WO2024016570A1 - 一种多级离心泵 - Google Patents

一种多级离心泵 Download PDF

Info

Publication number
WO2024016570A1
WO2024016570A1 PCT/CN2022/138379 CN2022138379W WO2024016570A1 WO 2024016570 A1 WO2024016570 A1 WO 2024016570A1 CN 2022138379 W CN2022138379 W CN 2022138379W WO 2024016570 A1 WO2024016570 A1 WO 2024016570A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
motor
section
guide
guide vane
Prior art date
Application number
PCT/CN2022/138379
Other languages
English (en)
French (fr)
Inventor
常正玺
赵宝林
李军
邵海江
肖丽倩
Original Assignee
利欧集团浙江泵业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利欧集团浙江泵业有限公司 filed Critical 利欧集团浙江泵业有限公司
Publication of WO2024016570A1 publication Critical patent/WO2024016570A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/007Details, component parts, or accessories especially adapted for liquid pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present application relates to the technical field of centrifugal pumps, and in particular to a multi-stage centrifugal pump.
  • a multi-stage centrifugal pump is a collection of two or more centrifugal pumps with the same function.
  • the fluid channel structure shows that the medium pressure relief port of the first stage is connected to the inlet of the second stage, and the medium pressure relief port of the second stage is connected.
  • the inlet is connected with the inlet of the third stage, and the mechanism connected in series forms a multi-stage centrifugal pump.
  • the significance of multi-stage centrifugal pumps is to increase the set pressure.
  • the patent number is CN201620533694.
  • channel; the coupling is connected to the pump shaft; the impeller is plugged into the pump shaft and rotates to suck the fluid from the inlet and pressurize it; the guide vane is housed in the guide vane support and collects the liquid pressurized by the impeller to reduce the flow rate And discharged through the outlet;
  • the variable frequency motor includes: a motor body and a motor shaft axially connected to the connector, and also includes a variable frequency controller integrated in the motor body. The variable frequency motor drives the pump shaft to rotate through the motor shaft and the connector.
  • the shortcomings of the existing technology are: 1.
  • the multi-stage pump stages are subject to water pressure during water flow, and gaps are prone to occur, causing water leakage and seriously affecting the energy efficiency of the water pump; 2.
  • the motor shaft and the pump shaft pass through a coupling The connection and coaxiality are difficult to control, and the installation and calibration of the pump shaft are difficult, which affects the operating stability of the pump; 3.
  • the controller is set on the side of the motor, the structure takes up a lot of space, the assembly cost is high, and the heat dissipation of the controller and the motor are carried out separately. The cost of cooling is higher.
  • the present invention provides a multi-stage centrifugal pump, which can reduce water leakage from inter-stage guide vanes and improve pump efficiency.
  • Another object of the present invention is to integrally mold the motor shaft and the pump shaft to improve the coaxiality between the pump shaft and the motor shaft and improve the operating stability of the pump.
  • the third purpose of the present invention is to integrate the controller into the upper end of the motor to realize unified heat dissipation of the controller and the motor, reduce the space occupied by the multi-stage pump, improve the heat dissipation efficiency of the motor and the controller, and reduce the heat dissipation cost.
  • the present invention adopts the following technical solutions.
  • a multi-stage centrifugal pump includes a controller, a motor, a pump shaft and a base. It is characterized in that the controller and the motor are integrated. There are several impellers on the pump shaft, guide vanes are provided on the outside of the impeller, and a guide vane is provided on the upper end of the base. There is an inlet gland, and a tensioning strip is connected between the inlet gland and the uppermost guide vane.
  • the inlet gland and the tensioning strip are used to tighten the guide vane and guide shell to reduce the leakage of water between stages, reduce hydraulic losses, and improve the efficiency of the multi-stage pump.
  • the motor includes a motor shaft, and the pump shaft is integrally provided with the motor shaft of the motor. Improve the coaxiality between the pump shaft and the motor shaft and improve the operating stability of the pump.
  • the base includes an inner cylinder and an outer cylinder arranged concentrically.
  • the inner cylinder is connected with an inlet transition section
  • the outer cylinder is connected with an outlet transition section.
  • the outer end of the inlet transition section is provided with an inlet flange seat
  • the outlet transition section is provided with an inlet flange seat.
  • the outer end is equipped with an outlet flange seat
  • the cross-sectional shape of the inlet transition section is an "eight" shape with the large mouth facing the inner cylinder.
  • the cross-sectional shape of the outlet transition section is also an "eight" shape with the large mouth facing the inner cylinder; in the prior art, the inlet transition section and the outlet pipe are straight-cylinder types with poor hydraulic performance.
  • This application adopts an "eight"-shaped diffusion design, which is better than The straight-tube designed inlet and outlet pipes can effectively reduce hydraulic losses.
  • the bottom surface of the outer cylinder is higher than the bottom surface of the outlet transition section. Raising the bottom surface of the outer cylinder so that it is higher than the bottom surface of the outlet pipe increases the contact area between the bottom surface of the cavity between the inner cylinder and the outer cylinder and the exit transition section, which can effectively reduce the hydraulic loss here.
  • the impeller includes a front cover plate, blades and a rear cover plate arranged in sequence.
  • the front cover plate includes an annular water inlet section and a water guide section with a semi-parabolic cross section. The outer end of the water guide section is provided with a water inlet section.
  • the backwater section is inclined on one side of the section; the rear cover plate is fixed with a hub section, which matches the pump shaft.
  • the rear cover plate is equipped with a guide section that matches the water guide section on the rear side of the hub section, and the blades are set Between the diversion section and the water diversion section. The incoming water in the water inlet section is diverted by the rotation of the blades and flows out to the radial direction of the impeller.
  • the traditional impeller does not have a return section, and the water flows forward to produce an axial reaction force on the impeller.
  • This application can reduce the axial force by setting up a return section. , extending the service life of the bearing; the hydraulic design rated speed of the impeller in this application is increased to 5000 to 6000 rpm, the single-stage lift is greatly increased, the outer diameter of the impeller can be smaller than that of the existing technology, and the design point specific speed is within the high efficiency range , the hydraulic efficiency is significantly improved.
  • the guide vanes include inner guide vanes and outer guide vanes.
  • the inner guide vanes are connected to the upper side of the outer end of the impeller.
  • the outer guide vanes include lower guide vanes, middle guide vanes and upper guide vanes arranged in sequence from bottom to top.
  • the guide vane corresponds to the lower side of the impeller
  • the upper guide vane corresponds to the upper side of the inner guide vane
  • the middle guide vane butts the lower guide vane and the upper guide vane
  • the inner guide vane is provided with a baffle corresponding to the upper side of the impeller.
  • the guide vanes are used to guide the water flow between the impellers between stages, providing a reliable water flow path.
  • the setting of the baffle changes the structure of the cavity behind the impeller, which can reduce hydraulic losses, reduce liquid leakage, and improve pump efficiency.
  • the opposite ends of the upper guide vane and the middle guide vane are arranged tangentially. Achieve a smooth transition of water flow from the middle guide vane to the upper guide vane to avoid hydraulic losses caused by water flow collision and backflow, and improve the efficiency of the water pump.
  • the outside of the guide vane is covered with a guide shell
  • the uppermost end of the guide vane is the terminal guide vane
  • the two ends of the terminal guide vane are respectively docked with the outside of the impeller water outlet and the guide port.
  • the tension strip connects the end guide vane and the inlet gland, which not only realizes the compression between the guide vanes, but also realizes the compression of the guide shell, further reducing hydraulic loss and reducing flow leakage.
  • the controller includes a controller lower shell and a controller upper shell.
  • a controller installation cavity is provided between the controller lower shell and the controller upper shell.
  • the controller installation cavity is included in the controller lower shell.
  • a mounting plate is provided.
  • a main control circuit board and a control panel are provided in the controller installation cavity.
  • a heat dissipation cavity is provided at the lower end of the lower housing of the controller.
  • the mounting plate is provided with a radiator in the heat dissipation cavity.
  • the lower housing of the controller is provided with a radiator. There is an air inlet connected to the heat dissipation cavity on the wall.
  • the motor includes a motor housing and a motor rear end cover.
  • the controller lower housing is fixedly connected to the motor rear end cover.
  • the controller lower housing and the motor rear end cover are connected.
  • the motor shaft of the motor extends into the fan blade installation cavity.
  • the ventilation holes are connected, and the cooling fan blades and the ventilation holes are arranged coaxially and oppositely; the motor housing is provided with a cooling channel connected to the installation cavity of the fan blades.
  • the controller is installed on the top of the vertical pump, with a small and compact structure, novel appearance, and easy operation.
  • the controller is installed on the side of the motor and shares a motor fan with the motor. Since only about 1/4 of the motor’s air volume flows through the control In order to ensure the heat dissipation effect of the controller, firstly, the air volume must be large enough, which will cause the fan diameter to be too large and the fan noise will increase; secondly, the heat dissipation area must be large enough, which will cause the controller casing to be too large and the manufacturing cost to be high. Increase, although this application also uses air cooling and shares a fan cooling system with the motor, the cooling channel is uniquely designed.
  • the airflow passes through the air inlet, heat dissipation cavity, ventilation hole, fan blade installation cavity and cooling channel in sequence.
  • the controller adopts suction cooling, and the motor adopts blowing cooling. All air volume is effectively used for cooling, which greatly improves the utilization rate of the cooling system; the lower housing of the controller integrates the motor fan cover, making the whole machine more compact.
  • the radiator includes several parallel heat dissipation fins
  • the lower housing of the controller is provided with several air inlet holes at both ends of the heat dissipation fins, and the several air inlet holes are arranged in a rectangular array.
  • Improve air intake efficiency ensure convection of cooling air flow to the radiator, and improve heat dissipation efficiency.
  • the invention has the following beneficial effects: it can reduce the water leakage of the interstage guide vane and improve the pump efficiency; the motor shaft and the pump shaft are integrally formed to improve the coaxiality of the pump shaft and the motor shaft and improve the operating stability of the pump; it controls the
  • the controller is integrated into the upper end of the motor to achieve unified heat dissipation of the controller and motor, reduce the space occupied by the multi-stage pump, improve the heat dissipation efficiency of the motor and controller, and reduce heat dissipation costs.
  • Figure 1 is a schematic structural diagram of the first embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of the second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of the base in the embodiment shown in FIG. 1 .
  • Figure 4 is a transverse cross-sectional view of the base shown in Figure 3;
  • Figure 5 is a schematic structural diagram of the lower housing of the controller in the present invention.
  • Figure 6 is an internal cross-sectional view of the connection part between the controller and the motor of the present invention.
  • Figure 7 is a schematic structural diagram of a guide vane used in the third embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the impeller in the embodiment shown in FIG. 1 .
  • FIG. 9 is a left side view of FIG. 8 .
  • Controller 1 Controller lower shell 101 Controller upper shell 102 Controller installation cavity 103 Installation plate 104 Main control circuit board 105 Control panel 106 Heat dissipation cavity 107 Radiator 108 Air inlet 109 Fan blade installation cavity 110 Cooling fan blade 111 Ventilation hole 112 Cooling channel 113 Motor 2 Motor shaft 201 Motor housing 202 Motor rear end cover 203 Pump shaft 204 Base 3 Inner cylinder 301 Outer cylinder 302 Inlet transition section 303 Exit transition section 304 Inlet flange seat 305 Outlet flange seat 306 Drain plug 307 Impeller 4 Front cover 401 Water inlet section 402 Water guide section 403 Return section 404 Blades 411 Rear cover 421 Hub section 422 Guide section 423 Inlet gland 5 Tightening bar 501 Tightening bolt 502 End guide vane 601 Diffusion guide vane 602 First guide vane 603 Second guide vane 604 Annular guide vane 605 Bent portion 606 Inner guide vane 611 Lower guide vane 612 Middle guide vane 613 Upper guide vane
  • a multi-stage centrifugal pump includes a controller 1, a motor 2, a pump shaft 204 and a base 3.
  • the controller 1 and the motor 2 are integrated and the motor adopts a permanent magnet synchronous motor.
  • the controller 1 includes a controller lower housing 101 and a controller upper housing 102.
  • a controller installation cavity 103 is provided between the controller lower housing 101 and the controller upper housing 102.
  • the controller installation cavity 103 includes a mounting plate 104 provided on the controller lower housing 101.
  • the controller installation cavity 103 is provided with a main control circuit board 105 and a control panel 106.
  • An operation screen is provided at the upper end of the controller upper housing 102. Connected to control panel 106.
  • the lower end of the controller lower housing 101 is provided with a heat dissipation cavity 107.
  • the mounting plate 104 is provided with a radiator 108 in the heat dissipation cavity 107.
  • the wall of the controller lower housing 101 is provided with an air inlet connected to the heat dissipation cavity 107. 109.
  • the motor includes a motor shaft 201, a stator and rotor assembly, a motor housing 202, a motor front end cover and a motor rear end cover 203.
  • the controller lower housing 101 is fixedly connected to the motor rear end cover 203.
  • the controller lower housing 101 and A fan blade installation cavity 110 is provided between the rear end covers 203 of the motor.
  • the motor shaft 201 of the motor extends into the fan blade installation cavity 110.
  • the fan blade installation cavity 110 is provided with a cooling fan blade 111 fixed on the motor shaft 201.
  • a connected ventilation hole 112 is provided between the fan installation cavity 110 and the heat dissipation cavity.
  • the cooling fan blade 111 is coaxially opposite to the ventilation hole 112; the motor housing 202 is provided with a cooling channel 113 connected to the fan installation cavity 110. .
  • the radiator 108 includes several parallel heat dissipation fins, and the heat dissipation fins are made of aluminum profiles.
  • the lower housing 101 of the controller is provided with a plurality of air inlet holes 109 at both ends of the heat dissipation fins, and the plurality of air inlet holes 109 are arranged in a rectangular array.
  • the air inlet, heat dissipation cavity 107, ventilation hole 112, blade installation cavity 110 and cooling channel 113 form a cooling air duct.
  • the pump shaft 204 is integrated with the motor shaft 201 of the motor.
  • the pump shaft 204 is provided with eight impellers 4 with clearances, that is, this embodiment corresponds to an eight-stage pump.
  • the impeller 4 includes a front cover 401, blades 411 and a rear cover 421 which are arranged sequentially along the direction of water outflow.
  • the front cover 401 includes an annular water inlet section 402 and a semi-parabolic cross-section.
  • the outer end of the water guide section 403 is provided with a return water section 404 that is inclined toward the side where the water inlet section 402 is located; on the cross section of the impeller 4, the return section 404 is tangent to the outer end of the water guide section 403.
  • the angle is between 0 and 15 degrees.
  • the rear cover 421 is fixed with a hub section 422, which cooperates with the pump shaft 204.
  • the rear cover 421 is provided with a guide section 423 that cooperates with the water guide section 403 on the rear side of the hub section 422, and the blades 411 are arranged on Between the flow guide section 423 and the water guide section 403.
  • the blade 411 and the rear cover 421 are fixedly integrated.
  • a cross groove is provided on the inner side of the hub section 422, and radial synchronous transmission is achieved through the cross groove and the ten fields on the pump shaft 204.
  • the pump shaft 204 is provided with a sleeve to limit the position between adjacent impellers 4 .
  • the incoming water in the water inlet section 402 is guided by the rotation of the blades and flows out to the radial direction of the impeller 4.
  • the traditional impeller 4 does not have a return water section 404.
  • the water flow out forward produces an axial reaction force on the impeller 4.
  • a return section is provided 404, can reduce the axial force and extend the service life of the bearing; the hydraulic design rated speed of the impeller 4 in this application is increased to 5000 to 6000 rpm, the single-stage lift is greatly increased, and the outer diameter of the impeller 4 can be made larger than that of the existing technology Small, the design point specific speed is within the high efficiency range, and the hydraulic efficiency is significantly improved.
  • the guide vane on the outside of the impeller 4, a pump barrel 7 on the base 3, an inlet gland 5 on the upper end of the base 3, and a tension strip 501 connected between the inlet gland 5 and the uppermost guide vane.
  • the uppermost end of the guide vane is the end guide vane 601.
  • the shaft section of the end guide vane 601 is curved in an arc shape.
  • the two ends of the end guide vane 601 are respectively connected to the outside of the water outlet and the guide port of the impeller 4.
  • the tension strip 501 connects the end guide vane 601 and the inlet gland 5.
  • the other guide vanes below the end guide vane 601 include a diffusion guide vane 602 corresponding to the lower side of the impeller 4 and a diffuser guide vane 602 corresponding to the lower side of the impeller 4.
  • the upper side of the first guide vane 603 is provided with a second guide vane 604 with a gap therebetween.
  • the second guide vane 604 is integrally provided on the lower side.
  • Annular guide vane 605 the annular guide vane 605 also has the function of the guide shell 615, the upper end of the annular guide vane 605 and the outer end of the second guide vane 604 are integrally connected to form a corner with a rounded transition, the annular guide vane 605
  • the lower end is provided with a bending portion 606, and the bending portion 606 can fit and snap on the outside of the bending corner to realize the butt joint between adjacent annular guide vanes 605.
  • the inlet gland 5 is provided with a connecting block, and a tightening bolt 502 is threaded on the connecting block.
  • One end of the tightening bar 501 is fixedly connected to the end guide vane 601, and the other end of the tightening bar 501 is fixedly connected to the tightening bolt 502.
  • the tensioning bar 501 can be tightened, thereby completing the compression between the guide vanes and reducing water leakage.
  • the impeller 4 rotates, the water body is thrown out from the inlet section of the impeller 4 to the knuckle position by the action of the blades, and then reflects and flows between the first guide vane 603 and the second guide vane 604, and then enters the next stage of the impeller. 4, realize multi-stage impeller 4 water delivery.
  • the base 3 includes an inner cylinder 301 and an outer cylinder 302 arranged concentrically.
  • the inner cylinder 301 is provided with a drain plug 307 for drainage.
  • the inner cylinder 301 is connected with an inlet transition section 303, and the outer cylinder 302 is connected with an outlet transition section 304.
  • the outer end of the inlet transition section 303 is provided with an inlet flange seat 305, and the outer end of the outlet transition section 304 is provided with an outlet flange seat. 306.
  • the cross-sectional shape of the inlet transition section 303 is an "eight" shape with the large opening facing the inner cylinder 301.
  • One end of the inlet transition section 303 facing the inner cylinder 301 is oval, and one end of the inlet transition section 303 facing away from the inner cylinder 301 is circular.
  • the diameter of the circle is equal to the minor axis of the oval.
  • the end of the inlet transition section 303 facing away from the inner cylinder 301 is lateral.
  • the size gradually becomes larger toward the inner cylinder 301, thereby forming a gradual shape for water conduction.
  • the bottom surface of the outer barrel 302 is higher than the bottom surface of the outlet transition section 304 .
  • the heights of the bottom surface of the inner cylinder 301, the bottom surface of the inlet transition section and the bottom surface of the outlet transition section 304 are equal.
  • Embodiment 2 As shown in Figure 2, a multi-stage centrifugal pump.
  • Embodiment 1 The main difference between Embodiment 2 and Embodiment 1 is that in this embodiment there are six impellers 4, the water pump is a six-stage pump, and there is no external impeller 4. Return section.
  • This embodiment is different from the structure of the guide vane in Embodiment 1.
  • the guide vane is covered with a guide shell 615 on the outside, and the upper and lower ends of the guide shell 615 are respectively provided with bending portions 606 to achieve snap-in positioning.
  • the other guide vanes except the end guide vane 601 include inner guide vanes 611 and outer guide vanes.
  • the inner guide vanes 611 are connected to the upper side of the outer end of the impeller 4, and the outer guide vanes include lower guide vanes 612, The middle guide vane 613 and the upper guide vane 614, the lower guide vane 612 corresponds to the lower side of the impeller 4, the upper guide vane 614 corresponds to the upper side of the inner guide vane 611, the middle guide vane 613 butts the lower guide vane 612 and the upper guide vane 614 , the opposite ends of the upper guide vane 614 and the middle guide vane 613 are arranged tangentially.
  • Opposite ends of the upper guide vane 614 and the middle guide vane 613 are provided with convex edges to fit together, and are fixed and compressed with the guide shell 615 through the convex edges.
  • the multi-stage cooperation of the guide vanes and the outer guide housing 615 can reduce water leakage from the interstage guide vanes and improve pump efficiency;
  • the motor shaft 201 and the pump shaft 204 are integrally formed to improve the coaxiality of the pump shaft 204 and the motor shaft 201 degree, improve the operating stability of the pump; integrate the controller into the upper end of the motor to achieve unified heat dissipation of the controller and motor, reduce the space occupied by the multi-stage pump, improve the heat dissipation efficiency of the motor and controller, and reduce heat dissipation costs.
  • Embodiment 3 As shown in FIG. 7 , a multi-stage centrifugal pump.
  • Embodiment 3 The only difference between Embodiment 3 and Embodiment 2 is that the inner guide vane 611 is provided with a baffle 616 corresponding to the upper side of the impeller 4 .
  • the outside of the baffle 616 is connected to the inner end of the inner guide vane 611 , and the height of the lower end of the baffle 616 is the same as the height of the lower end of the inner guide vane 611 .
  • the guide vanes are used to guide the water flow between the interstage impellers 4, providing a reliable water flow path.
  • the setting of the baffle 616 changes the structure of the cavity behind the impeller 4, which can reduce hydraulic losses, reduce liquid leakage, and improve pump efficiency.
  • the inlet gland 5 cooperates with the tensioning strip 501 to tighten the guide vane and the guide shell 615 to reduce the leakage of water between stages, reduce hydraulic losses, and improve the efficiency of the multi-stage pump.
  • the controller is installed on the top of the vertical pump, with a small and compact structure, novel appearance, and easy operation. In the existing technology, the controller is installed on the side of the motor and shares a motor fan with the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种多级离心泵,包括控制器、电机、泵轴和基座,控制器与电机集成设置,泵轴上设置有若干个叶轮,叶轮外侧设置有导叶,基座上端设有进口压盖,进口压盖与最上端的导叶之间连接设有拉紧条。该结构能够减小级间导叶的水体泄露,提高泵效率;电机轴与泵轴一体成型,提高电机运行的稳定性;将控制器集成到电机上端,实现控制器和电机的统一散热,减小多级泵的占用空间,提高散热效率。

Description

一种多级离心泵 技术领域
本申请涉及离心泵技术领域,尤其涉及一种多级离心泵。
背景技术
多级离心泵是将具有同样功能的两个以上的离心泵集合在一起,流体通道结构上,表现在第一级的介质泄压口与第二级的进口相通,第二级的介质泄压口与第三级的进口相通,如此串联的机构形成了多级离心泵。多级离心泵的意义在于提高设定压力。
例如,中国专利文献中,专利号为CN201620533694.X于2017年1月4日授权公告的一种智能多级离心泵,包括:泵体,外壳体,外壳体和导叶支撑体之间为流道;联接器与泵轴相联接;叶轮插接在泵轴上转动将流体从入口吸入并加压;导叶,容置于导叶支撑体中,将通过叶轮加压的液体收集以降低流速并通过出口排出;变频电机包括:电机本体及轴向连接联接器的电机轴,还包括集成设置在所述电机本体内的变频控制器,变频电机通过电机轴及联接器驱动泵轴转动。
现有技术中的不足之处在于:1、多级泵级间在水流运动时受水体压力,容易出现间隙,使得水体泄露,严重影响水泵的能效;2、电机轴与泵轴通过联轴器连接,同轴度难以控制,泵轴的安装校准难,影响泵的运行稳定性;3、控制器设置在电机侧面,结构占用空间大,装配成本高,而且控制器与电机的散热分开进行,散热的成本较高。
发明内容
基于现有技术中上述不足,本发明提供了一种多级离心泵,能够减小级间导叶的水体泄露,提高泵效率。
本发明的另一个目的是电机轴与泵轴一体成型,提高泵轴和电机轴的同轴度,提高泵的运行稳定性。
本发明的第三个目的是将控制器集成到电机上端,实现控制器和电机的统一散热,减小多级泵的占用空间,提高电机和控制器的散热效率,降低散热成本。
为了实现上述发明目的,本发明采用以下技术方案。
一种多级离心泵,包括控制器、电机、泵轴和基座,其特征是,控制器与电机集成设置,泵轴上设有若干个叶轮,叶轮外侧设有导叶,基座上端设有进口压盖,进口压盖与最上端的导叶之间连接设有拉紧条。
通过进口压盖配合拉紧条拉紧导叶和导流壳,减小级间水体的泄露,减少水力损失,提高多级泵的效率。
作为优选,电机包括电机轴,泵轴与电机的电机轴一体设置。提高泵轴和电机轴的同轴度,提高泵的运行稳定性。
作为优选,基座包括同心设置的内筒和外筒,内筒连接设有进口过渡段,外筒连接设有出口过渡段,进口过渡段的外端设有进口法兰座,出口过渡段的外端设有出口法兰座,进口过渡段的横截面形状为大口朝向内筒的“八”字形。出口过渡段的横截面形状也为大口朝向内筒的“八”字形;现有技术中进口过渡段和出口管道为直筒式,水力性能差,本申请采用“八”字形的扩散式设计,比起直筒式设计的进口管道和出口管道能有效的减小水力损失。
作为优选,外筒的底面高于出口过渡段的底面。提高外筒底面位置,使之高于出口管道底面,增大了内筒与外筒之间空腔底面与出口过渡段接触面积,能够有效减小此处的水力损失。
作为优选,叶轮包括依次设置的前盖板、叶片和后盖板,前盖板包括圆环形的入水段和横截面呈半抛物线形的导水段,导水段的外端设有向入水段所在一侧倾斜的回水段;后盖板上固定设有轮毂段,轮毂段与泵轴配合,后盖板在轮毂段的后侧设有与导水段配合的导流段,叶片设置在导流段和导水段之间。入水段进水经叶片转动导流后流出到叶轮径向,传统的叶轮没有回水段,水流向前流出对叶轮产生轴向的反作用力,本申请通过设置了回水段,能够减小轴向力,延长轴承的使用寿命;本申请的叶轮水力设计额定转速提高至5000到6000转每分钟,单级扬程大幅提高,叶轮外径能够比现有技术做的小,设计点比转速处于高效范围内,水力效率显著提高。
作为优选,导叶包括内导叶和外导叶,内导叶接驳在叶轮外端的上侧,外导叶包括从下到上依次设置的下导叶、中导叶和上导叶,下导叶对应在叶轮的下侧,上导叶对应在内导叶的上侧,中导叶对接下导叶和上导叶,内导叶上设有对应叶轮上侧的挡流板。通过导叶实现级间叶轮之间水流的导向,提供可靠的水流路径,挡流板的设置改变了叶轮后侧腔体结构,能够减少水力损失,减少液体泄露,提高泵效率。
作为优选,上导叶和中导叶的相对端相切设置。实现水流在中导叶到上导叶之间的圆滑过渡,避免水流碰撞回流而造成水力损失,提高水泵效率。
作为优选,导叶外侧包覆设有导流壳,导叶的最上端为末端导叶,末端导叶的两端分别对接所在叶轮出水口和导流口外侧。拉紧条连接末端导叶和进口压盖,不仅实现了导叶间的压紧,同时还实现了导流壳的压紧,进一步减少了水力损失,减少流量泄露。
作为优选,控制器包括控制器下壳体和控制器上壳体,控制器下壳体和控制器上壳体之间设有控制器安装腔,控制器安装腔包括在控制器下壳体上设置的安装板,控制器安装腔 内设有主控线路板和控制面板,控制器下壳体的下端设有散热空腔,安装板在散热空腔内设有散热器,控制器下壳体的壁面上设有连通散热空腔的进气孔,电机包括电机壳体和电机后端盖,控制器下壳体与电机后端盖固定连接,控制器下壳体和电机后端盖之间设有风叶安装腔,电机的电机轴伸出到风叶安装腔内,风叶安装腔内设有固定在电机轴上的散热风叶,风叶安装腔和散热空腔之间设有连通的通风孔,散热风叶与通风孔同轴相对设置;电机壳体上设有连通风叶安装腔的冷却通道。
控制器安装于立式泵顶部,结构小巧紧凑、外形新颖、操作方便;现有技术中,控制器设置在电机侧面,与电机共用一个电机风扇,由于只有1/4左右的电机风量流经控制器散热片,为了保证控制器的散热效果,一是风量要足够大,这样导致风扇直径过大,风扇噪音增加;二是散热面积要足够大,这样导致控制器壳体体积过大,制造成本增加,而本申请虽然也采用风冷冷却,与电机共用一套风扇冷却***,但冷却通道进行了独特设计,气流依次经过进气口、散热空腔、通风孔、风叶安装腔和冷却通道,控制器采用吸气冷却,电机采用吹气冷却,所有风量都被有效用于冷却,大大提高了冷却***利用率;控制器下壳体集电机风扇罩于一体,整机结构更紧凑。
作为优选,散热器包括若干块平行设置的散热翅片,控制器下壳体对应在散热翅片的两端分别设有若干个进气孔,若干个进气孔呈矩形阵列设置。提高进气效率,保证冷却气流对散热器的对流,提高散热效率。
本发明具有如下有益效果:能够减小级间导叶的水体泄露,提高泵效率;电机轴与泵轴一体成型,提高泵轴和电机轴的同轴度,提高泵的运行稳定性;将控制器集成到电机上端,实现控制器和电机的统一散热,减小多级泵的占用空间,提高电机和控制器的散热效率,降低散热成本。
附图说明
图1是本发明第一种实施例的结构示意图。
图2是本发明第二种实施例的结构示意图。
图3是图1所示实施例中基座的结构示意图。
图4是图3所示基座的横向剖视图。
图5是本发明中控制器下壳体的结构示意图。
图6是本发明控制器与电机连接部分的内部剖视图。
图7是本发明第三种实施例中所应用的导叶的结构示意图。
图8是图1所示实施例中叶轮的剖视示意图。
图9是图8的左视图。
图中:控制器1 控制器下壳体101 控制器上壳体102 控制器安装腔103 安装板104 主控线路板105 控制面板106 散热空腔107 散热器108 进气孔109 风叶安装腔110 散热风叶111 通风孔112 冷却通道113 电机2 电机轴201 电机壳体202 电机后端盖203 泵轴204 基座3 内筒301 外筒302 进口过渡段303 出口过渡段304 进口法兰座305 出口法兰座306 放水螺塞307 叶轮4 前盖板401 入水段402 导水段403 回水段404 叶片411 后盖板421 轮毂段422 导流段423 进口压盖5 拉紧条501 拉紧螺栓502 末端导叶601 扩散导叶602 第一导流导叶603 第二导流导叶604 环形导叶605 弯折部606 内导叶611 下导叶612 中导叶613 上导叶614 导流壳615 挡流板616 泵筒7。
具体实施方式
下面结合附图和具体实施例对本发明进行进一步的阐述。
实施例1,
如图1所示,一种多级离心泵,包括控制器1、电机2、泵轴204和基座3,控制器1与电机2集成设置,电机采用永磁同步电机。结合图1、图5和图6,控制器1包括控制器下壳体101和控制器上壳体102,控制器下壳体101和控制器上壳体102之间设有控制器安装腔103,控制器安装腔103包括在控制器下壳体101上设置的安装板104,控制器安装腔103内设有主控线路板105和控制面板106,控制器上壳体102的上端设置操作屏幕与控制面板106连通。控制器下壳体101的下端设有散热空腔107,安装板104在散热空腔107内设有散热器108,控制器下壳体101的壁面上设有连通散热空腔107的进气孔109,电机包括电机轴201、定转子组件、电机壳体202、电机前端盖和电机后端盖203,控制器下壳体101与电机后端盖203固定连接,控制器下壳体101和电机后端盖203之间设有风叶安装腔110,电机的电机轴201伸出到风叶安装腔110内,风叶安装腔110内设有固定在电机轴201上的散热风叶111,风叶安装腔110和散热空腔之间设有连通的通风孔112,散热风叶111与通风孔112同轴相对设置;电机壳体202上设有连通风叶安装腔110的冷却通道113。散热器108包括若干块平行设置的散热翅片,散热翅片采用铝型材。控制器下壳体101对应在散热翅片的两端分别设有若干个进气孔109,若干个进气孔109呈矩形阵列设置。进气口、散热空腔107、通风孔112、风叶安装腔110和冷却通道113形成冷却风道。
泵轴204与电机的电机轴201一体设置。泵轴204上设有八个间隙设置的叶轮4,也就是本实施例对应的为八级泵。如图8和图9所示,叶轮4包括沿水流流出方向依次设置的 前盖板401、叶片411和后盖板421,前盖板401包括圆环形的入水段402和横截面呈半抛物线形的导水段403,导水段403的外端设有向入水段402所在一侧倾斜的回水段404;叶轮4横截面上,回水段404与导水段403外端切线的夹角在0到15度之间。后盖板421上固定设有轮毂段422,轮毂段422与泵轴204配合,后盖板421在轮毂段422的后侧设有与导水段403配合的导流段423,叶片411设置在导流段423和导水段403之间。叶片411与后盖板421固定一体设置。轮毂段422内侧设有十字槽,通过十字槽与泵轴204上的十字段实现径向同步传动。泵轴204是设置套筒实现相邻叶轮4之间的限位。入水段402进水经叶片转动导流后流出到叶轮4径向,传统的叶轮4没有回水段404,水流向前流出对叶轮4产生轴向的反作用力,本申请通过设置了回水段404,能够减小轴向力,延长轴承的使用寿命;本申请的叶轮4水力设计额定转速提高至5000到6000转每分钟,单级扬程大幅提高,叶轮4外径能够比现有技术做的小,设计点比转速处于高效范围内,水力效率显著提高。
叶轮4外侧设有导叶,基座3上设有泵筒7,基座3上端设有进口压盖5,进口压盖5与最上端的导叶之间连接设有拉紧条501。导叶的最上端为末端导叶601,末端导叶601轴截面成弧形弯曲设置,末端导叶601的两端分别对接所在叶轮4出水口和导流口外侧。拉紧条501连接末端导叶601和进口压盖5,如图1所示,本实施例中末端导叶601下方的其他导叶均包括对应在叶轮4下侧的扩散导叶602和对应在叶轮4上侧的第一导流导叶603,第一导流导叶603的上侧设有与其间隙设置的第二导流导叶604,第二导流导叶604的下侧一体设有环形导叶605,环形导叶605兼具了导流壳615的功能,环形导叶605的上端和第二导流导叶604的外端一体连接形成带圆角过渡的折角,环形导叶605的下端设有弯折部606,弯折部606能够贴合卡接在折角外侧,实现相邻环形导叶605之间的对接。进口压盖5上设有连接块,连接块上螺纹连接设有拉紧螺栓502,拉紧条501的一端固定连接末端导叶601,拉紧条501的另一端固定连接拉紧螺栓502,通过调节拉紧螺栓502的螺纹拧紧程度,可以实现拉紧条501的拉紧,进而完成导叶之间的压紧,减少水体泄露。叶轮4转动时,水体从叶轮4的入口段经叶片作用甩出到折角位置,之后反射流入到第一导流导叶603和第二导流导叶604之间,进而进入下一级的叶轮4中,实现多级叶轮4送水。
结合图1、图3和图4,基座3包括同心设置的内筒301和外筒302,内筒301上设有放水螺塞307用于排水。内筒301连接设有进口过渡段303,外筒302连接设有出口过渡段304,进口过渡段303的外端设有进口法兰座305,出口过渡段304的外端设有出口法兰座306,进口过渡段303的横截面形状为大口朝向内筒301的“八”字形。进口过渡段303朝向内筒301的一端为椭圆形,进口过渡段303背离内筒301的一端为圆形,圆形直径与椭圆形的短 轴相等,进口过渡段303背离内筒301一端的横向尺寸朝向内筒301方向逐渐变大,从而形成渐变形状导水。外筒302的底面高于出口过渡段304的底面。内筒301底面、入口过渡段的底面和出口过渡段304的底面高度相等。
实施例2,
如图2所示,一种多级离心泵,实施例2与实施例1的主要不同之处在于,本实施例中叶轮4设有六个,水泵为六级泵,叶轮4的外部未设置回流段。本实施例与实施例1的导叶结构不同,导叶外侧包覆设有导流壳615,导流壳615的上下端分别设有弯折部606实现卡接定位。除末端导叶601外的其他导叶包括内导叶611和外导叶,内导叶611接驳在叶轮4外端的上侧,外导叶包括从下到上依次设置的下导叶612、中导叶613和上导叶614,下导叶612对应在叶轮4的下侧,上导叶614对应在内导叶611的上侧,中导叶613对接下导叶612和上导叶614,上导叶614和中导叶613的相对端相切设置。上导叶614和中导叶613的相对端设置外凸边沿贴合,通过外凸边沿与导流壳615固定压紧。导叶多段配合,加上外侧的导流壳615,能够减小级间导叶的水体泄露,提高泵效率;电机轴201与泵轴204一体成型,提高泵轴204和电机轴201的同轴度,提高泵的运行稳定性;将控制器集成到电机上端,实现控制器和电机的统一散热,减小多级泵的占用空间,提高电机和控制器的散热效率,降低散热成本。
实施例3,
如图7所示,一种多级离心泵,实施例3与实施例2的区别之处仅在于,内导叶611上设有对应叶轮4上侧的挡流板616。挡流板616的外侧与内导叶611的内端连接,挡流板616下端的高度与内导叶611下端的高度相同。通过导叶实现级间叶轮4之间水流的导向,提供可靠的水流路径,挡流板616的设置改变了叶轮4后侧腔体结构,能够减少水力损失,减少液体泄露,提高泵效率。
本申请通过进口压盖5配合拉紧条501拉紧导叶和导流壳615,减小级间水体的泄露,减少水力损失,提高多级泵的效率。控制器安装于立式泵顶部,结构小巧紧凑、外形新颖、操作方便;现有技术中,控制器设置在电机侧面,与电机共用一个电机风扇,由于只有1/4左右的电机风量流经控制器散热片,为了保证控制器的散热效果,一是风量要足够大,这样导致风扇直径过大,风扇噪音增加;二是散热面积要足够大,这样导致控制器壳体体积过大,制造成本增加,而本申请虽然也采用风冷冷却,与电机共用一套风扇冷却***,但冷却通道113进行了独特设计,气流依次经过进气口、散热空腔107、通风孔112、风叶安装腔110和冷却通道113,控制器采用吸气冷却,电机采用吹气冷却,所有风量都被有效用于冷却,大 大提高了冷却***利用率;控制器下壳体101集电机风扇罩于一体,整机结构更紧凑。

Claims (9)

  1. 一种多级离心泵,包括控制器、电机、泵轴和基座,其特征在于,控制器与电机集成设置,泵轴上设有若干个叶轮,叶轮外侧设有导叶,基座上端设有进口压盖,进口压盖与最上端的导叶之间连接设有拉紧条。
  2. 根据权利要求1所述的一种多级离心泵,其特征是,所述电机包括电机轴,泵轴与电机的电机轴一体设置。
  3. 根据权利要求1所述的一种多级离心泵,其特征是,所述基座包括同心设置的内筒和外筒,内筒连接设有进口过渡段,外筒连接设有出口过渡段,进口过渡段的外端设有进口法兰座,出口过渡段的外端设有出口法兰座,进口过渡段的横截面形状为大口朝向内筒的“八”字形。
  4. 根据权利要求1所述的一种多级离心泵,其特征是,所述叶轮包括依次设置的前盖板、叶片和后盖板,前盖板包括圆环形的入水段和横截面呈半抛物线形的导水段,导水段的外端设有向入水段所在一侧倾斜的回水段;后盖板上固定设有轮毂段,轮毂段与泵轴配合,后盖板在轮毂段的后侧设有与导水段配合的导流段,叶片设置在导流段和导水段之间。
  5. 根据权利要求1或4所述的一种多级离心泵,其特征是,所述导叶包括内导叶和外导叶,内导叶接驳在叶轮外端的上侧,外导叶包括从下到上依次设置的下导叶、中导叶和上导叶,下导叶对应在叶轮的下侧,上导叶对应在内导叶的上侧,中导叶对接下导叶和上导叶,内导叶上设有对应叶轮上侧的挡流板。
  6. 根据权利要求5所述的一种多级离心泵,其特征是,所述上导叶和中导叶的相对端相切设置。
  7. 根据权利要求5所述的一种多级离心泵,其特征是,所述导叶外侧包覆设有导流壳,导叶的最上端为末端导叶,末端导叶的两端分别对接所在叶轮出水口和导流口外侧。
  8. 根据权利要求1所述的一种多级离心泵,其特征是,所述控制器包括控制器下壳体和控制器上壳体,控制器下壳体和控制器上壳体之间设有控制器安装腔,控制器安装腔包括在控制器下壳体上设置的安装板,控制器安装腔内设有主控线路板和控制面板,控制器下壳体的下端设有散热空腔,安装板在散热空腔内设有散热器,控制器下壳体的壁面上设有连通散热空腔的进气孔,电机包括电机壳体和电机后端盖,控制器下壳体与电机后端盖固定连接,控制器下壳体和电机后端盖之间设有风叶安装腔,电机的电机轴伸出到风叶安装腔内,风叶安装腔内设有固定在电机轴上的散热风叶,风叶安装腔和散热空腔之间设有连通的通风孔,散热风叶与通风孔同轴相对设置;电机壳体上设有连通风叶安装腔的冷却通道。
  9. 根据权利要求8所述的一种多级离心泵,其特征是,所述散热器包括若干块平行设置的散热翅片,控制器下壳体对应在散热翅片的两端分别设有若干个进气孔,若干个进气孔呈矩形 阵列设置。
PCT/CN2022/138379 2022-07-18 2022-12-12 一种多级离心泵 WO2024016570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210844066.3A CN116624396A (zh) 2022-07-18 2022-07-18 一种多级离心泵
CN202210844066.3 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016570A1 true WO2024016570A1 (zh) 2024-01-25

Family

ID=87596043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138379 WO2024016570A1 (zh) 2022-07-18 2022-12-12 一种多级离心泵

Country Status (2)

Country Link
CN (1) CN116624396A (zh)
WO (1) WO2024016570A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718501A1 (en) * 1994-12-20 1996-06-26 Bombas Electricas, S.A. (Boelsa) Multicellular electric centrifugal pump
US6171080B1 (en) * 1998-02-24 2001-01-09 Smc Corporation Immersed vertical pump with reduced thrust loading
CN2752491Y (zh) * 2004-11-19 2006-01-18 广州市白云泵业制造有限公司 立式多级离心泵
CN102628451A (zh) * 2012-04-26 2012-08-08 朱学斌 一种反向布置末级叶轮平衡轴向力的离心泵
CN105626548A (zh) * 2016-01-21 2016-06-01 池泉 一种智能管道泵
CN105673574A (zh) * 2016-03-18 2016-06-15 池泉 低噪音多级离心泵
JP2016109044A (ja) * 2014-12-08 2016-06-20 株式会社日立産機システム 縦型多段ポンプ
CN107461339A (zh) * 2016-06-03 2017-12-12 苏州赟羽机电科技有限公司 一种智能多级离心泵
CN207813944U (zh) * 2017-12-15 2018-09-04 上海中航泵业股份有限公司 一种立式多级离心泵
CN216241329U (zh) * 2021-11-23 2022-04-08 阿科斯(大连)泵业有限公司 一种多级离心泵

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718501A1 (en) * 1994-12-20 1996-06-26 Bombas Electricas, S.A. (Boelsa) Multicellular electric centrifugal pump
US6171080B1 (en) * 1998-02-24 2001-01-09 Smc Corporation Immersed vertical pump with reduced thrust loading
CN2752491Y (zh) * 2004-11-19 2006-01-18 广州市白云泵业制造有限公司 立式多级离心泵
CN102628451A (zh) * 2012-04-26 2012-08-08 朱学斌 一种反向布置末级叶轮平衡轴向力的离心泵
JP2016109044A (ja) * 2014-12-08 2016-06-20 株式会社日立産機システム 縦型多段ポンプ
CN105626548A (zh) * 2016-01-21 2016-06-01 池泉 一种智能管道泵
CN105673574A (zh) * 2016-03-18 2016-06-15 池泉 低噪音多级离心泵
CN107461339A (zh) * 2016-06-03 2017-12-12 苏州赟羽机电科技有限公司 一种智能多级离心泵
CN207813944U (zh) * 2017-12-15 2018-09-04 上海中航泵业股份有限公司 一种立式多级离心泵
CN216241329U (zh) * 2021-11-23 2022-04-08 阿科斯(大连)泵业有限公司 一种多级离心泵

Also Published As

Publication number Publication date
CN116624396A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US20020039529A1 (en) Turbo fan housing in window type air conditioner
EP0511594A1 (en) Impeller in water pump
WO2015000207A1 (zh) 一种吸顶式换气扇
CN214788140U (zh) 多翼型离心风机及风电设备
WO2024016570A1 (zh) 一种多级离心泵
JP7521873B2 (ja) ディフューザ、送風装置及び集塵設備
CN2694004Y (zh) 高温排烟轴流风机
WO2022143328A1 (zh) 离心风机、家用电器、蜗壳和烹饪器具
JPH0539930A (ja) 空気調和装置
CN216111362U (zh) 一种蜗壳式节能风机
WO2020019800A1 (zh) 一种多流量鼓风机
CN100380000C (zh) 轴流散热风扇的壳座
CN111734685A (zh) 一种通风换气装置
CN114109869A (zh) 一种风机及使用该风机的家电
KR100339550B1 (ko) 터보 압축기의 디퓨져 구조
CN215633846U (zh) 一种双轴直联型多叶轮离心式压缩机结构
CN217380930U (zh) 双级空气压缩机、吸尘器
CN216554513U (zh) 一种带导叶式风机电机机壳
CN215637534U (zh) 一种空调器
CN219345010U (zh) 一种降噪强压大风量流体抽吸通道
CN219062013U (zh) 增压装置和燃气热水器
KR200216272Y1 (ko) 원심형 다단 고압급수펌프
CN215860905U (zh) 新型增压轴流风机
CN214366781U (zh) 一种用于离心压缩机的增压装置
CN216742163U (zh) 一种空压机风叶箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951827

Country of ref document: EP

Kind code of ref document: A1