusted to correspond to 60% of the mesopore volume of the platinum-supported carbon. A membrane electrode assembly of Comparative Example 3-3 was obtained using the same materials and steps as in Example 3-1, except that the amount was changed.
  • Comparative example 3-6 In the catalyst particle generation process, the amount of TEOS added was changed so that the weight ratio of the inorganic coating was 0.005, and the amount of ionic liquid added was equivalent to 30% of the mesopore volume of the platinum-supported carbon. A membrane electrode assembly of Comparative Example 3-6 was obtained using the same materials and steps as in Example 3-1, except that the amount was changed.
  • Comparative example 3-7 A membrane electrode assembly of Comparative Example 3-7 was obtained using the same materials and steps as in Example 3-1, except that the platinum-supported carbon was not impregnated with an ionic liquid and the inorganic coating was not formed. That is, the catalyst particles of Comparative Example 3-7 consisted only of a catalyst-supporting carrier and did not have an ionic liquid or an inorganic coating.
  • FIG. 8A shows the distribution of C
  • FIG. 8B shows the distribution of Si
  • FIG. 8C shows the distribution of Pt.
  • the distribution of Si overlaps with the distribution of Pt, which indicates that the inorganic coating made of silica is formed to mainly cover the metal particles, which are platinum. confirmed.
  • Table 4 shows the weight ratio of the inorganic coating, the volume ratio of the ionic liquid, and the evaluation results of power generation performance and durability for each Example and each Comparative Example. As shown in Table 4, in Examples 3-1 to 3-6, the weight ratio of the inorganic coating is 0.01 or more and 0.2 or less, and the volume ratio of the ionic liquid is 10% or more and 50% or less. , both power generation performance and durability were good.
  • the catalyst particles, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell of the third embodiment provide the following effects. (1) Since the catalyst particles contain an inorganic coating and an ionic liquid, elution of metal particles into the polymer electrolyte is suppressed, and inhibition of proton conduction is suppressed. Therefore, in a fuel cell using catalyst particles in the electrode catalyst layer, good durability and power generation performance can be obtained.
  • the inorganic coating is made of silica formed from either tetraethoxysilane or triethoxymethylsilane, the inorganic coating is formed into a multilayer structure, so the ionic liquid is easily retained inside the inorganic coating. Become.
  • the ionic liquid contains 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, particularly 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. According to such a configuration, proton conduction via the ionic liquid is preferably possible.
  • a fourth embodiment of an electrode catalyst layer, a membrane electrode assembly, and a polymer electrolyte fuel cell will be described.
  • the fourth embodiment has the same basic configuration as the first embodiment.
  • differences between the fourth embodiment and the first embodiment will be mainly described, and configurations similar to those in the first embodiment will be given the same reference numerals and explanations thereof will be omitted. Note that the features of the fourth embodiment can be combined with the features of other embodiments.
  • Platinum-supported carbon catalysts have durability issues. Specifically, there is a problem in that the platinum particles supported on the carbon material are eluted into the polymer electrolyte, resulting in a decrease in the performance of the fuel cell.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2008-4541
  • elution of the metal particles is prevented by coating a conductive carrier and metal particles arranged on the conductive carrier with a porous inorganic material. Electrode materials that can suppress performance deterioration of fuel cells have been reported.
  • Non-Patent Document 1 (INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45, 1867-1877)
  • a membrane electrode assembly using a catalyst coated with silica was prepared under low humidity (20% RH). It has been reported that this membrane electrode assembly exhibits superior power generation performance compared to membrane electrode assemblies using catalysts. This seems to be because silica retains water.
  • Non-Patent Document 2 ACS Catalysis, 2018, 8, 8244-8254.
  • catalyst particles are coated with an ionic liquid, which is a liquid with low affinity for water. It has been reported that oxygen reduction activity is improved by doing so.
  • the fourth embodiment provides ionic liquid-impregnated silica-coated catalyst particles with excellent durability in catalyst mass activity, and a fuel cell membrane electrode assembly and fuel cell with excellent durability in IV characteristics at high temperature and low humidity. With the goal.
  • the inventor impregnated catalyst particles coated with silica, which has excellent power generation properties under low humidity conditions, with an ionic liquid that is chemically stable even at 80°C to 120°C. It was discovered that the power generation characteristics were improved and that high power generation performance was obtained even after the durability test.
  • the peak intensity ratio (G/D ratio) of G band and D band according to Raman spectroscopy of the conductive carrier 11 which is a carbon material is 1.6 or more. Further, the peak intensity ratio (G/D ratio) of the conductive carrier 11 is preferably 1.8 or more. Note that the wavelength of laser light used in Raman spectroscopy is 532 nm. Further, the G band means a Raman peak located around 1580 cm ⁇ 1 , and the D band means a Raman peak located around 1360 cm ⁇ 1 .
  • the carbon material having the above-mentioned peak intensity ratio (G/D ratio) of 1.6 or more has higher crystallinity than conventionally used carbon materials, so the conductivity in the durability test of the catalyst particles 10 is Oxidative loss of the carrier 11 can be reduced. As a result, the durability of the catalyst particles 10 can be improved.
  • the peak intensity ratio (G/D ratio) is less than 1.6, the specific surface area of the conductive carrier becomes large, so the amount of metal particles that can be supported on the conductive carrier is determined by the peak intensity ratio (G/D ratio).
  • /D ratio is 1.6 or more, but the crystallinity of the conductive carrier is decreased compared to when the peak intensity ratio (G/D ratio) is 1.6 or more.
  • the conductive carrier is amorphous carbon.
  • the durability of the catalyst particles is lower than when the peak intensity ratio (G/D ratio) is 1.6 or more.
  • the peak intensity ratio (G/D ratio) is 2.2 or less, preferably 2.0 or less. If the peak intensity ratio (G/D ratio) is 2.0 or less, the metal particles 12 can be sufficiently supported on the conductive carrier 11.
  • the metal particles 12 contain one or more elements of Pt, Rh, Pd, Au, and Ir.
  • the metal particles 12 may be, for example, simple Pt, alloy particles of Pt and Co, core-shell particles in which a Pd core is coated with Pt particles, or the like.
  • the metal particles 12 are preferably Pt particles with a crystallite size (1, 1, 1) of 10 nm or less, more preferably 8 nm or less, as determined by the XRD method.
  • the above (1, 1, 1) indicates the Miller index.
  • Pt particles with a crystallite size (1,1,1) of 10 nm or less have high catalytic activity and can provide a high voltage. Further, if the Pt particles have a crystallite size (1,1,1) of 3 nm or more and 7 nm or less, high catalytic activity can be reliably obtained.
  • the lower limit of the crystallite size (1, 1, 1) of the metal particles 12 is not particularly limited, but is preferably 3 nm or more. If the crystallite size (1,1,1) is 3 nm or more, catalytic activity can be reliably obtained.
  • the crystallite size (1,1,1) is more than 8 nm
  • the ratio of the surface area of the Pt particle to the mass of the Pt particle (surface area of the Pt particle/mass of the Pt particle) is the crystallite size. (1,1,1) is smaller than that of Pt particles of 8 nm or less.
  • the ratio of the catalytic ability of Pt particles to the mass of Pt particles is smaller than that of Pt particles with a crystallite size (1, 1, 1) of 8 nm or less.
  • Pt particles with a crystallite size (1, 1, 1) of more than 8 nm are less likely to obtain high IV characteristics than Pt particles with a crystallite size (1, 1, 1) of 8 nm or less.
  • the mass proportion of the metal particles 12 in the catalyst particles 10 is 60 parts by mass or more and 70 parts by mass or less, when the mass of the catalyst-supporting carrier 15 is 100 parts by mass. If the mass ratio of the metal particles 12 is 60 parts by mass or more, the electrode catalyst layer will not become too thick relative to the metal weight per unit area, and gases such as oxygen will easily diffuse. If the mass proportion of the metal particles 12 is 70 parts by mass or less, it is easy to support fine metal particles such as Pt particles having a crystallite size (1, 1, 1) of 8 nm or less.
  • the pore volume of the mesopore region by the BJH method is 0.18 cm 3 /g or more, and the peak top pore diameter of the pore distribution curve by the BJH method is 2.6 nm or more and 2.8 nm or less. It is preferable that If the pore volume of the mesopore region is 0.18 cm 3 /g or more, it becomes easier to impregnate the ionic liquid 14. Moreover, if the peak top pore diameter of the pore distribution curve is 2.6 nm or more, the ionic liquid 14 will be easily impregnated into the conductive carrier 11. Therefore, oxygen reduction activity is easily obtained and sufficient voltage is easily obtained. Further, if the peak top pore diameter of the pore distribution curve is 2.8 nm or less, the ionic liquid 14 can be prevented from flowing out from within the conductive carrier 11. Therefore, oxygen reduction activity is easily obtained and sufficient voltage is easily obtained.
  • the pore volume in the mesopore region means the total pore volume obtained from the pore distribution from 2 nm to 100 nm by BJH analysis of the measurement results by the nitrogen adsorption BET multipoint method.
  • the peak top pore diameter means the pore diameter at the peak from 2 nm to 100 nm of the pore distribution curve obtained by BJH analysis.
  • the amount of the inorganic coating 13 contained in the catalyst particles 10 can be calculated from the Si intensity determined by XRF using a calibration curve.
  • the amount of the inorganic film 13 is 6 parts by mass or more and 13 parts by mass or less, when the total mass of the conductive carrier 11, metal particles 12, ionic liquid 14, and inorganic film 13 is 100 parts by mass.
  • the amount of the inorganic coating 13 is 6 parts by mass or more, it is possible to stably hold the ionic liquid 14, and the durability is improved.
  • oxygen diffusion and proton conduction to the metal particles 12 are suitable, and the catalytic activity is enhanced.
  • the ionic liquid 14 is adsorbed throughout the catalyst particles 10.
  • the amount of the ionic liquid 14 contained in the catalyst particles 10 may be 50% or more and 100% or less of the mesopore volume of the catalyst-supporting carrier 15. More specifically, the volume of the ionic liquid 14 contained in the catalyst particles 10 is preferably 50% or more and 100% or less, more preferably 70% or more and 95% or less, of the mesopore volume of the catalyst-supporting carrier 15. More preferably, it is 85% or more and 90% or less.
  • the mesopore volume of the catalyst-supporting carrier 15 can be determined, for example, by a low-temperature nitrogen adsorption method. In this embodiment, the total volume of pores from 2 nm to 100 nm was used as the mesopore volume, that is, the pore volume of the mesopore region. If the amount of ionic liquid 14 is 50% or more of the mesopore volume of catalyst-supporting carrier 15, sufficient oxygen reduction activity is likely to be obtained. Further, if the amount of the ionic liquid 14 is 100% or less, preferably 90% or less of the mesopore volume of the catalyst-supporting carrier 15, the ionic liquid 14 can be stably held. Furthermore, since the ionic liquid 14 is not too large, oxygen easily permeates from the ionic liquid 14 to the surface of the metal particles 13, and it is possible to suppress a decrease in IV performance due to an increase in resistance.
  • the amount of ionic liquid 14 contained in catalyst particles 10 is 10 parts by mass or more and 20 parts by mass or less, when the total mass of conductive carrier 11, metal particles 12, inorganic coating 13, and ionic liquid 14 is 100 parts by mass. be.
  • the amount of the ionic liquid 14 is 10 parts by mass or more, the ionic liquid 14 can accurately suppress an increase in ionic resistance caused by coating the metal particles 12 with the inorganic coating 13.
  • the amount of the ionic liquid 14 is 20 parts by mass or more, the ionic liquid 14 can be stably retained during the manufacturing process of the catalyst particles 10, the liquid preparation process, and the operation of the fuel cell. Furthermore, since the ionic liquid 14 is not too large, oxygen easily permeates from the ionic liquid 14 to the surface of the metal particles 13, and it is possible to suppress a decrease in IV performance due to an increase in resistance.
  • the content of the fibrous substance 17 in the electrode catalyst layer is preferably 0.1 parts by mass or more and 45 parts by mass or less, and 0.1 parts by mass or more and 10 parts by mass or less, when the total mass of the electrode catalyst layer is 100 parts by mass. It is more preferably not more than 0.1 part by mass and not more than 5 parts by mass. If the content of the fibrous substance 17 is within the above range, the electron conductivity and proton conductivity in the electrode catalyst layer will be enhanced, and the structure of the electrode catalyst layer will be easily maintained.
  • the total mass of the polymer electrolyte 16 in the electrode catalyst layer is 0.17 or more and 0.2 or less with respect to the total mass of the catalyst particles 10 included in the electrode catalyst layer. If the mass ratio of the polymer electrolyte 16 to the catalyst particles 10 is 0.17 or more, proton conductivity is enhanced, so that deterioration in IV performance due to an increase in resistance can be suppressed. If the mass ratio of the polymer electrolyte 16 to the catalyst particles 10 is 0.2 or less, sufficient voids can be obtained in the electrode catalyst layer, making it possible to suitably discharge water and diffuse oxygen, improving IV performance. .
  • the product of the mass ratio of the polymer electrolyte 16 to the catalyst particles 10 and the mass ratio of the ionic liquid 14 to the inorganic coating 13 in the catalyst particles 10 is preferably 0.2 or more and 0.4 or less. It is. This provides a suitable balance between the polymer electrolyte 16, the inorganic coating 13, and the ionic liquid 14, and facilitates smooth proton conduction and oxygen diffusion within the electrode catalyst layer and on the surface of the metal particles 12 even after the durability test.
  • At least one of the fuel electrode catalyst layer 22A and the air electrode catalyst layer 22C has the characteristics of the fourth embodiment described above.
  • the air electrode catalyst layer 22C has the characteristics of the fourth embodiment.
  • Pt-supported carbon is synthesized according to known methods.
  • the G band/D band ratio determined by Raman spectroscopy is 1.6 or more.
  • the crystallite size (1,1,1) determined by the XRD method of the Pt particles contained in the synthesized ionic liquid-impregnated silica-coated Pt-supported carbon was 6.4 nm.
  • the amount of silica contained in the synthesized ionic liquid-impregnated silica-coated Pt-supported carbon was calculated from the amount of Si element determined by XRF. The amount of ionic liquid was calculated from the amount charged.
  • Mass activity was measured using a rotating disk electrode method using a three-electrode cell. The rotation speeds were 200 rpm, 400 rpm, 900 rpm, 1600 rpm, and 2500 rpm. The mass activity of 0.85V vs. RHE was determined using a Koutecky-Levich plot.
  • the working electrode was prepared by adding the synthesized ionic liquid-impregnated Pt-supported carbon to water, adding the ionomer, ultrasonically stirring for 30 minutes, and dropping the resulting catalyst ink onto a glassy carbon electrode and drying it.
  • a Pt mesh was used for the counter electrode.
  • a saturated calomel electrode was used as the reference electrode.
  • a 0.1M perchloric acid aqueous solution was used as the electrolytic solution. After measuring the mass activity, CV was repeated 1200 times in the range of 0.6V to 1,21V vs. RHE as a durability test. After the durability test, mass activity was measured again.
  • Example 4A-1 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 6 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass. The mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Example 4A-2 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 9 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass. The mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Example 4A-3 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 11 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass. The mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Example 4A-4 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 13 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass. The mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Example 4A-5 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method.
  • the amount of the ionic liquid impregnated was adjusted to 10 parts by mass, with the total mass of the conductive carrier, metal particles, ionic liquid, and silica being 100 parts by mass.
  • the amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • the mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Example 4A-6 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method.
  • the amount of the ionic liquid impregnated was adjusted to 20 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass.
  • the amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • the mass activity of the ionic liquid-impregnated silica-coated Pt-supported carbon was evaluated in accordance with the above-mentioned evaluation method.
  • Table 5 shows the relationship between the amount of silica and the mass activity before and after the durability test.
  • Table 6 shows the relationship between the amount of ionic liquid and the mass activity before and after the durability test.
  • Examples 4A-1 to 4A-4 and Comparative Example 4A-3 in which the amount of silica was 6 wt% or more, all showed 14.5 A/g-Pt or more, but the silica content was 14.5 A/g-Pt or more.
  • Comparative Example 4A-2 in which the amount was 3 wt%, was as low as 10.5 A/g-Pt.
  • Example 4B-7 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.17.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Example 4B-8 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.18.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Example 4B-9 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.2.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • an ionic liquid-impregnated silica-coated Pt-supported carbon was synthesized using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid.
  • the amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass.
  • the amount of silica was adjusted to 13 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.2.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Example 4B-11 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 10 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 7 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.2.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • an ionic liquid-impregnated silica-coated Pt-supported carbon was synthesized using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid.
  • the amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass.
  • the amount of silica was adjusted to 10 parts by mass by adjusting the amount of TEOS and assuming the total mass of the conductive carrier, metal particles, ionic liquid, and silica to be 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.15.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.3.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Example 4B-12 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 10 parts by mass, with the total mass of the conductive carrier, metal particles, ionic liquid, and silica being 100 parts by mass. The amount of silica was adjusted to 13 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.17.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Example 4B-13 An ionic liquid-impregnated silica-coated Pt-supported carbon using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as an ionic liquid was synthesized according to the above-mentioned synthesis method. The amount of the ionic liquid impregnated was adjusted to 15 parts by mass, where the total mass of the conductive carrier, metal particles, ionic liquid, and silica was 100 parts by mass. The amount of silica was adjusted to 7 parts by mass by adjusting the amount of TEOS and setting the total mass of the conductive carrier, metal particles, ionic liquid, and silica to 100 parts by mass.
  • a slurry for a catalyst layer was prepared by adding an ionic liquid-impregnated silica-coated Pt-supported carbon, an ionomer, and an ion-conductive fibrous material to a mixed solution containing water, IPA, and ethanol.
  • a catalyst layer slurry was applied to the polymer electrolyte membrane so that the amount of platinum was 0.4 mg/cm 2 , and the coating was dried to obtain an air electrode catalyst layer.
  • the mass ratio of the ionomer to the ionic liquid-impregnated silica-coated Pt-supported carbon was 0.2.
  • a slurry for a catalyst layer was prepared by adding Pt-supported carbon, an ionomer, and fiber to a mixed solution containing water and IPA.
  • the catalyst layer slurry was applied to the surface of the polymer electrolyte membrane opposite to the air electrode catalyst layer so that the amount of platinum was 0.1 mg/cm 2 , and the coating was dried to form the fuel electrode catalyst layer. was created. Thereby, a membrane electrode assembly was obtained.
  • Table 7 shows the voltage at 1.5 A/cm 2 in the results of IV measurements before and after the durability test.
  • Examples 4B-7 to 4B-9 and Comparative Examples 4B-6 and 4B-7 are data for examining the amount of ionomer in the air electrode catalyst layer.
  • the mass ratio of the ionomer and the ionic liquid-impregnated silica-coated catalyst particles was in the range of 0.17 or more and 0.20 or less, the initial voltage was 0.640 V or more, and the The voltage was 0.500V or more. This seems to be because when the amount of ionomer is small, the resistance overvoltage becomes high, and when the amount of ionomer is large, the concentration overvoltage becomes high.
  • Table 8 shows the voltage at 1.5 A/cm 2 in the results of IV measurements before and after the durability test.
  • Examples 4B-10 to 4B-13 are data on the combinations of the ionomer amount, ionic liquid amount, and silica amount in the electrode catalyst layer containing ionic liquid-impregnated silica-coated catalyst particles.
  • the initial voltage is 0.660V.
  • the voltage after durability was 0.560V or more. This confirmed that the resistance overvoltage and concentration overvoltage were affected by the combination of the ionomer amount, ionic liquid amount, and silica amount.
  • the conductive carrier includes a carbon material having a peak intensity ratio (G/D ratio) between G band and D band measured by Raman spectroscopy of 1.6 or more and 2.2 or less.
  • G/D ratio peak intensity ratio
  • the mass of the catalyst-supporting carrier contained in the catalyst particles is 100 parts by mass
  • the total mass of the metal particles contained in the catalyst particles is 60 parts by mass or more and 70 parts by mass or less.
  • the mass of the catalyst particles is 100 parts by mass
  • the total mass of the inorganic coating included in the catalyst particles is 6 parts by mass or more and 13 parts by mass or less.
  • the total mass of the ionic liquid contained in the catalyst particles is 10 parts by mass or more and 20 parts by mass or less.
  • the inorganic coating can appropriately cover the metal particles, which can suppress the elution of metal particles during durability tests, increasing durability. proton conductivity can be ensured. Furthermore, the inorganic coating made of silica can suppress adsorption of the ionic liquid to the surface of the metal particles.
  • the metal particles are coated with an inorganic coating, and proton transfer to the metal particles coated with the inorganic coating can be performed via the ionic liquid, resulting in high power generation performance under low humidity and high temperatures.
  • the ionic liquid is stably retained by the inorganic coating, and an electrode catalyst layer, a membrane electrode assembly, and a fuel cell with excellent durability can be obtained.
  • the ratio of the total mass of the polymer electrolyte to the total mass of catalyst particles included in the electrode catalyst layer is 0.17 or more and 0.2 or less.
  • the product of the ratio of the total mass of the polymer electrolyte to the total mass of catalyst particles included in the electrode catalyst layer and the ratio of the total mass of the ionic liquid to the total mass of the inorganic coating included in the catalyst particles is 0.2 or more. It is 0.4 or less.
  • the balance between the ionic liquid layer located on the metal particles of the catalyst particles, the inorganic coating, and the amount of ionomer is optimal from the viewpoint of proton conduction, oxygen diffusion, and stable retention of the ionic liquid, and the Deterioration in IV performance can be suppressed.

Abstract

電極触媒層は、触媒粒子、高分子電解質、および、繊維状物質を含む。触媒粒子は、金属粒子と導電性担体とイオン液体とを含む。電極触媒層は、1000mg/cm3以上1600mg/cm3以下の密度を有する。触媒粒子はさらに、金属粒子および導電性担体の一部を被覆する無機被膜を含む。

Description

電極触媒層、膜電極接合体、および、固体高分子形燃料電池
 本開示は、電極触媒層、膜電極接合体、および、固体高分子形燃料電池に関する。
 固体高分子形燃料電池は、プロトン伝導性を有する高分子電解質膜と、厚さ方向に高分子電解質膜を挟む一対の電極触媒層とを有した膜電極接合体を備えている。電極触媒層の一方は、アノードである燃料極を構成し、電極触媒層の他方は、カソードである空気極を構成する。電極触媒層は、白金等の金属粒子を担持した担体を含む触媒粒子と、高分子電解質とを含有している(例えば、特許文献1,2参照)。
 燃料極には、水素を含む燃料ガスが供給され、空気極には、酸素を含む酸化剤ガスが供給される。燃料極の電極触媒層では、燃料ガスからプロトンと電子とが生じる。プロトンは、電極触媒層と高分子電解質膜とが含む高分子電解質によって伝導され、高分子電解質膜を通って空気極に移動する。電子は、燃料極から外部回路に取り出され、外部回路を通って空気極に移動する。空気極の電極触媒層では、酸化剤ガスと、燃料極から移動してきたプロトンおよび電子とが反応して水が生成される。こうした電極反応の進行により、電流の流れが生じる。
特許第7026669号公報 特開2008-4541号公報
 上記電極反応における主要な反応は電極触媒層にて生じることから、電極触媒層の構成は、燃料電池の発電性能を高めるための重要な因子である。それゆえ、電極触媒層の材料や各材料の比率について多くの研究が為されている。特に、触媒粒子の構成や、触媒粒子の構成に関連した電極触媒層の特性については、なお改良の余地が残されている。
 上記課題を解決するための電極触媒層の一態様は、触媒粒子、高分子電解質、および、繊維状物質を含む電極触媒層であって、前記触媒粒子は、金属粒子と導電性担体とイオン液体とを含み、前記電極触媒層は、1000mg/cm以上1600mg/cm以下の密度を有する。
図1は、各実施形態における基本構成の膜電極接合体の構成を示す図である。 図2は、各実施形態における基本構成の電極触媒層の構成を示す図である。 図3は、各実施形態における基本構成の触媒粒子の構成を示す図である。 図4Aは、各実施形態における基本構成の触媒粒子の構成を示す図であり、図4B,図4Cは、触媒粒子の要部断面図である。 図5は、各実施形態における基本構成の固体高分子形燃料電池の構成を示す図。 図6は、第2実施形態の触媒粒子の構成を示す図である。 図7は、第2実施形態の触媒粒子の構成を拡大して示す図である。 図8Aは、第3実施形態の実施例の触媒粒子における元素分布を示す図である。 図8Bは、第3実施形態の実施例の触媒粒子における元素分布を示す図である。 図8Cは、第3実施形態の実施例の触媒粒子における元素分布を示す図である。
 (第1実施形態)
 図面を参照して、電極触媒層、膜電極接合体、および、固体高分子形燃料電池の第1実施形態を説明する。なお、各図においては、理解を容易にするために、各部の形状や比率を適宜誇張して表現している。また、本明細書における記述「AおよびBの少なくとも一つ」は、「Aのみ、または、Bのみ、または、AとBの両方」を意味するものとして理解されたい。
 <基本構成>
 [膜電極接合体および電極触媒層]
 図1に示すように、膜電極接合体20は、高分子電解質膜21、および、一対の電極触媒層を備えている。一対の電極触媒層は、燃料極触媒層22Aおよび空気極触媒層22Cである。
 燃料極触媒層22Aは、固体高分子形燃料電池のアノードである燃料極を構成する。空気極触媒層22Cは、固体高分子形燃料電池のカソードである空気極を構成する。燃料極触媒層22Aは、燃料ガスをプロトンと電子に分離するための層であり、空気極触媒層22Cは、外部回路から電子を受け取るとともに、高分子電解質膜21を介して輸送されたプロトンを、酸素を含む酸化剤により酸化するための層である。
 高分子電解質膜21は、厚さ方向において、燃料極触媒層22Aと空気極触媒層22Cとの間に挟まれている。燃料極触媒層22Aは、高分子電解質膜21が有する2つの面の一方に接触し、空気極触媒層22Cは、高分子電解質膜21が有する2つの面の他方に接触している。燃料極触媒層22Aと空気極触媒層22Cとの厚さは互いに一致していてもよいし、異なっていてもよい。
 高分子電解質膜21が有する一方の面と対向する位置から見たとき、燃料極触媒層22Aと空気極触媒層22Cとの外形はほぼ同形であり、これらの外形は高分子電解質膜21の外形よりも小さい。触媒層22A,22Cおよび高分子電解質膜21の外形の形状は特に限定されず、例えば、矩形であればよい。
 高分子電解質膜21は高分子電解質を含む。高分子電解質膜21に用いられる高分子電解質は、プロトン伝導性を有する高分子電解質であればよく、例えば、フッ素系高分子電解質や炭化水素系高分子電解質である。フッ素系高分子電解質の例は、Nafion(登録商標:ケマーズ社製)、Flemion(登録商標:旭硝子社製)、Gore-Select(登録商標:日本ゴア合同会社製)である。炭化水素系高分子電解質の例は、エンジニアリングプラスチックや、スルホン酸基が導入されたエンジニアリングプラスチックである。
 高分子電解質膜21の厚さは、例えば、0.05mm以上0.25mm以下である。
 図2に、空気極触媒層22Cの構成を模式的に示す。空気極触媒層22Cは、触媒粒子10および高分子電解質16を含む。さらに、空気極触媒層22Cは、繊維状物質17を含んでいることが好ましい。
 燃料極触媒層22Aは、触媒粒子および高分子電解質を含む。さらに、燃料極触媒層22Aは、繊維状物質を含んでいることが好ましい。なお、空気極触媒層22Cと燃料極触媒層22Aとで、含有する触媒粒子や高分子電解質や繊維状物質の材料や割合は異なっていてもよい。
 触媒粒子10は、導電性担体と、導電性担体に担持された金属粒子とを含んでいる。触媒粒子10の詳細な構成は後述する。
 高分子電解質16は、アイオノマーである高分子電解質が凝集力によって凝集した塊状を有する。凝集力は、アイオノマー間に働くクーロン力やファンデルワールス力を含む。
 高分子電解質16は、プロトン伝導性を有する高分子電解質であればよく、例えば、フッ素系高分子電解質や炭化水素系高分子電解質であればよい。フッ素系高分子電解質の例は、Nafion(登録商標:ケマーズ社製)等のテトラフルオロエチレン骨格を有する電解質である。炭化水素系高分子電解質の例は、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等である。電極触媒層が含む高分子電解質は、1種類であってもよいし、2種類以上であってもよい。
 高分子電解質膜21と電極触媒層とに用いられる高分子電解質が同種の電解質であると、高分子電解質膜21に対する電極触媒層の密着性が高められる。また、高分子電解質膜21と電極触媒層との界面における界面抵抗を小さくする観点、および、湿度が変化した場合における高分子電解質膜21と電極触媒層との寸法変化率の差を小さくする観点では、高分子電解質膜21と電極触媒層とに用いられる高分子電解質は、互いに同じ高分子電解質であるか、熱膨張係数が近い高分子電解質であることが好ましい。
 電極触媒層における高分子電解質16の含有量は、電極触媒層における導電性担体の含有量を100質量部としたとき、10質量部以上200質量部以下であることが好ましく、40質量部以上140質量部以下であることがより好ましい。高分子電解質16の含有量が10質量部以上、好ましくは40質量部以上であれば、プロトンの伝導経路が欠損することによるプロトン伝導性の低下を抑制することができる。その結果、電極触媒層におけるプロトン伝導性と電子伝導性とのバランスが好適に得られやすくなる。また、高分子電解質16の含有量が200質量部以下、好ましくは140質量部以下であれば、電極触媒層にて三相界面が形成されやすくなることから、触媒活性が高められる。
 繊維状物質17は、触媒粒子10および高分子電解質16に侵されない材料から構成されていることが好ましい。電極触媒層の抵抗を下げる観点では、繊維状物質17は、電子伝導性、または、プロトン伝導性を有することが好ましい。
 電子伝導性を示す繊維状物質17の例は、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブ等のカーボン繊維である。なかでも、カーボンナノファイバー、カーボンナノチューブが好適に用いられる。
 プロトン伝導性を示す繊維状物質17の例は、高分子電解質を繊維状に加工した繊維である。高分子電解質としては、フッ素系高分子電解質や炭化水素系高分子電解質が使用可能である。フッ素系高分子電解質の例は、Nafion(登録商標:ケマーズ社製)である。炭化水素系高分子電解質の例は、エンジニアリングプラスチックや、スルホン酸基が導入されたエンジニアリングプラスチックである。また、酸をドープすることでプロトン伝導性を発現する酸ドープ型ポリベンゾアゾール類も好適に用いることができる。
 また、繊維状物質17は、親水性炭素繊維、あるいは、高分子ポリマー繊維であってもよい。親水性炭素繊維の例は、親水性を付与されたVGCF(Vapor Grown Carbon Fiber)、CNT(Carbon Nano Tube)である。高分子ポリマー繊維の例は、イミド構造やアゾール構造を有するアミン類の高分子ポリマーからなるナノファイバーである。
 繊維状物質17が含有されていることによって、電極触媒層にクラックが生じ難くなり、電極触媒層の耐久性が高められる。また、繊維状物質17が含有されていることによって、電極触媒層内に空隙が適度に確保されるため、電極触媒層の排水性が高められる。それゆえ、生成水が増大する高電流密度での運転中でも、生成水の滞留によってガスの拡散経路が塞がれて発電性能が低下する現象であるフラッディングの発生を抑えることができる。
 繊維状物質17の形状は特に限定されず、例えば、繊維状物質17は、中空構造を有していてもよいし、中実構造を有していてもよい。また、電極触媒層が含む繊維状物質17は、1種類であってもよいし、2種類以上であってもよい。
 繊維状物質17は、分子構造中に酸性もしくは塩基性の官能基を含んでいてよい。酸性の官能基を有する繊維状物質17としては親水性炭素繊維、塩基性の官能基を有する繊維状物質17としてはイミド構造やアゾール構造を有する高分子ポリマー繊維が挙げられる。酸性の官能基の例はカルボニル基等であり、塩基性の官能基の例はピリジンやイミド等を含むアミン基等である。これにより、高分子電解質16が繊維状物質17の周辺に存在しやすくなる。
 繊維状物質17が酸性の官能基を含む場合、当該酸性の官能基に対して、高分子電解質16中に含まれるスルホニル基等のプロトン伝導部位が水素結合することで、繊維状物質17の周辺に高分子電解質16が存在し易くなる。一方、繊維状物質17が塩基性の官能基を含む場合、当該塩基性の官能基に対して、高分子電解質16中に含まれるスルホニル基等の酸性のプロトン伝導部位が酸と塩基として結合することで、繊維状物質17の周辺に高分子電解質16が存在しやすくなる。水素結合に比べ、酸塩基の結合の方が結合力は強いため、繊維状物質17は塩基性の官能基を含んでいることが好ましい。言い換えれば、繊維状物質17が、その分子構造中に窒素原子を含む塩基性官能基を有していることで、高分子電解質16が繊維状物質17の周辺に存在しやすくなる。
 また、繊維状物質17における塩基性の官能基に、高分子電解質16における酸性のプロトン伝導部位が結合すると、繊維状物質17の表面が高分子電解質16に被覆されて、繊維状物質17がプロトン伝導性を示すことも可能となる。塩基性の官能基の具体例は、イミノ基、アミノ基、アミン誘導体、ピリジン誘導体、イミダゾール誘導体、イミダゾリウム基等である。塩基性の官能基を含む繊維状物質17の材料の具体例は、ポリベンズイミダゾール(PBI)、ポリベンズオキサゾール、ポリベンズチオアゾール、ポリビニルイミダゾール、ポリアリルアミン等である。なかでも、プロトン伝導性および加工性の観点から、アゾール構造を有するポリベンズイミダゾール(PBI)が用いられることが好ましい。
 繊維状物質17の平均繊維径は、0.5nm以上500nm以下であることが好ましく、10nm以上300nm以下であることがより好ましい。平均繊維径が上記範囲内であれば、電極触媒層内の空隙が適切に確保される。
 また、繊維状物質17の平均繊維径あるいは繊維径分布のピークは、100nm以上400nm以下であることが好ましく、150nm以上250nm以下であることがより好ましく、180nm以上220nm以下であることがさらに好ましい。繊維径が上記範囲内であれば、電極触媒層内の空隙を増加させるとともにプロトン伝導性の低下を抑制することが可能であるため、燃料電池の出力が高められる。繊維径が小さすぎると、空隙が狭くなり十分な排水性およびガス拡散性が確保できない場合がある。この場合、電極触媒層中に水が滞留して、出力の低下および電極触媒層の劣化を促進することがある。繊維径が大きすぎると、高分子電解質16によるプロトン伝導の経路や導電性担体11による電子伝導の経路が遮断され、抵抗が増大する場合がある。
 繊維状物質17の繊維径は、例えば、電極触媒層の断面を、走査型電子顕微鏡(SEM)を用いて観察し、繊維状物質17の断面の直径を測長することで得ることができる。繊維状物質17が斜めに切断された場合には、観察可能な断面の形状は楕円形となることがある。その場合には、短軸に沿ってフィッティングした真円の直径を測定することで繊維状物質17の繊維径を得ることができる。複数箇所、例えば50箇所の繊維状物質17の繊維径を測長し、算術平均または度数分布を作成することで、平均繊維径や繊維径分布のピークを得ることができる。
 繊維状物質17の平均繊維長は1μm以上200μm以下であることが好ましく、1μm以上50μm以下であることがより好ましい。平均繊維長が上記範囲内であれば、電極触媒層におけるクラックの発生が好適に抑えられることから、電極触媒層および膜電極接合体の耐久性が高められる。また、電極触媒層内の空隙が適切に確保されることから、燃料電池の出力の向上が可能である。
 また、繊維状物質17の繊維長分布のピークは、1μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましく、5μm以上30μm以下であることがさらに好ましい。繊維長分布のピークが上記範囲内であれば、電極触媒層におけるクラックの発生が好適に抑えられることから、電極触媒層および膜電極接合体の耐久性が高められる。また、電極触媒層内の空隙が適切に確保されることから、燃料電池の出力の向上が可能である。
 電極触媒層における繊維状物質17の含有量は、電極触媒層における導電性担体の含有量を100質量部としたとき、1質量部以上300質量部以下であることが好ましく、5質量部以上100質量部以下であることがより好ましく、5質量部以上20質量部以下であることがさらに好ましい。繊維状物質17の含有量が1質量部以上、好ましくは5質量部以上であれば、繊維状物質17同士のネットワークが好適に形成される。これにより、電極触媒層におけるプロトンの伝導経路の構築、電子の伝導経路の構築、ガス拡散性の向上、および、電極触媒層の強度の向上が好適に可能である。その結果、燃料電池の発電性能が高められる。また、繊維状物質17の含有量が300質量部以下、好ましくは100質量部以下、さらに好ましくは20質量部以下であれば、電極触媒層の厚さの増大に起因した抵抗増加や触媒反応の阻害を抑制できる。
 [触媒粒子の構成]
 図3および図4A~図4Cに示すように、触媒粒子10は、導電性担体11と、導電性担体11に担持された複数の金属粒子12とからなる触媒担持担体15を有している。さらに、触媒粒子10は、触媒担持担体15の一部を被覆する無機被膜13と、触媒担持担体15に含浸されたイオン液体14とを有している。
 無機被膜13は、主として金属粒子12を被覆している。金属粒子12の表面の一部は、無機被膜13から露出し、この露出部分の少なくとも一部において金属粒子12はイオン液体14と接している。また、無機被膜13は、導電性担体11の表面の一部も被覆していてもよい。無機被膜13の厚さは均一であってもよいし、不均一であってもよい。
 なお、複数の金属粒子12には、表面全体が無機被膜13に覆われている金属粒子12、表面全体が無機被膜13から露出している金属粒子12、および、イオン液体14に接していない金属粒子12の少なくとも1つが含まれてもよい。
 イオン液体14はさらに、導電性担体11の表面の一部と接し、また、導電性担体11の内部の少なくとも一部に浸透している。また、無機被膜13がその内部に細孔等の隙間を有するとき、イオン液体14は、無機被膜13の内部の少なくとも一部にも浸透していてよい。イオン液体14は、触媒担持担体15および無機被膜13が有するいずれの隙間にも浸透可能である。
 なお、上記構成において、無機被膜13は、イオン液体14を介して、金属粒子12を被覆していてもよい。すなわち、無機被膜13と金属粒子12との間にイオン液体14が介在していてもよい。また、無機被膜13は、イオン液体14を介して、導電性担体11の表面を被覆していてもよい。すなわち、無機被膜13と導電性担体11の表面との間にイオン液体14が介在していてもよい。
 [触媒粒子の材料]
 (導電性担体)
 導電性担体11は、導電性を有する微粒子であり、金属粒子12に侵されない材料からなる。導電性担体11は、メソ孔を含む細孔を有している。導電性担体11は、炭素材料からなることが好ましい。導電性担体11として用いられる炭素材料は、例えば、カーボンブラック、グラファイト、黒鉛、活性炭、フラーレン等である。なお、電極触媒層が含む導電性担体11の構成材料は、1種類であってもよいし、2種類以上であってもよい。
 導電性担体11の平均粒径は、10nm以上1000nm以下であることが好ましく、10nm以上100nm以下であることがより好ましい。導電性担体11の平均粒径が10nm以上であれば、電極触媒層内に電子の伝導経路が形成されやすくなる。また、導電性担体11が電極触媒層において密に詰まり過ぎないため、電極触媒層のガス拡散性の低下を抑えることができる。また、導電性担体11の平均粒径が1000nm以下であれば、電極触媒層の厚さが増大することによる抵抗の増加を抑制できる。また、電極触媒層におけるクラックの発生を抑えることができる。なお、導電性担体の平均粒径は、レーザー回折/散乱法による体積平均径である。
 高表面積の導電性担体11に金属粒子12を担持させることで、金属粒子12を高密度に担持することが可能であることから、触媒活性の向上が可能である。
 (金属粒子)
 金属粒子12としては、例えば、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素や、金、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属や、これらの合金、酸化物、複酸化物、炭化物等が用いられる。なかでも、白金、金、パラジウム、ロジウム、ルテニウム、および、これらの合金は、触媒としての活性が高いため好適に用いられる。特に、金属粒子12は、白金または白金合金であることが好ましい。なお、電極触媒層が含む金属粒子12の構成材料は、1種類であってもよいし、2種類以上であってもよい。
 金属粒子12の平均粒径は、0.5nm以上20nm以下であることが好ましく、1nm以上5nm以下であることがより好ましい。金属粒子12の平均粒径が0.5nm以上であれば、触媒としての安定性が高められる。金属粒子12の平均粒径が20nm以下であれば、触媒としての活性が高められる。
 なお、本明細書において、粒子の平均粒径は、TEM画像の解析による平均径(例えばJIS H7804:2005)である。
 電極触媒層が含む金属粒子12の総質量は、触媒担持担体15の総質量に対して、5質量%以上75質量%以下であることが好ましく、10質量%以上70質量%以下であることがより好ましい。
 (無機被膜)
 無機被膜13の材料は、シリカ(SiO)、ジルコニア(ZrO)、および、チタニア(TiO)のうちの1種以上を含むことが好ましい。なかでも、無機被膜13の材料は、シリカであることが好ましく、特に、テトラエトキシシランもしくはトリエトキシメチルシランのいずれかを加水分解および脱水縮合することにより得られたシリカであることが好ましい。こうしたシリカが用いられることにより、無機被膜13が、シリカ膜からなる多層構造に形成されるため、無機被膜13の内部にイオン液体14が保持されやすくなる。なお、テトラエトキシシランから生成されたシリカの組成は、(SiO)である。また、トリエトキシメチルシランから生成されたシリカの組成は、(SiO-Me-SiO)であって、当該シリカはポーラスシリカ(低結晶性シリカ)である。
 無機被膜13の膜厚は、1nm以上100nm以下であることが好ましく、10nm以上50nm以下であることがより好ましく、20nm以上40nm以下であることがさらに好ましい。無機被膜13の膜厚が1nm以上であれば、無機被膜13の形成が容易である。また、無機被膜13の膜厚が100nm以下であれば、多層構造における層間の隙間が十分に確保されやすい。また、無機被膜13が剥がれにくくなる。
 (イオン液体)
 イオン液体14は、イミダゾリウム塩であることが好ましい。イミダゾリウム塩とは、イミダゾール環構造を有するカチオンとカウンターアニオンとの塩である。カチオンは、例えば、下記構造式に示す化合物である。下記構造式において、RおよびR’は、各々独立に、-CH、-C、-C、-C、-C13、および、-CH-CH=CHからなる群から選択される基である。

 カウンターアニオンの例は、Cl、Br、I、BF 、PF 、FSI((FSO)、TFSI((CFSO)である。
 具体的には、イオン液体14は、1-アルキル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含んでいることが好ましい。当該化合物が含むアルキル基は、例えば、メチル基、エチル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、ノニル基、デシル基等である。なかでも、アルキル基は、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基であることが好ましく、エチル基であることがより好ましい。すなわち、イオン液体14は、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミド、1-プロピル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミド、1-ペンチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミド、および、1-ヘキシル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドから選択される少なくとも1つを含むことが好ましく、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含むことがより好ましい。アルキル基が長くなると、金属粒子12表面の活性サイトが減少し、ECSAが低下する。
 例えば、イオン液体14は、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドのみから構成されていることが好ましいが、当該化合物以外に、他の1-アルキル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含んでいてもよい。イオン液体14が、複数の種類の1-アルキル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含む場合には、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドの含有率がイオン液体14全体の質量の50%以上であることが好ましい。
 電極触媒層が含むイオン液体14の総質量は、触媒担持担体15の総質量に対して、2質量%以上30質量%以下であることが好ましい。
 [固体高分子形燃料電池]
 図5を参照して、上述の膜電極接合体20を備える固体高分子形燃料電池の構成を説明する。
 図5に示すように、固体高分子形燃料電池30は、膜電極接合体20と、一対のガス拡散層31A,31Cと、一対のセパレータ32A,32Cとを備えている。膜電極接合体20は、ガス拡散層31Aとガス拡散層31Cとの間に挟まれており、ガス拡散層31Aは燃料極触媒層22Aに接し、ガス拡散層31Cは空気極触媒層22Cに接している。
 ガス拡散層31A,31Cは、供給されるガスを均一に拡散するための層であり、ガスの拡散性および導電性を有する。ガス拡散層31A,31Cは、例えば、カーボンクロス、カーボンペーパー、不織布等のポーラス材を含む。ガス拡散層31Aは、燃料極触媒層22Aと共に燃料極を構成し、ガス拡散層31Cは、空気極触媒層22Cと共に空気極を構成する。
 膜電極接合体20とガス拡散層31A,31Cとの積層体は、セパレータ32Aとセパレータ32Cとの間に挟持されている。セパレータ32A,32Cは、ガス不透過性であって、導電性を有する。セパレータ32A,32Cの材料は、例えば、炭素系あるいは金属系の材料である。セパレータ32A,32Cの材料は、強度および成形性の良好な材料であることが好ましい。
 セパレータ32Aは、ガス拡散層31Aと向かい合い、セパレータ32Cは、ガス拡散層31Cと向かい合う。セパレータ32Aにて、ガス拡散層31Aと向かい合う面には、ガス流路33Aが形成され、ガス拡散層31Aとは反対側の面には、冷却水流路34Aが形成されている。同様に、セパレータ32Cにて、ガス拡散層31Cと向かい合う面には、ガス流路33Cが形成され、ガス拡散層31Cとは反対側の面には、冷却水流路34Cが形成されている。
 固体高分子形燃料電池30の使用時には、セパレータ32Aのガス流路33Aに水素等の燃料ガスが流され、セパレータ32Cのガス流路33Cに酸素等の酸化剤ガスが流される。また、各セパレータ32A,32Cの冷却水流路34A,34Cには、冷却水が流される。そして、ガス流路33Aから燃料極に燃料ガスが供給され、ガス流路33Cから空気極に酸化剤ガスが供給されることによって、下記の(式1)および(式2)で示す電極反応が進行し、燃料極と空気極との間に起電力が生じる。なお、燃料極には、メタノール等の有機物燃料が供給されてもよい。
 燃料極:H → 2H + 2e-               ・・・(式1)
 空気極:1/2O+2H+ 2e→HO   ・・・(式2)
 固体高分子形燃料電池30は、図5に示した単セルの状態で用いられてもよいし、複数の固体高分子形燃料電池30が積層されて直列接続されることにより1つの燃料電池として用いられてもよい。固体高分子形燃料電池30を、ガス供給装置、冷却装置、その他の付随装置に組み付けることで、固体高分子形燃料電池30の使用が可能となる。
 なお、固体高分子形燃料電池30は、上記の部材に加えて、ガスの漏れを抑制するためのガスケット等の部材を備えていてもよい。また、ガス拡散層31Aとセパレータ32Aとは、一体の構造物であってもよいし、ガス拡散層31Cとセパレータ32Cとは、一体の構造物であってもよい。あるいは、ガス拡散層31A,31Cは、膜電極接合体20を構成する部材であってもよい。
 [触媒粒子の製造方法]
 触媒粒子10は、導電性担体11に金属粒子12を担持させて触媒担持担体15を生成し、触媒担持担体15にイオン液体14を含浸させた後に、無機被膜13を形成することにより製造される。イオン液体14の含浸に際しては、触媒担持担体15にイオン液体14の溶液を含浸させ、その後、溶媒を除去すればよい。溶媒の例はアセトニトリルである。無機被膜13の形成には、TEOS等の原料を用いたゾル-ゲル法等の公知の被膜形成方法が用いられる。
 イオン液体14の含浸よりも前に無機被膜13を形成する場合には、金属粒子12表面の帯電状態の調整のために触媒担持担体15に界面活性剤を付与した後に無機被膜13を形成し、その後に界面活性剤を除去することが必要となる。そして、界面活性剤の除去工程では高温での熱処理を要するため、触媒担持担体15が高温に曝される結果、導電性担体11が炭素材料である場合、導電性担体11の劣化、すなわち結晶化の悪化が起こる。その結果、触媒粒子10を用いた電極触媒層の耐久性が低下してしまう。
 これに対し、触媒担持担体15にイオン液体14を含浸させた後に無機被膜13を形成する製法を用いることで、界面活性剤を要さずに無機被膜13の形成が可能である。それゆえ、熱処理を回避して導電性担体11の劣化を抑えることが可能であり、電極触媒層の耐久性の低下を抑えることができる。
 触媒粒子10において、炭素材料である導電性担体11のラマン分光法によるGバンドとDバンドのピーク強度比(G/D比)は、好ましくは1.6以上2.2以下であり、より好ましくは1.8以上2.0以下である。G/D比が上記範囲内であれば、導電性担体11の結晶性が好適であることから、電極触媒層の耐久性の低下を抑えることができる。そして、触媒担持担体15にイオン液体14を含浸させた後に無機被膜13を形成する製法を用いることで、無機被膜13を有する触媒粒子10であっても、導電性担体11のG/D比を上記範囲内に留めることが容易である。
 なお、本明細書において、ラマン分光法で用いるレーザー光の波長は532nmである。また、Gバンドとは、1580cm-1付近に位置するラマンピークを意味し、Dバンドとは、1360cm-1付近に位置するラマンピークを意味する。
 [電極触媒層および膜電極接合体の製造方法]
 燃料極触媒層22Aおよび空気極触媒層22Cの各々は、各電極触媒層の材料を含む触媒層用スラリーを基材に塗布して塗膜を形成し、塗膜を乾燥することによって製造できる。
 触媒層用スラリーの溶媒は、触媒層用スラリーの分散媒として機能する。溶媒は、電極触媒層の材料を浸食せず、かつ、流動性の高い状態で高分子電解質を溶解する、あるいは、微細ゲルとして分散することが可能であれば特に限定されない。溶媒は、揮発性の有機溶媒を含むことが好ましい。
 溶媒は、例えば、水、アルコール類、ケトン類、エーテル類、アミン類、エステル類である。アルコール類の例は、メタノール、エタノール、1‐プロパノール、2‐プロパノール、1‐ブタノール、2‐ブタノール、イソブチルアルコール、tert‐ブチルアルコールである。ケトン類の例は、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンである。エーテル類の例は、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルである。アミン類の例は、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンである。エステル類の例は、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルである。その他、溶媒として、酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1‐メトキシ‐2‐プロパノール、1‐エトキシ‐2‐プロパノール等を用いてもよい。
 なお、溶媒が低級アルコールを含む場合、発火の恐れを低減するために、溶媒を水との混合溶媒とすることが好ましい。水の添加量は、高分子電解質の分離による白濁や高分子電解質のゲル化が生じない程度であれば特に制限はない。
 触媒層用スラリーに対しては、分散処理が行われてもよい。分散処理には、例えば、遊星型ボールミル、ビーズミル、超音波ホモジナイザー等が用いられる。
 触媒層用スラリーの塗布方法は特に限定されず、例えば、ドクターブレード法、ダイコーティング法、カーテンコーティング法、ディッピング法、スクリーン印刷法、ラミネータロールコーティング法、スプレー法、スキージーを用いる方法等を用いることができる。
 塗膜の乾燥方法には、温風乾燥、IR(Infrared Rays)乾燥、ホットプレートを用いた乾燥、減圧乾燥等を用いることができる。乾燥温度は、40℃以上200℃以下であることが好ましく、40℃以上120℃以下であることがより好ましい。乾燥時間は、0.5分以上1時間以下であることが好ましく、1分以上30分以下であることがより好ましい。乾燥時には、電極触媒層を厚さ方向にプレスすることが好ましい。
 電極触媒層の形成のための基材は、触媒層22A,22Cを高分子電解質膜21に転写した後に剥離される転写基材であってもよいし、ガス拡散層31A,31Cであってもよいし、高分子電解質膜21であってもよい。
 基材が転写基材である場合、熱圧着によって触媒層22A,22Cが高分子電解質膜21に接合された後、転写基材が触媒層22A,22Cから剥離される。これにより、膜電極接合体20が形成される。
 転写基材の材料は、例えば、フッ素系樹脂や、フッ素系樹脂以外の有機高分子化合物である。フッ素系樹脂を含む転写基材は、転写性に優れている。フッ素系樹脂の例は、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)である。有機高分子化合物の例は、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン:登録商標)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートである。
 基材がガス拡散層31A,31Cである場合、ガス拡散層31A,31Cに支持された触媒層22A,22Cが熱圧着によって高分子電解質膜21に接合されることにより、膜電極接合体20が形成される。
 基材が高分子電解質膜21である場合、触媒層22A,22Cが高分子電解質膜21の面上に直接に形成される。これにより、膜電極接合体20が形成される。高分子電解質膜21に直接に触媒層22A,22Cを形成すると、高分子電解質膜21と触媒層22A,22Cとの密着性が高くなり、また、圧着によって触媒層22A,22Cが潰れる恐れもないため、好ましい。
 電極触媒層の形成のための基材が転写基材またはガス拡散層31A,31Cである場合、電極触媒層の転写時に電極触媒層に加わる圧力や温度が膜電極接合体20の発電性能に影響する。発電性能が高い膜電極接合体20を得るためには、電極触媒層に加わる圧力は、0.1MPa以上20MPa以下であることが好ましい。圧力が20MPa以下であることによって、電極触媒層が過剰に圧縮されることが抑えられる。圧力が0.1MPa以上であることによって、電極触媒層と高分子電解質膜21との接合性の低下により発電性能が低下することが抑えられる。接合時の温度は、高分子電解質膜21と電極触媒層との接合性の向上や、界面抵抗の抑制の観点から、高分子電解質膜21または電極触媒層が含む高分子電解質のガラス転移点付近であることが好ましい。
 電極触媒層の厚さは、2μm以上20μm以下であることが好ましい。電極触媒層の厚さが20μm以下であれば、クラックの発生が抑えられるとともに、ガスや水の拡散性および導電性が好適に得られやすい。電極触媒層の厚さが2μm以上であれば、電極触媒層の厚さにばらつきが生じ難くなり、電極触媒層内の触媒担持担体15や高分子電解質16の分布が均一となりやすい。
 電極触媒層の厚さは、例えば、膜電極接合体20の断面を、走査型電子顕微鏡(SEM)を用いて観察することによって計測することができる。例えば、観察倍率1000倍から10000倍程度の電極触媒層全体が収まる視野内で、電極触媒層の厚みを測長すればよい。電極触媒層内での偏りなく厚さを把握するため、少なくとも20カ所以上の観察点において同様に計測することが好ましい。膜電極接合体20の断面を露出させる方法としては、例えば、イオンミリング、ウルトラミクロトーム等の公知の方法を用いることができる。
 <第1実施形態の課題>
 現在、燃料電池の利用に要するコストの削減のために、高出力かつ高耐久の燃料電池が望まれている。しかし、低加湿条件では、電極触媒層内の高分子電解質によるプロトン輸送の効率が低下するため、出力が低下するという課題がある。また、電極触媒層内の触媒である金属粒子は、長時間使用すると粗大化するため、これによっても出力が低下する。
 特許文献1(特許第7026669号公報)には、電極触媒層がイオン液体を含有することにより、低加湿条件での出力の向上が期待できると記載されている。しかし、イオン液体は電極触媒層内の空隙率を低下させるため、排水性が低下する。このことにより、高加湿条件においては、生成水によるフラッディングが発生し、発電性能が低下する。また、特許文献1には、触媒およびイオン液体の種類や重量比率についての記載はあるが、電極触媒層の構造についての記載はない。
 第1実施形態は、イオン液体を含有しながらも、排水性やガス拡散性が向上可能であり、高加湿条件および低加湿条件において高出力かつ高耐久な電極触媒層を提供することを目的とする。
 <第1実施形態の電極触媒層の特徴>
 第1実施形態では、電極触媒層が、触媒担持担体15、高分子電解質16、および、繊維状物質17に加えて、イオン液体14を含む。これにより、低加湿条件においても、プロトン輸送の効率の低下を抑制することが可能となる。また、無機被膜13によって、金属粒子12の粗大化およびイオン液体14の流出を抑制でき、耐久性を向上させることが可能である。ただし、第1実施形態の課題解決のためには、無機被膜13は必須ではない。
 第1実施形態の電極触媒層の密度は、1000mg/cm以上1600mg/cm以下である。電極触媒層の密度は、1050mg/cm以上でもよく、1100mg/cm以上でもよい。
 電極触媒層の密度を1000mg/cm以上1600mg/cm以下とするためには、電極触媒層における繊維状物質17の添加量や繊維長、電極触媒層の形成時の乾燥温度や温度勾配、乾燥中または乾燥後における厚さ方向のプレス圧力等の条件を調整すればよい。電極触媒層の密度を高めるためには、乾燥温度は40℃以上150℃以下であることが好ましく、プレス圧力は0.05MPa以上8MPa以下であることが好ましい。
 電極触媒層の密度を高める観点では、電極触媒層が含む金属粒子12の総質量は、触媒担持担体15の総質量に対して、5質量%以上75質量%以下であることが好ましい。また、電極触媒層の密度を高める観点では、電極触媒層が含む高分子電解質16の総質量は、導電性担体11の質量に対する質量比で0.1以上2.0以下であることが好ましい。また、電極触媒層の密度を高める観点では、電極触媒層が含むイオン液体14の総質量は、触媒担持担体15の総質量に対して、2質量%以上30質量%以下であることが好ましい。
 電極触媒層の密度を高める観点では、電極触媒層における繊維状物質17の含有量は、導電性担体11の総質量に対して1質量%以上300質量%以下であることが好ましい。繊維状物質17の含有量が多すぎると、密度が小さくなって排水性が向上するが、電極触媒層が厚くなり、性能が低下しやすくなる傾向がある。繊維状物質17の含有量が少なすぎると、密度が大きくなってフラッディングが発生しやすくなる傾向がある。
 電極触媒層が、触媒担持担体15、高分子電解質16、繊維状物質17、および、イオン液体14を含み、電極触媒層の密度が1000mg/cm以上1600mg/cm以下であることにより、排水性やガス拡散性が向上可能であり、高加湿条件および低加湿条件において高い出力および高い耐久性が得られる。
 イオン液体14を含有する電極触媒層において、電極触媒層の密度が従来のように低いと、電極触媒層の厚さの増加により、電気抵抗や拡散抵抗が増加すると考えられる。イオン液体14を含有する電極触媒層において、電極触媒層の密度がある程度高くなると、ガス拡散性や排水性を十分に確保したまま、電気抵抗や拡散抵抗が低減すると考えられる。
 なお、燃料極触媒層22Aおよび空気極触媒層22Cの少なくとも一方が、上述した第1実施形態の特徴を有していればよい。
 また、金属粒子12は、導電性担体11に代えて繊維状物質17に担持されていてもよいし、導電性担体11と繊維状物質17とのいずれもが金属粒子12を担持していてもよい。電極触媒層内において、繊維状物質17の絡み合いにより形成された空隙は、発電による生成水の排出経路となり得る。ここで、繊維状物質17が金属粒子12を担持する場合には、生成水の排出経路内で電極反応も起こる。一方で、導電性担体11が金属粒子12を担持していると、導電性担体11と金属粒子12とガスとに起因する三相界面による反応点と、繊維状物質17により形成された空間による生成水の排出経路とを区別できることから、電極触媒層の排水性の向上が可能であるため好ましい。
 <第1実施形態の実施例>
 [実施例1-1]
 イオン液体を含む触媒粒子である白金担持カーボン(TEC10E50E、田中貴金属社製)を20g容器にとり、水と混合した。20gの内訳は、導電性担体が9.38g、白金が8.32g、イオン液体が2.30gである。この混合液に、1-プロパノール、高分子電解質(Nafion(登録商標)分散液、電解質質量7.50g、和光純薬工業社製)、10gの繊維状物質であるカーボンナノファイバー(商品名「VGCF」、昭和電工社製、繊維径約150nm、繊維長約10μm)を加えて撹拌して、触媒層用スラリーを得た。触媒層用スラリーを高分子電解質膜(Nafion212、ケマーズ社製)にダイコーティング法で塗工し、炉内で乾燥することで、実施例1-1の電極触媒層を有した膜電極接合体を得た。
 [実施例1-2]
 繊維状物質としてアゾール構造を有する樹脂繊維(繊維径約200nm、繊維長約20μm)を用いたこと以外は、実施例1-1と同様の手順で実施例1-2の電極触媒層を有した膜電極接合体を得た。
 [実施例1-3]
 イオン液体を含む白金担持カーボンをシリカで被覆したこと以外は、実施例1-1と同様の手順で実施例1-3の電極触媒層を有した膜電極接合体を得た。
 [実施例1-4]
 繊維状物質としてアゾール構造を有する樹脂繊維(繊維径約200nm、繊維長約20μm)を用いたこと以外は、実施例1-3と同様の手順で実施例1-4の電極触媒層を有した膜電極接合体を得た。
 [比較例1-1]
 イオン液体を含まない白金担持カーボンを用いたこと以外は、実施例1-1と同様の手順で比較例1-1の電極触媒層を有した膜電極接合体を得た。
 [比較例1-2]
 電極触媒層の密度が1000mg/cm未満になるように繊維状物質の量を1.5倍に増やしたこと以外は、実施例1-1と同様の手順で比較例1-2の電極触媒層を有した膜電極接合体を得た。
 [比較例1-3]
 電極触媒層の密度が1600mg/cmを超えるように繊維状物質の量を0.5倍に減らしたこと以外は、実施例1-1と同様の手順で比較例1-3の電極触媒層を有した膜電極接合体を得た。
 [比較例1-4]
 繊維状物質を加えないこと以外は、実施例1-1と同様の手順で比較例1-4の電極触媒層を有した膜電極接合体を得た。
 [クラックの観察]
 各実施例および各比較例の電極触媒層について、顕微鏡(倍率:200倍)で10μm以上クラックの有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002

 表1に示す通り、電極触媒層が繊維状物質を含有していない比較例1-4では、クラックが発生した。これに対して、各実施例および比較例1-1~1-3のように電極触媒層が繊維状物質を含有している場合には、クラックの発生が確認されなかった。
 [密度の算出]
 電極触媒層の密度は、電極触媒層の質量と厚さから求めた。質量は、触媒層用スラリー塗工量から求めた質量または乾燥質量を用いた。厚さは、走査型電子顕微鏡(倍率:2000倍)で電極触媒層の断面を観察することにより求めた。
 [発電特性の評価]
 電極触媒層の外側にガス拡散層(SIGRACET(R) 22BB、SGL社製)を配置し、市販のJARI標準セルを用いて発電特性の評価を行った。セル温度は、80℃とした。高加湿条件では、アノードに水素(100%RH)、カソードに空気(100%RH)を、低加湿条件では、アノードに水素(30%RH)、カソードに空気(30%RH)を、供給した。
 [耐久性能の評価]
 耐久試験として、新エネルギー・産業技術総合開発機構(NEDO)が刊行する「セル評価解析プロトコル」に記載されている電位サイクル試験を実施した。耐久試験の前後における発電特性を測定し、電流密度が1.5A/cmのときの電圧降下量を算出して耐久性を評価した。
 表2に、各実施例および各比較例について、電極触媒層の密度、低加湿条件および高加湿条件での発電特性の評価結果、および、耐久性の評価結果を示す。発電性能および耐久性は、比較例1を基準として比較例1に対する比率で示している。ここで、電極触媒層における触媒含有量は全ての膜電極接合体で同様である。
Figure JPOXMLDOC01-appb-T000003

 表1および表2から、電極触媒層が、触媒担持担体とイオン液体と高分子電解質と繊維状物質とを含み、電極触媒層の密度が1000mg/cm以上1600mg/cm以下であることで、電極触媒層においてクラックが発生せず、イオン液体を含有する電極触媒層であっても、高加湿条件および低加湿条件の双方で高出力かつ高耐久性が得られることが確認された。
 (第2実施形態)
 電極触媒層、膜電極接合体、および、固体高分子形燃料電池の第2実施形態を説明する。第2実施形態は、第1実施形態と同様の基本構成を有する。以下では、第2実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の構成については同じ符号を付してその説明を省略する。なお、第2実施形態の特徴は他の実施形態の特徴と組み合わせ可能である。
 <第2実施形態の課題>
 現在、燃料電池の利用に要するコストの削減のために、高出力かつ高耐久の燃料電池が望まれている。しかし、低加湿条件では、電極触媒層内の高分子電解質によるプロトン輸送の効率が低下するため、出力が低下するという課題がある。また、電極触媒層内の触媒である金属粒子は、長時間使用すると粗大化するため、これによっても出力が低下する。
 特許文献1(特許第7026669号公報)には、電極触媒層がイオン液体を含有することにより、プロトン輸送が促進され、低加湿条件での出力の向上が期待できると記載されている。
 しかし、燃料電池の運転が長時間続くと、イオン液体が流出するために徐々に出力が低下する。すなわち、イオン液体を用いた電極触媒層には耐久性に問題がある。また、電極触媒層がイオン液体を含有していても、長時間の運転による金属粒子の粗大化を抑制することはできない。結局のところ、イオン液体の含有だけでは、出力の向上が短期間に限定されてしまい、耐久性の課題を解決することはできない。
 第2実施形態は、発電性能および耐久性に優れた電極触媒層、膜電極接合体、および、固体高分子形燃料電池を提供することを目的とする。
 <第2実施形態の特徴>
 図6および図7に示すように、無機被膜13は、導電性担体11および金属粒子12の表面と接触するイオン液体14を介して、導電性担体11の表面および金属粒子12の表面を被覆している。導電性担体11の表面の一部が無機被膜13で被覆されていればよく、金属粒子12の表面の一部が無機被膜13で被覆されていればよい。無機被膜13は、主としてイオン液体14を介して金属粒子12を被覆している。
 触媒担持担体15にイオン液体14を含浸させた後に、無機被膜13を形成することにより、イオン液体14を介して導電性担体11および金属粒子12の表面を無機被膜13で被覆することができる。無機被膜13はシリカを含む。特に、無機被膜13は、テトラエトキシシランを加水分解および脱水縮合することにより得られたシリカから構成されていることが好ましい。
 第2実施形態において、電極触媒層のエネルギー分散型X線分光分析により得られる、炭素、窒素、酸素、フッ素、ケイ素、硫黄、および、白金元素の合計原子数に占めるケイ素の原子数の割合は0.5at%以上10at%以下である。
 上記ケイ素の原子数の割合は、例えば、エネルギー分散型X線分光分析装置が搭載された透過型電子顕微鏡(TEM-EDX)を用いて元素マッピングを行うことで計測することができる。TEM-EDXにおけるX線の加速電圧は200kVとすることが好適である。このような加速電圧により、特定領域において100nm程度の厚みまで電子線を透過させることができ、電極触媒層の元素の情報が得られる。元素マッピングを行う領域である観察エリアの形状は、例えば矩形である。観察エリアは、例えば、縦が150nm、横が150nmの正方形や、縦が30nm、横が50nmの長方形である。観察エリアは、触媒粒子10が面積の20%以上を占める領域とすることが好ましい。
 元素マッピングに供する電極触媒層は、100nm程度の薄片に加工される。薄片への加工には、例えば、収束イオンビーム、ウルトラミクロトーム等の公知の方法を用いることができる。薄片への加工を行う際には、電極触媒層を構成する高分子電解質16へのダメージを軽減するため、電極触媒層を冷却しながら加工を行うことが特に好ましい。
 発明者は、固体高分子形燃料電池の発電性能と耐久性について鋭意検討を行った結果、発電性能には電極触媒層におけるプロトン伝導性が大きく影響しており、触媒である金属粒子12と触媒を担持する導電性担体11とをイオン液体14で被覆すると、プロトン伝導性が向上することを見出した。さらに、発明者は、金属粒子12および導電性担体11を、Siを含む無機被膜13で被覆すると、イオン液体14の流出および金属粒子12の粗大化が抑制され、長期的に高い発電性能を発揮可能であることを突き止めた。
 詳細には、図7に示すように、無機被膜13が金属粒子12を覆っているため、電極触媒層にて触媒粒子10を囲む高分子電解質16中に金属粒子12が溶出することが抑えられる。一方で、無機被膜13が金属粒子12を直接に覆っていると、プロトンを伝導する高分子電解質16と電極反応の触媒として作用する金属粒子12との接触が妨げられる。これに対し、本実施形態では、プロトンを通すことが可能なイオン液体14が無機被膜13と金属粒子12との間に介在しているため、イオン液体14を介してプロトンが伝導される。また、無機被膜13内の隙間にイオン液体14が浸透していれば、こうした無機被膜13中のイオン液体14もプロトン伝導に寄与する。また、金属粒子12が、イオン液体14および無機被膜13に覆われていない露出部を有すると、電子伝導の観点から有利となる。
 さらに、図6に示すように、導電性担体11の表面がイオン液体14と接触していると、電極触媒層におけるプロトン伝導性が高められ、無機被膜13がイオン液体を介して導電性担体11を被覆していると、金属粒子12の移動が妨げられて金属粒子12の粗大化が抑制される。また、導電性担体11が、イオン液体14および無機被膜13に被覆されていない露出部を有すると、電子伝導の観点から有利となる。
 さらに、電極触媒層のエネルギー分散型X線分光分析により得られる、炭素、窒素、酸素、フッ素、ケイ素、硫黄、および、白金元素の合計原子数に占めるケイ素の原子数の割合が、0.5at%以上10at%以下であることにより、高い発電性能を発揮するとともに耐久性に優れた固体高分子形燃料電池が得られる。
 上記ケイ素の原子数の割合が0.5at%以上であることは、イオン液体14の流出や金属粒子12の粗大化を抑制する無機被膜13の量が、的確に確保されていることを意味する。上記ケイ素の原子数の割合が10at%以下であることは、無機被膜13の量が過剰でなく、無機被膜13によってプロトンや電子の伝導の阻害が生じることを抑えられることを意味する。
 以上のように、本実施形態の構成を採用することで、十分な排水性、ガス拡散性およびプロトン伝導性を有し、長期的に高い発電性能を発揮することが可能な電極触媒層、膜電極接合体、および、固体高分子形燃料電池を得ることができる。
 なお、燃料極触媒層22Aおよび空気極触媒層22Cの少なくとも一方が、上述した第2実施形態の特徴を有していればよい。
 <第2実施形態の実施例>
 [実施例2-1]
 ・触媒粒子の生成
 高結晶化カーボン担体に白金粒子が担持された白金担持カーボン(Pt質量割合50質量%)をアセトニトリルに加えて、さらに、白金担持カーボンのメソ孔体積の60%に相当する量のイオン液体を添加した。なお、触媒担持担体である白金担持カーボンのメソ孔体積の大きさは実質的に導電性担体のメソ孔体積の大きさと同じである。この混合物に対して、30分間、超音波分散を実施した後、一晩、スターラーで撹拌後、エバポレーターでアセトニトリルを除去することにより、イオン液体が含浸した白金担持カーボンを得た。イオン液体としては、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドのみからなる液体を用いた。白金担持カーボンのメソ孔体積は、低温窒素吸着法を用いて、2nmから100nmまでの空孔を対象として求めた。
 次に、上記イオン液体が含浸した白金担持カーボンを水に加え、超音波撹拌後、テトラエトキシシラン(TEOS)とエタノールとを含む混合溶液を加えた。その後、水酸化ナトリウムを加えて2時間撹拌後、遠心分離機を用いて分離物を得た。そして、分離物を80℃で6時間乾燥させることにより、実施例1の触媒粒子を得た。この触媒粒子は、シリカからなる無機被膜を有している。
 上記にて、触媒粒子における無機被膜の被覆量はTEOSの量で調整し、無機被膜の重量比(シリカの重量/シリカおよび白金担持カーボンの総重量)が0.1となるようにした。
 ・膜電極接合体の作製
 実施例1の触媒粒子と、高分子電解質と、繊維状物質と、分散媒とを混合した混合液に対して分散処理を実施することにより、触媒層用スラリーを調製した。触媒粒子以外の各材料は下記を用いた。
 高分子電解質:フッ素系高分子電解質(ナフィオン(登録商標)分散液、和光純薬工業社製)
 繊維状物質:アゾール構造を有する樹脂繊維(平均繊維長20μm、平均繊維径220nm)
 分散媒:水と1-プロパノールとの質量比1:1の混合液
 高分子電解質および繊維状物質の配合量は、触媒層用スラリーにおける触媒粒子中の導電性担体の配合量を100質量部として、高分子電解質が70質量部であり、繊維状物質が20質量部である。分散媒の配合量は、触媒インクにおける固形分濃度が10質量%となる量とした。分散処理は、遊星型ボールミルを用いて、600rpmの回転速度で60分間、実施した。その際、直径2mmのジルコニアボールをジルコニア容器の3分の1程度加えた。
 次に、ダイコーターを用いて、高分子電解質膜(ナフィオン(登録商標)211、デュポン社製)の片面に対して、触媒層用スラリーを100μmの厚さとなるように塗布することにより塗膜を形成した。塗膜の形状は正方形であり、1辺の長さは50mmとした。そして、80℃のオーブンを用いた乾燥処理を実施し、塗膜に含まれる分散媒を揮発させることにより、空気極触媒層を形成した。
 次に、高分子電解質膜における空気極触媒層が形成された面の反対の面に対して、触媒層用スラリーを30μmの厚さとなるように塗布することにより塗膜を形成した。塗膜の形状は正方形であり、1辺の長さは50mmである。塗膜は、空気極触媒層に相対する位置に形成した。そして、80℃のオーブンを用いた乾燥処理を実施し、塗膜に含まれる分散媒を揮発させることにより、燃料極触媒層を形成した。
 これにより、実施例2-1の電極触媒層を備える膜電極接合体を得た。
 [実施例2-1]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと以外は、実施例2-1と同様の材料および工程によって、実施例2-2の膜電極接合体を得た。
 [実施例2-3]
 触媒粒子の生成工程において、無機被膜の重量比が0.01となるようにTEOSの添加量を変更したこと以外は、実施例2-1と同様の材料および工程によって、実施例2-3の膜電極接合体を得た。
 [実施例2-4]
 触媒層用スラリーを調製する工程において、繊維状物質としてカーボンナノファイバー(VGCF-H(登録商標)、昭和電工パッケージング社製、平均繊維長7μm、平均繊維径150nm)を添加したこと以外は、実施例2-1と同様の方法によって、実施例2-4の膜電極接合体を得た。
 [比較例2-1]
 触媒粒子の生成工程において、無機被膜の重量比が0.3となるようにTEOSの添加量を変更したこと以外は、実施例2-1と同様の材料および工程によって、比較例2-1の膜電極接合体を得た。
 [比較例2-2]
 白金担持カーボンに対する無機被膜の形成を実施しなかったこと以外は、実施例2-1と同様の材料および工程によって、比較例2-2の膜電極接合体を得た。すなわち、比較例2-2の触媒粒子は無機被膜を有していない。
 [比較例2-3]
 白金担持カーボンに対するイオン液体の含浸と無機被膜の形成を実施しなかったこと以外は、実施例2-1と同様の材料および工程によって、比較例2-3の膜電極接合体を得た。すなわち、比較例2-3の触媒粒子は、白金担持カーボンのみからなり、イオン液体および無機被膜を有していない。
 [ケイ素の原子数の比の測定]
 電極触媒層のエネルギー分散型X線分光分析により得られる、カーボン、窒素、酸素、フッ素、ケイ素、硫黄、および、白金元素の合計原子数に占めるケイ素の原子数の割合を測定した。具体的には、まず、電極触媒層を冷却しながら加工を行うクライオウルトラミクロトームを用いて、電極触媒層の薄片を得た。続いて、エネルギー分散型X線分光分析装置が搭載された透過型電子顕微鏡(TEM-EDX)を用いて元素マッピングを行い、各元素の元素比を得て、ケイ素の原子数の比を計算した。加速電圧は200kVとした。観察エリアは150nm×150nmの大きさであり、白金担持カーボンが視野の面積の20%以上を占めるようにした。
 [発電性能の評価]
 発電性能の測定では、新エネルギー・産業技術総合開発機構(NEDO)の刊行物である「セル評価解析プロトコル」に準拠して、膜電極接合体の両面にガス拡散層(SIGRACET(R) 22BB、SGL社製)、ガスケット、および、セパレータを配置し、所定の面圧となるように締め付けたJARI標準セルを評価用単セルとして用いた。そして、「セル評価解析プロトコル」に記載のIV測定を実施した。なお、測定時のセル温度は、80℃に設定した。加湿条件は、燃料極の相対湿度を88%RH、空気極の相対湿度を42%RHとした。また、燃料ガスとして水素を用い、酸化剤ガスとして空気を用いた。この際に、水素を水素利用率が70%となる流量で流すとともに、空気を酸素利用率が40%となる流量で流した。
 [耐久性の評価]
 各実施例および各比較例について、上述の発電性能の評価で用いた評価用単セルを用い、新エネルギー・産業技術総合開発機構(NEDO)が刊行する「セル評価解析プロトコル」に記載されている負荷応答模擬電位サイクル試験を実施した。試験前と試験後のそれぞれについて、上述した発電性能の評価と同様の条件でIV測定を実施した。
 表3に、各実施例および各比較例について、空気極触媒層におけるケイ素原子数の割合と、発電性能および耐久性の評価結果とを示す。なお、発電性能の評価では、電流が35Aのときの電圧が0.65V以上である場合を「◎」とし、電流が35Aのときの電圧は0.65V未満であるが電流が25Aのときの電圧が0.65V以上である場合を「〇」とし、電流が25Aのときの電圧が0、65V未満である場合を「×」とした。また、耐久性の評価では、電流密度が1.5A/cmのときの試験前に対する試験後の電圧降下率が20%未満である場合を「◎」とし、上記電圧降下率が20%以上30%未満である場合を「〇」とし、上記電圧降下率が30%以上である場合を「×」とした。
Figure JPOXMLDOC01-appb-T000004

 表3に示すように、実施例2-1~2-4のいずれにおいても、電極触媒層中のケイ素原子数の割合が0.5at%以上10at%以下であった。そして、発電性能および耐久性の評価については、いずれも「◎」または「○」であった。すなわち、実施例2-1~2-4においては、発電性能および耐久性に優れた燃料電池を構成可能な膜電極接合体が得られた。
 一方、比較例2-1~2-3においては、いずれも、電極触媒層中のケイ素原子数の割合が0.5at%以上10at%以下の範囲外となった。そして、発電性能および耐久性の評価については、少なくとも一方が「×」であった。すなわち、電極触媒層におけるケイ素原子数の割合が上記範囲外となった場合に、発電性能および耐久性の少なくとも一方が低下した。
 したがって、電極触媒層中のケイ素原子数の割合が0.5at%以上10at%以下である場合に、発電性能および耐久性に優れた燃料電池を構成可能な膜電極接合体が得られることが確認された。
 (第3実施形態)
 電極触媒層、膜電極接合体、および、固体高分子形燃料電池の第3実施形態を説明する。第3実施形態は、第1実施形態と同様の基本構成を有する。以下では、第3実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の構成については同じ符号を付してその説明を省略する。なお、第3実施形態の特徴は他の実施形態の特徴と組み合わせ可能である。
 <第3実施形態の課題>
 電極反応の触媒として作用する金属粒子が高分子電解質中に溶出すると、燃料電池の出力の低下が起こる。そこで、特許文献2(特開2008-4541号公報)では、金属粒子の溶出を抑えるために、金属粒子をシリカ等の多孔性無機材料で被覆することが提案されている。
 しかしながら、特許文献2のように金属粒子が多孔性無機材料で被覆されていると、金属粒子の溶出が抑えられる一方で、金属粒子と高分子電解質との接触が妨げられる。その結果、プロトンの伝導が阻害されて抵抗が増加することから、燃料電池の出力電圧が低下するという問題が生じる。
 従来から、金属粒子としては白金が広く用いられているが、白金は高価であるため、電極触媒層に使用する白金の量を低減したいという要請がある。白金の量を低減した電極触媒層においては特に、上記出力電圧の低下が顕著に起こる。
 <第3実施形態の特徴>
 無機被膜13は、主として金属粒子12を被覆している。金属粒子12の表面の一部は、無機被膜13から露出し、この露出部分の少なくとも一部において金属粒子12はイオン液体14と接している。
 上記構成によれば、無機被膜13が金属粒子12を覆っているため、電極触媒層にて触媒粒子10を囲む高分子電解質16中に金属粒子12が溶出することが抑えられる。一方で、無機被膜13が各金属粒子12を完全に覆っていると、プロトンを伝導する高分子電解質16と電極反応の触媒として作用する金属粒子12との接触が妨げられる。これに対し、本実施形態では、プロトンを通すことが可能なイオン液体14が金属粒子12に接しているため、イオン液体14を介してプロトンが伝導される。また、無機被膜13内の隙間にイオン液体14が浸透していれば、こうした無機被膜13中のイオン液体14もプロトン伝導に寄与する。さらに、導電性担体11の表面の一部は無機被膜13から露出しているため、電子伝導の経路も確保される。
 また、イオン液体14が存在しない構成では、無機被膜13がシリカ等の親水性材料から形成されている場合、特に電極反応によって水が生じる空気極にて、生成された水が無機被膜13の付近に留められることから、電極触媒層の排水性の低下が生じる。これに対し、本実施形態では、親水性の低いイオン液体14を用いることで、イオン液体14の付近、すなわち触媒粒子10付近での水の滞留を抑えることができる。これにより、電極触媒層の排水性の低下が抑えられる。
 触媒粒子10において、無機被膜13と触媒担持担体15との合計重量に対する無機被膜13の重量比は、0.01以上0.2以下である。触媒担持担体15の重量は、すなわち導電性担体11と当該導電性担体11に担持されている金属粒子12との総重量である。
 上記無機被膜13の重量比が0.01以上であれば、金属粒子12の溶出が十分に抑えられる程度に、触媒担持担体15の表面に無機被膜13が形成される。また、無機被膜13内にイオン液体14が保持されやすい。上記無機被膜13の重量比が0.2以下であれば、無機被膜13の膜厚や形成範囲が大きくなりすぎないため、好適なプロトン伝導が得られる程度に金属粒子12とイオン液体14との接触を確保できる。
 なお、無機被膜13の重量比は、例えば、XPS(X線光電子分光法)を用いて求めることができる。
 触媒粒子10において、イオン液体14の体積は、触媒担持担体15のメソ孔体積の10%以上50%以下であることが好ましく、10%以上30%以下であることがより好ましい。上記メソ孔体積、すなわちメソポア領域の細孔容積は、2nmから100nmまでの空孔総体積である。メソ孔体積は、例えば、低温窒素吸着法により求めることができる。
 イオン液体14の上記体積割合が10%以上であれば、イオン液体14を介した高分子電解質と金属粒子12との間のプロトン伝導が好適に可能になる。特に、空気極の電極触媒層では、十分な酸素還元活性が得られる。また、イオン液体14の上記体積割合が50%以下であれば、イオン液体14の量が多くなりすぎない。イオン液体14はプロトンを通す機能を有してはいるが、その程度は高分子電解質16と比較すると補助的なものであり、イオン液体14の量が多くなりすぎると、触媒粒子10と高分子電解質16との離間が大きくなって抵抗が増加してしまう。これに対し、イオン液体14の上記体積割合が50%以下であれば、イオン液体14の過多に起因した抵抗の増加が抑えられる。
 以上のことから、本実施形態の触媒粒子10を用いた燃料電池では、良好な発電性能が得られる。特に、金属粒子12として白金系金属を用いたときに、金属粒子12の担持量を低減した場合でも、高い出力を得ることができる。
 なお、燃料極触媒層22Aおよび空気極触媒層22Cの少なくとも一方が、上述した第3実施形態の特徴を有していればよい。燃料極触媒層22Aと空気極触媒層22Cとの一方のみが第3実施形態の特徴を有する場合、空気極触媒層22Cが第3実施形態の特徴を有することが好ましい。
 <第3実施形態の実施例>
 [実施例3-1]
 ・触媒粒子の生成
 触媒担持担体として白金担持カーボン(担持密度30質量%)を用い、白金担持カーボンをアセトニトリルに加えて、さらに、白金担持カーボンのメソ孔体積の50%に相当する量のイオン液体を添加した。この混合物に対して、30分間、超音波分散を実施した後、一晩、スターラーで撹拌後、エバポレーターでアセトニトリルを除去することにより、イオン液体が含浸した触媒担持担体を得た。イオン液体としては、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドのみからなる液体を用いた。白金担持カーボンのメソ孔体積は、低温窒素吸着法を用いて、2nmから100nmまでの空孔を対象として求めた。
 次に、上記イオン液体が含浸した触媒担持担体を水に加え、超音波撹拌後、テトラエトキシシラン(TEOS)とエタノールとを含む混合溶液を加えた。その後、水酸化ナトリウムを加えて2時間撹拌後、遠心分離機を用いて分離物を得た。そして、分離物を80℃で6時間乾燥させることにより、実施例3-1の触媒粒子を得た。この触媒粒子は、シリカからなる無機被膜を有している。
 上記にて、触媒粒子における無機被膜の被覆量はTEOSの量で調整し、無機被膜の重量比(シリカの重量/シリカおよび触媒担持担体の総重量)が0.1となるようにした。
 ・膜電極接合体の作製
 実施例1の触媒粒子と、高分子電解質と、繊維状物質と、分散媒とを混合した混合液に対して分散処理を実施することにより、触媒層用スラリーを調製した。触媒粒子以外の各材料は下記を用いた。
 高分子電解質:フッ素系高分子電解質(ナフィオン(登録商標)分散液、和光純薬工業社製)
 繊維状物質:炭素繊維(VGCF-H(登録商標)、昭和電工社製、平均繊維長6μm、平均繊維径150nm) 
 分散媒:水と1-プロパノールとの質量比1:1の混合液
 高分子電解質および繊維状物質の配合量は、触媒層用スラリーにおける触媒粒子中の導電性担体の配合量を100質量部として、高分子電解質が70質量部であり、繊維状物質が20質量部である。分散媒の配合量は、触媒層用スラリーにおける固形分濃度が10質量%となる量とした。分散処理は、直径3mmのジルコニアボールおよび遊星型ボールミルを用いて、600rpmの回転速度で60分間、実施した。
 次に、ダイコーターを用いて、高分子電解質膜(ナフィオン(登録商標)211、デュポン社製)の片面に対して、触媒層用スラリーを塗布することにより塗膜を形成した。塗膜の形状は正方形であり、1辺の長さは50mmである。触媒層用スラリーの塗布量は、塗膜における白金担持量が0.1mg/cmとなる量とした。そして、80℃のオーブンを用いた乾燥処理を実施し、塗膜に含まれる分散媒を揮発させることにより、空気極触媒層を形成した。
 次に、高分子電解質膜における空気極触媒層が形成された面の反対の面に対して、触媒層用スラリーを塗布することにより塗膜を形成した。塗膜の形状は正方形であり、1辺の長さは50mmである。触媒層用スラリーの塗布量は、塗膜における白金担持量が0.05mg/cmとなる量とした。そして、80℃のオーブンを用いた乾燥処理を実施し、塗膜に含まれる分散媒を揮発させることにより、燃料極触媒層を形成した。
 これにより、実施例3-1の電極触媒層を備える膜電極接合体を得た。
 [実施例3-2]
 触媒粒子の生成工程において、イオン液体の添加量を白金担持カーボンのメソ孔体積の30%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、実施例3-2の膜電極接合体を得た。
 [実施例3-3]
 触媒粒子の生成工程において、イオン液体の添加量を白金担持カーボンのメソ孔体積の10%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、実施例3-3の膜電極接合体を得た。
 [実施例3-4]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと以外は、実施例3-1と同様の材料および工程によって、実施例3-4の膜電極接合体を得た。
 [実施例3-5]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の30%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、実施例3-5の膜電極接合体を得た。
 [実施例3-6]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の10%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、実施例3-6の膜電極接合体を得た。
 [比較例3-1]
 触媒粒子の生成工程において、イオン液体の添加量を白金担持カーボンのメソ孔体積の60%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-1の膜電極接合体を得た。
 [比較例3-2]
 触媒粒子の生成工程において、イオン液体の添加量を白金担持カーボンのメソ孔体積の5%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-2の膜電極接合体を得た。
 [比較例3-3]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の60%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-3の膜電極接合体を得た。
 [比較例3-4]
 触媒粒子の生成工程において、無機被膜の重量比が0.2となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の5%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-4の膜電極接合体を得た。
 [比較例3-5]
 触媒粒子の生成工程において、無機被膜の重量比が0.3となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の30%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-5の膜電極接合体を得た。
 [比較例3-6]
 触媒粒子の生成工程において、無機被膜の重量比が0.005となるようにTEOSの添加量を変更したこと、および、イオン液体の添加量を白金担持カーボンのメソ孔体積の30%に相当する量に変更したこと以外は、実施例3-1と同様の材料および工程によって、比較例3-6の膜電極接合体を得た。
 [比較例3-7]
 白金担持カーボンに対するイオン液体の含浸と無機被膜の形成を実施しなかったこと以外は、実施例3-1と同様の材料および工程によって、比較例3-7の膜電極接合体を得た。すなわち、比較例3-7の触媒粒子は、触媒担持担体のみからなり、イオン液体および無機被膜を有していない。
 [無機被膜の被覆状態の解析]
 実施例1の触媒粒子に対し、TEM-EDS(エネルギー分散型X線分光法)を利用した元素マッピングによって、元素の分布を解析した。図8AはCの分布を示し、図8BはSiの分布を示し、図8CはPtの分布を示す。図8A~図8Cに示されるように、Siの分布はPtの分布と重なりを有しており、シリカからなる無機被膜が、主として、白金である金属粒子を覆うように形成されていることが確認された。
 [発電性能の評価]
 各実施例および各比較例について、膜電極接合体の両面にガス拡散層であるカーボンペーパーを貼り合わせてサンプルを作製した。各サンプルを、発電評価セル内に設置し、燃料電池測定装置を用いて電流電圧測定を行った。測定時のセル温度は、80℃に設定した。加湿条件は、燃料極の相対湿度を90%RH、空気極の相対湿度を30%RHとした。また、燃料ガスとして水素を用い、酸化剤ガスとして空気を用いた。この際に、水素を水素利用率が80%となる流量で流すとともに、空気を酸素利用率が40%となる流量で流した。なお、背圧は50kPaとした。
 発電性能の評価では、電流密度が1.5A/cmのときの電圧が0.65V以上である場合を「〇」とし、電流密度が1.5A/cmのときの電圧が0、65V未満である場合を「×」とした。上記電圧が0.65V以上であると、実用上において好ましい発電性能が得られていると言える。
 [耐久性の評価]
 各実施例および各比較例について、上述の発電性能の評価で用いたサンプルと同一のサンプルを用い、新エネルギー・産業技術総合開発機構(NEDO)が刊行する「セル評価解析プロトコル」に記載されている電位サイクル試験を実施した。試験前と試験後のそれぞれについて、上述した発電性能の評価と同様の条件で電流電圧測定を実施し、電流密度が1.5A/cmのときの試験前に対する試験後の電圧降下量を算出した。
 耐久性の評価では、電圧低下量が100mV以内である場合を「〇」とし、電圧降下量が100mVを超えた場合を「×」とした。電圧降下量が100mV以内であると、実用上において好ましい耐久性が得られ、すなわち膜電極接合体が長期使用に耐え得ると言える。
 表4に、各実施例および各比較例について、無機被膜の重量比およびイオン液体の体積割合と、発電性能および耐久性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000005

 表4に示すように、無機被膜の重量比が0.01以上0.2以下であり、かつ、イオン液体の体積割合が10%以上50%以下である実施例3-1~3-6では、発電性能および耐久性の双方が良好であった。
 一方、イオン液体の体積割合が10%未満あるいは50%を超える比較例3-1~3-4では、発電性能が低く、プロトン伝導の阻害による抵抗増加が起こっていると考えられる。また、無機被膜の重量比が0.2を超える比較例3-5でも発電性能が低く、無機被膜が多すぎることによるプロトン伝導の阻害が生じていると考えられる。また、無機被膜の重量比が0.01未満である比較例3-6,3-7では、発電性能に加えて耐久性も低くなっており、金属粒子の溶出が生じていると考えられる。
 以上、実施例を用いて説明したように、第3実施形態の触媒粒子、電極触媒層、膜電極接合体、および、固体高分子形燃料電池によれば、以下の効果が得られる。
 (1)触媒粒子が無機被膜とイオン液体を含むことにより、高分子電解質への金属粒子の溶出が抑えられるとともに、プロトン伝導の阻害が抑えられる。したがって、触媒粒子を電極触媒層に用いた燃料電池において、良好な耐久性および発電性能が得られる。
 (2)無機被膜が、テトラエトキシシランおよびトリエトキシメチルシランのいずれかから形成されたシリカからなることにより、無機被膜が多層構造に形成されるため、無機被膜の内部にイオン液体が保持されやすくなる。
 (3)イオン液体が、1-アルキル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含み、特に、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含む。こうした構成によれば、イオン液体を介したプロトンの伝導が好適に可能である。
 (第4実施形態)
 電極触媒層、膜電極接合体、および、固体高分子形燃料電池の第4実施形態を説明する。第4実施形態は、第1実施形態と同様の基本構成を有する。以下では、第4実施形態と第1実施形態との相違点を中心に説明し、第1実施形態と同様の構成については同じ符号を付してその説明を省略する。なお、第4実施形態の特徴は他の実施形態の特徴と組み合わせ可能である。
 <第4実施形態の課題>
 白金担持カーボン触媒は耐久性に課題がある。具体的には、炭素材料に担持された白金粒子が、高分子電解質中に溶出することにより、燃料電池の性能低下を招いてしまうという課題がある。
 特許文献2(特開2008-4541号公報)では、導電性担体と、導電性担体上に配接された金属粒子とを、多孔性無機材料で被覆することにより、金属粒子の溶出を防ぎ、燃料電池の性能低下を抑制することが可能な電極材料が報告されている。
 しかしながら、特許文献2に記載の電極材料では、金属粒子の溶出抑制の効果が得られるものの、多孔性無機材料が金属粒子の表面を覆うため、金属粒子とアイオノマーとの接触が削減される。その結果、抵抗が増大し、IV曲線における電圧が低下する問題があった。
 また、非特許文献1(INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,2020,45,1867-1877)では、シリカで被覆された触媒を用いた膜電極接合体は、低湿(20%RH)下で、未処理の触媒を用いた膜電極接合体に比べて優れた発電性能を示すことが報告されている。このことは、シリカによって水分が保持されるためと思われる。
 非特許文献2(ACS Catalysis,2018,8,8244-8254.)では、Pt粒子と水との反応を抑制するために、触媒粒子を、水との親和性が低い液体であるイオン液体で被覆することで、酸素還元活性が向上することが報告されている。
 しかしながら、高い黒鉛化度のカーボン担体を用いた触媒を、イオン液体で被覆した場合、イオン液体は安定に保持されず、耐久試験下でイオン液体が流出し、耐久試験後の発電性能は大きく低下する。
 第4実施形態は、触媒の質量活性の耐久性に優れるイオン液体含浸シリカ被覆触媒粒子、および、高温低湿でのIV特性の耐久性に優れる燃料電池用膜電極接合体と燃料電池を提供することを目的とする。
 <第4実施形態の特徴>
 発明者は、低湿下での発電特性に優れるシリカで被覆された触媒粒子に、80℃~120℃でも化学的に安定なイオン液体を含浸させることで、未処理の触媒に比べ、高温低湿下での発電特性が向上するとともに、耐久試験後も高い発電性能が得られることを見出した。
 炭素材料である導電性担体11のラマン分光法によるGバンドとDバンドのピーク強度比(G/D比)は、1.6以上である。また、導電性担体11の上記ピーク強度比(G/D比)は、1.8以上であることが好ましい。なお、ラマン分光法で用いるレーザー光の波長は532nmである。また、Gバンドとは、1580cm-1付近に位置するラマンピークを意味し、Dバンドとは、1360cm-1付近に位置するラマンピークを意味する。
 上記ピーク強度比(G/D比)が1.6以上の炭素材料は、従来用いられてきた炭素材料に比べて高い結晶性を有しているため、触媒粒子10の耐久性試験における導電性担体11の酸化消失を低減することができる。その結果、触媒粒子10の耐久性を向上させることができる。
 なお、上記ピーク強度比(G/D比)が1.6未満であると、導電性担体の比表面積が大きくなるため、導電性担体に担持可能な金属粒子の量は、ピーク強度比(G/D比)が1.6以上の場合に比べて増加するが、導電性担体の結晶性は、ピーク強度比(G/D比)が1.6以上の場合に比べて低下する。つまり、導電性担体がアモルファスカーボンとなる。その結果、触媒粒子の耐久性は、上記ピーク強度比(G/D比)が1.6以上の場合に比べて低下する。
 なお、本実施形態において、上記ピーク強度比(G/D比)は、2.2以下であり、2.0以下であることが好ましい。上記ピーク強度比(G/D比)が2.0以下であれば、導電性担体11に十分に金属粒子12が担持可能である。
 金属粒子12は、Pt、Rh、Pd、Au、および、Irのうち1つ以上の元素を含んでいることが好ましい。金属粒子12は、例えば、Pt単体、PtとCoの合金粒子、PdコアにPt粒子が被覆されたコアシェル粒子等であってもよい。
 また、金属粒子12は、XRD法による結晶子サイズ(1,1,1)が10nm以下のPt粒子であることが好ましく、8nm以下のPt粒子であることがより好ましい。ここで、上記(1,1,1)は、ミラー指数を示す。結晶子サイズ(1,1,1)が10nm以下のPt粒子であれば、触媒活性が高く、高い電圧を得ることができる。また、結晶子サイズ(1,1,1)が3nm以上7nm以下のPt粒子であれば、高い触媒活性が確実に得られる。
 金属粒子12の上記結晶子サイズ(1,1,1)の下限値は特に制限されないが、3nm以上が好ましい。結晶子サイズ(1,1,1)が3nm以上であれば、触媒活性が確実に得られる。
 なお、結晶子サイズ(1,1,1)が8nm超のPt粒子であると、Pt粒子の表面積とPt粒子の質量との比(Pt粒子の表面積/Pt粒子の質量)が、結晶子サイズ(1,1,1)が8nm以下のPt粒子と比べて小さくなる。その結果、Pt粒子の触媒能とPt粒子の質量との比(Pt粒子の触媒能/Pt粒子の質量)が、結晶子サイズ(1,1,1)が8nm以下のPt粒子と比べて小さくなる。そのため、結晶子サイズ(1,1,1)が8nm超のPt粒子は、結晶子サイズ(1,1,1)が8nm以下のPt粒子と比べて、高いIV特性を得にくくなる。
 触媒粒子10における金属粒子12の質量割合は、触媒担持担体15の質量を100質量部としたとき、60質量部以上70質量部以下である。金属粒子12の質量割合が60質量部以上であれば、単位面積当たりの金属重量に対し、電極触媒層が厚くなりすぎないため、酸素等のガスが拡散しやすくなる。金属粒子12の質量割合が70質量部以下であれば、結晶子サイズ(1,1,1)が8nm以下のPt粒子等の微小な金属粒子を担持することが容易である。
 触媒粒子10において、BJH法によるメソポア領域の細孔容積は、0.18cm/g以上であり、かつ、BJH法による細孔分布曲線のピークトップ細孔径は、2.6nm以上2.8nm以下であることが好ましい。メソポア領域の細孔容積が0.18cm/g以上であれば、イオン液体14を含浸させやすくなる。また、細孔分布曲線のピークトップ細孔径が2.6nm以上であれば、イオン液体14が導電性担体11に含浸しやすくなる。そのため、酸素還元活性が得られやすく、十分な電圧が得られやすくなる。また、細孔分布曲線のピークトップ細孔径が2.8nm以下であれば、イオン液体14が導電性担体11内から流出することを抑えられる。そのため、酸素還元活性が得られやすく、十分な電圧が得られやすくなる。
 なお、メソポア領域の細孔容積とは、窒素吸着BET多点法による測定結果をBJH解析して、2nmから100nmまでの細孔分布から得られる空孔総体積を意味する。また、ピークトップ細孔径とは、BJH解析で得られる細孔分布曲線の2nmから100nmのピークにおける細孔径を意味する。
 触媒粒子10に含まれる無機被膜13の量は、XRFによるSi強度から検量線を用いて算出することができる。無機被膜13の量は、導電性担体11、金属粒子12、イオン液体14、および、無機被膜13の総質量を100質量部としたとき、6質量部以上13質量部以下である。無機被膜13の量が6質量部以上であれば、イオン液体14の安定した保持が可能であり、耐久性が高められる。無機被膜13の量が13質量部以下であれば、金属粒子12への酸素拡散とプロトン伝導が好適となり、触媒活性が高められる。
 イオン液体14は、触媒粒子10の全体に吸着されている。触媒粒子10が含むイオン液体14の量は、触媒担持担体15のメソ孔体積の50%以上100%以下であってよい。より詳しくは、触媒粒子10が含むイオン液体14の体積は、触媒担持担体15のメソ孔体積の50%以上100%以下であることが好ましく、70%以上95%以下であることがより好ましく、85%以上90%以下であることがさらに好ましい。
 触媒担持担体15のメソ孔体積は、例えば、低温窒素吸着法により求めることができる。本実施形態ではメソ孔体積、すなわちメソポア領域の細孔容積として、2nmから100nmまでの空孔総体積を用いた。イオン液体14の量が触媒担持担体15のメソ孔体積の50%以上であれば、十分な酸素還元活性が得られやすい。また、イオン液体14の量が触媒担持担体15のメソ孔体積の100%以下、好ましくは90%以下であれば、触媒粒子10の製造工程や調液工程、燃料電池の運転中において、イオン液体14の安定した保持が可能である。また、イオン液体14が多すぎないため、イオン液体14中から金属粒子13表面へ酸素が透過しやすくなり、抵抗の増加に起因したIV性能の低下を抑えることができる。
 触媒粒子10が含むイオン液体14の量は、導電性担体11、金属粒子12、無機被膜13、および、イオン液体14の総質量を100質量部としたとき、10質量部以上20質量部以下である。イオン液体14の量が10質量部以上であれば、無機被膜13で金属粒子12を被覆したことによるイオン抵抗の増大をイオン液体14によって抑制する効果が的確に得られる。イオン液体14の量が20質量部以上であれば、触媒粒子10の製造工程や調液工程、燃料電池の運転中において、イオン液体14の安定した保持が可能である。また、イオン液体14が多すぎないため、イオン液体14中から金属粒子13表面へ酸素が透過しやすくなり、抵抗の増加に起因したIV性能の低下を抑えることができる。
 電極触媒層における繊維状物質17の含有量は、電極触媒層の総質量を100質量部としたとき、0.1質量部以上45質量部以下であることが好ましく、0.1質量部以上10質量部以下であることがより好ましく、0.1質量部以上5質量部以下であることがさらに好ましい。繊維状物質17の含有量が上記範囲内であれば、電極触媒層における電子伝導性やプロトン伝導性が高められ、電極触媒層の構造も保持されやすい。
 電極触媒層における高分子電解質16の総質量は、電極触媒層が含む触媒粒子10の総質量に対して、0.17以上0.2以下である。触媒粒子10に対する高分子電解質16の質量比が0.17以上であれば、プロトン伝導性が高められるため、抵抗の増加によるIV性能の低下を抑えることができる。触媒粒子10に対する高分子電解質16の質量比が0.2以下であれば、電極触媒層内の空隙が十分に得られることから水の排出や酸素拡散が好適に可能となり、IV性能が高められる。
 本実施形態において、触媒粒子10に対する高分子電解質16の質量比と、触媒粒子10における無機被膜13に対するイオン液体14の質量比との積は、0.2以上0.4以下であることが好適である。これにより、高分子電解質16と無機被膜13とイオン液体14とのバランスが好適となり、耐久試験後でも、電極触媒層内や金属粒子12表面に対するプロトン伝導と酸素拡散とが円滑に行われやすい。
 なお、燃料極触媒層22Aおよび空気極触媒層22Cの少なくとも一方が、上述した第4実施形態の特徴を有していればよい。燃料極触媒層22Aと空気極触媒層22Cとの一方のみが第4実施形態の特徴を有する場合、空気極触媒層22Cが第4実施形態の特徴を有することが好ましい。
 <第4実施形態の実施例>
 [Pt担持カーボンの合成]
 Pt担持カーボンは、既知の方法に従って合成される。Pt担持カーボンは、質量比でPt/C=70/30のPt担持量を有する。カーボン担体において、ラマン分光よるGバンド/Dバンド比は1.6以上である。
 [イオン液体含浸Pt担持カーボンの合成]
 合成したPt担持カーボンをアセトニトリルに加え、Pt担持カーボンのメソ孔体積に対する所定量のイオン液体を添加した。この液体に対し、30分間、超音波分散を実施した後、一晩、スターラーで撹拌後、エバポレーターでアセトニトリルを除去して、イオン液体含浸Pt担持カーボンを得た。
 [イオン液体含浸シリカ被覆Pt担持カーボンの合成]
 合成したイオン液体含浸Pt担持カーボンを水に加え、超音波撹拌後、水酸化ナトリウムを加えた。続いて、テトラエトキシシラン(TEOS)とエタノールとを含む混合溶液を加えた。2時間撹拌後、遠心分離機を用いて分離物を得て、分離物を80℃で6時間乾燥させることにより、イオン液体含浸シリカ被覆Pt担持カーボンを得た。
 また、合成したイオン液体含浸シリカ被覆Pt担持カーボンに含まれるPt粒子について、XRD法で求めた結晶子サイズ(1,1,1)は、6.4nmであった。
 また、合成したイオン液体含浸シリカ被覆Pt担持カーボンに含まれるシリカ量は、XRFで求めたSi元素量から算出した。
 イオン液体の量は、仕込み量から計算した。
 [触媒評価]
 3電極セルを用いて、回転ディスク電極法による質量活性の測定を実施した。回転数は、200rpm、400rpm、900rpm、1600rpm、2500rpmとした。Koutecky-Levichプロットにて、0.85V vs. RHEの質量活性を求めた。
 作用極は、合成したイオン液体含浸Pt担持カーボンを水に加え、アイオノマーを添加後、30分間超音波撹拌し、得られた触媒インクを、グラッシーカーボン電極上に滴下・乾燥させることで作製した。対極は、Ptメッシュを用いた。参照極は、飽和カロメル電極を用いた。電解溶液は、0.1M 過塩素酸水溶液を用いた。
 質量活性を測定後、耐久性試験として、CVを0.6V~1,21V vs. RHEの範囲で繰り返し1200回実施した。耐久性試験後、再度、質量活性を測定した。
 [実施例4A-1]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、6質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [実施例4A-2]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、9質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [実施例4A-3]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、11質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [実施例4A-4]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、13質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [比較例4A-1]
 上述の評価方法に沿って、白金担持カーボンの質量活性を評価した。この触媒粒子は、イオン液体を含浸しておらず、シリカによる被覆もされていない。
 [比較例4A-2]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、3質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [比較例4A-3]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [実施例4A-5]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [実施例4A-6]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、20質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [比較例4A-4]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、5質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
 [比較例4A-5]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、25質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 上述の評価方法に沿って、イオン液体含浸シリカ被覆Pt担持カーボンの質量活性を評価した。
Figure JPOXMLDOC01-appb-T000006

 表5は、シリカ量と耐久性試験前後の質量活性との関連を示す。表6は、イオン液体量と耐久性試験前後の質量活性との関連を示す。
 表5において、シリカ量が6wt%~13wt%である実施例4A-1~4A-4では、初期の質量活性がいずれも17A/g-Pt以上であった。シリカ量が3wt%である比較例4A-2では、初期の質量活性が15.2A/g-Ptであった。また、シリカ量が15wt%である比較例4A-3では、初期の質量活性が16.8A/g-Ptであった。シリカ量が6wt%より少ないと、アイオノマーによるPt被毒抑制が不十分なため、質量活性が低下したと思われる。一方、シリカ量が13wt%より多いと、シリカ膜による抵抗で、質量活性が低下したと思われる。耐久試験後の質量活性については、シリカ量が6wt%以上である実施例4A-1~4A-4と比較例4A-3は、いずれも14.5A/g-Pt以上を示したが、シリカ量が3wt%である比較例4A-2は、10.5A/g-Ptと低かった。
Figure JPOXMLDOC01-appb-T000007

 表6において、実施例4A-5,4A-6および比較例4A-4のように、イオン液体量が20wt%以下である場合、初期の質量活性は16A/g-Pt以上であったが、イオン液体量が25wt%の比較例4A-5では、初期の質量活性が14A/g-Ptであった。これは、イオン液体層が厚くなり、酸素拡散が不足したためと思われる。耐久試験後については、実施例4A-5,4A-6では、質量活性がいずれも14A/g-Pt以上であったが、比較例4A-4では、質量活性が大きく低下した。これは、イオン液体量が少ないと、金属粒子の酸化溶出抑制効果が不十分であるためと思われる。
 [実施例4B-7]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.17とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-8]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.18とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-9]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.2とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-10]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、13質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.2とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-11]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、7質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.2とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [比較例4B-6]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.15とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [比較例4B-7]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.3とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-12]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、10質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、13質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.17とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [実施例4B-13]
 上述の合成方法に沿って、イオン液体として、1-ブチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを用いたイオン液体含浸シリカ被覆Pt担持カーボンを合成した。イオン液体の含浸量は、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、15質量部となるように調整した。シリカ量は、TEOS量を調整し、導電性担体、金属粒子、イオン液体、および、シリカの合計質量を100質量部として、7質量部となるように調整した。
 水、IPA、および、エタノールを含む混合溶液に、イオン液体含浸シリカ被覆Pt担持カーボン、アイオノマー、および、イオン伝導性繊維状物質を加えて、触媒層用スラリーを調製した。高分子電解質膜に、白金量が0.4mg/cmになるように、触媒層用スラリーを塗布し、塗膜を乾燥させて、空気極触媒層を得た。アイオノマーとイオン液体含浸シリカ被覆Pt担持カーボンとの質量比は0.2とした。
 また、水、および、IPAを含む混合溶液に、Pt担持カーボン、アイオノマー、および、繊維を加えて、触媒層用スラリーを調製した。当該触媒層用スラリーを、高分子電解質膜における空気極触媒層の反対側の面に、白金量が0.1mg/cmになるように塗布し、塗膜を乾燥させて、燃料極触媒層を作製した。これにより、膜電極接合体を得た。
 [発電性能の評価]
 JARI標準セルに、作製した膜電極接合体とガスケット、GDL(Gas Diffusion Layer)をそれぞれ組み込み、NEDOの固体高分子形燃料電池実用化推進技術開発基盤技術開発「セル評価解析の共通基盤技術」に記載の発電条件にて、IV特性を評価した。高温・低湿条件とするため、セル温度は90℃、空気極の湿度は20%RHとした。
 耐久性試験として、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の固体高分子形燃料電池実用化推進技術開発基盤技術開発「セル評価解析の共通基盤技術」に記載の起動停止10000サイクル、負荷応答30000サイクルを実施した。
 耐久性試験後に、再度IV特性を評価した。
Figure JPOXMLDOC01-appb-T000008
 表7に、耐久性試験前後のI-V測定の結果における1.5A/cm時の電圧を示す。実施例4B-7~4B-9および比較例4B-6,4B-7は、空気極触媒層におけるアイオノマー量の検討のためのデータである。これらの実施例および比較例では、アイオノマーとイオン液体含浸シリカ被覆触媒粒子との質量比が0.17以上0.20以下の範囲であるときに、初期の電圧が0.640V以上、耐久後の電圧が0.500V以上を示した。アイオノマーが少ないと、抵抗過電圧が高くなり、アイオノマーが多いと濃度過電圧が高くなってしまうためと思われる。
Figure JPOXMLDOC01-appb-T000009

 表8に、耐久性試験前後のI-V測定の結果における1.5A/cm時の電圧を示す。実施例4B-10~4B-13は、イオン液体含浸シリカ被覆触媒粒子を含んだ電極触媒層におけるアイオノマー量と、イオン液体量、シリカ量の組み合わせについて検討したデータである。
 触媒粒子の総質量に対するアイオノマーの総質量の比と、シリカの総質量に対するイオン液体の総質量の比との積が、0.2以上0.4以下である場合、初期の電圧が0.660V以上、耐久後の電圧が0.560V以上を示した。これにより、抵抗過電圧および濃度過電圧が、アイオノマー量、イオン液体量、シリカ量の組み合わせの影響を受けることが確認された。
 以上のように、第4実施形態の触媒粒子および電極触媒層は、以下の効果を奏する。
 (1)導電性担体は、ラマン分光法によるGバンドとDバンドのピーク強度比(G/D比)が、1.6以上2.2以下の炭素材料を含む。触媒粒子が含む触媒担持担体の質量を100質量部としたとき、触媒粒子が含む金属粒子の総質量は、60質量部以上70質量部以下である。触媒粒子の質量を100質量部としたとき、触媒粒子が含む無機被膜の総質量は6質量部以上13質量部以下である。触媒粒子の質量を100質量部としたとき、触媒粒子が含むイオン液体の総質量は、10質量部以上20質量部以下である。
 このような構成であれば、金属粒子に対する無機被膜の被覆が適切であるため、耐久性試験における金属粒子の溶出を抑制できることから、耐久性が上がるとともに、イオン液体の含浸によって、金属粒子表面へのプロトン伝導性を確保することができる。さらに、シリカからなる無機被膜によって、イオン液体の金属粒子表面への吸着を抑制することができる。
 より詳しくは、金属粒子の少なくとも一部を無機被膜で被覆し、無機被膜で被覆した金属粒子へのプロトン移動を、イオン液体を介して行うことができるので、低湿・高温下での高い発電性能が得られるとともに、無機被膜によってイオン液体が安定に保持されて、耐久性に優れた電極触媒層、膜電極接合体、および、燃料電池が得られる。
 (2)電極触媒層が含む触媒粒子の総質量に対する高分子電解質の総質量の比が、0.17以上0.2以下である。このような構成であれば、触媒粒子における金属粒子へのプロトン伝導と酸素拡散が十分に確保されやすい。
 (3)電極触媒層が含む触媒粒子の総質量に対する高分子電解質の総質量の比と、触媒粒子が含む無機被膜の総質量に対するイオン液体の総質量の比との積が、0.2以上0.4以下である。
 このような構成であれば、プロトン伝導と酸素拡散、イオン液体の安定保持の観点から、触媒粒子の金属粒子上に位置するイオン液体層と無機被膜、アイオノマー量のバランスが最適となり、耐久後のIV性能の低下を抑制できる。

Claims (13)

  1.  触媒粒子、高分子電解質、および、繊維状物質を含む電極触媒層であって、
     前記触媒粒子は、金属粒子と導電性担体とイオン液体とを含み、
     前記電極触媒層は、1000mg/cm以上1600mg/cm以下の密度を有する
     電極触媒層。
  2.  前記金属粒子は、前記導電性担体に担持されており、
     前記イオン液体は、前記金属粒子の表面および前記導電性担体の表面に接し、
     前記触媒粒子はさらに、前記イオン液体を介して前記金属粒子および前記導電性担体を被覆する無機被膜を含み、
     前記無機被膜はケイ素を含み、
     エネルギー分散型X線分光法により得られる、前記電極触媒層の炭素、窒素、酸素、フッ素、ケイ素、硫黄、および、白金元素の合計原子数に占めるケイ素の原子数の割合が、0.5at%以上10at%以下である
     請求項1に記載の電極触媒層。
  3.  前記金属粒子は前記導電性担体に担持されており、複数の前記金属粒子とこれらの金属粒子を担持した前記導電性担体とから触媒担持担体が構成され、
     前記イオン液体は、前記触媒担持担体の表面を含む部分に位置し、
     前記触媒粒子はさらに、前記触媒担持担体の一部を被覆する無機被膜を含み、
     前記複数の金属粒子には、表面の一部が前記無機被膜から露出して前記イオン液体と接している前記金属粒子が含まれ、
     前記触媒担持担体および前記無機被膜の合計重量に対する前記無機被膜の重量比が、0.01以上0.2以下であり、
     前記触媒担持担体のメソ孔体積に対する前記イオン液体の体積割合が、10%以上50%以下である
     請求項1に記載の電極触媒層。
  4.  前記金属粒子は前記導電性担体に担持されており、複数の前記金属粒子とこれらの金属粒子を担持した前記導電性担体とから触媒担持担体が構成され、
     前記イオン液体は、前記金属粒子の表面の少なくとも一部に接し、
     前記触媒粒子はさらに、前記金属粒子の表面の一部を被覆する無機被膜を含み、
     前記導電性担体は、ラマン分光法によるGバンドとDバンドのピーク強度比(G/D比)が、1.6以上2.2以下の炭素材料を含み、
     前記触媒粒子が含む前記触媒担持担体の質量を100質量部としたとき、前記触媒粒子が含む前記金属粒子の総質量は、60質量部以上70質量部以下であり、
     前記触媒粒子の質量を100質量部としたとき、前記触媒粒子が含む前記無機被膜の総質量は6質量部以上13質量部以下であり、
     前記触媒粒子の質量を100質量部としたとき、前記触媒粒子が含む前記イオン液体の総質量は、10質量部以上20質量部以下である
     請求項1に記載の電極触媒層。
  5.  前記電極触媒層が含む前記触媒粒子の総質量に対する前記高分子電解質の総質量の比は、0.17以上0.2以下である
     請求項4に記載の電極触媒層。
  6.  前記電極触媒層が含む前記触媒粒子の総質量に対する前記高分子電解質の総質量の比と、前記触媒粒子が含む前記無機被膜の総質量に対する前記イオン液体の総質量の比との積は、0.2以上0.4以下である
     請求項5に記載の電極触媒層。
  7.  前記無機被膜は、テトラエトキシシランおよびトリエトキシメチルシランのいずれかから形成されたシリカからなる
     請求項2~6のいずれか一項に記載の電極触媒層。
  8.  前記イオン液体は、1-アルキル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含む
     請求項1~7のいずれか一項に記載の電極触媒層。
  9.  前記イオン液体は、1-エチル-3-メチルイミダゾリウム ビス(トリフロオロメタンスルホニル)イミドを含む
     請求項8に記載の電極触媒層。
  10.  前記繊維状物質は、電子伝導性およびプロトン伝導性の少なくとも一方を有する
     請求項1~9のいずれか一項に記載の電極触媒層。
  11.  前記繊維状物質は、アゾール構造を有する材料を含む
     請求項1~10のいずれか一項に記載の電極触媒層。
  12.  高分子電解質膜と、
     前記高分子電解質膜を挟む一対の電極触媒層と、を備え、
     前記一対の電極触媒層の少なくとも一方が、請求項1~11のいずれか一項に記載の電極触媒層である
     膜電極接合体。
  13.  請求項12に記載の膜電極接合体と、
     前記膜電極接合体を挟む一対のセパレータと、
     を備える固体高分子形燃料電池。
PCT/JP2023/025471 2022-07-22 2023-07-10 電極触媒層、膜電極接合体、および、固体高分子形燃料電池 WO2024018944A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022117534A JP2024014589A (ja) 2022-07-22 2022-07-22 触媒粒子、電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2022-117534 2022-07-22
JP2022164944A JP2024057940A (ja) 2022-10-13 2022-10-13 イオン液体含浸シリカ被覆触媒粒子、膜電極接合体、及び燃料電池
JP2022-164944 2022-10-13
JP2022-191848 2022-11-30
JP2022191848 2022-11-30
JP2023069122 2023-04-20
JP2023-069122 2023-04-20

Publications (1)

Publication Number Publication Date
WO2024018944A1 true WO2024018944A1 (ja) 2024-01-25

Family

ID=89617880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025471 WO2024018944A1 (ja) 2022-07-22 2023-07-10 電極触媒層、膜電極接合体、および、固体高分子形燃料電池

Country Status (1)

Country Link
WO (1) WO2024018944A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525841A (ja) * 2005-06-10 2009-07-16 ミシガン ステイト ユニバーシティー 固体表面上にナノ粒子の組成物を産生させる方法
JP2011515795A (ja) * 2008-02-29 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア イオン性液体を含有する触媒インクならびに電極、ccm、gdeおよびmeaの製造における該触媒インクの使用
JP2018187618A (ja) * 2017-04-03 2018-11-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 燃料電池に用いられる酸素還元触媒の性能を向上させるプロモーターとしてのイオン液体
US20190267636A1 (en) * 2018-02-27 2019-08-29 GM Global Technology Operations LLC Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP2020022955A (ja) * 2018-07-09 2020-02-13 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 酸素還元触媒のためのイオン液体および八面体Pt−Ni−Cu合金ナノ粒子からなる組成物
JP7026669B2 (ja) * 2019-01-03 2022-02-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド イオン液体を有する膜電極接合体の性能を改善するための新規の触媒層組成

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525841A (ja) * 2005-06-10 2009-07-16 ミシガン ステイト ユニバーシティー 固体表面上にナノ粒子の組成物を産生させる方法
JP2011515795A (ja) * 2008-02-29 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア イオン性液体を含有する触媒インクならびに電極、ccm、gdeおよびmeaの製造における該触媒インクの使用
JP2018187618A (ja) * 2017-04-03 2018-11-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 燃料電池に用いられる酸素還元触媒の性能を向上させるプロモーターとしてのイオン液体
US20190267636A1 (en) * 2018-02-27 2019-08-29 GM Global Technology Operations LLC Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP2020022955A (ja) * 2018-07-09 2020-02-13 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 酸素還元触媒のためのイオン液体および八面体Pt−Ni−Cu合金ナノ粒子からなる組成物
JP7026669B2 (ja) * 2019-01-03 2022-02-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド イオン液体を有する膜電極接合体の性能を改善するための新規の触媒層組成

Similar Documents

Publication Publication Date Title
JP5810860B2 (ja) 燃料電池用電極触媒層
JP6113837B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
CA2910372C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP6113836B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2014175097A1 (ja) 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
Kamarudin et al. Materials, morphologies and structures of MEAs in DMFCs
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP6327681B2 (ja) 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池
WO2014175107A1 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2016067876A1 (ja) 燃料電池用電極触媒、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
WO2024018944A1 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
CN111247676A (zh) 电极催化剂层、膜电极接合体以及固体高分子型燃料电池
JP6554954B2 (ja) 触媒混合物およびその製造方法ならびに当該触媒混合物を用いてなる電極触媒層、膜電極接合体および燃料電池
JP2021163699A (ja) 固体高分子形燃料電池用触媒層、膜電極接合体及び固体高分子形燃料電池
JP6699094B2 (ja) 燃料電池の製造方法
WO2023243449A1 (ja) 水電解装置用積層体、水電解装置用膜電極接合体及び水電解装置
JP2024014589A (ja) 触媒粒子、電極触媒層、膜電極接合体、および、固体高分子形燃料電池
WO2024018802A1 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP6988143B2 (ja) 燃料電池用触媒層の製造方法および電極触媒混合物
JP2024040839A (ja) 電極触媒層、及び、膜電極接合体
JP6191368B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP2023022654A (ja) 膜電極接合体、固体高分子形燃料電池、および膜電極接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842869

Country of ref document: EP

Kind code of ref document: A1